JP6802802B2 - Sealant - Google Patents

Sealant Download PDF

Info

Publication number
JP6802802B2
JP6802802B2 JP2017550372A JP2017550372A JP6802802B2 JP 6802802 B2 JP6802802 B2 JP 6802802B2 JP 2017550372 A JP2017550372 A JP 2017550372A JP 2017550372 A JP2017550372 A JP 2017550372A JP 6802802 B2 JP6802802 B2 JP 6802802B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
sealant
conversion element
mass
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017550372A
Other languages
Japanese (ja)
Other versions
JPWO2017082319A1 (en
Inventor
雄太 橋本
雄太 橋本
今泉 雅裕
雅裕 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Publication of JPWO2017082319A1 publication Critical patent/JPWO2017082319A1/en
Application granted granted Critical
Publication of JP6802802B2 publication Critical patent/JP6802802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Polymers & Plastics (AREA)
  • Hybrid Cells (AREA)
  • Sealing Material Composition (AREA)
  • Photovoltaic Devices (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、低温硬化条件下において優れた接着性を有する、光電変換素子の製造に特に適したシール剤に関する。 The present invention relates to a sealant particularly suitable for the manufacture of photoelectric conversion elements, which has excellent adhesiveness under low temperature curing conditions.

クリーンなエネルギー源として注目されている太陽電池は、近年、一般住宅用に利用されるようになってきたが、未だ充分に普及するには至っていない。その理由としては、太陽電池そのものの発電性能が充分優れているとは言い難いため、モジュールを大きくせざるを得ず、また、モジュール製造における生産性が低く、その結果、コスト高になってしまうこと等が挙げられる。 Solar cells, which are attracting attention as a clean energy source, have been used for general houses in recent years, but have not yet become sufficiently widespread. The reason is that it is hard to say that the power generation performance of the solar cell itself is sufficiently excellent, so the module has to be enlarged, and the productivity in module manufacturing is low, resulting in high cost. That can be mentioned.

太陽電池に用いられる光電変換素子は、一般にシリコン、ガリウム−砒素、銅−インジウム−セレン等の光電変換素材を上部の透明保護材と下部の基板保護材とで保護し、光電変換素材と保護材とをシール剤で固定し、パッケージ化したものである。このため光電変換素子の製造に用いられるシール剤としては、上下の保護材との接着性が良好であること、柔軟性や耐久性に優れていること等が重要な性能として要求される。 Photoelectric conversion elements used in solar cells generally protect photoelectric conversion materials such as silicon, gallium-arsenide, and copper-indium-selenium with a transparent protective material at the top and a substrate protective material at the bottom, and the photoelectric conversion material and the protective material. And are fixed with a sealant and packaged. Therefore, as a sealant used in the manufacture of a photoelectric conversion element, good adhesion to upper and lower protective materials, excellent flexibility and durability, and the like are required as important performances.

例えば、現在、太陽電池モジュールにおける光電変換素子用シール剤としては、柔軟性や透明性等の観点から、酢酸ビニルの含有率の高いエチレン−酢酸ビニル共重合体が使用されている。しかしながら、該共重合体は、耐熱性や接着性が不十分であることから、共重合反応をより促進させる目的で有機過酸化物等を使用する必要がある。この場合、これらの有機過酸化物を配合したエチレン−酢酸ビニル共重合体のシートをまず作製し、次いで、このシートを用いて光電変換素材をシールするという2段階の工程を必要とする。そして、シートの製造段階では、有機過酸化物が分解しないような低温での成形が必要なため、押出成形速度を大きくすることができない。他方、光電変換素材をシールする(硬化接着)段階では、ラミネーターにより数分間〜十数分間かけて仮接着する工程と、オーブン内において有機過酸化物が分解する高温度で数十分間〜1時間かけて本接着する工程とからなる2段階の工程を経る必要がある。そのため光電変換素子の製造に手間と時間がかかり、その上、接着性や耐湿信頼性が十分でないという不都合を有している。このような光電変換素子を使用した太陽電池モジュール及び太陽電池は、高価になり且つその性能に満足できないものになる。 For example, at present, an ethylene-vinyl acetate copolymer having a high vinyl acetate content is used as a sealant for a photoelectric conversion element in a solar cell module from the viewpoint of flexibility, transparency and the like. However, since the copolymer has insufficient heat resistance and adhesiveness, it is necessary to use an organic peroxide or the like for the purpose of further promoting the copolymerization reaction. In this case, a two-step step is required in which a sheet of an ethylene-vinyl acetate copolymer containing these organic peroxides is first prepared, and then the photoelectric conversion material is sealed using this sheet. Then, in the sheet manufacturing stage, it is necessary to mold at a low temperature so that the organic peroxide does not decompose, so that the extrusion molding speed cannot be increased. On the other hand, in the stage of sealing the photoelectric conversion material (curing adhesion), a step of temporarily adhering with a laminator over several minutes to a dozen minutes and a process of temporarily adhering the organic peroxide in the oven at a high temperature of several tens of minutes to 1 It is necessary to go through a two-step process consisting of a process of main bonding over time. Therefore, it takes time and effort to manufacture the photoelectric conversion element, and in addition, there is an inconvenience that the adhesiveness and moisture resistance reliability are not sufficient. Solar cell modules and solar cells using such a photoelectric conversion element become expensive and unsatisfactory in their performance.

また、光電変換素子用のシール材として前記共重合体と融点が低いアイオノマーを併用した場合には、耐熱性が充分でなく、太陽電池としての使用時における温度上昇により変形する恐れがある。また光電変換素子を加熱圧着法で製造する際に、これらのシール材料が必要以上に流出してバリを生じる虞があるので好ましくない。さらに、近年の光電変換素子の大型化に伴って、加工プロセス時においてシール部にかかる応力は従来に比べ格段に大きくなり、シール線長も長くなってきている。これらのことから、耐湿信頼性に優れ、シールの線幅の狭小化を可能にし、導電性支持体間の間隔を均一にでき、更に密着性及び可撓性に優れた塗布型のシール剤の開発が求められている。 Further, when the copolymer and an ionomer having a low melting point are used in combination as a sealing material for a photoelectric conversion element, the heat resistance is not sufficient and there is a risk of deformation due to a temperature rise during use as a solar cell. Further, when the photoelectric conversion element is manufactured by the heat-bonding method, these sealing materials may flow out more than necessary to cause burrs, which is not preferable. Further, as the size of the photoelectric conversion element has increased in recent years, the stress applied to the seal portion during the processing process has become much larger than before, and the seal wire length has also become longer. From these facts, a coating type sealant having excellent moisture resistance and reliability, making it possible to narrow the line width of the seal, making the distance between the conductive supports uniform, and having excellent adhesion and flexibility. Development is required.

一方、熱硬化性エポキシ樹脂をシール剤として利用する方法が検討されている(特許文献1)。この場合、シール剤をディスペンサー、スクリーン印刷等の方法により導電性支持体に塗布し、加熱または加熱無しでレベリングを行った後に、アライメントマークを用いて上下の導電性支持体を貼り合わせ、シール剤をプレスするプロセスでセルの作製が行われている。ここで使用する熱硬化性エポキシ樹脂の硬化剤としては、フェノールノボラック系樹脂が使用されている。しかし、このような光電変換素子用シール剤は、高温高湿下における長期封止性については接着性能が劣り、電解液が漏洩するという不都合を有している。また、シール剤硬化時に120℃以上の高温が必要である等、製造負荷が大きいという不都合もある。この不都合を解決する方法として特許文献2では水添ビスフェノール型エポキシ樹脂を用いる樹脂組成物が開示されている。しかし、この場合も、高温高湿下における長期封止性は付与できず、電解液が漏洩する事象が示されている。 On the other hand, a method of using a thermosetting epoxy resin as a sealing agent has been studied (Patent Document 1). In this case, the sealant is applied to the conductive support by a method such as dispenser or screen printing, leveling is performed with or without heating, and then the upper and lower conductive supports are bonded together using the alignment mark, and the sealant is used. Cell production is performed in the process of pressing. As the curing agent for the thermosetting epoxy resin used here, a phenol novolac resin is used. However, such a sealant for a photoelectric conversion element has an inconvenience that the adhesive performance is inferior in terms of long-term sealing performance under high temperature and high humidity, and the electrolytic solution leaks. Further, there is an inconvenience that the manufacturing load is large, such as a high temperature of 120 ° C. or higher is required when the sealant is cured. As a method for solving this inconvenience, Patent Document 2 discloses a resin composition using a hydrogenated bisphenol type epoxy resin. However, even in this case, the long-term sealing property under high temperature and high humidity cannot be imparted, and an event that the electrolytic solution leaks has been shown.

特開2002−368236号公報JP-A-2002-368236 特開2007−087684号公報JP-A-2007-087684

C.J.Barbe,F Arendse,P Compt and M.Graetzel J.Am.Ceram.Soc.,80,12,3157−71(1997).C. J. Barbe, F Arendse, P Compt and M. Graetzel J.M. Am. Seram. Soc. , 80, 12, 3157-71 (1997).

本発明の目的は、光電変換素子製造時における上下の導電性支持体の貼り合せ作業が容易であり、且つ、低温での硬化、及び、得られたシール部の接着強度、耐湿信頼性、耐熱性等に優れた光電変換素子用シール剤を提供することにある。すなわち、本発明の目的は、光電変換素子の製造に特に適したシール剤を提供することである。 An object of the present invention is that the upper and lower conductive supports can be easily bonded at the time of manufacturing a photoelectric conversion element, and can be cured at a low temperature, and the obtained seal portion has adhesive strength, moisture resistance reliability, and heat resistance. An object of the present invention is to provide a sealant for a photoelectric conversion element having excellent properties. That is, an object of the present invention is to provide a sealant particularly suitable for manufacturing a photoelectric conversion element.

本発明者らは鋭意研究を重ねた結果、特定の組成を有する樹脂組成物が前記課題を解決するものであることを見出し、本発明を完成させるに至った。
即ち、本発明の各態様は、以下のとおりである。
[1].(a)エポキシ樹脂及び(b)熱硬化剤としてアミン類を含有することを特徴とする、光電変換素子用シール剤。
[2].(a)エポキシ樹脂中のエポキシ基1当量に対して(b)熱硬化剤中の活性水素が0.8〜3.0当量となる量の(b)熱硬化剤を含有する、上記[1]項に記載の光電変換素子用シール剤。
[3].(b)熱硬化剤がアミンアダクトであることを特徴とする、上記[1]又は[2]項に記載の光電変換素子用シール剤。
[4].(b)熱硬化剤が、グアナミン類及び/又はイミダゾール類の少なくとも1種と、それ以外のアミン類の少なくとも1種とを含む少なくとも2種のアミン類を含む、上記[1]乃至[3]項のいずれか一項に記載の光電変換素子用シール剤。
[5].イミダゾール類が、2−ウンデシルイミダゾールを含むことを特徴とする、上記[4]項に記載の光電変換素子用シール剤。
[6].(c)充填剤を含有する、上記[1]乃至[5]項のいずれか一項に記載の光電変換素子用シール剤。
[7].(c)充填剤が、含水硅酸マグネシウム、炭酸カルシウム、酸化アルミニウム、結晶シリカ及び溶融シリカからなる群から選ばれる1種または2種以上であり、且つその平均粒径が50μm以下である、上記[6]項に記載の光電変換素子用シール剤。
[8].(d)シランカップリング剤を含有する、上記[1]乃至[7]項のいずれか一項に記載の光電変換素子用シール剤。
[9].(d)シランカップリング剤が、グリシジルエトキシシラン類またはグリシジルメトキシシラン類である、上記[8]項に記載の光電変換素子用シール剤。
[10].半導体含有層を有する第一の導電性支持体、該半導体含有層と対向電極とが所定の間隔で対向する位置に設けられた対向電極を有する第二の導電性支持体、第一及び第二の導電性支持体の間隙に挟持された電荷移動層、並びに第一及び第二の導電性支持体の周辺部に設けられ、電荷移動層を包囲するシールを含む光電変換素子であって、該シールが上記[1]乃至[9]項のいずれか一項に記載の光電変換素子用シール剤から形成されたシールである、光電変換素子。
[11].上記[10]項に記載の光電変換素子を有してなる太陽電池。
As a result of diligent research, the present inventors have found that a resin composition having a specific composition solves the above-mentioned problems, and have completed the present invention.
That is, each aspect of the present invention is as follows.
[1]. (A), characterized in that it contains an amine as the epoxy resin and (b) heat-curing agent, photoelectric conversion換素Ko sealant.
[2]. The above [1] contains (a) an amount of (b) a thermosetting agent in which the amount of active hydrogen in the thermosetting agent is 0.8 to 3.0 equivalents with respect to 1 equivalent of an epoxy group in the epoxy resin. ] photoelectric conversion換素Ko sealing agent according to claim.
[3]. (B) The sealant for a photoelectric conversion element according to the above item [1] or [2], wherein the thermosetting agent is an amine adduct.
[4]. (B) The above [1] to [3], wherein the thermosetting agent contains at least two kinds of amines including at least one kind of guanamines and / or imidazoles and at least one kind of other amines. The sealant for a photoelectric conversion element according to any one of the items.
[5]. The sealant for a photoelectric conversion element according to the above item [4], wherein the imidazoles contain 2-undecylimidazole.
[6]. (C) The sealant for a photoelectric conversion element according to any one of the above items [1] to [5], which contains a filler.
[7]. (C) The filler is one or more selected from the group consisting of hydrous magnesium silicate, calcium carbonate, aluminum oxide, crystalline silica and fused silica, and the average particle size thereof is 50 μm or less. The sealant for a photoelectric conversion element according to item [6].
[8]. (D) The sealant for a photoelectric conversion element according to any one of the above items [1] to [7], which contains a silane coupling agent.
[9]. (D) The sealant for a photoelectric conversion element according to the above item [8], wherein the silane coupling agent is glycidyl ethoxysilanes or glycidyl methoxysilanes.
[10]. A first conductive support having a semiconductor-containing layer, a second conductive support having counter electrodes provided at positions where the semiconductor-containing layer and a counter electrode face each other at predetermined intervals, first and second A photoelectric conversion element including a charge transfer layer sandwiched between the conductive supports of the above and a seal provided around the first and second conductive supports and surrounding the charge transfer layer. A photoelectric conversion element in which the seal is a seal formed from the sealant for a photoelectric conversion element according to any one of the above items [1] to [9].
[11]. A solar cell having the photoelectric conversion element according to the above item [10].

