JP6801613B2 - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP6801613B2
JP6801613B2 JP2017171151A JP2017171151A JP6801613B2 JP 6801613 B2 JP6801613 B2 JP 6801613B2 JP 2017171151 A JP2017171151 A JP 2017171151A JP 2017171151 A JP2017171151 A JP 2017171151A JP 6801613 B2 JP6801613 B2 JP 6801613B2
Authority
JP
Japan
Prior art keywords
voltage
coefficient
battery
ratio
battery pack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017171151A
Other languages
Japanese (ja)
Other versions
JP2019045419A (en
Inventor
祐希 村松
祐希 村松
順一 波多野
順一 波多野
西垣 研治
研治 西垣
将成 石川
将成 石川
勇一郎 須藤
勇一郎 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2017171151A priority Critical patent/JP6801613B2/en
Priority to PCT/JP2018/031720 priority patent/WO2019049728A1/en
Publication of JP2019045419A publication Critical patent/JP2019045419A/en
Application granted granted Critical
Publication of JP6801613B2 publication Critical patent/JP6801613B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、電池パックに関する。 The present invention relates to a battery pack.

既存の電池パックとして、電池の放電終了後または充電終了後、電池の開回路電圧から電池の充電率(SOC(State Of Charge))を推定するものがある。
関連する技術として、例えば、特許文献1〜6がある。
As an existing battery pack, there is a battery pack that estimates the battery charge rate (SOC (State Of Charge)) from the open circuit voltage of the battery after the battery has been discharged or charged.
As related techniques, for example, there are Patent Documents 1 to 6.

国際公開第2013/054414号International Publication No. 2013/0544414 国際公開第2012/066643号International Publication No. 2012/066643 特開2015−227840号公報JP-A-2015-227840 特開2011−257219号公報Japanese Unexamined Patent Publication No. 2011-257219 特開2005−130559号公報Japanese Unexamined Patent Publication No. 2005-130559 特開2002−286818号公報JP-A-2002-268818

しかしながら、電池の放電終了後または充電終了後に取得される電池の開回路電圧は、電池の分極の影響を受けており、正確な値でない可能性がある。そのため、上述の電池パックでは、電池の充電率の推定精度が低くなるおそれがある。 However, the open circuit voltage of the battery acquired after the end of discharge or the end of charging of the battery is affected by the polarization of the battery and may not be an accurate value. Therefore, in the above-mentioned battery pack, the estimation accuracy of the battery charge rate may be low.

そこで、本発明の一側面に係る目的は、電池の放電終了後または充電終了後において、分極解消後の電池の開回路電圧を精度よく推定することが可能な電池パックを提供することである。 Therefore, an object of one aspect of the present invention is to provide a battery pack capable of accurately estimating the open circuit voltage of the battery after the polarization is eliminated after the battery has been discharged or charged.

本発明に係る一つの形態である電池パックは、電池と、電池の電圧を検出する電圧検出部と、推定部とを備える。
推定部は、電池の放電終了後で、かつ、電池の分極が解消される前の休止期間において、休止期間開始から第1の所定時間経過後に電圧検出部により検出される第1の電圧または休止期間開始から第1の所定時間よりも長い第2の所定時間経過後に電圧検出部により検出される第2の電圧に、第1の電圧と第2の電圧との比と、係数とを乗算した値を加算した結果を、電池の分極解消後の開回路電圧として推定する。
A battery pack according to one embodiment of the present invention includes a battery, a voltage detection unit that detects the voltage of the battery, and an estimation unit.
The estimation unit is a first voltage or pause detected by the voltage detection unit after the lapse of the first predetermined time from the start of the pause period in the pause period after the end of the battery discharge and before the polarization of the battery is eliminated. The ratio of the first voltage to the second voltage and the coefficient were multiplied by the second voltage detected by the voltage detector after the lapse of the second predetermined time longer than the first predetermined time from the start of the period. The result of adding the values is estimated as the open circuit voltage after the polarization of the battery is eliminated.

また、推定部は、電池の充電終了後で、かつ、電池の分極が解消される前の休止期間において、休止期間開始から第1の所定時間経過後に電圧検出部により検出される第1の電圧または休止期間開始から第1の所定時間よりも長い第2の所定時間経過後に電圧検出部により検出される第2の電圧から、第1の電圧と第2の電圧との比と、係数とを乗算した値を減算した結果を、電池の分極解消後の開回路電圧として推定する。 Further, the estimation unit is a first voltage detected by the voltage detection unit after the lapse of the first predetermined time from the start of the pause period in the pause period after the charging of the battery is completed and before the polarization of the battery is eliminated. Alternatively, the ratio and coefficient of the first voltage and the second voltage are calculated from the second voltage detected by the voltage detector after the lapse of the second predetermined time longer than the first predetermined time from the start of the pause period. The result of subtracting the multiplied value is estimated as the open circuit voltage after the polarization of the battery is eliminated.

本発明によれば、電池の放電終了後または充電終了後において、分極解消後の電池の開回路電圧を精度よく推定することができる。 According to the present invention, it is possible to accurately estimate the open circuit voltage of the battery after the polarization is eliminated after the battery has been discharged or charged.

実施形態の電池パックの一例を示す図である。It is a figure which shows an example of the battery pack of an embodiment. 放電終了後または充電終了後の電池の電圧の一例を示す図である。It is a figure which shows an example of the voltage of the battery after the end of discharge or the end of charge. 電池の充電率と開回路電圧との対応関係を示す情報の一例を示す図である。It is a figure which shows an example of the information which shows the correspondence relationship between the charge rate of a battery, and an open circuit voltage. 充電率推定処理の一例を示すフローチャートである。It is a flowchart which shows an example of the charge rate estimation process. 開回路電圧推定処理の一例を示すフローチャートである。It is a flowchart which shows an example of an open circuit voltage estimation process. 変形例1における開回路電圧推定処理の一例を示すフローチャートである。It is a flowchart which shows an example of the open circuit voltage estimation process in the modification 1. 変形例2における開回路電圧推定処理の一例を示すフローチャートである。It is a flowchart which shows an example of the open circuit voltage estimation processing in the modification 2. 変形例3における開回路電圧推定処理の一例を示すフローチャートである。It is a flowchart which shows an example of the open circuit voltage estimation processing in the modification 3. 変形例4における開回路電圧推定処理の一例を示すフローチャートである。It is a flowchart which shows an example of the open circuit voltage estimation processing in the modification 4. 変形例5における充電率推定処理の一例を示すフローチャートである。It is a flowchart which shows an example of the charge rate estimation process in the modification 5. 変形例6における開回路電圧推定処理の一他の例を示すフローチャートである。It is a flowchart which shows one other example of the open circuit voltage estimation processing in the modification 6. 変形例7における開回路電圧推定処理の一他の例を示すフローチャートである。It is a flowchart which shows another example of the open circuit voltage estimation processing in the modification 7.

以下図面に基づいて実施形態について詳細を説明する。
図1は、実施形態の電池パックの一例を示す図である。
図1に示す電池パックは、電池Bと、電流検出部1と、電圧検出部2と、温度検出部3と、記憶部4と、推定部5とを備える。なお、電池パックは、例えば、ハイブリッド車、プラグインハイブリッド車、または、電気自動車などの車両に搭載されるものとする。
Hereinafter, embodiments will be described in detail based on the drawings.
FIG. 1 is a diagram showing an example of a battery pack of the embodiment.
The battery pack shown in FIG. 1 includes a battery B, a current detection unit 1, a voltage detection unit 2, a temperature detection unit 3, a storage unit 4, and an estimation unit 5. The battery pack shall be mounted on a vehicle such as a hybrid vehicle, a plug-in hybrid vehicle, or an electric vehicle.

電池Bは、例えば、リチウムイオン電池やニッケル水素電池などの1つ以上の二次電池により構成される。充電器Chから電池Bへ電力が供給されると、または、走行用モータなどの負荷Loから電池Bへ回生電力が供給されると、電池Bが充電される。また、電池Bから負荷Loへ電力が供給されると、電池Bが放電される。 The battery B is composed of one or more secondary batteries such as a lithium ion battery and a nickel hydrogen battery, for example. The battery B is charged when power is supplied from the charger Ch to the battery B, or when regenerative power is supplied to the battery B from a load Lo such as a traveling motor. Further, when power is supplied from the battery B to the load Lo, the battery B is discharged.

ここで、図2を用いて、放電終了後または充電終了後の電池Bの電圧の変化について説明する。
図2(a)は、放電終了後の電池Bの電圧の変化を示す図である。図2(a)に示すグラフの縦軸は電池Bの電圧を示し横軸は時間を示している。また、図2(b)は、充電終了後の電池Bの電圧の変化を示す図である。図2(b)に示すグラフの縦軸は電池Bの電圧を示し横軸は時間を示している。
Here, the change in the voltage of the battery B after the end of discharging or the end of charging will be described with reference to FIG.
FIG. 2A is a diagram showing a change in the voltage of the battery B after the end of discharging. The vertical axis of the graph shown in FIG. 2A shows the voltage of the battery B, and the horizontal axis shows the time. Further, FIG. 2B is a diagram showing a change in the voltage of the battery B after the end of charging. The vertical axis of the graph shown in FIG. 2B shows the voltage of the battery B, and the horizontal axis shows the time.

図2(a)に示すグラフでは、放電終了後で、かつ、電池Bが充電も放電もされない休止期間の開始時刻t0から電池Bの分極が解消される時刻t3までの第3の所定時間(放電終了後で、かつ、電池Bの分極が解消される前の休止期間)において、休止期間が開始される前の電池Bの放電などに応じた分極の影響により、電池Bの電圧が上昇している。 In the graph shown in FIG. 2A, a third predetermined time (from the start time t0 of the pause period in which the battery B is neither charged nor discharged to the time t3 when the polarization of the battery B is eliminated after the discharge is completed ( After the end of discharge and before the polarization of the battery B is eliminated), the voltage of the battery B rises due to the influence of the polarization according to the discharge of the battery B before the start of the pause period. ing.

図2(b)に示すグラフでは、充電終了後で、かつ、電池Bが充電も放電もされない休止期間の開始時刻t0から電池Bの分極が解消される時刻t3までの第3の所定時間(充電終了後で、かつ、電池Bの分極が解消される前の休止期間)において、休止期間が開始される前の電池Bの充電などに応じた分極の影響により、電池Bの電圧が下降している。 In the graph shown in FIG. 2B, a third predetermined time (from the start time t0 of the pause period in which the battery B is not charged or discharged to the time t3 when the polarization of the battery B is eliminated after the charging is completed ( After the end of charging and before the polarization of the battery B is eliminated), the voltage of the battery B drops due to the influence of the polarization according to the charging of the battery B before the start of the pause period). ing.

図1に示す電流検出部1は、例えば、シャント抵抗またはホール素子により構成され、電池Bに流れる電流Iを検出する。
電圧検出部2は、例えば、IC(Integrated Circuit)により構成され、電池Bの電圧Vを検出する。
The current detection unit 1 shown in FIG. 1 is composed of, for example, a shunt resistor or a Hall element, and detects the current I flowing through the battery B.
The voltage detection unit 2 is composed of, for example, an IC (Integrated Circuit) and detects the voltage V of the battery B.

温度検出部3は、例えば、サーミスタにより構成され、電池Bの温度Tを検出する。
記憶部4は、例えば、ROM(Read Only Memory)やRAM(Random Access Memory)により構成される。また、記憶部4は、電池Bの充電率と電池Bの開回路電圧との対応関係を示す情報や分極解消後の電池Bの開回路電圧を推定する際に用いられる係数a、bなどを記憶している。
The temperature detection unit 3 is composed of, for example, a thermistor, and detects the temperature T of the battery B.
The storage unit 4 is composed of, for example, a ROM (Read Only Memory) or a RAM (Random Access Memory). Further, the storage unit 4 stores information indicating the correspondence between the charge rate of the battery B and the open circuit voltage of the battery B, and the coefficients a and b used when estimating the open circuit voltage of the battery B after the polarization is eliminated. I remember.

ここで、電池Bの充電率と電池Bの開回路電圧との対応関係を示す情報について説明する。
図3は、電池Bの充電率と開回路電圧との対応関係を示す情報の一例を示す図である。図3に示すグラフの縦軸は電池Bの開回路電圧を示し横軸は電池Bの充電率を示している。
Here, information indicating the correspondence relationship between the charge rate of the battery B and the open circuit voltage of the battery B will be described.
FIG. 3 is a diagram showing an example of information showing a correspondence relationship between the charge rate of the battery B and the open circuit voltage. The vertical axis of the graph shown in FIG. 3 shows the open circuit voltage of the battery B, and the horizontal axis shows the charge rate of the battery B.

図3に示すグラフの曲線は電池Bの充電率と開回路電圧との対応関係を示す情報を示し、この情報を参照することで、電池Bの開回路電圧から電池Bの充電率を一意に求めることができる。 The curve of the graph shown in FIG. 3 shows information indicating the correspondence between the charge rate of the battery B and the open circuit voltage, and by referring to this information, the charge rate of the battery B can be uniquely calculated from the open circuit voltage of the battery B. Can be sought.

図1に示す推定部5は、例えば、CPU(Central Processing Unit)、マルチコアCPU、またはプログラマブルなデバイス(FPGA(Field Programmable Gate Array)やPLD(Programmable Logic Device)など)により構成される。 The estimation unit 5 shown in FIG. 1 is composed of, for example, a CPU (Central Processing Unit), a multi-core CPU, or a programmable device (FPGA (Field Programmable Gate Array), PLD (Programmable Logic Device), or the like).

推定部5は、図2(a)または図2(b)に示す休止期間が開始したと判断した後、電流検出部1により検出される電流Iの絶対値が電流閾値Ith以上になると、休止期間が終了したと判断する。 After determining that the pause period shown in FIG. 2 (a) or FIG. 2 (b) has started, the estimation unit 5 pauses when the absolute value of the current I detected by the current detection unit 1 becomes equal to or greater than the current threshold value Is. Judge that the period has expired.

また、推定部5は、休止期間が終了したと判断した後、電流検出部1により検出される電流Iの絶対値が電流閾値Ith未満になると、休止期間が開始したと判断する。
また、推定部5は、休止期間が開始したと判断すると、充電率推定処理を実行する。
Further, after determining that the pause period has ended, the estimation unit 5 determines that the pause period has started when the absolute value of the current I detected by the current detection unit 1 becomes less than the current threshold value Is.
Further, the estimation unit 5 executes the charge rate estimation process when it determines that the pause period has started.

図4は、充電率推定処理の一例を示すフローチャートである。
まず、推定部5は、休止期間が終了する前に、休止期間開始から第1の所定時間が経過したと判断すると(S101:No、S102:Yes)、第1の電圧OCV1を取得する(S103)。例えば、推定部5は、図2(a)または図2(b)に示す休止期間の開始時刻t0から第1の所定時間経過後の時刻t1において電圧検出部2により検出される電圧Vを、第1の電圧OCV1として取得する。
FIG. 4 is a flowchart showing an example of the charge rate estimation process.
First, if the estimation unit 5 determines that the first predetermined time has elapsed from the start of the pause period before the end of the pause period (S101: No, S102: Yes), the estimation unit 5 acquires the first voltage OCV1 (S103). ). For example, the estimation unit 5 determines the voltage V detected by the voltage detection unit 2 at the time t1 after the lapse of the first predetermined time from the start time t0 of the rest period shown in FIG. 2 (a) or FIG. 2 (b). Acquired as the first voltage OCV1.

次に、推定部5は、休止期間が終了する前に、休止期間開始から第1の所定時間よりも長い第2の所定時間が経過したと判断すると(S104:No、S105:Yes)、第2の電圧OCV2を取得する(S106)。例えば、推定部5は、図2(a)または図2(b)に示す休止期間の開始時刻t0から第2の所定時間経過後の時刻t2において電圧検出部2により検出される電圧Vを、第2の電圧OCV2として取得する。 Next, when the estimation unit 5 determines that a second predetermined time longer than the first predetermined time has elapsed from the start of the pause period before the end of the pause period (S104: No, S105: Yes), the first The voltage OCV2 of 2 is acquired (S106). For example, the estimation unit 5 determines the voltage V detected by the voltage detection unit 2 at the time t2 after the lapse of the second predetermined time from the start time t0 of the rest period shown in FIG. 2 (a) or FIG. 2 (b). Acquired as the second voltage OCV2.

次に、推定部5は、第1の電圧OCV1、第2の電圧OCV2、及び係数a、bを用いて、開回路電圧推定処理を実行することにより、分極解消後の電池Bの開回路電圧を推定する(S107)。 Next, the estimation unit 5 executes the open circuit voltage estimation process using the first voltage OCV1, the second voltage OCV2, and the coefficients a and b, so that the open circuit voltage of the battery B after polarization elimination is executed. Is estimated (S107).

次に、推定部5は、推定した開回路電圧を用いて、電池Bの充電率を推定する(S108)。例えば、推定部5は、図3に示す情報を参照して、推定した開回路電圧に対応する充電率を、電池Bの充電率とする。 Next, the estimation unit 5 estimates the charge rate of the battery B using the estimated open circuit voltage (S108). For example, the estimation unit 5 refers to the information shown in FIG. 3 and sets the charge rate corresponding to the estimated open circuit voltage as the charge rate of the battery B.

次に、推定部5は、休止期間が終了する前に、電池Bの分極が解消したと判断すると(S109:No、S110:Yes)、第3の電圧OCV3を取得し(S111)、その第3の電圧OCV3を用いて、係数a、bを更新して(S112)、今回の充電率推定処理を終了する。例えば、推定部5は、図2(a)または図2(b)に示す休止期間の開始時刻t0から第3の所定時間経過すると、電池Bの分極が解消したと判断する。また、例えば、推定部5は、図2(a)または図2(b)に示す休止期間の開始時刻t0から第3の所定時間経過後の時刻t3において電圧検出部2により検出される電圧Vを、第3の電圧OCV3として取得する。 Next, when the estimation unit 5 determines that the polarization of the battery B has been eliminated before the end of the rest period (S109: No, S110: Yes), the estimation unit 5 acquires the third voltage OCV3 (S111), and the third voltage OCV3 is acquired. Using the voltage OCV3 of 3, the coefficients a and b are updated (S112), and the current charge rate estimation process is completed. For example, the estimation unit 5 determines that the polarization of the battery B has been eliminated when a third predetermined time elapses from the start time t0 of the rest period shown in FIG. 2A or FIG. 2B. Further, for example, the estimation unit 5 has a voltage V detected by the voltage detection unit 2 at a time t3 after the lapse of a third predetermined time from the start time t0 of the rest period shown in FIG. 2 (a) or FIG. 2 (b). Is acquired as the third voltage OCV3.

なお、推定部5は、休止期間が終了したと判断すると(S101:Yes、S104:Yes、S109:Yes)、今回の充電率推定処理を終了する。
図5は、開回路電圧推定処理の一例を示すフローチャートである。
When the estimation unit 5 determines that the rest period has ended (S101: Yes, S104: Yes, S109: Yes), the estimation unit 5 ends the current charge rate estimation process.
FIG. 5 is a flowchart showing an example of the open circuit voltage estimation process.

推定部5は、休止期間中、電圧検出部2により検出される電圧Vが上昇している(即ち、放電終了後)と判断すると(S11:Yes)、比r及び係数aを求め(S12)、比rと係数aとを乗算し(S13)、第1の電圧OCV1または第2の電圧OCV2に、比rと係数aとを乗算した値を加算した結果を、分極解消後の電池Bの開回路電圧とする(S14)。なお、これ以降、休止期間中の電池Bの電圧が上昇する場合とは、放電終了後の場合と読み替えることができる。 When the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is rising (that is, after the end of discharge) during the pause period (S11: Yes), the ratio r and the coefficient a are obtained (S12). , The ratio r and the coefficient a are multiplied (S13), and the result of adding the value obtained by multiplying the first voltage OCV1 or the second voltage OCV2 by the ratio r and the coefficient a is the result of the battery B after polarization elimination. The open circuit voltage is used (S14). After that, the case where the voltage of the battery B rises during the pause period can be read as the case after the end of discharge.

一方、推定部5は、休止期間中、電圧検出部2により検出される電圧Vが下降している(即ち、充電終了後)と判断すると(S11:No)、比r及び係数bを求め(S15)、比rと係数bとを乗算し(S16)、第1の電圧OCV1または第2の電圧OCV2から、比rと係数bとを乗算した値を減算した結果を、分極解消後の電池Bの開回路電圧とする(S17)。なお、これ以降、休止期間中の電池Bの電圧が下降する場合とは、充電終了後の場合と読み替えることができる。 On the other hand, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is decreasing (that is, after the end of charging) during the pause period (S11: No), the ratio r and the coefficient b are obtained ( S15), the ratio r and the coefficient b are multiplied (S16), and the result of subtracting the value obtained by multiplying the ratio r and the coefficient b from the first voltage OCV1 or the second voltage OCV2 is obtained from the battery after polarization elimination. Let the open circuit voltage of B be (S17). After that, the case where the voltage of the battery B drops during the rest period can be read as the case after the end of charging.

