JP6799245B2 - How to measure changes in the amount of fibrin in blood - Google Patents

How to measure changes in the amount of fibrin in blood Download PDF

Info

Publication number
JP6799245B2
JP6799245B2 JP2016033977A JP2016033977A JP6799245B2 JP 6799245 B2 JP6799245 B2 JP 6799245B2 JP 2016033977 A JP2016033977 A JP 2016033977A JP 2016033977 A JP2016033977 A JP 2016033977A JP 6799245 B2 JP6799245 B2 JP 6799245B2
Authority
JP
Japan
Prior art keywords
wavelength
blood
fibrin
scattered light
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016033977A
Other languages
Japanese (ja)
Other versions
JP2017150966A (en
Inventor
大輔 迫田
大輔 迫田
立樹 藤原
立樹 藤原
克洋 大内
克洋 大内
桑名 克之
克之 桑名
浩行 山崎
浩行 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senko Medical Instrument Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Medical and Dental University NUC
Optoquest Co Ltd
Original Assignee
Senko Medical Instrument Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Medical and Dental University NUC
Optoquest Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senko Medical Instrument Manufacturing Co Ltd, National Institute of Advanced Industrial Science and Technology AIST, Tokyo Medical and Dental University NUC, Optoquest Co Ltd filed Critical Senko Medical Instrument Manufacturing Co Ltd
Priority to JP2016033977A priority Critical patent/JP6799245B2/en
Publication of JP2017150966A publication Critical patent/JP2017150966A/en
Application granted granted Critical
Publication of JP6799245B2 publication Critical patent/JP6799245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、血栓等の血液の凝固の有無を血液流路の外部から推定する方法に関し、特に、血栓の形成に関する情報を連続的に得るべくフィブリン量変化を連続的に計測する方法に関する。 The present invention relates to a method of estimating the presence or absence of blood coagulation such as a thrombus from the outside of a blood flow path, and more particularly to a method of continuously measuring a change in the amount of fibrin in order to continuously obtain information on the formation of a thrombus.

凝固した血液の血管壁等への付着による血栓は、脳梗塞やエコノミー症候群等の循環器系の疾患の原因となることが知られている。また、人工心肺や血液透析等、血液を体外へ導いた装置内の血液流路を経由させる医療において、血液に凝固を生じると、血液を体内に戻したときに血栓となってしまうことがある。また、血液を凝固させてしまうと装置の血液流路内で滞留して装置に不調を生じさせてしまうこともある。そこで、血栓等の血液の凝固の有無について血管や血液流路の外部から推定できる方法が求められる。 Thrombosis due to adhesion of coagulated blood to the walls of blood vessels is known to cause circulatory diseases such as cerebral infarction and economy syndrome. In addition, in medical treatment such as artificial heart-lung machine and blood dialysis, in which blood is coagulated through a blood flow path in a device that guides blood to the outside of the body, it may become a thrombus when the blood is returned to the body. .. Further, if the blood is coagulated, it may stay in the blood flow path of the device and cause a malfunction of the device. Therefore, there is a need for a method that can estimate the presence or absence of blood coagulation such as thrombus from the outside of blood vessels and blood flow paths.

例えば、特許文献1では、血液の凝固の有無について推定する方法として、血液層に600〜1200nmの波長のレーザー光を入射させ、その透過光又は反射光の光量の変化を測定し、流動中の血液内を浮遊する血栓を血管の外部から検出する方法を開示している。血栓においては、部分的なヘモグロビンの密度の違いが透過光や反射光の光量の変化となって計測でき、これによって血栓を検出できる。なお、ヘマトクリットなどの血栓以外の血液組成は血液の流れによって変化し、これによっても光量を変化させ得るが、血液の流れによって移動する血栓による光量の変化に比べて緩やかな変化であり、血栓を識別できるとしている。 For example, in Patent Document 1, as a method of estimating the presence or absence of coagulation of blood, a laser beam having a wavelength of 600 to 1200 nm is incident on the blood layer, a change in the amount of transmitted light or reflected light is measured, and the blood is flowing. It discloses a method of detecting a thrombus floating in blood from the outside of a blood vessel. In a thrombus, a partial difference in hemoglobin density can be measured as a change in the amount of transmitted light or reflected light, whereby the thrombus can be detected. The blood composition other than thrombus such as hematocrit changes depending on the blood flow, and the amount of light can also be changed by this, but it is a gradual change compared to the change in the amount of light due to the blood clot that moves by the flow of blood, and the blood clot It is said that it can be identified.

また、特許文献2では、血液の凝固の有無について推定する方法として、血液流路に光学監視手段及び超音波監視手段を設置して流動中の血液の凝固による塊等の個体物を透過光の変化により検出する方法を開示している。光学監視手段は約805nmの波長の狭帯域の近赤外光を照射する光源と、血液流路を挟んだ反対側に設置される光学センサとを含み、光源からの透過光の変化によって血液の凝固による塊を検出するのである。かかる波長の近赤外光は赤血球におけるヘモグロビンによる吸収が極めて小さく、含有酸素と無関係であるため、血液の凝固による塊の検出に適するとしている。なお、血液中の空気泡も光学監視手段により検出されてしまうが、超音波監視手段によっても同時に検出されるので、血液の凝固による塊とは区別できる。 Further, in Patent Document 2, as a method of estimating the presence or absence of coagulation of blood, an optical monitoring means and an ultrasonic monitoring means are installed in the blood flow path, and an individual such as a clot due to coagulation of flowing blood is transmitted through light. It discloses a method of detecting by change. The optical monitoring means includes a light source that irradiates a narrow band near-infrared light having a wavelength of about 805 nm and an optical sensor installed on the opposite side of the blood flow path, and the change in the transmitted light from the light source causes the blood to flow. It detects lumps due to solidification. Near-infrared light of such wavelength is absorbed by hemoglobin in erythrocytes very little and is irrelevant to oxygen contained in it, so that it is suitable for detecting a mass due to blood coagulation. Although air bubbles in the blood are also detected by the optical monitoring means, they are also detected by the ultrasonic monitoring means at the same time, so that they can be distinguished from the clots due to blood coagulation.

特許文献1や2で開示の方法では、透過光又は反射光の光量の時間変化に基づき移動する血栓等を検出している。他方、光量の時間的な変化に関わらず血液の凝固の有無を推定できる方法も知られている。 In the methods disclosed in Patent Documents 1 and 2, thrombi and the like that move based on the time change of the amount of transmitted light or reflected light are detected. On the other hand, there is also known a method that can estimate the presence or absence of blood coagulation regardless of the temporal change in the amount of light.

例えば、特許文献3では、血液の凝固の有無について推定する方法として、白色光源を用いて、600nm以上の波長であって670nmを挟んだ短波長側の参照波長と長波長側の測定波長との2つの波長の透過光又は散乱光(反射光)によって血液流路を連続的に撮像して、参照波長による画像に対する測定波長による画像の輝度の差分を得る方法を開示している。血液が凝固すると670nm以上の光の透過性が高くなる。すなわち、測定波長での透過光による画像の輝度が高くなり、反対に散乱光による画像の輝度は低くなり、これらのうちいずれかと参照波長による画像との差分を得ることで凝固した部分を検出できる。このように、異なる波長の透過光又は散乱光の強度の差分を用いるので、光量の時間的な変化によらず血液の凝固の有無を推定できる。 For example, in Patent Document 3, as a method of estimating the presence or absence of coagulation of blood, a white light source is used, and a reference wavelength on the short wavelength side and a measurement wavelength on the long wavelength side having a wavelength of 600 nm or more and sandwiching 670 nm are used. A method is disclosed in which a blood flow path is continuously imaged by transmitted light or scattered light (reflected light) of two wavelengths to obtain a difference in brightness of an image depending on a measurement wavelength with respect to an image at a reference wavelength. When blood coagulates, the transparency of light of 670 nm or more increases. That is, the brightness of the image due to the transmitted light at the measurement wavelength becomes high, and the brightness of the image due to the scattered light becomes low, and the solidified portion can be detected by obtaining the difference between any of these and the image at the reference wavelength. .. In this way, since the difference in intensity of transmitted light or scattered light of different wavelengths is used, the presence or absence of blood coagulation can be estimated regardless of the temporal change in the amount of light.

特表2002−345787号公報Special Table 2002-345787 特表2013−534160号公報Special Table 2013-534160 特開2015−152480号公報Japanese Unexamined Patent Publication No. 2015-152480

ところで、血栓は、血液中のフィブリノーゲンから生成される繊維状のフィブリンが血液を凝固させて形成される。つまり、フィブリン量の変化を計測することで血液の凝固、ついては、血栓の形成やその発生確率などを推定できる。ここで、フィブリンも赤血球と同様にその量によって透過光や散乱光の強度変化を与えるため、散乱光強度を測定することでフィブリン量変化を計測でき得る。しかしながら、散乱光強度において、赤血球による散乱成分と干渉するため、フィブリン量の散乱成分だけを取り出して検出することは困難である。また、赤血球による散乱成分を除去するよう、赤血球の量を計測しようとしても、血液を取り出して遠心分離するなどの工程を必要とするため、フィブリン量変化を連続的に計測することは難しかった。 By the way, a thrombus is formed by coagulating fibrin fibrin produced from fibrinogen in blood. That is, by measuring the change in the amount of fibrin, it is possible to estimate the coagulation of blood, the formation of thrombus, and the probability of its occurrence. Here, since fibrin also gives a change in the intensity of transmitted light and scattered light depending on the amount of red blood cells, the change in the amount of fibrin can be measured by measuring the scattered light intensity. However, since it interferes with the scattered component by red blood cells in the scattered light intensity, it is difficult to extract and detect only the scattered component of the amount of fibrin. Further, even if an attempt is made to measure the amount of red blood cells so as to remove the scattered component by red blood cells, it is difficult to continuously measure the change in the amount of fibrin because a step such as taking out blood and centrifuging is required.

本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、血栓の形成やその発生確率などの情報を連続的に得るべく、フィブリン量変化を連続的に計測する方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to continuously change the amount of fibrin in order to continuously obtain information such as thrombus formation and its occurrence probability. The purpose is to provide a method of measurement.

584〜600nmの波長領域を挟んで、赤血球による散乱光の強度比は短波長側から長波長側へ向かって大きく低下することが知られている。この波長領域を挟んだ短波長側の波長λ1及び長波長側の波長λ2のそれぞれでの散乱光の強度比Rλ1及びRλ2において、赤血球による散乱光の強度比は短波長側において長波長側よりも大きく、変化に対して非常に鋭敏である。一方、フィブリンによる散乱光の強度比はほぼ同一である。このため、測定される強度比の安定する長波長側において赤血球による散乱光への寄与を除去できれば、フィブリンによる散乱光を求め得る。しかしながら、長波長側では、赤血球及びフィブリンによる散乱光強度が接近し、分離が難しい。そこで赤血球による散乱光の強度比に関連するヘマトクリット値を長波長側での散乱光の強度比Rλ2から仮定し、これにより短波長側での散乱光の強度比Rλ1から赤血球による散乱光への寄与を除去することを考えたものである。 It is known that the intensity ratio of scattered light by erythrocytes decreases significantly from the short wavelength side to the long wavelength side across a wavelength region of 584 to 600 nm. In the intensity ratios of scattered light R λ1 and R λ2 at the short wavelength side wavelength λ1 and the long wavelength side wavelength λ2 that sandwich this wavelength region, the intensity ratio of the scattered light by erythrocytes is on the long wavelength side on the short wavelength side. Greater than, and very sensitive to change. On the other hand, the intensity ratio of scattered light by fibrin is almost the same. Therefore, if the contribution of red blood cells to the scattered light can be removed on the long wavelength side where the measured intensity ratio is stable, the scattered light by fibrin can be obtained. However, on the long wavelength side, the scattered light intensities of erythrocytes and fibrin are close to each other, and separation is difficult. Therefore, the hematocrit value related to the intensity ratio of scattered light by erythrocytes is assumed from the intensity ratio R λ2 of scattered light on the long wavelength side, thereby changing from the intensity ratio R λ1 of scattered light on the short wavelength side to scattered light by erythrocytes. The idea is to eliminate the contribution of.

つまり、本発明による計測方法は、血液を体内から取り出して再び体内へと戻す血液循環装置の流路内を流れる該血液のフィブリン量変化を連続的に計測する方法であって、前記流路の側方から入射光を与えて散乱してくる散乱光を計測し、584〜600nmの波長領域を挟む短波長側の波長λ1及び長波長側の波長λ2のそれぞれでの前記入射光に対する前記散乱光の強度比Rλ1及びRλ2を連続的に計測する光学装置において、前記強度比Rλ2でのヘマトクリット値によって前記強度比Rλ1での赤血球による散乱光への寄与を除去し、前記フィブリン量変化を与えることを特徴とする。 That is, the measurement method according to the present invention is a method of continuously measuring the change in the amount of fibrin of the blood flowing in the flow path of the blood circulation device that takes out the blood from the body and returns it to the body, The scattered light that is scattered by giving incident light from the side is measured, and the scattered light with respect to the incident light at each of the short wavelength side wavelength λ1 and the long wavelength side wavelength λ2 that sandwich the wavelength region of 584 to 600 nm. In an optical device that continuously measures the intensity ratios R λ1 and R λ2 , the hematocrit value at the intensity ratio R λ2 removes the contribution of red blood cells to scattered light at the intensity ratio R λ1 and changes the amount of fibrin. Is characterized by giving.

かかる発明によれば、フィブリン量変化を連続的に計測することができる。つまり、凝固に必要となるフィブリンの量の変化から、血栓の形成やその発生確率などの情報を連続的に得ることができるのである。 According to such an invention, the change in the amount of fibrin can be continuously measured. In other words, it is possible to continuously obtain information such as thrombus formation and its occurrence probability from changes in the amount of fibrin required for coagulation.

上記した発明において、前記波長λ1でのヘマトクリット値Hに対する前記強度比Rλ1の関数をf、及び、前記波長λ2でのヘマトクリット値Hに対する前記強度比Rλ2の関数をgとすると、Rλ1=f(H)、及び、Rλ2=g(H)であり、前記強度比Rλ2でのヘマトクリット値は、g−1(Rλ2)で表され、前記フィブリン量変化をRλ1に対するf(g−1(Rλ2))の変化によって与えることを特徴としてもよい。かかる発明によれば、ヘマトクリット値を用いずとも散乱光の強度比からこれを表すことができ、フィブリン量変化を散乱光の強度比に対応させて連続的に計測できる。 In the above invention, if the function of the intensity ratio R λ1 with respect to the hematocrit value H at the wavelength λ1 is f, and the function of the intensity ratio R λ2 with respect to the hematocrit value H at the wavelength λ2 is g, then R λ1 = f (H) and R λ2 = g (H), the hematocrit value at the intensity ratio R λ2 is represented by g -1 (R λ2 ), and the change in the amount of fibrin is f (g) with respect to R λ1 . It may be characterized by giving by a change of -1 (R λ 2 )). According to such an invention, this can be expressed from the intensity ratio of scattered light without using the hematocrit value, and the change in the amount of fibrin can be continuously measured in correspondence with the intensity ratio of scattered light.

上記した発明において、前記フィブリン量変化は、f(g−1(Rλ2))/Rλ1によって与えることを特徴としてもよい。また、上記した発明において、前記フィブリン量変化は、f(g−1(Rλ2))−Rλ1によって与えることを特徴としてもよい。かかる発明によれば、フィブリン量変化を散乱光の強度比から比較的容易に得ることができて、フィブリン量変化を連続的に計測することができる。 In the above invention, the fibrin amount change may be given by f (g -1 (R λ 2 )) / R λ 1 . Further, in the above invention, the fibrin amount change may be given by f (g -1 (R λ 2 )) − R λ 1 . According to such an invention, the change in the amount of fibrin can be obtained relatively easily from the intensity ratio of scattered light, and the change in the amount of fibrin can be continuously measured.

上記した発明において、前記関数f及びgは、前記光学装置においてフィブリンを実質的に含まない既知のヘマトクリット値の基準血液を用いて与えられることを特徴としてもよい。かかる発明によれば、関数f及びgを比較的容易に得ることができて、フィブリン量変化を連続的に計測することができる。 In the invention described above, the functions f and g may be given using reference blood of a known hematocrit value that is substantially free of fibrin in the optical device. According to such an invention, the functions f and g can be obtained relatively easily, and the change in the amount of fibrin can be continuously measured.

上記した発明において、前記波長λ1及び前記波長λ2は、酸素化ヘモグロビン及び脱酸素化ヘモグロビンの吸光度の等しくなる波長であることを特徴としてもよい。かかる発明によれば、血液の酸素飽和度に影響を受けずにフィブリン量変化を連続的に計測することができる。 In the above invention, the wavelength λ1 and the wavelength λ2 may be characterized in that the wavelengths having the same absorbance of oxygenated hemoglobin and deoxygenated hemoglobin. According to such an invention, the change in the amount of fibrin can be continuously measured without being affected by the oxygen saturation of blood.

上記した発明において、前記波長λ1は420nm、前記波長λ2は810nmであることを特徴としてもよい。かかる発明によれば、波長λ1及び波長λ2のいずれも当吸収波長とできて、血液の酸素飽和度に影響を受けずにフィブリン量変化を連続的に計測することができる。 In the above invention, the wavelength λ1 may be 420 nm and the wavelength λ2 may be 810 nm. According to such an invention, both the wavelength λ1 and the wavelength λ2 can be set to this absorption wavelength, and the change in the amount of fibrin can be continuously measured without being affected by the oxygen saturation of blood.

上記した発明において、前記入射光は白色光であり、前記散乱光の計測は前記波長λ1及び前記波長λ2を含む波長帯の分光測定によることを特徴としてもよい。かかる発明によれば、波長λ1及び波長λ2の散乱光を比較的容易にかつ確実に得て、フィブリン量変化を連続的に計測することができる。 In the above invention, the incident light is white light, and the measurement of the scattered light may be characterized by spectroscopic measurement of a wavelength band including the wavelength λ1 and the wavelength λ2. According to such an invention, scattered light having a wavelength of λ1 and a wavelength of λ2 can be obtained relatively easily and reliably, and a change in the amount of fibrin can be continuously measured.

凝固のない血液についての分光スペクトルの図である。It is a figure of the spectroscopic spectrum about the blood without coagulation. 凝固部分を含む血液についての分光スペクトルの図である。It is a figure of the spectroscopic spectrum about the blood containing a coagulated part. ヘマトクリット値についての図である。It is a figure about a hematocrit value. 血液の凝固試験のための試験装置を示すブロック図である。It is a block diagram which shows the test apparatus for the blood coagulation test. ジャイロポンプの側断面図である。It is a side sectional view of a gyro pump. ジャイロポンプの要部の側断面図である。It is a side sectional view of the main part of a gyro pump. 血液の凝固試験におけるフィブリン量の変化を示す図である。It is a figure which shows the change of the amount of fibrin in a blood coagulation test.

本発明の原理について図1及び図2を用いてその詳細を説明する。 The principle of the present invention will be described in detail with reference to FIGS. 1 and 2.

図1には、血栓等の凝固のない血液に白色光を照射し、その散乱光の分光スペクトルを得た場合の、波長ごとの散乱光の入射光に対する強度比を示す。この散乱光は、ほぼ赤血球によるものである。赤血球からの散乱光の強度比は、波長が長くなるにつれてなだらかに減少するが、584〜600nmの波長領域においては急激に減少する。この波長領域に対して短波長側の波長λ1及び長波長側の波長λ2をそれぞれ定める。つまり、波長λ1の散乱光の強度比は、波長λ2の散乱光の強度比に比べて赤血球の変化に対して鋭敏に変化し、他方波長λ2の散乱光の強度比は安定する。なお、波長λ1及び波長λ2の入射光の強度が同一であれば、散乱光について強度比ではなく強度をそのまま用いても同様にできる。 FIG. 1 shows the intensity ratio of scattered light to incident light for each wavelength when white light is irradiated to blood without coagulation such as blood clots and a spectral spectrum of the scattered light is obtained. This scattered light is mostly due to red blood cells. The intensity ratio of scattered light from erythrocytes gradually decreases as the wavelength becomes longer, but decreases sharply in the wavelength region of 584 to 600 nm. The wavelength λ1 on the short wavelength side and the wavelength λ2 on the long wavelength side are defined for this wavelength region, respectively. That is, the intensity ratio of the scattered light having the wavelength λ1 changes more sensitively to the change of the red blood cells than the intensity ratio of the scattered light having the wavelength λ2, while the intensity ratio of the scattered light having the wavelength λ2 is stable. If the intensities of the incident light having the wavelength λ1 and the wavelength λ2 are the same, the same can be done by using the intensity as it is instead of the intensity ratio for the scattered light.

ここで、血液中の赤血球の量を示すとされるヘマトクリット値と、散乱光の強度比との関係を波長λ1及び波長λ2においてそれぞれ検量しておくことで、その波長の散乱光の強度比を用いてヘマトクリット値を表すことができる。例えば、波長λ1における検量線関数を
λ1=f(H)
とする。ここで、Hはヘマトクリット値、Rは計測された散乱光の照射光に対する強度比として無次元量とする。同様に、長波長側の波長λ2における検量線関数を
λ2=g(H)
とできる。なお、ヘマトクリット値は血液中の血球の体積の割合を示すが、一般に血球の体積のうち赤血球がその96%を占めるため、赤血球の体積比にほぼ等しい値として用いられる。また、検量線関数を得る場合、ヘマトクリット値は、血液の一部を採取し遠心分離して測定される。
Here, by calibrating the relationship between the hematocrit value, which is said to indicate the amount of red blood cells in blood, and the intensity ratio of scattered light at wavelength λ1 and wavelength λ2, respectively, the intensity ratio of scattered light at that wavelength can be determined. Can be used to represent a hematocrit value. For example, the calibration curve function at wavelength λ1 is R λ1 = f (H).
And. Here, H is a hematocrit value, and R is a dimensionless quantity as the intensity ratio of the measured scattered light to the irradiation light. Similarly, the calibration curve function at the wavelength λ2 on the long wavelength side is R λ2 = g (H).
Can be done. The hematocrit value indicates the ratio of the volume of blood cells in blood, and since erythrocytes generally occupy 96% of the volume of blood cells, it is used as a value substantially equal to the volume ratio of erythrocytes. When obtaining a calibration curve function, the hematocrit value is measured by collecting a part of blood and centrifuging it.

図2には、血栓等の凝固部分を含む血液に白色光を照射し、その散乱光の分光スペクトルを得た場合の波長ごとの散乱光の強度比を示す。凝固部分を含む場合、血液中のフィブリノーゲンを前駆体として繊維状のフィブリンが生成されて赤血球を取り込んで血液を凝固させている。他方、上記した凝固のない血液では実質的にフィブリンを含まない。つまり、フィブリン量の変化を連続的に計測することで、例えば、血栓の形成やその発生確率などを推定するための血液の凝固に関する情報を連続的に得ることができる。 FIG. 2 shows the intensity ratio of scattered light for each wavelength when white light is irradiated to blood containing a coagulated portion such as a blood clot and a spectral spectrum of the scattered light is obtained. When a coagulated portion is included, fibrinogen in the blood is used as a precursor to generate fibrin fibrin, which takes in red blood cells to coagulate the blood. On the other hand, the non-coagulated blood described above is substantially free of fibrin. That is, by continuously measuring the change in the amount of fibrin, for example, it is possible to continuously obtain information on blood coagulation for estimating the formation of thrombus and the probability of its occurrence.

また、フィブリンを含む血液においては、赤血球だけでなくフィブリンからも散乱光が得られる。つまり、計測される散乱光は、赤血球による散乱光とフィブリンによる散乱光とを合成したものである。ここで、フィブリンによる散乱光の強度比は、波長が長くなるにつれてなだらかに減少するが、赤血球のような波長による急激な変化はない。その結果、短波長側の波長λ1において、赤血球による散乱光強度比aに対するフィブリンによる散乱光強度比bは小さく(例えば、2割程度の大きさに)なり、これに比べて、長波長側の波長λ2において、赤血球による散乱光強度比cに対するフィブリンによる散乱光強度比dは大きく(例えば、ほぼ同等の大きさに)なる。 Further, in blood containing fibrin, scattered light can be obtained not only from erythrocytes but also from fibrin. That is, the scattered light to be measured is a combination of the scattered light by red blood cells and the scattered light by fibrin. Here, the intensity ratio of the scattered light by fibrin gradually decreases as the wavelength becomes longer, but there is no sudden change depending on the wavelength as in erythrocytes. As a result, at the wavelength λ1 on the short wavelength side, the scattered light intensity ratio b by fibrin to the scattered light intensity ratio a by erythrocytes becomes small (for example, to a size of about 20%), and compared to this, on the long wavelength side. At the wavelength λ2, the scattered light intensity ratio d by fibrin to the scattered light intensity ratio c by erythrocytes becomes large (for example, almost the same size).

ここで、測定される散乱光の強度比の安定する長波長側において赤血球による散乱光への寄与を除去できれば、フィブリンによる散乱光の強度比を求め得る。そこで、波長λ1及び波長λ2において計測された散乱光の強度比から、上記した凝固のない血液の検量線関数によってヘマトクリット値Hλ1及びHλ2をそれぞれ求める。このとき、血液における真のヘマトクリット値は計測する波長に依らないため、波長λ1での赤血球の散乱光強度比aに対応する真のヘマトクリット値と、波長λ2での赤血球の散乱光強度比cに対応する真のヘマトクリット値は等しい。 Here, if the contribution of red blood cells to the scattered light can be removed on the long wavelength side where the intensity ratio of the scattered light to be measured is stable, the intensity ratio of the scattered light by fibrin can be obtained. Therefore, the hematocrit values H λ1 and H λ2 are obtained from the intensity ratios of scattered light measured at wavelength λ1 and wavelength λ2 by the above-mentioned calibration curve function of blood without coagulation. At this time, since the true hematocrit value in blood does not depend on the wavelength to be measured, the true hematocrit value corresponding to the scattered light intensity ratio a of erythrocytes at wavelength λ1 and the scattered light intensity ratio c of erythrocytes at wavelength λ2 are set. The corresponding true hematocrit values are equal.

すなわち、図3に示すように、このヘマトクリット値Hλ1及びHλ2は、真のヘマトクリット値Hにフィブリンによる散乱光強度比b又はd(図2参照)に対応する値Hb又はHdをそれぞれ加えた見かけのヘマトクリット値であり、真のヘマトクリット値Hより大きく算出される。また、上記したように、真のヘマトクリット値に対応する散乱光強度比(赤血球による散乱光強度比)に対するフィブリンによる散乱光強度比は長波長側において大きい。そのため、真のヘマトクリット値からのずれは、短波長側に比べ長波長側において大きくなる。つまり、凝固部分を含む血液であれば、H<Hλ1<Hλ2となる。なお、凝固のない血液であれば、検量した血液に対してフィブリンは増加しておらず、H=Hλ1=Hλ2である。 That is, as shown in FIG. 3, the hematocrit values H λ1 and H λ2 are obtained by adding the values Hb or Hd corresponding to the scattered light intensity ratio b or d (see FIG. 2) by fibrin to the true hematocrit value H, respectively. It is an apparent hematocrit value and is calculated to be larger than the true hematocrit value H. Further, as described above, the ratio of the scattered light intensity by fibrin to the scattered light intensity ratio (the scattered light intensity ratio by erythrocytes) corresponding to the true hematocrit value is large on the long wavelength side. Therefore, the deviation from the true hematocrit value is larger on the long wavelength side than on the short wavelength side. That is, in the case of blood containing a coagulated portion, H <H λ1 <H λ2 . In the case of blood without coagulation, fibrin does not increase with respect to the weighed blood, and H = H λ1 = H λ2 .

ここで、例えば、波長λ1における散乱光強度比のうち赤血球による散乱光の強度比とフィブリンによる散乱光の強度比との比が1:0.2であり、同様に波長λ2における比が1:1であるとする。さらに、測定される散乱光の強度比の安定する波長λ2におけるヘマトクリット値Hλ2を波長λ1におけるヘマトクリット値Hλ1から減算し、Hλ1−Hλ2=ΔHを得れば、短波長側の波長λ1の赤血球による散乱光への寄与を除去できる。このとき、真のヘマトクリット値は互いに等しいのでこれが相殺され、つまり赤血球による散乱光への寄与を除去でき、フィブリンによる散乱光の強度比のおよそ0.8倍に相当する強度比に対応するヘマトクリット値の差ΔH(図面上の長さは負の値を表示出来ないので逆符号で表示する)を算出できることになる。つまり、Hλ1−Hλ2の絶対値が大きくなるほどフィブリンの量が多いことが判り、これによりフィブリン量の変化を計測することができる。 Here, for example, among the scattered light intensity ratios at wavelength λ1, the ratio of the scattered light intensity ratio by red blood cells to the intensity ratio of scattered light by fibrin is 1: 0.2, and similarly, the ratio at wavelength λ2 is 1: 2. It is assumed to be 1. Further, if the hematocrit value H λ2 at the wavelength λ2 where the intensity ratio of the scattered light to be measured is stable is subtracted from the hematocrit value H λ1 at the wavelength λ1 to obtain H λ1 −H λ2 = ΔH, the wavelength λ1 on the short wavelength side is obtained. Contribution to scattered light by erythrocytes can be removed. At this time, since the true hematocrit values are equal to each other, they are offset, that is, the contribution of red blood cells to the scattered light can be removed, and the hematocrit value corresponding to the intensity ratio corresponding to about 0.8 times the intensity ratio of the scattered light by fibrin. The difference ΔH (the length on the drawing cannot be displayed as a negative value, so it is displayed with a reverse sign) can be calculated. That is, it can be seen that the larger the absolute value of H λ1 −H λ2, the larger the amount of fibrin, and thus the change in the amount of fibrin can be measured.

以上のように、見かけのヘマトクリット値Hλ1及びHλ2をそれぞれ算出し、これらのヘマトクリット値の差ΔHの変化を得ることで、血液中におけるフィブリン量の変化を計測できる。すなわち、上記したような散乱光強度比を連続的に計測することでヘマトクリット値の差ΔHを連続的に得ることができて、フィブリン量の変化を連続的に計測でき、血栓の形成やその発生確率などを推定できる血液の凝固に関する情報を連続的に得ることができる。なお、見かけのヘマトクリット値Hλ1を見かけのヘマトクリット値Hλ2で除して赤血球による散乱光への寄与を除去しても、その商は、ヘマトクリット値の差ΔHが大きくなるほど(つまり絶対値が小さくなるほど)大きくなるので、これによってもフィブリン量の変化を得ることができる。 As described above, the change in the amount of fibrin in blood can be measured by calculating the apparent hematocrit values H λ1 and H λ2 , respectively, and obtaining the change in the difference ΔH between these hematocrit values. That is, by continuously measuring the scattered light intensity ratio as described above, the difference ΔH of the hematocrit value can be continuously obtained, the change in the amount of fibrin can be continuously measured, and the formation of thrombus and its generation thereof. Information on blood coagulation from which the probability can be estimated can be continuously obtained. Even if the apparent hematocrit value H λ1 is divided by the apparent hematocrit value H λ2 to remove the contribution of red blood cells to scattered light, the quotient is that the larger the difference ΔH in the hematocrit value (that is, the smaller the absolute value). (I see) it gets bigger, so you can also get a change in the amount of fibrin.

ここで、強度比Rλ2での見かけのヘマトクリット値Hλ2は、上記した検量線関数の逆関数でg−1(Rλ2)と表せるから、これを波長λ1の検量線関数fに代入したf(g−1(Rλ2))は波長λ1の検量線関数による見かけのヘマトクリット値Hλ2に対応する散乱光の強度比である。換言すれば、長波長側での強度比Rλ2により仮定したヘマトクリット値に対応する短波長側での散乱光の強度比である。つまり、上記したヘマトクリット値による比較と同様に散乱光の強度比Rλ1と比較でき、かかる比較によって、短波長側の強度比Rλ1から赤血球による寄与を除去でき、上記と同様にフィブリン量変化に対応する散乱光強度比を得ることができる。例えば、f(g−1(Rλ2))−Rλ1とすればよい。このように、散乱光の強度比で表すことで、ヘマトクリット値を用いずにフィブリン量変化を表すことができる。また、上記と同様に、f(g−1(Rλ2))/Rλ1のようにして商を得てもよい。 Here, since the apparent hematocrit value H λ2 at the intensity ratio R λ2 can be expressed as g -1 (R λ2 ) by the inverse function of the above-mentioned calibration curve function, this is substituted into the calibration curve function f of the wavelength λ1. (G -1 (R λ 2 )) is the intensity ratio of scattered light corresponding to the apparent hematocrit value H λ 2 by the calibration curve function of the wavelength λ 1. In other words, it is the intensity ratio of the scattered light on the short wavelength side corresponding to the hematocrit value assumed by the intensity ratio R λ2 on the long wavelength side. That is, it can be compared with the intensity ratio R λ1 of scattered light in the same manner as the comparison based on the hematocrit value described above, and by such comparison, the contribution of red blood cells can be removed from the intensity ratio R λ1 on the short wavelength side, and the amount of fibrin changes as described above. The corresponding scattered light intensity ratio can be obtained. For example, f (g -1 (R λ2 )) −R λ1 may be used. In this way, by expressing by the intensity ratio of scattered light, it is possible to express the change in the amount of fibrin without using the hematocrit value. Further, similarly to the above, a quotient may be obtained in the manner of f (g -1 (R λ 2 )) / R λ 1 .

このようにして、測定される強度比の安定する長波長側の強度比Rλ2によってヘマトクリット値を仮定し、短波長側での散乱光の強度比Rλ1から赤血球による散乱光への寄与を除去してフィブリン量変化を得るのである。 In this way, the hematocrit value is assumed by the intensity ratio R λ2 on the long wavelength side where the measured intensity ratio is stable, and the contribution of scattered light by red blood cells to the scattered light is removed from the intensity ratio R λ1 of the scattered light on the short wavelength side. Then, the change in the amount of fibrin is obtained.

次に、以上の原理を用い、血液を循環させる模擬循環回路のジャイロポンプ内の血液についてフィブリン量の変化を連続的に計測する試験装置について、図4乃至図6を用いて説明する。 Next, using the above principle, a test device for continuously measuring a change in the amount of fibrin in blood in a gyro pump of a simulated circulation circuit for circulating blood will be described with reference to FIGS. 4 to 6.

図4に示すように、模擬循環回路10には、ジャイロポンプ(遠心ポンプ)1と、血液のガス交換を行う人工肺2と、血液を貯留したリザーバ3と、リザーバ3を収容して血液を保温する恒温槽4(ウォーターチャンバー)とを含む。模擬循環回路10は、血液をリザーバ3からジャイロポンプ1を通過させて人工肺2に送りリザーバ3に戻すよう、それぞれを塩化ビニル製のチューブ等で接続している。さらに人工肺2にはバイパス路2’が設けられ、2つのクランプ5によって人工肺2を通過する経路とバイパス路2’を通過する経路とを切り換えられる。なお、血液として、ブタ血液900ccに対して、抗凝固剤である3.2%クエン酸ナトリウム溶液を100cc添加したものを使用した。また、回路には、血液を凝固させる凝固剤として塩化カルシウム溶液を添加するためのシリンジポンプ6が接続される他、適宜、圧力計や流量計も備えられる。 As shown in FIG. 4, the simulated circulation circuit 10 accommodates a gyro pump (centrifugal pump) 1, an artificial lung 2 that exchanges blood gas, a reservoir 3 that stores blood, and a reservoir 3 to store blood. Includes a constant temperature bath 4 (water chamber) for keeping warm. The simulated circulation circuit 10 is connected with a vinyl chloride tube or the like so that blood is sent from the reservoir 3 through the gyro pump 1 to the artificial lung 2 and returned to the reservoir 3. Further, the artificial lung 2 is provided with a bypass path 2', and two clamps 5 can switch between a path passing through the artificial lung 2 and a path passing through the bypass path 2'. As blood, 900 cc of porcine blood supplemented with 100 cc of a 3.2% sodium citrate solution as an anticoagulant was used. Further, the circuit is connected to a syringe pump 6 for adding a calcium chloride solution as a coagulant for coagulating blood, and is also provided with a pressure gauge and a flow meter as appropriate.

さらに、ジャイロポンプ1には、その内部の血液のフィブリン量を計測する装置としてジャイロポンプ1内の血液に向けて白色光を照射するためのキセノンランプを含む光源21と、血液からの散乱光のスペクトルを得るための小型分光器を含む計測部25が取り付けられる。光源21には照射側光ファイバ22が接続され、ジャイロポンプ1内の所定の位置に向けて白色光を照射可能である。また、計測部25には、かかる所定の位置からの散乱光を受光するための受光側光ファイバ26が接続される。計測部25には、さらに計測した散乱光の強度からフィブリン量変化を計測するための演算を行う演算部27が接続される。 Further, the gyro pump 1 includes a light source 21 including a xenon lamp for irradiating white light toward the blood in the gyro pump 1 as a device for measuring the amount of fibrin in the blood inside the gyro pump 1, and a light source 21 including scattered light from the blood. A measuring unit 25 including a small spectroscope for obtaining a spectrum is attached. An irradiation side optical fiber 22 is connected to the light source 21, and white light can be irradiated toward a predetermined position in the gyro pump 1. Further, a light receiving side optical fiber 26 for receiving scattered light from such a predetermined position is connected to the measuring unit 25. The measurement unit 25 is connected to a calculation unit 27 that performs a calculation for measuring a change in the amount of fibrin from the measured intensity of scattered light.

図5及び図6に示すように、ジャイロポンプ1は、透明な樹脂からなるケーシング16と、その内部で回転するインペラ12とを備え、インペラ12の回転軸をなす軸体13の上側端部を支持するピボットベアリング11をその頂部14に備える。ジャイロポンプ1の内部において、ピボットベアリング11と軸体13との隙間15に血栓が形成されやすい。よって、隙間15を含む領域を計測領域とし、この計測領域に向けて白色光を照射するよう、照射側光ファイバ22を頂部14の上部から下側の隙間15に向けて配置し、受光側光ファイバ26を隙間15に向けて頂部14の側面に配置する。これにより、隙間15の周囲の血液に白色光を照射でき、その散乱光を受光側光ファイバ26に入射させることができる。 As shown in FIGS. 5 and 6, the gyro pump 1 includes a casing 16 made of a transparent resin and an impeller 12 that rotates inside the casing 16, and has an upper end portion of a shaft body 13 that forms a rotation axis of the impeller 12. A supporting pivot bearing 11 is provided on its top 14. Inside the gyro pump 1, a thrombus is likely to be formed in the gap 15 between the pivot bearing 11 and the shaft body 13. Therefore, the region including the gap 15 is set as the measurement region, and the irradiation side optical fiber 22 is arranged from the upper portion to the lower gap 15 of the top portion 14 so as to irradiate the white light toward the measurement region. The fiber 26 is placed on the side surface of the top 14 with the gap 15 facing. As a result, the blood around the gap 15 can be irradiated with white light, and the scattered light can be incident on the light receiving side optical fiber 26.

次に、模擬循環回路10において、フィブリン量の変化を計測する試験の方法について、図4及び図7を用いて説明する。なお、ここではジャイロポンプ1として、京セラメディカル株式会社製「Gyro C1E3 Pump」を用いた。かかるポンプは、ダブルピボット式遠心血液ポンプである。 Next, a test method for measuring a change in the amount of fibrin in the simulated circulation circuit 10 will be described with reference to FIGS. 4 and 7. Here, "Gyro C1E3 Pump" manufactured by KYOCERA Medical Corporation was used as the gyro pump 1. Such a pump is a double pivot centrifugal blood pump.

かかる試験に先立って、凝固のない血液についてのヘマトクリット値と散乱光の強度との関係についての検量を波長λ1及び波長λ2の2つの波長について行い、それぞれの検量線関数を得た。ここで、波長λ1及びλ2は、赤血球による散乱光強度が短波長側から長波長側へ向かって大きく低下する584〜600nmの波長領域よりも短波長側及び長波長側にそれぞれ420nm及び810nmで設定した。なお、これらの波長は、いずれも酸素化ヘモグロビンと脱酸素化ヘモグロビンとの吸光度の等しい等吸収波長であり、血液の酸素飽和度によって散乱光の強度に影響を与えない波長である。 Prior to such a test, the relationship between the hematocrit value and the intensity of scattered light for blood without coagulation was calibrated for two wavelengths, wavelength λ1 and wavelength λ2, and the respective calibration curve functions were obtained. Here, the wavelengths λ1 and λ2 are set at 420 nm and 810 nm, respectively, on the short wavelength side and the long wavelength side of the wavelength region of 584 to 600 nm, where the intensity of scattered light by red blood cells greatly decreases from the short wavelength side to the long wavelength side. did. All of these wavelengths are equal absorption wavelengths in which the absorbance of oxygenated hemoglobin and deoxygenated hemoglobin are equal, and are wavelengths that do not affect the intensity of scattered light depending on the oxygen saturation of blood.

検量線関数は、散乱光強度からヘマトクリット値を算出する形式とし、Hλ1=αx+A、Hλ2=βx+Bの一次関数とした。ここで、Hλ1及びHλ2はそれぞれ波長λ1及び波長λ2におけるヘマトクリット値、xは計測される散乱光の強度である。検量線関数の係数は、Hλ1について、A=136.99、α=6.4988であり、Hλ2について、B=33.634、β=4.5245であった。また、その相関係数Rについては、それぞれ0.97及び0.92であった。つまり、線形近似、すなわち一次関数によって検量した結果に高い相関を得た。 The calibration curve function was in the form of calculating the hematocrit value from the scattered light intensity, and was a linear function of H λ1 = αx + A and H λ2 = βx + B. Here, H λ1 and H λ2 are hematocrit values at wavelength λ1 and wavelength λ2, respectively, and x is the intensity of scattered light to be measured. The coefficients of the calibration curve function were A = 136.99 and α = 6.4988 for H λ1 and B = 33.634 and β = 4.5245 for H λ2 . As for the correlation coefficient R 2 was 0.97 and 0.92, respectively. In other words, a high correlation was obtained with the result of calibration by linear approximation, that is, a linear function.

試験用の血液は、あらかじめ人工肺2を通過させるよう循環させて酸素飽和度を100%に調整した。また、人工肺2内での血栓の生成を避けるため、以降において、血液がバイパス路2’のみを経由し人工肺2を経由しないよう、クランプ5により回路を切り換えた。なお、人工肺2中に血液は225cc保持され、残りの775ccを模擬循環回路10に循環させた。なお、恒温槽4の水温は37℃としている。 The test blood was circulated in advance so as to pass through the artificial lung 2 to adjust the oxygen saturation to 100%. Further, in order to avoid the formation of a thrombus in the artificial lung 2, the circuit was subsequently switched by the clamp 5 so that the blood passed only through the bypass path 2'and not through the artificial lung 2. 225 cc of blood was retained in the artificial lung 2, and the remaining 775 cc was circulated in the simulated circulation circuit 10. The water temperature of the constant temperature bath 4 is 37 ° C.

図4に示すように、模擬循環回路10において血液を循環させつつ、シリンジポンプ6から2%塩化カルシウム溶液を添加し血液の凝固を促進する。ジャイロポンプ1は回転数2000rpm、流量2L/minにて動作させ、塩化カルシウムは7.75mL/minで1分間添加し、その後0.15mL/minにて連続添加した。また、照射側光ファイバ22から白色光を上記した計測領域に照射し、その散乱光を受光側光ファイバ26から受光し、計測部25の小型分光器によって散乱光のスペクトルを得て、波長λ1及びλ2の散乱光の強度をそれぞれ計測し所定の時間間隔で連続的に記録する。演算部27には上記した検量線関数が記憶されており、計測された波長λ1及びλ2の散乱光の強度に応じて検量線関数からヘマトクリット値Hλ1及びHλ2をそれぞれ算出する。さらに、ΔHct(%)=(Hλ1−Hλ2)によって求めたΔHctと試験開始後の時刻との関係を図7に示した。なお、散乱光のスペクトルは、ジャイロポンプ1に血液を充填させる前の散乱光のスペクトルに対する比で計測してジャイロポンプ1の構成部品からの散乱光の影響を取り除くとよい。 As shown in FIG. 4, while circulating blood in the simulated circulation circuit 10, a 2% calcium chloride solution is added from the syringe pump 6 to promote blood coagulation. The gyro pump 1 was operated at a rotation speed of 2000 rpm and a flow rate of 2 L / min, and calcium chloride was added at 7.75 mL / min for 1 minute, and then continuously added at 0.15 mL / min. Further, white light is irradiated from the irradiation side optical fiber 22 to the above-mentioned measurement region, the scattered light is received from the light receiving side optical fiber 26, the spectrum of the scattered light is obtained by the small spectroscope of the measurement unit 25, and the wavelength λ1 The intensity of the scattered light of λ2 and λ2 are measured and continuously recorded at predetermined time intervals. The above-mentioned calibration curve function is stored in the calculation unit 27, and the hematocrit values H λ1 and H λ2 are calculated from the calibration curve function according to the measured intensity of scattered light of wavelengths λ1 and λ2 , respectively. Further, FIG. 7 shows the relationship between ΔHct obtained by ΔHct (%) = (H λ1 −H λ2 ) and the time after the start of the test. The spectrum of the scattered light may be measured as a ratio to the spectrum of the scattered light before the gyro pump 1 is filled with blood to remove the influence of the scattered light from the components of the gyro pump 1.

図7に示すように、ΔHctは、試験開始後53分の前後において0%程度から−5%程度まで変化をしている。つまり、Hλ1及びHλ2は、53分の以前においてはほぼ同値であり、53分以降においてHλ2がHλ1に対して大きくなったことが判る。すなわち、53分の前後において血液中のフィブリン量が増え、これによって散乱光の強度から求めた見かけのヘマトクリット値が真のヘマトクリット値より大きくなっているのである。このように、見かけのヘマトクリット値Hλ1からHλ2を減算して波長λ1での散乱光の強度での赤血球の寄与を除去し、見かけのヘマトクリット値Hλ1に対する割合で示したΔHctの変化は、フィブリン量の変化を表す。つまり、計測領域におけるフィブリン量の変化を計測することができるのである。 As shown in FIG. 7, ΔHct changes from about 0% to about -5% around 53 minutes after the start of the test. That is, it can be seen that H λ1 and H λ2 are almost the same before 53 minutes, and H λ2 becomes larger than H λ1 after 53 minutes. That is, around 53 minutes, the amount of fibrin in the blood increases, and as a result, the apparent hematocrit value obtained from the intensity of scattered light becomes larger than the true hematocrit value. In this way, H λ2 is subtracted from the apparent hematocrit value H λ1 to remove the contribution of red blood cells to the intensity of scattered light at the wavelength λ1, and the change in ΔHct shown as a ratio to the apparent hematocrit value H λ1 is Represents a change in the amount of fibrin. That is, it is possible to measure the change in the amount of fibrin in the measurement area.

なお、ヘマトクリット値差によるフィブリン量の変化を得る計算式は、上記のΔHctに限らず、例えば、Hλ1−Hλ2としたり、Hλ1/Hλ2としたりしても、同様に、波長λ2でのヘマトクリット値によって波長λ1での散乱光の強度への赤血球の寄与を除去することができる。 The calculation formula for obtaining the change in the amount of fibrin due to the difference in hematocrit value is not limited to the above ΔHct. For example, even if H λ1 −H λ2 or H λ1 / H λ2 is used, the wavelength λ2 is the same. The hematocrit value of can eliminate the contribution of red blood cells to the intensity of scattered light at wavelength λ1.

また、波長λ1及びλ2を等吸収波長としなくても、血液の酸素飽和度による散乱光への影響を補正することでフィブリン量の変化を検出できる。補正の方法として、例えば以下の方法がある。すなわち、上記した584〜600nmの波長領域よりも短波長側に波長λ1を設定し、長波長側に波長λ2及び波長λ3を設定する。酸素飽和度をSaとすると、分散光の強度Iを求める検量線関数hはIλ1=hλ1(Hλ1,Sa)、Iλ2=hλ2(Hλ2,Sa)Iλ3=hλ3(Hλ3,Sa)として得ることができる。ここで、波長λ2及びλ3の散乱光の強度において、赤血球による散乱光強度とフィブリンによる散乱光強度との比(図2のcとdの比)は長波長側においてほぼ同値であるから、真のヘマトクリット値に対する見かけのヘマトクリット値のずれもほぼ同値となる。つまり、凝固を含む血液であっても、散乱光の強度から算出される見かけのヘマトクリット値Hλ2及びHλ3は互いに同値(Hλ2=Hλ3)となる。すなわち、未知数は、Hλ1、Hλ2及びSaの3つとなり、λ1、λ2及びλ3の3つの波長の散乱光強度の計測により可解な連立方程式を得ることができ、酸素飽和度によらずフィブリンの量の変化を得ることができる。 Further, even if the wavelengths λ1 and λ2 are not set to the isosbestic wavelengths, the change in the amount of fibrin can be detected by correcting the influence of the oxygen saturation of blood on the scattered light. As a correction method, for example, there are the following methods. That is, the wavelength λ1 is set on the shorter wavelength side than the wavelength region of 584 to 600 nm described above, and the wavelength λ2 and the wavelength λ3 are set on the long wavelength side. Assuming that the oxygen saturation is Sa, the calibration curve function h for obtaining the intensity I of the dispersed light is I λ1 = h λ1 (H λ1 , Sa), I λ2 = h λ2 (H λ2 , Sa) I λ3 = h λ3 (H) It can be obtained as λ3 , Sa). Here, in the intensity of scattered light having wavelengths λ2 and λ3, the ratio of the scattered light intensity by red blood cells to the scattered light intensity by fibrin (the ratio of c and d in FIG. 2) is almost the same on the long wavelength side, so that it is true. The deviation of the apparent hematocrit value with respect to the hematocrit value of is almost the same. That is, even in blood containing coagulation, the apparent hematocrit values H λ2 and H λ3 calculated from the intensity of scattered light are equivalent to each other (H λ2 = H λ3 ). That is, there are three unknowns, H λ1 , H λ2, and Sa, and a solvable simultaneous equation can be obtained by measuring the scattered light intensity of the three wavelengths λ1, λ2, and λ3, regardless of the oxygen saturation. Changes in the amount of fibrin can be obtained.

以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。 Although the examples according to the present invention and the modifications based on the present invention have been described above, the present invention is not necessarily limited to this, and those skilled in the art deviate from the gist of the present invention or the appended claims. Without doing so, various alternative and modified examples could be found.

1 ジャイロポンプ
21 光源
22 照射側光ファイバ
25 計測部
26 受光側光ファイバ
27 演算部

1 Gyro pump 21 Light source 22 Irradiation side optical fiber 25 Measuring unit 26 Light receiving side optical fiber 27 Calculation unit

Claims (8)

血液を体内から取り出して再び体内へと戻す血液循環装置の流路内を流れる該血液のフィブリン量変化を連続的に計測する計測装置において、
前記計測装置は、前記流路の側方から入射光を与えて散乱してくる散乱光を計測し、584〜600nmの波長領域を挟む短波長側の波長λ1及び長波長側の波長λ2のそれぞれでの前記入射光に対する前記散乱光の強度比Rλ1及びRλ2を連続的に計測し、且つ、前記強度比Rλ2でのヘマトクリット値によって前記強度比Rλ1での赤血球による散乱光への寄与を除去し、前記フィブリン量変化を与える手段を有する
ことを特徴とする計測装置。
In a measuring device that continuously measures changes in the amount of fibrin in the blood flowing through the flow path of the blood circulation device that takes blood out of the body and returns it to the body.
The measuring device measures scattered light that is scattered by giving incident light from the side of the flow path, and has a wavelength λ1 on the short wavelength side and a wavelength λ2 on the long wavelength side that sandwich a wavelength region of 584 to 600 nm, respectively. The intensity ratios R λ1 and R λ2 of the scattered light to the incident light in the above are continuously measured, and the hematocrit value at the intensity ratio R λ2 contributes to the scattered light by the erythrocytes at the intensity ratio R λ1. A measuring device having a means for removing the above-mentioned material and giving a change in the amount of fibrin.
前記波長λ1でのヘマトクリット値Hに対する前記強度比Rλ1の関数をf、及び、前記波長λ2でのヘマトクリット値Hに対する前記強度比Rλ2の関数をgとすると、
λ1=f(H)、及び、
λ2=g(H)であり、
前記強度比Rλ2でのヘマトクリット値は、g−1(Rλ2)で表され、
前記フィブリン量変化をRλ1に対するf(g−1(Rλ2))の変化によって与えることを特徴とする請求項1記載の計測装置。
Let f be the function of the intensity ratio R λ1 to the hematocrit value H at the wavelength λ1 and g be the function of the intensity ratio R λ2 to the hematocrit value H at the wavelength λ2.
R λ1 = f (H), and
R λ2 = g (H),
The hematocrit value at the intensity ratio R λ 2 is represented by g -1 (R λ 2 ).
Measurement apparatus according to claim 1, characterized in providing a change in f the fibrin amount change relative to R λ1 (g -1 (R λ2 )).
前記フィブリン量変化は、f(g−1(Rλ2))/Rλ1によって与えることを特徴とする請求項2記載の計測装置。 The measuring device according to claim 2, wherein the change in the amount of fibrin is given by f (g -1 (R λ 2 )) / R λ 1 . 前記フィブリン量変化は、f(g−1(Rλ2))−Rλ1によって与えることを特徴とする請求項2記載の計測装置。 The measuring device according to claim 2, wherein the change in the amount of fibrin is given by f (g -1 (R λ2 )) −R λ1 . 前記関数f及びgは、前記計測装置においてフィブリンを実質的に含まない既知のヘマトクリット値の基準血液を用いて与えられることを特徴とする請求項乃至4のうちの1つに記載の計測装置。 The measuring device according to any one of claims 2 to 4, wherein the functions f and g are given in the measuring device using a reference blood having a known hematocrit value that is substantially free of fibrin. .. 前記波長λ1及び前記波長λ2は、酸素化ヘモグロビン及び脱酸素化ヘモグロビンの吸光度の等しくなる波長であることを特徴とする請求項1乃至3のうちの1つに記載の計測装置。 The measuring device according to any one of claims 1 to 3, wherein the wavelength λ1 and the wavelength λ2 are wavelengths at which the absorbances of oxygenated hemoglobin and deoxygenated hemoglobin are equal. 前記波長λ1は420nm、前記波長λ2は810nmであることを特徴とする請求項4記載の計測装置。 The measuring device according to claim 4, wherein the wavelength λ1 is 420 nm and the wavelength λ2 is 810 nm. 前記入射光は白色光であり、前記散乱光の計測は前記波長λ1及び前記波長λ2を含む波長帯の分光測定によることを特徴とする請求項1乃至7のうちの1つに記載の計測装置。 The measuring apparatus according to any one of claims 1 to 7, wherein the incident light is white light, and the scattered light is measured by spectroscopic measurement of a wavelength band including the wavelength λ1 and the wavelength λ2. ..
JP2016033977A 2016-02-25 2016-02-25 How to measure changes in the amount of fibrin in blood Active JP6799245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016033977A JP6799245B2 (en) 2016-02-25 2016-02-25 How to measure changes in the amount of fibrin in blood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016033977A JP6799245B2 (en) 2016-02-25 2016-02-25 How to measure changes in the amount of fibrin in blood

Publications (2)

Publication Number Publication Date
JP2017150966A JP2017150966A (en) 2017-08-31
JP6799245B2 true JP6799245B2 (en) 2020-12-16

Family

ID=59741705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016033977A Active JP6799245B2 (en) 2016-02-25 2016-02-25 How to measure changes in the amount of fibrin in blood

Country Status (1)

Country Link
JP (1) JP6799245B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021145461A1 (en) * 2020-01-17 2021-07-22 株式会社エイアンドティー Blood-clotting measurement device, blood-clotting time measurement method, method for determining completion of blood-clotting reaction, and automated centrifugal blood separator
US20230160896A1 (en) * 2020-03-13 2023-05-25 Terumo Kabushiki Kaisha Method for predicting formation of thrombus or risk of thrombus formation in medical device performing blood circulation by pump

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK203191D0 (en) * 1991-12-19 1991-12-19 Novo Nordisk As METHOD AND APPARATUS FOR DETERMINING RELEVANT BLOOD PARAMETERS
US5670329A (en) * 1993-05-28 1997-09-23 Cardiovascular Diagnostics, Inc. Method and analytical system for performing fibrinogen assays accurately, rapidly and simply using a rotating magnetic field
JP4680422B2 (en) * 2001-05-29 2011-05-11 嘉之 山海 Thrombus measurement device
JP4461254B2 (en) * 2005-03-11 2010-05-12 国立大学法人広島大学 Thrombus detection method and thrombus observation device using the same
WO2007105805A1 (en) * 2006-03-10 2007-09-20 Kawasumi Laboratories, Inc. Blood characteristics measuring probe, cardiovascular system artificial organ and artificial lung
JP5901012B2 (en) * 2012-02-13 2016-04-06 国立大学法人 東京医科歯科大学 Blood information measuring method and apparatus
JP6076801B2 (en) * 2013-03-29 2017-02-08 シスメックス株式会社 Blood cell analyzer and blood cell analysis method
US9909977B2 (en) * 2013-10-16 2018-03-06 Institut National De La Sante Et De La Recherche Medical Simultaneous monitoring of fibrinogen and haematocrit in whole blood
JP6284145B2 (en) * 2014-02-17 2018-02-28 国立研究開発法人産業技術総合研究所 A device that observes the formation of blood clots and the formation of blood clots

Also Published As

Publication number Publication date
JP2017150966A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP4546544B2 (en) Apparatus and method for detecting complications during extracorporeal blood treatment
AU2004208554B2 (en) An apparatus and method for monitoring a vascular access of a patient
JP6027720B2 (en) Blood purification equipment
JP4573860B2 (en) Blood purification equipment
JP6147146B2 (en) Blood purification equipment
JP6799245B2 (en) How to measure changes in the amount of fibrin in blood
JP2001502590A (en) Method for measuring recirculation during extracorporeal blood treatment and apparatus for implementing such a method
JP5536192B2 (en) Apparatus and method for measuring blood components in blood for an extracorporeal blood treatment apparatus
JP4290106B2 (en) Blood purification equipment
JP2017509394A (en) Self-calibrating blood chamber
JP6667456B2 (en) Processor, program, device, and method for non-invasively determining hematocrit of a subject
WO1998019592A1 (en) Dialysis monitoring method and apparatus
Sakota et al. Feasibility of the optical imaging of thrombus formation in a rotary blood pump by near‐infrared light
JP2008113748A (en) Blood purification device
JP6067620B2 (en) Blood purification equipment
Sakota et al. Development of an optical detector of thrombus formation on the pivot bearing of a rotary blood pump
JP5222706B2 (en) Blood purification apparatus and blood flow calculation method thereof
JP6559484B2 (en) Blood purification apparatus and access blood vessel flow rate calculation method using the blood purification apparatus
JP2013027455A (en) Blood purification apparatus and calibration method for blood concentration sensor in the blood purification apparatus
Schneditz et al. Absolute blood volume and hepatosplanchnic blood flow measured by indocyanine green kinetics during hemodialysis
Sakota et al. Real‐time observation of thrombus growth process in an impeller of a hydrodynamically levitated centrifugal blood pump by near‐infrared hyperspectral imaging
CN111225694B (en) Blood purification device
JP5438939B2 (en) Blood purification equipment
Fridolin et al. Accurate dialysis dose evaluation and extrapolation algorithms during online optical dialysis monitoring
JP6284145B2 (en) A device that observes the formation of blood clots and the formation of blood clots

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201102

R150 Certificate of patent or registration of utility model

Ref document number: 6799245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250