JP6793287B2 - Biological signal measuring device and biological signal measuring method - Google Patents

Biological signal measuring device and biological signal measuring method Download PDF

Info

Publication number
JP6793287B2
JP6793287B2 JP2016056512A JP2016056512A JP6793287B2 JP 6793287 B2 JP6793287 B2 JP 6793287B2 JP 2016056512 A JP2016056512 A JP 2016056512A JP 2016056512 A JP2016056512 A JP 2016056512A JP 6793287 B2 JP6793287 B2 JP 6793287B2
Authority
JP
Japan
Prior art keywords
signal
living body
vibration
biological
digital signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016056512A
Other languages
Japanese (ja)
Other versions
JP2017169647A (en
Inventor
健 安達
健 安達
恭一 尾野
恭一 尾野
伊藤 昭彦
昭彦 伊藤
哲也 預幡
哲也 預幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Original Assignee
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC filed Critical Akita University NUC
Priority to JP2016056512A priority Critical patent/JP6793287B2/en
Publication of JP2017169647A publication Critical patent/JP2017169647A/en
Application granted granted Critical
Publication of JP6793287B2 publication Critical patent/JP6793287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、心臓血管系や呼吸器系から生じる生体信号を測定する生体信号測定装置等に関するものである。 The present invention relates to a biological signal measuring device or the like for measuring biological signals generated from a cardiovascular system or a respiratory system.

従来、心臓血管系や呼吸器系から生じる生体信号は、それぞれ専用の測定センサを用いて測定されている。例えば、心機能は心臓超音波検査で測定されるが、心臓超音波検査は高価で、労力のかかる検査である。また、循環血液量を推定する中心静脈圧測定は中心静脈カテーテルを挿入して計測されるが、侵襲性が高い手技である。また、呼吸数や呼吸状態を計測する場合、胸壁インピーダンス法、カプノグラフィといった呼吸数計測はそれぞれ信頼性が低いこと、快適性や忍容性が低いことなどが問題となる。信頼性が高いカプノグラフィは鼻カニュラやマスクを要することから、これらが外れた場合は測定できず、鼻カニュラやマスクを装着困難な場面も多い。以上のことから、快適性や忍容性が高く、非侵襲的に測定が可能な単一のセンサを用いて、高精度に複数の生体信号を測定することが望まれている。 Conventionally, biological signals generated from the cardiovascular system and the respiratory system have been measured using dedicated measurement sensors. For example, cardiac function is measured by echocardiography, which is an expensive and labor-intensive test. In addition, the central venous pressure measurement for estimating the circulating blood volume is measured by inserting a central venous catheter, which is a highly invasive procedure. In addition, when measuring the respiratory rate and the respiratory state, there are problems that the respiratory rate measurement such as the chest wall impedance method and the capnography is unreliable, and the comfort and tolerability are low. Since highly reliable capnography requires a nasal cannula or mask, it cannot be measured if these are removed, and it is often difficult to wear the nasal cannula or mask. From the above, it is desired to measure a plurality of biological signals with high accuracy by using a single sensor which is highly comfortable and tolerable and can measure non-invasively.

特許文献1には、音センサを支持するセンサ支持部と、指で持つための操作部とを備えた生体音取得端末が開示され、生体音取得端末からの信号のうち20〜100Hz成分をバンドパス処理した波形が開示されている。 Patent Document 1 discloses a biological sound acquisition terminal including a sensor support portion that supports a sound sensor and an operation unit for holding with a finger, and bands a 20 to 100 Hz component of a signal from the biological sound acquisition terminal. The pass-processed waveform is disclosed.

特開2012−90909号公報Japanese Unexamined Patent Publication No. 2012-090909

しかしながら、特許文献1に記載の生体音取得端末は、測定者が持ち続ける必要があるため、長時間の監視の用途には向いていない。また、信号処理については、20〜100Hz成分をバンドパス処理することしか記載されておらず、バンドパス処理した波形の意味付けやその他の生体信号を測定できるか否かが不明である。 However, the biological sound acquisition terminal described in Patent Document 1 is not suitable for long-term monitoring because it needs to be held by the measurer. Further, regarding signal processing, only bandpass processing of 20 to 100 Hz components is described, and it is unclear whether the meaning of the bandpass processed waveform and other biological signals can be measured.

本発明は、前述した問題点に鑑みてなされたものであり、その目的とすることは、長時間の監視に利用可能であって、快適性や忍容性が高く、非侵襲的な単一のセンサを用いて、高精度に複数の生体信号を測定可能な生体信号測定装置等を提供することである。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is that it can be used for long-term monitoring, is highly comfortable and tolerable, and is non-invasive. It is an object of the present invention to provide a biological signal measuring device or the like capable of measuring a plurality of biological signals with high accuracy by using the above sensors.

前述した目的を達成するための第1の発明は、生体の胸部の体表に貼り付けられ、前記生体が発する振動を電圧に変換する圧電素子を備えるセンサを用いて、前記生体の信号を測定する生体信号測定装置であって、前記圧電素子から出力される第1の電気信号を入力し、前記第1の電気信号を増幅し、増幅される前記第1の電気信号を第1のデジタル信号に変換する信号変換部と、前記第1のデジタル信号を微分して前記生体の心臓運動振動信号とし、前記第1のデジタル信号を20〜100Hzの範囲内の帯域通過フィルタによってフィルタリングして前記生体の心音信号とし、前記第1のデジタル信号を閾値が100〜400Hzの範囲内の高域通過フィルタによってフィルタリングして前記生体の呼吸気流音信号とし、前記第1のデジタル信号を閾値が0.3〜0.5Hzの範囲内の低域通過フィルタによってフィルタリングして前記生体の胸郭呼吸運動信号とする信号処理を行う制御部を備えることを特徴とする生体信号測定装置である。第1の発明によって、長時間の監視に利用可能であって、快適性や忍容性が高く、非侵襲的な単一のセンサを用いて、高精度に複数の生体信号を測定可能となる。 The first invention for achieving the above-mentioned object is to measure a signal of the living body by using a sensor attached to the body surface of the chest of the living body and provided with a piezoelectric element for converting the vibration generated by the living body into a voltage. A biological signal measuring device that inputs a first electric signal output from the piezoelectric element, amplifies the first electric signal, and amplifies the first electric signal as a first digital signal. The first digital signal is differentiated into the cardiac motion vibration signal of the living body, and the first digital signal is filtered by a band passage filter in the range of 20 to 100 Hz to obtain the living body. The first digital signal is filtered by a high-pass filter having a threshold value in the range of 100 to 400 Hz to obtain the breathing airflow sound signal of the living body, and the first digital signal has a threshold value of 0.3. The biological signal measuring device is characterized by comprising a control unit that performs signal processing to obtain the thoracic respiratory movement signal of the living body by filtering with a low frequency passing filter in the range of ~ 0.5 Hz . According to the first invention, it is possible to measure a plurality of biological signals with high accuracy by using a single non-invasive sensor that can be used for long-term monitoring, is highly comfortable and tolerated. ..

第1の発明における前記センサは、前記生体が発する振動を前記圧電素子に伝達する可撓性の振動伝達板を更に備え、前記圧電素子は、前記振動伝達板の長手方向の略中央に設けられ、前記振動伝達板は、前記生体の胸骨上の体表に貼り付けられるようにしても良い。胸骨上の体表は男女を問わず略平坦な形状であるため、板状の振動伝達板であっても確実に貼り付けることが可能である。また、生体の胸骨上の体表は、心臓及び気管に近い部位であるため、心音や呼吸音等に起因する生体の振動の信号を精度良く検出することができる。 The sensor in the first invention further includes a flexible vibration transmission plate that transmits the vibration generated by the living body to the piezoelectric element, and the piezoelectric element is provided substantially at the center in the longitudinal direction of the vibration transmission plate. , The vibration transmission plate may be attached to the body surface on the thoracic bone of the living body. Since the body surface on the sternum has a substantially flat shape regardless of gender, even a plate-shaped vibration transmission plate can be reliably attached. Further, since the body surface on the sternum of the living body is a part close to the heart and the trachea, it is possible to accurately detect the vibration signal of the living body caused by heart sounds, breath sounds and the like.

第1の発明における前記センサは、前記生体が発する第2の電気信号を検出する一対の心電電極を更に備え、前記信号変換部は、更に、前記第2の電気信号を入力し、前記第2の電気信号を増幅し、前記第2の電気信号を第2のデジタル信号に変換し、前記制御部は、更に、前記第2のデジタル信号を心電図信号とし、前記心電図信号、前記心臓運動振動信号、前記心音信号、前記呼吸気流音信号及び前記胸郭呼吸運動信号のうち少なくとも2つの信号に基づいて、前記生体の機能評価を支援する状態評価支援情報を生成するようにしても良い。これによって、心血管系及び呼吸器系の状態評価を支援することができる。 The sensor in the first invention further includes a pair of electrocardiographic electrodes that detect a second electrical signal emitted by the living body, and the signal conversion unit further inputs the second electrical signal and the first. The electric signal of 2 is amplified, the second electric signal is converted into a second digital signal, and the control unit further converts the second digital signal into an electrocardiogram signal, and the electrocardiogram signal and the cardiac motion vibration. State evaluation support information that supports the functional evaluation of the living body may be generated based on at least two signals of the signal, the heart sound signal, the breathing airflow sound signal, and the thoracic respiratory movement signal. This can support the assessment of cardiovascular and respiratory conditions.

第1の発明における前記制御部は、前記心電図信号、又は前記心音信号と前記心臓運動振動信号自身に基づいて前記心臓運動振動信号における前記生体の僧帽弁の閉鎖及び開放並びに前記生体の大動脈弁の閉鎖及び開放の各時刻を特定し、特定される各時刻に基づいて前記生体の心機能評価に係る前記状態評価支援情報を生成するようにしても良い。これによって、心収縮能、心拡張能及び総合的心機能の評価を支援することができる。 The control unit in the first invention closes and opens the mitral valve of the living body in the cardiac motion vibration signal based on the electrocardiogram signal or the heart sound signal and the heart motion vibration signal itself, and the aortic valve of the living body. The closing and opening times of the above may be specified, and the state evaluation support information related to the cardiac function evaluation of the living body may be generated based on the specified times. This can support the evaluation of cardiac contractility, cardiac diastolic function and overall cardiac function.