<分極解消後の電池Bの開回路電圧の推定例、及び、係数の更新例(その1)>
推定部5は、休止期間中の電池Bの電圧が上昇する場合の今回の充電率推定処理において、比r1=第2の電圧OCV2/第1の電圧OCV1を計算するとともに記憶部4から係数a11を読み出すことにより上記比rとしての比r1及び上記係数aとしての係数a11を求め、電圧=第1の電圧OCV1+比r1×係数a11を計算した結果を、分極解消後の電池Bの開回路電圧として推定する。
<Example of estimating the open circuit voltage of battery B after elimination of polarization and example of updating the coefficient (1)>
In the current charge rate estimation process when the voltage of the battery B rises during the pause period, the estimation unit 5 calculates the ratio r1 = the second voltage OCV2 / the first voltage OCV1 and the coefficient a11 from the storage unit 4. The ratio r1 as the ratio r and the coefficient a11 as the coefficient a are obtained by reading out, and the result of calculating the voltage = first voltage OCV1 + ratio r1 × coefficient a11 is the open circuit voltage of the battery B after polarization elimination. Estimate as.

また、推定部5は、休止期間中の電池Bの電圧が上昇する場合の今回の充電率推定処理において、電池Bの分極が解消されたと判断すると(電池Bの分極解消時)、係数a11=(第3の電圧OCV3−第1の電圧OCV1)/比r1を計算した結果を、休止期間中の電池Bの電圧が上昇する場合の次回以降の充電率推定処理に用いる係数a11として記憶部4に記憶させる。 Further, when the estimation unit 5 determines that the polarization of the battery B has been eliminated in the current charge rate estimation process when the voltage of the battery B rises during the pause period (when the polarization of the battery B is eliminated), the coefficient a11 = (Third voltage OCV3-first voltage OCV1) / The result of calculating the ratio r1 is stored as a coefficient a11 to be used for the next and subsequent charge rate estimation processing when the voltage of the battery B during the rest period rises. To memorize.

これにより、休止期間中の電池Bの電圧が上昇する場合の次回以降の充電率推定処理で取得される第1の電圧OCV1及び比r1が、休止期間中の電池Bの電圧が上昇する場合の今回の充電率推定処理で取得された第1の電圧OCV1及び比r1と同じ値または略同じ値である場合で、かつ、分極による電池Bの電圧の上昇幅が一定または略一定である場合、休止期間中の電池Bの電圧が上昇する場合の次回以降の充電率推定処理において係数a11を用いることで、分極解消後の電池Bの開回路電圧の推定値を、実測値である第3の電圧OCVに近づけることができ、分極解消後の電池Bの開回路電圧を精度よく推定することができる。 As a result, when the first voltage OCV1 and the ratio r1 acquired in the next and subsequent charge rate estimation processes when the voltage of the battery B during the pause period rises, the voltage of the battery B during the pause period rises. When the value is the same as or substantially the same as the first voltage OCV1 and the ratio r1 acquired in the current charge rate estimation process, and when the voltage increase of the battery B due to polarization is constant or substantially constant. By using the coefficient a11 in the next and subsequent charge rate estimation processes when the voltage of the battery B rises during the pause period, the estimated value of the open circuit voltage of the battery B after the polarization is eliminated is the third measured value. The voltage can be approached to OCV, and the open circuit voltage of the battery B after the polarization is eliminated can be estimated accurately.

<分極解消後の電池Bの開回路電圧の推定例、及び、係数の更新例(その2)>
推定部5は、休止期間中の電池Bの電圧が上昇する場合の今回の充電率推定処理において、比r2=第1の電圧OCV1/第2の電圧OCV2を計算するとともに記憶部4から係数a12を読み出すことにより上記比rとしての比r2及び上記係数aとしての係数a12を求め、電圧=第1の電圧OCV1+比r2×係数a12を計算した結果を、分極解消後の電池Bの開回路電圧として推定する。
<Example of estimating the open circuit voltage of battery B after elimination of polarization and example of updating the coefficient (Part 2)>
The estimation unit 5 calculates the ratio r2 = the first voltage OCV1 / the second voltage OCV2 and the coefficient a12 from the storage unit 4 in the current charge rate estimation process when the voltage of the battery B rises during the pause period. The ratio r2 as the ratio r and the coefficient a12 as the coefficient a are obtained by reading out, and the result of calculating the voltage = first voltage OCV1 + ratio r2 × coefficient a12 is the open circuit voltage of the battery B after polarization elimination. Estimate as.

また、推定部5は、休止期間中の電池Bの電圧が上昇する場合の今回の充電率推定処理において、電池Bの分極が解消されたと判断すると、係数a12=(第3の電圧OCV3−第1の電圧OCV1)/比r2を計算した結果を、休止期間中の電池Bの電圧が上昇する場合の次回以降の充電率推定処理に用いる係数a12として記憶部4に記憶させる。 Further, when the estimation unit 5 determines that the polarization of the battery B has been eliminated in the current charge rate estimation process when the voltage of the battery B rises during the pause period, the coefficient a12 = (third voltage OCV3-th). The result of calculating the voltage OCV1) / ratio r2 of 1 is stored in the storage unit 4 as a coefficient a12 to be used for the next and subsequent charge rate estimation processing when the voltage of the battery B during the rest period rises.

これにより、休止期間中の電池Bの電圧が上昇する場合の次回以降の充電率推定処理で取得される第1の電圧OCV1及び比r2が、休止期間中の電池Bの電圧が上昇する場合の今回の充電率推定処理で取得された第1の電圧OCV1及び比r2と同じ値または略同じ値である場合で、かつ、分極による電池Bの電圧の上昇幅が一定または略一定である場合、休止期間中の電池Bの電圧が上昇する場合の次回以降の充電率推定処理において係数a12を用いることで、分極解消後の電池Bの開回路電圧の推定値を、実測値である第3の電圧OCVに近づけることができ、分極解消後の電池Bの開回路電圧を精度よく推定することができる。 As a result, when the first voltage OCV1 and the ratio r2 acquired in the next and subsequent charge rate estimation processes when the voltage of the battery B during the pause period rises, the voltage of the battery B during the pause period rises. When the value is the same as or substantially the same as the first voltage OCV1 and the ratio r2 acquired in the current charge rate estimation process, and the amount of increase in the voltage of the battery B due to polarization is constant or substantially constant. By using the coefficient a12 in the next and subsequent charge rate estimation processes when the voltage of the battery B rises during the rest period, the estimated value of the open circuit voltage of the battery B after the polarization is eliminated is the third measured value. The voltage can be approached to OCV, and the open circuit voltage of the battery B after the polarization is eliminated can be estimated accurately.

<分極解消後の電池Bの開回路電圧の推定例、及び、係数の更新例(その3)>
推定部5は、休止期間中の電池Bの電圧が上昇する場合の今回の充電率推定処理において、比r1=第2の電圧OCV2/第1の電圧OCV1を計算するとともに記憶部4から係数a21を読み出すことにより上記比rとしての比r1及び上記係数aとしての係数a21を求め、電圧=第2の電圧OCV2+比r1×係数a21を計算した結果を、分極解消後の電池Bの開回路電圧として推定する。
<Example of estimating the open circuit voltage of battery B after elimination of polarization and example of updating the coefficient (Part 3)>
In the current charge rate estimation process when the voltage of the battery B rises during the pause period, the estimation unit 5 calculates the ratio r1 = the second voltage OCV2 / the first voltage OCV1 and the coefficient a21 from the storage unit 4. The ratio r1 as the ratio r and the coefficient a21 as the coefficient a are obtained by reading out, and the result of calculating the voltage = second voltage OCV2 + ratio r1 × coefficient a21 is the open circuit voltage of the battery B after polarization elimination. Estimate as.

また、推定部5は、休止期間中の電池Bの電圧が上昇する場合の今回の充電率推定処理において、電池Bの分極が解消されたと判断すると、係数a21=(第3の電圧OCV3−第2の電圧OCV2)/比r1を計算した結果を、休止期間中の電池Bの電圧が上昇する場合の次回以降の充電率推定処理に用いる係数a21として記憶部4に記憶させる。 Further, when the estimation unit 5 determines that the polarization of the battery B has been eliminated in the current charge rate estimation process when the voltage of the battery B rises during the pause period, the coefficient a21 = (third voltage OCV3-th). The result of calculating the voltage OCV2) / ratio r1 of 2 is stored in the storage unit 4 as a coefficient a21 to be used for the next and subsequent charge rate estimation processing when the voltage of the battery B during the pause period rises.

これにより、休止期間中の電池Bの電圧が上昇する場合の次回以降の充電率推定処理で取得される第2の電圧OCV2及び比r1が、休止期間中の電池Bの電圧が上昇する場合の今回の充電率推定処理で取得された第2の電圧OCV2及び比r1と同じ値または略同じ値である場合で、かつ、分極による電池Bの電圧の上昇幅が一定または略一定である場合、休止期間中の電池Bの電圧が上昇する場合の次回以降の充電率推定処理において係数a21を用いることで、分極解消後の電池Bの開回路電圧の推定値を、実測値である第3の電圧OCVに近づけることができ、分極解消後の電池Bの開回路電圧を精度よく推定することができる。 As a result, when the voltage of the battery B during the hibernation period rises, the second voltage OCV2 and the ratio r1 acquired in the next and subsequent charge rate estimation processes increase, when the voltage of the battery B during the hibernation period rises. When the second voltage OCV2 and the ratio r1 acquired in the current charge rate estimation process have the same value or substantially the same value, and the voltage increase of the battery B due to polarization is constant or substantially constant. By using the coefficient a21 in the next and subsequent charge rate estimation processes when the voltage of the battery B rises during the rest period, the estimated value of the open circuit voltage of the battery B after the polarization is eliminated is the third measured value. The voltage can be approached to OCV, and the open circuit voltage of the battery B after the polarization is eliminated can be estimated accurately.

<分極解消後の電池Bの開回路電圧の推定例、及び、係数の更新例(その4)>
推定部5は、休止期間中の電池Bの電圧が上昇する場合の今回の充電率推定処理において、比r2=第1の電圧OCV1/第2の電圧OCV2を計算するとともに記憶部4から係数a22を読み出すことにより上記比rとしての比r2及び上記係数aとしての係数a22を求め、電圧=第2の電圧OCV2+比r2×係数a22を計算した結果を、分極解消後の電池Bの開回路電圧として推定する。
<Example of estimating the open circuit voltage of battery B after elimination of polarization and example of updating the coefficient (4)>
The estimation unit 5 calculates the ratio r2 = the first voltage OCV1 / the second voltage OCV2 and the coefficient a22 from the storage unit 4 in the current charge rate estimation process when the voltage of the battery B rises during the pause period. The ratio r2 as the ratio r and the coefficient a22 as the coefficient a are obtained by reading out, and the result of calculating the voltage = second voltage OCV2 + ratio r2 × coefficient a22 is the open circuit voltage of the battery B after polarization elimination. Estimate as.

また、推定部5は、休止期間中の電池Bの電圧が上昇する場合の今回の充電率推定処理において、電池Bの分極が解消されたと判断すると、係数a22=(第3の電圧OCV3−第2の電圧OCV2)/比r2を計算した結果を、休止期間中の電池Bの電圧が上昇する場合の次回以降の充電率推定処理に用いる係数a22として記憶部4に記憶させる。 Further, when the estimation unit 5 determines that the polarization of the battery B has been eliminated in the current charge rate estimation process when the voltage of the battery B rises during the pause period, the coefficient a22 = (third voltage OCV3-th). The result of calculating the voltage OCV2) / ratio r2 of 2 is stored in the storage unit 4 as a coefficient a22 to be used for the next and subsequent charge rate estimation processing when the voltage of the battery B during the pause period rises.

これにより、休止期間中の電池Bの電圧が上昇する場合の次回以降の充電率推定処理で取得される第2の電圧OCV2及び比r2が、休止期間中の電池Bの電圧が上昇する場合の今回の充電率推定処理で取得された第2の電圧OCV2及び比r2と同じ値または略同じ値である場合で、かつ、分極による電池Bの電圧の上昇幅が一定または略一定である場合、休止期間中の電池Bの電圧が上昇する場合の次回以降の充電率推定処理において係数a22を用いることで、分極解消後の電池Bの開回路電圧の推定値を、実測値である第3の電圧OCVに近づけることができ、分極解消後の電池Bの開回路電圧を精度よく推定することができる。 As a result, when the second voltage OCV2 and the ratio r2 acquired in the next and subsequent charge rate estimation processes when the voltage of the battery B during the pause period rises, the voltage of the battery B during the pause period rises. When the second voltage OCV2 and the ratio r2 acquired in the current charge rate estimation process have the same value or substantially the same value, and the voltage increase of the battery B due to polarization is constant or substantially constant. By using the coefficient a22 in the next and subsequent charge rate estimation processes when the voltage of the battery B rises during the rest period, the estimated value of the open circuit voltage of the battery B after the polarization is eliminated is the third measured value. The voltage can be approached to OCV, and the open circuit voltage of the battery B after the polarization is eliminated can be estimated accurately.

<分極解消後の電池Bの開回路電圧の推定例、及び、係数の更新例(その5)>
推定部5は、休止期間中の電池Bの電圧が下降する場合の今回の充電率推定処理において、比r1=第2の電圧OCV2/第1の電圧OCV1を計算するとともに記憶部4から係数b11を読み出すことにより上記比rとしての比r1及び上記係数bとしての係数b11を求め、電圧=第1の電圧OCV1−比r1×係数b11を計算した結果を、分極解消後の電池Bの開回路電圧として推定する。
<Example of estimating the open circuit voltage of battery B after elimination of polarization and example of updating the coefficient (No. 5)>
In the current charge rate estimation process when the voltage of the battery B drops during the pause period, the estimation unit 5 calculates the ratio r1 = the second voltage OCV2 / the first voltage OCV1 and the coefficient b11 from the storage unit 4. The ratio r1 as the ratio r and the coefficient b11 as the coefficient b are obtained by reading out, and the result of calculating the voltage = first voltage OCV1-ratio r1 × coefficient b11 is the result of opening the battery B after depolarization. Estimated as voltage.

また、推定部5は、休止期間中の電池Bの電圧が下降する場合の今回の充電率推定処理において、電池Bの分極が解消されたと判断すると、係数b11=(第1の電圧OCV1−第3の電圧OCV3)/比r1を計算した結果を、休止期間中の電池Bの電圧が下降する場合の次回以降の充電率推定処理に用いる係数b11として記憶部4に記憶させる。 Further, when the estimation unit 5 determines that the polarization of the battery B has been eliminated in the current charge rate estimation process when the voltage of the battery B drops during the pause period, the coefficient b11 = (first voltage OCV1-first). The result of calculating the voltage OCV3) / ratio r1 of 3 is stored in the storage unit 4 as a coefficient b11 to be used for the next and subsequent charge rate estimation processing when the voltage of the battery B during the rest period drops.

これにより、休止期間中の電池Bの電圧が下降する場合の次回以降の充電率推定処理で取得される第1の電圧OCV1及び比r1が、休止期間中の電池Bの電圧が下降する場合の今回の充電率推定処理で取得された第1の電圧OCV1及び比r1と同じ値または略同じ値である場合で、かつ、分極による電池Bの電圧の下降幅が一定または略一定である場合、休止期間中の電池Bの電圧が下降する場合の次回以降の充電率推定処理において係数b11を用いることで、分極解消後の電池Bの開回路電圧の推定値を、実測値である第3の電圧OCVに近づけることができ、分極解消後の電池Bの開回路電圧を精度よく推定することができる。 As a result, the first voltage OCV1 and the ratio r1 acquired in the next and subsequent charge rate estimation processes when the voltage of the battery B during the pause period drops will be the case where the voltage of the battery B during the pause period drops. When the value is the same as or substantially the same as the first voltage OCV1 and the ratio r1 acquired in the current charge rate estimation process, and when the voltage drop width of the battery B due to polarization is constant or substantially constant. By using the coefficient b11 in the next and subsequent charge rate estimation processes when the voltage of the battery B drops during the rest period, the estimated value of the open circuit voltage of the battery B after the polarization is eliminated is the third measured value. The voltage can be approached to OCV, and the open circuit voltage of the battery B after the polarization is eliminated can be estimated accurately.

<分極解消後の電池Bの開回路電圧の推定例、及び、係数の更新例(その6)>
推定部5は、休止期間中の電池Bの電圧が下降する場合の今回の充電率推定処理において、比r2=第1の電圧OCV1/第2の電圧OCV2を計算するとともに記憶部4から係数b12を読み出すことにより上記比rとしての比r2及び上記係数bとしての係数b12を求め、電圧=第1の電圧OCV1−比r2×係数b12を計算した結果を、分極解消後の電池Bの開回路電圧として推定する。
<Example of estimating the open circuit voltage of battery B after elimination of polarization and example of updating the coefficient (No. 6)>
The estimation unit 5 calculates the ratio r2 = the first voltage OCV1 / the second voltage OCV2 and the coefficient b12 from the storage unit 4 in the current charge rate estimation process when the voltage of the battery B drops during the pause period. The ratio r2 as the ratio r and the coefficient b12 as the coefficient b are obtained by reading out, and the result of calculating the voltage = first voltage OCV1-ratio r2 × coefficient b12 is the result of opening the battery B after depolarization. Estimated as voltage.

また、推定部5は、休止期間中の電池Bの電圧が下降する場合の今回の充電率推定処理において、電池Bの分極が解消されたと判断すると、係数b12=(第1の電圧OCV1−第3の電圧OCV3)/比r2を計算した結果を、休止期間中の電池Bの電圧が下降する場合の次回以降の充電率推定処理に用いる係数b12として記憶部4に記憶させる。 Further, when the estimation unit 5 determines that the polarization of the battery B has been eliminated in the current charge rate estimation process when the voltage of the battery B drops during the pause period, the coefficient b12 = (first voltage OCV1-first). The result of calculating the voltage OCV3) / ratio r2 of 3 is stored in the storage unit 4 as a coefficient b12 to be used for the next and subsequent charge rate estimation processing when the voltage of the battery B during the rest period drops.

これにより、休止期間中の電池Bの電圧が下降する場合の次回以降の充電率推定処理で取得される第1の電圧OCV1及び比r2が、休止期間中の電池Bの電圧が下降する場合の今回の充電率推定処理で取得された第1の電圧OCV1及び比r2と同じ値または略同じ値である場合で、かつ、分極による電池Bの電圧の下降幅が一定または略一定である場合、休止期間中の電池Bの電圧が下降する場合の次回以降の充電率推定処理において係数b12を用いることで、分極解消後の電池Bの開回路電圧の推定値を、実測値である第3の電圧OCVに近づけることができ、分極解消後の電池Bの開回路電圧を精度よく推定することができる。 As a result, the first voltage OCV1 and the ratio r2 acquired in the next and subsequent charge rate estimation processes when the voltage of the battery B during the pause period drops will be the case where the voltage of the battery B during the pause period drops. When the value is the same as or substantially the same as the first voltage OCV1 and the ratio r2 acquired in the current charge rate estimation process, and the voltage drop width of the battery B due to polarization is constant or substantially constant. By using the coefficient b12 in the next and subsequent charge rate estimation processes when the voltage of the battery B drops during the rest period, the estimated value of the open circuit voltage of the battery B after the polarization is eliminated is the third measured value. The voltage can be approached to OCV, and the open circuit voltage of the battery B after the polarization is eliminated can be estimated accurately.

<分極解消後の電池Bの開回路電圧の推定例、及び、係数の更新例(その7)>
推定部5は、休止期間中の電池Bの電圧が下降する場合の今回の充電率推定処理において、比r1=第2の電圧OCV2/第1の電圧OCV1を計算するとともに記憶部4から係数b21を読み出すことにより上記比rとしての比r1及び上記係数bとしての係数b21を求め、電圧=第2の電圧OCV2−比r1×係数b21を計算した結果を、分極解消後の電池Bの開回路電圧として推定する。
<Example of estimating the open circuit voltage of battery B after elimination of polarization and example of updating the coefficient (7)>
In the current charge rate estimation process when the voltage of the battery B drops during the pause period, the estimation unit 5 calculates the ratio r1 = the second voltage OCV2 / the first voltage OCV1 and also calculates the coefficient b21 from the storage unit 4. The ratio r1 as the ratio r and the coefficient b21 as the coefficient b are obtained by reading out, and the result of calculating the voltage = second voltage OCV2-ratio r1 × coefficient b21 is the result of opening the battery B after depolarization. Estimated as voltage.

