JP6796116B2 - Sensor film, touch sensor and manufacturing method of the sensor - Google Patents

Sensor film, touch sensor and manufacturing method of the sensor Download PDF

Info

Publication number
JP6796116B2
JP6796116B2 JP2018159548A JP2018159548A JP6796116B2 JP 6796116 B2 JP6796116 B2 JP 6796116B2 JP 2018159548 A JP2018159548 A JP 2018159548A JP 2018159548 A JP2018159548 A JP 2018159548A JP 6796116 B2 JP6796116 B2 JP 6796116B2
Authority
JP
Japan
Prior art keywords
film
sensor
electrode
sensor film
glass transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018159548A
Other languages
Japanese (ja)
Other versions
JP2020035088A (en
Inventor
智大 石井
智大 石井
雅司 宮川
雅司 宮川
清之 出口
清之 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=69652373&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6796116(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP2018159548A priority Critical patent/JP6796116B2/en
Priority to TW108130614A priority patent/TWI711956B/en
Priority to CN201910801666.XA priority patent/CN110865729A/en
Publication of JP2020035088A publication Critical patent/JP2020035088A/en
Application granted granted Critical
Publication of JP6796116B2 publication Critical patent/JP6796116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Description

本発明は、基材フィルムの表面に電極部が設けられたセンサフィルム、このセンサフィルムを立体形状に成形したタッチセンサ及び該センサの製造方法に関するものである。 The present invention relates to a sensor film in which an electrode portion is provided on the surface of a base film, a touch sensor obtained by molding the sensor film into a three-dimensional shape, and a method for manufacturing the sensor.

下記特許文献1には、1枚の基材における片側の面に、第1の方向に伸びる列電極と、第1の方向と交差する方向である第2の方向に伸びる列電極とが形成された投影型静電容量タッチセンサの発明について開示されている。 In Patent Document 1 below, a row electrode extending in the first direction and a row electrode extending in the second direction intersecting the first direction are formed on one surface of one base material. The invention of the projection type capacitive touch sensor is disclosed.

また、下記特許文献1に開示されるタッチセンサは、そのまま平板状のパネルとして使用する用途の他、目的に合せた所定の立体形状に成形して使用する場合がある。例えば、平板状のフィルムセンサを成形して半球状としたタッチセンサは、自動車の操縦席に設けてドライバーが手指の感触で操作する手段として使用することができる。 Further, the touch sensor disclosed in Patent Document 1 below may be used as it is as a flat plate panel, or may be molded into a predetermined three-dimensional shape according to the purpose. For example, a touch sensor formed by molding a flat plate-shaped film sensor into a hemispherical shape can be provided in the driver's seat of an automobile and used as a means for a driver to operate with the touch of a finger.

このような半球状、その他の立体形状のタッチセンサは一般的に熱成形法により成形され、熱成形時に各材料を延伸させながら成形させる必要がある。そのため、使用する材料として、基材フィルムについては、例えばPETフィルム/シートやPCフィルム/シートなどを使用し、また電極については、熱成形時に延伸する銅やインジウムなどの金属、樹脂バインダーが練り込まれた銀粉、PEDOT(ポリエチレンジオキシチオフェン)などを使用する。 Such a hemispherical or other three-dimensional touch sensor is generally formed by a thermoforming method, and it is necessary to form each material while stretching it at the time of thermoforming. Therefore, for the base film, for example, PET film / sheet or PC film / sheet is used as the material to be used, and for the electrode, a metal such as copper or indium or a resin binder that is stretched during thermoforming is kneaded. Use sown silver powder, PEDOT (polyethylene dioxythiophene), etc.

そして、熱成形法のうちの一つである真空成形では、真空容器内において、電極を上側として型の上方にフィルムセンサを配置し、容器内を真空に引きながらフィルムセンサを電極側から赤外線で加熱し、フィルムセンサの下側から型を押し当ててフィルムセンサを延伸させ、立体形状に成形する。 In vacuum forming, which is one of the thermal forming methods, a film sensor is placed above the mold with the electrode on the upper side in the vacuum vessel, and the film sensor is evacuated from the electrode side with infrared rays while drawing the inside of the container into a vacuum. It is heated and the mold is pressed from the lower side of the film sensor to stretch the film sensor and form it into a three-dimensional shape.

また、成形後、加飾フィルムを貼着する場合は、模様が施された加飾フィルムの下面に糊としてOCA(Optical Clear Adhesive,光学透明接着剤)を形成し、立体成形されたフィルムセンサの上に重ねて再度の真空成形を行えば、加飾フィルムがフィルムセンサに被着され全体として型の形状のタッチセンサとして一体化される。 When a decorative film is attached after molding, OCA (Optical Clear Adhesive) is formed as glue on the lower surface of the patterned decorative film to form a three-dimensionally molded film sensor. When the decorative film is adhered to the film sensor and vacuum-formed again by stacking it on top of the film, the decorative film is integrated as a touch sensor in the shape of a mold as a whole.

特開2011―90443号公報Japanese Unexamined Patent Publication No. 2011-90443

上述した真空成形のような熱成形法では、成形工程における延伸を考慮してフィルムセンサに延伸する材料を使用し、電極材料として例えば導電性を有する銀粉と熱可塑性の樹脂バインダーとを混練したものを使用している。 In a thermoforming method such as vacuum forming described above, a material to be stretched on a film sensor is used in consideration of stretching in a molding process, and for example, a conductive silver powder and a thermoplastic resin binder are kneaded as an electrode material. Is using.

しかしながら、基材フィルムを延伸可能な程度に加熱した状態で所定形状に延伸させたときに、電極材料がフィルムの延伸に追従できずに電極が部分的に断線してしまうという問題があった。また、電極を覆う絶縁層についても、同様に基材フィルムの延伸に追従できずに破断してしまうという問題があった。 However, when the base film is stretched to a predetermined shape while being heated to a extent that it can be stretched, there is a problem that the electrode material cannot follow the stretching of the film and the electrode is partially broken. Further, the insulating layer covering the electrodes also has a problem that it cannot follow the stretching of the base film and breaks.

本発明は、以上説明した従来の技術の課題を解決するため、電極が形成されたセンサフィルムを立体成形する際に、センサフィルムの延伸により電極や絶縁層の破断を防止できるセンサフィルム、該フィルムを立体成形したタッチセンサ及び該センサの製造方法を提供することを目的としている。 In order to solve the problems of the prior art described above, the present invention is a sensor film capable of preventing breakage of the electrodes and the insulating layer by stretching the sensor film when three-dimensionally molding the sensor film on which the electrodes are formed. It is an object of the present invention to provide a three-dimensionally molded touch sensor and a method for manufacturing the sensor.

本発明に係る第1の態様は、熱により延伸する基材フィルムと、
導電性材料に熱可塑性樹脂が混練された電極材料で前記基材フィルムの少なくとも一面に形成される電極部と、
前記電極部を覆うように形成される絶縁性樹脂材料からなる絶縁層と、
を備え、
前記電極部に練り込まれる熱可塑性樹脂のガラス転移点及び前記絶縁層となる絶縁性樹脂材料のガラス転移点は、前記基材フィルムのガラス転移点よりも低いことを特徴とする、センサフィルムである。
The first aspect according to the present invention is a base film stretched by heat and a base film.
An electrode portion formed on at least one surface of the base film with an electrode material in which a thermoplastic resin is kneaded with a conductive material, and
An insulating layer made of an insulating resin material formed so as to cover the electrode portion,
With
A sensor film characterized in that the glass transition point of the thermoplastic resin kneaded into the electrode portion and the glass transition point of the insulating resin material serving as the insulating layer are lower than the glass transition point of the base film. is there.

本発明に係る第2の態様は、第1の態様に係るセンサフィルムにおいて、前記熱可塑性樹脂と前記絶縁性樹脂材料の各ガラス転移点が、前記基材フィルムのガラス転移点よりも10℃以上低いことを特徴とする、センサフィルムである。 In the second aspect of the present invention, in the sensor film according to the first aspect, the glass transition points of the thermoplastic resin and the insulating resin material are 10 ° C. or higher than the glass transition points of the base film. It is a sensor film characterized by being low.

本発明に係る第3の態様は、第1の態様に係るタッチセンサを加熱して所定形状に立体成形してなることを特徴とする、タッチセンサである。 A third aspect of the present invention is a touch sensor, characterized in that the touch sensor according to the first aspect is heated and three-dimensionally formed into a predetermined shape.

本発明に係る第4の態様は、第1の態様に係るセンサフィルムを加熱するステップと、
前記センサフィルムの表面側と裏面側に差圧を持たせた状態で加熱により延伸した基材フィルムを基台部に押し付けて立体成形するステップと、
を含むことを特徴とする、タッチセンサの製造方法である。
A fourth aspect of the present invention includes a step of heating the sensor film according to the first aspect.
A step of three-dimensional molding by pressing a base film stretched by heating with a differential pressure between the front surface side and the back surface side of the sensor film against a base portion.
It is a method of manufacturing a touch sensor, which comprises.

本発明のセンサフィルムによれば、センサフィルムを立体成形する際に、基材フィルムが延伸可能な温度に加熱される前に電極部や絶縁層が軟化して延伸可能な状態となっているため、基材フィルムの延伸に追従して電極部が破断することなく所定の立体形状に成形させることができる。 According to the sensor film of the present invention, when the sensor film is three-dimensionally molded, the electrode portion and the insulating layer are softened and stretchable before the base film is heated to a stretchable temperature. It is possible to form a predetermined three-dimensional shape without breaking the electrode portion following the stretching of the base film.

(a)は本発明に係るセンサフィルムを模式的に示した概略平面図であり、(b)は同フィルムの層構造(片面構造)を示すZ−Z切断線における概略断面図であり、(c)は同フィルムにおける層構造両面構造の概略断面図ある。(A) is a schematic plan view schematically showing a sensor film according to the present invention, and (b) is a schematic cross-sectional view of a ZZ cutting line showing a layer structure (single-sided structure) of the film. c) is a schematic cross-sectional view of the layered double-sided structure of the film. (a)は本発明に係るセンサフィルムに設けられる加飾部を模式的に示した概略平面図であり、(b)は同フィルムのY−Y切断線における概略断面図である。(A) is a schematic plan view schematically showing a decorative portion provided on the sensor film according to the present invention, and (b) is a schematic cross-sectional view taken along the YY cutting line of the film. (a)は本発明に係るセンサフィルムを立体成形するための基台部である成形用型の概略断面図であり、(b)は本発明に係るタッチセンサの真空成形工程におけるセンサフィルム成形後の成形用型の概略断面図であり、(c)は同タッチセンサの真空成形工程における加飾部成形後の成形用型の概略断面図である。(A) is a schematic cross-sectional view of a molding mold which is a base portion for three-dimensional molding of the sensor film according to the present invention, and (b) is after molding the sensor film in the vacuum forming step of the touch sensor according to the present invention. It is a schematic cross-sectional view of the molding die of the above, and (c) is a schematic cross-sectional view of the molding die after molding of a decorative portion in the vacuum forming step of the touch sensor. (a)〜(c)は第1実施形態のタッチセンサの製造工程を示す概念図である。(A) to (c) are conceptual diagrams showing the manufacturing process of the touch sensor of the first embodiment. (a)〜(c)は第2実施形態のタッチセンサの製造工程を示す概念図である。(A) to (c) are conceptual diagrams showing the manufacturing process of the touch sensor of the second embodiment.

以下、本発明を実施するための形態について、添付した図面を参照しながら詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the attached drawings.

なお、本明細書に添付する図面は、図示と理解のしやすさの便宜上、適宜縮尺、縦横の寸法比、形状などについて、実物から変更し模式的に表現される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。従って、添付した図面を用いて説明する実施の形態により、本発明が限定されず、この形態に基づいて当業者などにより考え得る実施可能な他の形態、実施例及び運用技術などは全て本発明の範疇に含まれるものとする。 The drawings attached to this specification may be represented schematically by changing the scale, aspect ratio, shape, etc. from the actual product for convenience of illustration and comprehension. However, it does not limit the interpretation of the present invention. Therefore, the present invention is not limited by the embodiments described with reference to the attached drawings, and all other embodiments, examples, operational techniques, and the like that can be considered by those skilled in the art based on this embodiment are the present invention. It shall be included in the category of.

また、本明細書において、添付する各図を参照した以下の説明において、方向乃至位置を示すために上、下、左、右の語を使用した場合、これはユーザが各図を図示の通りに見た場合の上、下、左、右に一致する。 In addition, in the following description with reference to the accompanying figures in the present specification, when the words up, down, left, and right are used to indicate a direction or position, this means that the user shows each figure as illustrated. It matches the top, bottom, left, and right when viewed in.

[1.タッチセンサの構成について]
まず、本発明に係るタッチセンサTSの構成について説明する。
図1(a)、図1(b)の何れかに示すように、本発明に係るタッチセンサTSは、所定温度の加熱により軟化して延伸可能な基材フィルム2と、この基材フィルム2の表面に形成される電極部3とで構成されるセンサフィルム1を主材料とする。
[1. About touch sensor configuration]
First, the configuration of the touch sensor TS according to the present invention will be described.
As shown in either FIG. 1A or FIG. 1B, the touch sensor TS according to the present invention includes a base film 2 that can be softened and stretched by heating at a predetermined temperature, and the base film 2 The main material is a sensor film 1 composed of an electrode portion 3 formed on the surface of the above.

また、センサフィルム1を所定形状に立体成形させたタッチセンサTSとする場合は、OCAからなる接着層4を基材フィルム2の裏面に設け、この接着層4を介して後述する基台部11に被着させて作製する。 Further, in the case of a touch sensor TS in which the sensor film 1 is three-dimensionally molded into a predetermined shape, an adhesive layer 4 made of OCA is provided on the back surface of the base film 2, and the base portion 11 described later is provided via the adhesive layer 4. It is made by adhering to.

なお、センサフィルム1は、立体成形可能なように加熱時に軟化して延伸性を有しているが、必ずしも立体成形して使用する必要はなく、例えばフィルム状のまま使用する形態、補強材としてセンサフィルム1の周縁部を枠体で囲った形態、板材の表面に貼着して平板状のパネル機器として使用する形態など、用途は特に限定されない。 Although the sensor film 1 is softened at the time of heating and has stretchability so that it can be three-dimensionally molded, it does not necessarily have to be three-dimensionally molded and used. For example, as a form or reinforcing material used as a film. The application is not particularly limited, such as a form in which the peripheral edge of the sensor film 1 is surrounded by a frame, a form in which the sensor film 1 is attached to the surface of a plate material and used as a flat panel device.

基材フィルム2は、所定温度の加熱により軟化して延伸し、硬化後は十分な製品強度が担保される熱可塑性樹脂材料(ポリカーボネイト(PC)やアクリル系樹脂(PMMA)など)で形成される。 The base film 2 is formed of a thermoplastic resin material (polycarbonate (PC), acrylic resin (PMMA), etc.) that softens and stretches by heating at a predetermined temperature and ensures sufficient product strength after curing. ..

図1(b)に示すように、電極部3は、基材フィルム2の上面に形成されたX電極5と、Y電極6とで構成される。 As shown in FIG. 1B, the electrode portion 3 is composed of an X electrode 5 formed on the upper surface of the base film 2 and a Y electrode 6.

X電極5とY電極6は、図1(a)に示すように、平面視で菱形や正方形の電極パターンをそれぞれX方向(図中左右方向)及びY方向(図中上下方向)に複数並列して各電極パターン間を線状パターンで接続した構成とする。つまり、X電極5とY電極6は、平面視したとき、各電極パターンが互いに微小な隙間をおいて入れ子状に組み合わされるように配置されている。このX電極5とY電極6が構成するマトリクスは、タッチセンサTSのタッチ面(操作面)を網羅的にカバーしている。 As shown in FIG. 1A, the X electrode 5 and the Y electrode 6 have a plurality of diamond-shaped or square electrode patterns arranged in parallel in the X direction (horizontal direction in the figure) and the Y direction (vertical direction in the figure), respectively. Then, each electrode pattern is connected by a linear pattern. That is, the X electrode 5 and the Y electrode 6 are arranged so that the electrode patterns are nested together with a minute gap between them when viewed in a plan view. The matrix composed of the X electrode 5 and the Y electrode 6 comprehensively covers the touch surface (operation surface) of the touch sensor TS.

X電極5とY電極6は、電極として使用可能な銅、銀、カーボンなどの導電性材料に熱可塑性樹脂(例えばポリエステル系樹脂やアクリル系樹脂)が練り込まれた電極材料で構成されている。電極材料における熱可塑性樹脂の重量比は、少なくとも立体成形時に加熱された際に形成パターンが断線することなく所定量延伸するとともに、電極としての機能を阻害しない程度の量が配合されていればよく、使用する樹脂材や導電性材料との相性にもよるが総量に対して5〜40重量%程度が好ましい。 The X electrode 5 and the Y electrode 6 are made of an electrode material in which a thermoplastic resin (for example, polyester resin or acrylic resin) is kneaded into a conductive material such as copper, silver, or carbon that can be used as an electrode. .. The weight ratio of the thermoplastic resin in the electrode material may be at least stretched by a predetermined amount without breaking the forming pattern when heated during three-dimensional molding, and may be blended in an amount that does not impair the function as an electrode. Although it depends on the compatibility with the resin material and the conductive material used, it is preferably about 5 to 40% by weight based on the total amount.

また、本発明のセンサフィルム1は、従来の課題である加熱延伸時の電極の部分断裂を防止するため、X電極5やY電極6に練り込まれる熱可塑性樹脂と基材フィルム2のガラス転移点Tgに着目し、練り込まれる熱可塑性樹脂のガラス転移点Tg2が基材フィルム2のガラス転移点Tg1よりも低い材料を選択する。 Further, the sensor film 1 of the present invention has a glass transition between the thermoplastic resin kneaded into the X electrode 5 and the Y electrode 6 and the base film 2 in order to prevent partial tearing of the electrode during heating and stretching, which is a conventional problem. Focusing on the point Tg, a material in which the glass transition point Tg2 of the thermoplastic resin to be kneaded is lower than the glass transition point Tg1 of the base film 2 is selected.

基材フィルム2と熱可塑性樹脂材料の組み合わせ例としては、例えば基材フィルム2としてPC(ガラス転移点Tg1:約150℃)を使用する場合、熱可塑性樹脂としてPVC(ガラス転移点Tg2:約80℃)やABS(ガラス転移点Tg2:約100℃)が選択される。 As an example of the combination of the base film 2 and the thermoplastic resin material, for example, when PC (glass transition point Tg1: about 150 ° C.) is used as the base film 2, PVC (glass transition point Tg2: about 80 ° C.) is used as the thermoplastic resin. ° C.) or ABS (glass transition point Tg2: about 100 ° C.) is selected.

なお、熱可塑性樹脂には、結晶構造を有する結晶性樹脂(PE、PP、PETなど)と結晶構造を有さない非晶性樹脂(PMMA、PC、PVC、PS、ABSなど)が存在し、熱変形温度は前者がガラス転移点Tg、後者がガラス転移点Tg又は融点Tmに依存するが、何れの樹脂もガラス転移点Tgを基準に選択すればよい。 The thermoplastic resin includes a crystalline resin having a crystalline structure (PE, PP, PET, etc.) and an amorphous resin having no crystalline structure (PMMA, PC, PVC, PS, ABS, etc.). The thermal deformation temperature depends on the glass transition point Tg for the former and the glass transition point Tg or the melting point Tm for the latter, but any resin may be selected based on the glass transition point Tg.

以上のように、基材フィルム2と各電極5,6に練り込まれる熱可塑性樹脂の組み合わせは、基材フィルム2のガラス転移点Tg1>熱可塑性樹脂のガラス転移点Tg2の関係が成り立つ組み合わせとする。これにより、加熱時に基材フィルム2のガラス転移点Tg1に達する前に熱可塑性樹脂のガラス転移点Tg2となるため、電極材料が延伸可能なゴム状に軟化した状態となり、立体成形時の基材フィルム2の延伸に追従することができる。 As described above, the combination of the base film 2 and the thermoplastic resin kneaded into the electrodes 5 and 6 is a combination in which the relationship of the glass transition point Tg1 of the base film 2> the glass transition point Tg2 of the thermoplastic resin is established. To do. As a result, the glass transition point Tg2 of the thermoplastic resin is reached before the glass transition point Tg1 of the base film 2 is reached during heating, so that the electrode material is in a stretchable rubber-like softened state, and the base material during three-dimensional molding It can follow the stretching of the film 2.

また、X電極5とY電極6の引き出し配線8(8X,8Y)は、基材フィルム2の一の縁辺に引き回されて所定間隔で配列された引き出し部9を構成している。図1(b)に示すように、X電極5とY電極6は、層の厚さ方向(図1(b)の上下方向に平行な層の積層方向)については、絶縁層7を挟んで異なる位置に配置されており、互いに絶縁状態にある。 Further, the lead-out wiring 8 (8X, 8Y) of the X electrode 5 and the Y electrode 6 constitutes a pull-out portion 9 which is drawn around one edge of the base film 2 and arranged at a predetermined interval. As shown in FIG. 1 (b), the X electrode 5 and the Y electrode 6 sandwich the insulating layer 7 in the layer thickness direction (layer stacking direction parallel to the vertical direction in FIG. 1 (b)). They are located in different positions and are insulated from each other.

絶縁層7は、基材フィルム2上に形成された電極部3が絶縁されるように形成される層である。絶縁層7は、電極部3が絶縁され、且つセンサフィルム1を立体成形してタッチセンサTSとなったときに製品品質上問題の生じない熱可塑性を有する絶縁性樹脂材料であれば特に限定されず、例えばアクリル(PMMA)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリカーボネイト(PC)、ポリエステル(PET)、ポリ塩化ビニル(PVC)、ポリスチレン(PS)、アクリロニトリル−ブタジエン−スチレン(ABS)などの熱可塑性樹脂を適宜選択すればよい。 The insulating layer 7 is a layer formed so that the electrode portion 3 formed on the base film 2 is insulated. The insulating layer 7 is particularly limited as long as it is an insulating resin material in which the electrode portion 3 is insulated and the sensor film 1 is three-dimensionally molded to form a touch sensor TS and has thermoplasticity that does not cause a problem in product quality. For example, acrylic (PMMA), polyethylene (PE), polypropylene (PP), thermoplastic (PC), polyester (PET), polyvinyl chloride (PVC), polystyrene (PS), acrylonitrile-butadiene-styrene (ABS), etc. The thermoplastic resin may be appropriately selected.

絶縁層7は、電極部3の電極材料に練り込まれる熱可塑性樹脂と同様、使用する絶縁性樹脂材料を選択する上で、基材フィルム2と絶縁性樹脂材料のガラス転移点Tgに着目し、絶縁性樹脂材料のガラス転移点Tg3が基材フィルム2のガラス転移点Tg1よりも低くなるように材料を選択する。 As with the thermoplastic resin kneaded into the electrode material of the electrode portion 3, the insulating layer 7 pays attention to the glass transition point Tg of the base film 2 and the insulating resin material when selecting the insulating resin material to be used. The material is selected so that the glass transition point Tg3 of the insulating resin material is lower than the glass transition point Tg1 of the base film 2.

基材フィルム2と絶縁性樹脂材料の組み合わせ例としては、例えば基材フィルム2としてPC(ガラス転移点Tg1:約150℃)を使用する場合、絶縁性樹脂材料としてPVC(ガラス転移点Tg3:約80℃)やABS(ガラス転移点Tg3:約100℃)が選択される。 As an example of the combination of the base film 2 and the insulating resin material, for example, when PC (glass transition point Tg1: about 150 ° C.) is used as the base film 2, PVC (glass transition point Tg3: about) is used as the insulating resin material. 80 ° C.) or ABS (glass transition point Tg3: about 100 ° C.) is selected.

また、前述したように、絶縁性樹脂材料となる熱可塑性樹脂には、結晶性樹脂と非晶性樹脂が存在するが、何れの樹脂もガラス転移点Tgを基準に選択すればよい。 Further, as described above, the thermoplastic resin used as the insulating resin material includes a crystalline resin and an amorphous resin, and any of the resins may be selected based on the glass transition point Tg.

以上のように、基材フィルム2と絶縁層7となる絶縁性樹脂材料の組み合わせは、基材フィルム2のガラス転移点Tg1>絶縁性樹脂材料のガラス転移点Tg3の関係が成り立つ組み合わせとする。これにより、加熱時に基材フィルム2のガラス転移点Tg1に達する前に絶縁性樹脂材料のガラス転移点Tg3となるため、基材フィルム2が延伸可能な程度に軟化する前に絶縁層7が延伸可能なゴム状に軟化した状態となり、絶縁層7が基材フィルム2の延伸に追従することができる。 As described above, the combination of the base film 2 and the insulating resin material to be the insulating layer 7 is a combination in which the relationship of the glass transition point Tg1 of the base film 2> the glass transition point Tg3 of the insulating resin material is established. As a result, the glass transition point Tg3 of the insulating resin material is reached before the glass transition point Tg1 of the base film 2 is reached during heating, so that the insulating layer 7 is stretched before the base film 2 is softened to a stretchable extent. It becomes a possible rubber-like softened state, and the insulating layer 7 can follow the stretching of the base film 2.

また、立体成形時に絶縁層7が十分延伸可能な程度に軟化するため、電極部3が絶縁層7と基材フィルム2の延伸に引きずられるように延伸して電極部3に加わる引張力が均一となる。よって、電極部3の各電極を形成する導電性材料の粒子同士が導通状態を維持したまま断線することなく延伸させることができる。 Further, since the insulating layer 7 is softened to such an extent that it can be sufficiently stretched during three-dimensional molding, the electrode portion 3 is stretched so as to be dragged by the stretching of the insulating layer 7 and the base film 2, and the tensile force applied to the electrode portion 3 is uniform. It becomes. Therefore, the particles of the conductive material forming each electrode of the electrode portion 3 can be stretched without breaking while maintaining the conductive state.

なお、電極部3の電極材料として練り込まれる熱可塑性樹脂や絶縁層7として使用する絶縁性樹脂材料を選択する場合、それぞれのガラス転移点Tg2,Tg3が基材フィルム2のガラス転移点Tg1よりも10℃以上低いものを選択するのが好ましい。これは、使用する材料や配合によってガラス転移点Tgに多少のずれがあるため、このずれ分を考慮して確実にガラス転移点Tgの温度差を確保する温度マージンを持たせるためである。 When a thermoplastic resin kneaded as the electrode material of the electrode portion 3 or an insulating resin material used as the insulating layer 7 is selected, the respective glass transition points Tg2 and Tg3 are from the glass transition point Tg1 of the base film 2. It is preferable to select one having a temperature lower than 10 ° C. This is because there is a slight deviation in the glass transition point Tg depending on the material and composition used, and the temperature margin for surely securing the temperature difference of the glass transition point Tg is provided in consideration of this deviation.

図2(a)又は図2(b)に示すように、センサフィルム1に設けられる加飾部12は、意匠性を高める目的として、必要に応じて立体成形後のセンサフィルム1の最表面に加飾フィルム10を形成される。この加飾部12は、センサフィルム1の使用目的や要求される審美性に応じ、所定の色彩や、透光性又は非透光性を有するもの、又は何らかの文様や図柄などを有するもので構成する。 As shown in FIG. 2A or FIG. 2B, the decorative portion 12 provided on the sensor film 1 is formed on the outermost surface of the sensor film 1 after three-dimensional molding, if necessary, for the purpose of enhancing the design. The decorative film 10 is formed. The decorative portion 12 is composed of a sensor film 1 having a predetermined color, translucent or non-translucent, or having some pattern or pattern, depending on the purpose of use of the sensor film 1 and the required aesthetics. To do.

ここで、上述した構成例において、具体的な寸法例を一例として示しておく。基材フィルム2の厚さは0.3mm程度、電極部3のX電極5とY電極6の各厚さは5〜10μm程度、絶縁層7の厚さは20〜30μm程度、接着層4の厚さは50μm程度である。 Here, in the above-mentioned configuration example, a specific dimensional example will be shown as an example. The thickness of the base film 2 is about 0.3 mm, the thickness of each of the X electrode 5 and the Y electrode 6 of the electrode portion 3 is about 5 to 10 μm, the thickness of the insulating layer 7 is about 20 to 30 μm, and the thickness of the adhesive layer 4 is about 20 to 30 μm. The thickness is about 50 μm.

また、本発明のセンサフィルム1の構造は、図1(b)に示すようにセンサフィルム1の層構造として基材フィルム2の片面(図中における上面(表面)側)に絶縁層7を介在させた電極部3を形成する片面構造とした形態の他、例えば図1(c)に示すように、層構造として基材フィルム2を中心とし、一方の面(図中における上面(表面)側)にX電極5を形成し、その表面を覆うように絶縁層7を形成するとともに、他方の面(図中における下面(裏面)側)にY電極6を形成し、その表面を覆うように絶縁層7を形成する両面構造を採用してもよい。 Further, in the structure of the sensor film 1 of the present invention, as shown in FIG. 1 (b), the insulating layer 7 is interposed on one side (upper surface (surface) side in the drawing) of the base film 2 as the layer structure of the sensor film 1. In addition to the single-sided structure in which the electrode portion 3 is formed, for example, as shown in FIG. 1 (c), the base film 2 is centered as the layer structure, and one surface (upper surface (surface) side in the drawing) side. ), The insulating layer 7 is formed so as to cover the surface thereof, and the Y electrode 6 is formed on the other surface (the lower surface (back surface) side in the drawing) so as to cover the surface thereof. A double-sided structure for forming the insulating layer 7 may be adopted.

[2.タッチセンサの製造方法について]
次に、上述したセンサフィルム1を用いたタッチセンサTSの製造方法について説明する。
まず本発明に係るタッチセンサTSの製造方法の概略について説明をし、その後製造方法の形態例(第1実施形態、第2実施形態)についてそれぞれ説明する。
<2−1.製造方法の概略>
まず、図3を参照しながら、本発明に係るタッチセンサTSの製造方法の概略について説明する。
本実施形態のタッチセンサTSは、熱成形法によって立体形状に成形され、その立体形状を得るとともに、得た立体形状を維持するために、センサフィルム1を所定形状に成形する型であり、且つ被着される対象でもある基台部11を備えている。
[2. About the manufacturing method of the touch sensor]
Next, a method of manufacturing the touch sensor TS using the sensor film 1 described above will be described.
First, the outline of the manufacturing method of the touch sensor TS according to the present invention will be described, and then the embodiment of the manufacturing method (first embodiment, second embodiment) will be described.
<2-1. Outline of manufacturing method>
First, the outline of the method for manufacturing the touch sensor TS according to the present invention will be described with reference to FIG.
The touch sensor TS of the present embodiment is a mold that is formed into a three-dimensional shape by a thermoforming method, obtains the three-dimensional shape, and forms the sensor film 1 into a predetermined shape in order to maintain the obtained three-dimensional shape. It includes a base portion 11 that is also an object to be adhered.

図3(a)に示すように、球の中心を外れた位置で球を平面的に切断して得た2個の立体のうち、大きい方の立体を基台部11とすると、基台部11に被せたセンサフィルム1を基台部11の曲面の全面に密着させて被着するためには、単にセンサフィルム1に対して基台部11を押し付けるだけでは不十分である。また、基台部11の平坦な底面側に回り込んで絞り込まれた曲面に対し、センサフィルム1が十分に貼り付かない虞がある。そこで、加熱しながら型押しによる成形を行うことにより、型の曲面状の表面に沿った良好な成形を行うことができる。 As shown in FIG. 3A, assuming that the larger solid of the two solids obtained by cutting the sphere in a plane at a position off the center of the sphere is the base portion 11, the base portion In order for the sensor film 1 covered with 11 to be brought into close contact with the entire curved surface of the base portion 11, it is not sufficient to simply press the base portion 11 against the sensor film 1. Further, there is a possibility that the sensor film 1 does not sufficiently adhere to the curved surface narrowed down by wrapping around to the flat bottom surface side of the base portion 11. Therefore, by performing molding by embossing while heating, good molding can be performed along the curved surface of the mold.

図3(b)に示すように、後に詳述する真空成形の手法により、センサフィルム1を加熱により軟化させて安定的に延伸可能な状態とし、この基台部11の曲面状の表面に、センサフィルム1を基台部11に対して相対的に押し付け、接着層4を介して曲面に被着させる。 As shown in FIG. 3B, the sensor film 1 is softened by heating to a state in which it can be stably stretched by a vacuum forming method described in detail later, and the curved surface of the base portion 11 is formed. The sensor film 1 is relatively pressed against the base portion 11 and adheres to the curved surface via the adhesive layer 4.

そして、図3(c)に示すように、センサフィルム1の上からフィルム状の加飾部12を被せ、加飾部12を加熱により軟化させて延伸可能な状態とし、例えば真空成形により、加飾部12を基台部11に対して相対的に押し付けてセンサフィルム1の表面に被着させる。加飾部12は、基台部11の曲面の形状に成形され、センサフィルム1を覆って接着層4によりセンサフィルム1に被着される。これにより、タッチセンサTSが立体成形される。
なお、ここで参照した図3(b)、図3(c)において、センサフィルム1の電極部3は、図1(b)における図示とは異なり、図示上の簡潔さを優先してX電極5,Y電極6及び絶縁層7を省略した一層構造で示している。
Then, as shown in FIG. 3C, a film-shaped decorative portion 12 is covered over the sensor film 1, and the decorative portion 12 is softened by heating to make it stretchable. For example, it is added by vacuum forming. The decorative portion 12 is pressed relative to the base portion 11 to adhere to the surface of the sensor film 1. The decorative portion 12 is formed into the shape of a curved surface of the base portion 11, covers the sensor film 1, and is adhered to the sensor film 1 by the adhesive layer 4. As a result, the touch sensor TS is three-dimensionally molded.
In FIGS. 3 (b) and 3 (c) referred to here, the electrode portion 3 of the sensor film 1 is different from the illustration in FIG. 1 (b), and the X electrode is given priority in terms of simplicity in the illustration. 5, The Y electrode 6 and the insulating layer 7 are shown in a single-layer structure omitted.

上記成形手順により得られたタッチセンサTSは、基台部11の略半球形状の表面にセンサフィルム1が被着され、その表面には加飾フィルム10を最表面とする加飾部12により所定の意匠性が与えられた立体形状の製品となっている。この立体形状のタッチセンサTSは、基台部11の略半球形状又はサイズに対応するような用途、さらにはその加飾フィルム10の意匠性に対応した各種の用途に好適に供することができる。例えば、この略半球形状のタッチセンサTSは、自動車のコンソールなどに設けてドライバーが手指の感触のみで運転用の機器類を操作する手段として好適に使用することができる。 In the touch sensor TS obtained by the above molding procedure, the sensor film 1 is adhered to the substantially hemispherical surface of the base portion 11, and the surface thereof is designated by the decorative portion 12 having the decorative film 10 as the outermost surface. It is a three-dimensional product with the design of. This three-dimensional touch sensor TS can be suitably used for applications corresponding to the substantially hemispherical shape or size of the base portion 11, and further for various applications corresponding to the design of the decorative film 10. For example, the substantially hemispherical touch sensor TS can be suitably used as a means for a driver to operate driving equipment only by the touch of a finger by providing the touch sensor TS on an automobile console or the like.

<2−2.第1実施形態について>
(第1実施形態の加熱成形装置の構成)
次に、第1実施形態におけるタッチセンサTSの製造方法で使用される加熱成形装置20について説明する。
第1実施形態の製造方法では、熱成形法の一つである真空成形によりタッチセンサTSの成形を行っており、図4(a)に示すように、加熱成形装置20は真空チャンバ21を備えている。この真空チャンバ21は、直方体形状の筐体であり、高さ方向の中央部分を通過する水平な分割面で略同形状の上筐体22と下筐体23に分かれている。
<2-2. About the first embodiment>
(Structure of the heat molding apparatus of the first embodiment)
Next, the heat molding apparatus 20 used in the method for manufacturing the touch sensor TS in the first embodiment will be described.
In the manufacturing method of the first embodiment, the touch sensor TS is formed by vacuum forming, which is one of the thermoforming methods. As shown in FIG. 4A, the thermoforming apparatus 20 includes a vacuum chamber 21. ing. The vacuum chamber 21 is a rectangular parallelepiped housing, and is divided into an upper housing 22 and a lower housing 23 having substantially the same shape by a horizontal dividing surface passing through a central portion in the height direction.

上筐体22と下筐体23は、図示しない駆動及び移動案内手段により、必要に応じて上下方向に相対的に移動することができる。本実施形態では、下筐体23が所定位置に固定されており、上筐体22が図示しない駆動及び移動案内手段により下筐体23に対して相対的に上下方向に移動することができる。上筐体22を下筐体23に対して相対的に上下動することで真空チャンバ21が開閉され、上筐体22と下筐体23を閉止した際には、真空チャンバ21の内部は外界に対して気密状態となる。 The upper housing 22 and the lower housing 23 can be relatively moved in the vertical direction, if necessary, by a drive and movement guiding means (not shown). In the present embodiment, the lower housing 23 is fixed at a predetermined position, and the upper housing 22 can be moved in the vertical direction relative to the lower housing 23 by a drive and movement guiding means (not shown). The vacuum chamber 21 is opened and closed by moving the upper housing 22 up and down relative to the lower housing 23, and when the upper housing 22 and the lower housing 23 are closed, the inside of the vacuum chamber 21 is the outside world. It becomes airtight.

真空チャンバ21の外側において、上筐体22と下筐体23の分割面の延長面付近であって、真空チャンバ21を挟む少なくとも2つの位置には、フィルム状のセンサフィルム1を挟んで保持する保持手段24が設けられている。開放状態とした上筐体22と下筐体23の間に、保持手段24で保持したセンサフィルム1を配置し、上筐体22と下筐体23を閉止状態とすれば、気密状態となった真空チャンバ21の内部において、略中央部分にセンサフィルム1を配置することができる。 A film-shaped sensor film 1 is sandwiched and held at at least two positions on the outside of the vacuum chamber 21 near the extension surface of the divided surface of the upper housing 22 and the lower housing 23 and sandwiching the vacuum chamber 21. The holding means 24 is provided. If the sensor film 1 held by the holding means 24 is arranged between the upper housing 22 and the lower housing 23 in the open state, and the upper housing 22 and the lower housing 23 are closed, the airtight state is obtained. The sensor film 1 can be arranged in a substantially central portion inside the vacuum chamber 21.

真空チャンバ21の上筐体22には、その上面に加熱手段25が設けられている。この加熱手段25は、真空状態でもセンサフィルム1が加熱可能な赤外線ヒータを使用し、保持手段24で保持されたセンサフィルム1の上面に赤外線を照射することでセンサフィルム1を加熱することができる。 The upper housing 22 of the vacuum chamber 21 is provided with a heating means 25 on the upper surface thereof. The heating means 25 uses an infrared heater that can heat the sensor film 1 even in a vacuum state, and can heat the sensor film 1 by irradiating the upper surface of the sensor film 1 held by the holding means 24 with infrared rays. ..

また、真空チャンバ21の下筐体23には、その底面に昇降台26が設置されている。昇降台26の上には、タッチセンサTSの基台部11に相当する型27が設置され、成形工程において必要なタイミングで待機位置から成形位置まで上昇することができる。この昇降台26は、昇降台26に設置した型27によって保持手段24で保持されたセンサフィルム1を下面から押し上げることができる。 Further, the lower housing 23 of the vacuum chamber 21 is provided with a lift 26 on the bottom surface thereof. A mold 27 corresponding to the base portion 11 of the touch sensor TS is installed on the elevating table 26, and can be raised from the standby position to the molding position at a timing required in the molding process. The elevating table 26 can push up the sensor film 1 held by the holding means 24 by the mold 27 installed on the elevating table 26 from the lower surface.

さらに、真空チャンバ21の外部には、真空チャンバ21内の空気を吸引することにより真空雰囲気(又は減圧雰囲気)を生成する手段として、真空ポンプ30が設けられている。また、真空チャンバ21の外部には、真空チャンバ21内に空気を供給して大気圧雰囲気(又はそれ以上の加圧雰囲気)を生成する手段として、加圧タンク31が設けられている。真空ポンプ30の吸引口は、第1管路32を介して下筐体23の内部に接続連通されており、下筐体23の内部を吸引することができる。 Further, outside the vacuum chamber 21, a vacuum pump 30 is provided as a means for creating a vacuum atmosphere (or a reduced pressure atmosphere) by sucking the air in the vacuum chamber 21. Further, outside the vacuum chamber 21, a pressurizing tank 31 is provided as a means for supplying air into the vacuum chamber 21 to generate an atmospheric pressure atmosphere (or a pressurized atmosphere higher than that). The suction port of the vacuum pump 30 is connected and communicated with the inside of the lower housing 23 via the first pipe line 32, and the inside of the lower housing 23 can be sucked.

この第1管路32からは分岐管33が分岐しており、この分岐管33と、加圧タンク31の供給口に接続された供給管34は、切替部35で同軸に接続されている。そして、上筐体22には第2管路36が接続連通されており、この第2管路36は切替部35に接続されている。従って、切替部35を上下の何れかの方向に切り替えることにより、真空ポンプ30と切替部35を接続して上筐体22の内部を吸引する操作と、加圧タンク31と切替部35を接続して上筐体22の内部に空気を供給する操作を、選択的に行うことができる。 A branch pipe 33 branches from the first pipeline 32, and the branch pipe 33 and the supply pipe 34 connected to the supply port of the pressurizing tank 31 are coaxially connected by a switching portion 35. A second pipeline 36 is connected and communicated with the upper housing 22, and the second pipeline 36 is connected to the switching unit 35. Therefore, by switching the switching unit 35 in either the vertical direction, the vacuum pump 30 and the switching unit 35 are connected to suck the inside of the upper housing 22, and the pressure tank 31 and the switching unit 35 are connected. The operation of supplying air to the inside of the upper housing 22 can be selectively performed.

(第1実施形態の製造工程)
次に、第1実施形態におけるタッチセンサTSの製造工程を手順に沿って説明する。
図4(a)に示すように、真空チャンバ21を開放し、保持手段24で保持したセンサフィルム1を上筐体22と下筐体23の分割面内に配置する。このとき、絶縁層7が加熱手段25に面し、接着層4が型に面するように、センサフィルム1を配置する。
(Manufacturing process of the first embodiment)
Next, the manufacturing process of the touch sensor TS in the first embodiment will be described in accordance with the procedure.
As shown in FIG. 4A, the vacuum chamber 21 is opened, and the sensor film 1 held by the holding means 24 is arranged in the dividing plane of the upper housing 22 and the lower housing 23. At this time, the sensor film 1 is arranged so that the insulating layer 7 faces the heating means 25 and the adhesive layer 4 faces the mold.

図4(b)に示すように、真空チャンバ21を閉止し、切替部35を真空ポンプ30に連通する分岐管33の側に切り替えて真空ポンプ30を作動させる。真空ポンプ30は、第1管路32を介して下筐体23の内部を吸引するとともに、第2管路36を介して上筐体22の内部を吸引する。真空チャンバ21の内部を必要な真空状態にしたところで、加熱手段25を作動させ、センサフィルム1を加熱する。この加熱は赤外線により行われるため、真空中でもセンサフィルム1の加熱が可能である。 As shown in FIG. 4B, the vacuum chamber 21 is closed, and the switching portion 35 is switched to the side of the branch pipe 33 communicating with the vacuum pump 30 to operate the vacuum pump 30. The vacuum pump 30 sucks the inside of the lower housing 23 through the first pipe line 32 and the inside of the upper housing 22 through the second pipe line 36. When the inside of the vacuum chamber 21 is in a required vacuum state, the heating means 25 is operated to heat the sensor film 1. Since this heating is performed by infrared rays, the sensor film 1 can be heated even in a vacuum.

図4(c)に示すように、加熱を続行しながら昇降台26を上昇させ、型27でセンサフィルム1を押し上げる。これと共に、切替部35を、加圧タンク31に連通する供給管34の側に切り替え、加圧タンク31から上筐体22の内部に空気供給を行う。均一に加熱されて全体として安定した延伸性を示すようになったセンサフィルム1は、型27によって下方から押し上げられる。また、これと共に、上筐体22内の空気供給による大気圧状態又は加圧状態と、下筐体23の減圧状態との差圧により、センサフィルム1は型27に上方から押し付けられる。これにより、フィルム状のセンサフィルム1は、破断などを起こすことなく安定的に延伸し、型27の表面に被着し、型27の立体形状に沿って成形されたタッチセンサTSとなる。 As shown in FIG. 4C, the elevating table 26 is raised while continuing heating, and the sensor film 1 is pushed up by the mold 27. At the same time, the switching unit 35 is switched to the side of the supply pipe 34 communicating with the pressurizing tank 31, and air is supplied from the pressurizing tank 31 to the inside of the upper housing 22. The sensor film 1 that has been uniformly heated and exhibits stable stretchability as a whole is pushed up from below by the mold 27. At the same time, the sensor film 1 is pressed against the mold 27 from above by the differential pressure between the atmospheric pressure state or the pressurized state due to the air supply in the upper housing 22 and the decompressed state of the lower housing 23. As a result, the film-shaped sensor film 1 is stably stretched without causing breakage or the like, adheres to the surface of the mold 27, and becomes a touch sensor TS formed along the three-dimensional shape of the mold 27.

なお、図4では、図3で説明した例とは異なるバリエーションとして、基台部11となる型27には、逆円錐台形状の立体を採用したが、基台部及び型としては、三次元形状の立体的なタッチセンサTSの芯となる基台部や型の形状には制限はなく、必要に応じた任意の形状の基台部及び型が採用可能である。 In FIG. 4, as a variation different from the example described in FIG. 3, the inverted truncated cone-shaped solid is adopted for the mold 27 to be the base portion 11, but the base portion and the mold are three-dimensional. There is no limitation on the shape of the base portion and the mold that form the core of the three-dimensional touch sensor TS, and any shape of the base portion and the mold can be adopted as needed.

図4に示すように、逆円錐台形状の型27の表面において、面積の異なる互いに平行な2つの円形面のうち、面積が大きい一方の円形面と、2つの円形面の各円周を接続するとともに展開すると扇形となる側周面の2つの面に、タッチセンサTSの操作領域が形成される。すなわち、センサフィルム1を型27により延ばして成形することにより、一方の円形面と側周面にセンサフィルム1を貼り付け、センサフィルム1の電極部3が、少なくとも最終的に操作領域となる一方の円形面と側周面に配置されるようにして、センサフィルム1の操作領域を図3に示した例とは異なる上述した立体的な形状に構成する。 As shown in FIG. 4, on the surface of the inverted truncated cone-shaped mold 27, one of the two parallel circular surfaces having different areas, which has a larger area, and the circumferences of the two circular surfaces are connected. The operation area of the touch sensor TS is formed on two surfaces of the side peripheral surface which becomes a fan shape when expanded at the same time. That is, by stretching and molding the sensor film 1 with the mold 27, the sensor film 1 is attached to one of the circular surfaces and the side peripheral surfaces, and the electrode portion 3 of the sensor film 1 becomes at least the operation region at least. The operation area of the sensor film 1 is configured to have the above-mentioned three-dimensional shape different from the example shown in FIG. 3 so as to be arranged on the circular surface and the side peripheral surface of the sensor film 1.

そして、図4(c)に示す成形工程の完了後に、センサフィルム1のうち、型27に被着されていない部分を、面積が小さい他方の円形面から離れた適当な位置で他方の円形面を囲むように円形に切断し、型27から切り離された部分を廃棄する。すなわち、センサフィルム1において型27に被着していない部分の一部を、型27に被着している部分と繋がった襟状の部分として残す。そして、このセンサフィルム1の襟状の部分において、当該センサフィルム1を他の機構の所定位置に取り付けて一体の機器とする構造を採用すれば、組み立て性及び機器としての構造上の一体性が向上するとともに、他の機構とセンサフィルム1との接続部分の審美性も向上し、見栄えが良くなる。 Then, after the molding step shown in FIG. 4C is completed, the portion of the sensor film 1 that is not adhered to the mold 27 is placed on the other circular surface at an appropriate position away from the other circular surface having a small area. Cut into a circle so as to surround the mold 27, and discard the portion separated from the mold 27. That is, a part of the portion of the sensor film 1 that is not adhered to the mold 27 is left as a collar-shaped portion that is connected to the portion that is adhered to the mold 27. Then, if a structure is adopted in which the sensor film 1 is attached to a predetermined position of another mechanism to form an integrated device in the collar-shaped portion of the sensor film 1, the assembleability and the structural integrity of the device can be improved. At the same time, the aesthetics of the connection portion between the other mechanism and the sensor film 1 is also improved, and the appearance is improved.

なお、図示はしないが、センサフィルム1が型27の表面に被着した後、センサフィルム1における型27に被着しなかった外縁の部分を切除して廃棄し、センサフィルム1が被着した型27を昇降台26に再度配置し、今度は加飾部12を加熱手段25に向けた状態となるように加飾部12を保持手段24に保持させ、図4(a)〜図4(c)の工程を繰り返す。 Although not shown, after the sensor film 1 adhered to the surface of the mold 27, the outer edge portion of the sensor film 1 that did not adhere to the mold 27 was cut off and discarded, and the sensor film 1 adhered. The mold 27 is rearranged on the elevating table 26, and this time, the decoration portion 12 is held by the holding means 24 so that the decoration portion 12 faces the heating means 25, and FIGS. The step c) is repeated.

これにより、型27に被着されたセンサフィルム1の表面に、加飾部12が重ねて被着される。加飾部12がセンサフィルム1に被着した後、加飾部12における型27及びセンサフィルム1に被着しなかった外縁の部分を切除して廃棄すると、加飾部12が形成された型27の立体形状を有するタッチセンサTSが得られる。 As a result, the decorative portion 12 is superposed on the surface of the sensor film 1 adhered to the mold 27. After the decorative portion 12 adheres to the sensor film 1, the mold 27 in the decorative portion 12 and the outer edge portion that did not adhere to the sensor film 1 are cut off and discarded, whereby the decorative portion 12 is formed. A touch sensor TS having 27 three-dimensional shapes can be obtained.

また、上記工程では、センサフィルム1の真空成形と、加飾部12の真空成形を別々に行ったが、センサフィルム1の上に加飾部12を重ねた状態として1回の真空成形でタッチセンサTSを製造することもできる。 Further, in the above step, the sensor film 1 was vacuum-formed and the decorative portion 12 was vacuum-formed separately, but the decorative portion 12 was placed on the sensor film 1 and touched by one vacuum forming. Sensor TS can also be manufactured.

<2−3.第2実施形態について>
(第2実施形態の加熱成形装置の構成)
次に、第2実施形態におけるタッチセンサTSの製造方法について説明する。
図5に示すように、第2実施形態における加熱成形装置40は、板状部材で構成される筐体41と、筐体41の下方に配置され基台部11となる型43が略中央付近に配置された真空発生装置42と、図示しない駆動及び移動手段によってセンサフィルム1を型43に押し付ける保持手段44とで構成されている。
<2-3. About the second embodiment>
(Structure of the heat molding apparatus of the second embodiment)
Next, a method of manufacturing the touch sensor TS in the second embodiment will be described.
As shown in FIG. 5, in the heat forming apparatus 40 of the second embodiment, a housing 41 made of a plate-shaped member and a mold 43 arranged below the housing 41 and serving as a base portion 11 are substantially near the center. It is composed of a vacuum generator 42 arranged in the above and a holding means 44 for pressing the sensor film 1 against the mold 43 by a driving and moving means (not shown).

また、筐体41には、センサフィルム1を加熱するための加熱手段45が設けられている。第1実施形態では、真空中でセンサフィルム1を加熱させるため赤外線ヒータを用いたが、本実施形態では大気中において加熱するため、加熱手段45の構成として赤外線ヒータには限定されず、例えば電熱線ヒータなどセンサフィルム1が加熱可能な装置であれば使用可能となる。よって、第2実施形態では、第1実施形態と比べて加熱成形装置40の選択肢が増すことになる。 Further, the housing 41 is provided with a heating means 45 for heating the sensor film 1. In the first embodiment, an infrared heater is used to heat the sensor film 1 in a vacuum, but in the present embodiment, since the sensor film 1 is heated in the atmosphere, the configuration of the heating means 45 is not limited to the infrared heater, for example, electric power. Any device such as a heat ray heater that can heat the sensor film 1 can be used. Therefore, in the second embodiment, the options of the heat molding apparatus 40 are increased as compared with the first embodiment.

真空発生装置42は、型43が配置された表面に複数の吸引孔42aが形成され、保持手段44によりセンサフィルム1を成形位置まで移動させた後に吸引路42bから空気を吸引すると、センサフィルム1の裏面に位置する吸引孔42aから真空引きされる。これにより、センサフィルム1の表面と裏面の差圧を利用して基台部11に被着させる。 In the vacuum generator 42, a plurality of suction holes 42a are formed on the surface on which the mold 43 is arranged, and when the sensor film 1 is moved to the molding position by the holding means 44 and then air is sucked from the suction path 42b, the sensor film 1 It is evacuated from the suction hole 42a located on the back surface of the. As a result, the sensor film 1 is adhered to the base portion 11 by utilizing the differential pressure between the front surface and the back surface.

(第2実施形態の製造工程)
次に、第2実施形態におけるタッチセンサTSの製造工程を手順に沿って説明する。
図5(a)に示すように、絶縁層7が加熱手段45に面し、接着層4が型に面するように保持手段44でセンサフィルム1を保持した状態で加熱手段45を作動させ、センサフィルム1を加熱する。この加熱は大気中で行われる。
(Manufacturing process of the second embodiment)
Next, the manufacturing process of the touch sensor TS in the second embodiment will be described in accordance with the procedure.
As shown in FIG. 5A, the heating means 45 is operated with the sensor film 1 held by the holding means 44 so that the insulating layer 7 faces the heating means 45 and the adhesive layer 4 faces the mold. The sensor film 1 is heated. This heating is done in the atmosphere.

次に、図5(b)に示すように、保持手段44が所定の成形位置まで下降した後、図5(c)に示すように、均一に加熱されて全体として安定した延伸性を示すようになったセンサフィルム1を型43に押し付け、真空発生装置42を作動させて吸引を開始する。このとき、センサフィルム1の表面(絶縁層7側)が大気圧状態となり、真空発生装置42側となるセンサフィルム1の裏面(接着層4側)が減圧状態となり、その差圧により、センサフィルム1は型43に上方から押し付けられる。このため、フィルム状のセンサフィルム1は、破断などを起こすことなく安定的に延伸しながら型43の表面に被着し、型43の立体形状に沿って成形されたタッチセンサTSが作製される。 Next, as shown in FIG. 5 (b), after the holding means 44 is lowered to a predetermined molding position, as shown in FIG. 5 (c), it is uniformly heated so as to exhibit stable stretchability as a whole. The sensor film 1 is pressed against the mold 43, and the vacuum generator 42 is operated to start suction. At this time, the front surface of the sensor film 1 (insulation layer 7 side) is in an atmospheric pressure state, and the back surface of the sensor film 1 (adhesive layer 4 side), which is the vacuum generator 42 side, is in a depressurized state. 1 is pressed against the mold 43 from above. Therefore, the film-shaped sensor film 1 adheres to the surface of the mold 43 while being stably stretched without causing breakage or the like, and a touch sensor TS formed along the three-dimensional shape of the mold 43 is manufactured. ..

なお、図5では、図3で説明した例とは異なるバリエーションとして、基台部11となる型43には、逆円錐台形状の立体を採用したが、基台部及び型としては、第1実施形態と同様、三次元形状の立体的なタッチセンサTSの芯となる基台部や型の形状には制限はなく、必要に応じた任意の形状の基台部及び型が採用可能である。 In FIG. 5, as a variation different from the example described in FIG. 3, the inverted truncated cone-shaped solid is adopted for the mold 43 to be the base portion 11, but the base portion and the mold are the first. Similar to the embodiment, there is no limitation on the shape of the base portion and the mold which are the cores of the three-dimensional touch sensor TS having a three-dimensional shape, and the base portion and the mold having an arbitrary shape can be adopted as required. ..

また、図示はしないが、第1実施形態と同様に、センサフィルム1が型43の表面に被着した後、センサフィルム1のうち、型43に被着しなかった外縁の部分を切除して廃棄し、センサフィルム1が被着した型43を真空発生装置42に再度配置し、今度は加飾部12を加熱手段45に向けた状態となるように、加飾部12を保持手段44に保持させ、図5(a)〜図5(c)の工程を繰り返す。 Further, although not shown, as in the first embodiment, after the sensor film 1 adheres to the surface of the mold 43, the outer edge portion of the sensor film 1 that does not adhere to the mold 43 is cut off. The mold 43 to which the sensor film 1 was attached was discarded, and the mold 43 on which the sensor film 1 was attached was repositioned on the vacuum generator 42, and this time, the decoration portion 12 was placed on the holding means 44 so that the decoration portion 12 was directed to the heating means 45. Hold it and repeat the steps of FIGS. 5 (a) to 5 (c).

これにより、型43に被着、接着されたセンサフィルム1の表面に、加飾部12が重ねて被着、接着される。加飾部12がセンサフィルム1に被着した後、加飾部12のうち、型43及びセンサフィルム1に被着しなかった外縁の部分を切除して廃棄すると、加飾部12が形成された型43の立体形状を有するタッチセンサTSが得られる。 As a result, the decorative portion 12 is overlapped and adhered to the surface of the sensor film 1 which is adhered and adhered to the mold 43. After the decorative portion 12 adheres to the sensor film 1, the decorative portion 12 is formed by cutting and discarding the outer edge portions of the decorative portion 12 that did not adhere to the mold 43 and the sensor film 1. A touch sensor TS having a three-dimensional shape of a mold 43 can be obtained.

また、上記工程では、センサフィルム1の真空成形と、加飾部12の真空成形を別々に行ったが、センサフィルム1の上に加飾部12を重ねた状態として1回の真空成形でタッチセンサTSを製造することもできる。 Further, in the above step, the sensor film 1 was vacuum-formed and the decorative portion 12 was vacuum-formed separately, but the decorative portion 12 was placed on the sensor film 1 and touched by one vacuum forming. Sensor TS can also be manufactured.

[3.作用・効果]
以上説明したように、上述したセンサフィルム1は、基材フィルム2上に、導電性材料と熱可塑性樹脂を練り込んだ電極材料で電極部3を形成し、この電極部3の絶縁性を確保するように熱可塑性樹脂からなる絶縁層7を形成し、基材フィルム2と電極部3や絶縁層7を構成する熱可塑性樹脂との組み合わせは、電極部3や絶縁層7に使用する熱可塑性樹脂のガラス転移点Tg2,Tg3が基材フィルム2のガラス転移点Tg1よりも低くなるように各材料が選択されている。
[3. Action / effect]
As described above, in the above-mentioned sensor film 1, the electrode portion 3 is formed of the electrode material in which the conductive material and the thermoplastic resin are kneaded on the base film 2, and the insulating property of the electrode portion 3 is ensured. The insulating layer 7 made of a thermoplastic resin is formed so as to be formed, and the combination of the base film 2 and the thermoplastic resin constituting the electrode portion 3 and the insulating layer 7 is the thermoplastic used for the electrode portion 3 and the insulating layer 7. Each material is selected so that the glass transition points Tg2 and Tg3 of the resin are lower than the glass transition points Tg1 of the base film 2.

これにより、センサフィルム1を立体成形する際に、基材フィルム2が延伸可能な温度に加熱される前に電極部3や絶縁層7が軟化して延伸可能な状態となっているため、基材フィルム2の延伸に追従して電極部3が部分断線することなく立体成形させることができる。 As a result, when the sensor film 1 is three-dimensionally molded, the electrode portion 3 and the insulating layer 7 are softened and stretchable before the base film 2 is heated to a stretchable temperature. Following the stretching of the material film 2, the electrode portion 3 can be three-dimensionally formed without partial disconnection.

また、電極部3や絶縁層7に使用する熱可塑性樹脂のガラス転移点Tg2,Tg3が基材フィルム2のガラス転移点Tg1よりも低くなるように各材料が選択されているため、加熱延伸する際に、基材フィルム2よりも先に絶縁層7が軟化し、基材フィルム2と絶縁層7との間に形成される電極部3が基材フィルム2及び絶縁層7の延伸に引きずられるように延伸する。このため、電極部3に加わる引張力が均一となり、電極部3における各電極を形成する導電性材料の粒子同士が導通状態を維持したまま断線せずに延伸させることができる。 Further, since each material is selected so that the glass transition points Tg2 and Tg3 of the thermoplastic resin used for the electrode portion 3 and the insulating layer 7 are lower than the glass transition points Tg1 of the base film 2, heat stretching is performed. At that time, the insulating layer 7 is softened before the base film 2, and the electrode portion 3 formed between the base film 2 and the insulating layer 7 is dragged by the stretching of the base film 2 and the insulating layer 7. Stretch as follows. Therefore, the tensile force applied to the electrode portion 3 becomes uniform, and the particles of the conductive material forming each electrode in the electrode portion 3 can be stretched without breaking while maintaining the conductive state.

1…センサフィルム
2…基材フィルム
3…電極部
4…接着層
5…X電極
6…Y電極
7…絶縁層
8(8X,8Y)…引き出し配線
9…引き出し部
10…加飾フィルム
11…基台部
12…加飾部
20…第1実施形態の加熱成形装置
40…第2実施形態の加熱成形装置
TS…タッチセンサ
1 ... Sensor film 2 ... Base film 3 ... Electrode part 4 ... Adhesive layer 5 ... X electrode 6 ... Y electrode
7 ... Insulation layer 8 (8X, 8Y) ... Drawer wiring 9 ... Drawer part 10 ... Decorative film 11 ... Base part 12 ... Decorative part 20 ... Heat molding device of the first embodiment 40 ... Heating of the second embodiment Molding device TS ... Touch sensor

Claims (4)

熱により延伸する基材フィルムと、
導電性材料に熱可塑性樹脂が混練された電極材料で前記基材フィルムの少なくとも一面に形成される電極部と、
前記電極部を覆うように形成される絶縁性樹脂材料からなる絶縁層と、
を備え、
前記電極部に練り込まれる熱可塑性樹脂のガラス転移点及び前記絶縁層となる絶縁性樹脂材料のガラス転移点は、前記基材フィルムのガラス転移点よりも低いことを特徴とするセンサフィルム。
A base film that is stretched by heat and
An electrode portion formed on at least one surface of the base film with an electrode material in which a thermoplastic resin is kneaded with a conductive material, and
An insulating layer made of an insulating resin material formed so as to cover the electrode portion,
With
A sensor film characterized in that the glass transition point of the thermoplastic resin kneaded into the electrode portion and the glass transition point of the insulating resin material serving as the insulating layer are lower than the glass transition point of the base film.
前記熱可塑性樹脂と前記絶縁性樹脂材料の各ガラス転移点が前記基材フィルムのガラス転移点よりも10℃以上低いことを特徴とする請求項1記載のセンサフィルム。 The sensor film according to claim 1, wherein each glass transition point of the thermoplastic resin and the insulating resin material is lower than the glass transition point of the base film by 10 ° C. or more. 請求項1記載のセンサフィルムを加熱して所定形状に立体成形してなることを特徴とするタッチセンサ。 A touch sensor according to claim 1, wherein the sensor film is heated and three-dimensionally formed into a predetermined shape. 請求項1記載のセンサフィルムを加熱するステップと、
前記センサフィルムの表面側と裏面側に差圧を持たせた状態で加熱により延伸した基材フィルムを基台部に押し付けて立体成形するステップと、
を含むことを特徴とするタッチセンサの製造方法。
The step of heating the sensor film according to claim 1 and
A step of three-dimensional molding by pressing a base film stretched by heating with a differential pressure between the front surface side and the back surface side of the sensor film against a base portion.
A method for manufacturing a touch sensor, which comprises.
JP2018159548A 2018-08-28 2018-08-28 Sensor film, touch sensor and manufacturing method of the sensor Active JP6796116B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018159548A JP6796116B2 (en) 2018-08-28 2018-08-28 Sensor film, touch sensor and manufacturing method of the sensor
TW108130614A TWI711956B (en) 2018-08-28 2019-08-27 Sensor film, touch sensor and manufacturing method of the sensor
CN201910801666.XA CN110865729A (en) 2018-08-28 2019-08-28 Sensor film, touch sensor, and method for manufacturing touch sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018159548A JP6796116B2 (en) 2018-08-28 2018-08-28 Sensor film, touch sensor and manufacturing method of the sensor

Publications (2)

Publication Number Publication Date
JP2020035088A JP2020035088A (en) 2020-03-05
JP6796116B2 true JP6796116B2 (en) 2020-12-02

Family

ID=69652373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018159548A Active JP6796116B2 (en) 2018-08-28 2018-08-28 Sensor film, touch sensor and manufacturing method of the sensor

Country Status (3)

Country Link
JP (1) JP6796116B2 (en)
CN (1) CN110865729A (en)
TW (1) TWI711956B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114962995B (en) * 2021-02-26 2023-12-29 新启时代(北京)材料科技有限公司 Prefabricated sensor film layer, wound gas cylinder health monitoring system and preparation method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4289569B2 (en) * 1998-07-10 2009-07-01 大日本印刷株式会社 Sheet for molding and molding method using the same
CN101842854B (en) * 2007-10-31 2013-10-30 住友金属矿山株式会社 Flexible transparent conductive film and flexible functional element using same
CN101924816B (en) * 2009-06-12 2013-03-20 清华大学 Flexible mobile phone
JP2012033466A (en) * 2010-07-02 2012-02-16 Fujifilm Corp Conductive layer transfer material, and touch panel
EP2725587A4 (en) * 2011-06-24 2015-07-08 Kuraray Co Method for forming conductive film, conductive film, insulation method, and insulation film
KR101891374B1 (en) * 2011-08-08 2018-08-24 제이엑스티지 에네루기 가부시키가이샤 Transparent film, transparent conductive laminate, and touch panel, solar cell and display device, using same
JP5850804B2 (en) * 2012-06-19 2016-02-03 日本写真印刷株式会社 Touch panel, touch panel manufacturing method
KR102119603B1 (en) * 2013-09-06 2020-06-08 엘지이노텍 주식회사 Touch window and display with the same
JP2015143754A (en) * 2014-01-31 2015-08-06 富士フイルム株式会社 Transparent film, manufacturing method therefor, transparent conductive film, touch panel, anti-reflection film, polarizing plate, and display device
EP3223120B1 (en) * 2014-11-20 2020-09-30 Dongwoo Fine-Chem Co., Ltd. Film touch sensor and manufacturing method therefor
JP6027633B2 (en) * 2015-01-13 2016-11-16 日本写真印刷株式会社 Method for manufacturing touch input sensor and photosensitive conductive film
JP2016132679A (en) * 2015-01-15 2016-07-25 ナガセケムテックス株式会社 Conductive layer forming composition, conductive laminate, electromagnetic wave shield member and method for producing conductive laminate having three-dimensional shape
US20180074405A1 (en) * 2015-02-20 2018-03-15 Hitachi Chemical Company, Ltd. Transfer-type photosensitive refractive index adjustment film, method for forming refractive index adjustment pattern, and electronic component
JP6672953B2 (en) * 2016-03-29 2020-03-25 味の素株式会社 Resin sheet
WO2018155106A1 (en) * 2017-02-22 2018-08-30 富士フイルム株式会社 Conductive film, conductive film having three-dimensional shape, method for producing same, method for producing stretched film, and touch sensor film

Also Published As

Publication number Publication date
TW202016716A (en) 2020-05-01
JP2020035088A (en) 2020-03-05
TWI711956B (en) 2020-12-01
CN110865729A (en) 2020-03-06

Similar Documents

Publication Publication Date Title
US9501102B2 (en) Method of manufacturing surface panel
JP2016207200A (en) Touch panel and manufacturing method of the same
US10115543B2 (en) Keyboard cover and electronic apparatus
KR102102314B1 (en) Curved Cover Plate and Curved Display Device and method of manufacturing the same
JP5225178B2 (en) Capacitance sensor and manufacturing method thereof
CN103189181A (en) Film-forming apparatus and film-forming method
JP6796116B2 (en) Sensor film, touch sensor and manufacturing method of the sensor
WO2019225140A1 (en) Foam molded article and manufacturing method therefor
JPWO2013018698A1 (en) Capacitive touch panel assembly manufacturing method and display device including the same
JP6672230B2 (en) Touch panel and manufacturing method thereof
WO2014188636A1 (en) Method for manufacturing display apparatus, display apparatus, and film device
US10725594B2 (en) Touch panel and manufacturing method thereof
TW201134635A (en) Process for producing a thermoformed film component from a thermoplastic
JP2001084863A (en) Sheet-shaped key top
JP2012003779A (en) Electrostatic capacity sensor
US9855731B2 (en) Resin-based panel with encapsulated high-resolution image layer and methods of making same
JP6222207B2 (en) Method for manufacturing curved touch panel
JP6518639B2 (en) Touch panel and method of manufacturing touch panel
JP2015003939A (en) Method of molding thermoplastic composite material
CN203019689U (en) Plastic surface printing apparatus
JP6736168B2 (en) How to make a display board
JPH0740450B2 (en) Keyboard board and manufacturing method thereof
JP6905868B2 (en) Pre-molding method of the object to be molded and pre-molding device for the object to be molded
KR20160093128A (en) Bending apparatus of glass and bending mehtod of glass using the same
JP2013132842A (en) Method of manufacturing synthetic resin sheet with microlens, and synthetic resin molded article using synthetic resin sheet manufactured by the manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201113

R150 Certificate of patent or registration of utility model

Ref document number: 6796116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150