本発明の光電変換素子用シール剤は、熱硬化剤としてアミン類(好ましくはアミンアダクト)を含有するため、基板への塗布作業性、貼り合わせ性、接着強度、室温での使用可能時間(ポットライフ)、低温硬化性に優れている。そのため、光電変換素子の製造工程における電荷移動層に対する汚染性が極めて低い。このようなシール剤を用いて得られた本発明の光電変換素子は、電荷移動層の汚染による発電性能低下が少なく、接着性、耐湿信頼性に優れたものである。また、本発明の光電変換素子用シール剤を用いて光電変換素子を製造した場合、性能不良を生じることがなく、また低温でかつ高い信頼性を有する素子の短時間での作製が可能となり、生産性の向上を可能にする。 Since the sealant for a photoelectric conversion element of the present invention contains amines (preferably amine adduct) as a thermosetting agent, it has workability for coating on a substrate, adhesiveness, adhesive strength, and usable time at room temperature (pot). Life), excellent in low temperature curability. Therefore, the contamination of the charge transfer layer in the manufacturing process of the photoelectric conversion element is extremely low. The photoelectric conversion element of the present invention obtained by using such a sealing agent is excellent in adhesiveness and moisture resistance reliability with little deterioration in power generation performance due to contamination of the charge transfer layer. Further, when a photoelectric conversion element is manufactured using the sealant for a photoelectric conversion element of the present invention, it is possible to manufacture an element having high reliability at a low temperature in a short time without causing performance defects. Enables increased productivity.

本発明のシール剤を用いて調製された色素増感光電変換素子の構造を説明する要部断面模式図である。It is sectional drawing of the main part explaining the structure of the dye-sensitized electric conversion element prepared by using the sealant of this invention.

本発明の光電変換素子用シール剤(以下、単に「シール剤」ということもある)は、(a)エポキシ樹脂及び(b)熱硬化剤としてアミン類を含有する光電変換素子用硬化性樹脂組成物である。このシール剤は、好ましくは、半導体含有層を有する第一の導電性支持体、該半導体含有層と対向電極とが所定の間隔で対向する位置に設けられた対向電極を有する第二の導電性支持体、第一及び第二の導電性支持体の間隙に挟持された電荷移動層、並びに第一及び第二の導電性支持体の周辺部に設けられ、電荷移動層を包囲するシールを含む光電変換素子において、該シールの原料として使用される。
本発明のシール剤は、別途言及しない限り、熱硬化プロセスにかける前の状態の組成物を指す。
The photoelectric conversion element sealant of the present invention (hereinafter, sometimes simply referred to as "sealant") is, (a) an epoxy resin and (b) photoelectric containing amines as hardener varying換素Ko curable It is a resin composition. This sealant preferably has a first conductive support having a semiconductor-containing layer, and a second conductive support having counter electrodes provided at positions where the semiconductor-containing layer and counter electrodes face each other at predetermined intervals. Includes a support, a charge transfer layer sandwiched between the first and second conductive supports, and a seal provided around the first and second conductive supports and surrounding the charge transfer layer. It is used as a raw material for the seal in a photoelectric conversion element.
Unless otherwise specified, the sealant of the present invention refers to a composition in a state before being subjected to a thermosetting process.

本発明で用いられる(a)エポキシ樹脂としては、通常、一分子中に少なくとも2個以上のエポキシ基を持つエポキシ樹脂が用いられる。このようなエポキシ樹脂としては、例えばノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等が挙げられる。更に具体的には、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’−ビフェノール、2,2’−ビフェノール、3,3’,5,5’−テトラメチル−[1,1’−ビフェニル]−4,4’−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’−ビス(クロメチル)−1,1’−ビフェニル、4,4’−ビス(メトキシメチル)−1,1’−ビフェニル、1,4−ビス(クロロメチル)ベンゼン、1,4−ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、アルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等の固形または液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を併用してもよい。これらのエポキシ樹脂は、本発明の光電変換素子用シール剤の粘度を下げるのに有益で、常温での貼り合わせ作業を可能とし、且つギャップ形成を容易にする作用を有し得る。これらのエポキシ樹脂の中でも、ノボラック型エポキシ樹脂、及び/又はビスフェノールA型エポキシ樹脂、及び/又はビスフェノールF型エポキシ樹脂の使用が好ましく、また、ノボラック型エポキシ樹脂及びビスフェノールA型エポキシ樹脂の併用も好ましい。また、エポキシ当量の異なる2種のエポキシ樹脂を併用することも好ましい。一実施形態として、30〜300g/eqのエポキシ樹脂と、200〜600g/eqのエポキシ樹脂との混合物を用いてよい。また、一実施形態として、30〜300g/eqのノボラック型エポキシ樹脂及び/又はビスフェノールA型エポキシ樹脂及び/又はビスフェノールF型エポキシ樹脂と、200〜600g/eqのノボラック型エポキシ樹脂及び/又はビスフェノールA型エポキシ樹脂及び/又はビスフェノールF型エポキシ樹脂との混合物を用いてよい。 As the (a) epoxy resin used in the present invention, an epoxy resin having at least two or more epoxy groups in one molecule is usually used. Examples of such an epoxy resin include novolak type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin and the like. More specifically, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpendiphenol, 4,4'-biphenol, 2,2'-biphenol, 3,3', 5,5'-tetramethyl-[ 1,1'-biphenyl] -4,4'-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenols, alkyl-substituted phenols, naphthols, alkyl-substituted naphthols, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxyacetophenone, dicyclo pentadiene, furfural, 4,4'-bis (chloro-methyl) -1,1'-biphenyl, 4,4'-bis (methoxymethyl) -1,1'-biphenyl, 1,4-bis (chloromethyl) Polycondensate with benzene, 1,4-bis (methoxymethyl) benzene, etc. and their modified products, halogenated bisphenols such as tetrabromobisphenol A, glycidyl etherified products derived from alcohols, alicyclic epoxy resin , Solid or liquid epoxy resins such as glycidylamine-based epoxy resin and glycidyl ester-based epoxy resin, but are not limited thereto. These may be used alone or in combination of two or more. These epoxy resins are useful for lowering the viscosity of the sealant for a photoelectric conversion element of the present invention, and may have an action of enabling laminating work at room temperature and facilitating gap formation. Among these epoxy resins, it is preferable to use a novolak type epoxy resin and / or a bisphenol A type epoxy resin and / or a bisphenol F type epoxy resin, and it is also preferable to use a novolak type epoxy resin and a bisphenol A type epoxy resin in combination. .. It is also preferable to use two types of epoxy resins having different epoxy equivalents in combination. In one embodiment, 30-300 g / eq . Epoxy resin and 200-600 g / eq . A mixture with the epoxy resin of the above may be used. Further, as one embodiment, 30 to 300 g / eq . Novolac type epoxy resin and / or bisphenol A type epoxy resin and / or bisphenol F type epoxy resin, and 200 to 600 g / eq . A mixture of novolak type epoxy resin and / or bisphenol A type epoxy resin and / or bisphenol F type epoxy resin may be used.

本発明のシール剤は、電荷移動層に対するシール剤による汚染をできるだけ小さくするために、シール剤中に含有される加水分解性塩素が可能な限り少ない方が好ましい。従って(a)エポキシ樹脂についても、これに含まれる加水分解性塩素量が600ppm以下のものが好ましく、500ppm以下のものがより好ましく、400ppm以下のものが更により好ましく、300ppm以下のものが更により好ましく、200ppm以下のものが更により好ましく、100ppm以下又は実質的にゼロであることが最も好ましい。加水分解性塩素量は、例えば、約0.5gのエポキシ樹脂を20mlのジオキサンに溶解し、1NのKOH/エタノール溶液5mlで30分間還流した後、0.01N硝酸銀溶液で滴定すること等により定量することができる。 The sealant of the present invention preferably contains as little hydrolyzable chlorine as possible in the sealant in order to minimize contamination of the charge transfer layer by the sealant. Therefore, as for (a) epoxy resin, the amount of hydrolyzable chlorine contained therein is preferably 600 ppm or less, more preferably 500 ppm or less, even more preferably 400 ppm or less, and even more preferably 300 ppm or less. It is preferable that it is 200 ppm or less, more preferably 100 ppm or less, or substantially zero. The amount of hydrolyzable chlorine is quantified by, for example, dissolving about 0.5 g of epoxy resin in 20 ml of dioxane, refluxing it in 5 ml of 1N KOH / ethanol solution for 30 minutes, and then titrating it with 0.01N silver nitrate solution. can do.

本発明のシール剤中における(a)エポキシ樹脂の含有量は、通常5〜80質量%、好ましくは10〜70質量%、より好ましくは20〜60質量%である。 The content of the (a) epoxy resin in the sealant of the present invention is usually 5 to 80% by mass, preferably 10 to 70% by mass, and more preferably 20 to 60% by mass.

本発明のシール剤は、(b)熱硬化剤としてアミン類を含有する。これらアミン類としては、特に限定されるわけではないが、分子中に2個以上のアミノ基を有する多官能アミン類が好ましく使用される。分子中に2個以上のアミノ基を有する多官能アミン類の好ましい具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂、アミンアダクト等が挙げられる。特に好ましいアミン類の1つは、アミンアダクト類である。
なお、本願における熱硬化剤としては、120℃未満でシール硬化を可能とする硬化剤が好ましく使用できる。より好ましくは、110℃未満でシール硬化を可能とする硬化剤が使用できる。更に好ましくは105℃未満で、最も好ましくは100℃前後で(又は100℃以下で)、シール硬化を可能とする硬化剤が使用できる。
The sealant of the present invention (b) contains amines as a thermosetting agent. The amines are not particularly limited, but polyfunctional amines having two or more amino groups in the molecule are preferably used. Preferred specific examples of polyfunctional amines having two or more amino groups in the molecule are synthesized from dimers of diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, linolenic acid and ethylenediamine. Polyamide resin, amine adduct and the like can be mentioned. One of the particularly preferred amines is amine adducts.
As the thermosetting agent in the present application, a curing agent capable of curing the seal at a temperature lower than 120 ° C. can be preferably used. More preferably, a curing agent capable of curing the seal at a temperature lower than 110 ° C. can be used. More preferably, a curing agent capable of curing the seal can be used at a temperature lower than 105 ° C., most preferably around 100 ° C. (or 100 ° C. or lower).

上記のアミンアダクトとは、多官能アミン類にエポキシ樹脂を化学反応させることによって得られるアミン化合物である。アミンアダクトの具体例として、製品名、ハードナーX−3661S、ハードナーX−3670S(エー・シー・アール株式会社製)、アミキュアPN−23、PN−31、PN−40、MY−24(味の素ファインテクノ株式会社製)、ノバキュアHX−3742、HX−3721、HX−3722、HX−3088、HX−3741(旭化成イーマテリアルズ株式会社製)等の市販品が挙げられる。
なお、ここで言及される本発明のシール剤の成分としての「アミンアダクト」は、シール剤を熱硬化プロセスにかけることで得られる(a)エポキシ樹脂と(b)アミン類との反応生成物の一つとしてのアミンアダクトを含まない。理論に拘束される意図はないが、このアミンアダクトは、主に熱硬化の温度を低下させる目的で添加されるので、熱硬化にかける前にアダクトの形態である必要がある。
The above-mentioned amine adduct is an amine compound obtained by chemically reacting an epoxy resin with polyfunctional amines. Specific examples of Amin Adduct include product name, Hardener X-3661S, Hardener X-3670S (manufactured by ACR Co., Ltd.), Amicure PN-23, PN-31, PN-40, MY-24 (Ajinomoto Fine Techno). (Made by Asahi Kasei E-Materials Co., Ltd.), NovaCure HX-3742, HX-3721, HX-3722, HX-3088, HX-3741 (manufactured by Asahi Kasei E-Materials Co., Ltd.) and the like.
The "amine adduct" as a component of the sealant of the present invention referred to here is a reaction product of (a) epoxy resin and (b) amines obtained by subjecting the sealant to a thermosetting process. Does not contain amine adduct as one of. Although not intended to be bound by theory, this amine adduct needs to be in the form of adduct prior to thermosetting, as it is added primarily for the purpose of lowering the temperature of thermosetting.

