JP6794940B2 - Tetrahydropyran and methods for purifying tetrahydropyran - Google Patents
Tetrahydropyran and methods for purifying tetrahydropyran Download PDFInfo
- Publication number
- JP6794940B2 JP6794940B2 JP2017125266A JP2017125266A JP6794940B2 JP 6794940 B2 JP6794940 B2 JP 6794940B2 JP 2017125266 A JP2017125266 A JP 2017125266A JP 2017125266 A JP2017125266 A JP 2017125266A JP 6794940 B2 JP6794940 B2 JP 6794940B2
- Authority
- JP
- Japan
- Prior art keywords
- ppm
- dhp
- thp
- acid
- purification step
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 title claims description 85
- 238000000034 method Methods 0.000 title claims description 23
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 44
- 239000007864 aqueous solution Substances 0.000 claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 239000003377 acid catalyst Substances 0.000 claims description 14
- 238000003756 stirring Methods 0.000 claims description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 239000011973 solid acid Substances 0.000 claims description 8
- 239000000243 solution Substances 0.000 claims description 8
- 239000011259 mixed solution Substances 0.000 claims description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 229910017604 nitric acid Inorganic materials 0.000 claims description 5
- 239000003456 ion exchange resin Substances 0.000 claims description 4
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000002734 clay mineral Substances 0.000 claims description 3
- BUDQDWGNQVEFAC-UHFFFAOYSA-N Dihydropyran Chemical compound C1COC=CC1 BUDQDWGNQVEFAC-UHFFFAOYSA-N 0.000 claims description 2
- 239000011260 aqueous acid Substances 0.000 claims description 2
- 239000010457 zeolite Substances 0.000 claims description 2
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 claims 1
- 229910021536 Zeolite Inorganic materials 0.000 claims 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims 1
- 229910001510 metal chloride Inorganic materials 0.000 claims 1
- 238000000746 purification Methods 0.000 description 71
- CNRGMQRNYAIBTN-UHFFFAOYSA-N 5-hydroxypentanal Chemical compound OCCCCC=O CNRGMQRNYAIBTN-UHFFFAOYSA-N 0.000 description 43
- 239000007789 gas Substances 0.000 description 18
- 239000012535 impurity Substances 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 12
- 239000002994 raw material Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- 230000001603 reducing effect Effects 0.000 description 9
- 238000004821 distillation Methods 0.000 description 8
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- -1 alkyl vinyl ether Chemical compound 0.000 description 6
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 6
- 238000006297 dehydration reaction Methods 0.000 description 6
- 238000009835 boiling Methods 0.000 description 5
- 238000007865 diluting Methods 0.000 description 4
- 238000004817 gas chromatography Methods 0.000 description 4
- CELWCAITJAEQNL-UHFFFAOYSA-N oxan-2-ol Chemical compound OC1CCCCO1 CELWCAITJAEQNL-UHFFFAOYSA-N 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000013517 stratification Methods 0.000 description 4
- 239000002841 Lewis acid Substances 0.000 description 3
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 150000007517 lewis acids Chemical class 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 3
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000007848 Bronsted acid Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000002433 hydrophilic molecules Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 238000001577 simple distillation Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Pyrane Compounds (AREA)
Description
本発明は、3,4−ジヒドロ−2H−ピラン(以下、「DHP」ともいう)含有量の少ないテトラヒドロピラン(以下、「THP」ともいう)の製造方法及び該製造方法で製造されるTHPに関する。本発明により製造されたTHPは、溶剤として有用であり、不純物のDHP及び5−ヒドロキシペンタナール(以下、「5HP」ともいう)が低減されているために、THPを用いる様々な反応において収率向上や不純物低減などの効果が期待される。 The present invention relates to a method for producing tetrahydropyran (hereinafter, also referred to as "THP") having a low content of 3,4-dihydro-2H-pyran (hereinafter, also referred to as "DHP") and THP produced by the production method. .. The THP produced by the present invention is useful as a solvent, and since the impurities DHP and 5-hydroxypentanal (hereinafter, also referred to as "5HP") are reduced, the yield in various reactions using THP is achieved. It is expected to have effects such as improvement and reduction of impurities.
THPは、類似溶媒のTHF(テトラヒドロフラン)よりも過酸化物が生成しにくい特長があり、安全面からTHF溶媒の代替溶媒として用いられることが期待される(非特許文献1、2)。またTHPは各種ルイス酸に対する安定性も高い。THPは各種ルイス酸を溶解させることができ、塩化アルミニウムはTHPに溶解して、均一溶液となることが報告されている(非特許文献3)。 THP has a feature that peroxides are less likely to be produced than the similar solvent THF (tetrahydrofuran), and is expected to be used as a substitute solvent for the THF solvent from the viewpoint of safety (Non-Patent Documents 1 and 2). THP is also highly stable against various Lewis acids. It has been reported that THP can dissolve various Lewis acids, and aluminum chloride dissolves in THP to form a uniform solution (Non-Patent Document 3).
DHPの水素添加反応によるTHP合成は1940年代には報告がなされている(非特許文献4、5、6)。ラネーニッケル触媒を用いた液相反応で、ほぼ定量的にTHPが得られるとの記載がある。しかしながら、DHPを原料または中間体とするプロセスでは一般的に、得られたTHPに原料や中間体であるDHPが含まれることを避けることが出来ない。DHPの沸点は86℃であり、THPの沸点88℃と近いため、蒸留により分離することは困難である。 THP synthesis by hydrogenation reaction of DHP was reported in the 1940s (Non-Patent Documents 4, 5 and 6). There is a description that THP can be obtained almost quantitatively by a liquid phase reaction using a Raney nickel catalyst. However, in a process using DHP as a raw material or an intermediate, it is generally unavoidable that the obtained THP contains the DHP as a raw material or an intermediate. Since the boiling point of DHP is 86 ° C., which is close to the boiling point of THP of 88 ° C., it is difficult to separate by distillation.