また、推定部5は、休止期間中の電池Bの電圧が下降する場合の今回の充電率推定処理において、電池Bの分極が解消されたと判断すると、係数b21=(第2の電圧OCV2−第3の電圧OCV3)/比r1を計算した結果を、休止期間中の電池Bの電圧が下降する場合の次回以降の充電率推定処理に用いる係数b21として記憶部4に記憶させる。 Further, when the estimation unit 5 determines that the polarization of the battery B has been eliminated in the current charge rate estimation process when the voltage of the battery B drops during the pause period, the coefficient b21 = (second voltage OCV2-th). The result of calculating the voltage OCV3) / ratio r1 of 3 is stored in the storage unit 4 as a coefficient b21 used for the next and subsequent charge rate estimation processing when the voltage of the battery B during the rest period drops.

これにより、休止期間中の電池Bの電圧が下降する場合の次回以降の充電率推定処理で取得される第2の電圧OCV2及び比r1が、休止期間中の電池Bの電圧が下降する場合の今回の充電率推定処理で取得された第2の電圧OCV2及び比r1と同じ値または略同じ値である場合で、かつ、分極による電池Bの電圧の下降幅が一定または略一定である場合、休止期間中の電池Bの電圧が下降する場合の次回以降の充電率推定処理において係数b21を用いることで、分極解消後の電池Bの開回路電圧の推定値を、実測値である第3の電圧OCVに近づけることができ、分極解消後の電池Bの開回路電圧を精度よく推定することができる。 As a result, when the voltage of the battery B during the pause period drops, the second voltage OCV2 and the ratio r1 acquired in the next and subsequent charge rate estimation processes will be the case where the voltage of the battery B during the pause period drops. When the second voltage OCV2 and the ratio r1 acquired in the current charge rate estimation process have the same value or substantially the same value, and the voltage drop width of the battery B due to polarization is constant or substantially constant. By using the coefficient b21 in the next and subsequent charge rate estimation processes when the voltage of the battery B drops during the pause period, the estimated value of the open circuit voltage of the battery B after the polarization is eliminated is the third measured value. The voltage can be approached to OCV, and the open circuit voltage of the battery B after the polarization is eliminated can be estimated accurately.

<分極解消後の電池Bの開回路電圧の推定例、及び、係数の更新例(その8)>
推定部5は、休止期間中の電池Bの電圧が下降する場合の今回の充電率推定処理において、比r2=第1の電圧OCV1/第2の電圧OCV2を計算するとともに記憶部4から係数b22を読み出すことにより上記比rとしての比r2及び上記係数bとしての係数b22を求め、電圧=第2の電圧OCV2−比r2×係数b22を計算した結果を、分極解消後の電池Bの開回路電圧として推定する。
<Example of estimating the open circuit voltage of battery B after elimination of polarization and example of updating the coefficient (No. 8)>
The estimation unit 5 calculates the ratio r2 = the first voltage OCV1 / the second voltage OCV2 and the coefficient b22 from the storage unit 4 in the current charge rate estimation process when the voltage of the battery B drops during the pause period. The ratio r2 as the ratio r and the coefficient b22 as the coefficient b are obtained by reading out, and the result of calculating the voltage = second voltage OCV2-ratio r2 × coefficient b22 is the result of opening the battery B after depolarization. Estimated as voltage.

また、推定部5は、休止期間中の電池Bの電圧が下降する場合の今回の充電率推定処理において、電池Bの分極が解消されたと判断すると、係数b22=(第2の電圧OCV2−第3の電圧OCV3)/比r2を計算した結果を、休止期間中の電池Bの電圧が下降する場合の次回以降の充電率推定処理に用いる係数b22として記憶部4に記憶させる。 Further, when the estimation unit 5 determines that the polarization of the battery B has been eliminated in the current charge rate estimation process when the voltage of the battery B drops during the pause period, the coefficient b22 = (second voltage OCV2-th). The result of calculating the voltage OCV3) / ratio r2 of 3 is stored in the storage unit 4 as a coefficient b22 to be used for the next and subsequent charge rate estimation processing when the voltage of the battery B during the rest period drops.

これにより、休止期間中の電池Bの電圧が下降する場合の次回以降の充電率推定処理で取得される第2の電圧OCV2及び比r2が、休止期間中の電池Bの電圧が下降する場合の今回の充電率推定処理で取得された第2の電圧OCV2及び比r2と同じ値または略同じ値である場合で、かつ、分極による電池Bの電圧の下降幅が一定または略一定である場合、休止期間中の電池Bの電圧が下降する場合の次回以降の充電率推定処理において係数b22を用いることで、分極解消後の電池Bの開回路電圧の推定値を、実測値である第3の電圧OCVに近づけることができ、分極解消後の電池Bの開回路電圧を精度よく推定することができる。 As a result, the second voltage OCV2 and the ratio r2 acquired in the next and subsequent charge rate estimation processes when the voltage of the battery B during the pause period drops will be the case when the voltage of the battery B during the pause period drops. When the second voltage OCV2 and the ratio r2 acquired in the current charge rate estimation process have the same value or substantially the same value, and the voltage drop width of the battery B due to polarization is constant or substantially constant. By using the coefficient b22 in the next and subsequent charge rate estimation processes when the voltage of the battery B drops during the suspension period, the estimated value of the open circuit voltage of the battery B after the polarization is eliminated is the third measured value. The voltage can be approached to OCV, and the open circuit voltage of the battery B after the polarization is eliminated can be estimated accurately.

このように、実施形態の電池パックでは、電池Bの放電終了後または充電終了後、分極解消後の電池Bの開回路電圧を精度よく推定することができるため、その推定した開回路電圧を用いて、電池Bの充電率を精度よく推定することができる。 As described above, in the battery pack of the embodiment, since the open circuit voltage of the battery B after the discharge of the battery B or the charge is completed and the polarization is eliminated can be accurately estimated, the estimated open circuit voltage is used. Therefore, the charge rate of the battery B can be estimated accurately.

また、実施形態の電池パックでは、分極解消後の電池Bの開回路電圧の実測値を用いて、係数a、bを更新する構成であるため、次回以降の充電率推定処理で推定される電池Bの開回路電圧の推定精度を向上させることができる。 Further, since the battery pack of the embodiment has a configuration in which the coefficients a and b are updated by using the measured value of the open circuit voltage of the battery B after the polarization is eliminated, the battery estimated in the charge rate estimation process from the next time onward. The estimation accuracy of the open circuit voltage of B can be improved.

また、実施形態の電池パックでは、休止期間において、第1の電圧OCV1及び第2の電圧OCV2を取得することが可能であれば、休止期間が比較的短い時間であっても、分極解消後の電池Bの開回路電圧を精度よく推定することができる。 Further, in the battery pack of the embodiment, if it is possible to acquire the first voltage OCV1 and the second voltage OCV2 in the pause period, even if the pause period is a relatively short time, after the polarization is eliminated. The open circuit voltage of the battery B can be estimated accurately.

また、本発明は、以上の実施の形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。
<変形例1>
図6は、変形例1における開回路電圧推定処理の一例を示すフローチャートである。
Further, the present invention is not limited to the above embodiments, and various improvements and changes can be made without departing from the gist of the present invention.
<Modification example 1>
FIG. 6 is a flowchart showing an example of the open circuit voltage estimation process in the first modification.

まず、推定部5は、電圧検出部2により検出される電圧Vが上昇していると判断すると(S11:Yes)、比r及び係数aを求め(S12)、比rが閾値rth以下であると判断すると(S21:Yes)、係数aを第1の係数aとし(S22)、比rと係数aとを乗算し(S13)、第1の電圧OCV1または第2の電圧OCV2に、比rと係数aとを乗算した値を加算した結果を、分極解消後の電池Bの開回路電圧とする(S14)。 First, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is increasing (S11: Yes), the ratio r and the coefficient a are obtained (S12), and the ratio r is equal to or less than the threshold rth. (S21: Yes), the coefficient a is set to the first coefficient a (S22), the ratio r is multiplied by the coefficient a (S13), and the ratio r is added to the first voltage OCV1 or the second voltage OCV2. The result of adding the value obtained by multiplying the coefficient a by the coefficient a is taken as the open circuit voltage of the battery B after the polarization is eliminated (S14).

一方、推定部5は、比rが閾値rthよりも大きいと判断すると(S21:Yes)、係数aを第1の係数aよりも小さい第2の係数aとし(S23)、比rと係数aとを乗算し(S13)、第1の電圧OCV1または第2の電圧OCV2に、比rと係数aとを乗算した値を加算した結果を、分極解消後の電池Bの開回路電圧とする(S14)。 On the other hand, when the estimation unit 5 determines that the ratio r is larger than the threshold rhth (S21: Yes), the coefficient a is set to the second coefficient a smaller than the first coefficient a (S23), and the ratio r and the coefficient a are set. (S13), and the result of adding the value obtained by multiplying the first voltage OCV1 or the second voltage OCV2 by the ratio r and the coefficient a is taken as the open circuit voltage of the battery B after polarization elimination (S13). S14).

また、推定部5は、電圧検出部2により検出される電圧Vが下降していると判断すると(S11:No)、比r及び係数bを求め(S15)、比rが閾値rth以下であると判断すると(S24:Yes)、係数bを第1の係数bとし(S25)、比rと係数bとを乗算し(S16)、第1の電圧OCV1または第2の電圧OCV2から、比rと係数bとを乗算した値を減算した結果を、分極解消後の電池Bの開回路電圧とする(S17)。 Further, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is decreasing (S11: No), the ratio r and the coefficient b are obtained (S15), and the ratio r is equal to or less than the threshold value rth. (S24: Yes), the coefficient b is set to the first coefficient b (S25), the ratio r is multiplied by the coefficient b (S16), and the ratio r is derived from the first voltage OCV1 or the second voltage OCV2. The result of subtracting the value obtained by multiplying and the coefficient b is taken as the open circuit voltage of the battery B after the polarization is eliminated (S17).

一方、推定部5は、比rが閾値rthよりも大きいと判断すると(S24:No)、係数bを第1の係数bよりも小さい第2の係数bとし(S26)、比rと係数bとを乗算し(S16)、第1の電圧OCV1または第2の電圧OCV2から、比rと係数bとを乗算した値を減算した結果を、分極解消後の電池Bの開回路電圧とする(S17)。 On the other hand, when the estimation unit 5 determines that the ratio r is larger than the threshold value rth (S24: No), the coefficient b is set to the second coefficient b smaller than the first coefficient b (S26), and the ratio r and the coefficient b are set. And (S16), and the result of subtracting the value obtained by multiplying the ratio r and the coefficient b from the first voltage OCV1 or the second voltage OCV2 is taken as the open circuit voltage of the battery B after polarization elimination (S16). S17).

なお、推定部5は、比rが小さくなるほど、係数a、bを大きくし、比rが大きくなるほど、係数a、bを小さくするように構成してもよい。
図6に示す開回路電圧推定処理によれば、比rが小さくなると、係数a、bを大きくし、比rが大きくなると、係数a、bを小さくすることができるため、比rの変動による比rと係数a、bとの乗算値の変動を抑えることができる。これにより、電圧検出部2により検出される電圧Vに含まれるノイズなどで比rが変動してしまっても、分極解消後の電池Bの開回路電圧の変動を抑えることができるため、分極解消後の電池Bの開回路電圧を精度よく推定することができ、電池Bの充電率を精度よく推定することができる。
The estimation unit 5 may be configured so that the coefficients a and b become larger as the ratio r becomes smaller, and the coefficients a and b become smaller as the ratio r becomes larger.
According to the open-circuit voltage estimation process shown in FIG. 6, when the ratio r is small, the coefficients a and b can be increased, and when the ratio r is large, the coefficients a and b can be decreased, so that the ratio r fluctuates. Fluctuations in the multiplication value of the ratio r and the coefficients a and b can be suppressed. As a result, even if the ratio r fluctuates due to noise contained in the voltage V detected by the voltage detection unit 2, the fluctuation of the open circuit voltage of the battery B after the polarization is eliminated can be suppressed, so that the polarization is eliminated. The open circuit voltage of the battery B later can be estimated accurately, and the charge rate of the battery B can be estimated accurately.

<変形例2>
第2の電圧OCV2を第1の電圧OCV1で除算した値(比r1)を比rとする場合で、かつ、休止期間中の電池Bの電圧が上昇する場合において、前回の充電率推定処理に比べて、第1の電圧OCV1と第2の電圧OCV2との電圧差が一定に保たれたまま、第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが小さくなるものとする。
<Modification 2>
When the value obtained by dividing the second voltage OCV2 by the first voltage OCV1 (ratio r1) is used as the ratio r, and when the voltage of the battery B during the pause period rises, the previous charge rate estimation process is performed. In comparison, when the first voltage OCV1 and the second voltage OCV2 increase while the voltage difference between the first voltage OCV1 and the second voltage OCV2 is kept constant, the ratio r is assumed to decrease.

また、第2の電圧OCV2を第1の電圧OCV1で除算した値(比r1)を比rとする場合で、かつ、休止期間中の電池Bの電圧が下降する場合において、前回の充電率推定処理に比べて、第1の電圧OCV1と第2の電圧OCV2との電圧差が一定に保たれたまま、第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが大きくなるものとする。 Further, when the value obtained by dividing the second voltage OCV2 by the first voltage OCV1 (ratio r1) is taken as the ratio r, and when the voltage of the battery B during the rest period drops, the previous charge rate estimation Compared with the processing, when the first voltage OCV1 and the second voltage OCV2 become larger while the voltage difference between the first voltage OCV1 and the second voltage OCV2 is kept constant, the ratio r becomes larger. To do.

また、第1の電圧OCV1を第2の電圧OCV2で除算した値(比r2)を比rとする場合で、かつ、休止期間中の電池Bの電圧が上昇する場合において、前回の充電率推定処理に比べて、第1の電圧OCV1と第2の電圧OCV2との電圧差が一定に保たれたまま、第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが大きくなるものとする。 Further, when the value obtained by dividing the first voltage OCV1 by the second voltage OCV2 (ratio r2) is taken as the ratio r, and when the voltage of the battery B during the rest period rises, the previous charge rate estimation Compared with the processing, when the first voltage OCV1 and the second voltage OCV2 become larger while the voltage difference between the first voltage OCV1 and the second voltage OCV2 is kept constant, the ratio r becomes larger. To do.

また、第1の電圧OCV1を第2の電圧OCV2で除算した値(比r2)を比rとする場合で、かつ、休止期間中の電池Bの電圧が下降する場合において、前回の充電率推定処理に比べて、第1の電圧OCV1と第2の電圧OCV2との電圧差が一定に保たれたまま、第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが小さくなるものとする。 Further, when the value obtained by dividing the first voltage OCV1 by the second voltage OCV2 (ratio r2) is taken as the ratio r, and when the voltage of the battery B during the rest period drops, the previous charge rate estimation Compared with the processing, when the first voltage OCV1 and the second voltage OCV2 become larger while the voltage difference between the first voltage OCV1 and the second voltage OCV2 is kept constant, the ratio r becomes smaller. To do.

図7は、変形例2における開回路電圧推定処理の一例を示すフローチャートである。
まず、推定部5は、電圧検出部2により検出される電圧Vが上昇していると判断すると(S11:Yes)、比r及び係数aを求め(S12)、比rと係数aとを乗算する(S13)。
FIG. 7 is a flowchart showing an example of the open circuit voltage estimation process in the second modification.
First, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is increasing (S11: Yes), the ratio r and the coefficient a are obtained (S12), and the ratio r and the coefficient a are multiplied. (S13).

次に、推定部5は、S12で求めた比rが閾値rth以下であると判断すると(S31:Yes)、第1の電圧OCV1または第2の電圧OCV2に、S13で乗算した値を加算した結果に第1の補正値を加算した値を、分極解消後の電池Bの開回路電圧とする(S32)。 Next, when the estimation unit 5 determines that the ratio r obtained in S12 is equal to or less than the threshold value rth (S31: Yes), the estimation unit 5 adds the value multiplied by S13 to the first voltage OCV1 or the second voltage OCV2. The value obtained by adding the first correction value to the result is used as the open circuit voltage of the battery B after the polarization is eliminated (S32).

一方、推定部5は、S12で求めた比rが閾値rthよりも大きいと判断すると(S31:No)、第1の電圧OCV1または第2の電圧OCV2に、S13で乗算した値を加算した結果に第1の補正値よりも小さい第2の補正値を加算した値を、分極解消後の電池Bの開回路電圧とする(S33)。 On the other hand, when the estimation unit 5 determines that the ratio r obtained in S12 is larger than the threshold value rth (S31: No), the result of adding the value multiplied by S13 to the first voltage OCV1 or the second voltage OCV2. The value obtained by adding the second correction value smaller than the first correction value to the first correction value is taken as the open circuit voltage of the battery B after the polarization is eliminated (S33).

また、推定部5は、電圧検出部2により検出される電圧Vが下降していると判断すると(S11:No)、比r及び係数bを求め(S15)、比rと係数bとを乗算する(S16)。 Further, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is decreasing (S11: No), the estimation unit 5 obtains the ratio r and the coefficient b (S15), and multiplies the ratio r and the coefficient b. (S16).

次に、推定部5は、S15で求めた比rが閾値rth以下であると判断すると(S34:Yes)、第1の電圧OCV1または第2の電圧OCV2から、S16で乗算した値を減算した結果に第1の補正値を減算した値を、分極解消後の電池Bの開回路電圧とする(S35)。 Next, when the estimation unit 5 determines that the ratio r obtained in S15 is equal to or less than the threshold value rth (S34: Yes), the estimation unit 5 subtracts the value multiplied by S16 from the first voltage OCV1 or the second voltage OCV2. The value obtained by subtracting the first correction value from the result is used as the open circuit voltage of the battery B after the polarization is eliminated (S35).

一方、推定部5は、S15で求めた比rが閾値rthよりも大きいと判断すると(S34:No)、第1の電圧OCV1または第2の電圧OCV2から、S16で乗算した値を減算した結果に第1の補正値よりも小さい第2の補正値を減算した値を、分極解消後の電池Bの開回路電圧とする(S36)。 On the other hand, when the estimation unit 5 determines that the ratio r obtained in S15 is larger than the threshold value rth (S34: No), the result of subtracting the value multiplied by S16 from the first voltage OCV1 or the second voltage OCV2. The value obtained by subtracting the second correction value, which is smaller than the first correction value, is used as the open circuit voltage of the battery B after the polarization is eliminated (S36).

なお、推定部5は、比rが小さくなるほど、補正値を大きくし、比rが大きくなるほど、補正値を小さくするように構成してもよい。
図7に示す開回路電圧推定処理によれば、比rが小さくなると、補正値を大きくし、比rが大きくなると、補正値を小さくすることができるため、比rの変動による分極解消後の電池Bの開回路電圧の推定値の変動を抑えることができる。これにより、電圧検出部2により検出される電圧Vに含まれるノイズなどで比rが変動してしまっても、分極解消後の電池Bの開回路電圧の変動を抑えることができるため、分極解消後の電池Bの開回路電圧を精度よく推定することができ、電池Bの充電率を精度よく推定することができる。
The estimation unit 5 may be configured to increase the correction value as the ratio r decreases and decrease the correction value as the ratio r increases.
According to the open-circuit voltage estimation process shown in FIG. 7, when the ratio r is small, the correction value can be increased, and when the ratio r is large, the correction value can be decreased. Therefore, after the polarization is eliminated due to the fluctuation of the ratio r. Fluctuations in the estimated value of the open circuit voltage of the battery B can be suppressed. As a result, even if the ratio r fluctuates due to noise contained in the voltage V detected by the voltage detection unit 2, the fluctuation of the open circuit voltage of the battery B after the polarization is eliminated can be suppressed, so that the polarization is eliminated. The open circuit voltage of the battery B later can be estimated accurately, and the charge rate of the battery B can be estimated accurately.

