JP6798113B2 - motor - Google Patents

motor Download PDF

Info

Publication number
JP6798113B2
JP6798113B2 JP2016026874A JP2016026874A JP6798113B2 JP 6798113 B2 JP6798113 B2 JP 6798113B2 JP 2016026874 A JP2016026874 A JP 2016026874A JP 2016026874 A JP2016026874 A JP 2016026874A JP 6798113 B2 JP6798113 B2 JP 6798113B2
Authority
JP
Japan
Prior art keywords
phase
stator
rotor
motor
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016026874A
Other languages
Japanese (ja)
Other versions
JP2017147811A (en
Inventor
佳朗 竹本
佳朗 竹本
茂昌 加藤
茂昌 加藤
匡史 松田
匡史 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016026874A priority Critical patent/JP6798113B2/en
Priority to DE112016005533.1T priority patent/DE112016005533T5/en
Priority to CN201680008480.3A priority patent/CN107251369A/en
Priority to US15/562,928 priority patent/US20180269729A1/en
Priority to PCT/JP2016/085256 priority patent/WO2017094689A1/en
Publication of JP2017147811A publication Critical patent/JP2017147811A/en
Application granted granted Critical
Publication of JP6798113B2 publication Critical patent/JP6798113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Description

本発明は、モータに関するものである。 The present invention relates to a motor.

従来、例えば特許文献1に示すように、所謂ランデル型構造のステータと、該ステータと径方向に対向する永久磁石を磁極としたロータとを備えたモータが知られている。ランデル型構造のステータは、周方向に複数の爪状磁極を有する環状のステータコアを対で用い、対のステータコアの各爪状磁極が周方向に交互となるように組み合わされるとともに、その対のステータコアの軸方向間にコイル部を配置し、各爪状磁極を互いに異なる磁極として機能させるようになっている。 Conventionally, for example, as shown in Patent Document 1, a motor including a stator having a so-called Randell type structure and a rotor having a permanent magnet facing the stator in the radial direction as a magnetic pole is known. A stator having a Randell type structure uses an annular stator core having a plurality of claw-shaped magnetic poles in the circumferential direction in pairs, and the claw-shaped magnetic poles of the pair of stator cores are combined so as to alternate in the circumferential direction, and the pair of stator cores are combined. A coil portion is arranged between the axial directions of the magnets so that the claw-shaped magnetic poles function as different magnetic poles.

特開2007−181303号公報Japanese Unexamined Patent Publication No. 2007-181303

ところで、上記のようなモータにおいて低振動化を図るべく、コギングトルクの低減が望まれている。本発明の目的は、コギングトルクを低減することができるモータを提供することにある。 By the way, it is desired to reduce the cogging torque in order to reduce the vibration in the above-mentioned motor. An object of the present invention is to provide a motor capable of reducing cogging torque.

上記課題を解決するモータは、等角度間隔に複数の爪状磁極を有する一対のステータコア間にコイル部を配置したA相用ステータ部に対して、等角度間隔に複数の爪状磁極を有する一対のステータコア間にコイル部を配置したB相用ステータ部を所定電気角ずらして軸方向に並設してなる2相ステータと、前記A相用及びB相用ステータ部の爪状磁極と対向する永久磁石を有するロータとを備えるモータであって、前記ロータは、前記A相用ステータ部と対向するA相用ロータ部と、前記B相用ステータ部と対向するB相用ロータ部とを軸方向に並設してなる2相ロータであって、前記A相用及びB相用ロータ部の永久磁石は、各相それぞれに軸方向に2以上の複数に分割されて構成されているものであり、各相それぞれにおいて、前記分割された永久磁石の少なくとも2つは配置角度をずらして構成され、該配置角度をずらす方向は、軸方向に見た場合に、前記A相用ロータ部と前記B相用ロータ部で同じ方向となっており、且つ該方向が前記A相用ロータ部に対して前記B相用ロータ部をずらす方向と同じであって、前記配置角度をずらす方向をずらし方向としたとき、前記A相用ロータ部と前記B相用ロータ部の間で軸方向に隣り合う2つの永久磁石において、該2つの永久磁石のうちB相用ロータ部側の永久磁石はA相用ロータ部側の永久磁石に対して、配置角度が前記ずらし方向及びその反対方向の両方向おいてずれていない同一の位置となるように配置されている。 A motor that solves the above problems has a pair of claw-shaped magnetic poles having a plurality of claw-shaped magnetic poles at equal-angle intervals with respect to an A-phase stator portion in which coil portions are arranged between a pair of stator cores having a plurality of claw-shaped magnetic poles at equal-angle intervals. The two-phase stator, in which the B-phase stator parts with the coil parts arranged between the stator cores of the above are arranged side by side in the axial direction with a predetermined electric angle shift, and the claw-shaped magnetic poles of the A-phase and B-phase stator parts face each other. A motor including a rotor having a permanent magnet, wherein the rotor has an A-phase rotor portion facing the A-phase stator portion and a B-phase rotor portion facing the B-phase stator portion. It is a two-phase rotor arranged side by side in the direction, and the permanent magnets of the A-phase and B-phase rotor portions are configured to be divided into two or more in the axial direction for each phase. In each phase, at least two of the divided permanent magnets are configured by shifting the arrangement angle, and the direction of shifting the arrangement angle is the A-phase rotor portion and the above when viewed in the axial direction. The B-phase rotor portion has the same direction, and the direction is the same as the direction in which the B-phase rotor portion is shifted with respect to the A-phase rotor portion, and the direction in which the arrangement angle is shifted is the shifting direction. In the case of two permanent magnets axially adjacent to each other between the A-phase rotor portion and the B-phase rotor portion, the permanent magnet on the B-phase rotor portion side of the two permanent magnets is the A-phase. against use rotor portion side of the permanent magnets, the arrangement angle are arranged to have the same position, without Oite displacement Tei in both of the shifting direction and its opposite direction.

この構成によれば、ランデル型で2相のステータに用いる2相ロータにおいて、A相用及びB相用ロータ部の永久磁石は、各相それぞれに軸方向に以上の複数に分割されて構成されているものであり、各相それぞれにおいて、前記分割された永久磁石の少なくとも2つは配置角度がずれている。そのため、ロータ側の磁界変化が各相毎で緩やかとなり、モータのコギングトルクを低減させることができる。 According to this arrangement, in a two-phase rotor used in the two-phase stator at Lundell, permanent magnets of A-phase and B-phase rotor unit is divided axially into two or more plural, each phase configuration At least two of the divided permanent magnets are displaced from each other in each phase . Therefore, the change in the magnetic field on the rotor side becomes gentle for each phase , and the cogging torque of the motor can be reduced.

上記モータにおいて、前記A相用ロータ部は、配置角度が互いに異なる2つの前記永久磁石が軸方向に並設されたものであって前記B相用ロータ部は、配置角度が互いに異なる2つの前記永久磁石が軸方向に並設されたものであるIn the motor, the A-phase rotor portion has two permanent magnets having different arrangement angles arranged side by side in the axial direction, and the B-phase rotor portion has two arrangement angles different from each other. in which the permanent magnet is arranged in the axial direction.

この構成によれば、各相毎に配置角度を異ならせた2つの永久磁石が設けられることから各相毎での磁界変化が緩やかとなり、モータのコギングトルクをより低減させることができる。 According to this configuration, since two permanent magnets having different arrangement angles are provided for each phase, the change in the magnetic field for each phase becomes gentle, and the cogging torque of the motor can be further reduced.