第1の発明における前記制御部は、前記心電図信号、又は前記心臓運動振動信号自身に基づいて前記心臓運動振動信号における各心拍の基準時刻を特定し、特定される前記基準時刻に基づいて複数の心拍分の前記心臓運動振動信号の同期を取り、複数の心拍分の前記心臓運動振動信号の波形の加算平均を算出し、算出される前記加算平均に基づいて前記生体の心房細動評価に係る前記状態評価支援情報を生成するようにしても良い。これによって、心房細動の検出を支援することができる。 The control unit in the first invention specifies a reference time for each heartbeat in the cardiac motion vibration signal based on the electrocardiogram signal or the cardiac motion vibration signal itself, and a plurality of reference times based on the specified reference time. Synchronizing the cardiac motility vibration signals for heartbeats, calculating the added average of the waveforms of the cardiac motility vibration signals for a plurality of heartbeats, and relating to the evaluation of atrial fibrillation of the living body based on the calculated added averages. The state evaluation support information may be generated. This can assist in the detection of atrial fibrillation.

第1の発明における前記制御部は、前記呼吸気流音信号及び前記胸郭呼吸運動信号に基づいて、無呼吸評価に係る前記状態評価支援情報を生成するようにしても良い。これによって、無呼吸の評価を支援することができる。 The control unit in the first invention may generate the state evaluation support information related to the apnea evaluation based on the breathing airflow sound signal and the thoracic respiratory movement signal. This can support the assessment of apnea.

第2の発明は、生体の胸部の体表に貼り付けられ、前記生体が発する振動を電圧に変換する圧電素子を備えるセンサを用いて、前記生体の信号を測定する生体信号測定方法であって、信号変換部が、前記圧電素子から出力される第1の電気信号を入力し、前記第1の電気信号を増幅し、増幅される前記第1の電気信号を第1のデジタル信号に変換するステップと、制御部が、前記第1のデジタル信号を微分して前記生体の心臓運動振動信号とし、前記第1のデジタル信号を20〜100Hzの範囲内の帯域通過フィルタによってフィルタリングして前記生体の心音信号とし、前記第1のデジタル信号を閾値が100〜400Hzの範囲内の高域通過フィルタによってフィルタリングして前記生体の呼吸気流音信号とし、前記第1のデジタル信号を閾値が0.3〜0.5Hzの範囲内の低域通過フィルタによってフィルタリングして前記生体の胸郭呼吸運動信号とする信号処理を行うステップを実行することを特徴とする生体信号測定方法である。第2の発明によって、長時間の監視に利用可能であって、快適性や忍容性が高く、非侵襲的な単一のセンサを用いて、高精度に複数の生体信号を測定可能となる。 The second invention is a biological signal measuring method for measuring a signal of the living body by using a sensor attached to the body surface of the chest of the living body and having a piezoelectric element for converting the vibration generated by the living body into a voltage. , The signal conversion unit inputs the first electric signal output from the piezoelectric element, amplifies the first electric signal, and converts the amplified first electric signal into a first digital signal. The step and the control unit differentiate the first digital signal into the cardiac motion vibration signal of the living body, and filter the first digital signal by a band passing filter in the range of 20 to 100 Hz to obtain the living body. and heart sound signal, the first threshold value digital signal is filtered by a high pass filter in the range of 100~400Hz the respiratory airflow sound signal of the living body, 0.3 a threshold said first digital signal It is a biological signal measurement method characterized by executing a step of performing signal processing to obtain the thoracic respiratory movement signal of the living body by filtering with a low frequency passing filter within the range of 0.5 Hz . The second invention makes it possible to measure a plurality of biological signals with high accuracy by using a single non-invasive sensor that can be used for long-term monitoring, is highly comfortable and tolerated. ..

本発明により、長時間の監視に利用可能であって、快適性や忍容性が高く、非侵襲的な単一のセンサを用いて、高精度に複数の生体信号を測定可能な生体信号測定装置等を提供することができる。 According to the present invention, biological signal measurement that can be used for long-term monitoring, is highly comfortable and tolerable, and can measure a plurality of biological signals with high accuracy using a single non-invasive sensor. Equipment and the like can be provided.

生体に貼り付けられるセンサ100を示す図The figure which shows the sensor 100 attached to the living body センサ100の斜視図Perspective view of sensor 100 センサ100の分解斜視図An exploded perspective view of the sensor 100 振動伝達板11の幅方向中心を通り、振動伝達板11の幅方向に直交する切断面によって切断されたセンサ100の断面図Cross-sectional view of the sensor 100 that passes through the center of the vibration transmission plate 11 in the width direction and is cut by a cut surface orthogonal to the width direction of the vibration transmission plate 11. 生体信号測定装置1の構成図Configuration diagram of biological signal measuring device 1 生体信号測定装置1による生体信号測定処理の流れを示すフローチャートA flowchart showing the flow of the biological signal measurement process by the biological signal measuring device 1. 心電図信号、胸壁振動信号及び心臓運動振動信号の信号波形の表示例Display example of signal waveforms of electrocardiogram signal, chest wall vibration signal, and cardiac motion vibration signal 心電図信号、胸壁振動信号及び心音信号の信号波形の表示例Display example of signal waveforms of electrocardiogram signal, chest wall vibration signal, and heartbeat signal 胸壁振動信号、胸郭呼吸運動信号及び呼吸気流音信号の信号波形の表示例Display example of signal waveforms of chest wall vibration signal, thoracic respiratory movement signal, and respiratory airflow sound signal 心電図信号、胸壁振動信号、心臓運動振動信号、心音信号、呼吸気流音信号及び胸郭呼吸運動信号の信号波形の表示例Display example of signal waveforms of electrocardiogram signal, chest wall vibration signal, heart movement vibration signal, heart sound signal, respiratory airflow sound signal and thoracic respiratory movement signal 心機能評価に係る状態評価支援情報の生成処理の一例を説明する図The figure explaining an example of the generation processing of the state evaluation support information related to the cardiac function evaluation 心房細動評価に係る状態評価支援情報の生成処理の一例を説明する図The figure explaining an example of the generation processing of the state evaluation support information related to the atrial fibrillation evaluation 心音評価に係る状態評価支援情報の生成処理の一例を説明する図The figure explaining an example of the generation processing of the state evaluation support information related to the heartbeat evaluation

以下図面に基づいて、本発明の実施形態を詳細に説明する。最初に、図1〜図4を参照しながら、本発明の実施形態に係るセンサ100を説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, the sensor 100 according to the embodiment of the present invention will be described with reference to FIGS. 1 to 4.

図1及び図2に示すように、センサ100は、生体が発する振動を電圧に変換する円盤型の圧電素子21と、長手方向(=図1における紙面の上下方向)及び長手方向と直交する幅方向(=図1における紙面の左右方向)を有し、生体が発する振動を圧電素子21に伝達する可撓性及び絶縁性の振動伝達板11と、振動伝達板11の長手方向の両端部に設けられる一対の係合機構311、321と、一対の係合機構311、321によって係合され、生体が発する電気信号を検出する一対の心電電極31、32と、圧電素子21の両面及び一対の心電電極31、32に電気的に接続される複数の導体パターンを束ねるフィルム電線41と、を備える。圧電素子21は、振動伝達板11の長手方向の中央部に設けられる。 As shown in FIGS. 1 and 2, the sensor 100 has a disk-shaped piezoelectric element 21 that converts vibration generated by a living body into a voltage, and a width orthogonal to the longitudinal direction (= the vertical direction of the paper surface in FIG. 1) and the longitudinal direction. A flexible and insulating vibration transmission plate 11 having a direction (= the left-right direction of the paper surface in FIG. 1) and transmitting the vibration generated by the living body to the piezoelectric element 21, and both ends of the vibration transmission plate 11 in the longitudinal direction. A pair of engaging mechanisms 311 and 321 provided, a pair of electrocardiographic electrodes 31 and 32 that are engaged by a pair of engaging mechanisms 311 and 321 to detect an electric signal emitted by a living body, and a pair of both sides and a pair of piezoelectric elements 21. A film electric wire 41 for bundling a plurality of conductor patterns electrically connected to the electrocardiographic electrodes 31 and 32 of the above is provided. The piezoelectric element 21 is provided at the center of the vibration transmission plate 11 in the longitudinal direction.

図1に示すように、センサ100は、生体の胸部の体表に貼り付けられる。望ましくは、センサ100は、生体の胸骨上の体表に貼り付けられる。呼吸運動では変形しないように思われる胸骨も、実際には呼吸運動によって僅かに変形している。振動伝達板11は、胸骨の変形によって生じる振動を圧電素子21に伝達する。言い換えると、圧電素子21は、生体が発する振動に起因する振動伝達板11の歪みを電圧に変換する。 As shown in FIG. 1, the sensor 100 is attached to the body surface of the chest of the living body. Desirably, the sensor 100 is attached to the body surface on the sternum of the living body. The sternum, which does not appear to be deformed by respiratory movement, is actually slightly deformed by respiratory movement. The vibration transmission plate 11 transmits the vibration generated by the deformation of the sternum to the piezoelectric element 21. In other words, the piezoelectric element 21 converts the distortion of the vibration transmission plate 11 caused by the vibration generated by the living body into a voltage.

胸骨上の体表は男女を問わず略平坦な形状であるため、板状の振動伝達板11であっても確実に貼り付けることが可能である。また、生体の胸骨上の体表は、心臓及び気管に近い部位であるため、心音や呼吸音等に起因する生体の振動の信号を精度良く検出することができる。また、生体の胸部の体表に貼り付けられるセンサ100は、腹部を切開して行う手術であっても邪魔にならない。また、生体の胸部の体表に貼り付けられるセンサ100は、呼吸以外の腹部の運動(例えば、手術による腹部の変形や体位の変更などの物理的な皮膚の変形)を誤って検出しにくいため、呼吸機能の監視を阻害しない。 Since the body surface on the sternum has a substantially flat shape regardless of gender, even a plate-shaped vibration transmission plate 11 can be reliably attached. Further, since the body surface on the sternum of the living body is a part close to the heart and the trachea, it is possible to accurately detect the vibration signal of the living body caused by heart sounds, breath sounds and the like. In addition, the sensor 100 attached to the body surface of the chest of the living body does not interfere with the operation performed by incising the abdomen. In addition, the sensor 100 attached to the body surface of the chest of the living body does not easily detect abdominal movements other than breathing (for example, physical skin deformation such as abdominal deformation or change of body position due to surgery) by mistake. , Does not interfere with the monitoring of respiratory function.