<変形例3>
電池Bは、前回の充電率推定処理に比べて、図2(a)または図2(b)に示す時刻t0において電圧検出部2により検出される電圧Vが小さくなると、分極解消時間が長くなり、時刻t0において電圧検出部2により検出される電圧Vが大きくなると、分極解消時間が短くなるという特性を有するものとする。また、電池Bは、時刻t0において電圧検出部2により検出される電圧Vの大きさによらず分極による電圧の変動幅が一定になるという特性を有するものとする。これらの特性を電池Bが有する場合、分極解消時間が長くなると、電池Bの電圧が緩やかに上昇するようになるため、図2(a)に示す第1の電圧OCV1及び第2の電圧OCV2が小さくなる。また、分極解消時間が長くなると、電池Bの電圧が緩やかに下降するようになるため、図2(b)に示す第1の電圧OCV1及び第2の電圧OCV2が大きくなる。一方、分極解消時間が短くなると、電池Bの電圧が急峻に上昇するようになるため、図2(a)に示す第1の電圧OCV1及び第2の電圧OCV2が大きくなる。また、分極解消時間が短くなると、電池Bの電圧が急峻に下降するようになるため、図2(b)に示す第1の電圧OCV1及び第2の電圧OCV2が小さくなる。
<Modification example 3>
In the battery B, the polarization elimination time becomes longer when the voltage V detected by the voltage detection unit 2 becomes smaller at the time t0 shown in FIG. 2A or FIG. 2B as compared with the previous charge rate estimation process. As the voltage V detected by the voltage detection unit 2 increases at time t0, the polarization elimination time becomes shorter. Further, the battery B has a characteristic that the fluctuation range of the voltage due to polarization becomes constant regardless of the magnitude of the voltage V detected by the voltage detection unit 2 at time t0. When the battery B has these characteristics, the voltage of the battery B gradually rises as the polarization elimination time becomes longer, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2A are It becomes smaller. Further, as the polarization elimination time becomes longer, the voltage of the battery B gradually decreases, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2B become large. On the other hand, when the polarization elimination time is shortened, the voltage of the battery B rises sharply, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2A become large. Further, when the polarization elimination time is shortened, the voltage of the battery B drops sharply, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2B become smaller.

図8は、変形例3における開回路電圧推定処理の一例を示すフローチャートである。
<第2の電圧OCV2を第1の電圧OCV1で除算した値(比r1)を比rとする場合>
休止期間中の電池Bの電圧が上昇する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが小さくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが大きくなるものとする。また、休止期間中の電池Bの電圧が下降する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが大きくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが小さくなるものとする。
FIG. 8 is a flowchart showing an example of the open circuit voltage estimation process in the modified example 3.
<When the value obtained by dividing the second voltage OCV2 by the first voltage OCV1 (ratio r1) is defined as the ratio r>
When the voltage of the battery B rises during the rest period, the depolarization time of the battery B becomes longer, and when the first voltage OCV1 and the second voltage OCV2 become smaller, the ratio r becomes smaller and the depolarization time of the battery B becomes smaller. It is assumed that the ratio r increases as the first voltage OCV1 and the second voltage OCV2 become shorter and larger. Further, when the voltage of the battery B drops during the pause period, the polarization elimination time of the battery B becomes long, and when the first voltage OCV1 and the second voltage OCV2 increase, the ratio r increases and the polarization of the battery B is eliminated. As the time becomes shorter and the first voltage OCV1 and the second voltage OCV2 become smaller, the ratio r becomes smaller.

まず、推定部5は、電圧検出部2により検出される電圧Vが上昇していると判断すると(S11:Yes)、比r及び係数aを求め(S12)、第1の電圧OCV1が第1の閾値Vth以下であると判断すると、または、第2の電圧OCV2が第2の閾値Vth以下であると判断すると(S41:Yes)、係数aを第1の係数aとし(S42)、比rと係数aとを乗算し(S13)、第1の電圧OCV1または第2の電圧OCV2に、比rと係数aとを乗算した値を加算した結果を、分極解消後の電池Bの開回路電圧とする(S14)。なお、第1の閾値Vthと第2の閾値Vthは、互いに同じ値でもよいし、互いに異なる値でもよい。 First, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is rising (S11: Yes), the ratio r and the coefficient a are obtained (S12), and the first voltage OCV1 is the first. If it is determined that the voltage is equal to or less than the threshold Vth of, or if it is determined that the second voltage OCV2 is equal to or less than the second threshold Vth (S41: Yes), the coefficient a is set to the first coefficient a (S42) and the ratio r And the coefficient a are multiplied (S13), and the result of adding the value obtained by multiplying the first voltage OCV1 or the second voltage OCV2 by the ratio r and the coefficient a is the open circuit voltage of the battery B after the polarization is eliminated. (S14). The first threshold value Vth and the second threshold value Vth may be the same value or different values from each other.

一方、推定部5は、第1の電圧OCV1が第1の閾値Vthよりも大きいと判断すると、または、第2の電圧OCV2が第2の閾値Vthよりも大きいと判断すると(S41:No)、係数aを第1の係数aよりも小さい第2の係数aとし(S43)、比rと係数aとを乗算し(S13)、第1の電圧OCV1または第2の電圧OCV2に、比rと係数aとを乗算した値を加算した結果を、分極解消後の電池Bの開回路電圧とする(S14)。 On the other hand, when the estimation unit 5 determines that the first voltage OCV1 is larger than the first threshold Vth, or determines that the second voltage OCV2 is larger than the second threshold Vth (S41: No), Let the coefficient a be the second coefficient a smaller than the first coefficient a (S43), multiply the ratio r by the coefficient a (S13), and add the ratio r to the first voltage OCV1 or the second voltage OCV2. The result of adding the value obtained by multiplying the coefficient a by the coefficient a is used as the open circuit voltage of the battery B after the polarization is eliminated (S14).

また、推定部5は、電圧検出部2により検出される電圧Vが下降していると判断すると(S11:No)、比r及び係数bを求め(S15)、第1の電圧OCV1が第1の閾値Vth以下であると判断すると、または、第2の電圧OCV2が第2の閾値Vth以下であると判断すると(S44:Yes)、係数bを第1の係数bとし(S45)、比rと係数bとを乗算し(S16)、第1の電圧OCV1または第2の電圧OCV2から、比rと係数bとを乗算した値を減算した結果を、分極解消後の電池Bの開回路電圧とする(S17)。 Further, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is decreasing (S11: No), the ratio r and the coefficient b are obtained (S15), and the first voltage OCV1 is the first. If it is determined that the voltage is equal to or less than the threshold Vth of, or if it is determined that the second voltage OCV2 is equal to or less than the second threshold Vth (S44: Yes), the coefficient b is set to the first coefficient b (S45) and the ratio r And the coefficient b (S16), and the result of subtracting the value obtained by multiplying the ratio r and the coefficient b from the first voltage OCV1 or the second voltage OCV2 is the open circuit voltage of the battery B after the polarization is eliminated. (S17).

一方、推定部5は、第1の電圧OCV1が第1の閾値Vthよりも大きいと判断すると、または、第2の電圧OCV2が第2の閾値Vthよりも大きいと判断すると(S44:No)、係数bを第1の係数bよりも小さい第2の係数bとし(S46)、比rと係数bとを乗算し(S16)、第1の電圧OCV1または第2の電圧OCV2から、比rと係数bとを乗算した値を減算した結果を、分極解消後の電池Bの開回路電圧とする(S17)。 On the other hand, when the estimation unit 5 determines that the first voltage OCV1 is larger than the first threshold Vth, or determines that the second voltage OCV2 is larger than the second threshold Vth (S44: No), Let the coefficient b be a second coefficient b smaller than the first coefficient b (S46), multiply the ratio r by the coefficient b (S16), and from the first voltage OCV1 or the second voltage OCV2, the ratio r The result of subtracting the value obtained by multiplying by the coefficient b is taken as the open circuit voltage of the battery B after the polarization is eliminated (S17).

なお、推定部5は、第1の電圧OCV1または第2の電圧OCVが小さくなるほど、係数a、bを大きくし、第1の電圧OCV1または第2の電圧OCVが大きくなるほど、係数a、bを小さくするように構成してもよい。 The estimation unit 5 increases the coefficients a and b as the first voltage OCV1 or the second voltage OCV decreases, and increases the coefficients a and b as the first voltage OCV1 or the second voltage OCV increases. It may be configured to be small.

図8に示す開回路電圧推定処理によれば、第2の電圧OCV2を第1の電圧OCV1で除算した値を比rとする場合、第1の電圧OCV1または第2の電圧OCV2が小さくなると、係数a、bを大きくし、第1の電圧OCV1または第2の電圧OCV2が大きくなると、係数a、bを小さくすることができる。 According to the open-circuit voltage estimation process shown in FIG. 8, when the value obtained by dividing the second voltage OCV2 by the first voltage OCV1 is defined as the ratio r, when the first voltage OCV1 or the second voltage OCV2 becomes smaller, When the coefficients a and b are increased and the first voltage OCV1 or the second voltage OCV2 is increased, the coefficients a and b can be decreased.

そのため、前回の充電率推定処理と比べて、第1の電圧OCV1または第2の電圧OCV2が小さい場合、すなわち、比rが小さくなる場合、係数a、bを大きくすることができるため、分極解消後の電池Bの開回路電圧の推定値を実際の値に近づけることができる。 Therefore, when the first voltage OCV1 or the second voltage OCV2 is smaller than the previous charge rate estimation process, that is, when the ratio r is smaller, the coefficients a and b can be increased, so that the polarization is eliminated. The estimated value of the open circuit voltage of the battery B later can be brought close to the actual value.

また、前回の充電率推定処理と比べて、第1の電圧OCV1または第2の電圧OCV2が大きい場合、すなわち、比rが大きくなる場合、係数a、bを小さくすることができるため、分極解消後の電池Bの開回路電圧の推定値を実際の値に近づけることができる。 Further, when the first voltage OCV1 or the second voltage OCV2 is larger than the previous charge rate estimation process, that is, when the ratio r is larger, the coefficients a and b can be reduced, so that the polarization is eliminated. The estimated value of the open circuit voltage of the battery B later can be brought close to the actual value.

これにより、分極解消後の電池Bの開回路電圧を精度よく推定することができるため、電池Bの充電率を精度よく求めることができる。
<第1の電圧OCV1を第2の電圧OCV2で除算した値(比r2)を比rとする場合>
休止期間中の電池Bの電圧が上昇する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが大きくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが小さくなるものとする。また、休止期間中の電池Bの電圧が下降する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが小さくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが大きくなるものとする。
As a result, the open circuit voltage of the battery B after the polarization is eliminated can be estimated with high accuracy, so that the charge rate of the battery B can be obtained with high accuracy.
<When the value obtained by dividing the first voltage OCV1 by the second voltage OCV2 (ratio r2) is the ratio r>
When the voltage of the battery B rises during the rest period, the depolarization time of the battery B becomes longer, and when the first voltage OCV1 and the second voltage OCV2 become smaller, the ratio r becomes larger and the depolarization time of the battery B becomes longer. As the voltage becomes shorter and the first voltage OCV1 and the second voltage OCV2 become larger, the ratio r becomes smaller. Further, when the voltage of the battery B drops during the pause period, the polarization elimination time of the battery B becomes long, and when the first voltage OCV1 and the second voltage OCV2 increase, the ratio r decreases and the polarization of the battery B is eliminated. As the time becomes shorter and the first voltage OCV1 and the second voltage OCV2 become smaller, the ratio r is assumed to be larger.

まず、推定部5は、電圧検出部2により検出される電圧Vが上昇していると判断すると(S11:Yes)、比r及び係数aを求め(S12)、第1の電圧OCV1が第1の閾値Vth以下であると判断すると、または、第2の電圧OCV2が第2の閾値Vth以下であると判断すると(S41:Yes)、係数aを第1の係数aとし(S42)、比rと係数aとを乗算し(S13)、第1の電圧OCV1または第2の電圧OCV2に、比rと係数aとを乗算した値を加算した結果を、分極解消後の電池Bの開回路電圧とする(S14)。なお、第1の閾値Vthと第2の閾値Vthは、互いに同じ値でもよいし、互いに異なる値でもよい。 First, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is rising (S11: Yes), the ratio r and the coefficient a are obtained (S12), and the first voltage OCV1 is the first. If it is determined that the voltage is equal to or less than the threshold Vth of, or if it is determined that the second voltage OCV2 is equal to or less than the second threshold Vth (S41: Yes), the coefficient a is set to the first coefficient a (S42) and the ratio r And the coefficient a are multiplied (S13), and the result of adding the value obtained by multiplying the first voltage OCV1 or the second voltage OCV2 by the ratio r and the coefficient a is the open circuit voltage of the battery B after the polarization is eliminated. (S14). The first threshold value Vth and the second threshold value Vth may be the same value or different values from each other.

一方、推定部5は、第1の電圧OCV1が第1の閾値Vthよりも大きいと判断すると、または、第2の電圧OCV2が第2の閾値Vthよりも大きいと判断すると(S41:No)、係数aを第1の係数aよりも大きい第2の係数aとし(S43)、比rと係数aとを乗算し(S13)、第1の電圧OCV1または第2の電圧OCV2に、比rと係数aとを乗算した値を加算した結果を、分極解消後の電池Bの開回路電圧とする(S14)。 On the other hand, when the estimation unit 5 determines that the first voltage OCV1 is larger than the first threshold Vth, or determines that the second voltage OCV2 is larger than the second threshold Vth (S41: No), Let the coefficient a be the second coefficient a larger than the first coefficient a (S43), multiply the ratio r by the coefficient a (S13), and add the ratio r to the first voltage OCV1 or the second voltage OCV2. The result of adding the value obtained by multiplying the coefficient a by the coefficient a is used as the open circuit voltage of the battery B after the polarization is eliminated (S14).

また、推定部5は、電圧検出部2により検出される電圧Vが下降していると判断すると(S11:No)、比r及び係数bを求め(S15)、第1の電圧OCV1が第1の閾値Vth以下であると判断すると、または、第2の電圧OCV2が第2の閾値Vth以下であると判断すると(S44:Yes)、係数bを第1の係数bとし(S45)、比rと係数bとを乗算し(S16)、第1の電圧OCV1または第2の電圧OCV2から、比rと係数bとを乗算した値を減算した結果を、分極解消後の電池Bの開回路電圧とする(S17)。 Further, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is decreasing (S11: No), the ratio r and the coefficient b are obtained (S15), and the first voltage OCV1 is the first. If it is determined that the voltage is equal to or less than the threshold Vth of, or if it is determined that the second voltage OCV2 is equal to or less than the second threshold Vth (S44: Yes), the coefficient b is set to the first coefficient b (S45) and the ratio r And the coefficient b (S16), and the result of subtracting the value obtained by multiplying the ratio r and the coefficient b from the first voltage OCV1 or the second voltage OCV2 is the open circuit voltage of the battery B after the polarization is eliminated. (S17).

一方、推定部5は、第1の電圧OCV1が第1の閾値Vthよりも大きいと判断すると、または、第2の電圧OCV2が第2の閾値Vthよりも大きいと判断すると(S44:No)、係数bを第1の係数bよりも大きい第2の係数bとし(S46)、比rと係数bとを乗算し(S16)、第1の電圧OCV1または第2の電圧OCV2から、比rと係数bとを乗算した値を減算した結果を、分極解消後の電池Bの開回路電圧とする(S17)。 On the other hand, when the estimation unit 5 determines that the first voltage OCV1 is larger than the first threshold Vth, or determines that the second voltage OCV2 is larger than the second threshold Vth (S44: No), Let the coefficient b be the second coefficient b larger than the first coefficient b (S46), multiply the ratio r by the coefficient b (S16), and from the first voltage OCV1 or the second voltage OCV2, the ratio r The result of subtracting the value obtained by multiplying by the coefficient b is taken as the open circuit voltage of the battery B after the polarization is eliminated (S17).

なお、推定部5は、第1の電圧OCV1または第2の電圧OCVが小さくなるほど、係数a、bを小さくし、第1の電圧OCV1または第2の電圧OCVが大きくなるほど、係数a、bを大きくするように構成してもよい。 The estimation unit 5 reduces the coefficients a and b as the first voltage OCV1 or the second voltage OCV becomes smaller, and sets the coefficients a and b as the first voltage OCV1 or the second voltage OCV becomes larger. It may be configured to be large.

図8に示す開回路電圧推定処理によれば、第1の電圧OCV1を第2の電圧OCV2で除算した値を比rとする場合、第1の電圧OCV1または第2の電圧OCV2が小さくなると、係数a、bを小さくし、第1の電圧OCV1または第2の電圧OCV2が大きくなると、係数a、bを大きくすることができる。 According to the open-circuit voltage estimation process shown in FIG. 8, when the value obtained by dividing the first voltage OCV1 by the second voltage OCV2 is defined as the ratio r, when the first voltage OCV1 or the second voltage OCV2 becomes smaller, When the coefficients a and b are reduced and the first voltage OCV1 or the second voltage OCV2 is increased, the coefficients a and b can be increased.

そのため、前回の充電率推定処理と比べて、第1の電圧OCV1または第2の電圧OCV2が小さい場合、すなわち、比rが大きくなる場合、係数a、bを小さくすることができるため、分極解消後の電池Bの開回路電圧の推定値を実際の値に近づけることができる。 Therefore, when the first voltage OCV1 or the second voltage OCV2 is smaller than the previous charge rate estimation process, that is, when the ratio r is large, the coefficients a and b can be reduced, so that the polarization is eliminated. The estimated value of the open circuit voltage of the battery B later can be brought close to the actual value.

また、前回の充電率推定処理と比べて、第1の電圧OCV1または第2の電圧OCV2が大きい場合、すなわち、比rが小さくなる場合、係数a、bを大きくすることができるため、分極解消後の電池Bの開回路電圧の推定値を実際の値に近づけることができる。 Further, when the first voltage OCV1 or the second voltage OCV2 is larger than the previous charge rate estimation process, that is, when the ratio r is smaller, the coefficients a and b can be increased, so that the polarization is eliminated. The estimated value of the open circuit voltage of the battery B later can be brought close to the actual value.

これにより、分極解消後の電池Bの開回路電圧を精度よく推定することができるため、電池Bの充電率を精度よく求めることができる。 As a result, the open circuit voltage of the battery B after the polarization is eliminated can be estimated with high accuracy, so that the charge rate of the battery B can be obtained with high accuracy.

<変形例4>
電池Bは、前回の充電率推定処理に比べて、図2(a)または図2(b)に示す時刻t0において電圧検出部2により検出される電圧Vが小さくなると、分極解消時間が長くなり、時刻t0において電圧検出部2により検出される電圧Vが大きくなると、分極解消時間が短くなるという特性を有するものとする。また、電池Bは、時刻t0において電圧検出部2により検出される電圧Vの大きさによらず分極による電圧の変動幅が一定になるという特性を有するものとする。これらの特性を電池Bが有する場合、分極解消時間が長くなると、電池Bの電圧が緩やかに上昇するようになるため、図2(a)に示す第1の電圧OCV1及び第2の電圧OCV2が小さくなる。また、分極解消時間が長くなると、電池Bの電圧が緩やかに下降するようになるため、図2(b)に示す第1の電圧OCV1及び第2の電圧OCV2が大きくなる。一方、分極解消時間が短くなると、電池Bの電圧が急峻に上昇するようになるため、図2(a)に示す第1の電圧OCV1及び第2の電圧OCV2が大きくなる。また、分極解消時間が短くなると、電池Bの電圧が急峻に下降するようになるため、図2(b)に示す第1の電圧OCV1及び第2の電圧OCV2が小さくなる。また、第1の電圧OCV1と第2の電圧OCV2との差の絶対値を、電池Bの開回路電圧の変化量とする。また、充電率SOC1と充電率SOC2との差の絶対値を、電池Bの充電率の変化量とする。また、電池Bの開回路電圧の変化量を電池Bの充電率の変化量で除算した結果を、電池Bの充電率の変化量に対する電池Bの開回路電圧の変化量の変化率Rとする。また、電池Bは、図3に示すように、電池Bの開回路電圧及び充電率が大きい領域aの変化率Rが、電池Bの開回路電圧及び充電率が小さい領域bの変化率Rよりも大きいという特性を有するものとする。
<Modification example 4>
In the battery B, the polarization elimination time becomes longer when the voltage V detected by the voltage detection unit 2 becomes smaller at the time t0 shown in FIG. 2A or FIG. 2B as compared with the previous charge rate estimation process. As the voltage V detected by the voltage detection unit 2 increases at time t0, the polarization elimination time becomes shorter. Further, the battery B has a characteristic that the fluctuation range of the voltage due to polarization becomes constant regardless of the magnitude of the voltage V detected by the voltage detection unit 2 at time t0. When the battery B has these characteristics, the voltage of the battery B gradually rises as the polarization elimination time becomes longer, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2A are It becomes smaller. Further, as the polarization elimination time becomes longer, the voltage of the battery B gradually decreases, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2B become large. On the other hand, when the polarization elimination time is shortened, the voltage of the battery B rises sharply, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2A become large. Further, when the polarization elimination time is shortened, the voltage of the battery B drops sharply, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2B become smaller. Further, the absolute value of the difference between the first voltage OCV1 and the second voltage OCV2 is taken as the amount of change in the open circuit voltage of the battery B. Further, the absolute value of the difference between the charge rate SOC1 and the charge rate SOC2 is used as the amount of change in the charge rate of the battery B. Further, the result of dividing the change amount of the open circuit voltage of the battery B by the change amount of the charge rate of the battery B is defined as the change rate R of the change amount of the open circuit voltage of the battery B with respect to the change amount of the charge rate of the battery B. .. Further, as shown in FIG. 3, in the battery B, the rate of change R in the region a where the open circuit voltage and the charge rate of the battery B are large is larger than the rate of change R in the region b where the open circuit voltage and the charge rate of the battery B are small. It shall have the characteristic of being large.

