JP6794175B2 - Manufacturing method of laser surveying equipment - Google Patents

Manufacturing method of laser surveying equipment Download PDF

Info

Publication number
JP6794175B2
JP6794175B2 JP2016162452A JP2016162452A JP6794175B2 JP 6794175 B2 JP6794175 B2 JP 6794175B2 JP 2016162452 A JP2016162452 A JP 2016162452A JP 2016162452 A JP2016162452 A JP 2016162452A JP 6794175 B2 JP6794175 B2 JP 6794175B2
Authority
JP
Japan
Prior art keywords
laser
light wave
distance measuring
wave distance
tilt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016162452A
Other languages
Japanese (ja)
Other versions
JP2018031613A5 (en
JP2018031613A (en
Inventor
佳典 鍋田
佳典 鍋田
毅 堂本
毅 堂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2016162452A priority Critical patent/JP6794175B2/en
Publication of JP2018031613A publication Critical patent/JP2018031613A/en
Publication of JP2018031613A5 publication Critical patent/JP2018031613A5/ja
Application granted granted Critical
Publication of JP6794175B2 publication Critical patent/JP6794175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光波距離測定機構とレーザ回転照射機構とを一体に有するレーザ測量装置の製造方法に関する。
The present invention relates to a light wave distance measuring mechanism and the laser rotary irradiation mechanism in the manufacture how the laser surveying instrument, which integrally.

測量装置としては、測距光学系の測定光軸を測定対象物に向け、測距、水平角、鉛直角の測定を行う、いわゆるトータルステーションといわれる光波距離測定装置がある。また、近年は光波距離測定装置として、測定対象物の移動に追従して回動する追従機能付きの光波距離測定装置も開発されている。 As a surveying device, there is a so-called total station, which is a light wave distance measuring device that measures distance measurement, horizontal angle, and vertical right angle by directing the measurement optical axis of the distance measuring optical system to the object to be measured. Further, in recent years, as a light wave distance measuring device, a light wave distance measuring device having a tracking function that rotates following the movement of a measurement object has also been developed.

また、レーザ光線を回転照射して、基準面を形成するレーザ回転照射装置も知られている(特許文献1、2参照)。 Further, a laser rotary irradiation device that linearly irradiates a laser beam to form a reference plane is also known (see Patent Documents 1 and 2).

そして、光波距離測定装置(光波距離測定機構ともいう)とレーザ回転照射装置(レーザ回転照射機構ともいう)とを一体としたレーザ測量装置を用いて、スリップフォーム舗装機械等の建設機械の制御を行うシステムも開発されている(特許文献3参照)。 Then, using a laser measuring device that integrates a light wave distance measuring device (also called a light wave distance measuring mechanism) and a laser rotating irradiation device (also called a laser rotating irradiation mechanism), control of construction machines such as slip foam paving machines is performed. A system for performing this has also been developed (see Patent Document 3).

特開2004−212058号公報Japanese Unexamined Patent Publication No. 2004-221508 特開2005−274229号公報Japanese Unexamined Patent Publication No. 2005-274229 特開2014−55499号公報Japanese Unexamined Patent Publication No. 2014-55499

上記特許文献1、2に示されているようなレーザ測量装置や光波距離測定装置等の測量装置は、設置の際に、測量装置に具備されているチルトセンサを用いて測量装置の鉛直軸が重力方向と一致するように整準される。 When a surveying device such as a laser surveying device or a light wave distance measuring device as shown in Patent Documents 1 and 2 is installed, the vertical axis of the surveying device is set by using a tilt sensor provided in the surveying device. It is leveled to match the direction of gravity.

しかしながら、特許文献3に記載されているような光波距離測定装置とレーザ回転照射装置とが一体のレーザ測量装置では、光波距離測定装置における鉛直軸とレーザ回転照射装置における鉛直軸の2つの鉛直軸を有することとなり、両鉛直軸が一致していなければ、一方の装置に基づき整準しても他方の装置の鉛直軸がずれ、正確な測量が行えないという問題がある。 However, in a laser surveying device in which a light wave distance measuring device and a laser rotating irradiation device are integrated as described in Patent Document 3, there are two vertical axes, a vertical axis in the light wave distance measuring device and a vertical axis in the laser rotating irradiation device. If both vertical axes do not match, there is a problem that even if leveling is performed based on one device, the vertical axis of the other device shifts and accurate surveying cannot be performed.

このため、レーザ測量装置においては、光波距離測定装置とレーザ回転照射装置とを精度よく組み立てる必要があるが、光波距離測定装置とレーザ回転照射装置をそれぞれの装置を精度よく製造し、且つ光波距離測定装置とレーザ回転照射装置との組み立ても精度よく行うことは容易ではない。 Therefore, in the laser surveying device, it is necessary to accurately assemble the light wave distance measuring device and the laser rotating irradiation device. However, the light wave distance measuring device and the laser rotating irradiation device can be accurately manufactured and the light wave distance can be manufactured. It is not easy to assemble the measuring device and the laser rotation irradiation device with high accuracy.

本発明はこのような問題点を解決するためになされたもので、その目的とするところは、光波距離測定機構とレーザ回転照射機構とが一体に構成されるレーザ測量装置において、両機構の鉛直軸を効率よく正確に設定することのできるレーザ測量装置の製造方法を提供することにある。
The present invention has been made to solve such a problem, and an object of the present invention is to be vertical in a laser surveying device in which a light wave distance measuring mechanism and a laser rotation irradiation mechanism are integrally formed. is to provide a manufacturing how the laser surveying apparatus capable of setting the axial efficiently and accurately.

上記した目的を達成するために、本発明に係るレーザ測量装置の製造方法では、少なくとも測距を行う光波距離測定機構と、レーザ光線を回転照射して基準面を形成するレーザ回転照射機構とを一体に備えるレーザ測量装置の製造方法であって、前記光波距離測定機構及び前記レーザ回転照射機構が別体の状態で、前記光波距離測定機構が有する第1のチルトセンサ及び前記レーザ回転照射機構が有する第2のチルトセンサそれぞれのチルトオフセット値を測定する第1のチルトオフセット値測定工程と、前記レーザ回転照射機構を前記光波距離測定機構に載置する載置工程と、前記光波距離測定機構が有する整準部により整準を行う整準工程と、前記光波距離測定機構に固定する固定工程と、を備える。 In order to achieve the above object, in the method for manufacturing a laser surveying apparatus according to the present invention, at least a light wave distance measuring mechanism for measuring a distance and a laser rotating irradiation mechanism for rotating and irradiating a laser beam to form a reference plane are provided. A method for manufacturing a laser measuring device integrally provided, wherein the first tilt sensor and the laser rotation irradiation mechanism included in the light wave distance measurement mechanism are in a state where the light wave distance measurement mechanism and the laser rotation irradiation mechanism are separate. The first tilt offset value measuring step of measuring the tilt offset value of each of the second tilt sensors having the laser rotation irradiation mechanism, the mounting step of mounting the laser rotation irradiation mechanism on the light wave distance measuring mechanism, and the light wave distance measuring mechanism comprising a leveling step for leveling the leveling unit having a fixing step of fixing before Symbol optical distance measuring mechanism.

また、本発明に係るレーザ測量装置の製造方法において、前記光波距離測定機構に前記レーザ回転照射機構が載置された状態で、前記第2のチルトセンサのチルトオフセット値を測定する第2のチルトオフセット値測定工程を、さらに備え、前記固定工程は、前記第2のチルトオフセット値に基づき前記レーザ回転照射機構の姿勢を調整して前記光波距離測定機構に固定してもよい。
また、本発明に係るレーザ測量装置の製造方法において、前記固定工程の後、前記レーザ回転照射機構によりレーザ光線を照射し、当該レーザ光線の照射方向が水平となるように、前記光波距離測定機構が有する整準部により前記光波距離測定機構及び前記レーザ回転照射機構の一体としての姿勢を調整するレーザ照射調整工程を、さらに備えてもよい。
Further, in the method for manufacturing a laser measuring device according to the present invention, a second tilt for measuring the tilt offset value of the second tilt sensor with the laser rotation irradiation mechanism mounted on the light wave distance measuring mechanism. An offset value measuring step may be further provided, and the fixing step may be fixed to the light wave distance measuring mechanism by adjusting the posture of the laser rotation irradiation mechanism based on the second tilt offset value.
Further, in the method for manufacturing a laser measuring device according to the present invention, after the fixing step, a laser beam is irradiated by the laser rotation irradiation mechanism, and the light wave distance measuring mechanism is used so that the irradiation direction of the laser beam becomes horizontal. A laser irradiation adjusting step of adjusting the posture of the light wave distance measuring mechanism and the laser rotation irradiation mechanism as an integral body by the leveling portion of the laser irradiation may be further provided.

上記手段を用いる本発明によれば、光波距離測定機構とレーザ回転照射機構とが一体に構成されるレーザ測量装置において、両機構の鉛直軸を効率よく正確に設定することができる。 According to the present invention using the above means, in a laser surveying device in which a light wave distance measuring mechanism and a laser rotation irradiation mechanism are integrally formed, the vertical axes of both mechanisms can be efficiently and accurately set.

本発明の一実施形態に係るレーザ測量装置の概略斜視図である。It is a schematic perspective view of the laser surveying apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレーザ測量装置における鉛直軸の設定ルーチンを示したフローチャートである。It is a flowchart which showed the setting routine of the vertical axis in the laser surveying apparatus which concerns on one Embodiment of this invention.

以下、本発明の一実施形態を図面に基づき説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1に本実施形態に係る製造方法により製造されるレーザ測量装置1が示されており、同図に示すレーザ測量装置1は、光波距離測定機構2の上にレーザ回転照射機構3が一体的に設けられている。 FIG. 1 shows a laser surveying device 1 manufactured by the manufacturing method according to the present embodiment, and in the laser surveying device 1 shown in the figure, a laser rotation irradiation mechanism 3 is integrated on a light wave distance measuring mechanism 2. It is provided in.

レーザ測量装置1は、例えば上記特許文献3に記載されているスリップフォーム舗装機械のような建設機械の制御システムに用いられるレーザ測量装置であって、測量の際には図示しない三脚を介して任意の点に設置される。 The laser surveying device 1 is a laser surveying device used in a control system of a construction machine such as the slip foam paving machine described in Patent Document 3, and is arbitrarily used during surveying via a tripod (not shown). It is installed at the point.

光波距離測定機構2は、トータルステーションと同等の機能を有する。例えば光波距離測定機構2は、測距光を建設機械が有するターゲットに向かって照射し、当該ターゲットからの反射測距光を受光して測距及び測角を行い、またターゲットからの反射光に基づきターゲットの追尾を行う。 The light wave distance measuring mechanism 2 has a function equivalent to that of a total station. For example, the light wave distance measuring mechanism 2 irradiates the distance measuring light toward the target of the construction machine, receives the reflected distance measuring light from the target, performs distance measurement and angle measurement, and uses the reflected light from the target. Track the target based on it.

詳しくは、光波距離測定機構2は、下部に基台部10と回転基板11を有している。 Specifically, the light wave distance measuring mechanism 2 has a base portion 10 and a rotating substrate 11 at the lower portion.

基台部10には図示しない三脚が取り付け可能である。基台部10は図示しない水平回転駆動部を有しており、当該水平回転駆動部により回転基板11を水平方向に回転駆動する。 A tripod (not shown) can be attached to the base portion 10. The base portion 10 has a horizontal rotation drive unit (not shown), and the horizontal rotation drive unit drives the rotating substrate 11 to rotate in the horizontal direction.

また、基台部10と回転基板11との間には、図示しないが基台部10に対する傾きを調整して整準する整準部を備えている。整準部は、例えば回転基板11の水平面上の任意の一か所が支点として固定されており、当該水平面上の任意の二か所に、回転基板11を上下方向に移動可能な2つの整準ねじが設けられ、これらの整準ねじの締め度合いに応じて基台部10に対する回転基板11の傾斜を調整するものである。なお、整準ねじの数はこれに限られるものではなく、例えば3本備えていてもよい。 Further, although not shown, a leveling portion for adjusting the inclination with respect to the base portion 10 is provided between the base portion 10 and the rotating substrate 11. The leveling portion is fixed, for example, at any one place on the horizontal plane of the rotating substrate 11 as a fulcrum, and two leveling parts capable of moving the rotating board 11 in the vertical direction at any two places on the horizontal plane. Semi-screws are provided, and the inclination of the rotating substrate 11 with respect to the base portion 10 is adjusted according to the degree of tightening of these leveling screws. The number of leveling screws is not limited to this, and for example, three may be provided.

また、回転基板11には、円形気泡管からなる水平チルトセンサ12(第1のチルトセンサ)が設けられており、当該水平チルトセンサ12により回転基板11、すなわち光波距離測定機構2の傾きを検出することが可能である。 Further, the rotating substrate 11 is provided with a horizontal tilt sensor 12 (first tilt sensor) made of a circular bubble tube, and the horizontal tilt sensor 12 detects the tilt of the rotating substrate 11, that is, the light wave distance measuring mechanism 2. It is possible to do.

本実施形態の整準部は、水平チルトセンサ12により検出される傾き情報を取得して図示しないアクチュエータにより整準ねじを駆動することで自動的に整準を行う自動整準機能を有している。なお、整準部は、作業者が水平チルトセンサ12を確認しながら整準ねじを手動操作して整準を行う構成としてもよい。 The leveling unit of the present embodiment has an automatic leveling function that acquires tilt information detected by the horizontal tilt sensor 12 and automatically performs leveling by driving a leveling screw with an actuator (not shown). There is. The leveling unit may be configured such that the operator manually operates the leveling screw while checking the horizontal tilt sensor 12 to perform leveling.

回転基板11の上面には一対の支柱部13、14が立設されており、当該一対の支柱部13、14の間に望遠鏡部15が鉛直方向に回転可能に支持されている。図示しないが、当該一対の支柱部13、14には望遠鏡部15を鉛直方向に回転させる鉛直回転駆動部が設けられている。 A pair of support columns 13 and 14 are erected on the upper surface of the rotating substrate 11, and a telescope unit 15 is rotatably supported between the pair of support columns 13 and 14. Although not shown, the pair of support columns 13 and 14 are provided with a vertical rotation drive unit that rotates the telescope unit 15 in the vertical direction.

望遠鏡部15には、測距光学系、追尾光学系及び測距部が収納されており、望遠鏡部15から測距光L1、追尾光(図示せず)が射出され、ターゲットからの反射測距光を測距部にて受光して測距を行う。また、望遠鏡部15は、追尾光学系を介してターゲットで反射された追尾光を受光し、水平回転駆動部により水平方向に、鉛直回転駆動部により鉛直方向に駆動されることでターゲットの自動追尾が可能である。 The telescope unit 15 houses a range-finding optical system, a tracking optical system, and a range-finding unit. The telescope unit 15 emits range-finding light L1 and tracking light (not shown), and reflects distance from the target. The distance measurement is performed by receiving light at the distance measurement unit. Further, the telescope unit 15 receives the tracking light reflected by the target via the tracking optical system and is driven in the horizontal direction by the horizontal rotation drive unit and in the vertical direction by the vertical rotation drive unit to automatically track the target. Is possible.

さらに基台部10には、図示しないが、基台部10に対する回転基板11の水平方向の回転角(水平角)を検出する水平角検出器が設けられ、支柱部13、14には望遠鏡部15の鉛直方向の回転角(鉛直角)を検出する鉛直角検出器が設けられている。これら水平角検出器及び鉛直角検出器により検出される水平角及び鉛直角から望遠鏡部15の視準方向が測定可能となっている。 Further, although not shown, the base portion 10 is provided with a horizontal angle detector for detecting the horizontal rotation angle (horizontal angle) of the rotating substrate 11 with respect to the base portion 10, and the support columns 13 and 14 are provided with a telescope unit. A vertical right angle detector for detecting the rotation angle (vertical right angle) of 15 in the vertical direction is provided. The collimation direction of the telescope unit 15 can be measured from the horizontal angle and the vertical angle detected by the horizontal angle detector and the vertical angle detector.

また、回転基板11上には測量制御部16が設けられている。当該測量制御部16は、レーザ測量装置1における測量制御を行う機能を有している。例えば測量制御部16は、望遠鏡部15、水平チルトセンサ12、水平角検出器、鉛直角検出器により検出された各種情報の読み取り、記憶、演算等を行い、演算結果に応じて整準部、鉛直回転駆動部、及び水平回転駆動部の駆動制御等を行う。 Further, a survey control unit 16 is provided on the rotating substrate 11. The survey control unit 16 has a function of performing survey control in the laser survey device 1. For example, the survey control unit 16 reads, stores, calculates, and the like various information detected by the telescope unit 15, the horizontal tilt sensor 12, the horizontal angle detector, and the vertical angle detector, and sets the leveling unit according to the calculation result. It controls the drive of the vertical rotation drive unit and the horizontal rotation drive unit.

また、一対の支柱部13、14の上端には天板17が設けられており、当該天板17上にレーザ回転照射機構3が設けられている。 A top plate 17 is provided at the upper ends of the pair of support columns 13 and 14, and a laser rotation irradiation mechanism 3 is provided on the top plate 17.

レーザ回転照射機構3は、レーザ光線L2を一定速度で回転照射し、当該レーザ光線L2により基準面が形成される。当該レーザ光線L2は、所定の広がり角を有する複数の扇状ビームで構成され、少なくとも1つは水平面に対して傾斜している。例えば、レーザ光線L2は、鉛直方向の扇状ビームと水平面に対して所定の角度で傾斜した扇状ビームの2つの扇状ビームにより構成されている。なお、レーザ光線の構成は上記特許文献2、3に示されるように種々考えられる。 The laser rotation irradiation mechanism 3 rotationally irradiates the laser beam L2 at a constant speed, and the reference plane is formed by the laser beam L2. The laser beam L2 is composed of a plurality of fan-shaped beams having a predetermined spreading angle, and at least one of them is inclined with respect to a horizontal plane. For example, the laser beam L2 is composed of two fan-shaped beams, a fan-shaped beam in the vertical direction and a fan-shaped beam inclined at a predetermined angle with respect to a horizontal plane. Various configurations of the laser beam can be considered as shown in Patent Documents 2 and 3.

詳しくは、レーザ回転照射機構3は、円板状の鍔部20の中央部に円柱部21が一体的に立設されており、当該円柱部21の上面にレーザ照射部22が水平方向に回転可能に設けられている。 Specifically, in the laser rotation irradiation mechanism 3, a cylindrical portion 21 is integrally erected at the center of a disc-shaped flange portion 20, and the laser irradiation portion 22 rotates horizontally on the upper surface of the cylindrical portion 21. It is provided as possible.

鍔部20の水平面上には、天板17に対して固定された支点部23が一か所と、調整ねじ24、25(姿勢調整部)が二か所に設けられている。これにより、上述した回転基板11の整準部と同様に調整ねじ24、25の締め度合いに応じて天板17に対する鍔部20の傾き、すなわちレーザ回転照射機構3の傾きを調整可能である。 On the horizontal plane of the collar portion 20, a fulcrum portion 23 fixed to the top plate 17 is provided at one place, and adjusting screws 24 and 25 (posture adjusting parts) are provided at two places. As a result, the inclination of the collar portion 20 with respect to the top plate 17, that is, the inclination of the laser rotation irradiation mechanism 3 can be adjusted according to the degree of tightening of the adjusting screws 24 and 25, similarly to the leveling portion of the rotating substrate 11 described above.

また、支点部23及び各調整ねじ24、25(姿勢調整部)に隣接して、固定ねじ26、27、28(固定部)が設けられている。固定ねじ26、27、28は調整ねじ24、25により調整した角度を維持しつつ、鍔部20を天板17に固定する手段である。 Further, fixing screws 26, 27, 28 (fixing portions) are provided adjacent to the fulcrum portion 23 and the adjusting screws 24, 25 (posture adjusting portions). The fixing screws 26, 27, and 28 are means for fixing the flange portion 20 to the top plate 17 while maintaining the angle adjusted by the adjusting screws 24 and 25.

円柱部21の周面には、一対の一軸チルトセンサ29、30(第2のチルトセンサ)が設けられている。これらの一軸チルトセンサ29、30は直交する向きに配置されており、レーザ回転照射機構3の水平方向にて直交する2軸、すなわちX軸Ax及びY軸Ayの傾きを検出可能である。これら一軸チルトセンサ29、30は上記水平チルトセンサ12よりも傾きを検知する精度が高い。 A pair of uniaxial tilt sensors 29 and 30 (second tilt sensor) are provided on the peripheral surface of the cylindrical portion 21. These uniaxial tilt sensors 29 and 30 are arranged in orthogonal directions, and can detect the tilts of the two axes orthogonal to each other in the horizontal direction of the laser rotation irradiation mechanism 3, that is, the X-axis Ax and the Y-axis Ay. These uniaxial tilt sensors 29 and 30 have higher accuracy in detecting tilt than the horizontal tilt sensor 12.

レーザ照射部22は、上述したレーザ光線L2を照射する部分であり、円柱部21上にてレーザ光線L2の照射向きを水平方向に回転可能である。レーザ回転照射機構3における測量制御についても上記測量制御部16により行われ、レーザ照射部22は測量制御部16により駆動制御される。 The laser irradiation unit 22 is a portion that irradiates the above-mentioned laser beam L2, and the irradiation direction of the laser beam L2 can be rotated in the horizontal direction on the cylindrical portion 21. The surveying control in the laser rotation irradiation mechanism 3 is also performed by the surveying control unit 16, and the laser irradiation unit 22 is driven and controlled by the surveying control unit 16.

以上のように構成されたレーザ測量装置1は、工場出荷前の製造時に光波距離測定機構2とレーザ回転照射機構3とが組み立てられるが、この組み立ての際にそれぞれの機構2、3の鉛直軸が重力方向に合うよう設定される。 In the laser surveying device 1 configured as described above, the light wave distance measuring mechanism 2 and the laser rotation irradiation mechanism 3 are assembled at the time of manufacturing before shipment from the factory. At the time of this assembly, the vertical axes of the respective mechanisms 2 and 3 are assembled. Is set to match the direction of gravity.

ここで図2を参照すると、光波距離測定機構2及びレーザ回転照射機構3の鉛直軸の設定ルーチンがフローチャートで示されており、以下同フローチャートに沿って説明する。なお、当該鉛直軸の設定ルーチンは、光波距離測定機構2とレーザ回転照射機構3とが別体の状態から開始される。 Here, with reference to FIG. 2, the setting routine of the vertical axis of the light wave distance measuring mechanism 2 and the laser rotation irradiation mechanism 3 is shown in a flowchart, and will be described below with reference to the same flowchart. The vertical axis setting routine is started from a state in which the light wave distance measuring mechanism 2 and the laser rotation irradiation mechanism 3 are separated from each other.

鉛直軸の設定ルーチンのステップS1としては、光波距離測定機構2の水平チルトセンサ12と、レーザ回転照射機構3の一対の一軸チルトセンサ29、30に対して、それぞれいわゆるチルトオフセット値の測定を行う(第1のチルトオフセット値測定工程)。 As step S1 of the vertical axis setting routine, so-called tilt offset values are measured for the horizontal tilt sensor 12 of the light wave distance measuring mechanism 2 and the pair of uniaxial tilt sensors 29 and 30 of the laser rotation irradiation mechanism 3, respectively. (First tilt offset value measuring step).

具体的には、光波距離測定機構2のチルトオフセット値の測定は、傾きを調整可能な台の上に光波距離測定機構2を載せ、一度水平チルトセンサ12の値を読み取り記憶する。その後、その姿勢から水平方向に180°回転させた姿勢で再び水平チルトセンサ12の値を読み取り記憶する。この両姿勢における水平チルトセンサ12の値を比較し、両値が一致する台の傾きを探し出す。そして両姿勢における水平チルトセンサ12の値が一致する台の傾きでの水平チルトセンサ12の値をチルトオフセット値として記憶することで、水平チルトセンサ12の絶対水平に対するズレ量(オフセット量)を認識する。レーザ回転照射機構3の一軸チルトセンサ29、30におけるチルトオフセット値の測定手法も同様である。 Specifically, the tilt offset value of the light wave distance measuring mechanism 2 is measured by placing the light wave distance measuring mechanism 2 on a table whose inclination can be adjusted, and once reading and storing the value of the horizontal tilt sensor 12. After that, the value of the horizontal tilt sensor 12 is read and stored again in a posture rotated by 180 ° in the horizontal direction from that posture. The values of the horizontal tilt sensor 12 in both postures are compared, and the tilt of the table on which both values match is found. Then, by storing the value of the horizontal tilt sensor 12 at the tilt of the table where the values of the horizontal tilt sensor 12 in both postures match as the tilt offset value, the amount of deviation (offset amount) of the horizontal tilt sensor 12 with respect to the absolute horizontal is recognized. To do. The method for measuring the tilt offset value in the uniaxial tilt sensors 29 and 30 of the laser rotation irradiation mechanism 3 is also the same.

続いて、ステップS2として、光波距離測定機構2の天板17の上にレーザ回転照射機構3を載置する(載置工程)。 Subsequently, as step S2, the laser rotation irradiation mechanism 3 is placed on the top plate 17 of the light wave distance measuring mechanism 2 (mounting step).

ステップS3として、光波距離測定機構2の整準部による整準を行う(整準工程)。詳しくは、レーザ回転照射機構3を光波距離測定機構2に載せた状態で、上記ステップS1においてチルトオフセット値を測定済みの水平チルトセンサ12に基づき、レーザ測量装置1の整準を行う。 As step S3, leveling is performed by the leveling portion of the light wave distance measuring mechanism 2 (leveling step). Specifically, with the laser rotation irradiation mechanism 3 mounted on the light wave distance measuring mechanism 2, the laser measuring device 1 is leveled based on the horizontal tilt sensor 12 whose tilt offset value has already been measured in step S1.

ステップS4として、光波距離測定機構2の上に載せた状態でレーザ回転照射機構3における一対の一軸チルトセンサ29、30に対して、再度チルトオフセット値の測定を行う(第2のチルトオフセット値測定工程)。つまり、光波距離測定機構2とレーザ回転照射機構3とが一体の状態で、水平方向に180°回転させて一軸チルトセンサ29、30の値が一致する台の傾きを探し出す。こうして光波距離測定機構2とレーザ回転照射機構3とを組み立てた状態での一軸チルトセンサ29、30のオフセット値を測定する。 In step S4, the tilt offset value is measured again for the pair of uniaxial tilt sensors 29 and 30 in the laser rotation irradiation mechanism 3 while being mounted on the light wave distance measuring mechanism 2 (second tilt offset value measurement). Process). That is, in a state where the light wave distance measuring mechanism 2 and the laser rotation irradiation mechanism 3 are integrated, they are rotated by 180 ° in the horizontal direction to find out the inclination of the table on which the values of the uniaxial tilt sensors 29 and 30 match. In this way, the offset values of the uniaxial tilt sensors 29 and 30 with the light wave distance measuring mechanism 2 and the laser rotation irradiation mechanism 3 assembled are measured.

そして、ステップS5として、上記ステップS4で測定した一軸チルトセンサ29、30のチルトオフセット値を用いて、レーザ回転照射機構3の鉛直軸が重力方向となるように調整ねじ24、25の締め度合いを調節し、鉛直軸が重力方向と一致した姿勢で固定ねじ26、27、28によりレーザ回転照射機構3を光波距離測定機構2に固定する(固定工程)。 Then, in step S5, using the tilt offset values of the uniaxial tilt sensors 29 and 30 measured in step S4, the degree of tightening of the adjusting screws 24 and 25 is adjusted so that the vertical axis of the laser rotation irradiation mechanism 3 is in the direction of gravity. The laser rotation irradiation mechanism 3 is fixed to the light wave distance measuring mechanism 2 by the fixing screws 26, 27, 28 in a posture in which the vertical axis coincides with the direction of gravity (fixing step).

最後に、ステップS6として、レーザ回転照射機構3からレーザ光線L2を照射し、当該レーザ光線L2が水平方向に照射されるよう光波距離測定機構2の整準部を駆動して光波距離測定機構2及び前記レーザ回転照射機構3の一体としての姿勢を調整する(レーザ照射調整工程)。なお、この調整後の姿勢にて一軸チルトセンサ29、30のチルトオフセット値を更新する。 Finally, in step S6, the laser rotation irradiation mechanism 3 irradiates the laser beam L2, and the leveling portion of the light wave distance measurement mechanism 2 is driven so that the laser beam L2 is irradiated in the horizontal direction. And the posture of the laser rotation irradiation mechanism 3 as an integral body is adjusted (laser irradiation adjustment step). The tilt offset values of the uniaxial tilt sensors 29 and 30 are updated in the adjusted posture.

以上のようにして、レーザ測量装置1の鉛直軸を設定する。このように、事前に光波距離測定機構2及びレーザ回転照射機構3のそれぞれのチルトセンサについてチルトオフセット値を測定しておき、レーザ回転照射機構3の載置後に光波距離測定機構2の整準部により整準した上で、再度レーザ回転照射機構3のチルトセンサのオフセット値を測定して、当該レーザ回転照射機構3の姿勢の調整及び固定を行うことで、光波距離測定機構2及びレーザ回転照射機構3それぞれの鉛直軸が略重力方向と一致することとなる。 As described above, the vertical axis of the laser surveying device 1 is set. In this way, the tilt offset value is measured in advance for each of the tilt sensors of the light wave distance measuring mechanism 2 and the laser rotation irradiation mechanism 3, and the leveling portion of the light wave distance measuring mechanism 2 is placed after the laser rotation irradiation mechanism 3 is placed. By measuring the offset value of the tilt sensor of the laser rotation irradiation mechanism 3 again and adjusting and fixing the posture of the laser rotation irradiation mechanism 3, the light wave distance measurement mechanism 2 and the laser rotation irradiation are performed. The vertical axis of each mechanism 3 coincides with the direction of gravity.

さらに、最後にレーザ回転照射機構3によるレーザ照射を行い、レーザ光線L2が水平方向に照射されるようレーザ測量装置1の姿勢を調整することで、より正確に基準面を形成することができることとなる。 Further, by finally performing laser irradiation by the laser rotation irradiation mechanism 3 and adjusting the posture of the laser surveying device 1 so that the laser beam L2 is irradiated in the horizontal direction, the reference plane can be formed more accurately. Become.

また、このように光波距離測定機構2とレーザ回転照射機構3とを備えるレーザ測量装置1として、光波距離測定機構2が整準部を有し、光波距離測定機構2とレーザ回転照射機構3のそれぞれにチルトセンサ12、29、30を有しており、レーザ回転照射機構3が調整ねじ24、25及び固定ねじ26、27、28により光波距離測定機構2に対する姿勢を調整した上で固定できる構成であることで、両機構2、3を組み立てる際に鉛直軸を効率よく設定することができる。 Further, as the laser measuring device 1 including the light wave distance measuring mechanism 2 and the laser rotation irradiation mechanism 3, the light wave distance measuring mechanism 2 has a leveling portion, and the light wave distance measuring mechanism 2 and the laser rotation irradiation mechanism 3 Each has tilt sensors 12, 29, and 30, and the laser rotation irradiation mechanism 3 can be fixed after adjusting the attitude with respect to the light wave distance measuring mechanism 2 by the adjusting screws 24, 25 and the fixing screws 26, 27, 28. Therefore, the vertical axis can be efficiently set when assembling both mechanisms 2 and 3.

また、光波距離測定機構2とレーザ回転照射機構3のそれぞれにチルトセンサ12、29、30を設けていることで、離れた位置にある各機構2、3においても、それぞれの傾斜状態を正確に検知することができる。特に、レーザ回転照射機構3が有する一対の一軸チルトセンサ29、30は光波距離測定機構2が有する水平チルトセンサ12よりも傾きを検出する精度が高いことで、光波距離測定機構2の上に設けられるためにより精度の求められるレーザ回転照射機構3の姿勢調整を正確に行うことができる。チルトセンサが上下2ヶ所に分かれているのは、位置が離れている為、熱膨張などで1ヶ所のセンサで両方の状態を監視しきれない為です。トータルステーションの測角値はチルトのズレ分を計算して補正する方法が確立されていますので、第2のセンサが水平になるようにし、第1のセンサのズレ分は補正して使用します。 Further, by providing the tilt sensors 12, 29, and 30 in the light wave distance measuring mechanism 2 and the laser rotation irradiation mechanism 3, respectively, the tilted states of the respective mechanisms 2 and 3 at distant positions can be accurately measured. It can be detected. In particular, the pair of uniaxial tilt sensors 29 and 30 included in the laser rotation irradiation mechanism 3 are provided on the light wave distance measuring mechanism 2 because the accuracy of detecting the tilt is higher than that of the horizontal tilt sensor 12 included in the light wave distance measuring mechanism 2. Therefore, it is possible to accurately adjust the posture of the laser rotation irradiation mechanism 3 which requires more accuracy. The tilt sensor is divided into two parts, upper and lower, because the positions are separated and it is not possible to monitor both states with one sensor due to thermal expansion. Since a method has been established to calculate and correct the tilt deviation of the total station, make sure that the second sensor is horizontal and correct the deviation of the first sensor before use.

さらに、光波距離測定機構2が有する整準部が自動整準機能を有していることで、上記ステップS3での整準や、現場における整準作業を簡易化することができる。 Further, since the leveling portion of the light wave distance measuring mechanism 2 has an automatic leveling function, the leveling in step S3 and the leveling work in the field can be simplified.

以上のことから、本実施形態に係るレーザ測量装置1の製造方法及びレーザ測量装置1によれば、光波距離測定機構2とレーザ回転照射機構3とが一体に構成されるレーザ測量装置1において、両機構2、3の鉛直軸を効率よく正確に設定することができる。 From the above, according to the manufacturing method of the laser surveying device 1 and the laser surveying device 1 according to the present embodiment, in the laser surveying device 1 in which the light wave distance measuring mechanism 2 and the laser rotation irradiation mechanism 3 are integrally formed. The vertical axes of both mechanisms 2 and 3 can be set efficiently and accurately.

以上で本発明の実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。 Although the description of the embodiment of the present invention is completed above, the aspect of the present invention is not limited to this embodiment.

上記実施形態では、光波距離測定機構2に水平チルトセンサ12を、レーザ回転照射機構3に一対の一軸チルトセンサ29、30を設けており、この組み合わせが好ましくはあるが、それぞれの機構に設けられるチルトセンサは必ずしもこれに限られるものではない。例えば、光波距離測定機構に一対の一軸チルトセンサを設けてもよいし、レーザ回転照射機構に水平チルトセンサを設けてもよい。 In the above embodiment, the light wave distance measuring mechanism 2 is provided with the horizontal tilt sensor 12, and the laser rotation irradiation mechanism 3 is provided with the pair of uniaxial tilt sensors 29 and 30, and although this combination is preferable, it is provided in each mechanism. The tilt sensor is not necessarily limited to this. For example, the light wave distance measuring mechanism may be provided with a pair of uniaxial tilt sensors, or the laser rotation irradiation mechanism may be provided with a horizontal tilt sensor.

また、上記実施形態では、レーザ回転照射機構3の姿勢調整を調整ねじ24、25により行い、固定を固定ねじ26、27、28により行っているが、レーザ回転照射機構3の姿勢調整手段及び固定手段はこれに限られるものではない。 Further, in the above embodiment, the posture of the laser rotation irradiation mechanism 3 is adjusted by the adjusting screws 24 and 25, and the fixing is performed by the fixing screws 26, 27 and 28. However, the posture adjusting means and fixing of the laser rotation irradiation mechanism 3 are performed. The means are not limited to this.

1 レーザ測量装置
2 光波距離測定機構
3 レーザ回転照射機構
10 基台部
11 回転基板
12 水平チルトセンサ(第1のチルトセンサ)
13、14 支柱部
15 望遠鏡部
16 測量制御部
17 天板
20 鍔部
21 円柱部
22 レーザ照射部
23 支点部
24、25 調整ねじ(姿勢調整部)
26、27、28 固定ねじ(固定部)
29、30 一軸チルトセンサ(第2のチルトセンサ)
1 Laser surveying device 2 Light wave distance measuring mechanism 3 Laser rotating irradiation mechanism 10 Base 11 Rotating board 12 Horizontal tilt sensor (first tilt sensor)
13, 14 Strut part 15 Telescope part 16 Surveying control part 17 Top plate 20 Flange part 21 Cylindrical part 22 Laser irradiation part 23 Abutment part 24, 25 Adjustment screw (posture adjustment part)
26, 27, 28 Fixing screw (fixing part)
29, 30 Uniaxial tilt sensor (second tilt sensor)

Claims (3)

少なくとも測距を行う光波距離測定機構と、レーザ光線を回転照射して基準面を形成するレーザ回転照射機構とを一体に備えるレーザ測量装置の製造方法であって、
前記光波距離測定機構及び前記レーザ回転照射機構が別体の状態で、前記光波距離測定機構が有する第1のチルトセンサ及び前記レーザ回転照射機構が有する第2のチルトセンサそれぞれのチルトオフセット値を測定する第1のチルトオフセット値測定工程と、
前記レーザ回転照射機構を前記光波距離測定機構に載置する載置工程と、
前記光波距離測定機構が有する整準部により整準を行う整準工程と、
前記光波距離測定機構に固定する固定工程と、
を備えるレーザ測量装置の製造方法。
It is a method for manufacturing a laser surveying apparatus that integrally includes at least a light wave distance measuring mechanism for measuring a distance and a laser rotating irradiation mechanism for forming a reference plane by rotating a laser beam.
With the light wave distance measuring mechanism and the laser rotation irradiation mechanism separate, the tilt offset values of the first tilt sensor of the light wave distance measuring mechanism and the second tilt sensor of the laser rotation irradiation mechanism are measured. The first tilt offset value measuring step and
A mounting step of mounting the laser rotation irradiation mechanism on the light wave distance measuring mechanism, and
A leveling step in which leveling is performed by the leveling portion of the light wave distance measuring mechanism, and
The fixing process of fixing to the light wave distance measuring mechanism and
A method of manufacturing a laser surveying apparatus comprising.
前記光波距離測定機構に前記レーザ回転照射機構が載置された状態で、前記第2のチルトセンサのチルトオフセット値を測定する第2のチルトオフセット値測定工程を、さらに備え、
前記固定工程は、前記第2のチルトオフセット値に基づき前記レーザ回転照射機構の姿勢を調整して前記光波距離測定機構に固定する、請求項1に記載のレーザ測量装置の製造方法。
A second tilt offset value measuring step for measuring the tilt offset value of the second tilt sensor is further provided with the laser rotation irradiation mechanism mounted on the light wave distance measuring mechanism.
The method for manufacturing a laser surveying apparatus according to claim 1, wherein the fixing step adjusts the posture of the laser rotation irradiation mechanism based on the second tilt offset value and fixes the laser rotation irradiation mechanism to the light wave distance measuring mechanism.
前記固定工程の後、前記レーザ回転照射機構によりレーザ光線を照射し、当該レーザ光線の照射方向が水平となるように、前記光波距離測定機構が有する整準部により前記光波距離測定機構及び前記レーザ回転照射機構の一体としての姿勢を調整するレーザ照射調整工程を、さらに備える請求項1又は2に記載のレーザ測量装置の製造方法。
After the fixing step, the laser beam is irradiated by the laser rotation irradiation mechanism, and the light wave distance measuring mechanism and the laser are subjected to the leveling portion of the light wave distance measuring mechanism so that the irradiation direction of the laser beam becomes horizontal. The method for manufacturing a laser surveying apparatus according to claim 1 or 2, further comprising a laser irradiation adjusting step for adjusting the posture as an integral part of the rotary irradiation mechanism.
JP2016162452A 2016-08-23 2016-08-23 Manufacturing method of laser surveying equipment Active JP6794175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016162452A JP6794175B2 (en) 2016-08-23 2016-08-23 Manufacturing method of laser surveying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016162452A JP6794175B2 (en) 2016-08-23 2016-08-23 Manufacturing method of laser surveying equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020146299A Division JP6999759B2 (en) 2020-08-31 2020-08-31 Laser surveyor

Publications (3)

Publication Number Publication Date
JP2018031613A JP2018031613A (en) 2018-03-01
JP2018031613A5 JP2018031613A5 (en) 2019-09-26
JP6794175B2 true JP6794175B2 (en) 2020-12-02

Family

ID=61303218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016162452A Active JP6794175B2 (en) 2016-08-23 2016-08-23 Manufacturing method of laser surveying equipment

Country Status (1)

Country Link
JP (1) JP6794175B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112916515B (en) * 2021-03-15 2022-07-05 西安唐人电子科技有限公司 Mechanical arm posture self-adaptive adjusting method for laser paint removal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734336Y2 (en) * 1989-07-28 1995-08-02 株式会社ソキア Surveyor equipped with irradiation optics
EP1503175A1 (en) * 2003-07-28 2005-02-02 Leica Geosystems AG Device and method for calibrating the alignment of a device under test
DE102005000048A1 (en) * 2005-04-29 2006-11-02 Hilti Ag Tiltable construction laser
JP2013190272A (en) * 2012-03-13 2013-09-26 Kyushu Univ Three-dimensional laser measuring apparatus and three-dimensional laser measuring method

Also Published As

Publication number Publication date
JP2018031613A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6560596B2 (en) Surveying equipment
US7715998B2 (en) Surveying instrument
JP6436695B2 (en) Surveying device and installation method of surveying device
CN100562715C (en) Be used to check or calibrate the equipment of the angular dependence (-dance) aligning of high-precision test piece
JP6584226B2 (en) measuring device
JP6577295B2 (en) measuring device
US20100064534A1 (en) Grade indicating device and method
JP6943742B2 (en) Assembling method of surveying device and total station and 2D laser scanner
CN108291810B (en) Method for checking a cone error of a rotating laser
JP2022153541A (en) Surveying device, surveying method, and program
WO2012013280A1 (en) Device for optically scanning and measuring an environment
JP2007132716A (en) Laser survey instrument
JP2018535423A (en) Method for inspecting and / or calibrating the vertical axis of a rotating laser
CN107345795B (en) Rotary laser for measuring machine tools
JP2017527352A (en) Position detector
JP2012112953A (en) Rotating laser device and method for aligning rotating laser device
EP2327958A1 (en) Rotating construction laser with a dual grade mechanism
JP6999759B2 (en) Laser surveyor
JP6794175B2 (en) Manufacturing method of laser surveying equipment
US20210285766A1 (en) Optical surveying instrument with movable mirror
JP2021043155A (en) Three-dimensional surveying device, three-dimensional surveying method and three-dimensional surveying program
JP6826399B2 (en) Automatic leveling method for laser surveying equipment and laser surveying equipment
US6160616A (en) Laser system
JP6826400B2 (en) Surveying device and tilt angle detection method
JPH11325899A (en) Laser device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201111

R150 Certificate of patent or registration of utility model

Ref document number: 6794175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250