これらのアミンアダクトは、潜在性硬化剤として作用するように、粒径を細かくして(a)エポキシ樹脂中に均一に分散させて用いるのが好ましい。多官能アミン類またはこれとエポキシ樹脂とを化学反応させて得られたアミンアダクトの平均粒径が光電変換素子のセルギャップ(第一の導電性支持体と第二の導電性支持体との間隔)に比べて過度に大きくならないようにすることで、光電変換素子の2枚の基板(導電性支持体)を貼り合わせる際に首尾良くギャップ形成することができる。そのため、その平均粒径は通常セルギャップ以下、好ましくは15μm以下、より好ましくは12μm以下、さらに好ましくは9μm以下であってよい。これらアミン類の粒径は、例えばレーザー回折・散乱式粒度分布測定器(乾式)(LMS−30、(株)セイシン企業製)により測定することが可能である。 It is preferable that these amine adducts have a fine particle size and are uniformly dispersed in the epoxy resin so as to act as a latent curing agent. The average particle size of the amine adduct obtained by chemically reacting polyfunctional amines or this with an epoxy resin is the cell gap of the photoelectric conversion element (distance between the first conductive support and the second conductive support). ), It is possible to successfully form a gap when the two substrates (conductive supports) of the photoelectric conversion element are bonded together. Therefore, the average particle size may be usually cell gap or less, preferably 15 μm or less, more preferably 12 μm or less, still more preferably 9 μm or less. The particle size of these amines can be measured by, for example, a laser diffraction / scattering type particle size distribution measuring device (dry type) (LMS-30, manufactured by Seishin Enterprise Co., Ltd.).

本発明のシール剤が含有する(b)熱硬化剤として、グアナミン類及び/又はイミダゾール類の少なくとも1種と、それ以外のアミン類(好ましくは上記のアミンアダクト)の少なくとも1種とを併用してもよい。併用できるグアナミン類としては、特に限定されず、例えば、ジシアンジアミド、o−トルイルビグアニド、アセトグアナミン、ベンゾグアナミン、フニルアセトグアナミン等が挙げられる。 As the (b) thermosetting agent contained in the sealant of the present invention, at least one of guanamines and / or imidazoles and at least one of other amines (preferably the above-mentioned amine adduct) are used in combination. You may. The combination can guanamines, not particularly limited, for example, dicyandiamide, o- tolyl biguanide, acetoguanamine, benzoguanamine, full E sulfonyl acetamide guanamines and the like.

併用できるイミダゾール類としては、特に限定されず、例えば、2−エチルイミダゾール、2−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、2,4−ジシアノ−6(2’−メチルイミダゾール(1’))エチル−s−トリアジン、2,4−ジシアノ−6(2’−ウンデシルイミダゾール(1’))エチル−s−トリアジン等が挙げられる。この中でも、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾールであることが好ましい。低温における硬化性、ポットライフ、硬化後のシール特性等から、2−ウンデシルイミダゾールであることが更に好ましい。(b)熱硬化剤として、アミンアダクトとグアナミン類又はイミダゾール類との併用が好ましく、アミンアダクトとイミダゾール類との併用がより好ましく、アミンアダクトと2−ウンデシルイミダゾールとの併用が最も好ましい。 The imidazoles that can be used in combination are not particularly limited, and for example, 2-ethylimidazole, 2-methylimidazole, 2-phenylimidazole, 2-undecyl imidazole, 2-heptadecyl imidazole, 2-ethyl-4-methyl imidazole, 2-Phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2 -Undecylimidazole, 2,4-dicyano-6 (2'-methylimidazole (1')) ethyl-s-triazine, 2,4-dicyano-6 (2'-undecylimidazole (1')) ethyl- Examples thereof include s-triazine. Of these, 2-methylimidazole, 2-undecylimidazole, and 2-heptadecylimidazole are preferable. 2-Undecylimidazole is more preferable from the viewpoint of curability at low temperature, pot life, sealing properties after curing, and the like. (B) As the thermosetting agent, the combined use of amine adduct and guanamines or imidazoles is preferable, the combined use of amine adduct and imidazoles is more preferable, and the combined use of amine adduct and 2-undecylimidazole is most preferable.

また、その他の併用できる熱硬化剤としては、例えば、フェノール−ホルムアルデヒド重縮合物、クレゾール−ホルムアルデヒド重縮合物、ヒドロキシベンズアルデヒド−フェノール重縮合物、クレゾール−ナフトール−ホルムアルデヒド重縮合物、レゾルシン−ホルムアルデヒド重縮合物、フルフラール−フェノール重縮合物、α−ヒドロキシフェニル−ω−ヒドロポリ(ビフェニルジメチレン−ヒドロキシフェニレン)等の多官能ノボラック類、ビスフェノールA、ビスフェノールF、ビスフェノールS、チオジフェノール、4,4’−ビフェニルフェノール、ジヒドロキシナフタレン、フルオレンビスフェノール、テルペンジフェノール、2,2’−ビフェノール、3,3’,5,5’−テトラメチル−[1,1’−ビフェニル]−4,4’−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’−ビス(クロロメチル)−1,1’−ビフェニル、4,4’−ビス(メトキシメチル)−1,1’−ビフェニル、1,4’−ビス(クロロメチル)ベンゼン、1,4’−ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、テルペンとフェノール類の縮合物等の多価フェノール系硬化剤、或は無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水ベンゾフェノンテトラカルボン酸等の酸無水物系硬化剤、炭素数5以下の脂肪族ヒドラジド類等が挙げられる。これらの併用できる熱硬化剤は、いずれか1種を用いてもよく、また2種以上を併用してもよい。
これらの併用できる熱硬化剤の使用量は、本発明のシール剤中の(b)熱硬化剤の総量に対して通常0質量%以上50質量%以下、好ましくは30質量%以下である。一実施形態において、シール剤は、これらの併用できる熱硬化剤(アミン類以外)を含まない。別の実施形態において、シール剤の熱硬化剤は、アミン類(特に好ましくはアミンアダクト類)のみ、又は、グアナミン類もしくはイミダゾール類及びそれ以外のアミン類(特に好ましくはアミンアダクト類)のみからなってよい。
Other heat-curing agents that can be used in combination include, for example, phenol-formaldehyde polycondensate, cresol-formaldehyde polycondensate, hydroxybenzaldehyde-phenol polycondensate, cresol-naphthol-formaldehyde polycondensate, resorcin-formaldehyde polycondensate. Phosphorus, furfural-phenol polycondensate, polyfunctional novolacs such as α-hydroxyphenyl-ω-hydropoly (biphenyldimethylene-hydroxyphenylene), bisphenol A, bisphenol F, bisphenol S, thiodiphenol, 4,4'- Biphenylphenol, dihydroxynaphthalene, fluorenbisphenol, terpendiphenol, 2,2'-biphenol, 3,3', 5,5'-tetramethyl- [1,1'-biphenyl] -4,4'-diol, hydroquinone , Resolcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenols (phenols, alkyl-substituted phenols, naphthols, alkyl-substituted naphthols, dihydroxybenzenes) Etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4'-bis (chloromethyl) -1,1' Polycondensate with -biphenyl, 4,4'-bis (methoxymethyl) -1,1'-biphenyl, 1,4'-bis (chloromethyl) benzene, 1,4'-bis (methoxymethyl) benzene, etc. And these modified products, halogenated bisphenols such as tetrabromobisphenol A, polyhydric phenolic curing agents such as condensates of terpenes and phenols, or phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, anhydrous. Acid anhydride-based curing agents such as maleic acid, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, benzophenonetetracarboxylic acid anhydride, and having 5 or less carbon atoms. Examples include aliphatic hydrazides. Any one of these thermosetting agents that can be used in combination may be used, or two or more types may be used in combination.
The amount of these thermosetting agents that can be used in combination is usually 0% by mass or more and 50% by mass or less, preferably 30% by mass or less, based on the total amount of the (b) thermosetting agent in the sealant of the present invention. In one embodiment, the sealant does not contain these thermosetting agents (other than amines) that can be used in combination. In another embodiment, the sealant thermosetting agent comprises only amines (particularly preferably amine adducts) or guanamines or imidazoles and other amines (particularly preferably amine adducts). You can.

本発明の光電変換素子用シール剤に使用される(b)熱硬化剤の含有量は、本発明の光電変換素子用シール剤に用いられる(a)エポキシ樹脂中のエポキシ基1当量に対して(b)熱硬化剤中の活性水素が通常0.8〜3.0当量、好ましくは0.8〜2.5当量、より好ましくは0.8〜2.0当量、更により好ましくは0.9〜2.0当量、最も好ましくは0.9〜1.8当量となる量である。尚、ここでいう活性水素とは、エポキシ樹脂が有するエポキシ基と反応できる熱硬化剤のヘテロ原子と結合する水素原子を意味する。
一実施態様として、本発明の光電変換素子用シール剤は、硬化剤として、分子内にチオール基を2個以上有するポリチオール化合物及び分子内にヒドラジド基を2個以上有するポリヒドラジド化合物のいずれか又は両方を含まないものであってよい。
The content of (b) the thermosetting agent used in the sealant for a photoelectric conversion element of the present invention is based on (a) one equivalent of an epoxy group in the epoxy resin used in the sealant for a photoelectric conversion element of the present invention. (B) The amount of active hydrogen in the thermosetting agent is usually 0.8 to 3.0 equivalents, preferably 0.8 to 2.5 equivalents, more preferably 0.8 to 2.0 equivalents, and even more preferably 0. The amount is 9 to 2.0 equivalents, most preferably 0.9 to 1.8 equivalents. The active hydrogen referred to here means a hydrogen atom bonded to a hetero atom of a thermosetting agent capable of reacting with an epoxy group contained in an epoxy resin.
In one embodiment, the sealant for a photoelectric conversion element of the present invention is, as a curing agent, either a polythiol compound having two or more thiol groups in the molecule and a polyhydrazide compound having two or more hydrazide groups in the molecule. It may not include both.

本発明の光電変換素子用シール剤には、必要により(c)充填剤を含むことができる。用いられる(c)充填剤の具体例としては、溶融シリカ、結晶シリカ、シリコンカーバイド、窒化珪素、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ(酸化アルミニウム)、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、含水硅酸マグネシウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、ガラス繊維、炭素繊維、二硫化モリブデン、アスベスト等が挙げられる。これらのうち、好ましいものとしては含水硅酸マグネシウム、炭酸カルシウム、酸化アルミニウム、結晶シリカ及び溶融シリカ等が挙げられる。これらは化学処理等による表面処理を施していてもよい。表面処理は、例えば、シランカップリング剤等の有機化合物によって行うことができる。これらの充填剤はいずれか1種を用いてもよく、また2種以上を混合して用いてもよい。本発明のシール剤が含有できる(c)充填剤は、平均粒径が50μm以下のものが好ましく、平均粒径が40μm以下のものがより好ましく、平均粒径が30μm以下のものが更により好ましく、平均粒径が20μm以下のものが更により好ましく、平均粒径が10μm以下のものが更により好ましく、平均粒径が5μm以下のものが最も好ましい。平均粒径が50μm以下であることにより、光電変換素子の製造時における上下基板貼り合わせの際に、適切なギャップ形成が可能になる。なお、ここでの充填剤の平均粒径は、例えば、レーザー回折・散乱式粒度分析計を使用して測定した粒子径分布曲線において、粒子の小さい方からの累積が50質量%となる粒子径である。 The sealant for a photoelectric conversion element of the present invention may contain (c) a filler, if necessary. Specific examples of the filler used (c) include fused silica, crystalline silica, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, and alumina (aluminum oxide). ), Magnesium oxide, zirconium oxide, aluminum hydroxide, magnesium hydroxide, hydrous magnesium silicate, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide, asbestos, etc. Can be mentioned. Of these, preferred examples include hydrous magnesium silicate, calcium carbonate, aluminum oxide, crystalline silica and fused silica. These may be surface-treated by chemical treatment or the like. The surface treatment can be performed with an organic compound such as a silane coupling agent. Any one of these fillers may be used, or two or more of these fillers may be mixed and used. The filler (c) that can contain the sealant of the present invention preferably has an average particle size of 50 μm or less, more preferably an average particle size of 40 μm or less, and even more preferably an average particle size of 30 μm or less. The average particle size of 20 μm or less is even more preferable, the average particle size of 10 μm or less is even more preferable, and the average particle size of 5 μm or less is most preferable. When the average particle size is 50 μm or less, an appropriate gap can be formed when the upper and lower substrates are bonded at the time of manufacturing the photoelectric conversion element. The average particle size of the filler here is, for example, the particle size in which the cumulative amount from the smaller particle is 50% by mass in the particle size distribution curve measured using a laser diffraction / scattering type particle size analyzer. Is.

(c)充填剤を用いる場合の含有量は、本発明の光電変換素子用シール剤中に通常0〜60質量%以下、好ましくは5〜60質量%、より好ましくは15〜50質量%である。充填剤の含有量が60質量%以下であることにより、光電変換素子の作成時、電荷移動層を保持するための適切なセルギャップの形成が可能になる。 (C) The content when the filler is used is usually 0 to 60% by mass or less, preferably 5 to 60% by mass, and more preferably 15 to 50% by mass in the sealant for a photoelectric conversion element of the present invention. .. When the content of the filler is 60% by mass or less, it is possible to form an appropriate cell gap for holding the charge transfer layer when the photoelectric conversion element is manufactured.