振動伝達板11の大きさは、生体の胸骨の大きさ以内が望ましい。本発明の実施形態では、振動伝達板11の長手方向の寸法は110mm、振動伝達板11の幅方向の寸法は30mmである。これらの寸法は、一般成人向けであり、小児や新生児には、胸骨の大きさに合わせて、振動伝達板11の長手方向の寸法を短くすることが望ましい。振動伝達板11の長手方向の寸法が80mm以上であれば、生体の信号の検出性能は良好である。 The size of the vibration transmission plate 11 is preferably within the size of the sternum of a living body. In the embodiment of the present invention, the vibration transmission plate 11 has a longitudinal dimension of 110 mm and the vibration transmission plate 11 has a width dimension of 30 mm. These dimensions are for general adults, and for children and newborns, it is desirable to shorten the longitudinal dimension of the vibration transmission plate 11 according to the size of the sternum. When the dimension of the vibration transmission plate 11 in the longitudinal direction is 80 mm or more, the signal detection performance of the biological body is good.

また、振動伝達板11の材料としては、適度な復元性を有する弾性のプラスチックを用いる。振動伝達板11の厚さは、胸郭呼吸運動に特徴的な0.5Hz以下の低周波帯、心音に特徴的な20〜100Hz近傍の周波数帯、及び呼吸音に特徴的である100〜400Hz近傍の周波数帯の全てを検出できる適度な厚さにする必要があり、0.3mm〜2.0mmが望ましい。本発明の実施形態では、振動伝達板11の材料はガラスエポキシ板と塩化ビニル樹脂(PVC)の複合材料を用い、振動伝達板11の厚さは1.0mmである。 Further, as the material of the vibration transmission plate 11, an elastic plastic having an appropriate resilience is used. The thickness of the vibration transmission plate 11 is a low frequency band of 0.5 Hz or less, which is characteristic of thoracic respiratory movements, a frequency band of 20 to 100 Hz, which is characteristic of heart sounds, and a frequency band of 100 to 400 Hz, which is characteristic of breath sounds. It is necessary to have an appropriate thickness that can detect all of the frequency bands of, and 0.3 mm to 2.0 mm is desirable. In the embodiment of the present invention, the material of the vibration transmission plate 11 is a composite material of a glass epoxy plate and a vinyl chloride resin (PVC), and the thickness of the vibration transmission plate 11 is 1.0 mm.

図3及び図4に示すように、振動伝達板11は、圧電素子21が載置される基板111と、基板111と接着される被覆板112と、を有する。基板111には、一対の係合機構311、321と銅箔の導体パターン151、152、153、154、211が形成されている。圧電素子21の両面は、導体パターン151、152、211を介してフィルム電線41に電気的に接続されている。一対の心電電極31、32は、導体パターン153及び154を介してフィルム電線41に電気的に接続されている。フィルム電線41は、後述する生体信号測定装置1に電気的に接続されている。 As shown in FIGS. 3 and 4, the vibration transmission plate 11 has a substrate 111 on which the piezoelectric element 21 is placed and a coating plate 112 adhered to the substrate 111. A pair of engaging mechanisms 311, 321 and copper foil conductor patterns 151, 152, 153, 154, and 211 are formed on the substrate 111. Both sides of the piezoelectric element 21 are electrically connected to the film electric wire 41 via conductor patterns 151, 152, and 211. The pair of electrocardiographic electrodes 31 and 32 are electrically connected to the film electric wire 41 via the conductor patterns 153 and 154. The film electric wire 41 is electrically connected to the biological signal measuring device 1 described later.

被覆板112は、圧電素子21、一対の係合機構311、321及び導体パターン151、152、153、154、211を挟んで基板111と圧着される。被覆板112には、振動伝達板11に形成されている一対の係合機構311、321と対向する位置に円形状の孔が形成されている。 The covering plate 112 is crimped to the substrate 111 with the piezoelectric element 21, the pair of engaging mechanisms 311, 321 and the conductor patterns 151, 152, 153, 154, 211 interposed therebetween. The covering plate 112 is formed with a circular hole at a position facing the pair of engaging mechanisms 311 and 321 formed on the vibration transmission plate 11.

圧電素子21が生体の振動を効率良く電気信号に変換するため、基板111及び被覆板112は隙間なく密着させることが望ましい。本発明の実施形態では、被覆板112を加熱して柔らかくし、圧電素子21の形状に変形密着させて圧着する。このため、被覆板112の材料には、熱可塑性を有するプラスチックが望ましく、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、塩化ビニル樹脂(PVC)、ポリスチレン(PS)、ABS樹脂(ABS)、ポリエチレンテフタレート(PET)、アクリル樹脂(PMMA)、ポリカーボネート(PC)または、ポリアミド(PA)が望ましい。本発明の実施形態では、被覆板112の材料として、安価で加工性に優れる厚さ0.5mmの塩化ビニル樹脂(PVC)を用いる。熱可塑性を有するプラスチックは、加熱(ポリマー分子のガラス転移点以上)の際に製造時の圧延方向に収縮する性質があるため、被覆板112を加熱して圧着する前にアニール処理しておくことが望ましい。 In order for the piezoelectric element 21 to efficiently convert the vibration of the living body into an electric signal, it is desirable that the substrate 111 and the covering plate 112 are in close contact with each other without any gaps. In the embodiment of the present invention, the covering plate 112 is heated to be softened, deformed and adhered to the shape of the piezoelectric element 21, and crimped. Therefore, the material of the covering plate 112 is preferably a plastic having thermoplasticity, for example, polyethylene (PE), polypropylene (PP), vinyl chloride resin (PVC), polystyrene (PS), ABS resin (ABS), polyethylene. Teflate (PET), acrylic resin (PMMA), polycarbonate (PC) or polyamide (PA) are desirable. In the embodiment of the present invention, a vinyl chloride resin (PVC) having a thickness of 0.5 mm, which is inexpensive and has excellent workability, is used as the material of the covering plate 112. Since thermoplastics having thermoplasticity have the property of shrinking in the rolling direction at the time of manufacture when heated (above the glass transition point of the polymer molecule), the cladding plate 112 should be annealed before being heated and crimped. Is desirable.

本発明の実施形態では、基板111の材料は、0.3mmのガラスエポキシプリント回路基板(PCB)である。基板111には、厚さ18μmの銅箔を張り付けてエッチング処理を行うことによって、部品間を接続する導体パターン151、152、153、154、211を予め形成しておく。これによって、振動伝達板11を熱圧着によって成形する際、基板111上に載置される圧電素子21及び一対の係合機構311、321と、導体パターン151、152、153、154、211との接続部が、各々の部品の熱膨張率の差異により、加熱―冷却過程において局所的な応力の集中による断裂等の不具合の発生を最小限に抑えることが可能となる。 In the embodiment of the present invention, the material of the substrate 111 is a 0.3 mm glass epoxy printed circuit board (PCB). Conductor patterns 151, 152, 153, 154, and 211 that connect the parts are formed in advance by attaching a copper foil having a thickness of 18 μm to the substrate 111 and performing an etching process. As a result, when the vibration transmission plate 11 is formed by thermocompression bonding, the piezoelectric element 21 and the pair of engaging mechanisms 311, 321 mounted on the substrate 111 and the conductor patterns 151, 152, 153, 154, 211 Due to the difference in the coefficient of thermal expansion of each component, the connection portion can minimize the occurrence of defects such as tearing due to local stress concentration in the heating-cooling process.

本発明の実施形態では、基板111及び被覆板112の熱圧着における接着剤として厚さ50μmのホットメルトシート103を用いる。ホットメルトシート103の材料は、概ね80℃以上で溶融状態となり、高い接着性と可撓性を有するポリエステル系が望ましい。熱圧着時の温度は90〜120℃で1〜3分間の加熱により、通常の使用範囲で剥離することなく確実に圧着することが可能となる。基板111と被覆板112との熱膨張率の差異により、冷却過程において反りを生じるが、僅かに反る方向と逆の形状にした状態で冷却し、成型することで、冷却後に振動伝達板11を平坦な形状にすることができる。 In the embodiment of the present invention, a hot melt sheet 103 having a thickness of 50 μm is used as an adhesive in thermocompression bonding of the substrate 111 and the covering plate 112. The material of the hot melt sheet 103 is preferably a polyester type which is in a molten state at about 80 ° C. or higher and has high adhesiveness and flexibility. By heating at a temperature of 90 to 120 ° C. for 1 to 3 minutes at the time of thermocompression bonding, it is possible to reliably crimp without peeling in the normal range of use. Due to the difference in the coefficient of thermal expansion between the substrate 111 and the covering plate 112, warpage occurs in the cooling process, but by cooling and molding in a state that is slightly opposite to the warping direction, the vibration transmission plate 11 is cooled. Can be made into a flat shape.

心電電極31、32の体表と対向する面には、生体センサ100を体表に貼り付けるために、粘着剤として、分極電圧が低く安定した銀−塩化銀電極と密着性の高い導電性粘着ゲル315、325が塗布されており、体表から微弱な心筋の起電圧を伝達する。導電性粘着ゲル315、325が塗布される心電電極31、32の面を生体の胸部の胸骨直上の表皮に直接貼り付けることで、心電波形と生体表面の振動波形を単一の生体センサ100によって同時に検出可能となる。粘着剤は、導電性粘着ゲル315、325に限らず、導電性粘着シールでも良い。 On the surface of the electrocardiographic electrodes 31 and 32 facing the body surface, as an adhesive for attaching the biosensor 100 to the body surface, a stable silver-silver chloride electrode having a low polarization voltage and high conductivity with high adhesion Adhesive gels 315 and 325 are applied to transmit a weak electromotive voltage of the myocardium from the body surface. By directly attaching the surfaces of the electrocardiographic electrodes 31 and 32 to which the conductive adhesive gels 315 and 325 are applied to the epidermis directly above the sternum of the chest of the living body, the electrocardiographic waveform and the vibration waveform of the living body surface can be obtained by a single biosensor. 100 makes it possible to detect at the same time. The pressure-sensitive adhesive is not limited to the conductive pressure-sensitive adhesive gels 315 and 325, and may be a conductive pressure-sensitive adhesive seal.

一対の係合機構311、321は、それぞれ、ドーナツ状の金属板の中央に円形状の孔が形成され、この孔に対し放射状に複数のスリットが形成される挿入口を有する。心電電極31、32の基板111と対向する面には、円筒形状の突起部313、323が形成されている。突起部313、323には、側面を一周する溝が形成されている。それぞれの係合機構311、321の挿入口に心電電極31、32の突起部313、323を挿入することによって、係合機構311、321に心電電極31、32を係止する。係合機構311、321の挿入口はスリットによって板バネとなり、突起部313、323の溝に嵌まる。従って、心電電極31、32の突起部313、323は、通常の使用において係合部位がずれることなく確実に係止されるため、心電電極31、32の心電図信号が接触不良なく伝導するとともに、体表の振動が振動伝達板11を介して圧電素子21に伝達される。 Each of the pair of engaging mechanisms 311 and 321 has an insertion port in which a circular hole is formed in the center of a donut-shaped metal plate, and a plurality of slits are formed radially in the hole. Cylindrical protrusions 313 and 323 are formed on the surfaces of the electrocardiographic electrodes 31 and 32 facing the substrate 111. Grooves that go around the side surface are formed in the protrusions 313 and 323. By inserting the protrusions 313 and 323 of the electrocardiographic electrodes 31 and 32 into the insertion ports of the engaging mechanisms 311, 321 respectively, the electrocardiographic electrodes 31 and 32 are locked to the engaging mechanisms 311, 321. The insertion ports of the engaging mechanisms 311 and 321 become leaf springs through slits and fit into the grooves of the protrusions 313 and 323. Therefore, the protrusions 313 and 323 of the electrocardiographic electrodes 31 and 32 are securely locked without shifting the engaging portion in normal use, so that the electrocardiogram signals of the electrocardiographic electrodes 31 and 32 are conducted without poor contact. At the same time, the vibration of the body surface is transmitted to the piezoelectric element 21 via the vibration transmission plate 11.

心電電極31、32の心電パッド314、324は、粘着性の導電性粘着ゲル315、325によって体表Sと接触しているものの、体表Sの振動は導電性粘着ゲル315、325を介して多少減衰する。しかしながら、本発明の実施形態では、後述する様々な生体信号を検出するために必要な周波数範囲「0.1〜1kHz」においては、高いシグナル/ノイズ比(=S/N比)を有するため、生体信号を高精度に検出することが可能である。 Although the electrocardiographic pads 314 and 324 of the electrocardiographic electrodes 31 and 32 are in contact with the body surface S by the adhesive conductive adhesive gels 315 and 325, the vibration of the body surface S causes the conductive adhesive gels 315 and 325. There is some attenuation through. However, in the embodiment of the present invention, since it has a high signal / noise ratio (= S / N ratio) in the frequency range "0.1 to 1 kHz" required for detecting various biological signals described later, It is possible to detect biological signals with high accuracy.

次に、図5〜図14を参照しながら、本発明の実施形態に係る生体信号測定装置1を説明する。生体信号測定装置1は、生体の胸部の体表(望ましくは、生体の胸骨上の体表)に貼り付けられるセンサ100を用いて、生体の信号を測定する。 Next, the biological signal measuring device 1 according to the embodiment of the present invention will be described with reference to FIGS. 5 to 14. The biological signal measuring device 1 measures the signal of the living body by using the sensor 100 attached to the body surface of the chest of the living body (preferably, the body surface on the sternum of the living body).

図5に示すように、生体信号測定装置1は、センサ100から出力される生体信号をデジタル信号に変換する信号変換部2と、信号変換部2によって変換されるデジタル信号を入力し、信号処理を行う制御部3と、信号変換部2によって変換されるデジタル信号や制御部3による信号処理の結果を記憶する記憶部4と、制御部3による信号処理の結果を表示する表示部5と、制御部3による信号処理の結果を外部に送信する通信部6と、を備える。 As shown in FIG. 5, the biometric signal measuring device 1 inputs a signal conversion unit 2 that converts a biometric signal output from the sensor 100 into a digital signal and a digital signal converted by the signal conversion unit 2, and performs signal processing. A control unit 3 for storing the digital signal converted by the signal conversion unit 2 and a storage unit 4 for storing the result of signal processing by the control unit 3, a display unit 5 for displaying the result of signal processing by the control unit 3. A communication unit 6 for transmitting the result of signal processing by the control unit 3 to the outside is provided.

信号変換部2は、増幅器及びAD変換器を有する。制御部3は、例えば、信号処理専用のプロセッサであるDSP(Digital Signal Processor)と、信号処理以外の処理を実行し、各部を制御するCPU(Central Processing Unit)と、によって構成される。 The signal conversion unit 2 includes an amplifier and an AD converter. The control unit 3 is composed of, for example, a DSP (Digital Signal Processor) which is a processor dedicated to signal processing, and a CPU (Central Processing Unit) which executes processing other than signal processing and controls each unit.

記憶部4は、フラッシュメモリやHDD(Hard Disk Drive)等であり、予め制御部3による処理を実行するためのプログラムやデータを記憶する。表示部5は、液晶ディスプレイ等である。通信部6は、無線LAN(Local Area Network)、有線LAN、Bluetooth(登録商標)通信、インターネット等を介して他のコンピュータとのデータのやり取りを行う。 The storage unit 4 is a flash memory, an HDD (Hard Disk Drive), or the like, and stores programs and data for executing processing by the control unit 3 in advance. The display unit 5 is a liquid crystal display or the like. The communication unit 6 exchanges data with other computers via a wireless LAN (Local Area Network), a wired LAN, Bluetooth (registered trademark) communication, the Internet, or the like.

図6は、生体信号測定装置1による生体信号測定処理の流れを示している。図6におけるステップS2〜S4は測定時に実行しても良い。また、測定時にはステップS1の処理結果を記憶部4に記憶するのみとし、測定後にステップS2〜S4を実行しても良い。以下では、リアルタイムに生体の状態変化を監視するために、全てのステップを測定時に実行するものとして説明する。 FIG. 6 shows the flow of the biological signal measurement process by the biological signal measuring device 1. Steps S2 to S4 in FIG. 6 may be executed at the time of measurement. Further, at the time of measurement, only the processing result of step S1 may be stored in the storage unit 4, and steps S2 to S4 may be executed after the measurement. In the following, all steps will be described as being performed at the time of measurement in order to monitor changes in the state of the living body in real time.

信号変換部2は、センサ100から電気信号を入力し、デジタル信号に変換する(ステップS1)。信号変換部2は、圧電素子21から出力されるアナログ信号である第1の電気信号を入力し、第1の電気信号を増幅し、増幅される第1の電気信号を所定のサンプリング間隔で第1のデジタル信号に変換する。また、信号変換部2は、一対の心電電極31、32によって検出されるアナログ信号である第2の電気信号を所定のサンプリング間隔で入力し、第2の電気信号を増幅し、第2の電気信号を第2のデジタル信号に変換する。 The signal conversion unit 2 inputs an electric signal from the sensor 100 and converts it into a digital signal (step S1). The signal conversion unit 2 inputs a first electric signal which is an analog signal output from the piezoelectric element 21, amplifies the first electric signal, and abundates the amplified first electric signal at predetermined sampling intervals. Convert to a digital signal of 1. Further, the signal conversion unit 2 inputs a second electric signal which is an analog signal detected by the pair of electrocardiographic electrodes 31 and 32 at a predetermined sampling interval, amplifies the second electric signal, and performs a second. Converts an electrical signal into a second digital signal.

制御部3は、信号変換部2からデジタル信号を入力し、信号処理を実行し(ステップS2)、処理後の信号波形を表示部5に表示する(ステップS3)。 The control unit 3 inputs a digital signal from the signal conversion unit 2, executes signal processing (step S2), and displays the processed signal waveform on the display unit 5 (step S3).

制御部3は、第1のデジタル信号を微分して生体の心臓運動振動信号とし、第1のデジタル信号を帯域通過フィルタによってフィルタリングして生体の心音信号とし、第1のデジタル信号を高域通過フィルタによってフィルタリングして生体の呼吸気流音信号とし、第1のデジタル信号を低域通過フィルタによってフィルタリングして生体の胸郭呼吸運動信号とする信号処理を行う。また、制御部3は、第2のデジタル信号を心電図信号とする。 The control unit 3 differentiates the first digital signal into a biological cardiac motion vibration signal, filters the first digital signal with a band passage filter to obtain a biological heart sound signal, and passes the first digital signal in a high frequency range. Signal processing is performed to filter by a filter to obtain a breathing airflow sound signal of a living body, and to filter a first digital signal by a low-pass filter to obtain a thoracic respiratory movement signal of a living body. Further, the control unit 3 uses the second digital signal as an electrocardiogram signal.

図7は、心電図信号、胸壁振動信号及び心臓運動振動信号の各信号波形の表示例を示している。心電図信号は、一対の心電電極31、32によって検出されるアナログ信号である第2の電気信号を変換した第2のデジタル信号である。胸壁振動信号は、圧電素子21から出力されるアナログ信号である第1の電気信号を変換した第1のデジタル信号である。心臓運動振動信号は、第1のデジタル信号すなわち胸壁振動信号を微分したものである。 FIG. 7 shows a display example of each signal waveform of the electrocardiogram signal, the chest wall vibration signal, and the cardiac motion vibration signal. The electrocardiogram signal is a second digital signal obtained by converting a second electric signal which is an analog signal detected by a pair of electrocardiographic electrodes 31 and 32. The chest wall vibration signal is a first digital signal obtained by converting a first electric signal which is an analog signal output from the piezoelectric element 21. The cardiac motion vibration signal is a derivative of the first digital signal, that is, the chest wall vibration signal.