図9は、変形例4における開回路電圧推定処理の一例を示すフローチャートである。
<第2の電圧OCV2を第1の電圧OCV1で除算した値(比r1)を比rとする場合>
休止期間中の電池Bの電圧が上昇する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが小さくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが大きくなるものとする。また、休止期間中の電池Bの電圧が下降する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが大きくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが小さくなるものとする。
FIG. 9 is a flowchart showing an example of the open circuit voltage estimation process in the modified example 4.
<When the value obtained by dividing the second voltage OCV2 by the first voltage OCV1 (ratio r1) is defined as the ratio r>
When the voltage of the battery B rises during the rest period, the depolarization time of the battery B becomes longer, and when the first voltage OCV1 and the second voltage OCV2 become smaller, the ratio r becomes smaller and the depolarization time of the battery B becomes smaller. It is assumed that the ratio r increases as the first voltage OCV1 and the second voltage OCV2 become shorter and larger. Further, when the voltage of the battery B drops during the pause period, the polarization elimination time of the battery B becomes long, and when the first voltage OCV1 and the second voltage OCV2 increase, the ratio r increases and the polarization of the battery B is eliminated. As the time becomes shorter and the first voltage OCV1 and the second voltage OCV2 become smaller, the ratio r becomes smaller.

まず、推定部5は、電圧検出部2により検出される電圧Vが上昇していると判断すると(S11:Yes)、比r及び係数aを求め(S12)、変化率Rが閾値Rthよりも大きいと判断すると(S51:Yes)、係数aを第1の係数aとし(S52)、比rと係数aとを乗算し(S13)、第1の電圧OCV1または第2の電圧OCV2に、比rと係数aとを乗算した値を加算した結果を、分極解消後の電池Bの開回路電圧とする(S14)。 First, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is rising (S11: Yes), the ratio r and the coefficient a are obtained (S12), and the rate of change R is greater than the threshold Rth. If it is determined to be large (S51: Yes), the coefficient a is set to the first coefficient a (S52), the ratio r is multiplied by the coefficient a (S13), and the ratio is added to the first voltage OCV1 or the second voltage OCV2. The result of adding the value obtained by multiplying r by the coefficient a is taken as the open circuit voltage of the battery B after the polarization is eliminated (S14).

一方、推定部5は、変化率Rが閾値Rth以下であると判断すると(S51:No)、係数aを第1の係数aよりも小さい第2の係数aとし(S53)、比rと係数aとを乗算し(S13)、第1の電圧OCV1または第2の電圧OCV2に、比rと係数aとを乗算した値を加算した結果を、分極解消後の電池Bの開回路電圧とする(S14)。 On the other hand, when the estimation unit 5 determines that the rate of change R is equal to or less than the threshold Rth (S51: No), the coefficient a is set to the second coefficient a smaller than the first coefficient a (S53), and the ratio r and the coefficient Multiply by a (S13) and add the value obtained by multiplying the first voltage OCV1 or the second voltage OCV2 by the ratio r and the coefficient a to obtain the open circuit voltage of the battery B after polarization elimination. (S14).

また、推定部5は、電圧検出部2により検出される電圧Vが下降していると判断すると(S11:No)、比r及び係数bを求め(S15)、変化率Rが閾値Rthよりも大きいと判断すると(S54:Yes)、係数bを第1の係数bとし(S55)、比rと係数bとを乗算し(S16)、第1の電圧OCV1または第2の電圧OCV2から、比rと係数bとを乗算した値を減算した結果を、分極解消後の電池Bの開回路電圧とする(S17)。 Further, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is decreasing (S11: No), the ratio r and the coefficient b are obtained (S15), and the rate of change R is higher than the threshold Rth. If it is determined to be large (S54: Yes), the coefficient b is set to the first coefficient b (S55), the ratio r is multiplied by the coefficient b (S16), and the ratio is calculated from the first voltage OCV1 or the second voltage OCV2. The result of subtracting the value obtained by multiplying r by the coefficient b is taken as the open circuit voltage of the battery B after the polarization is eliminated (S17).

一方、推定部5は、変化率Rが閾値Rth以下であると判断すると(S54:No)、係数bを第1の係数bよりも小さい第2の係数bとし(S56)、比rと係数bとを乗算し(S16)、第1の電圧OCV1または第2の電圧OCV2から、比rと係数bとを乗算した値を減算した結果を、分極解消後の電池Bの開回路電圧とする(S17)。 On the other hand, when the estimation unit 5 determines that the rate of change R is equal to or less than the threshold Rth (S54: No), the coefficient b is set to a second coefficient b smaller than the first coefficient b (S56), and the ratio r and the coefficient. Multiply by b (S16) and subtract the value obtained by multiplying the ratio r and the coefficient b from the first voltage OCV1 or the second voltage OCV2 to obtain the open circuit voltage of the battery B after polarization elimination. (S17).

なお、推定部5は、変化率Rが大きくなるほど、係数a、bを大きくし、変化率Rが小さくなるほど、係数a、bを小さくするように構成してもよい。
図9に示す開回路電圧推定処理によれば、第2の電圧OCV2を第1の電圧OCV1で除算した値を比rとする場合、変化率Rが大きくなると、係数a、bを大きくし、変化率Rが小さくなると、係数a、bを小さくすることができる。
The estimation unit 5 may be configured to increase the coefficients a and b as the rate of change R increases, and decrease the coefficients a and b as the rate of change R decreases.
According to the open circuit voltage estimation process shown in FIG. 9, when the value obtained by dividing the second voltage OCV2 by the first voltage OCV1 is defined as the ratio r, when the rate of change R increases, the coefficients a and b are increased. When the rate of change R becomes small, the coefficients a and b can be made small.

そのため、前回の充電率推定処理と比べて、変化率Rが大きくなる場合、すなわち、比rが小さくなる場合、係数a、bを大きくすることができるため、分極解消後の電池Bの開回路電圧の推定値を実際の値に近づけることができる。 Therefore, when the rate of change R is larger, that is, when the ratio r is smaller than in the previous charge rate estimation process, the coefficients a and b can be increased, so that the open circuit of the battery B after the polarization is eliminated. The estimated value of the voltage can be brought close to the actual value.

また、前回の充電率推定処理と比べて、変化率Rが小さくなる場合、すなわち、比rが大きくなる場合、係数a、bを小さくすることができるため、分極解消後の電池Bの開回路電圧の推定値を実際の値に近づけることができる。 Further, when the rate of change R becomes smaller, that is, when the ratio r becomes larger than in the previous charge rate estimation process, the coefficients a and b can be made smaller, so that the open circuit of the battery B after the polarization is eliminated. The estimated value of the voltage can be brought close to the actual value.

これにより、分極解消後の電池Bの開回路電圧を精度よく推定することができるため、電池Bの充電率を精度よく求めることができる。 As a result, the open circuit voltage of the battery B after the polarization is eliminated can be estimated with high accuracy, so that the charge rate of the battery B can be obtained with high accuracy.

<第1の電圧OCV1を第2の電圧OCV2で除算した値(比r2)を比rとする場合>
休止期間中の電池Bの電圧が上昇する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが大きくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが小さくなるものとする。また、休止期間中の電池Bの電圧が下降する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが小さくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが大きくなるものとする。
<When the value obtained by dividing the first voltage OCV1 by the second voltage OCV2 (ratio r2) is the ratio r>
When the voltage of the battery B rises during the rest period, the depolarization time of the battery B becomes longer, and when the first voltage OCV1 and the second voltage OCV2 become smaller, the ratio r becomes larger and the depolarization time of the battery B becomes longer. As the voltage becomes shorter and the first voltage OCV1 and the second voltage OCV2 become larger, the ratio r becomes smaller. Further, when the voltage of the battery B drops during the pause period, the polarization elimination time of the battery B becomes long, and when the first voltage OCV1 and the second voltage OCV2 increase, the ratio r decreases and the polarization of the battery B is eliminated. As the time becomes shorter and the first voltage OCV1 and the second voltage OCV2 become smaller, the ratio r is assumed to be larger.

まず、推定部5は、電圧検出部2により検出される電圧Vが上昇していると判断すると(S11:Yes)、比r及び係数aを求め(S12)、変化率Rが閾値Rthよりも大きいと判断すると(S51:Yes)、係数aを第1の係数aとし(S52)、比rと係数aとを乗算し(S13)、第1の電圧OCV1または第2の電圧OCV2に、比rと係数aとを乗算した値を加算した結果を、分極解消後の電池Bの開回路電圧とする(S14)。 First, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is rising (S11: Yes), the ratio r and the coefficient a are obtained (S12), and the rate of change R is greater than the threshold Rth. If it is determined to be large (S51: Yes), the coefficient a is set to the first coefficient a (S52), the ratio r is multiplied by the coefficient a (S13), and the ratio is added to the first voltage OCV1 or the second voltage OCV2. The result of adding the value obtained by multiplying r by the coefficient a is taken as the open circuit voltage of the battery B after the polarization is eliminated (S14).

一方、推定部5は、変化率Rが閾値Rth以下であると判断すると(S51:No)、係数aを第1の係数aよりも大きい第2の係数aとし(S53)、比rと係数aとを乗算し(S13)、第1の電圧OCV1または第2の電圧OCV2に、比rと係数aとを乗算した値を加算した結果を、分極解消後の電池Bの開回路電圧とする(S14)。 On the other hand, when the estimation unit 5 determines that the rate of change R is equal to or less than the threshold Rth (S51: No), the coefficient a is set to a second coefficient a larger than the first coefficient a (S53), and the ratio r and the coefficient. Multiply by a (S13) and add the value obtained by multiplying the first voltage OCV1 or the second voltage OCV2 by the ratio r and the coefficient a to obtain the open circuit voltage of the battery B after polarization elimination. (S14).

また、推定部5は、電圧検出部2により検出される電圧Vが下降していると判断すると(S11:No)、比r及び係数bを求め(S15)、変化率Rが閾値Rthよりも大きいと判断すると(S54:Yes)、係数bを第1の係数bとし(S55)、比rと係数bとを乗算し(S16)、第1の電圧OCV1または第2の電圧OCV2から、比rと係数bとを乗算した値を減算した結果を、分極解消後の電池Bの開回路電圧とする(S17)。 Further, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is decreasing (S11: No), the ratio r and the coefficient b are obtained (S15), and the rate of change R is higher than the threshold Rth. If it is determined to be large (S54: Yes), the coefficient b is set to the first coefficient b (S55), the ratio r is multiplied by the coefficient b (S16), and the ratio is calculated from the first voltage OCV1 or the second voltage OCV2. The result of subtracting the value obtained by multiplying r by the coefficient b is taken as the open circuit voltage of the battery B after the polarization is eliminated (S17).

一方、推定部5は、変化率Rが閾値Rth以下であると判断すると(S54:No)、係数bを第1の係数bよりも大きい第2の係数bとし(S56)、比rと係数bとを乗算し(S16)、第1の電圧OCV1または第2の電圧OCV2から、比rと係数bとを乗算した値を減算した結果を、分極解消後の電池Bの開回路電圧とする(S17)。 On the other hand, when the estimation unit 5 determines that the rate of change R is equal to or less than the threshold Rth (S54: No), the coefficient b is set to a second coefficient b larger than the first coefficient b (S56), and the ratio r and the coefficient. Multiply by b (S16) and subtract the value obtained by multiplying the ratio r and the coefficient b from the first voltage OCV1 or the second voltage OCV2 to obtain the open circuit voltage of the battery B after polarization elimination. (S17).

なお、推定部5は、変化率Rが大きくなるほど、係数a、bを小さくし、変化率Rが小さくなるほど、係数a、bを大きくするように構成してもよい。
図9に示す開回路電圧推定処理によれば、第1の電圧OCV1を第2の電圧OCV2で除算した値を比rとする場合、変化率Rが大きくなると、係数a、bを小さくし、変化率Rが小さくなると、係数a、bを大きくすることができる。
The estimation unit 5 may be configured so that the coefficients a and b decrease as the rate of change R increases, and the coefficients a and b increase as the rate of change R decreases.
According to the open circuit voltage estimation process shown in FIG. 9, when the value obtained by dividing the first voltage OCV1 by the second voltage OCV2 is defined as the ratio r, when the rate of change R increases, the coefficients a and b are reduced. When the rate of change R becomes small, the coefficients a and b can be increased.

そのため、前回の充電率推定処理と比べて、変化率Rが大きくなる場合、すなわち、比rが大きくなる場合、係数a、bを小さくすることができるため、分極解消後の電池Bの開回路電圧の推定値を実際の値に近づけることができる。 Therefore, when the rate of change R is larger, that is, when the ratio r is larger than in the previous charge rate estimation process, the coefficients a and b can be made smaller, so that the open circuit of the battery B after the polarization is eliminated. The estimated value of the voltage can be brought close to the actual value.

また、前回の充電率推定処理と比べて、変化率Rが小さくなる場合、すなわち、比rが小さくなる場合、係数a、bを大きくすることができるため、分極解消後の電池Bの開回路電圧の推定値を実際の値に近づけることができる。 Further, when the rate of change R is smaller than the previous charge rate estimation process, that is, when the ratio r is smaller, the coefficients a and b can be increased, so that the open circuit of the battery B after the polarization is eliminated. The estimated value of the voltage can be brought close to the actual value.

これにより、分極解消後の電池Bの開回路電圧を精度よく推定することができるため、電池Bの充電率を精度よく求めることができる。 As a result, the open circuit voltage of the battery B after the polarization is eliminated can be estimated with high accuracy, so that the charge rate of the battery B can be obtained with high accuracy.

<変形例5>
電池Bは、前回の充電率推定処理に比べて、図2(a)または図2(b)に示す時刻t0において温度検出部3により検出される温度Tが低くなると、分極解消時間が長くなり、時刻t0において温度検出部3により検出される温度Tが高くなると、分極解消時間が短くなるという特性を有するものとする。また、電池Bは、時刻t0において温度検出部3により検出される温度Tの大きさによらず分極による電圧の変動幅が一定になるという特性を有するものとする。これらの特性を電池Bが有する場合、分極解消時間が長くなると、電池Bの電圧が緩やかに上昇するようになるため、図2(a)に示す第1の電圧OCV1及び第2の電圧OCV2が小さくなる。また、分極解消時間が長くなると、電池Bの電圧が緩やかに下降するようになるため、図2(b)に示す第1の電圧OCV1及び第2の電圧OCV2が大きくなる。一方、分極解消時間が短くなると、電池Bの電圧が急峻に上昇するようになるため、図2(a)に示す第1の電圧OCV1及び第2の電圧OCV2が大きくなる。また、分極解消時間が短くなると、電池Bの電圧が急峻に下降するようになるため、図2(b)に示す第1の電圧OCV1及び第2の電圧OCV2が小さくなる。
<Modification 5>
The polarization elimination time of the battery B becomes longer when the temperature T detected by the temperature detection unit 3 is lower at the time t0 shown in FIG. 2A or FIG. 2B as compared with the previous charge rate estimation process. As the temperature T detected by the temperature detection unit 3 increases at time t0, the polarization elimination time becomes shorter. Further, the battery B has a characteristic that the fluctuation range of the voltage due to polarization becomes constant regardless of the magnitude of the temperature T detected by the temperature detection unit 3 at time t0. When the battery B has these characteristics, the voltage of the battery B gradually rises as the polarization elimination time becomes longer, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2A are It becomes smaller. Further, as the polarization elimination time becomes longer, the voltage of the battery B gradually decreases, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2B become large. On the other hand, when the polarization elimination time is shortened, the voltage of the battery B rises sharply, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2A become large. Further, when the polarization elimination time is shortened, the voltage of the battery B drops sharply, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2B become smaller.

図10は、変形例5における充電率推定処理の一例を示すフローチャートである。
まず、推定部5は、温度検出部3により検出される温度Tに応じて、第1及び第2の所定時間を設定する(S100)。なお、図10示すS101〜S112は、図4に示すS101〜S112と同様の処理であるため、その説明を省略する。
FIG. 10 is a flowchart showing an example of the charge rate estimation process in the modified example 5.
First, the estimation unit 5 sets the first and second predetermined times according to the temperature T detected by the temperature detection unit 3 (S100). Since S101 to S112 shown in FIG. 10 are the same processes as S101 to S112 shown in FIG. 4, the description thereof will be omitted.

例えば、推定部5は、時刻t0において温度検出部3により検出される温度Tが第1の温度よりも高い第2の温度のときの第1の所定時間及び第2の所定時間を、時刻t0において温度検出部3により検出される温度Tが第1の温度のときの第1の所定時間及び第2の所定時間よりも短い時間に設定する。 For example, the estimation unit 5 sets the first predetermined time and the second predetermined time when the temperature T detected by the temperature detection unit 3 at the time t0 is a second temperature higher than the first temperature at the time t0. The temperature T detected by the temperature detection unit 3 is set to a time shorter than the first predetermined time and the second predetermined time when the temperature T is the first temperature.

これにより、電池Bの温度が高くなると、第1の所定時間及び第2の所定時間を短くすることができるため、電池Bの電圧が上昇する場合、第1の電圧OCV1及び第2の電圧OCV2を低くすることができ、電池Bの電圧が下降する場合、第1の電圧OCV1及び第2の電圧OCV2を高くすることができる。 As a result, when the temperature of the battery B rises, the first predetermined time and the second predetermined time can be shortened. Therefore, when the voltage of the battery B rises, the first voltage OCV1 and the second voltage OCV2 When the voltage of the battery B drops, the first voltage OCV1 and the second voltage OCV2 can be increased.

また、電池Bの温度が低くなると、第1の所定時間及び第2の所定時間を長くすることができるため、電池Bの電圧が上昇する場合、第1の電圧OCV1及び第2の電圧OCV2を高くすることができ、電池Bの電圧が下降する場合、第1の電圧OCV1及び第2の電圧OCV2を低くすることができる。 Further, when the temperature of the battery B becomes low, the first predetermined time and the second predetermined time can be lengthened. Therefore, when the voltage of the battery B rises, the first voltage OCV1 and the second voltage OCV2 are used. When the voltage of the battery B drops, the first voltage OCV1 and the second voltage OCV2 can be lowered.

すなわち、電池Bの温度の変動による第1の電圧OCV1及び第2の電圧OCV2の変動を抑えることができるため、分極解消後の電池Bの開回路電圧を精度よく推定することができ、電池Bの充電率を精度よく推定することができる。 That is, since the fluctuations of the first voltage OCV1 and the second voltage OCV2 due to the fluctuation of the temperature of the battery B can be suppressed, the open circuit voltage of the battery B after the polarization is eliminated can be estimated accurately, and the battery B can be estimated accurately. The charge rate of the battery can be estimated accurately.

また、第2の電圧OCV2を第1の電圧OCV1で除算した値を比rとする場合において、休止期間中の電池Bの電圧が上昇する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが小さくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが大きくなるものとする。また、休止期間中の電池Bの電圧が下降する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが大きくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが小さくなるものとする。 Further, when the value obtained by dividing the second voltage OCV2 by the first voltage OCV1 is taken as the ratio r, when the voltage of the battery B during the rest period rises, the polarization elimination time of the battery B becomes longer and the first When the voltage OCV1 and the second voltage OCV2 become smaller, the ratio r becomes smaller, the polarization elimination time of the battery B becomes shorter, and when the first voltage OCV1 and the second voltage OCV2 become larger, the ratio r becomes larger. .. Further, when the voltage of the battery B drops during the pause period, the polarization elimination time of the battery B becomes long, and when the first voltage OCV1 and the second voltage OCV2 increase, the ratio r increases and the polarization of the battery B is eliminated. As the time becomes shorter and the first voltage OCV1 and the second voltage OCV2 become smaller, the ratio r becomes smaller.

また、第1の電圧OCV1を第2の電圧OCV2で除算した値を比rとする場合において、休止期間中の電池Bの電圧が上昇する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが大きくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが小さくなるものとする。また、休止期間中の電池Bの電圧が下降する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが小さくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが大きくなるものとする。 Further, when the value obtained by dividing the first voltage OCV1 by the second voltage OCV2 is defined as the ratio r, when the voltage of the battery B during the rest period rises, the polarization elimination time of the battery B becomes longer and the first When the voltage OCV1 and the second voltage OCV2 become smaller, the ratio r becomes larger, the polarization elimination time of the battery B becomes shorter, and when the first voltage OCV1 and the second voltage OCV2 become larger, the ratio r becomes smaller. .. Further, when the voltage of the battery B drops during the pause period, the polarization elimination time of the battery B becomes long, and when the first voltage OCV1 and the second voltage OCV2 increase, the ratio r decreases and the polarization of the battery B is eliminated. As the time becomes shorter and the first voltage OCV1 and the second voltage OCV2 become smaller, the ratio r is assumed to be larger.

そこで、例えば、推定部5は、時刻t0において温度検出部3により検出される温度Tが第1の温度よりも高い第2の温度のときの第1の所定時間と第2の所定時間との差を、時刻t0において温度検出部3により検出される温度Tが第1の温度のときの第1の所定時間と第2の所定時間との差よりも短い時間に設定する。 Therefore, for example, the estimation unit 5 sets the first predetermined time and the second predetermined time when the temperature T detected by the temperature detection unit 3 at time t0 is a second temperature higher than the first temperature. The difference is set to a time shorter than the difference between the first predetermined time and the second predetermined time when the temperature T detected by the temperature detection unit 3 at time t0 is the first temperature.

これにより、第2の電圧OCV2を第1の電圧OCV1で除算した値を比rとする場合、電池Bの温度が高くなると、第1の所定時間と第2の所定時間との差を短くすることができるため、第1の電圧OCV1と第2の電圧OCV2との差を小さくすることができ、休止期間中の電池Bの電圧が上昇する場合の比rを小さく、休止期間中の電池Bの電圧が下降する場合の比rを大きくすることができる。 As a result, when the value obtained by dividing the second voltage OCV2 by the first voltage OCV1 is taken as the ratio r, the difference between the first predetermined time and the second predetermined time becomes shorter as the temperature of the battery B rises. Therefore, the difference between the first voltage OCV1 and the second voltage OCV2 can be reduced, the ratio r when the voltage of the battery B during the pause period rises is small, and the battery B during the pause period can be reduced. The ratio r when the voltage of is lowered can be increased.

また、第2の電圧OCV2を第1の電圧OCV1で除算した値を比rとする場合、電池Bの温度が低くなると、第1の所定時間と第2の所定時間との差を長くすることができるため、第1の電圧OCV1と第2の電圧OCV2との差を大きくすることができ、休止期間中の電池Bの電圧が上昇する場合の比rを大きく、休止期間中の電池Bの電圧が下降する場合の比rを小さくすることができる。 Further, when the value obtained by dividing the second voltage OCV2 by the first voltage OCV1 is taken as the ratio r, when the temperature of the battery B becomes low, the difference between the first predetermined time and the second predetermined time is lengthened. Therefore, the difference between the first voltage OCV1 and the second voltage OCV2 can be increased, the ratio r when the voltage of the battery B during the hibernation period rises can be increased, and the battery B during the hibernation period can be increased. The ratio r when the voltage drops can be reduced.

また、第1の電圧OCV1を第2の電圧OCV2で除算した値を比rとする場合、電池Bの温度が高くなると、第1の所定時間と第2の所定時間との差を短くすることができるため、第1の電圧OCV1と第2の電圧OCV2との差を小さくすることができ、休止期間中の電池Bの電圧が上昇する場合の比rを大きく、休止期間中の電池Bの電圧が下降する場合の比rを小さくすることができる。 Further, when the value obtained by dividing the first voltage OCV1 by the second voltage OCV2 is taken as the ratio r, when the temperature of the battery B becomes high, the difference between the first predetermined time and the second predetermined time is shortened. Therefore, the difference between the first voltage OCV1 and the second voltage OCV2 can be reduced, the ratio r when the voltage of the battery B during the pause period rises is large, and the battery B during the pause period can be increased. The ratio r when the voltage drops can be reduced.

また、第1の電圧OCV1を第2の電圧OCV2で除算した値を比rとする場合、電池Bの温度が低くなると、第1の所定時間と第2の所定時間との差を長くすることができるため、第1の電圧OCV1と第2の電圧OCV2との差を大きくすることができ、休止期間中の電池Bの電圧が上昇する場合の比rを小さく、休止期間中の電池Bの電圧が下降する場合の比rを大きくすることができる。 Further, when the value obtained by dividing the first voltage OCV1 by the second voltage OCV2 is taken as the ratio r, when the temperature of the battery B becomes low, the difference between the first predetermined time and the second predetermined time is lengthened. Therefore, the difference between the first voltage OCV1 and the second voltage OCV2 can be increased, the ratio r when the voltage of the battery B during the pause period rises can be made small, and the battery B during the pause period can be reduced. The ratio r when the voltage drops can be increased.

すなわち、電池Bの温度の変動による比rの変動を抑えることができるため、分極解消後の電池Bの開回路電圧を精度よく推定することができ、電池Bの充電率を精度よく推定することができる。 That is, since the fluctuation of the ratio r due to the fluctuation of the temperature of the battery B can be suppressed, the open circuit voltage of the battery B after the polarization is eliminated can be estimated accurately, and the charge rate of the battery B can be estimated accurately. Can be done.

<変形例6>
電池Bは、前回の充電率推定処理に比べて、図2(a)または図2(b)に示す時刻t0において温度検出部3により検出される温度Tが低くなると、分極解消時間が長くなり、時刻t0において温度検出部3により検出される温度Tが高くなると、分極解消時間が短くなるという特性を有するものとする。また、電池Bは、時刻t0において温度検出部3により検出される温度Tの大きさによらず分極による電圧の変動幅が一定になるという特性を有するものとする。これらの特性を電池Bが有する場合、分極解消時間が長くなると、電池Bの電圧が緩やかに上昇するようになるため、図2(a)に示す第1の電圧OCV1及び第2の電圧OCV2が小さくなる。また、分極解消時間が長くなると、電池Bの電圧が緩やかに下降するようになるため、図2(b)に示す第1の電圧OCV1及び第2の電圧OCV2が大きくなる。一方、分極解消時間が短くなると、電池Bの電圧が急峻に上昇するようになるため、図2(a)に示す第1の電圧OCV1及び第2の電圧OCV2が大きくなる。また、分極解消時間が短くなると、電池Bの電圧が急峻に下降するようになるため、図2(b)に示す第1の電圧OCV1及び第2の電圧OCV2が小さくなる。
<Modification 6>
The polarization elimination time of the battery B becomes longer when the temperature T detected by the temperature detection unit 3 is lower at the time t0 shown in FIG. 2A or FIG. 2B as compared with the previous charge rate estimation process. As the temperature T detected by the temperature detection unit 3 increases at time t0, the polarization elimination time becomes shorter. Further, the battery B has a characteristic that the fluctuation range of the voltage due to polarization becomes constant regardless of the magnitude of the temperature T detected by the temperature detection unit 3 at time t0. When the battery B has these characteristics, the voltage of the battery B gradually rises as the polarization elimination time becomes longer, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2A are It becomes smaller. Further, as the polarization elimination time becomes longer, the voltage of the battery B gradually decreases, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2B become large. On the other hand, when the polarization elimination time is shortened, the voltage of the battery B rises sharply, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2A become large. Further, when the polarization elimination time is shortened, the voltage of the battery B drops sharply, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2B become smaller.

図11は、変形例6における開回路電圧推定処理の一例を示すフローチャートである。
<第2の電圧OCV2を第1の電圧OCV1で除算した値(比r1)を比rとする場合>
休止期間中の電池Bの電圧が上昇する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが小さくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが大きくなるものとする。また、休止期間中の電池Bの電圧が下降する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが大きくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが小さくなるものとする。
FIG. 11 is a flowchart showing an example of the open circuit voltage estimation process in the modified example 6.
<When the value obtained by dividing the second voltage OCV2 by the first voltage OCV1 (ratio r1) is defined as the ratio r>
When the voltage of the battery B rises during the rest period, the depolarization time of the battery B becomes longer, and when the first voltage OCV1 and the second voltage OCV2 become smaller, the ratio r becomes smaller and the depolarization time of the battery B becomes smaller. It is assumed that the ratio r increases as the first voltage OCV1 and the second voltage OCV2 become shorter and larger. Further, when the voltage of the battery B drops during the pause period, the polarization elimination time of the battery B becomes long, and when the first voltage OCV1 and the second voltage OCV2 increase, the ratio r increases and the polarization of the battery B is eliminated. As the time becomes shorter and the first voltage OCV1 and the second voltage OCV2 become smaller, the ratio r becomes smaller.

まず、推定部5は、電圧検出部2により検出される電圧Vが上昇していると判断すると(S11:Yes)、比r及び係数aを求め(S12)、温度検出部3により検出される温度Tが閾値Tth以下であると判断すると(S61:Yes)、係数aを第1の係数aとし(S62)、比rと係数aとを乗算し(S13)、第1の電圧OCV1または第2の電圧OCV2に、比rと係数aとを乗算した値を加算した結果を、分極解消後の電池Bの開回路電圧とする(S14)。例えば、推定部5は、図2(a)または図2(b)に示す時刻t0において、温度検出部3により検出される温度を、温度Tとする。 First, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is increasing (S11: Yes), the ratio r and the coefficient a are obtained (S12), and the temperature detection unit 3 detects the voltage V. When it is determined that the temperature T is equal to or less than the threshold Tth (S61: Yes), the coefficient a is set to the first coefficient a (S62), the ratio r is multiplied by the coefficient a (S13), and the first voltage OCV1 or the first voltage is used. The result of adding the value obtained by multiplying the voltage OCV2 of 2 by the ratio r and the coefficient a is taken as the open circuit voltage of the battery B after the polarization is eliminated (S14). For example, the estimation unit 5 sets the temperature detected by the temperature detection unit 3 as the temperature T at the time t0 shown in FIG. 2 (a) or FIG. 2 (b).

一方、推定部5は、温度検出部3により検出される温度Tが閾値Tthよりも大きいと判断すると(S61:No)、係数aを第1の係数aよりも小さい第2の係数aとし(S63)、比rと係数aとを乗算し(S13)、第1の電圧OCV1または第2の電圧OCV2に、比rと係数aとを乗算した値を加算した結果を、分極解消後の電池Bの開回路電圧とする(S14)。 On the other hand, when the estimation unit 5 determines that the temperature T detected by the temperature detection unit 3 is larger than the threshold value Tth (S61: No), the coefficient a is set to a second coefficient a smaller than the first coefficient a (S61: No). S63), the ratio r and the coefficient a are multiplied (S13), and the result of adding the value obtained by multiplying the first voltage OCV1 or the second voltage OCV2 by the ratio r and the coefficient a is the result of the battery after polarization elimination. Let the open circuit voltage of B be (S14).

また、推定部5は、電圧検出部2により検出される電圧Vが下降していると判断すると(S11:No)、比r及び係数bを求め(S15)、温度検出部3により検出される温度Tが閾値Tth以下であると判断すると(S64:Yes)、係数bを第1の係数bとし(S65)、比rと係数bとを乗算し(S16)、第1の電圧OCV1または第2の電圧OCV2から、比rと係数bとを乗算した値を減算した結果を、分極解消後の電池Bの開回路電圧とする(S17)。 Further, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is decreasing (S11: No), the ratio r and the coefficient b are obtained (S15), and the temperature detection unit 3 detects the voltage V. When it is determined that the temperature T is equal to or less than the threshold value Tth (S64: Yes), the coefficient b is set as the first coefficient b (S65), the ratio r is multiplied by the coefficient b (S16), and the first voltage OCV1 or the first voltage is obtained. The result of subtracting the value obtained by multiplying the ratio r and the coefficient b from the voltage OCV2 of 2 is taken as the open circuit voltage of the battery B after the polarization is eliminated (S17).

一方、推定部5は、温度検出部3により検出される温度Tが閾値Tthよりも大きいと判断すると(S64:No)、係数bを第1の係数bよりも大きい第2の係数bとし(S66)、比rと係数bとを乗算し(S16)、第1の電圧OCV1または第2の電圧OCV2から、比rと係数bとを乗算した値を減算した結果を、分極解消後の電池Bの開回路電圧とする(S17)。 On the other hand, when the estimation unit 5 determines that the temperature T detected by the temperature detection unit 3 is larger than the threshold value Tth (S64: No), the coefficient b is set to a second coefficient b larger than the first coefficient b (S64: No). S66), the ratio r and the coefficient b are multiplied (S16), and the result of subtracting the value obtained by multiplying the ratio r and the coefficient b from the first voltage OCV1 or the second voltage OCV2 is obtained from the battery after polarization elimination. Let the open circuit voltage of B be (S17).

なお、推定部5は、電池Bの温度が低くなるほど、係数aを大きく、係数bを小さくし、電池Bの温度が高くなるほど、係数aを小さく、係数bを大きくするように構成してもよい。 The estimation unit 5 may be configured such that the lower the temperature of the battery B, the larger the coefficient a and the smaller the coefficient b, and the higher the temperature of the battery B, the smaller the coefficient a and the larger the coefficient b. Good.

図11に示す開回路電圧推定処理によれば、第2の電圧OCV2を第1の電圧OCV1で除算した値を比rとする場合、電池Bの温度が低くなると、係数aを大きく、係数bを小さくし、電池Bの温度が高くなると、係数aを小さく、係数bを大きくすることができる。 According to the open-circuit voltage estimation process shown in FIG. 11, when the value obtained by dividing the second voltage OCV2 by the first voltage OCV1 is taken as the ratio r, when the temperature of the battery B becomes low, the coefficient a becomes large and the coefficient b becomes large. When the temperature of the battery B becomes high, the coefficient a can be made small and the coefficient b can be made large.

そのため、前回の充電率推定処理と比べて、電池Bの温度が低い場合、すなわち、休止期間中の電池Bの電圧が上昇する場合において比rが小さくなる場合、係数aを大きくすることができ、休止期間中の電池Bの電圧が下降する場合において比rが大きくなる場合、係数bを小さくすることができるため、分極解消後の電池Bの開回路電圧の推定値を実際の値に近づけることができる。 Therefore, the coefficient a can be increased when the temperature of the battery B is lower than that of the previous charge rate estimation process, that is, when the ratio r is smaller when the voltage of the battery B is increased during the rest period. When the ratio r becomes large when the voltage of the battery B drops during the rest period, the coefficient b can be reduced, so that the estimated value of the open circuit voltage of the battery B after the polarization is eliminated is brought closer to the actual value. be able to.

また、前回の充電率推定処理と比べて、電池Bの温度が高い場合、すなわち、休止期間中の電池Bの電圧が上昇する場合において比rが大きくなる場合、係数aを小さくすることができ、休止期間中の電池Bの電圧が下降する場合において比rが小さくなる場合、係数bを大きくすることができるため、分極解消後の電池Bの開回路電圧の推定値を実際の値に近づけることができる。 Further, the coefficient a can be reduced when the temperature of the battery B is higher than that of the previous charge rate estimation process, that is, when the ratio r becomes larger when the voltage of the battery B rises during the rest period. When the ratio r becomes smaller when the voltage of the battery B drops during the rest period, the coefficient b can be increased, so that the estimated value of the open circuit voltage of the battery B after the polarization is eliminated is brought closer to the actual value. be able to.

これにより、分極解消後の電池Bの開回路電圧を精度よく推定することができるため、電池Bの充電率を精度よく求めることができる。 As a result, the open circuit voltage of the battery B after the polarization is eliminated can be estimated with high accuracy, so that the charge rate of the battery B can be obtained with high accuracy.

<第1の電圧OCV1を第2の電圧OCV2で除算した値(比r2)を比rとする場合>
休止期間中の電池Bの電圧が上昇する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが大きくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが小さくなるものとする。また、休止期間中の電池Bの電圧が下降する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが小さくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが大きくなるものとする。
<When the value obtained by dividing the first voltage OCV1 by the second voltage OCV2 (ratio r2) is the ratio r>
When the voltage of the battery B rises during the rest period, the depolarization time of the battery B becomes longer, and when the first voltage OCV1 and the second voltage OCV2 become smaller, the ratio r becomes larger and the depolarization time of the battery B becomes longer. As the voltage becomes shorter and the first voltage OCV1 and the second voltage OCV2 become larger, the ratio r becomes smaller. Further, when the voltage of the battery B drops during the pause period, the polarization elimination time of the battery B becomes long, and when the first voltage OCV1 and the second voltage OCV2 increase, the ratio r decreases and the polarization of the battery B is eliminated. As the time becomes shorter and the first voltage OCV1 and the second voltage OCV2 become smaller, the ratio r is assumed to be larger.

まず、推定部5は、電圧検出部2により検出される電圧Vが上昇していると判断すると(S11:Yes)、比r及び係数aを求め(S12)、温度検出部3により検出される温度Tが閾値Tth以下であると判断すると(S61:Yes)、係数aを第1の係数aとし(S62)、比rと係数aとを乗算し(S13)、第1の電圧OCV1または第2の電圧OCV2に、比rと係数aとを乗算した値を加算した結果を、分極解消後の電池Bの開回路電圧とする(S14)。例えば、推定部5は、図2(a)または図2(b)に示す時刻t0において、温度検出部3により検出される温度を、温度Tとする。 First, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is increasing (S11: Yes), the ratio r and the coefficient a are obtained (S12), and the temperature detection unit 3 detects the voltage V. When it is determined that the temperature T is equal to or less than the threshold Tth (S61: Yes), the coefficient a is set to the first coefficient a (S62), the ratio r is multiplied by the coefficient a (S13), and the first voltage OCV1 or the first voltage is used. The result of adding the value obtained by multiplying the voltage OCV2 of 2 by the ratio r and the coefficient a is taken as the open circuit voltage of the battery B after the polarization is eliminated (S14). For example, the estimation unit 5 sets the temperature detected by the temperature detection unit 3 as the temperature T at the time t0 shown in FIG. 2 (a) or FIG. 2 (b).

一方、推定部5は、温度検出部3により検出される温度Tが閾値Tthよりも大きいと判断すると(S61:No)、係数aを第1の係数aよりも大きい第2の係数aとし(S63)、比rと係数aとを乗算し(S13)、第1の電圧OCV1または第2の電圧OCV2に、比rと係数aとを乗算した値を加算した結果を、分極解消後の電池Bの開回路電圧とする(S14)。 On the other hand, when the estimation unit 5 determines that the temperature T detected by the temperature detection unit 3 is larger than the threshold value Tth (S61: No), the coefficient a is set to a second coefficient a larger than the first coefficient a (S61: No). S63), the ratio r and the coefficient a are multiplied (S13), and the result of adding the value obtained by multiplying the first voltage OCV1 or the second voltage OCV2 by the ratio r and the coefficient a is the result of the battery after polarization elimination. Let the open circuit voltage of B be (S14).

また、推定部5は、電圧検出部2により検出される電圧Vが下降していると判断すると(S11:No)、比r及び係数bを求め(S15)、温度検出部3により検出される温度Tが閾値Tth以下であると判断すると(S64:Yes)、係数bを第1の係数bとし(S65)、比rと係数bとを乗算し(S16)、第1の電圧OCV1または第2の電圧OCV2から、比rと係数bとを乗算した値を減算した結果を、分極解消後の電池Bの開回路電圧とする(S17)。 Further, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is decreasing (S11: No), the ratio r and the coefficient b are obtained (S15), and the temperature detection unit 3 detects the voltage V. When it is determined that the temperature T is equal to or less than the threshold value Tth (S64: Yes), the coefficient b is set as the first coefficient b (S65), the ratio r is multiplied by the coefficient b (S16), and the first voltage OCV1 or the first voltage is obtained. The result of subtracting the value obtained by multiplying the ratio r and the coefficient b from the voltage OCV2 of 2 is taken as the open circuit voltage of the battery B after the polarization is eliminated (S17).

一方、推定部5は、温度検出部3により検出される温度Tが閾値Tthよりも大きいと判断すると(S64:No)、係数bを第1の係数bよりも小さい第2の係数bとし(S66)、比rと係数bとを乗算し(S16)、第1の電圧OCV1または第2の電圧OCV2から、比rと係数bとを乗算した値を減算した結果を、分極解消後の電池Bの開回路電圧とする(S17)。 On the other hand, when the estimation unit 5 determines that the temperature T detected by the temperature detection unit 3 is larger than the threshold value Tth (S64: No), the coefficient b is set to a second coefficient b smaller than the first coefficient b (S64: No). S66), the ratio r and the coefficient b are multiplied (S16), and the result of subtracting the value obtained by multiplying the ratio r and the coefficient b from the first voltage OCV1 or the second voltage OCV2 is obtained from the battery after polarization elimination. Let the open circuit voltage of B be (S17).

なお、推定部5は、電池Bの温度が低くなるほど、係数aを小さく、係数bを大きくし、電池Bの温度が高くなるほど、係数aを大きく、係数bを小さくするように構成してもよい。 The estimation unit 5 may be configured so that the lower the temperature of the battery B, the smaller the coefficient a and the larger the coefficient b, and the higher the temperature of the battery B, the larger the coefficient a and the smaller the coefficient b. Good.

図11に示す開回路電圧推定処理によれば、第1の電圧OCV1を第2の電圧OCV2で除算した値を比rとする場合、電池Bの温度が低くなると、係数aを小さく、係数bを大きくし、電池Bの温度が高くなると、係数aを大きく、係数bを小さくすることができる。 According to the open-circuit voltage estimation process shown in FIG. 11, when the value obtained by dividing the first voltage OCV1 by the second voltage OCV2 is taken as the ratio r, when the temperature of the battery B becomes low, the coefficient a becomes small and the coefficient b becomes small. When the temperature of the battery B becomes high, the coefficient a can be increased and the coefficient b can be decreased.

そのため、前回の充電率推定処理と比べて、電池Bの温度が低い場合、すなわち、休止期間中の電池Bの電圧が上昇する場合において比rが大きくなる場合、係数aを小さくすることができ、休止期間中の電池Bの電圧が下降する場合において比rが小さくなる場合、係数bを大きくすることができるため、分極解消後の電池Bの開回路電圧の推定値を実際の値に近づけることができる。 Therefore, the coefficient a can be reduced when the temperature of the battery B is lower than that of the previous charge rate estimation process, that is, when the ratio r is larger when the voltage of the battery B is increased during the rest period. When the ratio r becomes smaller when the voltage of the battery B drops during the rest period, the coefficient b can be increased, so that the estimated value of the open circuit voltage of the battery B after the polarization is eliminated is brought closer to the actual value. be able to.

また、前回の充電率推定処理と比べて、電池Bの温度が高い場合、すなわち、休止期間中の電池Bの電圧が上昇する場合において比rが小さくなる場合、係数aを大きくすることができ、休止期間中の電池Bの電圧が下降する場合において比rが大きくなる場合、係数bを小さくすることができるため、分極解消後の電池Bの開回路電圧の推定値を実際の値に近づけることができる。 Further, the coefficient a can be increased when the temperature of the battery B is higher than that of the previous charge rate estimation process, that is, when the ratio r is smaller when the voltage of the battery B is increased during the rest period. When the ratio r becomes large when the voltage of the battery B drops during the rest period, the coefficient b can be reduced, so that the estimated value of the open circuit voltage of the battery B after the polarization is eliminated is brought closer to the actual value. be able to.

これにより、分極解消後の電池Bの開回路電圧を精度よく推定することができるため、電池Bの充電率を精度よく求めることができる。 As a result, the open circuit voltage of the battery B after the polarization is eliminated can be estimated with high accuracy, so that the charge rate of the battery B can be obtained with high accuracy.

<変形例7>
電池Bは、前回の充電率推定処理に比べて、図2(a)または図2(b)に示す時刻t0において求められる電池Bの劣化度Dが低くなると、分極解消時間が短くなり、時刻t0において求められる電池Bの劣化度Dが高くなると、分極解消時間が長くなるという特性を有するものとする。また、電池Bは、時刻t0において求められる電池Bの劣化度Dの大きさによらず分極による電圧の変動幅が一定になるという特性を有するものとする。これらの特性を電池Bが有する場合、分極解消時間が長くなると、電池Bの電圧が緩やかに上昇するようになるため、図2(a)に示す第1の電圧OCV1及び第2の電圧OCV2が小さくなる。また、分極解消時間が長くなると、電池Bの電圧が緩やかに下降するようになるため、図2(b)に示す第1の電圧OCV1及び第2の電圧OCV2が大きくなる。一方、分極解消時間が短くなると、電池Bの電圧が急峻に上昇するようになるため、図2(a)に示す第1の電圧OCV1及び第2の電圧OCV2が大きくなる。また、分極解消時間が短くなると、電池Bの電圧が急峻に下降するようになるため、図2(b)に示す第1の電圧OCV1及び第2の電圧OCV2が小さくなる。
<Modification 7>
When the degree of deterioration D of the battery B obtained at time t0 shown in FIG. 2A or FIG. 2B is lower than that of the previous charge rate estimation process, the depolarization time of the battery B becomes shorter, and the time becomes shorter. It is assumed that the higher the degree of deterioration D of the battery B required at t0, the longer the polarization elimination time. Further, the battery B has a characteristic that the fluctuation range of the voltage due to polarization becomes constant regardless of the magnitude of the deterioration degree D of the battery B obtained at time t0. When the battery B has these characteristics, the voltage of the battery B gradually rises as the polarization elimination time becomes longer, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2A are It becomes smaller. Further, as the polarization elimination time becomes longer, the voltage of the battery B gradually decreases, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2B become large. On the other hand, when the polarization elimination time is shortened, the voltage of the battery B rises sharply, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2A become large. Further, when the polarization elimination time is shortened, the voltage of the battery B drops sharply, so that the first voltage OCV1 and the second voltage OCV2 shown in FIG. 2B become smaller.

図12は、変形例7における開回路電圧推定処理の一例を示すフローチャートである。
<第2の電圧OCV2を第1の電圧OCV1で除算した値(比r1)を比rとする場合>
休止期間中の電池Bの電圧が上昇する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが小さくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが大きくなるものとする。また、休止期間中の電池Bの電圧が下降する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが大きくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが小さくなるものとする。
FIG. 12 is a flowchart showing an example of the open circuit voltage estimation process in the modified example 7.
<When the value obtained by dividing the second voltage OCV2 by the first voltage OCV1 (ratio r1) is defined as the ratio r>
When the voltage of the battery B rises during the rest period, the depolarization time of the battery B becomes longer, and when the first voltage OCV1 and the second voltage OCV2 become smaller, the ratio r becomes smaller and the depolarization time of the battery B becomes smaller. It is assumed that the ratio r increases as the first voltage OCV1 and the second voltage OCV2 become shorter and larger. Further, when the voltage of the battery B drops during the pause period, the polarization elimination time of the battery B becomes long, and when the first voltage OCV1 and the second voltage OCV2 increase, the ratio r increases and the polarization of the battery B is eliminated. As the time becomes shorter and the first voltage OCV1 and the second voltage OCV2 become smaller, the ratio r becomes smaller.

まず、推定部5は、電圧検出部2により検出される電圧Vが上昇していると判断すると(S11:Yes)、比r及び係数aを求め(S12)、電池Bの劣化度Dが閾値Dth以下であると判断すると(S71:Yes)、係数aを第1の係数aとし(S72)、比rと係数aとを乗算し(S13)、第1の電圧OCV1または第2の電圧OCV2に、比rと係数aとを乗算した値を加算した結果を、分極解消後の電池Bの開回路電圧とする(S14)。例えば、推定部5は、図2(a)または図2(b)に示す時刻t0において、電圧検出部2により検出される電圧Vを電流検出部1により検出される電流Iで除算した結果を、電池Bの内部抵抗とし、その内部抵抗を電池パック使用開始時の電池Bの内部抵抗で除算した結果を、劣化度Dとする。 First, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is increasing (S11: Yes), the ratio r and the coefficient a are obtained (S12), and the deterioration degree D of the battery B is a threshold value. When it is determined that the voltage is Dth or less (S71: Yes), the coefficient a is set to the first coefficient a (S72), the ratio r is multiplied by the coefficient a (S13), and the first voltage OCV1 or the second voltage OCV2 is obtained. The result of adding the value obtained by multiplying the ratio r and the coefficient a is taken as the open circuit voltage of the battery B after the polarization is eliminated (S14). For example, the estimation unit 5 divides the voltage V detected by the voltage detection unit 2 by the current I detected by the current detection unit 1 at time t0 shown in FIG. 2 (a) or FIG. 2 (b). , The internal resistance of the battery B, and the result of dividing the internal resistance by the internal resistance of the battery B at the start of using the battery pack is defined as the degree of deterioration D.

一方、推定部5は、劣化度Dが閾値Dthよりも大きいと判断すると(S71:No)、係数aを第1の係数aよりも大きい第2の係数aとし(S73)、比rと係数aとを乗算し(S13)、第1の電圧OCV1または第2の電圧OCV2に、比rと係数aとを乗算した値を加算した結果を、分極解消後の電池Bの開回路電圧とする(S14)。 On the other hand, when the estimation unit 5 determines that the deterioration degree D is larger than the threshold Dth (S71: No), the coefficient a is set to the second coefficient a larger than the first coefficient a (S73), and the ratio r and the coefficient Multiply by a (S13) and add the value obtained by multiplying the first voltage OCV1 or the second voltage OCV2 by the ratio r and the coefficient a to obtain the open circuit voltage of the battery B after polarization elimination. (S14).

また、推定部5は、電圧検出部2により検出される電圧Vが下降していると判断すると(S11:No)、比r及び係数bを求め(S15)、劣化度Dが閾値Dth以下であると判断すると(S74:Yes)、係数bを第1の係数bとし(S75)、比rと係数bとを乗算し(S16)、第1の電圧OCV1または第2の電圧OCV2から、比rと係数bとを乗算した値を減算した結果を、分極解消後の電池Bの開回路電圧とする(S17)。 Further, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is decreasing (S11: No), the ratio r and the coefficient b are obtained (S15), and the degree of deterioration D is equal to or less than the threshold Dth. If it is determined to be (S74: Yes), the coefficient b is set to the first coefficient b (S75), the ratio r is multiplied by the coefficient b (S16), and the ratio is calculated from the first voltage OCV1 or the second voltage OCV2. The result of subtracting the value obtained by multiplying r by the coefficient b is taken as the open circuit voltage of the battery B after the polarization is eliminated (S17).

一方、推定部5は、劣化度Dが閾値Dthよりも大きいと判断すると(S74:No)、係数bを第1の係数bよりも小さい第2の係数bとし(S76)、比rと係数bとを乗算し(S16)、第1の電圧OCV1または第2の電圧OCV2から、比rと係数bとを乗算した値を減算した結果を、分極解消後の電池Bの開回路電圧とする(S17)。 On the other hand, when the estimation unit 5 determines that the deterioration degree D is larger than the threshold Dth (S74: No), the coefficient b is set to the second coefficient b smaller than the first coefficient b (S76), and the ratio r and the coefficient Multiply by b (S16) and subtract the value obtained by multiplying the ratio r and the coefficient b from the first voltage OCV1 or the second voltage OCV2 to obtain the open circuit voltage of the battery B after polarization elimination. (S17).

なお、推定部5は、電池Bの劣化度Dが小さくなるほど、係数aを小さく、係数bを大きくし、電池Bの劣化度Dが大きくなるほど、係数aを大きく、係数bを小さくするように構成してもよい。 The estimation unit 5 increases the coefficient a and increases the coefficient b as the deterioration degree D of the battery B decreases, and increases the coefficient a and decreases the coefficient b as the deterioration degree D of the battery B increases. It may be configured.

図12に示す開回路電圧推定処理によれば、第2の電圧OCV2を第1の電圧OCV1で除算した値を比rとする場合、電池Bの劣化度Dが小さくなると、係数aを小さく、係数bを大きくし、電池Bの劣化度Dが大きくなると、係数aを大きく、係数bを小さくすることができる。 According to the open circuit voltage estimation process shown in FIG. 12, when the value obtained by dividing the second voltage OCV2 by the first voltage OCV1 is taken as the ratio r, when the deterioration degree D of the battery B becomes smaller, the coefficient a becomes smaller. When the coefficient b is increased and the degree of deterioration D of the battery B is increased, the coefficient a can be increased and the coefficient b can be decreased.

そのため、前回の充電率推定処理と比べて、電池Bの劣化度Dが小さい場合、すなわち、休止期間中の電池Bの電圧が上昇する場合において比rが大きくなる場合、係数aを小さくすることができ、休止期間中の電池Bの電圧が下降する場合において比rが小さくなる場合、係数bを大きくすることができるため、分極解消後の電池Bの開回路電圧の推定値を実際の値に近づけることができる。 Therefore, when the degree of deterioration D of the battery B is smaller than that of the previous charge rate estimation process, that is, when the ratio r is large when the voltage of the battery B is increased during the rest period, the coefficient a is reduced. When the ratio r becomes smaller when the voltage of the battery B drops during the rest period, the coefficient b can be increased. Therefore, the estimated value of the open circuit voltage of the battery B after the polarization is eliminated is the actual value. Can be approached to.

また、前回の充電率推定処理と比べて、電池Bの劣化度Dが大きい場合、すなわち、休止期間中の電池Bの電圧が上昇する場合において比rが小さくなる場合、係数aを大きくすることができ、休止期間中の電池Bの電圧が下降する場合において比rが大きくなる場合、係数bを小さくすることができるため、分極解消後の電池Bの開回路電圧の推定値を実際の値に近づけることができる。 Further, when the degree of deterioration D of the battery B is larger than that of the previous charge rate estimation process, that is, when the ratio r is smaller when the voltage of the battery B is increased during the rest period, the coefficient a is increased. When the ratio r becomes large when the voltage of the battery B drops during the pause period, the coefficient b can be reduced. Therefore, the estimated value of the open circuit voltage of the battery B after the polarization is eliminated is the actual value. Can be approached to.

これにより、分極解消後の電池Bの開回路電圧を精度よく推定することができるため、電池Bの充電率を精度よく求めることができる。 As a result, the open circuit voltage of the battery B after the polarization is eliminated can be estimated with high accuracy, so that the charge rate of the battery B can be obtained with high accuracy.

<第1の電圧OCV1を第2の電圧OCV2で除算した値(比r2)を比rとする場合>
休止期間中の電池Bの電圧が上昇する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが大きくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが小さくなるものとする。また、休止期間中の電池Bの電圧が下降する場合、電池Bの分極解消時間が長くなり第1の電圧OCV1及び第2の電圧OCV2が大きくなると、比rが小さくなり、電池Bの分極解消時間が短くなり第1の電圧OCV1及び第2の電圧OCV2が小さくなると、比rが大きくなるものとする。
<When the value obtained by dividing the first voltage OCV1 by the second voltage OCV2 (ratio r2) is the ratio r>
When the voltage of the battery B rises during the rest period, the depolarization time of the battery B becomes longer, and when the first voltage OCV1 and the second voltage OCV2 become smaller, the ratio r becomes larger and the depolarization time of the battery B becomes longer. As the voltage becomes shorter and the first voltage OCV1 and the second voltage OCV2 become larger, the ratio r becomes smaller. Further, when the voltage of the battery B drops during the pause period, the polarization elimination time of the battery B becomes long, and when the first voltage OCV1 and the second voltage OCV2 increase, the ratio r decreases and the polarization of the battery B is eliminated. As the time becomes shorter and the first voltage OCV1 and the second voltage OCV2 become smaller, the ratio r is assumed to be larger.

まず、推定部5は、電圧検出部2により検出される電圧Vが上昇していると判断すると(S11:Yes)、比r及び係数aを求め(S12)、電池Bの劣化度Dが閾値Dth以下であると判断すると(S71:Yes)、係数aを第1の係数aとし(S72)、比rと係数aとを乗算し(S13)、第1の電圧OCV1または第2の電圧OCV2に、比rと係数aとを乗算した値を加算した結果を、分極解消後の電池Bの開回路電圧とする(S14)。例えば、推定部5は、図2(a)または図2(b)に示す時刻t0において、電圧検出部2により検出される電圧Vを電流検出部1により検出される電流Iで除算した結果を、電池Bの内部抵抗とし、その内部抵抗を電池パック使用開始時の電池Bの内部抵抗で除算した結果を、劣化度Dとする。 First, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is increasing (S11: Yes), the ratio r and the coefficient a are obtained (S12), and the deterioration degree D of the battery B is a threshold value. When it is determined that the voltage is Dth or less (S71: Yes), the coefficient a is set to the first coefficient a (S72), the ratio r is multiplied by the coefficient a (S13), and the first voltage OCV1 or the second voltage OCV2 is obtained. The result of adding the value obtained by multiplying the ratio r and the coefficient a is taken as the open circuit voltage of the battery B after the polarization is eliminated (S14). For example, the estimation unit 5 divides the voltage V detected by the voltage detection unit 2 by the current I detected by the current detection unit 1 at time t0 shown in FIG. 2 (a) or FIG. 2 (b). , The internal resistance of the battery B, and the result of dividing the internal resistance by the internal resistance of the battery B at the start of using the battery pack is defined as the degree of deterioration D.

一方、推定部5は、劣化度Dが閾値Dthよりも大きいと判断すると(S71:No)、係数aを第1の係数aよりも小さい第2の係数aとし(S73)、比rと係数aとを乗算し(S13)、第1の電圧OCV1または第2の電圧OCV2に、比rと係数aとを乗算した値を加算した結果を、分極解消後の電池Bの開回路電圧とする(S14)。 On the other hand, when the estimation unit 5 determines that the deterioration degree D is larger than the threshold Dth (S71: No), the coefficient a is set to the second coefficient a smaller than the first coefficient a (S73), and the ratio r and the coefficient Multiply by a (S13) and add the value obtained by multiplying the first voltage OCV1 or the second voltage OCV2 by the ratio r and the coefficient a to obtain the open circuit voltage of the battery B after polarization elimination. (S14).

また、推定部5は、電圧検出部2により検出される電圧Vが下降していると判断すると(S11:No)、比r及び係数bを求め(S15)、劣化度Dが閾値Dth以下であると判断すると(S74:Yes)、係数bを第1の係数bとし(S75)、比rと係数bとを乗算し(S16)、第1の電圧OCV1または第2の電圧OCV2から、比rと係数bとを乗算した値を減算した結果を、分極解消後の電池Bの開回路電圧とする(S17)。 Further, when the estimation unit 5 determines that the voltage V detected by the voltage detection unit 2 is decreasing (S11: No), the ratio r and the coefficient b are obtained (S15), and the degree of deterioration D is equal to or less than the threshold Dth. If it is determined to be (S74: Yes), the coefficient b is set to the first coefficient b (S75), the ratio r is multiplied by the coefficient b (S16), and the ratio is calculated from the first voltage OCV1 or the second voltage OCV2. The result of subtracting the value obtained by multiplying r by the coefficient b is taken as the open circuit voltage of the battery B after the polarization is eliminated (S17).

一方、推定部5は、劣化度Dが閾値Dthよりも大きいと判断すると(S74:No)、係数bを第1の係数bよりも大きい第2の係数bとし(S76)、比rと係数bとを乗算し(S16)、第1の電圧OCV1または第2の電圧OCV2から、比rと係数bとを乗算した値を減算した結果を、分極解消後の電池Bの開回路電圧とする(S17)。 On the other hand, when the estimation unit 5 determines that the deterioration degree D is larger than the threshold Dth (S74: No), the coefficient b is set to the second coefficient b larger than the first coefficient b (S76), and the ratio r and the coefficient Multiply by b (S16) and subtract the value obtained by multiplying the ratio r and the coefficient b from the first voltage OCV1 or the second voltage OCV2 to obtain the open circuit voltage of the battery B after polarization elimination. (S17).

なお、推定部5は、電池Bの劣化度Dが小さくなるほど、係数aを大きく、係数bを小さくし、電池Bの劣化度Dが大きくなるほど、係数aを小さく、係数bを大きくするように構成してもよい。 The estimation unit 5 increases the coefficient a and decreases the coefficient a as the deterioration degree D of the battery B decreases, and decreases the coefficient a and increases the coefficient b as the deterioration degree D of the battery B increases. It may be configured.

図12に示す開回路電圧推定処理によれば、第1の電圧OCV1を第2の電圧OCV2で除算した値を比rとする場合、電池Bの劣化度Dが小さくなると、係数aを大きく、係数bを小さくし、電池Bの劣化度Dが大きくなると、係数aを小さく、係数bを大きくすることができる。 According to the open circuit voltage estimation process shown in FIG. 12, when the value obtained by dividing the first voltage OCV1 by the second voltage OCV2 is taken as the ratio r, when the deterioration degree D of the battery B becomes smaller, the coefficient a becomes larger. When the coefficient b is reduced and the degree of deterioration D of the battery B is increased, the coefficient a can be reduced and the coefficient b can be increased.

そのため、前回の充電率推定処理と比べて、電池Bの劣化度Dが小さい場合、すなわち、休止期間中の電池Bの電圧が上昇する場合において比rが小さくなる場合、係数aを大きくすることができ、休止期間中の電池Bの電圧が下降する場合において比rが大きくなる場合、係数bを小さくすることができるため、分極解消後の電池Bの開回路電圧の推定値を実際の値に近づけることができる。 Therefore, when the deterioration degree D of the battery B is smaller than that of the previous charge rate estimation process, that is, when the ratio r is smaller when the voltage of the battery B is increased during the rest period, the coefficient a is increased. When the ratio r becomes large when the voltage of the battery B drops during the pause period, the coefficient b can be reduced. Therefore, the estimated value of the open circuit voltage of the battery B after the polarization is eliminated is the actual value. Can be approached to.

また、前回の充電率推定処理と比べて、電池Bの劣化度Dが大きい場合、すなわち、休止期間中の電池Bの電圧が上昇する場合において比rが大きくなる場合、係数aを小さくすることができ、休止期間中の電池Bの電圧が下降する場合において比rが小さくなる場合、係数bを大きくすることができるため、分極解消後の電池Bの開回路電圧の推定値を実際の値に近づけることができる。 Further, when the degree of deterioration D of the battery B is larger than that of the previous charge rate estimation process, that is, when the ratio r is larger when the voltage of the battery B is increased during the rest period, the coefficient a is reduced. When the ratio r becomes smaller when the voltage of the battery B drops during the rest period, the coefficient b can be increased. Therefore, the estimated value of the open circuit voltage of the battery B after the polarization is eliminated is the actual value. Can be approached to.

これにより、分極解消後の電池Bの開回路電圧を精度よく推定することができるため、電池Bの充電率を精度よく求めることができる。 As a result, the open circuit voltage of the battery B after the polarization is eliminated can be estimated with high accuracy, so that the charge rate of the battery B can be obtained with high accuracy.

1 電流検出部
2 電圧検出部
3 温度検出部
4 記憶部
5 推定部
B 電池
Ch 充電器
Lo 負荷
1 Current detection unit 2 Voltage detection unit 3 Temperature detection unit 4 Storage unit 5 Estimator unit B Battery Ch Charger Lo Load

Claims (20)

電池と、
前記電池の電圧を検出する電圧検出部と、
前記電池の放電終了後で、かつ、前記電池の分極が解消される前の休止期間において、前記休止期間開始から第1の所定時間経過後に前記電圧検出部により検出される第1の電圧または前記休止期間開始から前記第1の所定時間よりも長い第2の所定時間経過後に前記電圧検出部により検出される第2の電圧に、前記第1の電圧と前記第2の電圧との比と、係数とを乗算した値を加算した結果を、前記電池の分極解消後の開回路電圧として推定する推定部と、
を備えることを特徴とする電池パック。
Batteries and
A voltage detector that detects the voltage of the battery and
The first voltage detected by the voltage detection unit or the first voltage after the elapse of the first predetermined time from the start of the pause period in the pause period after the discharge of the battery is completed and before the polarization of the battery is eliminated. The ratio of the first voltage to the second voltage is added to the second voltage detected by the voltage detector after the lapse of the second predetermined time longer than the first predetermined time from the start of the pause period. An estimation unit that estimates the result of adding the value obtained by multiplying the coefficient as the open circuit voltage after depolarization of the battery.
A battery pack characterized by being equipped with.
電池と、
前記電池の電圧を検出する電圧検出部と、
前記電池の充電終了後で、かつ、前記電池の分極が解消される前の休止期間において、前記休止期間開始から第1の所定時間経過後に前記電圧検出部により検出される第1の電圧または前記休止期間開始から前記第1の所定時間よりも長い第2の所定時間経過後に前記電圧検出部により検出される第2の電圧から、前記第1の電圧と前記第2の電圧との比と、係数とを乗算した値を減算した結果を、前記電池の分極解消後の開回路電圧として推定する推定部と、
を備えることを特徴とする電池パック。
Batteries and
A voltage detector that detects the voltage of the battery and
The first voltage detected by the voltage detection unit or the first voltage after the lapse of the first predetermined time from the start of the pause period in the pause period after the charging of the battery is completed and before the polarization of the battery is eliminated. From the second voltage detected by the voltage detector after the lapse of the second predetermined time longer than the first predetermined time from the start of the pause period, the ratio of the first voltage to the second voltage is determined. An estimation unit that estimates the result of subtracting the value obtained by multiplying the coefficient as the open circuit voltage after depolarization of the battery.
A battery pack characterized by being equipped with.
請求項1または請求項2に記載の電池パックであって、
前記推定部は、
前記比が閾値以下である場合、前記係数を第1の係数とし、
前記比が前記閾値よりも大きい場合、前記係数を前記第1の係数よりも小さい第2の係数とする
こと特徴とする電池パック。
The battery pack according to claim 1 or 2.
The estimation unit
When the ratio is equal to or less than the threshold value, the coefficient is set as the first coefficient.
A battery pack characterized in that when the ratio is larger than the threshold value, the coefficient is set to a second coefficient smaller than the first coefficient.
請求項1に記載の電池パックであって、
前記推定部は、
前記比が閾値以下である場合、前記結果に、第1の補正値を加算した値を、前記電池の分極解消後の開回路電圧として推定し、
前記比が前記閾値よりも大きい場合、前記結果に、前記第1の補正値よりも小さい第2の補正値を加算した値を、前記電池の分極解消後の開回路電圧として推定する
ことを特徴とする電池パック。
The battery pack according to claim 1.
The estimation unit
When the ratio is equal to or less than the threshold value, the value obtained by adding the first correction value to the result is estimated as the open circuit voltage after the polarization of the battery is eliminated.
When the ratio is larger than the threshold value, the value obtained by adding the second correction value smaller than the first correction value to the result is estimated as the open circuit voltage after the polarization of the battery is eliminated. Battery pack.
請求項2に記載の電池パックであって、
前記推定部は、
前記比が閾値以下である場合、前記結果に、第1の補正値を減算した値を、前記電池の分極解消後の開回路電圧として推定し、
前記比が前記閾値よりも大きい場合、前記結果に、前記第1の補正値よりも小さい第2の補正値を減算した値を、前記電池の分極解消後の開回路電圧として推定する
ことを特徴とする電池パック。
The battery pack according to claim 2.
The estimation unit
When the ratio is equal to or less than the threshold value, the value obtained by subtracting the first correction value from the result is estimated as the open circuit voltage after the polarization of the battery is eliminated.
When the ratio is larger than the threshold value, a value obtained by subtracting a second correction value smaller than the first correction value from the result is estimated as an open circuit voltage after depolarization of the battery. Battery pack.
請求項1または請求項2に記載の電池パックであって、
前記比は、前記第2の電圧を前記第1の電圧で除算した値であり、
前記推定部は、
前記第1の電圧が第1の閾値以下である場合、前記係数を第1の係数とし、前記第1の電圧が前記第1の閾値よりも大きい場合、前記係数を前記第1の係数よりも小さい第2の係数とし、
または、
前記第2の電圧が第2の閾値以下である場合、前記係数を第1の係数とし、前記第2の電圧が前記第2の閾値よりも大きい場合、前記係数を前記第2の係数とする
ことを特徴とする電池パック。
The battery pack according to claim 1 or 2.
The ratio is a value obtained by dividing the second voltage by the first voltage.
The estimation unit
When the first voltage is equal to or less than the first threshold value, the coefficient is set as the first coefficient, and when the first voltage is larger than the first threshold value, the coefficient is larger than the first coefficient. Use a small second coefficient
Or
When the second voltage is equal to or less than the second threshold value, the coefficient is defined as the first coefficient, and when the second voltage is larger than the second threshold value, the coefficient is defined as the second coefficient. A battery pack that features that.
請求項1または請求項2に記載の電池パックであって、
前記比は、前記第1の電圧を前記第2の電圧で除算した値であり、
前記推定部は、
前記第1の電圧が第1の閾値以下である場合、前記係数を第1の係数とし、前記第1の電圧が前記第1の閾値よりも大きい場合、前記係数を前記第1の係数よりも大きい第2の係数とし、
または、
前記第2の電圧が第2の閾値以下である場合、前記係数を第1の係数とし、前記第2の電圧が前記第2の閾値よりも大きい場合、前記係数を前記第2の係数とする
ことを特徴とする電池パック。
The battery pack according to claim 1 or 2.
The ratio is a value obtained by dividing the first voltage by the second voltage.
The estimation unit
When the first voltage is equal to or less than the first threshold value, the coefficient is set as the first coefficient, and when the first voltage is larger than the first threshold value, the coefficient is larger than the first coefficient. As a large second coefficient
Or
When the second voltage is equal to or less than the second threshold value, the coefficient is defined as the first coefficient, and when the second voltage is larger than the second threshold value, the coefficient is defined as the second coefficient. A battery pack that features that.
請求項1または請求項2に記載の電池パックであって、
前記比は、前記第2の電圧を前記第1の電圧で除算した値であり、
前記推定部は、
前記電池の充電率の変化量に対する前記電池の開回路電圧の変化量の変化率が閾値よりも大きい場合、前記係数を第1の係数とし、
前記変化率が前記閾値以下である場合、前記係数を前記第1の係数よりも小さい第2の係数とする
ことを特徴とする電池パック。
The battery pack according to claim 1 or 2.
The ratio is a value obtained by dividing the second voltage by the first voltage.
The estimation unit
When the change rate of the change amount of the open circuit voltage of the battery with respect to the change amount of the charge rate of the battery is larger than the threshold value, the coefficient is set as the first coefficient.
A battery pack characterized in that when the rate of change is equal to or less than the threshold value, the coefficient is set to a second coefficient smaller than the first coefficient.
請求項1または請求項2に記載の電池パックであって、
前記比は、前記第1の電圧を前記第2の電圧で除算した値であり、
前記推定部は、
前記電池の充電率の変化量に対する前記電池の開回路電圧の変化量の変化率が閾値よりも大きい場合、前記係数を第1の係数とし、
前記変化率が前記閾値以下である場合、前記係数を前記第1の係数よりも大きい第2の係数とする
ことを特徴とする電池パック。
The battery pack according to claim 1 or 2.
The ratio is a value obtained by dividing the first voltage by the second voltage.
The estimation unit
When the change rate of the change amount of the open circuit voltage of the battery with respect to the change amount of the charge rate of the battery is larger than the threshold value, the coefficient is set as the first coefficient.
A battery pack characterized in that when the rate of change is equal to or less than the threshold value, the coefficient is set to a second coefficient larger than the first coefficient.
請求項1または請求項2に記載の電池パックであって、
前記推定部は、前記電池の温度が第1の温度よりも高い第2の温度のときの前記第1の所定時間を、前記電池の温度が前記第1の温度のときの前記第1の所定時間よりも短い時間に設定する
ことを特徴とする電池パック。
The battery pack according to claim 1 or 2.
The estimation unit determines the first predetermined time when the temperature of the battery is a second temperature higher than the first temperature, and the first predetermined time when the temperature of the battery is the first temperature. A battery pack characterized by being set to a shorter time than the time.
請求項1または請求項2に記載の電池パックであって、
前記推定部は、前記電池の温度が第1の温度よりも高い第2の温度のときの前記第1の所定時間と前記第2の所定時間との差を、前記電池の温度が前記第1の温度のときの前記第1の所定時間と前記第2の所定時間との差よりも短い時間に設定する
ことを特徴とする電池パック。
The battery pack according to claim 1 or 2.
The estimation unit sets the difference between the first predetermined time and the second predetermined time when the temperature of the battery is a second temperature higher than the first temperature, and the temperature of the battery is the first. A battery pack characterized in that the time is set shorter than the difference between the first predetermined time and the second predetermined time at the temperature of.
請求項1に記載の電池パックであって、
前記比は、前記第2の電圧を前記第1の電圧で除算した値であり、
前記推定部は、
前記電池の温度が閾値以下である場合、前記係数を第1の係数とし、
前記電池の温度が前記閾値よりも大きい場合、前記係数を前記第1の係数よりも小さい第2の係数とする
ことを特徴とする電池パック。
The battery pack according to claim 1.
The ratio is a value obtained by dividing the second voltage by the first voltage.
The estimation unit
When the temperature of the battery is equal to or lower than the threshold value, the coefficient is set as the first coefficient.
A battery pack characterized in that when the temperature of the battery is higher than the threshold value, the coefficient is set to a second coefficient smaller than the first coefficient.
請求項2に記載の電池パックであって、
前記比は、前記第2の電圧を前記第1の電圧で除算した値であり、
前記推定部は、
前記電池の温度が閾値以下である場合、前記係数を第1の係数とし、
前記電池の温度が前記閾値よりも大きい場合、前記係数を前記第1の係数よりも大きい第2の係数とする
ことを特徴とする電池パック。
The battery pack according to claim 2.
The ratio is a value obtained by dividing the second voltage by the first voltage.
The estimation unit
When the temperature of the battery is equal to or lower than the threshold value, the coefficient is set as the first coefficient.
A battery pack characterized in that when the temperature of the battery is larger than the threshold value, the coefficient is set to a second coefficient larger than the first coefficient.
請求項1に記載の電池パックであって、
前記比は、前記第1の電圧を前記第2の電圧で除算した値であり、
前記推定部は、
前記電池の温度が閾値以下である場合、前記係数を第1の係数とし、
前記電池の温度が前記閾値よりも大きい場合、前記係数を前記第1の係数よりも大きい第2の係数とする
ことを特徴とする電池パック。
The battery pack according to claim 1.
The ratio is a value obtained by dividing the first voltage by the second voltage.
The estimation unit
When the temperature of the battery is equal to or lower than the threshold value, the coefficient is set as the first coefficient.
A battery pack characterized in that when the temperature of the battery is larger than the threshold value, the coefficient is set to a second coefficient larger than the first coefficient.
請求項2に記載の電池パックであって、
前記比は、前記第1の電圧を前記第2の電圧で除算した値であり、
前記推定部は、
前記電池の温度が閾値以下である場合、前記係数を第1の係数とし、
前記電池の温度が前記閾値よりも大きい場合、前記係数を前記第1の係数よりも小さい第2の係数とする
ことを特徴とする電池パック。
The battery pack according to claim 2.
The ratio is a value obtained by dividing the first voltage by the second voltage.
The estimation unit
When the temperature of the battery is equal to or lower than the threshold value, the coefficient is set as the first coefficient.
A battery pack characterized in that when the temperature of the battery is higher than the threshold value, the coefficient is set to a second coefficient smaller than the first coefficient.
請求項1に記載の電池パックであって、
前記比は、前記第2の電圧を前記第1の電圧で除算した値であり、
前記推定部は、
前記電池の劣化度が閾値以下である場合、前記係数を第1の係数とし、
前記電池の劣化度が前記閾値よりも大きい場合、前記係数を前記第1の係数よりも大きい第2の係数とする
ことを特徴とする電池パック。
The battery pack according to claim 1.
The ratio is a value obtained by dividing the second voltage by the first voltage.
The estimation unit
When the degree of deterioration of the battery is equal to or less than the threshold value, the coefficient is set as the first coefficient.
A battery pack characterized in that when the degree of deterioration of the battery is larger than the threshold value, the coefficient is set to a second coefficient larger than the first coefficient.
請求項2に記載の電池パックであって、
前記比は、前記第2の電圧を前記第1の電圧で除算した値であり、
前記推定部は、
前記電池の劣化度が閾値以下である場合、前記係数を第1の係数とし、
前記電池の劣化度が前記閾値よりも大きい場合、前記係数を前記第1の係数よりも小さい第2の係数とする
ことを特徴とする電池パック。
The battery pack according to claim 2.
The ratio is a value obtained by dividing the second voltage by the first voltage.
The estimation unit
When the degree of deterioration of the battery is equal to or less than the threshold value, the coefficient is set as the first coefficient.
A battery pack characterized in that when the degree of deterioration of the battery is larger than the threshold value, the coefficient is set to a second coefficient smaller than the first coefficient.
請求項1に記載の電池パックであって、
前記比は、前記第1の電圧を前記第2の電圧で除算した値であり、
前記推定部は、
前記電池の劣化度が閾値以下である場合、前記係数を第1の係数とし、
前記電池の劣化度が前記閾値よりも大きい場合、前記係数を前記第1の係数よりも小さい第2の係数とする
ことを特徴とする電池パック。
The battery pack according to claim 1.
The ratio is a value obtained by dividing the first voltage by the second voltage.
The estimation unit
When the degree of deterioration of the battery is equal to or less than the threshold value, the coefficient is set as the first coefficient.
A battery pack characterized in that when the degree of deterioration of the battery is larger than the threshold value, the coefficient is set to a second coefficient smaller than the first coefficient.
請求項2に記載の電池パックであって、
前記比は、前記第1の電圧を前記第2の電圧で除算した値であり、
前記推定部は、
前記電池の劣化度が閾値以下である場合、前記係数を第1の係数とし、
前記電池の劣化度が前記閾値よりも大きい場合、前記係数を前記第1の係数よりも大きい第2の係数とする
ことを特徴とする電池パック。
The battery pack according to claim 2.
The ratio is a value obtained by dividing the first voltage by the second voltage.
The estimation unit
When the degree of deterioration of the battery is equal to or less than the threshold value, the coefficient is set as the first coefficient.
A battery pack characterized in that when the degree of deterioration of the battery is larger than the threshold value, the coefficient is set to a second coefficient larger than the first coefficient.
請求項1または請求項2に記載の電池パックであって、
前記推定部は、前記電池の分極解消時に前記電圧検出部により検出される電圧に基づいて前記係数を更新する
ことを特徴とする電池パック。
The battery pack according to claim 1 or 2.
The battery pack is characterized in that the estimation unit updates the coefficient based on the voltage detected by the voltage detection unit when the polarization of the battery is eliminated.
JP2017171151A 2017-09-06 2017-09-06 Battery pack Active JP6801613B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017171151A JP6801613B2 (en) 2017-09-06 2017-09-06 Battery pack
PCT/JP2018/031720 WO2019049728A1 (en) 2017-09-06 2018-08-28 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017171151A JP6801613B2 (en) 2017-09-06 2017-09-06 Battery pack

Publications (2)

Publication Number Publication Date
JP2019045419A JP2019045419A (en) 2019-03-22
JP6801613B2 true JP6801613B2 (en) 2020-12-16

Family

ID=65635285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017171151A Active JP6801613B2 (en) 2017-09-06 2017-09-06 Battery pack

Country Status (2)

Country Link
JP (1) JP6801613B2 (en)
WO (1) WO2019049728A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023119877A (en) * 2022-02-17 2023-08-29 株式会社日立製作所 Battery management device and battery management program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153131A (en) * 2013-02-06 2014-08-25 Furukawa Electric Co Ltd:The State of charge calculation device, state of charge calculation method and power supply system
JP6369340B2 (en) * 2015-01-28 2018-08-08 株式会社豊田自動織機 Power storage device and method for controlling power storage device

Also Published As

Publication number Publication date
WO2019049728A1 (en) 2019-03-14
JP2019045419A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
KR102435037B1 (en) A method for calibrating a battery, a method for estimating the state of health of a battery, and a system for performing theses methods
KR102652850B1 (en) Lithium-Sulfur Battery Management System
JP6414336B2 (en) Deterioration degree estimation device and deterioration degree estimation method
US10078116B2 (en) Battery pack and method for calculating electric energy of battery pack
KR20050013972A (en) Secondary cell residual capacity calculation method and battery pack
WO2020021888A1 (en) Management device and power supply system
JPWO2006080067A1 (en) Secondary battery charge / discharge quantity estimation method and apparatus, secondary battery polarization voltage estimation method and apparatus, and secondary battery remaining capacity estimation method and apparatus
JP6440377B2 (en) Secondary battery state detection device and secondary battery state detection method
JP6895541B2 (en) Secondary battery monitoring device, secondary battery status calculation device and secondary battery status estimation method
JP2017122622A (en) State estimation device and state estimation method
JP6369340B2 (en) Power storage device and method for controlling power storage device
CN109791183B (en) Electricity storage device
JP6183336B2 (en) Charge rate calculation device
JP6733515B2 (en) Battery expansion estimation device
TWI613454B (en) Full charge capacity (fcc) calibration method
Tang et al. Capacity estimation for Li-ion batteries
CN112534283B (en) Battery management system, battery management method, battery pack, and electric vehicle
JP2017049229A (en) Battery state detector and computer program
JP2013108919A (en) Soc estimator
CN116113837A (en) Method for estimating state of charge of battery
JP2012225713A (en) Charge rate estimation device
JP2012507018A (en) Method for determining the state of charge of a battery in the charge or discharge phase
JP7452924B2 (en) Battery SOH estimation device and method
JP2004271342A (en) Charging and discharging control system
JP6801613B2 (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R151 Written notification of patent or utility model registration

Ref document number: 6801613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151