本発明の光電変換素子用シール剤には接着強度を向上させるために、(d)シランカップリング剤を用いることができる。(d)シランカップリング剤としては、シール剤と導電性支持体との接着強度を向上させるものであれば何れも使用できる。使用できるシランカップリング剤の具体例としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン等のグリシジルメトキシシラン類、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルトリエトキシシラン、3−メルカプトプロピルトリエトキシシラン、ビニルトリメトキシシラン、N−(2−(ビニルベンジルアミノ)エチル)3−アミノプロピルトリエトキシシラン塩酸塩、3−メタクリロキシプロピルトリエトキシシラン、3−クロロプロピルメチルジエトキシシラン、3−クロロプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン等のグリシジルエトキシシラン類等が挙げられる。これらの中でも、グリシジルエトキシシラン類またはグリシジルメトキシシラン類が好ましい。また、これらのうち、アミノ基を有するシランカップリング剤は良好な接着強度を得る上で好ましい。上記のシランカップリング剤のうちより好ましいものとしては、N−(2−アミノエチル)3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルトリエトキシシラン、N−(2−(ビニルベンジルアミノ)エチル)3−アミノプロピルトリエトキシシラン塩酸塩等が挙げられる。これらのシランカップリング剤は1種を用いてもよく、また2種以上を混合して用いてもよい。本発明に用いられるシランカップリング剤の含有量は本発明の光電変換素子用シール剤中、通常0〜2質量%、好ましくは0.1〜2質量%、より好ましくは0.2〜1.5質量%である。また、一実施形態において、本発明に用いられるシランカップリング剤は、(a)エポキシ樹脂100質量部に対して、例えば、0〜20質量部であり、典型的には0.1〜10質量部であり、好ましくは0.5〜10質量であり、より好ましくは1〜10質量部であり、更により好ましくは1質量部を超えて10質量部までであり、最も好ましくは1.5〜8質量部である。 In the sealant for a photoelectric conversion element of the present invention, (d) a silane coupling agent can be used in order to improve the adhesive strength. (D) As the silane coupling agent, any silane coupling agent can be used as long as it improves the adhesive strength between the sealing agent and the conductive support. Specific examples of the silane coupling agent that can be used, 3-glycidoxypropyltrimethoxysilane, glycidyl silane such as 3-glycidoxypropyl methyldimethoxysilane Sila emissions, 2- (3,4-epoxycyclohexyl) ethyl trimethoxysilane, N- phenyl--γ- aminopropyltrimethoxysilane, N- (2- aminoethyl) aminopropyl methyl dimethoxy Sila down, 3-aminopropyltriethoxysilane, 3-mercaptopropyl triethoxysilane, vinyl Trimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltriethoxysilane hydrochloride, 3-methacryloxypropyltriethoxysilane, 3-chloropropylmethyldiethoxysilane, 3-chloropropyltriethoxy Examples thereof include glycidylethoxysilanes such as silane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltriethoxysilane. Among these, glycidyl ethoxysilanes or glycidyl methoxysilanes are preferable. Of these, a silane coupling agent having an amino group is preferable in order to obtain good adhesive strength. As preferable of the above silane coupling agent, N- (2- aminoethyl) aminopropyl methyl dimethoxy Sila down, 3-aminopropyltriethoxysilane, N-(2-(vinyl benzylamino) ethyl ) 3-Aminopropyltriethoxysilane hydrochloride and the like. One of these silane coupling agents may be used, or two or more of these silane coupling agents may be mixed and used. The content of the silane coupling agent used in the present invention is usually 0 to 2 % by mass , preferably 0.1 to 2 % by mass, and more preferably 0.2 to 1 % by mass in the sealant for a photoelectric conversion element of the present invention. It is 5% by mass. Further, in one embodiment, the silane coupling agent used in the present invention is (a) 100 parts by mass of the epoxy resin, for example, 0 to 20 parts by mass, and typically 0.1 to 10 parts by mass. Parts, preferably 0.5 to 10 parts by mass, more preferably 1 to 10 parts by mass, still more preferably more than 1 part by mass and up to 10 parts by mass, most preferably 1.5 to 10 parts by mass. It is 8 parts by mass.

本発明の光電変換素子用シール剤は、必要に応じて、有機溶媒、有機充填剤、応力緩和剤等を含んでよい。また、シール剤には、更には顔料、レベリング剤、消泡剤、粘度調整剤等の添加剤を配合することができる。配合できる添加剤は、特に限定されるものではなく、その添加量も目的に応じて適宣選択すればよい。これらの添加剤は、電荷移動層に対する汚染性の低いものが好ましい。 The sealant for a photoelectric conversion element of the present invention may contain an organic solvent, an organic filler, a stress relaxation agent and the like, if necessary. In addition, additives such as pigments, leveling agents, defoaming agents, and viscosity modifiers can be further added to the sealing agent. The additives that can be blended are not particularly limited, and the amount of the additives to be added may be appropriately selected according to the purpose. These additives are preferably those having low contamination with the charge transfer layer.

本発明の光電変換素子用シール剤は、前記(a)エポキシ樹脂、(b)アミン類を含む熱硬化剤、任意に、(c)充填剤、(d)シランカップリング剤及び各種添加剤を、任意の順序で、好ましくは前記の各含有量になるように、必要により撹拌下に混合し、次いで、例えば3本ロール、サンドミル、ボールミル等の混合装置により均一に混合することにより製造することができる。必要により、混合が終わったあと夾雑物を除く為に、濾過処理を施してもよい。 The sealant for a photoelectric conversion element of the present invention comprises the above-mentioned (a) epoxy resin, (b) thermosetting agent containing amines, optionally (c) filler, (d) silane coupling agent and various additives. , In any order, preferably mixed with stirring so as to have each of the above-mentioned contents, and then uniformly mixed by a mixing device such as a three-roll, sand mill, or ball mill. Can be done. If necessary, filtration may be performed to remove contaminants after mixing is complete.

本発明の光電変換素子用シール剤は、2枚の基板(導電性支持体)を貼り合わせた後に注入口から電荷移動層を注入する光電変換素子の作成法に適している。2枚の基板に挟まれた本発明のシール剤の堰を加熱硬化させることにより、シールを行うことが出来る。本発明のシール剤を基板に塗布する方法としては、バーコーター法、ディップコーティング法、スピンコート法、スプレー法、スクリーン印刷法、ドクターブレード法、ディスペンス法等の塗布法が挙げられ、基板の種類、形態により適宜選択あるいは併用することが可能である。生産性の観点から、スプレー法、スクリーン印刷法、ディスペンス法を用いることが好ましい。本発明の光電変換素子用シール剤は、一般的に光エネルギーを電気エネルギーに変換できるいかなる光電変換素子にも適用できる。光電変換素子から発生した電流を取り出せるようにリード線を配置し、閉回路としたものを太陽電池とする。本発明の光電変換素子用シール剤は、特に色素増感型光電変換素子及び該光電変換素子を有してなる太陽電池の製造に最適である。 The sealant for a photoelectric conversion element of the present invention is suitable for a method for producing a photoelectric conversion element in which a charge transfer layer is injected from an injection port after two substrates (conductive supports) are bonded together. Sealing can be performed by heating and curing the weir of the sealant of the present invention sandwiched between two substrates. Examples of the method for applying the sealant of the present invention to the substrate include coating methods such as a bar coater method, a dip coating method, a spin coating method, a spray method, a screen printing method, a doctor blade method, and a dispensing method. , Can be appropriately selected or used in combination depending on the form. From the viewpoint of productivity, it is preferable to use the spray method, the screen printing method, and the dispense method. The sealant for a photoelectric conversion element of the present invention can be generally applied to any photoelectric conversion element capable of converting light energy into electrical energy. A solar cell is a closed circuit in which lead wires are arranged so that the current generated from the photoelectric conversion element can be taken out. The sealant for a photoelectric conversion element of the present invention is particularly suitable for manufacturing a dye-sensitized photoelectric conversion element and a solar cell having the photoelectric conversion element.

以下、本発明の光電変換素子用シール剤を用いて製造される光電変換素子及び太陽電池について詳細に説明する。以下の具体的な実施形態は、単なる例示であり、本発明はこれに限定されるものではない。
一般に、色素増感型光電変換素子は、色素で増感された半導体含有層を表面に有する第一の導電性支持体(酸化物半導体電極)、対向電極としての第二の導電性支持体、及び電荷移動層を主要な構成要素として構成される。本発明の光電変換素子用シール剤は、第一と第二の導電性支持体を接着し、かつ両支持体間に電荷移動層を保持する目的で用いられる。導電性支持体としては、例えばFTO(フッ素ドープ酸化スズ)、ATO(アンチモンドープ酸化スズ)、ITO(インジウムドープ酸化スズ)に代表される導電性物質を、ガラス、プラスチック、ポリマーフィルム、石英、シリコン等の基板の表面に薄膜化させたものが用いられる。基板の厚みは、通常0.01〜10mmであり、その形状はフィルム状から板状まで様々な態様を取り得るが、2枚の基板のうち少なくとも一方には光透過性のある基板が用いられる。導電性支持体の導電性は、通常1000Ω/cm以下、好ましくは100Ω/cm以下である。
Hereinafter, the photoelectric conversion element and the solar cell manufactured by using the sealant for the photoelectric conversion element of the present invention will be described in detail. The following specific embodiments are merely examples, and the present invention is not limited thereto.
In general, a dye-sensitized photoelectric conversion element includes a first conductive support (oxide semiconductor electrode) having a dye-sensitized semiconductor-containing layer on its surface, and a second conductive support as a counter electrode. And the charge transfer layer is configured as a main component. The sealant for a photoelectric conversion element of the present invention is used for the purpose of adhering the first and second conductive supports and holding a charge transfer layer between the two supports. As the conductive support, for example, a conductive substance typified by FTO (fluorine-doped tin oxide), ATO (antimony-doped tin oxide), and ITO (indium-doped tin oxide) is used as glass, plastic, polymer film, quartz, or silicon. A thin film is used on the surface of the substrate. The thickness of the substrate is usually 0.01 to 10 mm, and the shape can take various forms from a film shape to a plate shape, but a light-transmitting substrate is used for at least one of the two substrates. .. The conductivity of the conductive support is usually 1000 [Omega] / cm 2 or less, preferably 100 [Omega / cm 2 or less.

半導体含有層の調製に用いられる酸化物半導体としては、金属カルケニドの微粒子が好ましい。その具体例としてはTi、Zn、Sn、Nb、W、In、Zr、Y、La、Ta等の遷移金属の酸化物、Alの酸化物、Siの酸化物、SiTiO、CaTiO、BaTiO等のペロブスカイト型酸化物等が挙げられる。これらの中でTiO、ZnO、SnOが特に好ましい。また、これらは混合して用いても良く、SnO−ZnO混合系が好ましい例として挙げられる。混合系の場合は、微粒子の状態で混合したり、以下に述べるスラリーもしくはペースト状態で混合したり、各成分を層状に重ねて用いてもよい。スラリーまたはペースト中の酸化物半導体の濃度は通常1〜90質量%、好ましくは5〜80質量%である。用いられる酸化物半導体の一次粒径は通常1〜200nm、好ましくは1〜50nmである。As the oxide semiconductor used for preparing the semiconductor-containing layer, fine particles of metal carkenide are preferable. Specific examples Ti, Zn, Sn, Nb, W, In, Zr, Y, La, oxides of transition metals such as Ta, an oxide of Al, an oxide of Si, SiTiO 3, CaTiO 3, BaTiO 3 Perovskite-type oxides and the like can be mentioned. Of these, TiO 2 , ZnO, and SnO 2 are particularly preferable. These may be used as a mixture, SnO 2 -ZnO mixed system may be mentioned as preferred examples. In the case of a mixed system, it may be mixed in the state of fine particles, mixed in the state of slurry or paste described below, or each component may be used in layers. The concentration of the oxide semiconductor in the slurry or paste is usually 1 to 90% by mass, preferably 5 to 80% by mass. The primary particle size of the oxide semiconductor used is usually 1 to 200 nm, preferably 1 to 50 nm.

半導体含有層の調製方法は、酸化物半導体からなる薄膜を蒸着により直接基板上に作製する方法、スラリーまたはペーストを基板上に塗布またはコートした後、圧力を加えることで作製する方法、基板を電極として電気的に析出させる方法、スラリーまたはペーストを基板上に塗布またはコートした後、乾燥し、硬化もしくは焼成する方法等がある。塗布またはコート法としては、バーコーター法、ディップコーティング法、スピンコート法、スプレー法、スクリーン印刷法、ドクターブレード法、ディスペンス法等が挙げられる。これらの方法は、基板の種類、形態により適宜選択あるいは併用することが可能である。酸化物半導体電極の性能上、スラリーまたはペーストを用いる方法が好ましい。スラリーは、例えば、2次凝集している酸化物半導体の微粒子を、分散剤を用いて分散媒中に平均1次粒子径が通常1〜200nmになるように分散させることにより、又は、ゾルゲル法にて酸化物半導体の前駆体であるアルコキサイド等を加水分解することにより得られる。また、粒径分布の異なる酸化物半導体の微粒子を混合して用いてもよい。 The semiconductor-containing layer can be prepared by directly forming a thin film made of an oxide semiconductor on a substrate by vapor deposition, applying or coating a slurry or paste on the substrate, and then applying pressure to prepare the substrate. There are a method of electrically precipitating, a method of applying or coating a slurry or a paste on a substrate, and then drying, curing or firing. Examples of the coating or coating method include a bar coater method, a dip coating method, a spin coating method, a spray method, a screen printing method, a doctor blade method, a dispensing method and the like. These methods can be appropriately selected or used in combination depending on the type and form of the substrate. From the viewpoint of the performance of the oxide semiconductor electrode, the method using a slurry or a paste is preferable. The slurry is prepared, for example, by dispersing fine particles of a secondary agglomerated oxide semiconductor in a dispersion medium so that the average primary particle size is usually 1 to 200 nm using a dispersant, or by a sol-gel method. It is obtained by hydrolyzing alcokiside or the like, which is a precursor of an oxide semiconductor. Further, fine particles of oxide semiconductors having different particle size distributions may be mixed and used.