心臓運動振動信号の波形は特徴的な信号波形であり、波形の振幅及び間隔が病態によって変化する。図7に示すように、心臓運動振動は、心房関連振動と心室関連振動からなる。心室関連振動に係る信号波形には、生体の僧帽弁の閉鎖及び開放並びに生体の大動脈弁の閉鎖及び開放が反映される。MCは僧帽弁閉鎖の時刻、AOは大動脈弁開放の時刻、MOは僧帽弁開放の時刻、ACは大動脈弁閉鎖の時刻を示している。 The waveform of the cardiac motion vibration signal is a characteristic signal waveform, and the amplitude and interval of the waveform change depending on the pathological condition. As shown in FIG. 7, the cardiac motion vibration includes atrial-related vibration and ventricular-related vibration. The signal waveform related to the ventricular-related vibration reflects the closure and opening of the mitral valve of the living body and the closing and opening of the aortic valve of the living body. MC indicates the time of mitral valve closure, AO indicates the time of aortic valve opening, MO indicates the time of mitral valve opening, and AC indicates the time of aortic valve closure.

図8は、心電図信号、胸壁振動信号及び心音信号の各信号波形の表示例を示している。心音信号は、胸壁振動信号を帯域通過フィルタによってフィルタリングしたものである。帯域通過フィルタは20〜100Hzの範囲内が望ましい。本発明の実施形態では、下限の閾値を20Hz、上限の閾値を45Hzとしている。 FIG. 8 shows a display example of each signal waveform of the electrocardiogram signal, the chest wall vibration signal, and the heartbeat signal. The heartbeat signal is a chest wall vibration signal filtered by a bandpass filter. The bandpass filter is preferably in the range of 20 to 100 Hz. In the embodiment of the present invention, the lower limit threshold value is 20 Hz and the upper limit threshold value is 45 Hz.

図9は、胸壁振動信号、胸郭呼吸運動信号及び呼吸気流音信号の各信号波形の表示例を示している。胸郭呼吸運動信号は、胸壁振動信号を低域通過フィルタによってフィルタリングしたものである。低域通過フィルタの閾値は、0.3〜0.5Hzの範囲内が望ましい。本発明の実施形態では、低域通過フィルタの閾値を0.4Hzとしている。尚、ノイズをカットするため、制御部3は、0.05Hz以上の周波数を通過させるようにしても良い。この場合、制御部3は、0.05Hz〜0.4Hzの帯域通過フィルタによって胸壁振動信号をフィルタリングすることと同様の処理を行う。 FIG. 9 shows a display example of each signal waveform of the chest wall vibration signal, the thoracic respiratory movement signal, and the respiratory airflow sound signal. The thoracic respiratory movement signal is a filter of the chest wall vibration signal by a low-pass filter. The threshold value of the low-pass filter is preferably in the range of 0.3 to 0.5 Hz. In the embodiment of the present invention, the threshold value of the low-pass filter is 0.4 Hz. In order to cut noise, the control unit 3 may pass a frequency of 0.05 Hz or higher. In this case, the control unit 3 performs the same process as filtering the chest wall vibration signal with a bandpass filter of 0.05 Hz to 0.4 Hz.

呼吸気流音信号は、胸壁振動信号を高域通過フィルタによってフィルタリングしたものである。高域通過フィルタの閾値は、100〜400Hzの範囲内が望ましい。本発明の実施形態では、高域通過フィルタの閾値を200Hz、300Hz、400Hzのいずれかとしている。 The respiratory airflow sound signal is a chest wall vibration signal filtered by a high-pass filter. The threshold value of the high frequency pass filter is preferably in the range of 100 to 400 Hz. In the embodiment of the present invention, the threshold value of the high frequency pass filter is set to any of 200 Hz, 300 Hz, and 400 Hz.

図10は、心電図信号、胸壁振動信号、心臓運動振動信号、心音信号、呼吸気流音信号及び胸郭呼吸運動信号の信号波形の表示例を示している。前述の通り、心電図信号及び胸壁振動信号は、単一のセンサ100から同時に得られるデジタル信号に信号処理を実行して得られる。また、心臓運動振動信号、心音信号、呼吸気流音信号及び胸郭呼吸運動信号は、胸壁振動信号に信号処理を実行して得られる。従って、生体信号測定装置1は、単一のセンサ100を用いて、これら全ての信号を同時に測定することができる。 FIG. 10 shows a display example of signal waveforms of an electrocardiogram signal, a chest wall vibration signal, a heart movement vibration signal, a heart sound signal, a respiratory airflow sound signal, and a thoracic respiratory movement signal. As described above, the electrocardiogram signal and the chest wall vibration signal are obtained by performing signal processing on digital signals simultaneously obtained from a single sensor 100. Further, the cardiac motion vibration signal, the cardiac sound signal, the respiratory airflow sound signal and the thoracic respiratory motion signal are obtained by performing signal processing on the chest wall vibration signal. Therefore, the biological signal measuring device 1 can measure all these signals at the same time by using a single sensor 100.

図6の説明に戻る。制御部3は、ステップS2における信号処理の結果に基づいて、生体の状態評価、特に心血管系や呼吸器系の状態評価を支援する情報である状態評価支援情報を生成する(ステップS4)。 Returning to the description of FIG. Based on the result of the signal processing in step S2, the control unit 3 generates state evaluation support information which is information for supporting the state evaluation of the living body, particularly the state evaluation of the cardiovascular system and the respiratory system (step S4).

制御部3は、心電図信号、心臓運動振動信号、心音信号、呼吸気流音信号及び胸郭呼吸運動信号のうち少なくとも2つの信号に基づいて、状態評価支援情報を生成する。状態評価支援情報の詳細については後述する。 The control unit 3 generates state evaluation support information based on at least two signals of an electrocardiogram signal, a cardiac motion vibration signal, a cardiac sound signal, a respiratory airflow sound signal, and a thoracic respiratory motion signal. Details of the status evaluation support information will be described later.

制御部3は、状態評価支援情報に基づいて生体の状態が異常か否かを判定する(ステップS5)。生体の状態が異常の場合(ステップS5のYes)、制御部3は、表示部5に警告を出力し(ステップS6)、ステップS2〜S4及びS6の処理結果を時系列データとして記憶部4に記憶し、ステップS1から繰り返す。生体の状態が正常の場合(ステップS5のNo)、制御部3は、ステップS2〜S4の処理結果を時系列データとして記憶部4に記憶し、ステップS1から繰り返す。 The control unit 3 determines whether or not the state of the living body is abnormal based on the state evaluation support information (step S5). When the state of the living body is abnormal (Yes in step S5), the control unit 3 outputs a warning to the display unit 5 (step S6), and stores the processing results of steps S2 to S4 and S6 as time-series data in the storage unit 4. It is memorized and repeated from step S1. When the state of the living body is normal (No in step S5), the control unit 3 stores the processing results of steps S2 to S4 in the storage unit 4 as time-series data, and repeats from step S1.

以下では、図11〜図13を参照しながら状態評価支援情報の生成処理について詳細に説明する。 Hereinafter, the process of generating the state evaluation support information will be described in detail with reference to FIGS. 11 to 13.

<心機能評価>
本発明の実施形態では、胸壁振動信号から心臓運動振動信号を得ることができる(図7参照)。心臓運動振動信号の波形の振幅は、心収縮能に比例する。従って、心臓運動振動信号持続的測定を行い、心臓運動振動信号波形の振幅のトレンドによって心機能の推移を監視できる。また、心不全をはじめとする心機能が低下する病態で心臓運動振動信号の波形の間隔が延長するため、心臓運動振動信号の波形の間隔に基づいて心機能を評価できる。
<Evaluation of cardiac function>
In the embodiment of the present invention, the cardiac motion vibration signal can be obtained from the battlement vibration signal (see FIG. 7). The amplitude of the waveform of the cardiac motion vibration signal is proportional to the cardiac contractility. Therefore, it is possible to continuously measure the cardiac motion vibration signal and monitor the transition of cardiac function by the trend of the amplitude of the cardiac motion vibration signal waveform. In addition, since the interval between the waveforms of the cardiac motion vibration signal is extended in the pathological condition in which the cardiac function is deteriorated such as heart failure, the cardiac function can be evaluated based on the interval between the waveforms of the cardiac motion vibration signal.

図11を参照しながら、心機能評価に係る状態評価支援情報の一例を説明する。(大動脈弁開放時刻AO−僧房弁閉鎖時刻MC)/(大動脈弁閉鎖時刻AC−大動脈弁開放時刻AO)の値は心収縮能の指標である。また、(僧帽弁開放時刻MO−大動脈弁閉鎖時刻AC)/(大動脈弁閉鎖時刻AC−大動脈弁開放時刻AO)の値は心拡張能の指標である。そして、図11に示すように、これらの和である{(大動脈弁開放時刻AO−僧房弁閉鎖時刻MC)+(僧帽弁開放時刻MO−大動脈弁閉鎖時刻AC)}/(大動脈弁閉鎖時刻AC−大動脈弁開放時刻AO)の値は総合的心機能の指標であり、0.45以上で心機能低下と判断される。 An example of the state evaluation support information related to the cardiac function evaluation will be described with reference to FIG. The value of (aortic valve opening time AO-mitral valve closing time MC) / (aortic valve closing time AC-aortic valve opening time AO) is an index of cardiac contractility. The values of (mitral valve opening time MO-aortic valve closing time AC) / (aortic valve closing time AC-aortic valve opening time AO) are indicators of cardiac dilatation ability. Then, as shown in FIG. 11, the sum of these is {(aortic valve opening time AO-mitral valve closing time MC) + (mitral valve opening time MO-aortic valve closing time AC)} / (aortic valve closing time). The value of AC-aortic valve opening time AO) is an index of comprehensive cardiac function, and a value of 0.45 or more is judged to be a decrease in cardiac function.

僧房弁閉鎖時刻MC、大動脈弁開放時刻AO、大動脈弁閉鎖時刻AC及び僧帽弁開放時刻MOは、心臓運動振動信号の波形から判断できる。大動脈弁開放時刻AOは、心電図QRS波の後、あるいは心音I音の近傍にみられる、上に凸のピークのうち最大となるピークを取る時刻である。僧房弁閉鎖時刻MCは、心電図QRS波の出現後、あるいは心音I音の近傍にみられる、大動脈弁開放時刻AOの直前にある通常急激な下行波の開始時刻であるが、時に図7のように上に凸のピークを取ることもある。僧帽弁開放時刻MOは、心電図T波の後、あるいは心音II音の近傍にある、下に凸のピークを取る時刻である。大動脈弁閉鎖時刻ACは、心電図T波の後、あるいは心音II音のピーク直前にあり、僧帽弁開放時刻MOに係るピークの前に来る上に凸のピークを取る時刻である。 The mitral valve closing time MC, the aortic valve opening time AO, the aortic valve closing time AC, and the mitral valve opening time MO can be determined from the waveforms of the cardiac motion vibration signals. The aortic valve opening time AO is the time at which the largest of the upwardly convex peaks observed after the ECG QRS complex or in the vicinity of the heart sound I is taken. The mitral valve closure time MC is usually the start time of a sharp descending wave after the appearance of the ECG QRS complex or near the heart sound I sound, just before the aortic valve opening time AO, but sometimes as shown in FIG. It may have a convex peak on the top. The mitral valve opening time MO is a time at which a downwardly convex peak is taken after the electrocardiogram T wave or near the heart sound II sound. The aortic valve closure time AC is the time after the electrocardiogram T wave or immediately before the peak of the heart sound II sound, which comes before the peak related to the mitral valve opening time MO and takes an upwardly convex peak.

これらの知見に基づき、制御部3は、心電図信号、又は心音信号と心臓運動振動信号自身に基づいて心臓運動振動信号における生体の僧帽弁の閉鎖及び開放並びに生体の大動脈弁の閉鎖及び開放の各時刻を特定し、特定される各時刻に基づいて生体の心機能評価に係る状態評価支援情報を生成する。状態評価支援情報としては、前述の心収縮能の指標、心拡張能の指標及び総合的心機能の指標の値が挙げられる。これによって、心収縮能、心拡張能及び総合的心機能の評価を支援することができる。 Based on these findings, the control unit 3 closes and opens the mitral valve of the living body and closes and opens the aortic valve of the living body in the heart movement vibration signal based on the electrocardiogram signal or the heartbeat signal and the heart movement vibration signal itself. Each time is specified, and state evaluation support information related to the evaluation of the cardiac function of the living body is generated based on each specified time. Examples of the state evaluation support information include the values of the above-mentioned index of cardiac contractility, index of cardiac diastolic ability, and index of comprehensive cardiac function. This can support the evaluation of cardiac contractility, cardiac diastolic function and overall cardiac function.

心臓運動振動信号の単回測定によっても絶対値として心臓運動振動信号の波形間隔を計測することで心機能を評価できるが、心臓運動振動信号の持続的測定を行い、心臓運動振動信号の波形間隔の前後関係を比較することで心機能の推移を経時的に監視できる。 Cardiac function can be evaluated by measuring the waveform interval of the cardiac motion vibration signal as an absolute value even by a single measurement of the cardiac motion vibration signal, but continuous measurement of the cardiac motion vibration signal is performed and the waveform interval of the cardiac motion vibration signal is performed. By comparing the context of the above, the transition of cardiac function can be monitored over time.

心不全の前病態である心肥大でも心臓運動振動信号の波形の振幅及び間隔が変化することから、心臓運動振動信号の波形の振幅及び間隔の測定によって心肥大を発見し、経時的に複数回評価することで病態の進行を評価できる。胸壁振動信号は持続的に測定可能で侵襲性もない。 Since the amplitude and interval of the waveform of the cardiac motion vibration signal change even in cardiac hypertrophy, which is a pre-pathological condition of heart failure, cardiac hypertrophy was discovered by measuring the amplitude and interval of the waveform of the cardiac motor vibration signal, and evaluated multiple times over time. By doing so, the progression of the pathological condition can be evaluated. The battlemental vibration signal is continuously measurable and non-invasive.

<循環血液量評価>
本発明の実施の形態では、心臓運動振動信号を測定できるので、心臓運動振動信号の波形間隔の呼吸性変動及び輸液反応性から循環血液量の過不足を非侵襲的に推定できる。
<Evaluation of circulating blood volume>
In the embodiment of the present invention, since the cardiac motion vibration signal can be measured, the excess or deficiency of the circulating blood volume can be non-invasively estimated from the respiratory fluctuation of the waveform interval of the cardiac motion vibration signal and the infusion reactivity.

<心房細動評価>
心房細動は心不全を来しうる不整脈であるが、同時に脳梗塞の極めて重要な原疾患でもあり、従来は心電図によって診断される。本発明の実施の形態では、心臓運動振動信号から心房関連振動信号を得ることができる(図7参照)。
<Atrial fibrillation evaluation>
Atrial fibrillation is an arrhythmia that can lead to heart failure, but it is also a very important primary disease of cerebral infarction and is conventionally diagnosed by electrocardiogram. In the embodiment of the present invention, the atrium-related vibration signal can be obtained from the cardiac motion vibration signal (see FIG. 7).

図12を参照しながら、心房細動評価に係る状態評価支援情報の一例を説明する。図12に示すように、洞調律と呼ばれる通常の調律では、心房収縮に引き続いて心筋収縮がほぼ一定のリズムで生じるため、心臓運動振動信号では心房関連振動信号に続く心室関連振動信号の一連の信号波形がみられる(図7参照)。一方、心房細動では、心室関連振動信号が生じるものの、その前には一定の心房関連振動が生じず、不規則であり、10心拍前後以上の心臓運動振動信号を加算平均すると心室関連振動信号の直前が平坦波形になる。
複数の心拍同士の同期を取るための基準時刻は、例えば、QRS波のピークを取る時刻等、心電図信号に基づいて決定可能な時刻とすることができる。また、心臓運動振動信号自身のピークを取る時刻等に基づいて決定可能な時刻とすることができ、これにより必ずしも心電図によらずとも心房細動の検出が可能となる。
An example of the state evaluation support information related to the atrial fibrillation evaluation will be described with reference to FIG. As shown in FIG. 12, in a normal rhythm called sinus rhythm, myocardial contraction occurs at an almost constant rhythm following atrial contraction. Therefore, in the cardiac motor vibration signal, a series of ventricular-related vibration signals following the atrial-related vibration signal. A signal waveform can be seen (see FIG. 7). On the other hand, in atrial fibrillation, although a ventricular-related vibration signal is generated, a constant atrial-related vibration does not occur before that and is irregular. When the cardiac motion vibration signals of about 10 heartbeats or more are added and averaged, the ventricle-related vibration signal is generated. Immediately before is a flat waveform.
The reference time for synchronizing the plurality of heartbeats can be a time that can be determined based on the electrocardiogram signal, for example, the time when the peak of the QRS complex is taken. In addition, the time can be determined based on the time at which the peak of the cardiac motion vibration signal itself is taken, which makes it possible to detect atrial fibrillation without necessarily using an electrocardiogram.

これらの知見に基づき、制御部3は、心電図信号、又は心臓運動振動信号自身に基づいて心臓運動振動信号における各心拍の基準時刻を特定し、特定される基準時刻に基づいて複数の心拍分の心臓運動振動信号の同期を取り、複数の心拍分の心臓運動振動信号の波形の加算平均を算出し、算出される加算平均に基づいて生体の心房細動評価に係る状態評価支援情報を生成する。状態評価支援情報としては、加算平均の波形や、心房関連振動の有無の判定結果等が挙げられる。これによって、心房細動の検出を支援することができる。 Based on these findings, the control unit 3 identifies the reference time of each heartbeat in the cardiac motion vibration signal based on the electrocardiogram signal or the cardiac motion vibration signal itself, and the control unit 3 determines the reference time of each heartbeat based on the specified reference time for a plurality of heartbeats. Synchronize the cardiac motion vibration signals, calculate the added average of the waveforms of the cardiac motion vibration signals for multiple heartbeats, and generate the state evaluation support information related to the evaluation of atrial fibrillation of the living body based on the calculated added average. .. Examples of the state evaluation support information include the waveform of the averaging and the determination result of the presence or absence of atrial-related vibration. This can assist in the detection of atrial fibrillation.

<心音評価>
本発明の実施の形態では、胸壁振動信号から心音信号を得ることができる(図8参照)。心音はI音やII音の異常が心臓弁疾患を反映し、II音の後に発生することがある異常心音であるIII音やIV音出現時は心不全などの心疾患の可能性を示唆するが、本発明ではI音やII音だけでなくIII音やIV音を識別可能である(図13参照)。
例えば、制御部3は、心電図信号のQRS波を基準としてI音及びII音を特定するとともに、II音の後の心音信号の振幅が所定の閾値以上か否かによってIII音又はIV音の発生有無を識別する。
<Heart sound evaluation>
In the embodiment of the present invention, a heartbeat signal can be obtained from the battlement vibration signal (see FIG. 8). As for the heart sounds, abnormalities of the I and II sounds reflect the heart valve disease, and the appearance of the abnormal heart sounds III and IV, which may occur after the II sound, suggests the possibility of heart diseases such as heart failure. In the present invention, not only the I sound and the II sound but also the III sound and the IV sound can be identified (see FIG. 13).
For example, the control unit 3 identifies the I sound and the II sound with reference to the QRS wave of the electrocardiogram signal, and generates the III sound or the IV sound depending on whether the amplitude of the heart sound signal after the II sound is equal to or more than a predetermined threshold. Identify the presence or absence.

<呼吸数及び呼吸状態評価>
本発明の実施形態では、吸気音、呼気音、及び両者の間に生じる気流停止の時間帯(=図9の吸気・呼気移行ポーズ)を検出できるとともに、胸郭呼吸運動信号を検出できることから、呼吸数や呼吸状態を測定できる。
<Respiratory rate and respiratory status evaluation>
In the embodiment of the present invention, the inspiratory sound, the expiratory sound, and the time zone of the airflow stop occurring between the two (= inspiratory / expiratory transition pose in FIG. 9) can be detected, and the thoracic respiratory movement signal can be detected. Can measure numbers and respiratory status.

本発明の実施形態では、胸壁振動信号から呼吸気流音信号と胸郭呼吸運動信号を同時に抽出することができる(図9参照)。この2つの呼吸に関する生体信号を同時にかつ全く異なる周波数帯で得ることにより、2つの呼吸に関する生体信号のうち一方の周波数帯に特異的なノイズが発生して信号を得ることができない場合でも、もう一方の信号によって正確な呼吸数測定を維持することができる。すなわち、ノイズに対する耐性が高くなる。また全信号帯にわたってノイズが発生した場合も、特に呼吸気流音信号は生体信号として比較的高周波数帯域であることから、ノイズの直前まであるいは直後から生体信号を得ることができ、胸郭呼吸運動信号と合わせて精度の高い呼吸数及び呼吸状態の推定を支援することができる。 In the embodiment of the present invention, the respiratory airflow sound signal and the thoracic respiratory movement signal can be simultaneously extracted from the chest wall vibration signal (see FIG. 9). By obtaining the biological signals related to these two respirations at the same time and in completely different frequency bands, even if noise specific to one of the biological signals related to the two respirations is generated and the signal cannot be obtained. One signal can maintain accurate respiratory rate measurements. That is, the resistance to noise is increased. In addition, even when noise is generated over the entire signal band, since the respiratory airflow sound signal is a relatively high frequency band as a biological signal, the biological signal can be obtained immediately before or after the noise, and the thoracic respiratory movement signal can be obtained. Together with this, it can support the estimation of the respiratory rate and the respiratory condition with high accuracy.

これらの知見に基づき、制御部3は、呼吸気流音信号に基づいて生体の呼吸数を測定するとともに、胸郭呼吸運動信号に基づいて生体の呼吸数を測定し、生体の呼吸数評価に係る状態評価支援情報を生成する。
例えば、制御部3は、呼吸気流音信号の振幅の大きさに基づいて吸気音及び呼気音が発生している時間帯を特定し、一組の吸気音及び呼気音を一回の呼吸とカウントする。また、例えば、制御部3は、胸郭呼吸運動信号のピークを抽出し、一組の下に凸のピーク及び上に凸のピークを一回の呼吸とカウントする。状態評価支援情報としては、呼吸気流音信号に基づいて推定される呼吸数及び胸郭呼吸運動信号に基づいて推定される呼吸数等が挙げられる。
Based on these findings, the control unit 3 measures the respiratory rate of the living body based on the respiratory airflow sound signal, and also measures the respiratory rate of the living body based on the thoracic respiratory movement signal, and is a state related to the respiratory rate evaluation of the living body. Generate evaluation support information.
For example, the control unit 3 identifies the time zone in which the inspiratory sound and the expiratory sound are generated based on the magnitude of the amplitude of the respiratory airflow sound signal, and counts a set of the inspiratory sound and the expiratory sound as one breath. To do. Further, for example, the control unit 3 extracts the peak of the thoracic respiratory movement signal, and counts the downwardly convex peak and the upwardly convex peak as one breath. Examples of the state evaluation support information include a respiratory rate estimated based on the respiratory airflow sound signal, a respiratory rate estimated based on the thoracic respiratory movement signal, and the like.

<無呼吸評価>
無呼吸は、呼吸中枢の異常である中枢性無呼吸と気道の異常である閉塞性無呼吸に分けられる。本発明の実施の形態では、呼吸気流音信号と胸郭呼吸運動信号を同時に得ることができる(図9参照)。呼吸気流音信号が認められなければ無呼吸と診断できる。その上、胸郭呼吸運動信号がなければ中枢性無呼吸、胸郭呼吸運動信号があれば閉塞性無呼吸と診断することができる。また、呼吸気流音信号と胸郭呼吸運動信号をカウントすることで無呼吸イベントの回数や時間を測定できる。
<Apnea evaluation>
Apnea is divided into central apnea, which is an abnormality of the respiratory center, and obstructive apnea, which is an abnormality of the airways. In the embodiment of the present invention, the respiratory airflow sound signal and the thoracic respiratory movement signal can be obtained at the same time (see FIG. 9). Apnea can be diagnosed if no respiratory airflow sound signal is observed. Moreover, central apnea can be diagnosed without a thoracic respiratory movement signal, and obstructive apnea with a thoracic respiratory movement signal. In addition, the number and duration of apnea events can be measured by counting the respiratory airflow sound signal and the thoracic respiratory movement signal.

これらの知見に基づき、制御部3は、呼吸気流音信号及び胸郭呼吸運動信号に基づいて、無呼吸評価に係る状態評価支援情報を生成する。
例えば、制御部3は、呼吸気流音信号の振幅の大きさに基づいて吸気音及び呼気音が発生している時間帯を特定し、一組の吸気音及び呼気音を一回の呼吸とし、呼吸間の発生間隔が閾値以上であれば無呼吸が発生していると判断する。また、例えば、制御部3は、胸郭呼吸運動信号のピークを抽出し、一組の下に凸のピーク及び上に凸のピークを一回の呼吸とし、呼吸間の発生間隔が閾値以上であれば無呼吸が発生していると判断する。状態評価支援情報としては、無呼吸イベントが中枢性無呼吸又は閉塞性無呼吸のいずれであるかの識別結果や、無呼吸イベントの回数及び時間等が挙げられる。これによって、無呼吸の評価を支援することができる。
Based on these findings, the control unit 3 generates state evaluation support information related to apnea evaluation based on the respiratory airflow sound signal and the thoracic respiratory movement signal.
For example, the control unit 3 specifies a time zone in which the inspiratory sound and the expiratory sound are generated based on the magnitude of the amplitude of the respiratory airflow sound signal, and sets the set of the inspiratory sound and the expiratory sound as one breath. If the interval between breaths is equal to or greater than the threshold, it is judged that apnea has occurred. Further, for example, the control unit 3 extracts the peak of the thoracic respiratory movement signal, sets the downward convex peak and the upward convex peak as one breath, and the occurrence interval between breaths is equal to or more than the threshold value. If so, it is judged that apnea has occurred. The state evaluation support information includes the identification result of whether the apnea event is central apnea or obstructive apnea, the number and time of the apnea event, and the like. This can support the assessment of apnea.

<呼吸器疾患評価>
気管支喘息や慢性閉塞性肺疾患では呼気音の延長が認められる。また、気管支喘息は重症化すると呼吸音が著明に減少し呼吸数が増大する。本発明の実施形態では、呼気気流音信号を定量的に検出できるため、これらの診断や病状管理に寄与する。
<Respiratory disease evaluation>
Prolonged egressive sound is observed in bronchial asthma and chronic obstructive pulmonary disease. In addition, when bronchial asthma becomes severe, respiratory sounds are markedly reduced and respiratory rate is increased. In the embodiment of the present invention, the expiratory airflow sound signal can be quantitatively detected, which contributes to these diagnoses and pathological condition management.

<気管挿管評価>
気管挿管では、正しく気管内に挿管され換気できると、気管内に呼吸気流が生じ胸郭の上昇が認められる。一方、気管挿管施行時に誤って気管に隣接する食道内にチューブを挿入する食道挿管が発生することがある。食道挿管は食道内が生理的に開存した空間でないために人工呼吸を行っても呼吸気流は発生せず、胸郭は上昇しない。本発明の実施形態では気管内の呼吸気流音信号と胸郭呼吸運動信号を同時に得ることができることから、気管挿管時の気管の呼吸気流音と胸郭の上昇を同時に検出することで気管内に挿管され、換気できていることを確認できる。
<Tracheal intubation evaluation>
In tracheal intubation, if the trachea is properly intubated and ventilated, respiratory airflow is generated in the trachea and the thorax is elevated. On the other hand, esophageal intubation may occur in which a tube is accidentally inserted into the esophagus adjacent to the trachea when tracheal intubation is performed. Since esophageal intubation is not a physiologically patented space in the esophagus, no respiratory airflow is generated and the thorax does not rise even if artificial respiration is performed. In the embodiment of the present invention, since the respiratory airflow sound signal in the trachea and the thoracic respiratory movement signal can be obtained at the same time, the patient is intubated into the trachea by simultaneously detecting the respiratory airflow sound in the trachea and the elevation of the thorax during tracheal intubation. , It can be confirmed that ventilation is possible.

以上の通り、生体信号測定装置1によれば、長時間の監視に利用可能であって、快適性や忍容性が高く、非侵襲的な単一のセンサ100を用いて、高精度に複数の生体信号を測定することができる。また、生体信号測定装置1によれば、心血管系及び呼吸器系の状態評価を支援することができる。 As described above, according to the biological signal measuring device 1, a plurality of highly accurate sensors 100 that can be used for long-term monitoring, are highly comfortable and tolerable, and are non-invasive are used. It is possible to measure the biological signal of. Further, according to the biological signal measuring device 1, it is possible to support the evaluation of the state of the cardiovascular system and the respiratory system.

以上、添付図面を参照しながら、本発明に係る生体信号測定装置等の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the biological signal measuring device and the like according to the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modified examples or modified examples within the scope of the technical idea disclosed in the present application, and these also naturally belong to the technical scope of the present invention. Understood.