上記モータにおいて、前記A相用及びB相用ロータ部に設けられる各永久磁石は、それぞれ軸方向の幅が等しく構成されていることが好ましい。
この構成によれば、A相用及びB相用ロータ部の各永久磁石の軸方向の幅が等しいため、モータの磁気バランスを良好とすることが可能となる。
In the motor, it is preferable that the permanent magnets provided in the A-phase and B-phase rotor portions have the same width in the axial direction.
According to this configuration, since the widths of the permanent magnets of the A-phase and B-phase rotor portions in the axial direction are the same, it is possible to improve the magnetic balance of the motor.

上記モータにおいて、前記A相用及びB相用ロータ部は、前記A相用及びB相用ステータ部における互いのずれ角と等しい電気角でかつ各相間で前記A相用及びB相用ステータ部とは反対方向にずれた位置に基準位置を有し、各相一対の前記永久磁石が各相の前記基準位置から両側に前記電気角の半分の角度だけずらして配置されて構成されていることが好ましい。 In the motor, the A-phase and B-phase rotor portions have an electric angle equal to the mutual displacement angle of the A-phase and B-phase stator portions, and the A-phase and B-phase stator portions are provided between each phase. It has a reference position at a position deviated in the opposite direction to the above, and is configured such that the pair of permanent magnets of each phase are arranged on both sides from the reference position of each phase by an angle of half of the electric angle. Is preferable.

この構成によれば、A相用及びB相用ロータ部は、A相用及びB相用ステータ部とは反対方向に同じ所定電気角だけずれた位置に基準位置を有し、各相一対の永久磁石は各相の基準位置から両側にその電気角の半分の角度だけずれている。そのため、各相毎の永久磁石の磁界変化が基準位置(適正位置)を含んで緩やかな変化となり、モータのコギングトルクをより低減することができる。 According to this configuration, the A-phase and B-phase rotor portions have reference positions at positions shifted by the same predetermined electrical angle in the opposite direction to the A-phase and B-phase stator portions, and each phase is paired. The permanent magnets are offset from the reference position of each phase to both sides by half the electrical angle. Therefore, the change in the magnetic field of the permanent magnet for each phase becomes a gradual change including the reference position (appropriate position), and the cogging torque of the motor can be further reduced.

本発明のモータによれば、コギングトルクを低減することができる。 According to the motor of the present invention, the cogging torque can be reduced.

実施形態のモータの斜視断面図。FIG. 3 is a perspective sectional view of the motor of the embodiment. 同形態のモータの分解斜視図。An exploded perspective view of a motor of the same form. 同形態のステータの分解斜視図。An exploded perspective view of a stator of the same form. (a)(b)は実施形態のステータ及びロータの位置関係を説明するための説明図。(A) and (b) are explanatory views for explaining the positional relationship between the stator and the rotor of the embodiment. (a)(b)は比較例のステータ及びロータの位置関係を説明するための説明図。(A) and (b) are explanatory views for explaining the positional relationship between the stator and the rotor of the comparative example. (a)は実施形態及び比較例のコギングトルクのグラフ、(b)はその次数成分毎の大きさを示すグラフ。(A) is a graph of cogging torque of the embodiment and the comparative example, and (b) is a graph showing the magnitude of each order component. (a)は別例のステータの平面図、(b)はステータの軸方向((a)のX−X)断面図。(A) is a plan view of another example stator, and (b) is a cross-sectional view of the stator in the axial direction (XX of (a)). 別例のステータの分解斜視図。An exploded perspective view of another example stator. (a)は別例のステータの一部分解斜視図、(b)(c)は別例のステータの斜視図。(A) is a partially disassembled perspective view of the stator of another example, and (b) and (c) are perspective views of the stator of another example. (a)は別例のステータの斜視図、(b)はその断面図。(A) is a perspective view of another example stator, and (b) is a sectional view thereof.

以下、モータの一実施形態について説明する。
図1に示すように、本実施形態のモータMはブラシレスモータであって、図示しないハウジング側の支軸に回転可能に支持されるロータ10と、前記ハウジングに固定されるステータ20とを備えている。
Hereinafter, an embodiment of the motor will be described.
As shown in FIG. 1, the motor M of the present embodiment is a brushless motor, which includes a rotor 10 rotatably supported by a support shaft on the housing side (not shown), and a stator 20 fixed to the housing. There is.

図1及び図2に示すように、ロータ10は、A相用ロータ部11及びB相用ロータ部12の二相のロータ部にて構成されるものであり、これら各ロータ部を構成すべく、磁性体よりなるロータコア13と、ロータコア13に固着された4つの磁石(A相用第1磁石14a、A相用第2磁石14b、B相用第1磁石15a、B相用第2磁石15b)とを備えている。 As shown in FIGS. 1 and 2, the rotor 10 is composed of a two-phase rotor portion of an A-phase rotor portion 11 and a B-phase rotor portion 12, and each of these rotor portions should be configured. , A rotor core 13 made of a magnetic material, and four magnets (first magnet 14a for A phase, second magnet 14b for A phase, first magnet 15a for B phase, second magnet 15b for B phase) fixed to the rotor core 13. ) And.

ロータコア13は、ロータ10の軸線Lを中心とする円筒状をなす内周側円筒部13aと、軸線Lを中心とする円筒状をなし内周側円筒部13aよりも外周側に位置する外周側円筒部13bと、内周側円筒部13aと外周側円筒部13bとの軸方向一端(上端)同士をつなぐ上底部13cとを有している。上底部13cは、軸線Lに対して直交する平板円環状に形成されている。ロータコア13は、内周側円筒部13aの内周面が前記図示略の支軸に対して軸受(同じく図示略)を介して支持される。 The rotor core 13 has a cylindrical inner peripheral side cylindrical portion 13a centered on the axis L of the rotor 10 and an outer peripheral side located on the outer peripheral side of the inner peripheral side cylindrical portion 13a having a cylindrical shape centered on the axis L. It has a cylindrical portion 13b and an upper bottom portion 13c that connects one end (upper end) of the inner peripheral side cylindrical portion 13a and the outer peripheral side cylindrical portion 13b in the axial direction. The upper bottom portion 13c is formed in a flat plate annular shape orthogonal to the axis L. In the rotor core 13, the inner peripheral surface of the inner peripheral side cylindrical portion 13a is supported by a bearing (also not shown) with respect to the support shaft (not shown).

外周側円筒部13bの内周面には、ロータコア13の開放端側から上底部13cに向かって軸方向にA相用第1磁石14a、A相用第2磁石14b、B相用第1磁石15a、B相用第2磁石15bの順に配置されている。A相用第1及び第2磁石14a,14bは、互いに軸方向の幅が等しく、後述のA相用ステータ部21と径方向に対向する位置に設けられA相用ロータ部11を構成する。同様に、B相用第1及び第2磁石15a,15bは、互いにしかもA相用第1及び第2磁石14a,14bとに対しても軸方向の幅が等しく、後述のB相用ステータ部22と径方向に対向する位置に設けられB相用ロータ部12を構成する。磁石14a,14b,15a,15bは径方向に磁化され、N極・S極が周方向において等間隔に交互に構成されている。また、極数は互いに同数であって、本実施形態のロータ10では12極(6極対)で構成されている。 On the inner peripheral surface of the outer peripheral side cylindrical portion 13b, the first magnet 14a for A phase, the second magnet 14b for A phase, and the first magnet for B phase are axially oriented from the open end side of the rotor core 13 toward the upper bottom portion 13c. 15a and the second magnet for B phase 15b are arranged in this order. The A-phase first and second magnets 14a and 14b have the same axial width and are provided at positions facing the A-phase stator portion 21 described later in the radial direction to form the A-phase rotor portion 11. Similarly, the B-phase first and second magnets 15a and 15b have the same axial width as each other and also with respect to the A-phase first and second magnets 14a and 14b, and the B-phase stator portion described later. It is provided at a position facing the 22 in the radial direction and constitutes the B-phase rotor portion 12. The magnets 14a, 14b, 15a, and 15b are magnetized in the radial direction, and the north and south poles are alternately formed at equal intervals in the circumferential direction. Further, the number of poles is the same as each other, and the rotor 10 of the present embodiment is composed of 12 poles (six pole pairs).

ステータ20は、それぞれ円環状をなすステータ部21,22を備えている。本実施形態では、ステータ部21はA相用とされ、A相の駆動電流が供給される。また、ステータ部22はB相用とされ、B相の駆動電流が供給される。 The stator 20 includes stator portions 21 and 22, which form an annular shape, respectively. In the present embodiment, the stator portion 21 is used for the A phase, and the driving current of the A phase is supplied. Further, the stator portion 22 is used for the B phase, and the driving current of the B phase is supplied.

各ステータ部21,22は、互いに同一構成、同一形状をなし、軸方向に並設されている。なお、A相用ステータ部21はロータコア13の軸方向開放端側(下側)に配置され、B相用ステータ部22は軸方向の前記上底部13c側(上側)に配置される。なお、各ステータ部21,22の支持構造としては、A相用ステータ部21が前記図示略のハウジングに支持され、B相用ステータ部22がA相用ステータ部21に支持されるようになっている。 The stator portions 21 and 22 have the same configuration and shape, and are arranged side by side in the axial direction. The A-phase stator portion 21 is arranged on the axially open end side (lower side) of the rotor core 13, and the B-phase stator portion 22 is arranged on the upper bottom portion 13c side (upper side) in the axial direction. As a support structure for each of the stator portions 21 and 22, the A-phase stator portion 21 is supported by the housing (not shown), and the B-phase stator portion 22 is supported by the A-phase stator portion 21. ing.

上記のような構成のモータMでは、図1に示すように、A相用ステータ部21と、その外周側に配置されたA相用第1及び第2磁石14a,14bを含むA相用ロータ部11とでA相モータ部MAを構成している。同様に、B相用ステータ部22と、その外周側に配置されたB相用第1及び第2磁石15a,15bを含むB相用ロータ部12とでB相モータ部MBを構成している。 In the motor M having the above configuration, as shown in FIG. 1, the A-phase rotor 21 including the A-phase stator portion 21 and the A-phase first and second magnets 14a and 14b arranged on the outer peripheral side thereof is included. The A-phase motor section MA is composed of the sections 11. Similarly, the B-phase motor portion MB is composed of the B-phase stator portion 22 and the B-phase rotor portion 12 including the B-phase first and second magnets 15a and 15b arranged on the outer peripheral side thereof. ..

図3に示すように、A相用及びB相用ステータ部21,22はそれぞれ、互いに同一形状を有する一対のステータコア(第1ステータコア23及び第2ステータコア24)と、該一対のステータコア23,24の間に配置されたコイル部25とを備えている。 As shown in FIG. 3, the A-phase and B-phase stator portions 21 and 22, respectively, have a pair of stator cores (first stator core 23 and second stator core 24) having the same shape, and the pair of stator cores 23 and 24, respectively. It is provided with a coil portion 25 arranged between the two.

各ステータコア23,24は、円筒部26と、その円筒部26から外周側に延出された複数(本実施形態では12)の爪状磁極27,28とを備えている。なお、第1ステータコア23に形成された爪状磁極を第1爪状磁極27とし、第2ステータコア24に形成された爪状磁極を第2爪状磁極28とする。各爪状磁極27,28は、互いに同一形状をなしている。また、各第1爪状磁極27は周方向において等間隔(30度間隔)に設けられ、各第2爪状磁極28も同様に周方向において等間隔(30度間隔)に設けられている。 Each of the stator cores 23 and 24 includes a cylindrical portion 26 and a plurality of (12 in this embodiment) claw-shaped magnetic poles 27 and 28 extending from the cylindrical portion 26 to the outer peripheral side. The claw-shaped magnetic pole formed on the first stator core 23 is referred to as the first claw-shaped magnetic pole 27, and the claw-shaped magnetic pole formed on the second stator core 24 is referred to as the second claw-shaped magnetic pole 28. The claw-shaped magnetic poles 27 and 28 have the same shape as each other. Further, the first claw-shaped magnetic poles 27 are provided at equal intervals (30 degree intervals) in the circumferential direction, and the second claw-shaped magnetic poles 28 are also provided at equal intervals (30 degree intervals) in the circumferential direction.

各爪状磁極27,28は、円筒部26から径方向外側に延出され途中で軸方向を向くように直角に屈曲形成されている。ここで、各爪状磁極27,28において、円筒部26から径方向外側に延出した部分を径方向延出部29aといい、軸方向に屈曲された先端部分を磁極部29bという。径方向延出部29aは、外周側ほど周方向幅が狭くなるように形成されている。磁極部29bの外周面(径方向外側面)は、軸線Lを中心とする円弧面に形成されている。 Each of the claw-shaped magnetic poles 27 and 28 extends radially outward from the cylindrical portion 26 and is bent at a right angle so as to face the axial direction in the middle. Here, in each of the claw-shaped magnetic poles 27 and 28, the portion extending radially outward from the cylindrical portion 26 is referred to as a radial extending portion 29a, and the tip portion bent in the axial direction is referred to as a magnetic pole portion 29b. The radial extending portion 29a is formed so that the circumferential width becomes narrower toward the outer peripheral side. The outer peripheral surface (radial outer surface) of the magnetic pole portion 29b is formed as an arc surface centered on the axis L.

なお、直角形状をなす爪状磁極27,28等を含むステータコア23,24は、板材から屈曲形成により作製してもよく、また成形型を用いた鋳造によって作製してもよい。
上記構成の第1及び第2ステータコア23,24は、それらの第1及び第2爪状磁極27,28(磁極部29b)が軸方向において互いに向かい合うように組み付けられる(図3参照)。また、この組付状態において、第1爪状磁極27の磁極部29bと、第2爪状磁極28の磁極部29bとが周方向等間隔に交互に配置される。つまり、本実施形態のステータ20では24極で構成されている。また、第1及び第2ステータコア23,24は、それらの円筒部26同士が軸方向に当接されて互いに固定されている。
The stator cores 23, 24 including the claw-shaped magnetic poles 27, 28 having a right-angled shape may be manufactured by bending from a plate material, or may be manufactured by casting using a molding die.
The first and second stator cores 23 and 24 having the above configuration are assembled so that their first and second claw-shaped magnetic poles 27 and 28 (magnetic pole portions 29b) face each other in the axial direction (see FIG. 3). Further, in this assembled state, the magnetic pole portions 29b of the first claw-shaped magnetic pole 27 and the magnetic pole portions 29b of the second claw-shaped magnetic pole 28 are alternately arranged at equal intervals in the circumferential direction. That is, the stator 20 of the present embodiment is composed of 24 poles. Further, in the first and second stator cores 23 and 24, their cylindrical portions 26 are brought into contact with each other in the axial direction and fixed to each other.

また、この組付状態において、第1及び第2ステータコア23,24の軸方向の間にはコイル部25が介在されている。コイル部25は、ステータ20の周方向に沿って円環状に巻回される巻線25aと、巻線25aと第1及び第2ステータコア23,24との間に介装される絶縁樹脂製のボビン25bとを備えている。また、コイル部25は、軸方向においては第1爪状磁極27の径方向延出部29aと第2爪状磁極28の径方向延出部29aとの間に配置されるとともに、径方向においては各ステータコア23,24の円筒部26と各爪状磁極27,28の磁極部29bとの間に配置されている。 Further, in this assembled state, the coil portion 25 is interposed between the axial directions of the first and second stator cores 23 and 24. The coil portion 25 is made of an insulating resin interposed between the winding 25a wound in an annular shape along the circumferential direction of the stator 20 and the winding 25a and the first and second stator cores 23 and 24. It is equipped with a bobbin 25b. Further, the coil portion 25 is arranged between the radial extension portion 29a of the first claw-shaped magnetic pole 27 and the radial extension portion 29a of the second claw-shaped magnetic pole 28 in the axial direction, and is arranged in the radial direction. Is arranged between the cylindrical portion 26 of the stator cores 23 and 24 and the magnetic pole portions 29b of the claw-shaped magnetic poles 27 and 28.

上記のように構成されたA相用及びB相用ステータ部21,22は、所謂ランデル型構造をなす。つまり、A相用及びB相用ステータ部21,22は、第1及び第2ステータコア23,24間に配置されたコイル部25の巻線25aに供給した電流によって、第1及び第2爪状磁極27,28をその時々で互いに異なる磁極に励磁する12極のランデル型構造をなす。 The A-phase and B-phase stator portions 21 and 22 configured as described above have a so-called Randell type structure. That is, the A-phase and B-phase stator portions 21 and 22 have a first and second claw shape due to the current supplied to the winding 25a of the coil portion 25 arranged between the first and second stator cores 23 and 24. It has a 12-pole Randell type structure that excites the magnetic poles 27 and 28 to different magnetic poles from time to time.

ここで、上記実施形態のモータMとの比較対象になる比較例におけるモータM1について説明する。
比較例におけるモータM1は、図5(a)の概略構成に示すようなロータ50と、図5(b)の概略構成に示すようなステータ60とを備える。ステータ60は、ランデル型構造をなす2相のステータ、すなわちA相用ステータ部61及びB相用ステータ部62にて構成されている。なお、比較例における各ステータ部61,62は、上記実施形態の各ステータ部21,22と同一の構成であるため、詳細な説明は省略する。
Here, the motor M1 in the comparative example to be compared with the motor M of the above embodiment will be described.
The motor M1 in the comparative example includes a rotor 50 as shown in the schematic configuration of FIG. 5 (a) and a stator 60 as shown in the schematic configuration of FIG. 5 (b). The stator 60 is composed of a two-phase stator having a Randell-type structure, that is, an A-phase stator portion 61 and a B-phase stator portion 62. Since the stator portions 61 and 62 in the comparative example have the same configuration as the stator portions 21 and 22 of the above embodiment, detailed description thereof will be omitted.

一方、比較例におけるロータ50は、上記実施形態のロータ10とほぼ同様に、A相用ステータ部61及びB相用ステータ部62と対をなしてA相用ロータ部51及びB相用ロータ部52を備えるが、各ロータ部51,52の磁石の配置構成が異なっている。詳しくは、比較例のロータ50は、A相用ステータ部61と対向するA相用ロータ部51において軸方向に1つのA相用磁石53を有し、またB相用ステータ部62と対向するB相用ロータ部52において軸方向に1つのB相用磁石54を有している。つまり、上記実施形態のロータ10の各ロータ部11,12では、軸方向に2つずつの磁石14a,14b,15a,15bが配置されているのに対して、比較例のロータ50の各ロータ部51,52では、軸方向に1つずつの磁石53,54が配置されている。 On the other hand, the rotor 50 in the comparative example is paired with the A-phase stator portion 61 and the B-phase stator portion 62 and is paired with the A-phase rotor portion 51 and the B-phase rotor portion in substantially the same manner as the rotor 10 of the above embodiment. Although 52 is provided, the arrangement configuration of the magnets of the rotor portions 51 and 52 is different. Specifically, the rotor 50 of the comparative example has one A-phase magnet 53 in the axial direction in the A-phase rotor portion 51 facing the A-phase stator portion 61, and also faces the B-phase stator portion 62. The B-phase rotor portion 52 has one B-phase magnet 54 in the axial direction. That is, in the rotor portions 11 and 12 of the rotor 10 of the above embodiment, two magnets 14a, 14b, 15a and 15b are arranged in the axial direction, whereas each rotor of the rotor 50 of the comparative example is arranged. In the portions 51 and 52, one magnet 53 and 54 are arranged in the axial direction.

また、比較例のモータM1では、ステータ60においてA相用ステータ部61に対してB相用ステータ部62が時計回り方向に電気角θ1(本実施形態では45度)だけずらして配置され、ロータ50においてA相用ロータ部51に対してB相用ロータ部52が反時計回り方向に電気角θ2(本実施形態では45度)だけずらして配置されている。つまり、比較例のモータM1では、A相モータ部とB相モータ部との位相差が90度に設定されている。したがって、各相モータのコギングトルクの2次成分は、同じ波形形状かつ逆位相となって互いに打ち消し合うために低い値となっており、比較例のモータM1においてもコギングトルクを効果的に低減可能な構成となっている。 Further, in the motor M1 of the comparative example, in the stator 60, the B-phase stator portion 62 is arranged in the stator 60 with the electric angle θ1 (45 degrees in the present embodiment) shifted in the clockwise direction with respect to the A-phase stator portion 61. At 50, the B-phase rotor portion 52 is arranged so as to be offset by the electric angle θ2 (45 degrees in this embodiment) in the counterclockwise direction with respect to the A-phase rotor portion 51. That is, in the motor M1 of the comparative example, the phase difference between the A-phase motor section and the B-phase motor section is set to 90 degrees. Therefore, the secondary components of the cogging torque of each phase motor have the same waveform shape and opposite phases and cancel each other out, so that the cogging torque can be effectively reduced even in the motor M1 of the comparative example. It has a good structure.

このような比較例のモータM1に対し、本実施形態のモータMは、コギングトルクを一層効果的に低減可能な構成となっている。
詳しくは、図4(b)に示すように、先ずステータ20においては、A相用及びB相用ステータ部21,22が比較例のステータ60の各ステータ部61,62と同様にずらす態様にて構成されている。つまり、A相用ステータ部21の第1及び第2爪状磁極27,28に対してB相用ステータ部22の第1及び第2爪状磁極27,28がそれぞれ時計回り方向に電気角θ1(本実施形態では45度)だけずらして配置されている。
Compared to the motor M1 of such a comparative example, the motor M of the present embodiment has a configuration capable of reducing the cogging torque more effectively.
More specifically, as shown in FIG. 4B, first, in the stator 20, the A-phase and B-phase stator portions 21 and 22 are displaced in the same manner as the stator portions 61 and 62 of the stator 60 of the comparative example. It is composed of. That is, the first and second claw-shaped magnetic poles 27 and 28 of the B-phase stator portion 22 have an electric angle θ1 in the clockwise direction with respect to the first and second claw-shaped magnetic poles 27 and 28 of the A-phase stator portion 21, respectively. They are arranged so as to be offset by (45 degrees in this embodiment).

一方、本実施形態のロータ10は、図4(a)に示すように、A相用及びB相用ロータ部11,12のそれぞれにおいて、A相用第1及び第2磁石14a,14b、B相用第1及び第2磁石15a,15bというように、各相で軸方向に2つに分離した磁石を用いている。ここで、A相用及びB相用ロータ部11,12単位では、A相用ロータ部11に対してB相用ロータ部12が反時計回り方向に電気角θ2(本実施形態では45度)だけずらして配置されている。換言すると、各相のロータ部11,12の基準位置La,Lb同士が電気角θ2だけずれている。 On the other hand, in the rotor 10 of the present embodiment, as shown in FIG. 4A, the first and second magnets 14a, 14b, B for the A phase are used in the rotor portions 11 and 12 for the A phase and the B phase, respectively. Magnets separated into two in the axial direction in each phase are used, such as the first and second magnets 15a and 15b for phase use. Here, in the A-phase and B-phase rotor portions 11 and 12 units, the B-phase rotor portion 12 has an electric angle θ2 in the counterclockwise direction with respect to the A-phase rotor portion 11 (45 degrees in this embodiment). They are arranged in a staggered manner. In other words, the reference positions La and Lb of the rotor portions 11 and 12 of each phase are displaced by the electric angle θ2.

そして、A相用ロータ部11では、その基準位置Laから、A相用第1磁石14aが時計回り方向に電気角θ3(本実施形態では22.5度)だけずれるように、A相用第2磁石14bが反時計回り方向に同じく電気角θ3だけずれるようにそれぞれ配置されている。B相用ロータ部12では、その基準位置Lbから、B相用第1磁石15aが時計回り方向に電気角θ4(本実施形態では22.5度)だけずれるように、B相用第2磁石15bが反時計回り方向に同じく電気角θ4だけずれるようにそれぞれ配置されている。なお、隣接のA相用第2磁石14bとB相用第1磁石15aとは、それぞれのずらし方向とずらし角度により周方向位置が同一の位置となる。 Then, in the A-phase rotor portion 11, the A-phase first magnet 14a deviates from the reference position La by an electric angle θ3 (22.5 degrees in this embodiment) in the clockwise direction. The two magnets 14b are arranged so as to be offset by the same electric angle θ3 in the counterclockwise direction. In the B-phase rotor portion 12, the B-phase first magnet 15a deviates from the reference position Lb by an electric angle θ4 (22.5 degrees in this embodiment) in the clockwise direction. The 15b are arranged so as to be offset by the same electric angle θ4 in the counterclockwise direction. The adjacent second magnet 14b for A phase and the first magnet 15a for B phase have the same circumferential position depending on the respective shift directions and shift angles.

そして、このような構成のA相用及びB相用ロータ部11,12と、上記したステータ部21,22とを用いる本実施形態のモータMにおいても、A相モータ部MAとB相モータ部MBとの位相差が90度に設定されている。A相用ステータ部21のコイル部25の巻線25aにはA相駆動電流が供給され、B相用ステータ部22のコイル部25の巻線25aにはB相駆動電流が供給される。A相駆動電流及びB相駆動電流は交流電流であり、互いの位相差が本実施形態では90度に設定されている。これにより、各ステータ部21,22と各磁石14a,14b,15a,15bとの関係で回転トルクが発生し、ロータ10が回転駆動される。 Further, also in the motor M of the present embodiment using the A-phase and B-phase rotor portions 11 and 12 having such a configuration and the above-mentioned stator portions 21 and 22, the A-phase motor portion MA and the B-phase motor portion are also used. The phase difference with the MB is set to 90 degrees. The A-phase drive current is supplied to the winding 25a of the coil portion 25 of the A-phase stator portion 21, and the B-phase drive current is supplied to the winding 25a of the coil portion 25 of the B-phase stator portion 22. The A-phase drive current and the B-phase drive current are alternating currents, and the phase difference between them is set to 90 degrees in this embodiment. As a result, rotational torque is generated in relation to the stator portions 21 and 22 and the magnets 14a, 14b, 15a, and 15b, and the rotor 10 is rotationally driven.

その際、図6(a)に示すように、比較例のモータM1のコギングトルクT1と比較して、本実施形態のモータMのコギングトルクTはさらに小さく抑えられている。これは、実施形態のA相用第1及び第2磁石14a,14bの配置角度がずれているとともに、B相用第1及び第2磁石15a,15bの配置角度がずれていることにより、各相毎に磁界変化が緩やかになった、所謂スキュー効果が得られるためである。また、図6(b)に示すように、比較例のモータM1のコギングトルクT1と比較して、本実施形態のモータMのコギングトルクTの高次数成分毎の大きさとしては、特に4次成分が効果的に小さく抑えられていることが分かる。このように本実施形態のモータMは、コギングトルクTの低減効果を有する構造となっている。 At that time, as shown in FIG. 6A, the cogging torque T of the motor M of the present embodiment is further suppressed as compared with the cogging torque T1 of the motor M1 of the comparative example. This is because the arrangement angles of the first and second magnets 14a and 14b for the A phase of the embodiment are deviated, and the arrangement angles of the first and second magnets 15a and 15b for the B phase are deviated. This is because the so-called skew effect, in which the change in the magnetic field becomes gentle for each phase, can be obtained. Further, as shown in FIG. 6B, the magnitude of the cogging torque T of the motor M of the present embodiment for each high-order component is particularly quaternary as compared with the cogging torque T1 of the motor M1 of the comparative example. It can be seen that the components are effectively kept small. As described above, the motor M of the present embodiment has a structure having an effect of reducing the cogging torque T.

次に、本実施形態の特徴的な効果を記載する。
(1)A相用ステータ部21に対向するA相用ロータ部11において、軸方向に2つに分割されたA相用第1及び第2磁石14a,14bを備えるとともに互いの配置角度をずらし、B相用ステータ部22に対向するB相用ロータ部12においても、軸方向に2つに分離されたB相用第1及び第2磁石15a,15bを備えるとともに互いの配置角度をずらしているため、各相毎の磁界変化が緩やかになる。これにより、A相及びB相モータ部MA,MB、ひいてはモータMのコギングトルクTを低減させることができる。特に本実施形態では、コギングトルクTの4次成分を効果的に低減することができる。
Next, the characteristic effects of this embodiment will be described.
(1) The A-phase rotor portion 11 facing the A-phase stator portion 21 is provided with the A-phase first and second magnets 14a and 14b divided into two in the axial direction, and their arrangement angles are shifted from each other. The B-phase rotor portion 12 facing the B-phase stator portion 22 is also provided with the B-phase first and second magnets 15a and 15b separated in the axial direction, and their arrangement angles are shifted from each other. Therefore, the change in the magnetic field for each phase becomes gentle. As a result, the cogging torque T of the A-phase and B-phase motor units MA, MB, and eventually the motor M can be reduced. In particular, in the present embodiment, the fourth component of the cogging torque T can be effectively reduced.

(2)各相の磁石14a,14b,15a,15bの軸方向の幅が等しいため、A相及びB相モータ部MA,MB、ひいてはモータMの磁気バランスを良好とすることができる。 (2) Since the widths of the magnets 14a, 14b, 15a, and 15b of each phase in the axial direction are the same, the magnetic balance of the A-phase and B-phase motor units MA, MB, and eventually the motor M can be improved.

(3)A相用及びB相用ロータ部11,12は、A相用及びB相用ステータ部21,22とは反対方向に同じ所定電気角(本実施形態では45度)だけずれた位置に基準位置La,Lbを有し、各相一対の磁石14a,14b及び磁石15a,15bは各相の基準位置La,Lbから両側にその電気角の半分の角度(本実施形態では22.5度)だけずれている。そのため、各相毎の磁石14a,14b,15a,15bの磁界変化が基準位置(適正位置)La,Lbを含んで緩やかな変化となり、A相及びB相モータ部MA,MB、ひいてはモータMのコギングトルクTをより確実に低減させることができる。 (3) The A-phase and B-phase rotor portions 11 and 12 are displaced by the same predetermined electric angle (45 degrees in this embodiment) in the opposite directions to the A-phase and B-phase stator portions 21 and 22. The reference positions La and Lb are provided in, and the pair of magnets 14a and 14b and the magnets 15a and 15b of each phase are at half the electrical angle of each phase from the reference positions La and Lb on both sides (22.5 in this embodiment). Degree) is off. Therefore, the magnetic field changes of the magnets 14a, 14b, 15a, and 15b for each phase become gradual changes including the reference positions (appropriate positions) La and Lb, and the A-phase and B-phase motor units MA, MB, and eventually the motor M. The cogging torque T can be reduced more reliably.

なお、上記実施形態は、以下のように変更してもよい。
・上記実施形態では、アウタロータ型のモータMであったが、インナロータ型のモータに適用してもよい。
The above embodiment may be changed as follows.
-In the above embodiment, the outer rotor type motor M is used, but it may be applied to the inner rotor type motor.

・上記実施形態では、ロータ10の磁石14a,14b,15a,15bは12極(6極対)、ステータ20の爪状磁極27,28は24極であったが、各極数はこれに限定されない。 -In the above embodiment, the magnets 14a, 14b, 15a, 15b of the rotor 10 have 12 poles (6 pole pairs), and the claw-shaped magnetic poles 27, 28 of the stator 20 have 24 poles, but the number of poles is limited to this. Not done.

・上記実施形態のA相用及びB相用ロータ部11,12では、各相それぞれに軸方向に2つに分割された磁石14a,14b及び磁石15a,15bが配置されていたが、各相で3つ以上の磁石が配置されていてもよい。また、各相の磁石を異なる数の分割数としてもよい。また、A相用及びB相用ロータ部11,12で両相に跨った磁石の分割態様としてもよい。また、各磁石14a,14b,15a,15bの軸方向の幅は等しく設定されていたが、異なる幅としてもよい。 -In the A-phase and B-phase rotor portions 11 and 12 of the above embodiment, magnets 14a and 14b and magnets 15a and 15b divided into two in the axial direction are arranged in each phase, but each phase. 3 or more magnets may be arranged in. Further, the magnets of each phase may be divided into different numbers. Further, the magnets may be divided in the A-phase and B-phase rotor portions 11 and 12 so as to straddle both phases. Further, although the widths of the magnets 14a, 14b, 15a, and 15b in the axial direction are set to be equal, they may have different widths.

・上記実施形態の磁石14a,14b,15a,15bは、特に言及しなかったが、それぞれ磁極毎もしくは磁極対毎に分割された複数の磁石から構成してもよいし、1つの円筒磁石として形成したものであってもよい。また、ロータコア13に取り付ける態様であってもよいし、一体に成形する態様としてもよい。また、A相用第2磁石14bとB相用第1磁石15aとの位置関係から、一体の磁石にて構成してもよい。 -Although the magnets 14a, 14b, 15a, and 15b of the above embodiment are not particularly mentioned, they may be composed of a plurality of magnets divided for each magnetic pole or each magnetic pole pair, or formed as one cylindrical magnet. It may be a magnet. Further, it may be attached to the rotor core 13 or may be integrally molded. Further, due to the positional relationship between the A-phase second magnet 14b and the B-phase first magnet 15a, an integral magnet may be used.

・上記実施形態に記載した電気角θ1,θ2は45度、電気角θ3,θ4は22.5度としたが、角度はこれに限定されない。
・上記実施形態のステータ20について、以下の構成に変更してもよい。
The electric angles θ1 and θ2 described in the above embodiment are set to 45 degrees, and the electric angles θ3 and θ4 are set to 22.5 degrees, but the angles are not limited thereto.
-The stator 20 of the above embodiment may be changed to the following configuration.

例えば、図7(a)(b)及び図8に示すステータ20aでは、冷却性能の向上が図られている。先ず、コイル部25に用いるボビン25bは、樹脂製であり、径方向外側が開放された軸方向断面が略コ字状をなす環状に形成されている。ボビン25bは、上側壁部31と下側壁部32と径方向内側壁部33とでコ字状をなし、上側壁部31と下側壁部32とにおいて巻線25aと接触する側の内側面31a,32aにはそれぞれ周方向に進むにつれて径方向外側縁と内側縁との間で直線ジグザグ状をなす溝31b,32bが形成されている。径方向内側壁部33には、軸方向に延びる筒状部34が周方向等間隔に複数個形成されている。各筒状部34は、軸方向中間部において、上側及び下側壁部31,32の内側面31a,32aに形成した溝31b,32bと連通している。 For example, in the stator 20a shown in FIGS. 7 (a) and 7 (b) and 8, the cooling performance is improved. First, the bobbin 25b used for the coil portion 25 is made of resin, and is formed in an annular shape having a substantially U-shaped cross section in the axial direction with the outer side in the radial direction open. The bobbin 25b has a U-shape with the upper side wall portion 31, the lower side wall portion 32, and the radial inner side wall portion 33, and the inner side surface 31a on the side where the upper side wall portion 31 and the lower side wall portion 32 come into contact with the winding 25a. , 32a are formed with grooves 31b and 32b forming a straight zigzag shape between the outer edge and the inner edge in the radial direction as they advance in the circumferential direction, respectively. A plurality of tubular portions 34 extending in the axial direction are formed on the inner side wall portion 33 in the radial direction at equal intervals in the circumferential direction. Each tubular portion 34 communicates with grooves 31b, 32b formed on the inner side surfaces 31a, 32a of the upper and lower side wall portions 31, 32 in the axial intermediate portion.

また、各筒状部34は、上側壁部31よりも上方に、下側壁部32よりも下方にそれぞれ突出している。これに対応して、第1及び第2ステータコア23,24には、各筒状部34の突出部分が嵌合する嵌合孔23a,24a及び嵌合凹部23b,24bが設けられている。このようなボビン25b及び第1及び第2ステータコア23,24は、A相用及びB相用ステータ部21,22の両方に用いられている。また、各相に用いたボビン25bの各筒状部34は、周方向位置が重なるようになっており、軸方向に連設する各筒状部34の内側空間は軸方向に連通するようになっている。 Further, each tubular portion 34 projects upward from the upper side wall portion 31 and downward from the lower side wall portion 32, respectively. Correspondingly, the first and second stator cores 23 and 24 are provided with fitting holes 23a and 24a and fitting recesses 23b and 24b into which the protruding portions of the tubular portions 34 are fitted. Such bobbins 25b and the first and second stator cores 23 and 24 are used for both the A-phase and B-phase stator portions 21 and 22. Further, the tubular portions 34 of the bobbins 25b used for each phase are configured so that their circumferential positions overlap, and the inner space of each tubular portion 34 connected in the axial direction communicates in the axial direction. It has become.

そして、巻線25aへの通電等で生じた熱は、溝31b,32bを通じて径方向外側に排出されたり、溝31b,32bを通じて径方向内側に移動して筒状部34内を通り軸方向に排出されたりし、これによりステータ20aでの発熱が効果的に冷却されるようになっている。なお、筒状部34及び溝31b,32bは、いずれか一方だけ設ける態様であってもよい。 Then, the heat generated by energization of the winding 25a or the like is discharged radially outward through the grooves 31b and 32b, or moves radially inward through the grooves 31b and 32b and passes through the tubular portion 34 in the axial direction. It is discharged, so that the heat generated by the stator 20a is effectively cooled. The tubular portion 34 and the grooves 31b and 32b may be provided in only one of them.

また、筒状部34の端部が各ステータコア23,24の嵌合孔23a,24aや嵌合凹部23b,24bと嵌合することで、ボビン25b(コイル部25)のステータコア23,24に対する位置決めとなり、固定力の向上にもつながる。また、筒状部34の内側空間を巻線25aの端末線(図示略)の取り出し経路として利用することもできる。 Further, by fitting the end portion of the tubular portion 34 with the fitting holes 23a, 24a and the fitting recesses 23b, 24b of the stator cores 23, 24, the bobbin 25b (coil portion 25) is positioned with respect to the stator cores 23, 24. It also leads to improvement of fixing force. Further, the inner space of the tubular portion 34 can be used as a take-out path for the terminal line (not shown) of the winding 25a.

次いで、上記実施形態のような上下分割のステータコア23,24ではなく、例えば図9(a)(b)に示すような周方向分割のステータコア40,42を用いてもよい。図9(a)に示すステータコア40は周方向に4分割、図9(b)に示すステータコア42は周方向に2分割となっている。なお、各ステータコア40,42の個々のコア部品41,43は、異なる磁極となる一部分同士が径方向内側壁部で軸方向につながれた形状となっている。このコア部品41,43は、圧粉磁心にて作製することもできる。この場合、個々のコア部品41,43が小さいため、プレス機のサイズを小さくすることができ、製造コストの低コスト化が期待できる。 Next, instead of the vertically divided stator cores 23 and 24 as in the above embodiment, for example, the circumferentially divided stator cores 40 and 42 as shown in FIGS. 9A and 9B may be used. The stator core 40 shown in FIG. 9A is divided into four in the circumferential direction, and the stator core 42 shown in FIG. 9B is divided into two in the circumferential direction. The individual core parts 41 and 43 of the stator cores 40 and 42 have a shape in which parts of different magnetic poles are axially connected by a radial inner side wall portion. The core parts 41 and 43 can also be manufactured by a dust core. In this case, since the individual core parts 41 and 43 are small, the size of the press machine can be reduced, and the manufacturing cost can be expected to be reduced.

また、図9(c)に示すステータコア40aのように、周方向分割のコア部品41a間に空隙44を設定した構造としてもよい。この場合、その空隙44から巻線の端末線(ともに図示略)が取り出しやすくなり、また空隙44に空気が通ることで巻線を冷却することもできる。なお、周方向に連続した形状をなす上記実施形態のステータコア23,24でも、外表面に径方向に延びる溝等を設けて空気を通し、冷却性能を向上させてもよい。 Further, as in the stator core 40a shown in FIG. 9C, a structure in which a gap 44 is set between the core parts 41a divided in the circumferential direction may be used. In this case, the end wire of the winding (both not shown) can be easily taken out from the gap 44, and the winding can be cooled by passing air through the gap 44. The stator cores 23 and 24 of the above-described embodiment, which have a continuous shape in the circumferential direction, may also be provided with a groove or the like extending in the radial direction on the outer surface to allow air to pass therethrough to improve the cooling performance.

次いで、上記実施形態のステータコア23,24の円筒部26の内周面26aは軸方向に直線状に形成されていたが、図10(a)(b)に示すステータコア45のように、中央部の貫通孔46の内周面46aの軸方向中央部が径方向内側に凸の円弧状としてもよい。この場合、ステータコアの組付の際、円弧状とした内周面46aがステータコアの傾きの調整を容易とする。この場合、ロータ側の磁石と適切に対向させることが可能となり、有効磁束量の増加やスラスト力の低減等の効果が期待できる。 Next, the inner peripheral surface 26a of the cylindrical portion 26 of the stator cores 23 and 24 of the above embodiment was formed linearly in the axial direction, but as in the stator core 45 shown in FIGS. The central portion of the inner peripheral surface 46a of the through hole 46 in the axial direction may be formed into an arc shape that is convex inward in the radial direction. In this case, when assembling the stator core, the arcuate inner peripheral surface 46a facilitates the adjustment of the inclination of the stator core. In this case, it becomes possible to appropriately face the magnet on the rotor side, and effects such as an increase in the effective magnetic flux amount and a reduction in the thrust force can be expected.

次に、上記実施形態及び別例から把握できる技術的思想を以下に追記する。
(イ)請求項に記載のモータにおいて、前記ステータには、前記巻線にて生じる熱を前記ステータの外部に排出するための排気通路が形成されていることを特徴とするモータ。
Next, the technical idea that can be grasped from the above embodiment and another example will be added below.
(A) The motor according to claim, wherein the stator is formed with an exhaust passage for discharging heat generated in the winding to the outside of the stator.

(ロ)請求項に記載のモータにおいて、前記ステータコアは、周方向に分割された複数のコア部品から構成されていることを特徴とするモータ。
(ハ)請求項に記載のモータにおいて、前記ステータコアの内周面は、軸方向中央部が径方向内側に凸の円弧状に形成されていることを特徴とするモータ。
(B) The motor according to claim, wherein the stator core is composed of a plurality of core components divided in the circumferential direction.
(C) The motor according to claim, wherein the inner peripheral surface of the stator core is formed in an arc shape whose central portion in the axial direction is convex inward in the radial direction.

10…ロータ、11…A相用ロータ部、12…B相用ロータ部、14a…A相用第1磁石、14b…A相用第2磁石、15a…B相用第1磁石、15b…B相用第2磁石、20…ステータ、21…A相用ステータ部、22…B相用ステータ部、23,24…ステータコア、27,28…爪状磁極、25…コイル部、La,Lb…基準位置。 10 ... rotor, 11 ... A-phase rotor section, 12 ... B-phase rotor section, 14a ... A-phase first magnet, 14b ... A-phase second magnet, 15a ... B-phase first magnet, 15b ... B Second phase magnet, 20 ... stator, 21 ... A-phase stator part, 22 ... B-phase stator part, 23, 24 ... stator core, 27, 28 ... claw-shaped magnetic poles, 25 ... coil part, La, Lb ... reference position.

Claims (4)

等角度間隔に複数の爪状磁極を有する一対のステータコア間にコイル部を配置したA相用ステータ部に対して、等角度間隔に複数の爪状磁極を有する一対のステータコア間にコイル部を配置したB相用ステータ部を所定電気角ずらして軸方向に並設してなる2相ステータと、
前記A相用及びB相用ステータ部の爪状磁極と対向する永久磁石を有するロータと
を備えるモータであって、
前記ロータは、前記A相用ステータ部と対向するA相用ロータ部と、前記B相用ステータ部と対向するB相用ロータ部とを軸方向に並設してなる2相ロータであって、
前記A相用及びB相用ロータ部の永久磁石は、各相それぞれに軸方向に2以上の複数に分割されて構成されているものであり、各相それぞれにおいて、前記分割された永久磁石の少なくとも2つは配置角度をずらして構成され、該配置角度をずらす方向は、軸方向に見た場合に、前記A相用ロータ部と前記B相用ロータ部で同じ方向となっており、且つ該方向が前記A相用ロータ部に対して前記B相用ロータ部をずらす方向と同じであって、
前記配置角度をずらす方向をずらし方向としたとき、前記A相用ロータ部と前記B相用ロータ部の間で軸方向に隣り合う2つの永久磁石において、該2つの永久磁石のうちB相用ロータ部側の永久磁石はA相用ロータ部側の永久磁石に対して、配置角度が前記ずらし方向及びその反対方向の両方向おいてずれていない同一の位置となるように配置されていることを特徴とするモータ。
The coil part is arranged between the pair of stator cores having a plurality of claw-shaped magnetic poles at equal angle intervals, while the coil part is arranged between the pair of stator cores having a plurality of claw-shaped magnetic poles at equal angle intervals. A two-phase stator in which the B-phase stator portions are arranged side by side in the axial direction with a predetermined electrical angle shift.
A motor including a rotor having a permanent magnet facing the claw-shaped magnetic poles of the A-phase and B-phase stator portions.
The rotor is a two-phase rotor in which an A-phase rotor portion facing the A-phase stator portion and a B-phase rotor portion facing the B-phase stator portion are arranged side by side in the axial direction. ,
The permanent magnets of the A-phase and B-phase rotor portions are configured to be divided into two or more in each phase in the axial direction, and in each phase, the permanent magnets of the divided permanent magnets are formed. At least two are configured by shifting the arrangement angles, and the directions of shifting the arrangement angles are the same in the A-phase rotor portion and the B-phase rotor portion when viewed in the axial direction, and The direction is the same as the direction in which the B-phase rotor portion is displaced with respect to the A-phase rotor portion.
When the direction of shifting the arrangement angle is set to the shifting direction, in the two permanent magnets axially adjacent to each other between the A-phase rotor portion and the B-phase rotor portion, the B-phase of the two permanent magnets is used. to the rotor side of the permanent magnets a-phase rotor portion side of the permanent magnets, the arrangement angle is arranged to have the same position, without Oite displacement Tei in both of the shifting direction and its opposite direction A motor characterized by.
請求項1に記載のモータにおいて、
前記A相用ロータ部は、配置角度が互いに異なる2つの前記永久磁石が軸方向に並設されたものであって
前記B相用ロータ部は、配置角度が互いに異なる2つの前記永久磁石が軸方向に並設されたものであることを特徴とするモータ。
In the motor according to claim 1,
The A-phase rotor unit, two of the permanent magnets arrangement angle are different from each other is not more that are juxtaposed in the axial direction,
Motor, wherein the B-phase rotor unit is for two of the permanent magnets arrangement angle are different from each other are juxtaposed in the axial direction.
請求項2に記載のモータにおいて、
前記A相用及びB相用ロータ部に設けられる各永久磁石は、それぞれ軸方向の幅が等しく構成されていることを特徴とするモータ。
In the motor according to claim 2,
A motor characterized in that each permanent magnet provided in the A-phase and B-phase rotor portions has an equal width in the axial direction.
請求項2または請求項3に記載のモータにおいて、
前記A相用及びB相用ロータ部は、前記A相用及びB相用ステータ部における互いのずれ角と等しい電気角でかつ各相間で前記A相用及びB相用ステータ部とは反対方向にずれた位置に基準位置を有し、各相一対の前記永久磁石が各相の前記基準位置から両側に前記電気角の半分の角度だけずらして配置されて構成されていることを特徴とするモータ。
In the motor according to claim 2 or 3.
The A-phase and B-phase rotor portions have an electric angle equal to the mutual displacement angle of the A-phase and B-phase stator portions, and the directions between the phases are opposite to those of the A-phase and B-phase stator portions. It has a reference position at a position shifted to, and is characterized in that the pair of permanent magnets of each phase are arranged on both sides from the reference position of each phase by an angle of half of the electric angle. motor.
JP2016026874A 2015-12-03 2016-02-16 motor Active JP6798113B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016026874A JP6798113B2 (en) 2016-02-16 2016-02-16 motor
DE112016005533.1T DE112016005533T5 (en) 2015-12-03 2016-11-29 Engine and method of manufacturing a stator
CN201680008480.3A CN107251369A (en) 2015-12-03 2016-11-29 The manufacture method of motor and stator
US15/562,928 US20180269729A1 (en) 2015-12-03 2016-11-29 Motor and method for manufacturing stator
PCT/JP2016/085256 WO2017094689A1 (en) 2015-12-03 2016-11-29 Method for manufacturing motor and stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016026874A JP6798113B2 (en) 2016-02-16 2016-02-16 motor

Publications (2)

Publication Number Publication Date
JP2017147811A JP2017147811A (en) 2017-08-24
JP6798113B2 true JP6798113B2 (en) 2020-12-09

Family

ID=59680904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016026874A Active JP6798113B2 (en) 2015-12-03 2016-02-16 motor

Country Status (1)

Country Link
JP (1) JP6798113B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7258824B2 (en) 2020-05-21 2023-04-17 ダイキン工業株式会社 Rotating electric machine

Also Published As

Publication number Publication date
JP2017147811A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
JP6592234B2 (en) Single phase brushless motor
JP6125779B2 (en) Electric motor
JP6161707B2 (en) Synchronous motor
JP4372798B2 (en) Embedded magnet type motor
US10862353B2 (en) Axial gap motor rotor and axial gap motor
JP2013074743A (en) Rotary electric machine
JP2012034520A (en) Rotor and motor
WO2015104795A1 (en) Rotary electric machine
JP2018082600A (en) Double-rotor dynamoelectric machine
JP6798113B2 (en) motor
JP6324623B2 (en) Rotating electric machine
JP5373370B2 (en) Embedded magnet type motor
JP4770434B2 (en) motor
JP2012157182A (en) Variable-field rotary electric machine
JP6432436B2 (en) Rotating electric machine stator
JP7149497B2 (en) BRUSHLESS MOTOR AND MANUFACTURING METHOD OF BRUSHLESS MOTOR
JP6199717B2 (en) Stator and motor
JP2017063594A (en) Brushless motor
JP6468118B2 (en) motor
JP2019057984A (en) Rotor of permanent magnet type rotary electric machine
JP6540353B2 (en) motor
JP6662008B2 (en) Stator, motor, and stator manufacturing method
JP6724319B2 (en) motor
JP7258824B2 (en) Rotating electric machine
JP6798231B2 (en) Brushless motor stator and brushless motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201102

R151 Written notification of patent or utility model registration

Ref document number: 6798113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250