THFA(テトラヒドロフルフリルアルコール)を原料に用いた、気相反応によるTHP合成法が近年に報告されている(非特許文献7)。パラジウム担持触媒によりTHPが23.0%得られている。DHPを中間体とする反応経路が推定されており、DHPも同時に16.7%得られている。
THPは1,5−ペンタンジオールの脱水縮合反応によっても製造され、酸触媒を用いた液相反応系の報告が多数ある。DHPを経由しない反応経路であるため得られたTHP組成物にDHPが含有されないことが想定される。一方で、原料の1,5−ペンタンジオールが比較的高価であるためにコスト面の問題を有している。(特許文献1)
A method for synthesizing THP by a gas phase reaction using THFA (tetrahydrofurfuryl alcohol) as a raw material has been reported in recent years (Non-Patent Document 7). 23.0% of THP is obtained by the palladium-supported catalyst. A reaction pathway using DHP as an intermediate has been estimated, and 16.7% of DHP was obtained at the same time.
THP is also produced by the dehydration condensation reaction of 1,5-pentanediol, and there are many reports of liquid phase reaction systems using an acid catalyst. It is assumed that the obtained THP composition does not contain DHP because the reaction route does not go through DHP. On the other hand, since the raw material 1,5-pentanediol is relatively expensive, there is a problem in terms of cost. (Patent Document 1)
アクロレインとアルキルビニルエーテルにより3,4−ジヒドロ−2−アルコキシ−2H−ピラン化合物あるいはテトラヒドロ−2−アルコキシ−2H−ピランを製造し、THPを製造する経路も報告されている(特許文献2)。 A route for producing 3,4-dihydro-2-alkoxy-2H-pyran compound or tetrahydro-2-alkoxy-2H-pyran with acrolein and alkyl vinyl ether to produce THP has also been reported (Patent Document 2).
DHPがTHP中に不純物成分として存在することは、多くの化学反応において好ましくない。特に目標収率・反応条件に厳しい医薬品・有機機能薬品の製造プロセスにおいては、不純物DHPにより収率低下の懸念がある。DHPは水酸基の保護試薬などに利用されるため、用いた基質のアルコール基と反応してしまう可能性が高い。THPは溶媒として利用されるため、不純物DHPの濃度はより重要となる。これは、溶媒として用いる際には不純物DHPも多量に系中に入ることとなり、DHPと基質が選択的に反応してしまう場合に、より影響が大きくなるためである。 The presence of DHP as an impurity component in THP is not desirable in many chemical reactions. Especially in the manufacturing process of pharmaceuticals and organic functional chemicals, which have strict target yields and reaction conditions, there is a concern that the yield may decrease due to the impurity DHP. Since DHP is used as a protective reagent for hydroxyl groups, there is a high possibility that it will react with the alcohol group of the substrate used. Since THP is used as a solvent, the concentration of impurity DHP becomes more important. This is because when used as a solvent, a large amount of impurity DHP also enters the system, and when the DHP and the substrate selectively react with each other, the effect becomes greater.
5−ヒドロキシペンタナール(5HP)も、THP中に不純物成分として存在する。DHP同様、THP中の5HPの存在は、多くの化学反応において好ましくない。5HPはDHPへの加水反応により生成することが想定され、DHPと同様にアルコールと反応するとされている。5HPは環状ヘミアセタールである2−ヒドロキシテトラヒドロピランと平衡にあり、大半は2−ヒドロキシテトラヒドロピランとして存在していると想定される(以下、本明細書では、環状ヘミアセタールも併せて5HPとして扱う)。5HPは沸点がTHPと比較して高く、蒸留による分離が可能である。しかしながらその場合には、5HPからの脱水反応によるDHP生成反応が一部進行する。そのため、DHP含有量をより小さく維持するためには、蒸留前に5HP含有量を低減しておくことが望ましい。 5-Hydroxypentanal (5HP) is also present as an impurity component in THP. Like DHP, the presence of 5HP in THP is undesirable in many chemical reactions. It is assumed that 5HP is produced by a water reaction to DHP, and is said to react with alcohol in the same manner as DHP. It is assumed that 5HP is in equilibrium with 2-hydroxytetrahydropyran, which is a cyclic hemiacetal, and most of them exist as 2-hydroxytetrahydropyran (hereinafter, cyclic hemiacetal is also treated as 5HP in the present specification). ). 5HP has a higher boiling point than THP and can be separated by distillation. However, in that case, the DHP production reaction due to the dehydration reaction from 5HP partially proceeds. Therefore, in order to keep the DHP content lower, it is desirable to reduce the 5HP content before distillation.
従来からあるDHPを原料または中間体とするTHP製造プロセスでは、反応生成物のTHPから未反応のDHP残分を十分に分離できず、高純度なTHPを得ることができていなかった。特許文献1に記載の、1,5−ペンタンジオールの脱水環化反応により製造されるTHPは、原理的にDHPを含まないため不純物DHPの問題は無いが、前述のようにコスト面で課題がある。そこで、本発明者らは、DHPを原料または中間体とするTHP製造プロセスにおいて、本発明の精製方法により、不純物であるDHPの含有量を従来よりも低減したTHPを、安価で簡便に精製できる方法を見出した。 In the conventional THP production process using DHP as a raw material or an intermediate, the unreacted DHP residue could not be sufficiently separated from the THP of the reaction product, and high-purity THP could not be obtained. The THP produced by the dehydration cyclization reaction of 1,5-pentanediol described in Patent Document 1 does not contain DHP in principle, so that there is no problem of impurity DHP, but as described above, there is a problem in terms of cost. is there. Therefore, in the THP production process using DHP as a raw material or an intermediate, the present inventors can purify THP in which the content of DHP as an impurity is reduced as compared with the conventional case by the purification method of the present invention at low cost and easily. I found a way.
すなわち、本発明の方法は、DHPを原料または中間体とするTHP製造プロセスにおける、反応生成物のTHPを、酸触媒、または酸触媒および水を用いて精製処理することにより、THP中のDHPを低減する方法である。これまでにTHP中のDHPに着目し、酸処理によりDHPの低減を試みた報告はなされていない。 That is, in the method of the present invention, the THP of the reaction product in the THP production process using DHP as a raw material or an intermediate is purified using an acid catalyst or an acid catalyst and water to obtain DHP in the THP. It is a method of reducing. So far, there has been no report focusing on DHP in THP and attempting to reduce DHP by acid treatment.
THPは水に対する溶解度が大きいため、一般的には水溶液との混合を精製工程に含むことは考えない。しかしながら、水溶液と混合して、酸処理後に分離した油層中のTHPは水を含むが、続いて蒸留工程を行うことにより、共沸により容易にTHPから水を留去することが可能である。このように、本発明では、通常は水に対する溶解度の大きい有機溶媒の精製方法としては選択されない水溶液との混合・接触を行うことより、安価に簡便に高品位なTHPを提供可能となった。 Since THP has high solubility in water, it is generally not considered to include mixing with an aqueous solution in the purification step. However, although the THP in the oil layer separated after the acid treatment by mixing with the aqueous solution contains water, it is possible to easily distill off the water from the THP by azeotropic boiling by performing a subsequent distillation step. As described above, in the present invention, it has become possible to provide high-quality THP inexpensively and easily by mixing and contacting with an aqueous solution which is not usually selected as a method for purifying an organic solvent having a high solubility in water.
さらに、本発明においては、脱水反応によりDHPと成る5HPを同時に除去・分離することによって、高品位なTHPを提供可能である。 Further, in the present invention, high-quality THP can be provided by simultaneously removing and separating 5HP which becomes DHP by a dehydration reaction.
すなわち、本発明の目的は、DHPを原料・中間体とする従来公知の安価で簡便な製造プロセスにより製造されたTHPに存在していた不純物問題を解決し、より付加価値の高いTHPを提供することである。本発明により、安価で高品位なTHPを提供することが可能となる。 That is, an object of the present invention is to solve the problem of impurities existing in a THP manufactured by a conventionally known inexpensive and simple manufacturing process using DHP as a raw material / intermediate, and to provide a THP with higher added value. That is. INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide an inexpensive and high-quality THP.
すなわち、本発明の要旨は、酸触媒、または酸触媒および水とTHPとを接触させることによる、不純物DHP含有量が少ないTHPの精製方法である。 That is, the gist of the present invention is a method for purifying THP having a low impurity DHP content by contacting the acid catalyst or the acid catalyst with water and THP.
DHPを原料または中間体とする、従来公知の安価で簡便な製造プロセスにより製造されたTHPには、特に不純物DHPの課題が存在していた。本発明の方法によれば、この課題を解決し、より付加価値の高いTHPを提供することができる。なお、本発明は、酸触媒として、精製したTHPと容易に分離可能である安価な酸水溶液または固体酸を用いるものであり、有機物を用いるような精製手法と比較して、対コンタミネーションやコストの面から好ましい。 The THP produced by a conventionally known inexpensive and simple production process using DHP as a raw material or an intermediate has a problem of impurity DHP in particular. According to the method of the present invention, this problem can be solved and THP with higher added value can be provided. In the present invention, an inexpensive acid aqueous solution or solid acid that can be easily separated from the purified THP is used as the acid catalyst, and the contamination and cost are compared with the purification method using an organic substance. It is preferable from the viewpoint of.
以下に、本発明の具体的内容について詳しく説明する。
本発明は、不純物DHP含有量の少ないTHPの精製方法及び該精製方法で製造されたTHPである。本発明の方法による不純物DHP含有量の少ないTHPの精製は、酸触媒によるTHPの処理により実施される。
The specific contents of the present invention will be described in detail below.
The present invention is a method for purifying THP having a low impurity DHP content and a THP produced by the purification method. Purification of THP having a low impurity DHP content by the method of the present invention is carried out by treatment of THP with an acid catalyst.
本発明でのDHP低減時に使用される未精製THPは、従来公知の方法で製造することができる。例えば、THFAの脱水反応により製造されたDHPを用いた液相水素添加反応により製造することができる。DHPを原料または中間体とした製造プロセスを想定しているが、これに限定されるものではない。 The unpurified THP used at the time of DHP reduction in the present invention can be produced by a conventionally known method. For example, it can be produced by a liquid phase hydrogenation reaction using DHP produced by a dehydration reaction of THFA. A manufacturing process using DHP as a raw material or an intermediate is assumed, but the manufacturing process is not limited to this.
本発明の精製方法において使用することができる酸触媒としては、各種ブレンステッド酸及びルイス酸を酸水溶液として用いることができる。特に塩酸、硫酸、硝酸の他、亜硫酸水素ナトリウム、りん酸、アルカンースルホン酸、塩化鉄又はこれらの混合物を酸水溶液として用いることができる。分離の面からTHPに溶解しにくい無機酸であることが好ましいが、これに限定されるものではない。 As the acid catalyst that can be used in the purification method of the present invention, various Bronsted acids and Lewis acids can be used as the acid aqueous solution. In particular, in addition to hydrochloric acid, sulfuric acid and nitric acid, sodium bisulfite, phosphoric acid, alkane-sulfonic acid, iron chloride or a mixture thereof can be used as the acid aqueous solution. It is preferable, but not limited to, an inorganic acid that is difficult to dissolve in THP from the viewpoint of separation.
また、本発明に用いる酸水溶液は任意の濃度で用いることができる。好ましくは0.1〜35%とすることがよい。0.1%未満では、不純物のDHPの除去に時間がかかることが想定され好ましくない。また、酸濃度が大きい場合、THPと混和するため好ましくない。さらに好ましくは0.1〜5%の範囲である。 Moreover, the acid aqueous solution used in the present invention can be used at an arbitrary concentration. It is preferably 0.1 to 35%. If it is less than 0.1%, it is assumed that it takes time to remove the DHP of impurities, which is not preferable. Further, when the acid concentration is high, it is miscible with THP, which is not preferable. More preferably, it is in the range of 0.1 to 5%.
また酸触媒として、固体酸を用いることも可能である。本発明の精製方法において使用することができる固体酸としては、塩化アルミニウム、イオン交換樹脂、粘土鉱物、ゼオライトが挙げられる。特に好ましい固体酸は、イオン交換樹脂である。固体酸を用いる場合は、水と一緒に用いる。 It is also possible to use a solid acid as the acid catalyst. Examples of the solid acid that can be used in the purification method of the present invention include aluminum chloride, ion exchange resins, clay minerals, and zeolites. A particularly preferred solid acid is an ion exchange resin. If a solid acid is used, use it with water.
本発明の精製方法を実施する温度範囲には、特に制限はなく、様々な温度で行うことができる。温度により効果が十分に出る反応時間が異なるが、DHP低減反応は室温から50℃の範囲においては十分に進行する。通常室温から50℃程度の範囲で行うのが好ましい。 The temperature range in which the purification method of the present invention is carried out is not particularly limited, and can be carried out at various temperatures. The reaction time at which the effect is sufficiently obtained differs depending on the temperature, but the DHP reduction reaction proceeds sufficiently in the range of room temperature to 50 ° C. Usually, it is preferably carried out in the range of about room temperature to about 50 ° C.
本発明の精製方法を実施する反応時間に特に制限はなく、様々な反応時間で行うことができる。例えば、反応時間は、対象となる未精製THPの量、添加する酸水溶液の濃度及び量に応じて、様々に変わることができる。 The reaction time for carrying out the purification method of the present invention is not particularly limited, and the reaction time can be various. For example, the reaction time can be varied depending on the amount of unpurified THP of interest and the concentration and amount of the aqueous acid solution to be added.
DHP低減のメカニズムとしては、DHPが酸触媒および水との反応により開環し、5HPなどの、DHPと比較して高沸点及び親水性化合物へと変換されると推定している。変換後の化合物は、その特性から水層へと主に分配し、液液分離によってTHPから除かれる。変換後の化合物とDHPとは本発明の精製方法の系においては平衡にあると考えられ、十分な時間反応を行っても、DHP含有量はそれ以上低減されない。したがって、残存したDHPをさらに低減するためには、精製の程度に応じて精製工程を複数回行うことが必要となる場合がある。5HPは環状ヘミアセタールである2−ヒドロキシテトラヒドロピランと平衡状態にあり、大半は2−ヒドロキシテトラヒドロピランとして存在していると想定されるが、本特許では合わせて5HPとして扱う。5HPは、上記液液分離の他、蒸留や、亜硫酸水素ナトリウムとの反応により除去が可能である。蒸留による分離の場合には、5HPからの脱水反応によりDHPが生成するため、DHP含有量をより小さく維持するためには、蒸留前に5HP含有量を低減しておくことが望ましい。DHP含有量の低減に関する、従来技術において5HP及び平衡状態にある環状ヘミアセタール含有量を低減することに関する文献はない。 As a mechanism for reducing DHP, it is presumed that DHP is ring-opened by a reaction with an acid catalyst and water, and is converted into a high boiling point and hydrophilic compound as compared with DHP, such as 5HP. Due to its properties, the converted compound is mainly distributed to the aqueous layer and removed from THP by liquid-liquid separation. The converted compound and DHP are considered to be in equilibrium in the system of the purification method of the present invention, and even if the reaction is carried out for a sufficient time, the DHP content is not further reduced. Therefore, in order to further reduce the remaining DHP, it may be necessary to perform the purification step a plurality of times depending on the degree of purification. 5HP is in equilibrium with 2-hydroxytetrahydropyran, which is a cyclic hemiacetal, and it is assumed that most of them exist as 2-hydroxytetrahydropyran, but in this patent, they are treated as 5HP in total. 5HP can be removed by distillation or reaction with sodium bisulfite in addition to the above liquid-liquid separation. In the case of separation by distillation, DHP is produced by a dehydration reaction from 5HP. Therefore, in order to keep the DHP content lower, it is desirable to reduce the 5HP content before distillation. There is no literature on reducing the DHP content in the prior art for reducing the 5HP and equilibrium cyclic hemiacetal content.
以下、本発明を実施例(発明例)及び比較例に基づいて説明するが、本発明がこれらにより限定されて解釈されるものではない。実施例及び比較例における各成分の分析はガスクロマトグラフ(株式会社島津製作所製、製品名GC−2014)を用い、分析カラムとしてジーエルサイエンス株式会社製TC―WAX(長さ30m、直径0.53mm、膜厚1.00μm)を用いた。実施例および比較例の結果を表1、表2に示す。 Hereinafter, the present invention will be described based on Examples (Invention Examples) and Comparative Examples, but the present invention is not construed as being limited thereto. A gas chromatograph (manufactured by Shimadzu Corporation, product name GC-2014) was used for analysis of each component in Examples and Comparative Examples, and TC-WAX manufactured by GL Sciences Co., Ltd. (length 30 m, diameter 0.53 mm) was used as an analysis column. A film thickness of 1.00 μm) was used. The results of Examples and Comparative Examples are shown in Tables 1 and 2.
THP(東京化成工業株式会社製)を蒸留して得られたTHPを以下、「未精製THP(1)」と呼ぶ。未精製THP(1)では、ガスクロマトグラム上における面積比率で、DHP成分が209ppm、5HP成分が22ppm検出された。また、DHPを原料・中間体とする従来公知の製造プロセスにより製造された未精製のTHPを想定して、この未精製THP(1)とDHP(東京化成工業株式会社製)を重量比でおよそ99.8:0.2となるように混合して得られたTHPを以下、「未精製THP(2)」と呼ぶ。未精製THP(2)では、ガスクロマトグラム上における面積比率で、DHPが2028ppm、5HPが3ppm検出された。 The THP obtained by distilling THP (manufactured by Tokyo Chemical Industry Co., Ltd.) is hereinafter referred to as "unrefined THP (1)". In the unpurified THP (1), the DHP component was detected at 209 ppm and the 5HP component was detected at 22 ppm in terms of the area ratio on the gas chromatogram. Further, assuming an unrefined THP produced by a conventionally known manufacturing process using DHP as a raw material / intermediate, the unrefined THP (1) and DHP (manufactured by Tokyo Chemical Industry Co., Ltd.) are approximately combined by weight. The THP obtained by mixing so as to have a ratio of 99.8: 0.2 is hereinafter referred to as “unpurified THP (2)”. In the unpurified THP (2), 2028 ppm of DHP and 3 ppm of 5HP were detected in the area ratio on the gas chromatogram.
[実施例1]
精製工程1
容量200mLのガラス製四ツ口フラスコに、未精製THP(1)160mLと、4.0%塩酸水溶液40mLを入れ混合した。4.0%塩酸水溶液は、35%塩酸(日本軽金属株式会社製)を希釈することにより調製した。この混合物を40℃から50℃で60分間、攪拌翼を用いて300rpmで撹拌した。
撹拌後の混合液を静置し、分層後に、上層の油層と下層の水層とを分離した。この段階での油層中のDHP量及び5HP量を測定するために、ガスクロマトグラフによる油層の分析を行った。ガスクロマトグラム上における面積比率で、DHPは6ppm、5HPは130ppm検出された。
[Example 1]
Purification process 1
160 mL of unpurified THP (1) and 40 mL of a 4.0% aqueous hydrochloric acid solution were placed in a glass four-necked flask having a capacity of 200 mL and mixed. The 4.0% hydrochloric acid aqueous solution was prepared by diluting 35% hydrochloric acid (manufactured by Nippon Light Metal Co., Ltd.). The mixture was stirred at 40 ° C. to 50 ° C. for 60 minutes at 300 rpm using a stirring blade.
The mixed solution after stirring was allowed to stand, and after the stratification, the upper oil layer and the lower aqueous layer were separated. In order to measure the amount of DHP and the amount of 5HP in the oil layer at this stage, the oil layer was analyzed by gas chromatography. In terms of area ratio on the gas chromatogram, 6 ppm of DHP and 130 ppm of 5HP were detected.
精製工程2
前記精製工程1で分離した油層へ4.0%塩酸水溶液40mLを加え、40℃から50℃で60分間、攪拌翼を用いて300rpmで撹拌した。撹拌後の混合液を静置し、分層後に、上層の油層と下層の水層とを分離した。ガスクロマトグラフによる油層の分析を行った。ガスクロマトグラム上における面積比率で、DHPは2ppm、5HPは135ppm検出された。
Purification process 2
40 mL of a 4.0% hydrochloric acid aqueous solution was added to the oil layer separated in the purification step 1, and the mixture was stirred at 300 rpm using a stirring blade at 40 ° C. to 50 ° C. for 60 minutes. The mixed solution after stirring was allowed to stand, and after the stratification, the upper oil layer and the lower aqueous layer were separated. The oil reservoir was analyzed by gas chromatography. In terms of area ratio on the gas chromatogram, 2 ppm of DHP and 135 ppm of 5HP were detected.
精製工程3
前記精製工程2で分離した油層へ4.0%塩酸水溶液40mLを加え、40℃から50℃で60分間、攪拌翼を用いて300rpmで撹拌した。撹拌後の混合液を静置し、分層後に、上層の油層と下層の水層とを分離した。ガスクロマトグラフによる油層の分析を行った。ガスクロマトグラム上における面積比率で、DHPは2ppm、5HPは82ppm検出された。
精製工程4
前記精製工程3で分離した油層へ5.0%亜硫酸水素ナトリウム水溶液20mLを加え、40℃から50℃で60分間、攪拌翼を用いて300rpmで撹拌した。5.0%亜硫酸水素ナトリウム水溶液は、亜硫酸水素ナトリウム(和光純薬工業)を純水へ溶解させることにより調製した。撹拌後の混合液を静置し、分層後に、上層の油層と下層の水層とを分離した。ガスクロマトグラフによる油層の分析を行った。ガスクロマトグラム上における面積比率で、DHPは1ppm、5HPは3ppm検出された。
Purification process 3
40 mL of a 4.0% hydrochloric acid aqueous solution was added to the oil layer separated in the purification step 2, and the mixture was stirred at 300 rpm using a stirring blade at 40 ° C. to 50 ° C. for 60 minutes. The mixed solution after stirring was allowed to stand, and after the stratification, the upper oil layer and the lower aqueous layer were separated. The oil reservoir was analyzed by gas chromatography. In terms of area ratio on the gas chromatogram, 2 ppm of DHP and 82 ppm of 5HP were detected.
Purification process 4
20 mL of a 5.0% aqueous sodium hydrogen sulfite solution was added to the oil layer separated in the purification step 3, and the mixture was stirred at 300 rpm using a stirring blade at 40 ° C. to 50 ° C. for 60 minutes. The 5.0% sodium bisulfite aqueous solution was prepared by dissolving sodium bisulfite (Wako Pure Chemical Industries, Ltd.) in pure water. The mixed solution after stirring was allowed to stand, and after the stratification, the upper oil layer and the lower aqueous layer were separated. The oil reservoir was analyzed by gas chromatography. In terms of area ratio on the gas chromatogram, 1 ppm of DHP and 3 ppm of 5HP were detected.
[実施例2]
4.0%塩酸水溶液40mLの代わりに、精製工程1、2、3で、それぞれ0.8%塩酸水溶液40mLを加えた以外は、実施例1と同様の操作で各精製工程を実施した。0.8%塩酸水溶液は、35%塩酸(日本軽金属株式会社製)を希釈することにより調製した。DHP、5HPは、ガスクロマトグラム上における面積比率でそれぞれ、精製工程1では13ppm、177ppm、精製工程2では3ppm、47ppm、精製工程3では5ppm、104ppm、精製工程4では1ppm、5ppm検出された。
[Example 2]
Each purification step was carried out in the same operation as in Example 1 except that 40 mL of 0.8% hydrochloric acid aqueous solution was added in each of the purification steps 1, 2 and 3 instead of 40 mL of the 4.0% hydrochloric acid aqueous solution. The 0.8% hydrochloric acid aqueous solution was prepared by diluting 35% hydrochloric acid (manufactured by Nippon Light Metal Co., Ltd.). DHP and 5HP were detected at 13 ppm and 177 ppm in the purification step 1, 3 ppm and 47 ppm in the purification step 2, 5 ppm and 104 ppm in the purification step 3, and 1 ppm and 5 ppm in the purification step 4, respectively, in terms of area ratio on the gas chromatogram.
[実施例3]
4.0%塩酸水溶液40mLの代わりに、精製工程1、2、3で、それぞれ0.8%硫酸水溶液40mLを加えた以外は、実施例1と同様の操作で各精製工程を実施した。0.8%硫酸水溶液は、95%硫酸(和光純薬工業株式会社製)を希釈することにより調製した。DHP、5HPは、ガスクロマトグラム上における面積比率でそれぞれ、精製工程1では69ppm、116ppm、精製工程2では11ppm、105ppm、精製工程3では3ppm、74ppm、精製工程4では1ppm、3ppm検出された。
[Example 3]
Each purification step was carried out in the same operation as in Example 1 except that 40 mL of each of the 0.8% sulfuric acid aqueous solution was added in the purification steps 1, 2 and 3 instead of 40 mL of the 4.0% hydrochloric acid aqueous solution. The 0.8% sulfuric acid aqueous solution was prepared by diluting 95% sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.). DHP and 5HP were detected in the area ratios on the gas chromatogram at 69 ppm and 116 ppm in the purification step 1, 11 ppm and 105 ppm in the purification step 2, 3 ppm and 74 ppm in the purification step 3, and 1 ppm and 3 ppm in the purification step 4, respectively.
[実施例4]
4.0%塩酸水溶液40mLの代わりに、精製工程1、2,3で、それぞれ0.8%硝酸水溶液40mLを加えた以外は、実施例1と同様の操作で各精製工程を実施した。0.8%硝酸水溶液は、69%硝酸(和光純薬工業株式会社製)を希釈することにより調製した。DHP、5HPは、ガスクロマトグラム上における面積比率でそれぞれ、精製工程1では28ppm、85ppm、精製工程2では7ppm、89ppm、精製工程3では18ppm、130ppm、精製工程4では1ppm未満、5ppm検出された。
[Example 4]
Each purification step was carried out in the same operation as in Example 1 except that 40 mL of each of the 0.8% nitric acid aqueous solution was added in the purification steps 1, 2 and 3 instead of 40 mL of the 4.0% hydrochloric acid aqueous solution. The 0.8% nitric acid aqueous solution was prepared by diluting 69% nitric acid (manufactured by Wako Pure Chemical Industries, Ltd.). DHP and 5HP were detected at 28 ppm and 85 ppm in the purification step 1, 7 ppm and 89 ppm in the purification step 2, 18 ppm and 130 ppm in the purification step 3, and less than 1 ppm and 5 ppm in the purification step 4, respectively, in terms of area ratio on the gas chromatogram.
[実施例5]
4.0%塩酸水溶液40mLの代わりに、精製工程1、2、3で、それぞれイオン交換樹脂アンバーリスト(Amberlyst(登録商標)15 Hydrogen form)(ALDRICH社製)2.0gを加え、30分後に純水40mLを加えた以外は、実施例1と同様の操作で各精製工程を実施した。DHP、5HPは、ガスクロマトグラム上における面積比率でそれぞれ、精製工程1では34ppm、50ppm、精製工程2では6ppm、86ppm、精製工程3では7ppm、91ppm、精製工程4では1ppm、8ppm検出された。
[Example 5]
Instead of 40 mL of 4.0% hydrochloric acid aqueous solution, 2.0 g of ion exchange resin Amberlist (registered trademark) 15 Hydrogen form (manufactured by ALDRICH) was added in purification steps 1, 2 and 3, respectively, and 30 minutes later. Each purification step was carried out in the same manner as in Example 1 except that 40 mL of pure water was added. DHP and 5HP were detected at 34 ppm and 50 ppm in the purification step 1, 6 ppm and 86 ppm in the purification step 2, 7 ppm and 91 ppm in the purification step 3, and 1 ppm and 8 ppm in the purification step 4, respectively, in terms of area ratio on the gas chromatogram.
[実施例6]
4.0%塩酸水溶液40mLの代わりに、精製工程1、2、3で、それぞれ粘土鉱物モンモリロナイトK10(ALDRICH社製)2.0gを加え、30分後に純水40mLを加えた以外は、実施例1と同様の操作で各精製工程を実施した。DHP、5HPは、ガスクロマトグラム上における面積比率でそれぞれ、精製工程1では22ppm、123ppm、精製工程2では14ppm、87ppm、精製工程3では11ppm、2ppm、精製工程4では8ppm、10ppm検出された。
[Example 6]
Examples except that 2.0 g of clay mineral montmorillonite K10 (manufactured by ALDRICH) was added in the purification steps 1, 2 and 3 instead of 40 mL of the 4.0% hydrochloric acid aqueous solution, and 40 mL of pure water was added 30 minutes later. Each purification step was carried out in the same operation as in 1. DHP and 5HP were detected at 22 ppm and 123 ppm in the purification step 1, 14 ppm and 87 ppm in the purification step 2, 11 ppm and 2 ppm in the purification step 3, and 8 ppm and 10 ppm in the purification step 4, respectively, in terms of area ratio on the gas chromatogram.
[実施例7]
容量50mLのガラス製摺り付き試験管に、未精製THP(2)5mLと、0.8%塩酸水溶液5mLを入れ混合した。この混合物を40℃から50℃で30分間、攪拌子を用いて1000rpmで撹拌した。その他は実施例1と同様の操作で各精製工程を実施した。DHP、5HPは、ガスクロマトグラム上における面積比率でそれぞれ、精製工程1では85ppm、987ppm、精製工程2では62ppm、626ppm、精製工程3では35ppm、346ppm検出された。
[Example 7]
5 mL of unpurified THP (2) and 5 mL of a 0.8% aqueous hydrochloric acid solution were placed in a glass test tube having a capacity of 50 mL and mixed. The mixture was stirred at 40 ° C. to 50 ° C. for 30 minutes at 1000 rpm using a stir bar. Other than that, each purification step was carried out in the same operation as in Example 1. DHP and 5HP were detected at 85 ppm and 987 ppm in the purification step 1, 62 ppm and 626 ppm in the purification step 2, and 35 ppm and 346 ppm in the purification step 3, respectively, in terms of area ratio on the gas chromatogram.
[実施例8]
0.8%塩酸水溶液5mLの代わりに、精製工程1、2で塩化アルミニウム(日本軽金属株式会社製)50mgを加え、また、攪拌開始10分後に純水5mLを加えた以外は、実施例7と同様の操作で各精製工程を実施した。DHP、5HPは、ガスクロマトグラム上における面積比率でそれぞれ、精製工程1では56ppm、48ppm、精製工程2では52ppm、32ppm検出された。
[Example 8]
Example 7 and Example 7 except that 50 mg of aluminum chloride (manufactured by Nippon Light Metal Co., Ltd.) was added in the purification steps 1 and 2 instead of 5 mL of the 0.8% hydrochloric acid aqueous solution, and 5 mL of pure water was added 10 minutes after the start of stirring. Each purification step was carried out in the same manner. DHP and 5HP were detected at 56 ppm and 48 ppm in the purification step 1 and 52 ppm and 32 ppm in the purification step 2, respectively, in terms of area ratio on the gas chromatogram.
[実施例9]
容量1000mLのガラス製四ツ口フラスコに、未精製THP(2)300mLと、0.8%塩酸水溶液300mLを入れ混合した。この混合物を40℃から50℃で30分間、攪拌翼を用いて300rpmで撹拌した。DHP、5HPは、ガスクロマトグラム上における面積比率でそれぞれ、精製工程1では109ppm、1007ppm、精製工程2では46ppm、599ppm、精製工程3では26ppm、336ppm検出された。
引き続いて簡易な蒸留を行ったところ、DHPが51ppm、5HPが1ppm未満である精製THPが91g得られた。
[Example 9]
300 mL of unpurified THP (2) and 300 mL of a 0.8% aqueous hydrochloric acid solution were placed in a glass four-necked flask having a capacity of 1000 mL and mixed. The mixture was stirred at 40 ° C. to 50 ° C. for 30 minutes at 300 rpm using a stirring blade. DHP and 5HP were detected in the area ratios on the gas chromatogram at 109 ppm and 1007 ppm in the purification step 1, 46 ppm and 599 ppm in the purification step 2, and 26 ppm and 336 ppm in the purification step 3, respectively.
Subsequent simple distillation gave 91 g of purified THP with a DHP of 51 ppm and 5 HP of less than 1 ppm.
[比較例1]
未精製THP(1)140mLへ5.0%亜硫酸水素ナトリウム水溶液20mLを加え、40℃から50℃で60分間、攪拌翼を用いて300rpmで撹拌した。すなわち精製工程4のみを行った。DHP、5HPは、ガスクロマトグラム上における面積比率でそれぞれ、精製工程後に209ppm、3ppm検出された。
[Comparative Example 1]
To 140 mL of unpurified THP (1), 20 mL of a 5.0% aqueous sodium hydrogen sulfite solution was added, and the mixture was stirred at 300 rpm using a stirring blade at 40 ° C. to 50 ° C. for 60 minutes. That is, only the purification step 4 was performed. DHP and 5HP were detected at 209 ppm and 3 ppm, respectively, in the area ratio on the gas chromatogram after the purification step.
[比較例2]
0.8%塩酸水溶液5mLの代わりに、精製工程1、2で、それぞれ純水5mLを加えた以外は、実施例7と同様の操作で各精製工程を実施した。DHP、5HPは、ガスクロマトグラム上における面積比率でそれぞれ、精製工程1では2116ppm、5ppm、精製工程2では2262ppm、3ppm検出された。
[Comparative Example 2]
Each purification step was carried out in the same operation as in Example 7 except that 5 mL of pure water was added in each of the purification steps 1 and 2 instead of 5 mL of the 0.8% hydrochloric acid aqueous solution. DHP and 5HP were detected at 2116 ppm and 5 ppm in the purification step 1 and 2262 ppm and 3 ppm in the purification step 2, respectively, in terms of area ratio on the gas chromatogram.
[比較例3]
0.8%塩酸水溶液5mLの代わりに、精製工程1、2、3で、それぞれ0.1%塩酸水溶液5mLを加えた以外は、実施例7と同様の操作で各精製工程を実施した。DHP、5HPは、ガスクロマトグラム上における面積比率でそれぞれ、精製工程1では966ppm、595ppm、精製工程2では378ppm、717ppm、精製工程3では136ppm、483ppm検出された。
[Comparative Example 3]
Each purification step was carried out in the same manner as in Example 7 except that 5 mL of each of the 0.1% hydrochloric acid aqueous solutions was added in the purification steps 1, 2 and 3 instead of 5 mL of the 0.8% hydrochloric acid aqueous solution. DHP and 5HP were detected in the area ratios on the gas chromatogram at 966 ppm and 595 ppm in the purification step 1, 378 ppm and 717 ppm in the purification step 2, and 136 ppm and 483 ppm in the purification step 3, respectively.
実施例1、2及び7により、様々な酸濃度において本発明の効果があることが示された。一方で酸濃度が低い場合、例えば0.1%塩酸ではDHP及び5HPの低減効果が低い(比較例3)。 Examples 1, 2 and 7 have shown that the present invention is effective at various acid concentrations. On the other hand, when the acid concentration is low, for example, 0.1% hydrochloric acid has a low effect of reducing DHP and 5HP (Comparative Example 3).
実施例3及び4により、様々な酸によりDHP及び5HPの低減効果があることが明らかとなった。 From Examples 3 and 4, it was revealed that various acids have a DHP and 5HP reducing effect.
実施例5、6及び8により、固体酸を用いた場合においても同様の不純物DHPの低減効果があった。 According to Examples 5, 6 and 8, the same effect of reducing the impurity DHP was obtained even when the solid acid was used.
実施例9により、5HPを多く含む処理後のTHPの蒸留によっても5HPの低減が可能で、請求項1及び2に記載のDHPを製造可能であった。DHP含有量は増加したが、100ppm未満を維持していた。 According to Example 9, 5HP could be reduced by distillation of THP after treatment containing a large amount of 5HP, and the DHP according to claims 1 and 2 could be produced. The DHP content increased but remained below 100 ppm.
比較例1により、亜硫酸水素ナトリウム水溶液単独による処理ではDHPの低減効果はないことが明らかとなった。 From Comparative Example 1, it was clarified that the treatment with the sodium bisulfite aqueous solution alone did not have the effect of reducing DHP.
比較例2により、水単独による処理ではDHP及び5HPの低減効果はないことが明らかとなった。 From Comparative Example 2, it was clarified that the treatment with water alone did not have the effect of reducing DHP and 5HP.
表1の結果を見ると、DHP含有量が1ppm未満の場合もあるが、本発明の1ppm以上、且つ100ppm未満であることを特徴とするテトラヒドロピランが得られたことが確認された。また、同様に、5HP含有量が1ppm以上、且つ100ppm未満であることを特徴とするテトラヒドロピランが得られたことが確認された。 Looking at the results in Table 1, it was confirmed that although the DHP content may be less than 1 ppm, tetrahydropyran characterized by having a DHP content of 1 ppm or more and less than 100 ppm of the present invention was obtained. Similarly, it was confirmed that tetrahydropyran having a 5HP content of 1 ppm or more and less than 100 ppm was obtained.
Claims (5)
前記混合溶液を静置するか、または攪拌後静置する工程、そしてThe step of allowing the mixed solution to stand or standing after stirring, and
前記静置後の分離した油層を回収する工程Step of recovering the separated oil layer after standing
を有することを特徴とするテトラヒドロピランの精製方法。A method for purifying tetrahydropyran, which comprises.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017125266A JP6794940B2 (en) | 2017-06-27 | 2017-06-27 | Tetrahydropyran and methods for purifying tetrahydropyran |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017125266A JP6794940B2 (en) | 2017-06-27 | 2017-06-27 | Tetrahydropyran and methods for purifying tetrahydropyran |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019006724A JP2019006724A (en) | 2019-01-17 |
JP6794940B2 true JP6794940B2 (en) | 2020-12-02 |
Family
ID=65028450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017125266A Expired - Fee Related JP6794940B2 (en) | 2017-06-27 | 2017-06-27 | Tetrahydropyran and methods for purifying tetrahydropyran |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6794940B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115598259B (en) * | 2022-11-08 | 2023-02-24 | 广东国标医药科技有限公司 | Method for detecting DHP in medicine |
-
2017
- 2017-06-27 JP JP2017125266A patent/JP6794940B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2019006724A (en) | 2019-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5623739B2 (en) | Crude glycerol-based product, process for its purification and its use in the production of dichloropropanol | |
ZA200504278B (en) | Process for the epoxidation of olefins | |
TWI631102B (en) | Purification method | |
JP5161977B2 (en) | Method for producing rose oxide | |
RU2631429C1 (en) | Method of producing 4,4-dimethyl-1,3-dioxane (versions) | |
KR20010102420A (en) | High-purity 1,3-butylene glycol, process for producing 1,3-butylene glycol, and process for producing by-product butanol and butyl acetate | |
JP5603169B2 (en) | (E) Process for producing 3-methyl-2-cyclopentadecenone | |
JP6794940B2 (en) | Tetrahydropyran and methods for purifying tetrahydropyran | |
WO2014034500A1 (en) | Method for purifying acetonitrile | |
US7169945B2 (en) | Process for the epoxidation of olefins | |
CA3101904A1 (en) | Salt and acid mixture catalyzed 5-hydroxymethylfurfural (hmf) production | |
CN105814063A (en) | Control of color-body formation in isohexide esterification | |
WO2021131751A1 (en) | 1,3-butanediol | |
JP5608403B2 (en) | Method for producing n-propyl acetate | |
US9018426B1 (en) | Processes for producing multi-carbon alcohols | |
JP7402385B1 (en) | Semiconductor cleaning liquid and method for manufacturing semiconductor cleaning liquid | |
US20200239394A1 (en) | Process for recovering 3-methylbut-3-en-1-ol | |
WO2021131752A1 (en) | 1,3-butanediol | |
JP6226439B2 (en) | Process for producing 2-alkyl-3-butyn-2-ol | |
JP2023137968A (en) | Method for producing 1,3-butanediol | |
JP2021147336A (en) | Purification method of tetrahydrofuran | |
WO2024219139A1 (en) | 3,5,5-trimethylhexanoic acid composition, method for producing said composition, and method for improving sulfuric acid discoloration of said composition | |
JP2003226688A (en) | METHOD FOR PURIFYING Gamma-BUTYROLACTONE | |
JP2024002646A (en) | Method for producing 1,3-butanediol | |
WO2019150578A1 (en) | Method for preparing cyclopentenone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170728 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170728 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190814 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200716 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200728 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200923 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201013 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201026 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6794940 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |