JP6808543B2 - Infrared transmissive glass, optics and preforms - Google Patents

Infrared transmissive glass, optics and preforms Download PDF

Info

Publication number
JP6808543B2
JP6808543B2 JP2017044011A JP2017044011A JP6808543B2 JP 6808543 B2 JP6808543 B2 JP 6808543B2 JP 2017044011 A JP2017044011 A JP 2017044011A JP 2017044011 A JP2017044011 A JP 2017044011A JP 6808543 B2 JP6808543 B2 JP 6808543B2
Authority
JP
Japan
Prior art keywords
equation
infrared transmissive
transmissive glass
present
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017044011A
Other languages
Japanese (ja)
Other versions
JP2018145070A (en
Inventor
真宏 高田
真宏 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2017044011A priority Critical patent/JP6808543B2/en
Publication of JP2018145070A publication Critical patent/JP2018145070A/en
Application granted granted Critical
Publication of JP6808543B2 publication Critical patent/JP6808543B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glass Compositions (AREA)

Description

本発明は、赤外線透過ガラス、光学素子およびプリフォームに関する。 The present invention relates to infrared transmissive glass, optical elements and preforms.

遠赤外線カメラは、従来、主に軍事用のナイトスコープ等に利用されてきたが、近年は、車載用のナイトビジョン、防災、セキュリティ、保守保全などの民生用の用途への展開が期待されている。 Far-infrared cameras have traditionally been used mainly for military night visions, but in recent years, they are expected to be used for consumer applications such as in-vehicle night vision, disaster prevention, security, and maintenance. There is.

遠赤外線カメラ用のレンズ材料としては、従来、単結晶ゲルマニウムレンズが用いられてきたが、単結晶ゲルマニウムが希少で高価な材料であることに加えて、バルク状の単結晶ゲルマニウムを研削および研磨してレンズ形状とすることから、量産によるコストダウン効果が図れず、レンズとして極めて高価となるため、民生用への展開が困難であった。
一方、近年は、結晶でない赤外線透過材料として、S、Se、Teを主成分としたカルコゲナイドガラスが注目されている。
Conventionally, a single crystal germanium lens has been used as a lens material for a far-infrared camera. However, in addition to the fact that single crystal germanium is a rare and expensive material, bulk single crystal germanium is ground and polished. Since the lens shape is used, the cost reduction effect by mass production cannot be achieved and the lens is extremely expensive, so that it is difficult to develop it for consumer use.
On the other hand, in recent years, chalcogenide glass containing S, Se, and Te as main components has been attracting attention as an infrared transmissive material that is not crystalline.

例えば、特許文献1には、「モル濃度で、Ge:2〜22%、Sb及びBiからなる群から選択される少なくとも1種:6〜34%、Sn及びZnからなる群から選択される少なくとも1種:1〜20%、S、Se及びTeからなる群から選択される少なくとも1種:58〜70%を含有する、モールド成型用赤外線透過ガラス。」が記載されている([請求項1])。 For example, Patent Document 1 states that "at a molar concentration, at least one selected from the group consisting of Ge: 2 to 22%, Sb and Bi: 6 to 34%, at least selected from the group consisting of Sn and Zn. 1 type: 1 to 20%, at least 1 type selected from the group consisting of S, Se and Te: 58 to 70%, an infrared transmissive glass for molding. ”([Claim 1]. ]).

また、特許文献2には、「モル%で次の成分:Ge 5〜40、Ga <1、S+Se 40〜85、Sb+As 4〜40、MX 2〜25、Ln 0〜6、添加剤 0〜30を含有するガラスセラミック型の組成物であって、MはRb、Cs、Na、K及びZnから選んだ少なくとも1種のアルカリ金属を表わし、Xは少なくとも1個の塩素、臭素又はヨウ素原子を表わし、Lnは少なくとも1種の希土類金属を表わし、添加剤は少なくとも1個の金属及び/又は少なくとも1個の金属塩よりなる少なくとも1種の添加剤を表わし、組成物に存在する諸成分のモル%の合計は100に等しいものとする、ガラスセラミック型の組成物。」が記載されている([請求項1])。 Further, Patent Document 2 states that "the following components in mol%: Ge 5 to 40, Ga <1, S + Se 40 to 85, Sb + As 4 to 40, MX 2 to 25, Ln 0 to 6, additives 0 to 30". In a glass-ceramic type composition containing, M represents at least one alkali metal selected from Rb, Cs, Na, K and Zn, and X represents at least one chlorine, bromine or iodine atom. , Ln represents at least one rare earth metal, the additive represents at least one additive consisting of at least one metal and / or at least one metal salt, and mol% of the components present in the composition. A glass-ceramic type composition, wherein the sum of the above is equal to 100. ”([Claim 1]).

特開2009−161374号公報Japanese Unexamined Patent Publication No. 2009-161374 特表2007−516146号公報Special Table 2007-516146

本発明者は、特許文献1に記載されたモールド成型用赤外線透過ガラスについて検討したところ、ガラスの組成によっては、モールド成型時に結晶化が起きやすくなることを明らかとした。
また、本発明者は、特許文献2に記載されたガラスセラミック型の組成物について検討したところ、赤外線の波長領域(特に、大気の窓と呼ばれる8〜13μmの波長域)によっては形成されるガラスの透過性が劣ることを明らかとした。
When the present inventor examined the infrared transmissive glass for molding described in Patent Document 1, it was clarified that crystallization is likely to occur during molding depending on the composition of the glass.
Further, when the present inventor examined the glass-ceramic type composition described in Patent Document 2, the glass formed depending on the infrared wavelength region (particularly, the wavelength region of 8 to 13 μm called the window of the atmosphere). It was clarified that the transparency of

そこで、本発明は、8〜13μmの波長域で透過性を有し、モールド成形時の結晶化を起こしにくい赤外線透過ガラス、ならびに、これを用いた光学素子およびプリフォームを提供することを課題とする。 Therefore, it is an object of the present invention to provide an infrared transmissive glass having transparency in a wavelength range of 8 to 13 μm and less likely to cause crystallization during molding, and an optical element and a preform using the infrared transmissive glass. To do.

本発明者は、上記課題を達成すべく鋭意検討した結果、少なくともZn、Ge、SbおよびSを含有し、各元素のモル%が所定の関係式を満たすガラスが、8〜13μmの波長域で透過性を有し、モールド成形時の結晶化を起こしにくいことを見出し、本発明を完成させた。
すなわち、以下の構成により上記課題を達成することができることを見出した。
As a result of diligent studies to achieve the above problems, the present inventor has found that a glass containing at least Zn, Ge, Sb and S and in which mol% of each element satisfies a predetermined relational expression is in the wavelength range of 8 to 13 μm. The present invention has been completed by finding that it has permeability and is unlikely to cause crystallization during molding.
That is, it was found that the above problem can be achieved by the following configuration.

[1] 少なくともZn、Ge、SbおよびSを含有し、各元素のモル%が下記式(1)〜(6)を満たす、赤外線透過ガラス。
式(1): 0.18≦Ge/(Ge+Sb)≦0.67
式(2): 0.63≦Sb/(Sb+Zn+Sn)≦0.90
式(3): 0.12≦(Zn+Sn)/(Zn+Sn+Ge)≦0.60
式(4): 0.80≦Zn/(Zn+Sn)≦1.00
式(5): 0.54≦S/(Zn+Sn+Ge+Sb+S)≦0.64
式(6): 0.00≦(F+Cl+Br+I)/S<0.02
[2] 更に、下記式(1−1)〜(3−1)を満たす、[1]に記載の赤外線透過ガラス。
式(1−1): 0.25≦Ge/(Ge+Sb)≦0.32
式(2−1): 0.72≦Sb/(Sb+Zn+Sn)≦0.85
式(3−1): 0.23≦(Zn+Sn)/(Zn+Sn+Ge)≦0.48
[3] [1]または[2]に記載の赤外線透過ガラスからなる光学素子。
[4] [1]または[2]に記載の赤外線透過ガラスからなる、モールド成形用のプリフォーム。
[1] An infrared transmissive glass containing at least Zn, Ge, Sb and S, in which the molar% of each element satisfies the following formulas (1) to (6).
Equation (1): 0.18 ≤ Ge / (Ge + Sb) ≤ 0.67
Equation (2): 0.63 ≤ Sb / (Sb + Zn + Sn) ≤ 0.90
Equation (3): 0.12 ≦ (Zn + Sn) / (Zn + Sn + Ge) ≦ 0.60
Equation (4): 0.80 ≤ Zn / (Zn + Sn) ≤ 1.00
Equation (5): 0.54 ≦ S / (Zn + Sn + Ge + Sb + S) ≦ 0.64
Equation (6): 0.00≤ (F + Cl + Br + I) / S <0.02
[2] Further, the infrared transmissive glass according to [1], which satisfies the following formulas (1-1) to (3-1).
Equation (1-1): 0.25 ≤ Ge / (Ge + Sb) ≤ 0.32
Equation (2-1): 0.72 ≤ Sb / (Sb + Zn + Sn) ≤ 0.85
Equation (3-1): 0.23 ≦ (Zn + Sn) / (Zn + Sn + Ge) ≦ 0.48
[3] An optical element made of the infrared transmissive glass according to [1] or [2].
[4] A preform for molding, which comprises the infrared transmissive glass according to [1] or [2].

本発明によれば、8〜13μmの波長域で透過性を有し、モールド成形時の結晶化を起こしにくい赤外線透過ガラス、ならびに、これを用いた光学素子およびプリフォームを提供することができる。 According to the present invention, it is possible to provide an infrared transmissive glass having transparency in a wavelength range of 8 to 13 μm and hardly causing crystallization during molding, and an optical element and a preform using the same.

図1は、実施例1で作製した赤外線透過ガラスの透過スペクトルである。FIG. 1 is a transmission spectrum of the infrared transmissive glass produced in Example 1.

以下、本発明について詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In the present specification, the numerical range represented by using "~" means a range including the numerical values before and after "~" as the lower limit value and the upper limit value.

[赤外線透過ガラス]
本発明の赤外線透過ガラスは、少なくともZn、Ge、SbおよびSを含有し、各元素のモル%が下記式(1)〜(6)を満たすガラスである。
式(1): 0.18≦Ge/(Ge+Sb)≦0.67
式(2): 0.63≦Sb/(Sb+Zn+Sn)≦0.90
式(3): 0.12≦(Zn+Sn)/(Zn+Sn+Ge)≦0.60
式(4): 0.80≦Zn/(Zn+Sn)≦1.00
式(5): 0.54≦S/(Zn+Sn+Ge+Sb+S)≦0.64
式(6): 0.00≦(F+Cl+Br+I)/S<0.02
[Infrared transmissive glass]
The infrared transmissive glass of the present invention is a glass containing at least Zn, Ge, Sb and S, and the molar% of each element satisfies the following formulas (1) to (6).
Equation (1): 0.18 ≤ Ge / (Ge + Sb) ≤ 0.67
Equation (2): 0.63 ≤ Sb / (Sb + Zn + Sn) ≤ 0.90
Equation (3): 0.12 ≦ (Zn + Sn) / (Zn + Sn + Ge) ≦ 0.60
Equation (4): 0.80 ≤ Zn / (Zn + Sn) ≤ 1.00
Equation (5): 0.54 ≦ S / (Zn + Sn + Ge + Sb + S) ≦ 0.64
Equation (6): 0.00≤ (F + Cl + Br + I) / S <0.02

本発明の赤外線透過ガラスは、上述した通り、各元素のモル%が上記式(1)〜(6)を満たすことにより、8〜13μmの波長域で透過性を有し、モールド成形時の結晶化が起こり難くなる。
このように透過性を有し、モールド成形時の結晶化が起こり難くなる理由は、詳細は明らかではないが、およそ以下のとおりと推測される。
まず、上記式(1)〜(6)のうち、上記式(1)〜(3)および(5)は、後述する実施例1〜11と比較例1〜11との対比結果からも分かる通り、ガラス化に関する規定である。
一方、上記式(1)〜(6)のうち、上記式(4)は、Snを含有しない、または、Snを含有する場合であっても、Znの方がSnよりも所定の割合で多いことを規定する関係式となるが、本発明者は、上記式(4)を満たすことにより、モールド成形時の結晶化を容易に抑制することができると考えられる。これは、後述する実施例1と比較例16および17との対比結果からも推察できる。
また、上記式(1)〜(6)のうち、上記(6)については、F、Cl、BrおよびIからなる群から選択されるハロゲンを含有しない、または、ハロゲンを含有する場合であっても、Sに対して極めて少ない量となることを規定する関係式となるが、本発明者は、上記式(5)を満たすことにより、ハロゲンの存在によって起こるポアの発生が抑制され、その結果、透過性が高くなったと考えられる。これは、後述する実施例1と比較例12〜15との対比結果からも推察できる。
As described above, the infrared transmissive glass of the present invention has transparency in the wavelength range of 8 to 13 μm when the molar% of each element satisfies the above formulas (1) to (6), and is a crystal at the time of molding. Crystallization is less likely to occur.
The reason why it has such transparency and crystallization during molding is less likely to occur is not clear in detail, but it is presumed to be as follows.
First, among the above formulas (1) to (6), the above formulas (1) to (3) and (5) can be seen from the comparison results between Examples 1 to 11 and Comparative Examples 1 to 11 described later. , It is a regulation about vitrification.
On the other hand, among the above formulas (1) to (6), the above formula (4) does not contain Sn, or even when Sn is contained, Zn is more than Sn in a predetermined ratio. Although it is a relational expression that defines the above, it is considered that the present inventor can easily suppress crystallization during molding by satisfying the above equation (4). This can be inferred from the comparison results between Example 1 and Comparative Examples 16 and 17, which will be described later.
Further, among the above formulas (1) to (6), the above (6) is a case where the halogen selected from the group consisting of F, Cl, Br and I is not contained or the halogen is contained. Is also a relational expression that specifies that the amount is extremely small with respect to S. However, by satisfying the above equation (5), the present inventor suppresses the generation of pores caused by the presence of halogen, and as a result, , It is considered that the transparency has increased. This can be inferred from the comparison results between Example 1 and Comparative Examples 12 to 15 described later.

本発明においては、モールド成形時の結晶化がより抑制され、モールド成型時に高い再現性と高い均一性を得ることができる理由から、下記式(1−1)〜(3−1)を満たしていることが好ましい。これは、下記式(1−1)〜(3−1)を満たすことにより、ガラス転移温度と結晶化温度との差がより大きく(概ね150℃以上)なったことが原因であると考えられる。
式(1−1): 0.25≦Ge/(Ge+Sb)≦0.32
式(2−1): 0.72≦Sb/(Sb+Zn+Sn)≦0.85
式(3−1): 0.23≦(Zn+Sn)/(Zn+Sn+Ge)≦0.48
In the present invention, the following formulas (1-1) to (3-1) are satisfied because crystallization during molding is further suppressed and high reproducibility and high uniformity can be obtained during molding. It is preferable to have. It is considered that this is because the difference between the glass transition temperature and the crystallization temperature becomes larger (generally 150 ° C. or higher) by satisfying the following formulas (1-1) to (3-1). ..
Equation (1-1): 0.25 ≤ Ge / (Ge + Sb) ≤ 0.32
Equation (2-1): 0.72 ≤ Sb / (Sb + Zn + Sn) ≤ 0.85
Equation (3-1): 0.23 ≦ (Zn + Sn) / (Zn + Sn + Ge) ≦ 0.48

本発明の赤外線透過ガラスは、上述した通り、上記式(1)〜(6)を満たすようにZn、Ge、SbおよびSを含有するものであり、また、上記式(2)〜(5)を満たす限り、更にSnを含有していてもよい。
これらの元素は、単体(すなわち、Zn、Ge、Sb、SおよびSn)として含有していてもよく、硫化物の状態で含有していてもよい。
硫化物としては、具体的には、例えば、GeS、Sb、Bi、ZnS、SnS、SnSなどが挙げられる。
As described above, the infrared transmissive glass of the present invention contains Zn, Ge, Sb and S so as to satisfy the above formulas (1) to (6), and the above formulas (2) to (5). As long as the above conditions are satisfied, Sn may be further contained.
These elements may be contained as simple substances (that is, Zn, Ge, Sb, S and Sn) or may be contained in the form of sulfide.
Specific examples of the sulfide include GeS 2 , Sb 2 S 3 , Bi 2 S 3 , ZnS, SnS, SnS 2 and the like.

また、本発明の赤外線透過ガラスは、いわゆるカルコゲナイドガラスに分類されるものであるため、上述したZn、Ge、Sb、SおよびSnを合計して90質量%以上含有していることが好ましく、95〜100質量%含有していることがより好ましい。 Further, since the infrared transmissive glass of the present invention is classified as so-called chalcogenide glass, it is preferable that the above-mentioned Zn, Ge, Sb, S and Sn are contained in an amount of 90% by mass or more in total. More preferably, it contains ~ 100% by mass.

更に、本発明の赤外線透過ガラスは、上記式(1)〜(6)を満たす限り、Zn、Ge、Sb、SおよびSn以外の他の元素を含有していてもよい。 Further, the infrared transmissive glass of the present invention may contain elements other than Zn, Ge, Sb, S and Sn as long as the above formulas (1) to (6) are satisfied.

一方、本発明の赤外線透過ガラスは、環境面への影響を最小限に抑える観点から、As、Cd、Tl、PbおよびSeを実質的に含有しないことが好ましい。特に、本発明においては、上記式(1)〜(3)および(5)を満たすことによりガラス化が可能となるため、As、Cd、Tl、PbおよびSeを実質的に含まなくてもガラス化することができる。
ここで、「実質的に含まない」とは、意図的に原料中に含有させないという意味であり、不純物レベルの混入を排除するものではない。そのため、本発明においては、含有量が1000ppm未満の状態をいう。
On the other hand, the infrared transmissive glass of the present invention preferably does not substantially contain As, Cd, Tl, Pb and Se from the viewpoint of minimizing the influence on the environment. In particular, in the present invention, since vitrification is possible by satisfying the above formulas (1) to (3) and (5), glass does not have to contain As, Cd, Tl, Pb and Se substantially. Can be transformed into.
Here, "substantially free" means that the raw material is not intentionally contained, and does not exclude contamination at the impurity level. Therefore, in the present invention, it refers to a state in which the content is less than 1000 ppm.

<製造方法>
本発明の赤外線透過ガラスは、例えば、以下のようにして製造することができる。
すなわち、上述した原料を各成分が所定の含有量の範囲内となるように混合し、得られた混合物を石英製のアンプルなどの中に封入し、熱処理を行うことによって所望の組成比を有する赤外線透過ガラスを得ることができる。
ここで、熱処理時の反応温度は600〜1000℃であることが好ましい。
また、S元素の原料として単体の硫黄を用いる際には、室温から反応温度まで急激に温度を上昇させると硫黄の高い蒸気圧により石英製のアンプルが破裂する等の懸念が生じることから、硫黄の融点以上の温度で温度を一旦保持し、硫黄と金属原料を十分に反応させた後に、反応温度まで昇温させることが好ましい。具体的には、硫黄と金属原料を十分に反応させる温度は150〜500℃であることが好ましい。硫黄と金属原料を反応させる時間は反応が十分に行われる時間であれば特に制限はないが、製造コスト等の観点から6〜24時間が好ましい。反応時間は原料が十分反応し、ガラスが得られる時間であれば特に制限はないが、製造コスト等の観点から6〜24時間が好ましい。
<Manufacturing method>
The infrared transmissive glass of the present invention can be produced, for example, as follows.
That is, the above-mentioned raw materials are mixed so that each component is within a predetermined content range, the obtained mixture is sealed in a quartz ampoule or the like, and heat treatment is performed to obtain a desired composition ratio. Infrared transmissive glass can be obtained.
Here, the reaction temperature during the heat treatment is preferably 600 to 1000 ° C.
In addition, when sulfur is used as a raw material for element S, if the temperature is rapidly raised from room temperature to the reaction temperature, there is a concern that the quartz ampol will burst due to the high vapor pressure of sulfur. It is preferable to temporarily maintain the temperature at a temperature equal to or higher than the melting point of Sulfur, sufficiently react the sulfur with the metal raw material, and then raise the temperature to the reaction temperature. Specifically, the temperature at which sulfur and the metal raw material are sufficiently reacted is preferably 150 to 500 ° C. The time for reacting the sulfur with the metal raw material is not particularly limited as long as the reaction is sufficiently carried out, but 6 to 24 hours is preferable from the viewpoint of manufacturing cost and the like. The reaction time is not particularly limited as long as the raw materials react sufficiently and glass can be obtained, but 6 to 24 hours is preferable from the viewpoint of manufacturing cost and the like.

[プリフォームおよび光学素子]
本発明のプリフォームは、本発明の赤外線透過ガラスからなるモールド成形用のプリフォームである。
また、本発明の光学素子は、本発明の赤外線透過ガラスからなる光学素子であり、例えば、赤外線透過ガラスから作製したプリフォームに対してモールド成形を施し、作製されるレンズおよびプリズム等が挙げられる。特に、本発明においては、本発明の赤外線透過ガラスがモールド成形時に結晶化を起こしにくいため、安価な遠赤外線用カメラレンズを提供することができる。
[Preforms and optics]
The preform of the present invention is a preform for molding made of the infrared transmissive glass of the present invention.
Further, the optical element of the present invention is an optical element made of the infrared transmissive glass of the present invention, and examples thereof include a lens and a prism produced by molding a preform made of the infrared transmissive glass. .. In particular, in the present invention, since the infrared transmissive glass of the present invention is unlikely to undergo crystallization during molding, an inexpensive camera lens for far infrared rays can be provided.

以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 The present invention will be described in more detail below based on examples. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limiting by the examples shown below.

[実施例1〜10および比較例1〜11]
原料として、ゲルマニウム(5N,高純度化学研究所製)、アンチモン(6N,高純度化学研究所製)、亜鉛(5N,高純度化学研究所製)、および、硫黄(4N,高純度化学研究所製)を用いた。
下記表1に示す組成となるように各原料を混合し、得られた混合物を石英製のアンプル内部に入れ、アンプル内部をロータリーポンプで真空引きし、1×10−3Torrまで真空引きした後、バーナーを用いて封管した。
次いで、封管した石英製のアンプルを電気炉内にセットし、3℃/分の昇温速度で350℃まで昇温し、350℃で12時間保持した。保持後、再度3℃/分の昇温速度で昇温を開始し、850℃まで昇温した後、6時間保持した。
次いで、室温(23℃)まで炉冷および空冷を施し、それぞれの冷却方法でサンプルを得た。
なお、炉冷は、200℃まで5時間かけて冷却し、空冷は200℃まで1時間かけて冷却して行った。
[Examples 1 to 10 and Comparative Examples 1 to 11]
As raw materials, germanium (5N, manufactured by High Purity Chemical Laboratory), antimony (6N, manufactured by High Purity Chemical Laboratory), zinc (5N, manufactured by High Purity Chemical Laboratory), and sulfur (4N, manufactured by High Purity Chemical Laboratory), and sulfur (4N, manufactured by High Purity Chemical Laboratory). Made) was used.
Each raw material is mixed so as to have the composition shown in Table 1 below, the obtained mixture is placed inside a quartz ampoule, the inside of the ampoule is evacuated with a rotary pump, and then evacuated to 1 × 10 -3 Torr. , Sealed using a burner.
Next, the sealed quartz ampoule was set in an electric furnace, the temperature was raised to 350 ° C. at a heating rate of 3 ° C./min, and the temperature was maintained at 350 ° C. for 12 hours. After holding, the temperature was started again at a rate of 3 ° C./min, the temperature was raised to 850 ° C., and then the temperature was maintained for 6 hours.
Then, furnace cooling and air cooling were performed to room temperature (23 ° C.), and samples were obtained by each cooling method.
The furnace cooling was performed by cooling to 200 ° C. over 5 hours, and the air cooling was performed by cooling to 200 ° C. over 1 hour.

[比較例12〜15]
原料として、ゲルマニウム(5N,高純度化学研究所製)、アンチモン(6N,高純度化学研究所製)、亜鉛(5N,高純度化学研究所製)、および、硫黄(4N,高純度化学研究所製)、ならびに、塩化亜鉛(ZrCl、5N、高純度化学研究所製)および臭化亜鉛(ZrBr、4N,高純度化学研究所製)を用い、下記表1に示す組成となるように各原料を混合した以外は、実施例1と同様の手法でサンプルを得た。
[Comparative Examples 12 to 15]
As raw materials, germanium (5N, manufactured by High Purity Chemical Laboratory), antimony (6N, manufactured by High Purity Chemical Laboratory), zinc (5N, manufactured by High Purity Chemical Laboratory), and sulfur (4N, manufactured by High Purity Chemical Laboratory), and sulfur (4N, manufactured by High Purity Chemical Laboratory). , And zinc chloride (ZrCl 2 , 5N, manufactured by High Purity Chemical Laboratory) and zinc bromide (ZrBr 2 , 4N, manufactured by High Purity Chemical Laboratory) so as to have the composition shown in Table 1 below. Samples were obtained in the same manner as in Example 1 except that the raw materials were mixed.

[実施例11、比較例16および17]
原料として、ゲルマニウム(5N,高純度化学研究所製)、アンチモン(6N,高純度化学研究所製)、亜鉛(5N,高純度化学研究所製)、スズ(4N,高純度化学研究所製)、および、硫黄(4N,高純度化学研究所製)を用い、下記表1に示す組成となるように各原料を混合した以外は、実施例1と同様の手法でサンプルを得た。
[Example 11, Comparative Examples 16 and 17]
As raw materials, germanium (5N, manufactured by High Purity Chemical Laboratory), Antimon (6N, manufactured by High Purity Chemical Laboratory), zinc (5N, manufactured by High Purity Chemical Laboratory), tin (4N, manufactured by High Purity Chemical Laboratory) , And sulfur (4N, manufactured by High Purity Chemical Laboratory) were used to obtain samples by the same method as in Example 1 except that the raw materials were mixed so as to have the composition shown in Table 1 below.

<ガラス化>
サンプルがガラス化しているかを確認するために、X線回折測定を行った。
その結果、炉冷および空冷のいずれのサンプルにおいてもハローパターンのみが観察され、ガラス化していることが分かるサンプルを「A」と評価し、炉冷のサンプルにおいては結晶性ピークが観測されるが、空冷のサンプルにおいてはハローパターンのみが観察され、ガラス化していることが分かるサンプルを「B」と評価し、炉冷および空冷のいずれのサンプルにおいても結晶性ピークが観察され、ガラス化できていないサンプルを「C」と評価した。これらの結果を下記表1に示す。
<Vitrification>
X-ray diffraction measurements were performed to confirm that the sample was vitrified.
As a result, only the halo pattern was observed in both the furnace-cooled and air-cooled samples, and the sample showing that it was vitrified was evaluated as "A", and the crystalline peak was observed in the furnace-cooled sample. In the air-cooled sample, only the halo pattern was observed, and the sample showing that it was vitrified was evaluated as "B", and the crystalline peak was observed in both the furnace-cooled and air-cooled samples, and it was vitrified. None of the samples were rated as "C". These results are shown in Table 1 below.

表1に示す結果から、下記式(1)〜(6)のうち、下記式(1)〜(3)および(5)を満たすサンプルはガラス化が進行していることが分かり(実施例1〜11および比較例12〜17)、更に下記式(1−1)、(2−1)および(3−1)を満たすサンプルは、炉冷であってもガラス化が進行していることが分かった(実施例1、7、8および11)。
式(1): 0.18≦Ge/(Ge+Sb)≦0.67
式(2): 0.63≦Sb/(Sb+Zn+Sn)≦0.90
式(3): 0.12≦(Zn+Sn)/(Zn+Sn+Ge)≦0.60
式(4): 0.80≦Zn/(Zn+Sn)≦1.00
式(5): 0.54≦S/(Zn+Sn+Ge+Sb+S)≦0.64
式(6): 0.00≦(F+Cl+Br+I)/S<0.02
式(1−1): 0.25≦Ge/(Ge+Sb)≦0.32
式(2−1): 0.72≦Sb/(Sb+Zn+Sn)≦0.85
式(3−1): 0.23≦(Zn+Sn)/(Zn+Sn+Ge)≦0.48
From the results shown in Table 1, it can be seen that among the following formulas (1) to (6), the samples satisfying the following formulas (1) to (3) and (5) are vitrified (Example 1). ~ 11 and Comparative Examples 12 to 17), and samples satisfying the following formulas (1-1), (2-1) and (3-1) are said to be vitrified even when cooled in a furnace. It was found (Examples 1, 7, 8 and 11).
Equation (1): 0.18 ≤ Ge / (Ge + Sb) ≤ 0.67
Equation (2): 0.63 ≤ Sb / (Sb + Zn + Sn) ≤ 0.90
Equation (3): 0.12 ≦ (Zn + Sn) / (Zn + Sn + Ge) ≦ 0.60
Equation (4): 0.80 ≤ Zn / (Zn + Sn) ≤ 1.00
Equation (5): 0.54 ≦ S / (Zn + Sn + Ge + Sb + S) ≦ 0.64
Equation (6): 0.00≤ (F + Cl + Br + I) / S <0.02
Equation (1-1): 0.25 ≤ Ge / (Ge + Sb) ≤ 0.32
Equation (2-1): 0.72 ≤ Sb / (Sb + Zn + Sn) ≤ 0.85
Equation (3-1): 0.23 ≦ (Zn + Sn) / (Zn + Sn + Ge) ≦ 0.48

<透過性>
ガラス化が確認された実施例1〜11および比較例12〜17の空冷で得られたサンプルについて、研磨を実施し、厚み2mmの平板試料を作製し、分子分光分析装置(Nicolet4700、サーモフィッシャーサイエンティフィック社製)を用いて、遠赤外線の透過スペクトル測定を行った。なお、図1に、実施例1で作製した赤外線透過ガラスの透過スペクトルを示す。
その結果、実施例1〜11ならびに比較例16および17のサンプルは、8〜13μmの波長域での平均透過率が60%以上となり、良好な直線透過特性を示すことが分かったが、比較例12〜15のサンプルは、内部に多数存在しているポアによる光散乱の影響で、8〜13μmの波長域で光の直線透過は確認されなかった。
<Transparency>
The samples obtained by air cooling of Examples 1 to 11 and Comparative Examples 12 to 17 in which vitrification was confirmed were polished to prepare a flat plate sample having a thickness of 2 mm, and a molecular spectroscopic analyzer (Nicolet 4700, Thermo Fisher Scientific) was prepared. Far-infrared transmission spectrum measurement was performed using Tiffic). Note that FIG. 1 shows the transmission spectrum of the infrared transmissive glass produced in Example 1.
As a result, it was found that the samples of Examples 1 to 11 and Comparative Examples 16 and 17 had an average transmittance of 60% or more in the wavelength range of 8 to 13 μm and exhibited good linear transmittance characteristics. In the samples 12 to 15, no linear transmission of light was confirmed in the wavelength range of 8 to 13 μm due to the influence of light scattering due to the large number of pores existing inside.

<モールド成形時の結晶化抑制>
ガラス化が確認された実施例1〜11および比較例12〜17の空冷で得られたサンプルのうち、8〜13μmの波長域で良好な直線透過特性を示した実施例1〜11ならびに比較例16および17のサンプルについて、示差走査熱量測定(Differential scanning calorimetry:DSC)を行い、ガラス転移温度と結晶化温度の差を評価した。
その結果、実施例1〜11のサンプルについては、ガラス転移温度と結晶化温度との差が100℃以上となり、モールド成形時に結晶化を十分に抑制できるレベルであることが分かった。
一方、比較例16および17のサンプルについては、ガラス転移温度と結晶化温度との差が80℃以下となり、モールド成形時に結晶化が進行してしまう可能性があることが分かった。
<Suppression of crystallization during molding>
Among the samples obtained by air cooling of Examples 1 to 11 and Comparative Examples 12 to 17 in which vitrification was confirmed, Examples 1 to 11 and Comparative Examples which showed good linear transmission characteristics in a wavelength range of 8 to 13 μm. Differential scanning calorimetry (DSC) was performed on the 16 and 17 samples to evaluate the difference between the glass transition temperature and the crystallization temperature.
As a result, it was found that the difference between the glass transition temperature and the crystallization temperature of the samples of Examples 1 to 11 was 100 ° C. or more, which was a level at which crystallization could be sufficiently suppressed during molding.
On the other hand, for the samples of Comparative Examples 16 and 17, it was found that the difference between the glass transition temperature and the crystallization temperature was 80 ° C. or less, and crystallization may proceed during molding.

Claims (4)

少なくともZn、Ge、SbおよびSを含有し、各元素のモル%が下記式(1)〜(6)を満たし、Zn、Ge、Sb、SおよびSnを合計して90質量%以上含有する、赤外線透過ガラス。
式(1): 0.18≦Ge/(Ge+Sb)≦0.67
式(2): 0.63≦Sb/(Sb+Zn+Sn)≦0.90
式(3): 0.12≦(Zn+Sn)/(Zn+Sn+Ge)≦0.60
式(4): 0.80≦Zn/(Zn+Sn)≦1.00
式(5): 0.54≦S/(Zn+Sn+Ge+Sb+S)≦0.64
式(6): 0.00≦(F+Cl+Br+I)/S<0.02
It contains at least Zn, Ge, Sb and S, the molar% of each element meets the following formula (1) ~ (6), Zn, Ge, Sb, contained in the total S and Sn least 90 mass% , Infrared transmissive glass.
Equation (1): 0.18 ≤ Ge / (Ge + Sb) ≤ 0.67
Equation (2): 0.63 ≤ Sb / (Sb + Zn + Sn) ≤ 0.90
Equation (3): 0.12 ≦ (Zn + Sn) / (Zn + Sn + Ge) ≦ 0.60
Equation (4): 0.80 ≤ Zn / (Zn + Sn) ≤ 1.00
Equation (5): 0.54 ≦ S / (Zn + Sn + Ge + Sb + S) ≦ 0.64
Equation (6): 0.00≤ (F + Cl + Br + I) / S <0.02
更に、下記式(1−1)〜(3−1)を満たす、請求項1に記載の赤外線透過ガラス。
式(1−1): 0.25≦Ge/(Ge+Sb)≦0.32
式(2−1): 0.72≦Sb/(Sb+Zn+Sn)≦0.85
式(3−1): 0.23≦(Zn+Sn)/(Zn+Sn+Ge)≦0.48
The infrared transmissive glass according to claim 1, further satisfying the following formulas (1-1) to (3-1).
Equation (1-1): 0.25 ≤ Ge / (Ge + Sb) ≤ 0.32
Equation (2-1): 0.72 ≤ Sb / (Sb + Zn + Sn) ≤ 0.85
Equation (3-1): 0.23 ≦ (Zn + Sn) / (Zn + Sn + Ge) ≦ 0.48
請求項1または2に記載の赤外線透過ガラスからなる光学素子。 An optical element made of infrared transmissive glass according to claim 1 or 2. 請求項1または2に記載の赤外線透過ガラスからなる、モールド成形用のプリフォーム。 A preform for molding, which comprises the infrared transmissive glass according to claim 1 or 2.
JP2017044011A 2017-03-08 2017-03-08 Infrared transmissive glass, optics and preforms Active JP6808543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017044011A JP6808543B2 (en) 2017-03-08 2017-03-08 Infrared transmissive glass, optics and preforms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017044011A JP6808543B2 (en) 2017-03-08 2017-03-08 Infrared transmissive glass, optics and preforms

Publications (2)

Publication Number Publication Date
JP2018145070A JP2018145070A (en) 2018-09-20
JP6808543B2 true JP6808543B2 (en) 2021-01-06

Family

ID=63588680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017044011A Active JP6808543B2 (en) 2017-03-08 2017-03-08 Infrared transmissive glass, optics and preforms

Country Status (1)

Country Link
JP (1) JP6808543B2 (en)

Also Published As

Publication number Publication date
JP2018145070A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
CN108290773B (en) Optical glass
US10099957B2 (en) Infrared transmission chalcogenide glasses
JP6804030B2 (en) Infrared transmissive glass
JP6269075B2 (en) Infrared transmission glass
WO2017168939A1 (en) Glass, method for producing glass, and optical element
US20210017066A1 (en) Chalcogenide glass material
JP6709499B2 (en) Infrared transparent glass
JP6808543B2 (en) Infrared transmissive glass, optics and preforms
JP6819920B2 (en) Calcogenide glass
JP7058825B2 (en) Infrared transmissive glass
JPWO2020066928A1 (en) Infrared transmissive glass
US9994478B2 (en) Alkali selenogermanate glasses
US9981870B2 (en) Non-stoichiometric alkaline earth chalcogeno-germanate glasses
JP6788816B2 (en) Infrared transmissive glass
JP7083466B2 (en) Infrared transmissive glass
JP2022169294A (en) Infrared transmitting glass
CN118354983A (en) Infrared ray transmitting glass
JP2023000285A (en) Infrared transmitting glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200610

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201209

R150 Certificate of patent or registration of utility model

Ref document number: 6808543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250