JP6794816B2 - separator - Google Patents

separator Download PDF

Info

Publication number
JP6794816B2
JP6794816B2 JP2016246260A JP2016246260A JP6794816B2 JP 6794816 B2 JP6794816 B2 JP 6794816B2 JP 2016246260 A JP2016246260 A JP 2016246260A JP 2016246260 A JP2016246260 A JP 2016246260A JP 6794816 B2 JP6794816 B2 JP 6794816B2
Authority
JP
Japan
Prior art keywords
woven fabric
separator
less
present
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016246260A
Other languages
Japanese (ja)
Other versions
JP2018100434A (en
Inventor
明久 古田
明久 古田
浩和 西村
浩和 西村
友紀 福山
友紀 福山
俊彦 徳丸
俊彦 徳丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2016246260A priority Critical patent/JP6794816B2/en
Publication of JP2018100434A publication Critical patent/JP2018100434A/en
Application granted granted Critical
Publication of JP6794816B2 publication Critical patent/JP6794816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cell Separators (AREA)

Description

本発明は、水素発生装置用セパレーターに使用する不織布からなるセパレーターに関する。さらに詳しくは、アルカリ水型水素発生装置用セパレーターに使用する不織布からなるセパレーターに関する。 The present invention relates to a separator made of a non-woven fabric used for a separator for a hydrogen generator. More specifically, the present invention relates to a separator made of a non-woven fabric used for a separator for an alkaline water type hydrogen generator.

従来、水素ガスは溶接、ボイラ等、産業上多く利用される重要なガスの一種であり、さらに近年のエネルギー事情から、エネルギーの貯蔵、輸送手段として重要度が増している。このような水素ガスの工業的な製造方法としてアルカリ水の電気分解による方法が知られている。アルカリ水電気分解による水素製造の基本機構は、例えば水酸化ナトリウム、水酸化カリウムなどの電解質を含んだ水溶液に電極を挿入し電流を流すことで陰極から水素を、陽極から酸素を発生させこれを回収することで成り立っている。ここで大きな問題は、陽極と陰極の間隔を広く取ると双極間に存在する水溶液の行程が増加しエネルギーロスが大きくなるが逆に双極間の間隔を狭く取ると水素ガス中に酸素ガスが混入し水素ガスの品質が低下するというトレードオフが存在することである。 Conventionally, hydrogen gas is a kind of important gas that is widely used in industry such as welding and boilers, and further, due to the energy situation in recent years, its importance is increasing as a means of energy storage and transportation. As an industrial production method of such hydrogen gas, a method by electrolysis of alkaline water is known. The basic mechanism of hydrogen production by alkaline water electrolysis is to generate hydrogen from the cathode and oxygen from the anode by inserting an electrode into an aqueous solution containing an electrolyte such as sodium hydroxide or potassium hydroxide and passing an electric current through it. It consists of collecting. The big problem here is that if the distance between the anode and the cathode is widened, the stroke of the aqueous solution existing between the bipolar electrodes increases and the energy loss increases, but conversely, if the distance between the bipolar electrodes is narrowed, oxygen gas is mixed in the hydrogen gas. There is a trade-off that the quality of hydrogen gas deteriorates.

このような問題を解決するため、双極間に耐アルカリ性の高い不織布をセパレーターとして挿入し、セパレーターと電極は密着させずに通電することでエネルギーロスを犠牲にして水素ガスの品位を向上させる方法や双極間の間にイオン透過性の膜を挿入する方法が検討されてきた(例えば、特許文献1)。 In order to solve such a problem, a method of inserting a non-woven fabric having high alkali resistance between the bipolar electrodes as a separator and energizing the separator and the electrode without making them adhere to each other to improve the quality of hydrogen gas at the expense of energy loss. A method of inserting an ion-permeable membrane between the bipolar electrodes has been studied (for example, Patent Document 1).

一方で電極をセパレーターに密着させ、セパレーターとしてイオン透過膜を使用する方法も提案されている(例えば、特許文献2)。これは双極間隔をセパレーターの膜厚に近い最小としながらセパレーターにより水素ガスと酸素ガスの混入を防ぐ優れた方法である。
しかしながらかかる発明では双極間隔を小さくすることは可能であるが、抵抗値はセパレーターのイオン透過性に依存し、同間隔のアルカリ水溶液よりも大きくなってしまい、また、特殊な素材を用いるため高価になるという問題があった。
On the other hand, a method in which an electrode is brought into close contact with a separator and an ion permeable membrane is used as the separator has also been proposed (for example, Patent Document 2). This is an excellent method of preventing hydrogen gas and oxygen gas from being mixed by the separator while minimizing the bipolar interval close to the film thickness of the separator.
However, in such an invention, although it is possible to reduce the bipolar spacing, the resistance value depends on the ion permeability of the separator, becomes larger than that of the alkaline aqueous solution having the same spacing, and is expensive because a special material is used. There was a problem of becoming.

特開2006−37170号公報Japanese Unexamined Patent Publication No. 2006-37170 特開2013−249510号公報JP 2013-249510

本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、アルカリ水型水素発生装置におけるセパレーターとして高い耐久性に加えて低抵抗値化と水素ガスと酸素ガスの分離性に優れたセパレーターを提供することにある。 The present invention has been made against the background of the problems of the prior art. That is, an object of the present invention is to provide a separator having high durability as a separator in an alkaline water type hydrogen generator, as well as a low resistance value and excellent separability between hydrogen gas and oxygen gas.

本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。
すなわち、本発明は、以下の構成からなる。
1.ポリ四フッ化エチレン、ポリプロピレン、およびポリパラフェニレンスルフィドのいずれかから選ばれる1種以上の樹脂からなる繊維で構成される不織布であって、以下の(1)〜(5)の特徴を有する不織布からなるセパレーター。
(1)不織布を構成する繊維の単糸繊度が2dtex以上20dtex以下
(2)不織布の剛軟度が50mN・cm以上150mN・cm以下
(3)不織布の嵩密度が0.2g/cm3以上0.8g/cm3以下
(4)不織布の目付が50g/m2以上200g/m2以下
(5)不織布の厚みが0.1mm以上0.5mm以下
2.実質的にポリアリーレンスルフィド樹脂単独の繊維で構成される不織布からなる上記1に記載のセパレーター。
As a result of diligent studies, the present inventors have found that the above problems can be solved by the means shown below, and have arrived at the present invention.
That is, the present invention has the following configuration.
1. 1. A non-woven fabric composed of fibers made of one or more resins selected from any one of polytetrafluoroethylene, polypropylene, and polyparaphenylene sulfide, and having the following characteristics (1) to (5). Separator consisting of.
(1) Single-thread fineness of fibers constituting the non-woven fabric is 2 dtex or more and 20 dtex or less (2) Non-woven fabric has a rigidity of 50 mN · cm or more and 150 mN · cm or less (3) Bulk density of the non-woven fabric is 0.2 g / cm 3 or more 0 .8 g / cm 3 or less (4) Non-woven fabric with a texture of 50 g / m 2 or more and 200 g / m 2 or less (5) Non-woven fabric thickness of 0.1 mm or more and 0.5 mm or less 2. The separator according to 1 above, which is made of a non-woven fabric substantially composed of fibers of a polyarylene sulfide resin alone.

本発明により、高い耐久性に加えて低抵抗値化と水素ガスと酸素ガスの分離性能に優れたセパレーターを提供し、安価に水素ガスを製造できる水素ガス発生装置を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a separator having a low resistance value and excellent separation performance between hydrogen gas and oxygen gas in addition to high durability, and to provide a hydrogen gas generator capable of producing hydrogen gas at low cost.

以下、本発明を詳述する。
本発明におけるセパレーターは不織布からなる。不織布としての形態は、スパンボンド不織布、トウ開繊不織布、メルトブロー不織布、抄紙法により得られる不織布、機械交絡法により得られる不織布、サーマルボンド法により得られる不織布などいずれの形態でも良いが、スパンボンド不織布、抄紙法により得られる不織布、機械交絡法により得られる不織布、サーマルボンド法により得られる不織布が好ましい。生産性、地合の観点からスパンレース法、ニードルパンチ法などの機械交絡法により得られた不織布、サーマルボンド法により得られた不織布が最も好ましい。
Hereinafter, the present invention will be described in detail.
The separator in the present invention is made of a non-woven fabric. The non-woven fabric may be in any form such as a spunbonded non-woven fabric, a tow-spread non-woven fabric, a melt-blown non-woven fabric, a non-woven fabric obtained by a papermaking method, a non-woven fabric obtained by a mechanical entanglement method, and a non-woven fabric obtained by a thermal bond method. Nonwoven fabrics, non-woven fabrics obtained by a papermaking method, non-woven fabrics obtained by a mechanical entanglement method, and non-woven fabrics obtained by a thermal bond method are preferable. From the viewpoint of productivity and formation, the non-woven fabric obtained by the mechanical entanglement method such as the span lace method and the needle punch method, and the non-woven fabric obtained by the thermal bond method are most preferable.

なお、本発明においてサーマルボンド法とは、少なくとも一部に熱可塑性の合成繊維を用いて、繊維ウエブを作り、加熱により熱可塑性繊維の一部を溶融させて繊維同士を結合させることによりウエブの形状を固定させる方法である。特にゴムローラーやペーパーローラー、金属ローラーなどの熱ロールカレンダーを用いて熱処理させることにより表面の平滑性と厚みの均一性を得ることが可能となり、さらには後述する範囲の剛軟度を得ることが可能となる。 In the present invention, the thermal bond method is a method of forming a fiber web by using at least a part of a thermoplastic synthetic fiber, melting a part of the thermoplastic fiber by heating, and bonding the fibers to each other. This is a method of fixing the shape. In particular, by heat-treating using a thermal roll calendar such as a rubber roller, a paper roller, or a metal roller, it is possible to obtain surface smoothness and thickness uniformity, and further, it is possible to obtain rigidity and softness in the range described later. It will be possible.

本発明において不織布を構成する繊維は、耐アルカリ性の物質であるポリ四フッ化エチレン(以下、「PTFE」と記載する場合がある)、ポリプロピレン、ポリパラフェニレンスルフィドのいずれかから選ばれる1種以上の樹脂からなるものである。耐アルカリ性および耐熱性と価格とのバランスを考慮すると、ポリパラフェニレンスルフィド樹脂単独からなる繊維であることが好ましい。 In the present invention, the fiber constituting the non-woven fabric is one or more selected from polytetrafluoroethylene (hereinafter, may be referred to as “PTFE”), polypropylene, and polyparaphenylene sulfide, which are alkali-resistant substances. It is made of the resin of. Considering the balance between alkali resistance, heat resistance and price, it is preferable that the fiber is made of polyparaphenylene sulfide resin alone.

ポリパラフェニレンスルフィド樹脂は、一般に分岐型と直鎖型があるがどちらを用いてもかまわないが、繊維を製造する工程の簡便さと繊維強度のバランスから考えて直鎖型が好ましい。アルカリ水電気分解はアルカリ水中でおこなわれ、通常は電気抵抗を小さくするために加熱した状態で実施される。このような状態で耐久性を発現可能な素材で比較的安価な繊維素材としてポリパラフェニレンスルフィドは最も適している。 The polyparaphenylene sulfide resin is generally divided into a branched type and a linear type, and either of them may be used, but the linear type is preferable in consideration of the balance between the simplicity of the fiber manufacturing process and the fiber strength. Alkaline water electrolysis is carried out in alkaline water and is usually carried out in a heated state to reduce electrical resistance. Polyparaphenylene sulfide is the most suitable as a relatively inexpensive fiber material that can exhibit durability in such a state.

本発明におけるポリパラフェニレンスルフィド樹脂は、繊維化する段階での紡糸の行いやすさ、繊維強度の維持の観点から、300℃、せん断速度1000s-1における溶融粘度(MV)が120以上200以下であることが好ましい。 The polyparaphenylene sulfide resin in the present invention has a melt viscosity (MV) of 120 or more and 200 or less at 300 ° C. and a shear rate of 1000 s -1 from the viewpoint of ease of spinning at the stage of fiberization and maintenance of fiber strength. It is preferable to have.

本発明の不織布を構成する繊維は、比重が1.32g/cm3以下の繊維を0%以上60%以下含んでいることが好ましい。この範囲の比重が小さい、すなわち結晶化度が小さい繊維を含んでいることでサーマルボンド法で加工する際に、融着しやすくなりウエブ形状の固定を行い易くなる上、セパレーターの剛性が向上して剛軟度が高くなる。 The fibers constituting the non-woven fabric of the present invention preferably contain 0% or more and 60% or less of fibers having a specific gravity of 1.32 g / cm 3 or less. By containing fibers with a small specific gravity in this range, that is, with a low crystallinity, it becomes easier to fuse and fix the web shape when processing by the thermal bond method, and the rigidity of the separator is improved. The rigidity and softness are increased.

本発明の不織布を構成する繊維は、繊度が2dtex以上20dtex以下である。繊度が2dtex未満であると電気分解時の電流の抵抗値が大きくなり、またガス混入量が大きくなる。繊度が20dtexを超えると不織布の生産が困難となる。 The fibers constituting the non-woven fabric of the present invention have a fineness of 2 dtex or more and 20 dtex or less. If the fineness is less than 2 dtex, the resistance value of the current during electrolysis becomes large, and the amount of gas mixed in becomes large. If the fineness exceeds 20 dtex, it becomes difficult to produce a non-woven fabric.

本発明の不織布は、剛軟度が50mN・cm以上150mN・cm以下である。剛軟度が50mN・cm未満であると抵抗値が大きくなる。剛軟度が150mN・cmを超えると取り扱い上破れやすくなる。 The non-woven fabric of the present invention has a rigidity of 50 mN · cm or more and 150 mN · cm or less. If the rigidity is less than 50 mN · cm, the resistance value becomes large. If the rigidity and softness exceeds 150 mN · cm, it becomes easy to tear in handling.

本発明において上記のような繊度と剛軟度の範囲で抵抗値が小さくなること、およびガス混入量が小さくなることの要因は定かではないが以下のように考えている。
すなわち抵抗値の上昇は電極間を埋める物質とその距離に依存するが、セパレーターと電極を密着された場合は、電極がセパレーターに覆われる事により有効な電極面積が減少することでも抵抗値が上昇する。セパレーターの剛軟度はセパレーターの厚み方向の圧縮弾性率と相関があり、剛軟度が大きいほど圧縮弾性率が大きく密着させたときのセパレーターの変形量が少ない。よってセパレーターが電極を覆う面積を減少させ、抵抗値の増加を抑制することが可能となる。また、単糸繊度を大きくするとさらに電極との接触面積を減少させ抵抗値の上昇が抑制される。
In the present invention, the factors that reduce the resistance value in the range of fineness and rigidity and softness as described above and the amount of gas mixed in are not clear, but are considered as follows.
That is, the increase in the resistance value depends on the substance that fills the space between the electrodes and the distance between them, but when the separator and the electrode are in close contact with each other, the resistance value also increases because the effective electrode area is reduced by covering the electrodes with the separator. To do. The rigidity and softness of the separator correlates with the compressive elastic modulus in the thickness direction of the separator, and the larger the rigid and softness, the larger the compressive elastic modulus and the smaller the amount of deformation of the separator when they are brought into close contact with each other. Therefore, the area where the separator covers the electrode can be reduced, and the increase in the resistance value can be suppressed. Further, when the single yarn fineness is increased, the contact area with the electrode is further reduced and the increase in the resistance value is suppressed.

また、多孔膜の場合孔自体は小さいが電極により孔が閉塞し、孔中で発生した気体がセパレーター内を通過して対極側に漏洩するが、単糸繊度を太くすることで電極とセパレーター間に貫通した隙間が発生しやすくなるため、電極で発生した気体がスムーズに排出される。 Also, in the case of a porous membrane, the pores themselves are small, but the pores are blocked by the electrodes, and the gas generated in the pores passes through the separator and leaks to the opposite electrode side. Since the gap that penetrates the electrode is likely to be generated, the gas generated at the electrode is smoothly discharged.

本発明の不織布は、嵩密度が0.2g/cm3以上0.8g/cm3以下である。嵩密度が0.2g/cm3未満であると水素への酸素の混入が大きくなる。嵩密度が0.8g/cm3を超えると抵抗値が大きくなる。 The non-woven fabric of the present invention has a bulk density of 0.2 g / cm 3 or more and 0.8 g / cm 3 or less. If the bulk density is less than 0.2 g / cm 3 , the mixing of oxygen into hydrogen becomes large. When the bulk density exceeds 0.8 g / cm 3 , the resistance value increases.

本発明の不織布は、目付が50g/m2以上200g/m2以下である。目付が50g/m2未満であるとセパレーター内部での抵抗値が大きくなる。目付が200g/m2を超えると、不織布内部の密度が高くなり隙間が少なく、布表面から内部への距離が長くなりことから、抵抗値が増す。 The nonwoven fabric of the present invention has a basis weight of 50 g / m 2 or more and 200 g / m 2 or less. If the basis weight is less than 50 g / m 2 , the resistance value inside the separator becomes large. When the basis weight exceeds 200 g / m 2 , the density inside the non-woven fabric becomes high, the gaps are small, and the distance from the cloth surface to the inside becomes long, so that the resistance value increases.

本発明の不織布は、厚みが0.1mm以上0.5mm以下である。厚みが0.1mm未満であると不織布の地合との兼ね合いで水素ガスへの酸素の混入が発生する場合がある。厚みが0.5mmを超えると電極間隔が広くなり抵抗値が増す。 The non-woven fabric of the present invention has a thickness of 0.1 mm or more and 0.5 mm or less. If the thickness is less than 0.1 mm, oxygen may be mixed into the hydrogen gas in consideration of the texture of the non-woven fabric. If the thickness exceeds 0.5 mm, the electrode spacing becomes wide and the resistance value increases.

本発明の不織布からなるセパレーターは、アルカリ水溶液との親和性を向上させる目的で親水化処理を施されていてもかまわない。親水化処理はポリエーテルなどの親水性樹脂の塗布、コロナ処理、プラズマ処理、発煙硫酸処理などがあげられる。 The separator made of the non-woven fabric of the present invention may be hydrophilized for the purpose of improving the affinity with the alkaline aqueous solution. Examples of the hydrophilic treatment include coating of a hydrophilic resin such as polyether, corona treatment, plasma treatment, and fuming sulfuric acid treatment.

以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the Examples.

(繊度:dtex)
試料の任意の場所5点を選び、光学顕微鏡を用いて、単繊維径をn=20で測定して、全平均値(D)を求めた。同場所5点の繊維を取り出し、密度勾配管を用いて、繊維の比重をn=5で測定し、全平均値(ρ)を求めた。ついで、平均単繊維断面積と平均比重から繊維10,000mの重量に換算して繊度を求めた。
(Fineness: dtex)
Five points were selected at arbitrary locations on the sample, and the single fiber diameter was measured at n = 20 using an optical microscope to obtain the total average value (D). Five fibers at the same location were taken out, and the specific gravity of the fibers was measured at n = 5 using a density gradient tube, and the total average value (ρ) was obtained. Then, the fineness was obtained by converting the average single fiber cross-sectional area and the average specific gravity into the weight of the fiber 10,000 m.

(目付:g/m2
JIS−L1913(2010)に準拠する。具体的にはMD方向に20cm、CD方向に20cm角の試験片をCD方向に5箇所採取してそれぞれの重量を測定し、これらの平均値を算出した後、1m2当たりの重量に換算し、目付とした。
(Metsuke: g / m 2 )
It conforms to JIS-L1913 (2010). Specifically, test pieces 20 cm square in the MD direction and 20 cm square in the CD direction were sampled at five locations in the CD direction, the weights of each were measured, the average value of these was calculated, and then converted to the weight per 1 m 2. , With a basis weight.

(嵩密度:g/cm3
JIS−L1913(2010)に準拠して求められた目付及び厚みから1cm3当りの重量に換算し、嵩密度とした。具体的には、厚さ測定器により荷重2kPaにて厚さを測定し、目付を厚さで除することにより嵩密度を求めた。
(Bulk density: g / cm 3 )
Based on the basis weight and thickness obtained in accordance with JIS-L1913 (2010), the weight was converted into the weight per 1 cm 3 and used as the bulk density. Specifically, the thickness was measured with a thickness measuring device under a load of 2 kPa, and the bulk density was determined by dividing the basis weight by the thickness.

(剛軟度:mN・cm)
JIS−L1913(2010)に準拠した。具体的には、MD方向に20cm、CD方向に2.5cm角の試験片をCD方向の試験片全幅1m当たり6箇所において採取し、41.5°カンチレバー法に基づき表裏、計12点にて測定し、これらの平均値を算出した。該方法はMD方向の剛軟度結果であり、CD方向に関しては試験片方向を直交させ上述の如く、測定した。
(Rigidity and softness: mN ・ cm)
Compliant with JIS-L1913 (2010). Specifically, test pieces 20 cm square in the MD direction and 2.5 cm square in the CD direction were collected at 6 locations per 1 m of the total width of the test pieces in the CD direction, and at a total of 12 points on the front and back sides based on the 41.5 ° cantilever method. It was measured and the average value of these was calculated. The method is a result of rigidity and softness in the MD direction, and the CD direction was measured with the test piece direction orthogonal to each other as described above.

(厚み:mm)
JIS−L1913(2010)に準拠する。具体的には、CD方向の試験片全幅1m当たり10箇所において加圧条件を1.96kPaとして測定し、これらの平均値を算出した。
(Thickness: mm)
It conforms to JIS-L1913 (2010). Specifically, the pressurization condition was measured at 1.96 kPa at 10 points per 1 m of the total width of the test piece in the CD direction, and the average value of these was calculated.

(電解電圧、ガス混入量)
濃度30重量%の水酸化カリウム水溶液に浸漬させて20Paに減圧後、常圧に戻す操作を5回繰り返し、セパレーター内の脱泡を行った後、セパレーターが濡れた状態のまま電極とセパレーターを密着させてH型セルに組み込む。電極としてSUS316製メッシュ(#50)を使用し、25℃、電流密度0.2A/cm2に調整して10分後の電圧を測定し電解電圧とした。
また、20分間電気分解を行い陽極側から発生した気体を捕集し水素の比率を求めてガス混入量とした。
電解電圧の評価としては、○は「電解電圧が2.00V以下」、×は「電解電圧が2.00Vより大きい」とした。ガス混入量の評価としては、○は「水素比率が99.9vol%以上」、×は「水素比率が99.0vol%未満」とした。
(Electrolytic voltage, amount of gas mixed)
After immersing in an aqueous solution of potassium hydroxide having a concentration of 30% by weight, reducing the pressure to 20 Pa, and then returning to normal pressure 5 times to defoam the inside of the separator, the electrode and the separator are in close contact with each other while the separator is still wet. And incorporate it into the H-shaped cell. A SUS316 mesh (# 50) was used as an electrode, adjusted to 25 ° C. and a current density of 0.2 A / cm 2, and the voltage after 10 minutes was measured and used as the electrolytic voltage.
Further, electrolysis was performed for 20 minutes to collect the gas generated from the anode side, and the ratio of hydrogen was determined to determine the amount of gas mixed.
As for the evaluation of the electrolytic voltage, ◯ was “the electrolytic voltage was 2.00 V or less”, and × was “the electrolytic voltage was greater than 2.00 V”. As for the evaluation of the amount of gas mixed, ◯ was "hydrogen ratio of 99.9 vol% or more", and x was "hydrogen ratio of less than 99.0 vol%".

<実施例1>
繊度7.0dtex、繊維長60mmのポリフェニレンサルファイド繊維を用いてカードウェブとし、カレンダー加工機(温度190℃、線圧100kg/cm)を通して熱処理を行い、サーマルボンド不織布を作製した。
得られた不織布は厚み0.2mm、目付100g/m2、嵩密度0.5g/cm3、剛軟度100mN・cmであった。この不織布を用いて電解電圧とガス混入量を評価した結果を表1に示す。
<Example 1>
A card web was formed using polyphenylene sulfide fiber having a fineness of 7.0 dtex and a fiber length of 60 mm, and heat treatment was performed through a calender processing machine (temperature 190 ° C., linear pressure 100 kg / cm) to prepare a thermal bond nonwoven fabric.
The obtained non-woven fabric had a thickness of 0.2 mm, a basis weight of 100 g / m 2 , a bulk density of 0.5 g / cm 3 , and a rigidity of 100 mN · cm. Table 1 shows the results of evaluating the electrolytic voltage and the amount of gas mixed using this non-woven fabric.

<実施例2>
繊度4.5dtex、繊維長0.5mmのポリフェニレンサルファイド繊維を用いて、抄紙機を通して湿紙を作製し、カレンダー加工機(温度190℃、線圧100kg/cm)を通して熱処理を行い、湿式不織布を作製した。
得られた不織布は厚み0.2mm、目付108g/m2、嵩密度0.54g/cm3、剛軟度117mN・cmであった。この不織布を用いて電解電圧とガス混入量を評価した結果を表1に示す。
<Example 2>
Using polyphenylene sulfide fiber with a fineness of 4.5 dtex and a fiber length of 0.5 mm, wet paper is prepared through a paper machine and heat-treated through a calender processing machine (temperature 190 ° C., linear pressure 100 kg / cm) to prepare a wet non-woven fabric. did.
The obtained non-woven fabric had a thickness of 0.2 mm, a basis weight of 108 g / m 2 , a bulk density of 0.54 g / cm 3 , and a rigidity of 117 mN · cm. Table 1 shows the results of evaluating the electrolytic voltage and the amount of gas mixed using this non-woven fabric.

<比較例1>
不織布の目付を40g/m2に変更した以外は、実施例1と同様にしてサーマルボンド不織布を作製した。
得られた不織布は厚み0.2mm、嵩密度0.2g/cm3、剛軟度64mN・cmであった。この不織布を用いて電解電圧とガス混入量を評価した結果を表1に示す。
<Comparative example 1>
A thermal bond nonwoven fabric was produced in the same manner as in Example 1 except that the basis weight of the nonwoven fabric was changed to 40 g / m 2 .
The obtained non-woven fabric had a thickness of 0.2 mm, a bulk density of 0.2 g / cm 3 , and a rigidity and softness of 64 mN · cm. Table 1 shows the results of evaluating the electrolytic voltage and the amount of gas mixed using this non-woven fabric.

<比較例2>
繊度2.2dtex、繊維長60mmのポリフェニレンサルファイド繊維を用いてカードウェブとし、スパンレース加工機を通してスパンレース不織布を作製し、カレンダー加工機(温度180℃、線圧30kg/cm)を通して熱処理を行い、スパンレース不織布を作製した。
得られた不織布は厚み0.2mm、目付50g/m2、嵩密度0.25g/cm3、剛軟度40mN・cmであった。この不織布を用いて電解電圧とガス混入量を評価した結果を表1に示す。
<Comparative example 2>
A card web is made of polyphenylene sulfide fiber having a fineness of 2.2 dtex and a fiber length of 60 mm, a spunlace non-woven fabric is prepared through a spunlace processing machine, and heat treatment is performed through a calender processing machine (temperature 180 ° C., linear pressure 30 kg / cm). A spunlace non-woven fabric was produced.
The obtained non-woven fabric had a thickness of 0.2 mm, a basis weight of 50 g / m 2 , a bulk density of 0.25 g / cm 3 , and a rigidity of 40 mN · cm. Table 1 shows the results of evaluating the electrolytic voltage and the amount of gas mixed using this non-woven fabric.

本発明の不織布からなるセパレーターは、高い耐久性に加えて低抵抗値化と水素ガスと酸素ガスの分離性能に優れたセパレーターを提供でき、安価に水素ガスを製造できる水素ガス発生装置を提供すること可能となり、セパレーターの製造工程も非常に容易であることから、産業界への寄与大である。 The separator made of the non-woven fabric of the present invention can provide a separator having a low resistance value and excellent separation performance of hydrogen gas and oxygen gas in addition to high durability, and provides a hydrogen gas generator capable of producing hydrogen gas at low cost. This makes it possible and the manufacturing process of the separator is very easy, which makes a great contribution to the industrial world.

Claims (1)

ポリパラフェニレンスルフィド樹脂からなる繊維で構成される不織布であって、以下の(1)〜(5)の特徴を有する不織布からなるセパレーター。
(1)不織布を構成する繊維の単糸繊度が2dtex以上20dtex以下
(2)不織布の剛軟度が50mN・cm以上150mN・cm以下
(3)不織布の嵩密度が0.2g/cm以上0.8g/cm以下
(4)不織布の目付が50g/m以上200g/m以下
(5)不織布の厚みが0.1mm以上0.5mm以下
A non-woven fabric made of fibers made of a polyparaphenylene sulfide resin, and a separator made of a non-woven fabric having the following characteristics (1) to (5).
(1) Single-thread fineness of fibers constituting the non-woven fabric is 2 dtex or more and 20 dtex or less (2) Non-woven fabric has a rigidity of 50 mN · cm or more and 150 mN · cm or less (3) Bulk density of the non-woven fabric is 0.2 g / cm 3 or more 0 .8 g / cm 3 or less (4) Non-woven fabric with a texture of 50 g / m 2 or more and 200 g / m 2 or less (5) Non-woven fabric thickness of 0.1 mm or more and 0.5 mm or less
JP2016246260A 2016-12-20 2016-12-20 separator Active JP6794816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016246260A JP6794816B2 (en) 2016-12-20 2016-12-20 separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016246260A JP6794816B2 (en) 2016-12-20 2016-12-20 separator

Publications (2)

Publication Number Publication Date
JP2018100434A JP2018100434A (en) 2018-06-28
JP6794816B2 true JP6794816B2 (en) 2020-12-02

Family

ID=62715093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016246260A Active JP6794816B2 (en) 2016-12-20 2016-12-20 separator

Country Status (1)

Country Link
JP (1) JP6794816B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUP1900214A1 (en) 2019-06-14 2020-12-28 Eoetvoes Lorand Tudomanyegyetem Polypropylene or polyethylene base separator for electrochemical cells for producing alkali metal ferrates
JP7110316B2 (en) * 2020-12-22 2022-08-01 三菱製紙株式会社 Base material for alkaline water electrolysis membrane and alkaline water electrolysis membrane

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3458950B2 (en) * 2000-04-04 2003-10-20 東洋紡績株式会社 Alkaline battery separator and alkaline battery
JP2012216426A (en) * 2011-03-31 2012-11-08 Daiwabo Holdings Co Ltd Separator material and method for manufacturing the same, and battery comprising the same
JP6481330B2 (en) * 2014-10-30 2019-03-13 東レ株式会社 Base material for alkaline water electrolysis diaphragm

Also Published As

Publication number Publication date
JP2018100434A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
CN112159989B (en) Diaphragm for alkaline water electrolysis
JP6358711B2 (en) Separator materials for electrochemical cells
KR101374434B1 (en) Electrochemical double layer capacitors including improved nanofiber separators
WO2014111053A1 (en) Diaphragm cloth for water electrolyzer and manufacturing method therefor
US9508974B2 (en) PET nonwoven fabric for separator for secondary battery and separator for secondary battery comprising the same
JP7009146B2 (en) Alkaline water electrolysis diaphragm and its manufacturing method, multi-pole electrolytic cell
JP6030952B2 (en) Diaphragm for alkaline water electrolysis and method for producing the same
CN107004810B (en) Battery separator with controlled pore structure
JP6794816B2 (en) separator
JP5981751B2 (en) Diaphragm for alkaline water electrolysis and method for producing the same
JP4938640B2 (en) separator
JP6930527B2 (en) High-performance PPS fiber structure and its manufacturing method and application
JP2011184815A (en) Method for producing aromatic polyamide ultrafine fiber and aromatic polyamide ultrafine fiber
JP2016511511A (en) Battery separator
JP2019077964A (en) Fiber sheet and method for producing fiber sheet
JP7110316B2 (en) Base material for alkaline water electrolysis membrane and alkaline water electrolysis membrane
JP2018144379A (en) Carbon fiber unwoven fabric laminate
JP2005203305A (en) Separator for battery
JP2015041457A (en) Nonwoven cloth for battery separator
JP2013023779A (en) Method for manufacturing cut object
JP2015041551A (en) Nonwoven cloth for battery separator
JPH03257755A (en) Separator for alkaline battery
JP2014173200A (en) Method for manufacturing nonwoven fabric, nonwoven fabric and separator for battery
JP2014156662A (en) Method for producing nonwoven fabric, nonwoven fabric and separator for battery
JP2017224611A (en) Battery separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R151 Written notification of patent or utility model registration

Ref document number: 6794816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350