スラリーを分散させる分散媒としては、酸化物半導体の微粒子を分散できるものであれば特に限定されない。分散媒として、水、エタノール、ターピネオール等のアルコール、アセトン、アセチルアセトン等のケトン、ヘキサン等の炭化水素等の有機溶媒が用いられる。これらは混合して用いても良い。水を用いることはスラリーの粘度変化を少なくするという点で好ましい。 The dispersion medium for dispersing the slurry is not particularly limited as long as it can disperse the fine particles of the oxide semiconductor. As the dispersion medium, water, alcohols such as ethanol and tarpineol, ketones such as acetone and acetylacetone, and organic solvents such as hydrocarbons such as hexane are used. These may be mixed and used. The use of water is preferable in that the change in viscosity of the slurry is reduced.

安定した一次微粒子を得る目的で、スラリーに分散安定剤等を加えてもよい。用いられる分散安定剤の具体例としては、ポリエチレングリコール等の多価アルコール、フェノール、オクチルアルコール等の1価アルコール等の自己またはこれら相互間の共縮合物;ヒドロキシプロピルメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体;ポリアクリルアミド;アクリルアミド、(メタ)アクリル酸若しくはその塩、(メタ)アクリル酸エステル((メタ)アクリル酸メチル、(メタ)アクリル酸エチル等)等の自己または相互間の共縮合物;アクリルアミド、(メタ)アクリル酸若しくはその塩、(メタ)アクリル酸エステル等とスチレン、エチレン、プロピレン等の疎水性モノマーとの共重合体で水溶性であるポリアクリル酸系誘導体;メラミンスルホン酸ホルムアルデヒド縮合物の塩;ナフタレンスルホン酸ホルムアルデヒド縮合物の塩;高分子量のリグニンスルホン酸塩;塩酸、硝酸、酢酸等の酸等が挙げられるが、これらに限定されるものではない。また、これらの分散安定剤は単独で用いてもよく、また2種以上を併用してもよい。 A dispersion stabilizer or the like may be added to the slurry for the purpose of obtaining stable primary fine particles. Specific examples of the dispersion stabilizer used include polyhydric alcohols such as polyethylene glycol, self-cocondensates such as monohydric alcohols such as phenol and octyl alcohol, and copolymers between them; hydroxypropylmethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, etc. Cellulous derivatives such as carboxymethyl cellulose; polyacrylamide; acrylamide, (meth) acrylate or salts thereof, (meth) acrylate ester (methyl (meth) acrylate, ethyl (meth) acrylate, etc.), etc. Cocondensate; Polyacrylic acid-based derivative that is a copolymer of acrylamide, (meth) acrylic acid or a salt thereof, (meth) acrylic acid ester, etc. and a hydrophobic monomer such as styrene, ethylene, propylene, etc. and is water-soluble; Melamine Salts of sulfonic acid formaldehyde condensate; salts of naphthalene sulfonic acid formaldehyde condensate; high molecular weight lignin sulfonates; acids such as hydrochloric acid, nitric acid, acetic acid and the like, but are not limited thereto. Further, these dispersion stabilizers may be used alone or in combination of two or more.

これらの内、ポリエチレングリコール等の多価アルコール、フェノール、オクチルアルコール等の自己またはこれら相互間の共縮合物、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸ナトリウム、ポリ(メタ)アクリル酸カリウム、ポリ(メタ)アクリル酸リチウム、カルボキシメチルセルロース、塩酸、硝酸、酢酸等が好ましい。 Of these, polyhydric alcohols such as polyethylene glycol, self-condensates such as phenol and octyl alcohol, or cocondensates between them, poly (meth) acrylic acid, sodium poly (meth) acrylate, potassium poly (meth) acrylate. , Poly (meth) acrylate lithium, carboxymethyl cellulose, hydrochloric acid, nitrate, acetic acid and the like are preferable.

導電性支持体上に塗布したスラリーを乾燥した後、導電性支持体に用いた基板の融点(または軟化点)以下の温度で焼成処理を行うことができる。焼成温度は、通常100〜900℃、好ましくは100〜600℃である。また、焼成時間は特に限定はないが、概ね4時間以内である。導電性支持体上に設けられる半導体含有層の膜厚は、通常1〜50μmである。 After the slurry coated on the conductive support is dried, the firing treatment can be performed at a temperature equal to or lower than the melting point (or softening point) of the substrate used for the conductive support. The firing temperature is usually 100 to 900 ° C, preferably 100 to 600 ° C. The firing time is not particularly limited, but is generally within 4 hours. The film thickness of the semiconductor-containing layer provided on the conductive support is usually 1 to 50 μm.

表面平滑性を向上させる目的で、半導体含有層に2次処理を施してもよい(非特許文献1参照)。例えば、半導体含有層の調製に用いたのと同一の金属のアルコキサイドもしくは塩化物、硝化物、硫化物等の溶液に、前記の手法で調製された半導体含有層の薄膜が設けられた導電性支持体を直接浸漬して乾燥することにより、または任意選択で更に前記と同様に焼成(再焼成)することにより、半導体含有層の平滑性を高めることができる。ここで、金属アルコキサイドとしては、チタンエトキサイド、チタンイソプロポキサイド、チタンt−ブトキサイド、n−ジブチル−ジアセチルスズ等が挙げられ、そのアルコール溶液が用いられる。塩化物の場合には、例えば、四塩化チタン、四塩化スズ、塩化亜鉛等が挙げられ、その水溶液が用いられる。この様にして得られる酸化物半導体微粒子から成る半導体含有層の比表面積は、通常1〜1000m/g、好ましくは10〜500m/gである。The semiconductor-containing layer may be subjected to a secondary treatment for the purpose of improving the surface smoothness (see Non-Patent Document 1). For example, a conductive support in which a thin film of the semiconductor-containing layer prepared by the above method is provided in a solution of the same metal alcoxide or chloride, nitrate, sulfide, etc. used for preparing the semiconductor-containing layer. The smoothness of the semiconductor-containing layer can be enhanced by directly immersing the body and drying it, or by optionally firing (re-baking) it in the same manner as described above. Here, examples of the metal alcoholide include titanium ethoxide, titanium isopropoxide, titanium t-butoxide, n-dibutyl-diacetyltin, and the like, and an alcohol solution thereof is used. In the case of chloride, for example, titanium tetrachloride, tin tetrachloride, zinc chloride and the like can be mentioned, and an aqueous solution thereof is used. The specific surface area of the semiconductor-containing layer made of the oxide semiconductor fine particles thus obtained is usually 1 to 1000 m 2 / g, preferably 10 to 500 m 2 / g.

次に、半導体含有層に増感色素を担持する工程について説明する。増感色素としては、半導体含有層を構成する半導体微粒子と共に光吸収を増感させる作用を有するものであれば特に限定はない。増感色素として、ルテニウム等の金属元素を含んだ金属錯体色素や金属を含まない有機色素を単独で用いてもよく、また数種類を任意の割合で混合して用いてもよい。混合して用いる場合は、複数種の金属錯体色素同士、複数種の有機色素同士、及び金属錯体色素と有機色素との組み合わせのいずれであっても構わない。吸収波長領域の異なる複数種の色素同士を混合することにより、幅広い吸収波長を用いることができ、変換効率の高い太陽電池が得られる。 Next, a step of supporting the sensitizing dye on the semiconductor-containing layer will be described. The sensitizing dye is not particularly limited as long as it has an action of sensitizing light absorption together with the semiconductor fine particles constituting the semiconductor-containing layer. As the sensitizing dye, a metal complex dye containing a metal element such as ruthenium or an organic dye containing no metal may be used alone, or several types may be mixed and used at an arbitrary ratio. When used in combination, any of a plurality of types of metal complex dyes, a plurality of types of organic dyes, and a combination of the metal complex dye and the organic dye may be used. By mixing a plurality of types of dyes having different absorption wavelength regions, a wide range of absorption wavelengths can be used, and a solar cell having high conversion efficiency can be obtained.

担持できる金属錯体色素に特に制限は無いが、フタロシアニンやポルフィリン等が好ましく、ルテニウム錯体であることがより好ましい。また、担持できる有機色素にも特に制限は無く、例えば無金属のフタロシアニン、ポルフィリンやシアニン、メロシアニン、オキソノール、トリフェニルメタン系、アクリル酸系色素、ピラゾロン系メチン色素等のメチン系色素や、キサンテン系、アゾ系、アンスラキノン系、ペリレン系等の色素が挙げられる。国際公開特許WO2002−001667号公報、国際公開特許WO2002−011213号公報、国際公開特許WO2002−071530号公報、特開2002−334729号公報、特開2003−007358号公報、特開2003−017146号公報、特開2003−059547号公報、特開2003−086257号公報、特開2003−115333号公報、特開2003−132965号公報、特開2003−142172号公報、特開2003−151649号公報、特開2003−157915号公報、特開2003−282165号公報、特開2004−014175号公報、特開2004−022222号公報、特開2004−022387号公報、特開2004−227825号公報、特開2005−005026号公報、特開2005−019130公報、特開2005−135656号公報、特開2006−079898号公報、特開2006−134649号公報、国際公開特許WO2006−082061号公報等に記載の色素であることが好ましい。メロシアニンや上記のアクリル酸系等のメチン系色素等であることがさらに好ましい。複数種の色素を混合して用いる場合の各色素の比率は特に限定し無いが、一般的にはそれぞれの色素を少なくとも10モル%程度以上使用することが好ましい。2種以上の色素を溶解した溶液もしくは分散した分散液を用いて半導体含有層に色素を担持させる場合、溶液中の色素合計の濃度は1種類のみ担持させる場合と同様でよい。複数種の色素を混合して使用する場合の溶媒としては、酸化物半導体に関して前記したような溶媒が使用可能であり、使用する各色素用の溶媒は同一でも異なっていてもよい。 The metal complex dye that can be supported is not particularly limited, but phthalocyanine, porphyrin, and the like are preferable, and a ruthenium complex is more preferable. The organic pigments that can be carried are also not particularly limited. For example, methine pigments such as metal-free phthalocyanines, porphyrins and cyanines, merocyanines, oxonors, triphenylmethanes, acrylic acid pigments, pyrazolone methine pigments, and xanthene pigments. , Azo-based, anthraquinone-based, perylene-based pigments and the like. International Publication Patent WO2002-001667, International Patent WO2002-011213, International Patent WO2002-071530, JP2002-334729, JP2003-007358, JP2003-017146 , JP-A-2003-059547, JP-A-2003-086557, JP-A-2003-115333, JP-A-2003-132965, JP-A-2003-142172, JP-A-2003-151649, Kai 2003-157915, JP2003-282165, JP2004-014175, JP2004-022222, JP2004-022387, JP2004-227825, JP2005 -005026, Japanese Patent Application Laid-Open No. 2005-0119130, Japanese Patent Application Laid-Open No. 2005-135656, Japanese Patent Application Laid-Open No. 2006-079898, Japanese Patent Application Laid-Open No. 2006-134649, International Patent Publication No. WO2006-082061, etc. It is preferable to have. It is more preferable to use merocyanine, the above-mentioned methine-based pigments such as acrylic acid, and the like. The ratio of each dye when a plurality of kinds of dyes are mixed and used is not particularly limited, but it is generally preferable to use at least about 10 mol% or more of each dye. When the dye is supported on the semiconductor-containing layer by using a solution in which two or more kinds of dyes are dissolved or a dispersed dispersion, the total concentration of the dyes in the solution may be the same as in the case where only one kind is supported. As the solvent when a plurality of types of dyes are mixed and used, the above-mentioned solvent can be used for the oxide semiconductor, and the solvent for each dye used may be the same or different.

増感色素を担持させる方法としては、色素を溶媒に溶解した溶液または色素を溶媒に分散した分散液に、上記の半導体含有層が設けられた導電性支持体を浸漬する方法が挙げられる。溶液または分散液中における色素の濃度は、色素の種類や溶解度によって適宜決めればよい。浸漬温度は概ね常温から溶媒の沸点迄であり、また浸漬時間は1時間〜72時間程度であってよい。増感色素を溶解させるのに使用できる溶媒の具体例としては、メタノール、エタノール、アセトン、アセトニトリル、ジメチルスルホキサイド、ジメチルホルムアミド、t−ブタノール、テトラヒドロフラン等が挙げられる。これらは単独で用いてもよく、また複数を任意の割合で混合して用いてもよい。溶液中の増感色素の濃度は通常1×10−6M〜1M、好ましくは1×10−5M〜1×10−1Mである。この様にして酸化物半導体電極として用いられる、色素で増感された半導体含有層を有する導電性支持体が得られる。Examples of the method for supporting the sensitizing dye include a method of immersing the conductive support provided with the semiconductor-containing layer in a solution in which the dye is dissolved in a solvent or a dispersion in which the dye is dispersed in the solvent. The concentration of the dye in the solution or dispersion may be appropriately determined depending on the type and solubility of the dye. The immersion temperature is generally from room temperature to the boiling point of the solvent, and the immersion time may be about 1 hour to 72 hours. Specific examples of the solvent that can be used to dissolve the sensitizing dye include methanol, ethanol, acetone, acetonitrile, dimethylsulfoxide, dimethylformamide, t-butanol, tetrahydrofuran and the like. These may be used alone, or a plurality of them may be mixed and used at an arbitrary ratio. The concentration of the sensitizing dye in the solution is usually 1 × 10 -6 M to 1 M, preferably 1 × 10 -5 M to 1 × 10 -1 M. In this way, a conductive support having a dye-sensitized semiconductor-containing layer used as an oxide semiconductor electrode can be obtained.

半導体含有層に色素を担持する際、色素の粒子の会合を防ぐために、包接化合物の共存下で色素を担持することが効果的である。ここで包接化合物としては、コール酸等のステロイド系化合物、クラウンエーテル、シクロデキストリン、カリックスアレン、ポリエチレンオキサイド等が挙げられる。好ましいものとしては、コール酸、デオキシコール酸、ケノデオキシコール酸、コール酸メチルエステル、コール酸ナトリウム、ウルソデオキシコール酸等のコール酸類、ポリエチレンオキサイド等である。これらの包化合物の使用形態としては、色素溶液に添加してもよく、予め包化合物を溶媒に溶解させた後に色素を溶解または分散させてもよい。これらの包化合物は2種類以上を組み合わせて用いることも可能であり、その割合は任意に選択することも可能である。
また、色素を担持させた後、4−t−ブチルピリジン等のアミン化合物で半導体含有層を処理しても良い。処理方法は、例えばアミン化合物のエタノール溶液に色素を担持した半導体含有層が設けられた導電性支持体を浸す方法等が採られる。
When the dye is supported on the semiconductor-containing layer, it is effective to support the dye in the coexistence of the clathrate compound in order to prevent the association of the dye particles. Here, examples of the clathrate compound include steroid compounds such as cholic acid, crown ether, cyclodextrin, calixarene, polyethylene oxide and the like. Preferred are cholic acids such as cholic acid, deoxycholic acid, chenodeoxycholic acid, cholic acid methyl ester, sodium cholic acid and ursodeoxycholic acid, polyethylene oxide and the like. As a form of use of these clathrate compounds, the clathrate compound may be added to the dye solution, or the clathrate compound may be previously dissolved in a solvent and then the dye may be dissolved or dispersed. Two or more kinds of these clathrate compounds can be used in combination, and the ratio thereof can be arbitrarily selected.
Further, after supporting the dye, the semiconductor-containing layer may be treated with an amine compound such as 4-t-butylpyridine. As a treatment method, for example, a method of immersing a conductive support provided with a semiconductor-containing layer carrying a dye in an ethanol solution of an amine compound is adopted.

対向電極には、FTO導電性ガラス等の導電性支持体の表面に、酸化還元系電解質の還元反応に触媒的に作用する白金、カーボン、ロジウム、ルテニウム等の導電性微粒子を蒸着、またはこれらの導電性微粒子の前駆体を塗布、焼成したもの等が用いられる。 On the counter electrode, conductive fine particles such as platinum, carbon, rhodium, and ruthenium that act catalytically on the reduction reaction of the redox electrolyte are deposited on the surface of a conductive support such as FTO conductive glass, or these A precursor coated with conductive fine particles and fired is used.

次に、前記のようにして得られた色素で増感された半導体含有層を有した導電性支持体(酸化物半導体電極)及び対向電極を、本発明の光電変換素子用シール剤を用いて張り合わせる方法について説明する。
まず、スペーサー(間隙制御材)を添加した本発明のシール剤を、いずれか一方の導電性支持体の導電面の周辺部に、電荷移動層の注入口を残してディスペンサー、スクリーン印刷機等により堰状に塗布した後、第一と第二の導電性支持体の導電面が対面するように他方の導電性支持体を重ね合わせ、加熱してシール剤を硬化させることができる。ここでスペーサーとしては、例えばグラスファイバー、シリカビーズ、ポリマービーズ等、さらには金パール、銀パール等の金属コーティングした微粒子等が用いられる。その平均直径は、目的に応じて異なるが、通常1〜100μm、好ましくは10〜40μmである。その使用量は、本発明のシール剤100質量部に対し通常0.1〜10質量部、好ましくは0.5〜5質量部、更に、好ましくは1〜2.5質量部である。シール剤の加熱硬化の条件は、通常80〜120℃で1〜3時間である。尚、加熱硬化の方法としては、熱盤を2枚有する熱プレス機でサンドイッチ上に挟んで行う方法、冶具で固定した後オーブン中で行なう方法等が採用できる。第一と第二の導電性支持体の間隙は通常1〜100μm、好ましくは4〜50μmである。
Next, the conductive support (oxide semiconductor electrode) and the counter electrode having the semiconductor-containing layer sensitized with the dye obtained as described above are subjected to the sealing agent for the photoelectric conversion element of the present invention. The method of pasting together will be described.
First, the sealant of the present invention to which a spacer (gap control material) is added is applied by a dispenser, a screen printing machine, or the like, leaving an injection port of a charge transfer layer around the conductive surface of one of the conductive supports. After the coating is applied in a weir shape, the other conductive support can be overlapped and heated so that the conductive surfaces of the first and second conductive supports face each other, and the sealant can be cured. Here, as the spacer, for example, glass fiber, silica beads, polymer beads and the like, and metal-coated fine particles such as gold pearl and silver pearl are used. The average diameter varies depending on the purpose, but is usually 1 to 100 μm, preferably 10 to 40 μm. The amount used is usually 0.1 to 10 parts by mass, preferably 0.5 to 5 parts by mass, and more preferably 1 to 2.5 parts by mass with respect to 100 parts by mass of the sealant of the present invention. The conditions for heat curing of the sealant are usually 80 to 120 ° C. for 1 to 3 hours. As a method of heat curing, a method of sandwiching the sandwich with a heat press machine having two hot plates, a method of fixing with a jig and then performing in an oven, and the like can be adopted. The gap between the first and second conductive supports is usually 1 to 100 μm, preferably 4 to 50 μm.

本発明の色素増感光電変換素子は、上記のようにして貼り合わせた一対の導電性支持体の間隙に電荷移動層を注入して完成される。電荷移動層としては、酸化還元系電解質対や正孔輸送材料等を溶媒や常温溶融塩(イオン性液体)中に溶解させた溶液が用いられる。用いられる酸化還元系電解質としては、ハロゲンイオンを対イオンとするハロゲン化合物及びハロゲン分子からなるハロゲン酸化還元系電解質、フェロシアン酸塩−フェリシアン酸塩やフェロセン−フェリシニウムイオン、コバルト錯体等の金属錯体等の金属酸化還元系電解質、アルキルチオール−アルキルジスルフィド、ビオロゲン色素、ヒドロキノン−キノン等の有機酸化還元系電解質等を挙げることができる。ハロゲン酸化還元系電解質が好ましい。ハロゲン酸化還元系電解質におけるハロゲン分子としては、例えばヨウ素分子や臭素分子等が挙げられ、ヨウ素分子が好ましい。また、ハロゲン化合物としては、例えばLiI、NaI、KI、CsI、CaI、CuI等のハロゲン化金属塩、あるいはテトラアルキルアンモニウムヨーダイド、イミダゾリウムヨーダイド、1−メチル−3−アルキルイミダゾリウムヨーダイド、ピリジニウムヨーダイド等のハロゲンの有機4級アンモニウム塩等が挙げられる。ヨウ素イオンを対イオンとする塩化合物が好ましい。その具体例としては、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化トリメチルアンモニウム塩等が挙げられる。これらは、単独で用いてもよく、また2種以上を組み合わせて用いてもよい。The dye-sensitized electric conversion element of the present invention is completed by injecting a charge transfer layer into the gap between a pair of conductive supports bonded as described above. As the charge transfer layer, a solution in which a redox electrolyte pair, a hole transport material, or the like is dissolved in a solvent or a room temperature molten salt (ionic liquid) is used. As the redox electrolyte used, a halogen compound having a halogen ion as a counter ion and a halogen redox electrolyte composed of halogen molecules, a metal such as ferrocyanate-ferricanate, ferrocene-ferricinium ion, and cobalt complex. Examples thereof include metal redox electrolytes such as complexes, organic redox electrolytes such as alkylthiol-alkyldisulfides, viologen dyes, and hydroquinone-quinone. Halogen redox electrolytes are preferred. Examples of the halogen molecule in the halogen redox electrolyte include iodine molecule and bromine molecule, and iodine molecule is preferable. Examples of the halogen compound include metal halide salts such as LiI, NaI, KI, CsI, CaI 2 , and CuI, or tetraalkylammonium iodide, imidazolium iodide, and 1-methyl-3-alkylimidazolium iodide. , Organic quaternary ammonium salt of halogen such as pyridinium iodide and the like. A salt compound having an iodine ion as a counter ion is preferable. Specific examples thereof include lithium iodide, sodium iodide, trimethylammonium iodide salt and the like. These may be used alone or in combination of two or more.

また、電荷移動層が酸化還元系電解質を含む溶液で構成されている場合、その溶媒としては電気化学的に不活性なものが用いられる。用いられる溶媒の具体例としては、アセトニトリル、バレロニトリル、プロピレンカーボネート、エチレンカーボネート、3−メトキシプロピオニトリル、3−ブトキシプロピオニトリル、メトキシアセトニトリル、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、ジメトキシエタン、ジエチルカーボネート、ジエチルエーテル、ジメチルカーボネート、1、2−ジメトキシエタン、ジメチルホルムアミド、ジメチルスルホキサイド、1,3−ジオキソラン、メチルフォルメート、2−メチルテトラヒドロフラン、3−メチルオキサゾリジン−2−オン、γ−ブチロラクトン、スルフォラン、テトラヒドロフラン、水等が挙げられる。これらの中で、アセトニトリル、プロピレンカーボネート、エチレンカーボネート、3−メトキシプロピオニトリル、メトキシアセトニトリル、エチレングリコール、3−メチルオキサゾリジン−2−オン、γ−ブチロラクトン等が好ましい。これらは単独で用いてもよく、また2種以上を組み合わせて用いてもよい。溶液中の酸化還元系電解質の濃度は、通常0.01〜99質量%、好ましくは0.1〜90質量%である。 When the charge transfer layer is composed of a solution containing a redox electrolyte, an electrochemically inert solvent is used as the solvent. Specific examples of the solvent used include acetonitrile, valeronitrile, propylene carbonate, ethylene carbonate, 3-methoxypropionitrile, 3-butoxypropionitrile, methoxyacetonitrile, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol and dimethoxy. Ethan, diethyl carbonate, diethyl ether, dimethyl carbonate, 1,2-dimethoxyethane, dimethylformamide, dimethylsulfoxide, 1,3-dioxolane, methylformate, 2-methylnitrile, 3-methyloxazolidin-2-one, Examples thereof include γ-butyrolactone, sulfolane, tetrahydrofuran, water and the like. Among these, acetonitrile, propylene carbonate, ethylene carbonate, 3-methoxypropionitrile, methoxyacetonitrile, ethylene glycol, 3-methyloxazolidine-2-one, γ-butyrolactone and the like are preferable. These may be used alone or in combination of two or more. The concentration of the redox electrolyte in the solution is usually 0.01 to 99% by mass, preferably 0.1 to 90% by mass.

また、電荷移動層が酸化還元系電解質を含む組成物の形で構成されている場合、溶媒的に用いるものに常温溶融液(イオン性液体)がある。用いられる常温溶融液の具体例としては、1−メチル−3−アルキルイミダゾリウムヨーダイド、ビニルイミダゾリウムテトラフルオライド、1−エチルイミダゾールスルフォネート、アルキルイミダゾリウムトリフルオロメチルスルホニルイミド、1−メチルピロリジニウムアイオダイド等が挙げられる。また、光電変換素子の耐久性向上の目的で、例えば、電荷移動層に低分子ゲル化剤を溶解させて増粘させることにより、あるいは、反応性成分を併用した電荷移動層を注入後に反応させてゲル化させることにより、あるいは、あらかじめ高分子化したゲルに電荷移動層をしみこませることにより、ゲル電解質とすることが可能である。 When the charge transfer layer is composed of a composition containing a redox electrolyte, a room temperature melt (ionic liquid) is used as a solvent. Specific examples of the room temperature melt used include 1-methyl-3-alkylimidazolium iodide, vinyl imidazolium tetrafluoride, 1-ethylimidazole sulfonate, alkylimidazolium trifluoromethylsulfonylimide, and 1-methyl. Examples thereof include pyrrolidinium iodide. Further, for the purpose of improving the durability of the photoelectric conversion element, for example, a low molecular weight gelling agent is dissolved in the charge transfer layer to thicken it, or a charge transfer layer containing a reactive component is reacted after injection. It is possible to obtain a gel electrolyte by gelling the gel or by impregnating a pre-polymerized gel with a charge transfer layer.

一方、完全固体型の電荷移動層の場合は酸化還元系電解質の替わりに正孔輸送材料やP型半導体を用いることもできる。用いられる正孔輸送材料としてはアミン誘導体やポリアセチレン、ポリアニリン、ポリチオフェン等の導電性高分子等が挙げられる。また、P型半導体としてはCuI、CuSCN等が挙げられる。 On the other hand, in the case of a completely solid type charge transfer layer, a hole transport material or a P-type semiconductor can be used instead of the redox electrolyte. Examples of the hole transport material used include amine derivatives and conductive polymers such as polyacetylene, polyaniline, and polythiophene. Further, examples of the P-type semiconductor include CuI and CuSCN.

一対の導電性支持体の間隙に電荷移動層を注入した後、電荷移動層の注入口を封止することにより光電変換素子を得ることができる。電荷移動層の注入口を封止する封止材(封口剤)としては、イソブチレン樹脂、エポキシ樹脂、UV硬化性のアクリル樹脂等が使用できる。 A photoelectric conversion element can be obtained by injecting a charge transfer layer into the gap between the pair of conductive supports and then sealing the injection port of the charge transfer layer. As a sealing material (sealing agent) for sealing the injection port of the charge transfer layer, isobutylene resin, epoxy resin, UV curable acrylic resin and the like can be used.

一方、光電変換素子の別の作製法として、以下の方法も採用できる。すなわち、いずれか一方の導電性支持体の導電面の周辺部に、電荷移動層注入口を設けることなくシール剤の堰を設け、次いで前記と同様の電荷移動層をシール剤の堰の内側に配置し、減圧下において第一と第二の導電性支持体の導電面が対面するように他方の導電性支持体を載置し貼り合わせると同時にギャップ形成を行い、その後シール剤を硬化させることにより光電変換素子を得ることができる。 On the other hand, the following method can also be adopted as another method for manufacturing the photoelectric conversion element. That is, a sealant weir is provided around the conductive surface of either of the conductive supports without providing a charge transfer layer injection port, and then a charge transfer layer similar to the above is provided inside the sealant weir. The other conductive support is placed and bonded so that the conductive surfaces of the first and second conductive supports face each other under reduced pressure, and at the same time, a gap is formed and then the sealant is cured. A photoelectric conversion element can be obtained.

図1は、本発明のシール剤を用いて調製された色素増感光電変換素子の構造を説明する要部断面模式図である。図中、1は内側が導電性を有する導電性支持体であり、2は色素によって増感された半導体含有層であり(1と2を併せて酸化物半導体電極という)、3は導電性支持体の内側の導電面の上に白金等を配置した対向電極であり、4は一対の導電性支持体の間隙に配置されている電荷移動層であり、5は本発明のシール剤であり、6はガラス基板である。このようにして得られた光電変換素子の正極と負極にリード線を配置し、その間に抵抗成分を挿入することにより本発明の太陽電池を得ることができる。 FIG. 1 is a schematic cross-sectional view of a main part for explaining the structure of a dye-sensitized electric conversion element prepared by using the sealant of the present invention. In the figure, 1 is a conductive support having conductivity on the inside, 2 is a semiconductor-containing layer sensitized by a dye (1 and 2 are collectively referred to as an oxide semiconductor electrode), and 3 is a conductive support. A counter electrode in which platinum or the like is arranged on a conductive surface inside the body, 4 is a charge transfer layer arranged in a gap between a pair of conductive supports, and 5 is a sealant of the present invention. Reference numeral 6 is a glass substrate. The solar cell of the present invention can be obtained by arranging lead wires on the positive electrode and the negative electrode of the photoelectric conversion element thus obtained and inserting a resistance component between them.

本発明のシールは、平面的に配置された複数の色素増感太陽電池が、電気的に直列に接続された大面積の色素増感太陽電池モジュールの作製にも適用できる。大面積化した色素増感太陽電池のモジュール構造はいくつかの種類が知られている。本発明のシール剤はいずれの種類のモジュール構造にも使用可能である。例えば、国際公開特許WO2009/057704号公報等に記載の直列接続構造を有する色素増感太陽電池モジュールにも使用することができる。 Sealant of the present invention, a plurality of dye-sensitized solar cell planarly arranged, can be electrically applied to produce the dye-sensitized solar cell module having a large area which are connected in series. Several types of modular structures of dye-sensitized solar cells with a large area are known. The sealant of the present invention can be used in any type of modular structure. For example, it can also be used for a dye-sensitized solar cell module having a series connection structure described in International Patent Publication No. WO2009 / 057704.

本発明の光電変換素子用シール剤は、光電変換素子の製造工程において、基板への塗布作業性、貼り合わせ性、接着強度、室温での使用可能時間(ポットライフ)、低温硬化性に優れ、電荷移動層に対する汚染性が極めて低い。従って、該シール剤を用いて得られた本発明の光電変換素子は、電荷移動層の汚染による作動不良が無く、接着性、耐湿信頼性に優れている。そして、該光電変換素子を用いて調製される太陽電池は、効率的製造が可能で、その耐久性にも優れている。 The sealant for a photoelectric conversion element of the present invention is excellent in coating workability on a substrate, adhesion, adhesive strength, usable time at room temperature (pot life), and low temperature curability in the manufacturing process of the photoelectric conversion element. Very low pollution to the charge transfer layer. Therefore, the photoelectric conversion element of the present invention obtained by using the sealant has no malfunction due to contamination of the charge transfer layer, and is excellent in adhesiveness and moisture resistance reliability. The solar cell prepared by using the photoelectric conversion element can be efficiently manufactured and has excellent durability.

以下に実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

[実施例1]
(a)エポキシ樹脂としてRE−310S(商品名、ビスフェノールA型エポキシ樹脂、日本化薬株式会社製、エポキシ当量185g/eq.、加水分解塩素量400ppm以下)90質量部にEP−1001(商品名、ビスフェノールA型エポキシ樹脂、三菱化学株式会社製、エポキシ当量475g/eq.)10質量部を添加して加熱溶解させた。このエポキシ樹脂を室温まで冷却後、(c)充填剤としてSSP−07DM(商品名、表面処理シリカ、最大粒径が0.7μm)90質量部、(d)シランカップリング剤としてKBM−403(商品名、エポキシシランカップリング剤(γ−グリシドキシプロピルトリメトキシシラン)、信越シリコーン株式会社製)1質量部を添加して3本ロールにより混合分散し、(b)熱硬化剤としてPN−31(商品名、エポキシ樹脂アミンアダクト、味の素ファインテクノ株式会社製、平均粒径8.8μm)20質量部を添加してさらに3本ロールにより混合分散して、本発明の光電変換素子用シール剤(1)を得た。このシール剤(1)の25℃における粘度をE型粘度計で測定したところ、73Pa・sであった。
[Example 1]
(A) As an epoxy resin, RE-310S (trade name, bisphenol A type epoxy resin, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 185 g / eq., Hydrolyzed chlorine amount 400 ppm or less) EP-1001 (trade name) in 90 parts by mass , Bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 475 g / eq.) 10 parts by mass was added and dissolved by heating. After cooling this epoxy resin to room temperature, 90 parts by mass of SSP-07DM (trade name, surface-treated silica, maximum particle size of 0.7 μm) as a filler, and KBM-403 (d) a silane coupling agent (KBM-403). Product name, epoxy silane coupling agent (γ-glycidoxypropyltrimethoxysilane), manufactured by Shin-Etsu Silicone Co., Ltd.) 1 part by mass was added and mixed and dispersed by 3 rolls, and (b) PN- as a thermosetting agent. 31 (trade name, epoxy resin amine adduct, manufactured by Ajinomoto Fine Techno Co., Ltd., average particle size 8.8 μm) 20 parts by mass is added and further mixed and dispersed by three rolls to seal the photoelectric conversion element of the present invention. (1) was obtained. The viscosity of this sealant (1) at 25 ° C. was measured with an E-type viscometer and found to be 73 Pa · s.

[比較例1]
(a)エポキシ樹脂としてRE−310Sの70質量部、EPPN−501H(商品名、トリスフェノールメタンノボラック型エポキシ樹脂、日本化薬株式会社製、エポキシ当量165g/eq.、加水分解塩素量550ppm以下)20質量部及びYD−017(商品名、ビスフェノールA型固形エポキシ樹脂、東都化成工業株式会社製、エポキシ当量1900g/eq.)10質量部、(b)熱硬化剤としてPN−152(商品名、フェノールノボラック樹脂、日本化薬株式会社製、活性水素当量100g/eq.)7.5質量部、(d)シランカップリング剤としてKBM−403の1質量部、を溶剤としてエチレングリコールジブチルエーテル30質量部に加熱溶解させた。この溶解液を室温まで冷却後、さらに、(b)熱硬化剤としてイソフタル酸ジヒドラジドのジェットミルで微粉砕したもの(融点224℃、活性水素当量48.5g/eq.、平均粒径1.7μm、最大粒径7μm)19質量部、(c)充填剤として平均粒径が0.5μm以下のアルミナを90質量部及びフュームドシリカを3.5質量部、を添加して3本ロールにより混合分散し、ここに硬化促進剤として平均粒径が3μm以下の2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物の5質量部を添加して光電変換素子用シール剤(2)を得た。このシール剤(2)の25℃における粘度をE型粘度計で測定したところ47Pa・sであった。
[Comparative Example 1]
(A) 70 parts by mass of RE-310S as an epoxy resin, EPPN-501H (trade name, trisphenol methane novolac type epoxy resin, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 165 g / eq., Hydrolyzed chlorine amount 550 ppm or less) 20 parts by mass and YD-017 (trade name, bisphenol A type solid epoxy resin, manufactured by Toto Kasei Kogyo Co., Ltd., epoxy equivalent 1900 g / eq.) 10 parts by mass, (b) PN-152 as a heat curing agent (trade name, Phenol novolac resin, manufactured by Nippon Kayaku Co., Ltd., active hydrogen equivalent 100 g / eq.) 7.5 parts by mass, (d) 1 part by mass of KBM-403 as a silane coupling agent, 30 mass of ethylene glycol dibutyl ether as a solvent. It was melted by heating in the part. After cooling this solution to room temperature, (b) finely pulverized with a jet mill of isophthalic acid dihydrazide as a heat curing agent (melting point 224 ° C., active hydrogen equivalent 48.5 g / eq., Average particle size 1.7 μm). , Maximum particle size 7 μm) 19 parts by mass, (c) 90 parts by mass of alumina having an average particle size of 0.5 μm or less and 3.5 parts by mass of fumed silica as a filler, and mixed by three rolls. 5 parts by mass of 2,4-diamino-6- [2'-methylimidazolyl- (1')] -ethyl-s-triazine isocyanuric acid adduct, which is dispersed and has an average particle size of 3 μm or less as a curing accelerator. Was added to obtain a sealant (2) for a photoelectric conversion element. The viscosity of this sealant (2) at 25 ° C. was measured with an E-type viscometer and found to be 47 Pa · s.

[実施例2]
実施例1における(a)RE−310Sの90質量部を80質量部に変更し、新たに多官能エポキシ樹脂EPPN−501(商品名、トリスフェノールメタンノボラック型エポキシ樹脂、日本化薬株式会社製、エポキシ当量165g/eq.、加水分解塩素量550ppm以下)10質量部を添加し、(d)シランカップリング剤としてKBM−403の1質量部を3質量部に変更し、(b)熱硬化剤としてC11Z(商品名、2−ウンデシルイミダゾール、四国化成株式会社製)3質量部を加えること以外は実施例1と同様にして、本発明の光電変換素子用シール剤(3)を得た。このシール剤(3)の25℃における粘度をE型粘度計で測定したところ278Pa・sであった。
[Example 2]
90 parts by mass of (a) RE-310S in Example 1 was changed to 80 parts by mass, and a new polyfunctional epoxy resin EPPN-501 (trade name, trisphenol methane novolac type epoxy resin, manufactured by Nippon Kayaku Co., Ltd.) (Epoxy equivalent 165 g / eq., Hydrolyzed chlorine amount 550 ppm or less) 10 parts by mass was added, (d) 1 part by mass of KBM-403 was changed to 3 parts by mass as a silane coupling agent, and (b) a thermosetting agent. The sealant (3) for a photoelectric conversion element of the present invention was obtained in the same manner as in Example 1 except that 3 parts by mass of C11Z (trade name, 2-undecylimidazole, manufactured by Shikoku Kasei Co., Ltd.) was added. The viscosity of this sealant (3) at 25 ° C. was measured with an E-type viscometer and found to be 278 Pa · s.

[実施例3]
実施例1における(a)RE−310Sの90質量部を80質量部に変更し、新たに多官能エポキシ樹脂EPPN−501(商品名、トリスフェノールメタンノボラック型エポキシ樹脂、日本化薬株式会社製、エポキシ当量165g/eq.、加水分解塩素量550ppm以下)10質量部を加えること以外は実施例1と同様にして、本発明の光電変換素子用シール剤(4)を得た。このシール剤(4)の25℃における粘度をE型粘度計で測定したところ443Pa・sであった。
[Example 3]
90 parts by mass of (a) RE-310S in Example 1 was changed to 80 parts by mass, and a new polyfunctional epoxy resin EPPN-501 (trade name, trisphenol methane novolac type epoxy resin, manufactured by Nippon Kayaku Co., Ltd.) The sealant (4) for a photoelectric conversion element of the present invention was obtained in the same manner as in Example 1 except that 10 parts by mass (epoxy equivalent: 165 g / eq., Hydrolyzed chlorine amount: 550 ppm or less) was added. The viscosity of this sealant (4) at 25 ° C. was measured with an E-type viscometer and found to be 443 Pa · s.

[実施例4]
実施例1における(d)シランカップリング剤としてKBM−403の1質量部を3質量部に変更する以外は実施例1と同様にして、本発明の光電変換素子用シール剤(5)を得た。このシール剤(5)の25℃における粘度をE型粘度計で測定したところ31Pa・sであった。
[Example 4]
The sealant (5) for a photoelectric conversion element of the present invention was obtained in the same manner as in Example 1 except that 1 part by mass of KBM-403 was changed to 3 parts by mass as the (d) silane coupling agent in Example 1. It was. The viscosity of this sealant (5) at 25 ° C. was measured with an E-type viscometer and found to be 31 Pa · s.

[実施例5]
実施例1における(b)熱硬化剤としてC11Z(商品名、2−ウンデシルイミダゾール、四国化成株式会社製)3質量部を加えること以外は実施例1と同様にして、本発明の光電変換素子用シール剤(6)を得た。このシール剤(6)の25℃における粘度をE型粘度計で測定したところ80Pa・sであった。
[Example 5]
The photoelectric conversion element of the present invention is the same as in Example 1 except that 3 parts by mass of C11Z (trade name, 2-undecylimidazole, manufactured by Shikoku Kasei Co., Ltd.) is added as the (b) thermosetting agent in Example 1. Sealing agent (6) for use was obtained. The viscosity of this sealant (6) at 25 ° C. was measured with an E-type viscometer and found to be 80 Pa · s.

[評価試験1]
実施例1、3、4、5及び比較例1で作製した各シール剤の性能評価として、せん断接着強度を測定した。また、実施例2及び比較例1で作製した各シール剤の性能評価として、対溶媒膨潤度測定を実施した。
[Evaluation test 1]
The shear adhesive strength was measured as a performance evaluation of each of the sealants prepared in Examples 1, 3, 4, 5 and Comparative Example 1. Moreover, as a performance evaluation of each sealant produced in Example 2 and Comparative Example 1, the degree of swelling against a solvent was measured.

せん断接着強度は下記の方法により測定した。
各シール剤100質量部にスペーサーとして直径50μmのグラスファイバー1質量部を添加して混合撹拌を行った。このシール剤を50mm×50mmの導電性支持体(FTOガラス基板)上にディスペンサーで塗布し、ホットプレートによる加熱で溶剤を揮発させた後、導電性支持体上のシール剤上に2mm×2mmのガラス片を貼り合わせて100℃下1時間の条件で硬化させ、得られた試験片のせん断接着強度を測定した。
The shear bond strength was measured by the following method.
1 part by mass of glass fiber having a diameter of 50 μm was added as a spacer to 100 parts by mass of each sealant, and the mixture was mixed and stirred. This sealant is applied on a 50 mm × 50 mm conductive support (FTO glass substrate) with a dispenser, the solvent is volatilized by heating with a hot plate, and then 2 mm × 2 mm is applied on the sealant on the conductive support. The glass pieces were bonded together and cured under the condition of 100 ° C. for 1 hour, and the shear adhesive strength of the obtained test piece was measured.

対溶媒膨潤度(膨潤度)は下記の方法により測定した。
各シール剤をアプリケーター(膜厚200μm)を用いて耐熱フィルム上に塗布し、100℃下1時間の条件で硬化させた。得られた硬化膜に対して3cm×3cmのパンチ刃を適用して打ち抜き試験片を4枚作製した。各試験片の質量(浸漬前質量)を測定した後、3−メトキシプロピオニトリル(3MPN)と共に耐圧容器に入れ,耐圧容器を85℃下2時間加熱した。加熱終了後、耐圧容器を室温まで冷却し、取り出した試験片に付着している3MPNをふき取り、試験片の質量(浸漬後質量)を測定した。{(浸漬後質量/浸漬前質量)−1}×100の計算から溶媒浸漬前後の質量増加率を求め、4枚の質量増加率の平均値を膨潤度(%)とした。
The degree of swelling against solvent (degree of swelling) was measured by the following method.
Each sealant was applied onto a heat-resistant film using an applicator (thickness 200 μm) and cured under the condition of 100 ° C. for 1 hour. Four punching test pieces were prepared by applying a 3 cm × 3 cm punch blade to the obtained cured film. After measuring the mass (mass before immersion) of each test piece, the test piece was placed in a pressure-resistant container together with 3-methoxypropionitrile (3MPN), and the pressure-resistant container was heated at 85 ° C. for 2 hours. After the heating was completed, the pressure-resistant container was cooled to room temperature, 3MPN adhering to the taken-out test piece was wiped off, and the mass of the test piece (mass after immersion) was measured. The mass increase rate before and after immersion in the solvent was obtained from the calculation of {(mass after immersion / mass before immersion) -1} × 100, and the average value of the mass increase rates of the four sheets was taken as the swelling degree (%).

表1及び表2の結果が示すように、本発明のシール剤(1)、(4)、(5)、(6)はシール剤(2)と比較して高い接着強度を示した。一方の本発明のシール剤(3)はシール剤(2)と比較して低い溶媒膨潤度を示した。これらの結果は、本願シール剤が低温(100℃)での色素増感太陽電池素子の作製に有用であり、低温で素子作製ができるため、省エネルギーでかつ高信頼性を有する素子製造に有効であることを示唆している。 As the results of Tables 1 and 2 show, the sealants (1), (4), (5), and (6) of the present invention showed higher adhesive strength than the sealant (2). On the other hand, the sealant (3) of the present invention showed a lower degree of solvent swelling as compared with the sealant (2). These results show that the sealant of the present application is useful for manufacturing a dye-sensitized solar cell element at a low temperature (100 ° C.), and since the element can be manufactured at a low temperature, it is effective for manufacturing an energy-saving and highly reliable device. It suggests that there is.

本発明の光電変換素子用シール剤は、光電変換素子の製造工程において、基板への塗布作業性、貼り合わせ性、接着強度、室温での使用可能時間(ポットライフ)、低温硬化性に優れ、電荷移動層に対する汚染性が極めて低い。このようなシール剤を用いて得られた本発明の光電変換素子は、電荷移動層の汚染による作動不良が無く、接着性、耐湿信頼性に優れたものである。また、本発明の光電変換素子用シール剤を用いて光電変換素子を製造した場合、性能不良を生じることがなく、また生産性の向上が可能になる。 The sealant for a photoelectric conversion element of the present invention is excellent in coating workability on a substrate, adhesion, adhesive strength, usable time at room temperature (pot life), and low temperature curability in the manufacturing process of the photoelectric conversion element. Very low pollution to the charge transfer layer. The photoelectric conversion element of the present invention obtained by using such a sealing agent has no malfunction due to contamination of the charge transfer layer, and has excellent adhesiveness and moisture resistance and reliability. Further, when the photoelectric conversion element is manufactured by using the sealant for the photoelectric conversion element of the present invention, performance failure does not occur and productivity can be improved.

1.導電性支持体
2.色素によって増感された半導体含有層
3.対向電極
4.電荷移動層
5.シール剤
6.ガラス基板
1. 1. Conductive support 2. Semiconductor-containing layer sensitized by dye 3. Counter electrode 4. Charge transfer layer 5. Sealant 6. Glass substrate

Claims (7)

(a)エポキシ樹脂を含有し、かつ(b)熱硬化剤としてアミンアダクトのみ、またはアミンアダクトならびにグアナミン類及び/又はイミダゾール類の少なくとも1種の混合物のみを含有し、(c)充填剤としては、含水硅酸マグネシウム、炭酸カルシウム、酸化アルミニウム、結晶シリカ及び溶融シリカ、ならびにこれらの表面処理物からなる群から選ばれる少なくとも1種のみを含有することを特徴とする、光電変換素子用シール剤であって、さらに(a)エポキシ樹脂中のエポキシ基1当量に対して(b)熱硬化剤中の活性水素が0.8〜3.0当量となる量の(b)熱硬化剤を含有することを特徴とする、光電変換素子用シール剤。 It contains (a) an epoxy resin and (b) only amine adduct as a thermosetting agent , or only a mixture of amine adduct and at least one mixture of guanamines and / or imidazoles, and (c) as a filler. A sealant for a photoelectric conversion element, which contains at least one selected from the group consisting of hydrous magnesium silicate, calcium carbonate, aluminum oxide, crystalline silica and molten silica, and surface-treated products thereof. Further, (a) the amount of active hydrogen in the thermosetting agent is 0.8 to 3.0 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin, and (b) the thermosetting agent is contained. A sealant for photoelectric conversion elements, which is characterized by this. イミダゾール類が、2−ウンデシルイミダゾールを含むことを特徴とする、請求項1に記載の光電変換素子用シール剤。 The sealant for a photoelectric conversion element according to claim 1 , wherein the imidazoles contain 2-undecylimidazole. (c)充填剤の平均粒径が50μm以下である、請求項1に記載の光電変換素子用シール剤。 (C) The sealant for a photoelectric conversion element according to claim 1, wherein the average particle size of the filler is 50 μm or less. (d)シランカップリング剤を含有する、請求項1乃至3のいずれか一項に記載の光電変換素子用シール剤。 (D) The sealant for a photoelectric conversion element according to any one of claims 1 to 3 , which contains a silane coupling agent. (d)シランカップリング剤が、グリシジルエトキシシラン類またはグリシジルメトキシシラン類である、請求項4に記載の光電変換素子用シール剤。 (D) The sealant for a photoelectric conversion element according to claim 4 , wherein the silane coupling agent is glycidyl ethoxysilanes or glycidyl methoxysilanes. 半導体含有層を有する第一の導電性支持体、該半導体含有層と対向電極とが所定の間隔で対向する位置に設けられた対向電極を有する第二の導電性支持体、第一及び第二の導電性支持体の間隙に挟持された電荷移動層、並びに第一及び第二の導電性支持体の周辺部に設けられ、電荷移動層を包囲するシールを含む光電変換素子であって、該シールが請求項1乃至5のいずれか一項に記載の光電変換素子用シール剤から形成されたシールである、光電変換素子。 A first conductive support having a semiconductor-containing layer, a second conductive support having counter electrodes provided at positions where the semiconductor-containing layer and a counter electrode face each other at predetermined intervals, first and second A photoelectric conversion element including a charge transfer layer sandwiched between the conductive supports of the above, and a seal provided around the first and second conductive supports and surrounding the charge transfer layer. A photoelectric conversion element, wherein the seal is a seal formed from the sealant for a photoelectric conversion element according to any one of claims 1 to 5 . 請求項6に記載の光電変換素子を有してなる太陽電池。
A solar cell comprising the photoelectric conversion element according to claim 6 .
JP2017550372A 2015-11-09 2016-11-09 Sealant Expired - Fee Related JP6802802B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015219565 2015-11-09
JP2015219565 2015-11-09
JP2016148236 2016-07-28
JP2016148236 2016-07-28
PCT/JP2016/083289 WO2017082319A1 (en) 2015-11-09 2016-11-09 Sealing agent

Publications (2)

Publication Number Publication Date
JPWO2017082319A1 JPWO2017082319A1 (en) 2018-08-23
JP6802802B2 true JP6802802B2 (en) 2020-12-23

Family

ID=58695406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017550372A Expired - Fee Related JP6802802B2 (en) 2015-11-09 2016-11-09 Sealant

Country Status (4)

Country Link
JP (1) JP6802802B2 (en)
KR (1) KR20180081725A (en)
CN (1) CN108235790A (en)
WO (1) WO2017082319A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102262068B1 (en) 2018-07-13 2021-06-09 주식회사 엘지화학 Adhesive composition and substrate-less adhesive tape

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368236A (en) * 2001-06-04 2002-12-20 Nippon Kayaku Co Ltd Sealing agent
CN100595971C (en) * 2005-07-07 2010-03-24 日本化药株式会社 Sealing agent for photoelectric converter and photoelectric converter using same
JP4918975B2 (en) 2005-09-21 2012-04-18 株式会社スリーボンド Dye-sensitized solar cell sealant
WO2010084939A1 (en) * 2009-01-23 2010-07-29 味の素株式会社 Resin composition
KR101156534B1 (en) * 2009-12-28 2012-06-20 삼성에스디아이 주식회사 Photoelectric conversion device
JP2014120431A (en) * 2012-12-19 2014-06-30 Nippon Kayaku Co Ltd Sealant for dye-sensitized solar cell and dye-sensitized solar cell using the same
CN105683283A (en) * 2013-11-08 2016-06-15 味之素株式会社 Hydrotalcite-containing sealing resin composition and sealing sheet

Also Published As

Publication number Publication date
JPWO2017082319A1 (en) 2018-08-23
CN108235790A (en) 2018-06-29
WO2017082319A1 (en) 2017-05-18
KR20180081725A (en) 2018-07-17

Similar Documents

Publication Publication Date Title
JP5091681B2 (en) Dye-sensitized photoelectric conversion element and method for producing the same
AU2006267616B2 (en) Sealing agent for photoelectric converter and photoelectric converter using same
KR101183550B1 (en) Sealing agent for photoelectric conversion element and photoelectric conversion element using the same
JP5649648B2 (en) Photoelectric conversion element using sealant for thermosetting photoelectric conversion element
JP6802802B2 (en) Sealant
JP4864716B2 (en) Dye-sensitized solar cell and method for producing the same
JP2014120431A (en) Sealant for dye-sensitized solar cell and dye-sensitized solar cell using the same
JP2016162969A (en) Dye-sensitized solar cell
JP2017036389A (en) Electrolytic solution sealing agent

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201127

R150 Certificate of patent or registration of utility model

Ref document number: 6802802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees