JP6803514B2 - Metal bellows tube - Google Patents

Metal bellows tube Download PDF

Info

Publication number
JP6803514B2
JP6803514B2 JP2017010145A JP2017010145A JP6803514B2 JP 6803514 B2 JP6803514 B2 JP 6803514B2 JP 2017010145 A JP2017010145 A JP 2017010145A JP 2017010145 A JP2017010145 A JP 2017010145A JP 6803514 B2 JP6803514 B2 JP 6803514B2
Authority
JP
Japan
Prior art keywords
diameter portion
metal bellows
small diameter
bellows tube
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017010145A
Other languages
Japanese (ja)
Other versions
JP2018119569A (en
Inventor
浩司 関
浩司 関
Original Assignee
株式会社テクノフレックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テクノフレックス filed Critical 株式会社テクノフレックス
Priority to JP2017010145A priority Critical patent/JP6803514B2/en
Publication of JP2018119569A publication Critical patent/JP2018119569A/en
Application granted granted Critical
Publication of JP6803514B2 publication Critical patent/JP6803514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Description

本発明は、金属製蛇腹管、例えばスプリンクラーシステムの給水に用いられる金属製蛇腹管に関する。 The present invention relates to metal bellows tubes, such as metal bellows tubes used for water supply in sprinkler systems.

内部に流体を流通する金属製蛇腹管は、例えば管路の屈曲部などに用いられる。この種の金属製蛇腹管は、例えば金属製の直管を塑性加工して作成される。そのため、一般に、金属製蛇腹管の管壁の壁厚は一様である。そして、管に可撓性を付与するため、管壁の少なくとも一部として、ひだをなす大径部と小径部とが管の軸線方向に交互に形成される。このような金属製蛇腹管としては、例えば下記特許文献1に記載されるものがある。この金属製蛇腹管は、管壁の一部として形成され且つ内部に流通される流体の流通方向に沿って小径部から大径部に向かう傾斜部を第1傾斜部とし、同じく流体の流通方向に沿って大径部から小径部に向かう傾斜部を第2傾斜部としたとき、第1傾斜部の管軸線に対する第1の傾斜角が第2傾斜部の管軸線に対する第2の傾斜角よりも小さい。この構成により、この金属製蛇腹管では、内部流体流通の際の音や振動を低減することができる。 A metal bellows pipe through which a fluid flows inside is used, for example, at a bent portion of a pipe line. This type of metal bellows tube is made by, for example, plastic working a straight metal tube. Therefore, in general, the wall thickness of the tube wall of the metal bellows tube is uniform. Then, in order to impart flexibility to the pipe, pleated large-diameter portions and small-diameter portions are alternately formed in the axial direction of the pipe as at least a part of the pipe wall. As such a metal bellows tube, for example, there is one described in Patent Document 1 below. In this metal bellows tube, the inclined portion from the small diameter portion to the large diameter portion along the flow direction of the fluid formed as a part of the tube wall and flowing inside is set as the first inclined portion, and the fluid flow direction is also the same. When the inclined portion from the large diameter portion to the small diameter portion is defined as the second inclined portion, the first inclined angle with respect to the pipe axis of the first inclined portion is larger than the second inclined angle with respect to the pipe axis of the second inclined portion. Is also small. With this configuration, the metal bellows tube can reduce noise and vibration during internal fluid flow.

特開2009−150458号公報Japanese Unexamined Patent Publication No. 2009-150458

ところで、この種の金属製蛇腹管を、例えばスプリンクラーシステムの給水管として使用する場合、金属製蛇腹管の内部を流通する流体、具体的には水の抵抗、具体的に摩擦損失を低減することができれば、水を吐出するポンプの能力を低減することが可能となる。ポンプは、通常、電動なので、ポンプの能力を低減することができれば、電気代などのコストを低減することもできる。しかしながら、前述した特許文献1に記載される金属製蛇腹管では、更なる摩擦損失低減の余地がある。 By the way, when this kind of metal bellows pipe is used as a water supply pipe of a sprinkler system, for example, it is necessary to reduce the resistance of the fluid flowing inside the metal bellows pipe, specifically, the resistance of water, specifically, the friction loss. If this is possible, it will be possible to reduce the capacity of the pump that discharges water. Since the pump is usually electric, if the capacity of the pump can be reduced, the cost such as electricity cost can be reduced. However, in the metal bellows tube described in Patent Document 1 described above, there is room for further reduction in friction loss.

本発明は、上記課題に鑑みてなされたものであり、その目的は、更なる摩擦損失低減が可能な金属製蛇腹管を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a metal bellows tube capable of further reducing friction loss.

上記目的を達成するため請求項1に記載の発明は、ひだをなす大径部と小径部とが管壁の少なくとも一部として軸線方向に交互に形成され、前記管壁の壁厚が一様な金属製蛇腹管において、前記管壁の一部として形成され、内部に流通される流体の流通方向に沿って前記小径部から前記大径部に向けて傾斜し、前記軸線方向に対する傾斜角が予め設定された第1の傾斜角である第1傾斜部と、前記管壁の一部として形成され、前記流体の流通方向に沿って前記大径部から前記小径部に向けて傾斜し、前記軸線方向に対する傾斜角が前記第1の傾斜角よりも小さい第2の傾斜角である第2傾斜部とを備えたことを特徴とする。 In order to achieve the above object, in the invention according to claim 1, the large diameter portion and the small diameter portion forming folds are alternately formed in the axial direction as at least a part of the pipe wall, and the wall thickness of the pipe wall is uniform. In a metal bellows tube, which is formed as a part of the tube wall and is inclined from the small diameter portion to the large diameter portion along the flow direction of the fluid flowing inside, the inclination angle with respect to the axial direction is A first inclined portion, which is a preset first inclined angle, and a first inclined portion, which is formed as a part of the pipe wall and is inclined from the large diameter portion toward the small diameter portion along the flow direction of the fluid, said. It is characterized by including a second inclined portion which is a second inclined angle whose inclination angle with respect to the axial direction is smaller than the first inclined angle.

この構成によれば、流体の流通方向に沿って小径部から大径部に向けて傾斜する第1傾斜部の第1の傾斜角よりも大径部から小径部に向けて傾斜する第2傾斜部の第2の傾斜角の方が小さいので、管内において大径部から小径部に流体を送り込むときの流動抵抗が小さくなる。従って、小径部及び大径部からなるひだ部通過時の流動抵抗全体が小さくなり、管内を流通する流体の圧力損失、即ち摩擦損失が低減される。 According to this configuration, the second inclination is inclined from the large diameter portion to the small diameter portion than the first inclination angle of the first inclined portion that is inclined from the small diameter portion to the large diameter portion along the flow direction of the fluid. Since the second inclination angle of the portion is smaller, the flow resistance when the fluid is sent from the large diameter portion to the small diameter portion in the pipe becomes small. Therefore, the entire flow resistance when passing through the fold portion including the small diameter portion and the large diameter portion is reduced, and the pressure loss of the fluid flowing in the pipe, that is, the friction loss is reduced.

請求項2に記載の発明は、請求項1に記載の金属製蛇腹管において、前記第2の傾斜部が前記小径部の近傍にのみ設けられたことを特徴とする。 The invention according to claim 2 is characterized in that, in the metal bellows tube according to claim 1, the second inclined portion is provided only in the vicinity of the small diameter portion.

この構成によれば、大径部と小径部とからなるひだのピッチの増加量を抑制することが可能となる。 According to this configuration, it is possible to suppress an increase in the pitch of the folds composed of the large diameter portion and the small diameter portion.

請求項3に記載の発明は、請求項1又は2に記載の金属製蛇腹管において、前記流体が、スプリンクラーシステムの給水であることを特徴とする。 The invention according to claim 3 is characterized in that, in the metal bellows tube according to claim 1 or 2, the fluid is the water supply of the sprinkler system.

この構成によれば、スプリンクラーシステムにおける水吐出ポンプ(送水ポンプ)の能力を低減することが可能となる。 According to this configuration, it is possible to reduce the capacity of the water discharge pump (water supply pump) in the sprinkler system.

以上説明したように、本発明によれば、管内において大径部から小径部に流体を送り込むときの流動抵抗が小さくなり、これにより小径部及び大径部からなるひだ部通過時の流動抵抗全体が小さくなるので、管内を流通する流体の摩擦損失を低減することができる。 As described above, according to the present invention, the flow resistance when the fluid is sent from the large diameter portion to the small diameter portion in the pipe becomes small, and thereby the entire flow resistance when passing through the fold portion composed of the small diameter portion and the large diameter portion. Is reduced, so that the friction loss of the fluid flowing in the pipe can be reduced.

本発明の金属製蛇腹管の一実施形態を示す一部断面正面図である。It is a partial cross-sectional front view which shows one Embodiment of the metal bellows tube of this invention. 図1の金属製蛇腹管のA部詳細図である。It is a detailed view of the part A of the metal bellows tube of FIG. 図2の金属製蛇腹管の大径部及び小径部の詳細図である。It is a detailed view of the large diameter part and the small diameter part of the metal bellows tube of FIG. 従来の金属製蛇腹管の大径部及び小径部の詳細図である。It is a detailed view of the large diameter part and the small diameter part of the conventional metal bellows tube. 流体流通試験における直線配管の説明図である。It is explanatory drawing of the straight line piping in a fluid flow test. 流体流通試験におけるコの字配管の説明図である。It is explanatory drawing of the U-shaped pipe in a fluid flow test.

以下に、本発明の金属製蛇腹管の実施の形態について図面を参照して詳細に説明する。図1は、この実施の形態の金属製蛇腹管の全体構成を示す一部断面正面図、図2は、図1のA部詳細図である。この実施の形態の金属製蛇腹管10は、スプリンクラーシステムの給水配管部の一部に用いられる。従って、内部に流通される流体は、スプリンクラーシステムの給水である。この金属製蛇腹管10は、この用途に限らず、あらゆる分野で使用可能であり、また、内部に流通される流体も、これに限定されるものではない。 Hereinafter, embodiments of the metal bellows tube of the present invention will be described in detail with reference to the drawings. FIG. 1 is a partial cross-sectional front view showing the overall configuration of the metal bellows tube of this embodiment, and FIG. 2 is a detailed view of part A of FIG. The metal bellows pipe 10 of this embodiment is used as a part of the water supply pipe portion of the sprinkler system. Therefore, the fluid circulated inside is the water supply for the sprinkler system. The metal bellows tube 10 can be used not only in this application but also in all fields, and the fluid circulated inside is not limited to this.

この実施の形態の金属製蛇腹管10は、例えば金属製直管を塑性加工して作成されたものであり、従って、管壁12の壁厚は一様であり、管壁12全体に、ひだをなす大径の大径部14と小径の小径部16とが管の軸線L方向に交互に形成されている。この実施形態の大径部14も小径部16も、応力集中などを回避するために、予め設定された曲率の円弧曲面で構成されている。ちなみに、この実施形態の小径部16の曲率は、大径部14の曲率よりも少し大きく設定されている。なお、この実施の形態の金属製蛇腹管10は、図に矢印で示す方向、つまり図の右から左に向かう方向に流体の流通方向が設定されている。また、この実施の形態の金属製蛇腹管10では、管軸線L方向全長にわたって大径部14及び小径部16からなるひだが形成されているが、本発明の金属製蛇腹管では、少なくとも管壁12の一部として大径部14及び小径部16からなるひだが形成されていればよい。 The metal bellows tube 10 of this embodiment is made by, for example, plastic working a straight metal tube, so that the wall thickness of the tube wall 12 is uniform and the entire tube wall 12 is pleated. The large-diameter portion 14 having a large diameter and the small-diameter portion 16 having a small diameter are alternately formed in the L direction of the axis of the pipe. Both the large diameter portion 14 and the small diameter portion 16 of this embodiment are formed of an arc curved surface having a preset curvature in order to avoid stress concentration and the like. By the way, the curvature of the small diameter portion 16 of this embodiment is set to be slightly larger than the curvature of the large diameter portion 14. In the metal bellows tube 10 of this embodiment, the fluid flow direction is set in the direction indicated by the arrow in the figure, that is, in the direction from the right to the left in the figure. Further, in the metal bellows tube 10 of this embodiment, folds composed of a large diameter portion 14 and a small diameter portion 16 are formed over the entire length in the L direction of the tube axis, but in the metal bellows tube of the present invention, at least the tube wall is formed. It suffices that a fold composed of a large diameter portion 14 and a small diameter portion 16 is formed as a part of 12.

図3には、この金属製蛇腹管10の大径部14及び小径部16の更なる詳細を示す。なお、同図では、煩雑さを回避するため、断面のハッチングを省略している。この実施の形態の金属製蛇腹管10では、ひだをなす大径部14と小径部16とは、円錐面で構成される傾斜部(テーパ部)18、20によって互いに連結されている。ここで、流体の内部流通方向に沿って、小径部16から大径部14に向かう傾斜部を第1傾斜部18、同じく大径部14から小径部16に向かう傾斜部を第2傾斜部20と定義した場合に、この実施の形態では、第1傾斜部18が管軸線L(図3の管軸線は、実際の管軸線と平行な仮想の管軸線)となす第1の傾斜角θ1よりも第2傾斜部20が管軸線Lとなす第2の傾斜角θ2の方が小さい。ちなみに、この実施の形態では、流体の内部流通方向に沿って、第1傾斜部18は大径部14に直接的に連結されているが、第2傾斜部20は、曲率の小さい連結曲面部22を介して大径部14に連結されている。 FIG. 3 shows further details of the large diameter portion 14 and the small diameter portion 16 of the metal bellows tube 10. In the figure, hatching of the cross section is omitted in order to avoid complication. In the metal bellows tube 10 of this embodiment, the large-diameter portion 14 and the small-diameter portion 16 forming folds are connected to each other by inclined portions (tapered portions) 18 and 20 formed of conical surfaces. Here, the inclined portion from the small diameter portion 16 to the large diameter portion 14 is the first inclined portion 18, and the inclined portion from the large diameter portion 14 to the small diameter portion 16 is the second inclined portion 20 along the internal flow direction of the fluid. In this embodiment, from the first inclination angle θ1 formed by the first inclined portion 18 as the pipe axis L (the pipe axis in FIG. 3 is a virtual pipe axis parallel to the actual pipe axis). However, the second inclination angle θ2 formed by the second inclined portion 20 with the pipe axis L is smaller. By the way, in this embodiment, the first inclined portion 18 is directly connected to the large diameter portion 14 along the internal flow direction of the fluid, but the second inclined portion 20 is a connecting curved surface portion having a small curvature. It is connected to the large diameter portion 14 via 22.

図4には、従来の金属製蛇腹管10の大径部14及び小径部16の詳細を示す。なお、この従来の金属製蛇腹管10でも、本発明の実施の形態の金属製蛇腹管10と同じ符号を用いる。同図から明らかなように、例えば図4の右から左に向かう方向を流体の内部流通方向に設定した場合、流体の内部流通方向に沿って、小径部16から大径部14に向かう第1傾斜部18が管軸線L(図の管軸線は、実際の管軸線と平行な仮想の管軸線)となす第1の傾斜角θ1と、大径部14から小径部16に向かう第2傾斜部20が管軸線Lとなす第2の傾斜角θ2は同じである。つまり、この従来の金属製蛇腹管10では、流体の内部流通方向は実質的に規定されない。 FIG. 4 shows details of the large diameter portion 14 and the small diameter portion 16 of the conventional metal bellows tube 10. The conventional metal bellows tube 10 also uses the same reference numerals as the metal bellows tube 10 of the embodiment of the present invention. As is clear from the figure, for example, when the direction from right to left in FIG. 4 is set to the internal flow direction of the fluid, the first direction from the small diameter portion 16 to the large diameter portion 14 is set along the internal flow direction of the fluid. A first inclination angle θ1 formed by the inclined portion 18 as a pipe axis L (the pipe axis in the figure is a virtual pipe axis parallel to the actual pipe axis) and a second inclined portion from the large diameter portion 14 to the small diameter portion 16. The second inclination angle θ2 formed by 20 with the pipe axis L is the same. That is, in this conventional metal bellows tube 10, the internal flow direction of the fluid is not substantially defined.

この従来の金属製蛇腹管10を従来例、図1〜図3の金属製蛇腹管10を実施例、図1〜図3の金属製蛇腹管10に対し、逆方向から流体を流通させる例を比較例とし、夫々の試験体に対して流体流通試験を行った。従って、実施例と比較例では、前述のように定義する第1傾斜部18と第2傾斜部20が逆転する。試験体の内径(小径部16の内径)は何れも21mm、外径(大径部14の外径)は何れも25mm、長さは1400mmである。試験は、夫々の試験体を、図5に示す直線配管と、図6に示すコの字配管に形成し、同図に示す流通方向に流体を流通して試験を行った(従来例は、実質的に流通方向の制限なし)。各試験体の流体流通方向入側(以下、1次側とも記す)は図示しない助走管を介して水吐出ポンプ(送水ポンプ)に接続し、流体流通方向出側(以下、2次側とも記す)は図示しない案内管を取付けて流量計に接続した。 This conventional metal bellows tube 10 is a conventional example, the metal bellows tube 10 of FIGS. 1 to 3 is an example, and an example of flowing a fluid through the metal bellows tube 10 of FIGS. 1 to 3 from the opposite direction. As a comparative example, a fluid flow test was performed on each test piece. Therefore, in the examples and the comparative examples, the first inclined portion 18 and the second inclined portion 20 defined as described above are reversed. The inner diameter of the test piece (inner diameter of the small diameter portion 16) is 21 mm, the outer diameter (outer diameter of the large diameter portion 14) is 25 mm, and the length is 1400 mm. In the test, each test piece was formed in the straight pipe shown in FIG. 5 and the U-shaped pipe shown in FIG. 6, and the fluid was circulated in the flow direction shown in the figure to carry out the test. There are virtually no restrictions on distribution directions). The fluid flow direction entry side (hereinafter, also referred to as the primary side) of each test piece is connected to the water discharge pump (water supply pump) via a run-up pipe (not shown), and the fluid flow direction exit side (hereinafter, also referred to as the secondary side). ) Was connected to the flow meter by attaching a guide pipe (not shown).

助走管及び案内管は、夫々、直管で、且つ圧力を測定するための測圧孔が設けられている。この助走管及び案内管の夫々の測圧孔に圧力計を夫々取付けた。更に、助走管には1次側バルブを、案内管には2次側バルブを設け、送水ポンプ起動後、2次側の流量が凡そ毎分80リットル又は毎分50リットルで且つ2次側の圧力が0.1〜0.2MPaになるように1次側バルブ及び2次側バルブを調整する。その状態で、2次側の流量が毎分80リットル又は毎分50リットルで安定するように2次側バルブを調整する。そして、2次側流量が毎分80リットルと毎分50リットルの2通りで送水して1次側及び2次側の圧力を測定し、両者の差から差圧、つまり圧力損失を算出する。圧力損失の大きさは、夫々の試験体、つまり金属製蛇腹管10の摩擦損失に相当する。なお、前述の2次側圧力調整及び2次側流量調整では、1次側の圧力にばらつきが生じる。下記表1に試験結果を示す。 The approach pipe and the guide pipe are straight pipes, respectively, and are provided with pressure measuring holes for measuring pressure. A pressure gauge was attached to each of the pressure measuring holes of the approach pipe and the guide pipe. Further, a primary side valve is provided on the approach pipe and a secondary side valve is provided on the guide pipe. After the water supply pump is started, the flow rate on the secondary side is approximately 80 liters per minute or 50 liters per minute and is on the secondary side. Adjust the primary and secondary valves so that the pressure is 0.1 to 0.2 MPa. In that state, adjust the secondary valve so that the flow rate on the secondary side stabilizes at 80 liters per minute or 50 liters per minute. Then, water is sent in two ways, the secondary side flow rate is 80 liters per minute and 50 liters per minute, the pressures on the primary side and the secondary side are measured, and the differential pressure, that is, the pressure loss is calculated from the difference between the two. The magnitude of the pressure loss corresponds to the friction loss of each test piece, that is, the metal bellows tube 10. In the above-mentioned secondary side pressure adjustment and secondary side flow rate adjustment, the pressure on the primary side varies. The test results are shown in Table 1 below.

Figure 0006803514
Figure 0006803514

表1から明らかなように、実施例の金属製蛇腹管10は、何れの試験でも差圧、つまり摩擦損失が小さい。スプリンクラーシステムの送水ポンプは、末端のスプリンクラーヘッドの流量を確保する必要があるため、配管途中の摩擦損失を低減することができれば、送水ポンプの能力を低減することが可能となる。従って、この実施の形態の金属製蛇腹管10を配管に用いることで、送水ポンプの能力低減が可能となる。そして、スプリンクラーシステムの送水ポンプの能力を低減することができれば、電気代などのコストを低廉化することが可能となる。 As is clear from Table 1, the metal bellows tube 10 of the example has a small differential pressure, that is, friction loss in all the tests. Since it is necessary to secure the flow rate of the sprinkler head at the end of the water pump of the sprinkler system, if the friction loss in the middle of the piping can be reduced, the capacity of the water pump can be reduced. Therefore, by using the metal bellows pipe 10 of this embodiment for the piping, it is possible to reduce the capacity of the water supply pump. If the capacity of the water pump of the sprinkler system can be reduced, it is possible to reduce the cost such as electricity bill.

例えば、小径部16が内径21mmである金属製蛇腹管に2次側流量50リットル毎分又は80リットル毎分で送水した場合の管内の流速は相応に大きい。このように高速で水(流体)が金属製蛇腹管10内を流通すると、流体の粘性及び慣性により、小径部16の内側を流れる流体の流れが主流となる。このとき、例えば流体の流通方向に沿って小径部16から大径部14に向かう第1傾斜部18の第1の傾斜角θ1に着目すると、第1の傾斜角θ1が大きいほど、主流からの剥離が大きくなる。剥離が大きいと、剥離域内では渦を伴いながら流体が停滞する。そのため、第1の傾斜角θ1が大きい実施例の金属製蛇腹管では、小径部16から大径部14に向かう第1傾斜部18及び大径部14の内部において流体の主流が安定する。このように流体の主流が安定すれば、大径部14から小径部16に流体を送り込みやすいから、ひだ部全体の摩擦損失が小さくなるものと考えられる。 For example, when water is sent to a metal bellows pipe having a small diameter portion 16 having an inner diameter of 21 mm at a secondary flow rate of 50 liters per minute or 80 liters per minute, the flow velocity in the pipe is correspondingly large. When water (fluid) flows through the metal bellows tube 10 at such a high speed, the flow of the fluid flowing inside the small diameter portion 16 becomes the mainstream due to the viscosity and inertia of the fluid. At this time, for example, paying attention to the first inclination angle θ1 of the first inclined portion 18 from the small diameter portion 16 to the large diameter portion 14 along the flow direction of the fluid, the larger the first inclination angle θ1, the more from the mainstream. The peeling becomes large. If the peeling is large, the fluid stagnates in the peeling area with a vortex. Therefore, in the metal bellows tube of the embodiment in which the first inclination angle θ1 is large, the main flow of the fluid is stable inside the first inclined portion 18 and the large diameter portion 14 from the small diameter portion 16 to the large diameter portion 14. If the mainstream of the fluid is stabilized in this way, it is easy to send the fluid from the large diameter portion 14 to the small diameter portion 16, and it is considered that the friction loss of the entire fold portion is reduced.

また、その結果、実施例の金属製蛇腹管では、内部流体の流速が大きいことが確認されている。一方、実施例の金属製蛇腹管において、流通方向に沿って大径部14から小径部16に向かう第2傾斜部20の第2の傾斜角θ2に着目すると、第2の傾斜角θ2が大きいほど、小径部16内で剥離と渦流が生じ、その結果、大径部14から小径部16に流体を送り込みにくくなる。従って、第2の傾斜角θ2が大きい従来例及び比較例の金属製蛇腹管では、摩擦損失が大きくなるものと考えられる。更に、流通方向に沿って小径部16から大径部14に向かう第1傾斜部18の第1の傾斜角θ1(比較例では第1と第2が逆になっていることに注意)が小さい比較例の金属製蛇腹管では、その第1傾斜部18に沿って流体が拡径し、その拡径した流体が大径部14から小径部16に向かう第2傾斜部20に衝突するため、より一層、摩擦損失が大きくなるものと考えられる。 As a result, it has been confirmed that the flow velocity of the internal fluid is large in the metal bellows tube of the example. On the other hand, in the metal bellows tube of the embodiment, focusing on the second inclination angle θ2 of the second inclined portion 20 from the large diameter portion 14 to the small diameter portion 16 along the flow direction, the second inclination angle θ2 is large. As a result, peeling and vortex flow occur in the small diameter portion 16, and as a result, it becomes difficult to send the fluid from the large diameter portion 14 to the small diameter portion 16. Therefore, it is considered that the friction loss is large in the metal bellows tubes of the conventional example and the comparative example in which the second inclination angle θ2 is large. Further, the first inclination angle θ1 of the first inclined portion 18 from the small diameter portion 16 to the large diameter portion 14 along the flow direction (note that the first and second are reversed in the comparative example) is small. In the metal bellows tube of the comparative example, the fluid expands in diameter along the first inclined portion 18, and the expanded fluid collides with the second inclined portion 20 from the large diameter portion 14 to the small diameter portion 16. It is considered that the friction loss will be further increased.

このように、この実施の形態の金属製蛇腹管10では、流体の流通方向に沿って小径部16から大径部14に向かう第1傾斜部18の第1の傾斜角θ1よりも大径部14から小径部16に向かう第2傾斜部20の第2の傾斜角θ2の方が小さいので、管内において大径部14から小径部16に流体を送り込むときの流動抵抗が小さくなり、これにより小径部16及び大径部14からなるひだ部通過時の流動抵抗全体が小さくなり、管内を流通する流体の圧力損失、即ち摩擦損失が低減される。 As described above, in the metal bellows tube 10 of this embodiment, the diameter portion larger than the first inclination angle θ1 of the first inclined portion 18 from the small diameter portion 16 to the large diameter portion 14 along the fluid flow direction. Since the second inclination angle θ2 of the second inclined portion 20 from 14 to the small diameter portion 16 is smaller, the flow resistance when the fluid is sent from the large diameter portion 14 to the small diameter portion 16 in the pipe becomes small, whereby the small diameter portion 16 is formed. The entire flow resistance when passing through the fold portion including the portion 16 and the large diameter portion 14 is reduced, and the pressure loss of the fluid flowing in the pipe, that is, the friction loss is reduced.

また、第2の傾斜部20を小径部16の近傍にのみ設けることにより、大径部14と小径部16とからなるひだのピッチの増加量を抑制することが可能となる。 Further, by providing the second inclined portion 20 only in the vicinity of the small diameter portion 16, it is possible to suppress an increase in the pitch of the folds composed of the large diameter portion 14 and the small diameter portion 16.

また、スプリンクラーシステムの給水に用いることで、スプリンクラーシステムにおける送水ポンプの能力を低減することが可能となる。 Further, by using it for water supply of the sprinkler system, it is possible to reduce the capacity of the water supply pump in the sprinkler system.

本発明が上記していない様々な実施の形態等を含むことは勿論である。従って、本発明の技術的範囲は上記の説明から妥当とされる特許請求の範囲に記載された発明特定事項によってのみ定められるものである。 It goes without saying that the present invention includes various embodiments not described above. Therefore, the technical scope of the present invention is defined only by the matters specifying the invention described in the claims that are valid from the above description.

10 金属製蛇腹管
12 管壁
14 大径部
16 小径部
18 第1傾斜部
20 第2傾斜部
L 軸線
θ1 第1の傾斜角
θ2 第2の傾斜角
10 Metal bellows tube 12 Tube wall 14 Large diameter part 16 Small diameter part 18 1st inclined part 20 2nd inclined part L Axis line θ1 1st inclined angle θ2 2nd inclined angle

Claims (2)

スプリンクラーシステムの給水に用いられ、ひだをなす大径部と小径部とが管壁の少なくとも一部として軸線方向に交互に形成され、前記管壁の壁厚が一様な金属製蛇腹管において、
前記大径部と小径部とは予め設定された曲率の円弧曲面で構成され、
前記管壁の一部として形成され、内部に流通される流体の流通方向に沿って前記小径部から前記大径部に向けて傾斜する円錐面で構成され、前記軸線方向に対する傾斜角が予め設定された第1の傾斜角である第1傾斜部と、
前記管壁の一部として形成され、前記流体の流通方向に沿って前記大径部から前記小径部に向けて傾斜する円錐面で構成され、前記軸線方向に対する傾斜角が前記第1の傾斜角よりも小さい第2の傾斜角である第2傾斜部とを備え
前記小径部の前記流体流通方向両側に前記第1傾斜部及び第2傾斜部が連結されたことを特徴とする金属製蛇腹管。
In a metal bellows tube used for water supply of a sprinkler system, in which large diameter parts and small diameter parts forming folds are alternately formed in the axial direction as at least a part of the pipe wall, and the wall thickness of the pipe wall is uniform.
The large-diameter portion and the small-diameter portion are composed of an arc curved surface having a preset curvature.
It is composed of a conical surface formed as a part of the pipe wall and inclined from the small diameter portion to the large diameter portion along the flow direction of the fluid flowing inside, and the inclination angle with respect to the axial direction is preset. The first inclined portion, which is the first inclined angle,
It is composed of a conical surface formed as a part of the pipe wall and inclined from the large diameter portion to the small diameter portion along the flow direction of the fluid, and the inclination angle with respect to the axial direction is the first inclination angle. With a second tilted portion, which is a smaller second tilt angle ,
A metal bellows tube characterized in that the first inclined portion and the second inclined portion are connected to both sides of the small diameter portion in the fluid flow direction .
前記第2の傾斜部が前記小径部の近傍にのみ設けられ、前記第2傾斜部と前記大径部とが曲率の小さい連結曲面部を介して連結されたことを特徴とする請求項1に記載の金属製蛇腹管。 The first aspect of the present invention is characterized in that the second inclined portion is provided only in the vicinity of the small diameter portion, and the second inclined portion and the large diameter portion are connected via a connecting curved surface portion having a small curvature. The metal bellows tube described.
JP2017010145A 2017-01-24 2017-01-24 Metal bellows tube Active JP6803514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017010145A JP6803514B2 (en) 2017-01-24 2017-01-24 Metal bellows tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017010145A JP6803514B2 (en) 2017-01-24 2017-01-24 Metal bellows tube

Publications (2)

Publication Number Publication Date
JP2018119569A JP2018119569A (en) 2018-08-02
JP6803514B2 true JP6803514B2 (en) 2020-12-23

Family

ID=63044350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017010145A Active JP6803514B2 (en) 2017-01-24 2017-01-24 Metal bellows tube

Country Status (1)

Country Link
JP (1) JP6803514B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211178A1 (en) * 2021-03-28 2022-10-06 정재영 Hose for air cleaner having bellows structure for pressure loss reduction, and method for designing bellows

Also Published As

Publication number Publication date
JP2018119569A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
US9476531B2 (en) Elliptical flow conditioning pipe elbow
US8011392B2 (en) Piping having fluid-mixing region
WO2015115127A1 (en) Air conditioner indoor unit
CA3002521A1 (en) Helix amplifier pipe fittings
WO2015114949A1 (en) Exhaust waste heat recovery device
JP6803514B2 (en) Metal bellows tube
US11460056B2 (en) Helix amplifier fittings
CN106838521B (en) A kind of elbow with deflector
JP6251584B2 (en) Exhaust heat recovery unit
CA3076100A1 (en) Flow stabilizer for a control valve
CN209511385U (en) Ball elbow vibration damping elbow with deflector
JPWO2021250889A5 (en)
CN209856782U (en) Negative pressure self-suction fluid dead cavity destruction device
JP7047631B2 (en) Intake pipe and intake manifold for internal combustion engine equipped with this
JP6450182B2 (en) Fitting
CN112013196A (en) Device for reducing piping vibration caused by vortex shedding
RU220541U1 (en) Device for turning and twisting fluid flow
JP6872224B2 (en) Flexible tube
CN214893461U (en) Cavitation type venturi flow element
CN208348783U (en) A kind of shape tube
KR101405063B1 (en) Discharge pipe assembly for pneumatic machine
JP2020029882A (en) Bent pipe structure and pipe joint
RU54643U1 (en) SWEEPER
JP6378072B2 (en) Fitting
RU130660U1 (en) HOSE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201118

R150 Certificate of patent or registration of utility model

Ref document number: 6803514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250