1.........生体信号測定装置
2.........信号変換部
3.........制御部
100.........センサ
11.........振動伝達板
21.........圧電素子
31、32.........一対の心電電極
1 ......... Biological signal measuring device 2 ......... Signal conversion unit 3 ......... Control unit 100 ......... Sensor 11 ......... Vibration transmission plate 21 ......... Piezoelectric elements 31, 32 ......... A pair of electrocardiographic electrodes

Claims (7)

生体の胸部の体表に貼り付けられ、前記生体が発する振動を電圧に変換する圧電素子を備えるセンサを用いて、前記生体の信号を測定する生体信号測定装置であって、
前記圧電素子から出力される第1の電気信号を入力し、前記第1の電気信号を増幅し、増幅される前記第1の電気信号を第1のデジタル信号に変換する信号変換部と、
前記第1のデジタル信号を微分して前記生体の心臓運動振動信号とし、前記第1のデジタル信号を20〜100Hzの範囲内の帯域通過フィルタによってフィルタリングして前記生体の心音信号とし、前記第1のデジタル信号を閾値が100〜400Hzの範囲内の高域通過フィルタによってフィルタリングして前記生体の呼吸気流音信号とし、前記第1のデジタル信号を閾値が0.3〜0.5Hzの範囲内の低域通過フィルタによってフィルタリングして前記生体の胸郭呼吸運動信号とする信号処理を行う制御部
を備えることを特徴とする生体信号測定装置。
A biological signal measuring device that measures a signal of a living body by using a sensor attached to the body surface of the chest of the living body and having a piezoelectric element that converts the vibration generated by the living body into a voltage.
A signal conversion unit that inputs a first electric signal output from the piezoelectric element, amplifies the first electric signal, and converts the amplified first electric signal into a first digital signal.
The first digital signal is differentiated into the cardiac motion vibration signal of the living body, and the first digital signal is filtered by a band passing filter in the range of 20 to 100 Hz to obtain the heart sound signal of the living body. The digital signal is filtered by a high-pass filter having a threshold value in the range of 100 to 400 Hz to obtain the breathing airflow sound signal of the living body, and the first digital signal is filtered by a high frequency passing filter having a threshold value in the range of 0.3 to 0.5 Hz. A biological signal measuring device comprising a control unit that performs signal processing to obtain a thoracic respiratory movement signal of the living body by filtering with a low frequency passing filter.
前記センサは、前記生体が発する振動を前記圧電素子に伝達する可撓性の振動伝達板を更に備え、
前記圧電素子は、前記振動伝達板の長手方向の略中央に設けられ、
前記振動伝達板は、前記生体の胸骨上の体表に貼り付けられる
ことを特徴とする請求項1に記載の生体信号測定装置。
The sensor further includes a flexible vibration transmission plate that transmits the vibration generated by the living body to the piezoelectric element.
The piezoelectric element is provided substantially in the center of the vibration transmission plate in the longitudinal direction.
The biological signal measuring device according to claim 1, wherein the vibration transmission plate is attached to a body surface on the sternum of the living body.
前記センサは、前記生体が発する第2の電気信号を検出する一対の心電電極を更に備え、
前記信号変換部は、更に、前記第2の電気信号を入力し、前記第2の電気信号を増幅し、前記第2の電気信号を第2のデジタル信号に変換し、
前記制御部は、更に、前記第2のデジタル信号を心電図信号とし、前記心電図信号、前記心臓運動振動信号、前記心音信号、前記呼吸気流音信号及び前記胸郭呼吸運動信号のうち少なくとも2つの信号に基づいて、前記生体の機能評価を支援する状態評価支援情報を生成する
ことを特徴とする請求項1又は請求項2に記載の生体信号測定装置。
The sensor further comprises a pair of electrocardiographic electrodes that detect a second electrical signal emitted by the living body.
The signal conversion unit further inputs the second electric signal, amplifies the second electric signal, converts the second electric signal into a second digital signal, and then converts the second electric signal into a second digital signal.
The control unit further uses the second digital signal as an electrocardiogram signal, and converts it into at least two of the electrocardiogram signal, the cardiac motion vibration signal, the cardiac sound signal, the respiratory airflow sound signal, and the thoracic respiratory motion signal. The biological signal measuring device according to claim 1 or 2, wherein the state evaluation support information that supports the functional evaluation of the living body is generated based on the above.
前記制御部は、前記心電図信号、又は前記心音信号と前記心臓運動振動信号自身に基づいて前記心臓運動振動信号における前記生体の僧帽弁の閉鎖及び開放並びに前記生体の大動脈弁の閉鎖及び開放の各時刻を特定し、特定される各時刻に基づいて前記生体の心機能評価に係る前記状態評価支援情報を生成する
ことを特徴とする請求項3に記載の生体信号測定装置。
The control unit closes and opens the mitral valve of the living body and closes and opens the aortic valve of the living body in the heart movement vibration signal based on the electrocardiogram signal or the heart sound signal and the heart movement vibration signal itself. The biological signal measuring apparatus according to claim 3, wherein each time is specified and the state evaluation support information related to the evaluation of the cardiac function of the living body is generated based on each specified time.
前記制御部は、前記心電図信号、又は前記心臓運動振動信号自身に基づいて前記心臓運動振動信号における各心拍の基準時刻を特定し、特定される前記基準時刻に基づいて複数の心拍分の前記心臓運動振動信号の同期を取り、複数の心拍分の前記心臓運動振動信号の波形の加算平均を算出し、算出される前記加算平均に基づいて前記生体の心房細動評価に係る前記状態評価支援情報を生成する
ことを特徴とする請求項3に記載の生体信号測定装置。
The control unit specifies a reference time for each heartbeat in the cardiac motion vibration signal based on the electrocardiogram signal or the cardiac motion vibration signal itself, and the hearts for a plurality of heartbeats based on the specified reference time. The state evaluation support information related to the atrial fibrillation evaluation of the living body is calculated based on the calculated added average of the waveforms of the cardiac motion vibration signals for a plurality of heartbeats by synchronizing the exercise vibration signals. The biological signal measuring apparatus according to claim 3, wherein the biological signal measuring apparatus is generated.
前記制御部は、前記呼吸気流音信号及び前記胸郭呼吸運動信号に基づいて、無呼吸評価に係る前記状態評価支援情報を生成する
ことを特徴とする請求項3に記載の生体信号測定装置。
The biological signal measuring device according to claim 3, wherein the control unit generates the state evaluation support information related to the apnea evaluation based on the breathing airflow sound signal and the thoracic respiratory movement signal.
生体の胸部の体表に貼り付けられ、前記生体が発する振動を電圧に変換する圧電素子を備えるセンサを用いて、前記生体の信号を測定する生体信号測定方法であって、
信号変換部が、前記圧電素子から出力される第1の電気信号を入力し、前記第1の電気信号を増幅し、増幅される前記第1の電気信号を第1のデジタル信号に変換するステップと、
制御部が、前記第1のデジタル信号を微分して前記生体の心臓運動振動信号とし、前記第1のデジタル信号を20〜100Hzの範囲内の帯域通過フィルタによってフィルタリングして前記生体の心音信号とし、前記第1のデジタル信号を閾値が100〜400Hzの範囲内の高域通過フィルタによってフィルタリングして前記生体の呼吸気流音信号とし、前記第1のデジタル信号を閾値が0.3〜0.5Hzの範囲内の低域通過フィルタによってフィルタリングして前記生体の胸郭呼吸運動信号とする信号処理を行うステップ
を実行することを特徴とする生体信号測定方法。
A biological signal measuring method for measuring a signal of a living body by using a sensor attached to the body surface of the chest of the living body and equipped with a piezoelectric element for converting the vibration generated by the living body into a voltage.
A step in which a signal conversion unit inputs a first electric signal output from the piezoelectric element, amplifies the first electric signal, and converts the amplified first electric signal into a first digital signal. When,
The control unit differentiates the first digital signal into the cardiac motion vibration signal of the living body, and filters the first digital signal by a band passage filter in the range of 20 to 100 Hz to obtain the heart sound signal of the living body. The first digital signal is filtered by a high frequency passing filter having a threshold value in the range of 100 to 400 Hz to obtain a breathing airflow sound signal of the living body, and the first digital signal has a threshold value of 0.3 to 0.5 Hz. A method for measuring a biological signal, which comprises performing a signal processing step of filtering by a low-pass filter within the range of the above to obtain a thoracic respiratory movement signal of the living body.
JP2016056512A 2016-03-22 2016-03-22 Biological signal measuring device and biological signal measuring method Active JP6793287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016056512A JP6793287B2 (en) 2016-03-22 2016-03-22 Biological signal measuring device and biological signal measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016056512A JP6793287B2 (en) 2016-03-22 2016-03-22 Biological signal measuring device and biological signal measuring method

Publications (2)

Publication Number Publication Date
JP2017169647A JP2017169647A (en) 2017-09-28
JP6793287B2 true JP6793287B2 (en) 2020-12-02

Family

ID=59971906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016056512A Active JP6793287B2 (en) 2016-03-22 2016-03-22 Biological signal measuring device and biological signal measuring method

Country Status (1)

Country Link
JP (1) JP6793287B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10952642B2 (en) * 2017-11-09 2021-03-23 Amorepacific Corporation Strain sensor unit and skin sensor module comprising the same
JP7122225B2 (en) * 2018-10-31 2022-08-19 エア・ウォーター・バイオデザイン株式会社 Processing device, system, processing method, and program
KR102188134B1 (en) * 2019-05-10 2020-12-07 재단법인대구경북과학기술원 Patch type monitoring device and method capable of measuring heartbeat and respiration
JP7445955B2 (en) 2019-12-26 2024-03-08 エア・ウォーター・バイオデザイン株式会社 Breathing rate calculation device, breathing rate calculation method, and program

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100553555C (en) * 2004-01-15 2009-10-28 皇家飞利浦电子股份有限公司 Adaptive physiological monitoring system and using method thereof
WO2007010460A2 (en) * 2005-07-15 2007-01-25 Koninklijke Philips Electronics N.V. Apparatus for the detection of heart activity
US20130310657A1 (en) * 2010-09-24 2013-11-21 Sonomedical Pty Ltd Electronic Monitoring System for Data Collection, Presentation and Analysis
JP5509422B2 (en) * 2010-10-28 2014-06-04 株式会社Ainy Body sound acquisition terminal, electronic stethoscope and body sound measuring device
JP6311215B2 (en) * 2012-03-01 2018-04-18 ヘルスセンシング株式会社 Human absence detection method and human absence detection device
JP2014061223A (en) * 2012-09-24 2014-04-10 Terumo Corp Vital measuring instrument
WO2014202829A1 (en) * 2013-06-19 2014-12-24 Turun Yliopisto Method and apparatus for determining information indicative of cardiac malfunctions

Also Published As

Publication number Publication date
JP2017169647A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP5944899B2 (en) Device for monitoring respiratory variability by measuring respiratory volume, movement, and changes
EP3282950B1 (en) Device, system and method for detecting a cardiac and/or respiratory disease of a subject
US20180140252A1 (en) Devices and methods for monitoring physiologic parameters
AU2018253518A1 (en) Methods for detection of respiratory effort and sleep apnea monitoring devices
JP6793287B2 (en) Biological signal measuring device and biological signal measuring method
US11571179B2 (en) System for positioning an intubation tube
JP2020503085A (en) Respiratory early warning scoring system and method
JP2020523103A (en) Respiratory volume monitor and ventilator
JP6929782B2 (en) System for finding physiological parameters
AU2015264875B2 (en) Devices and methods for respiratory variation monitoring by measurement of respiratory volumes, motion and variability
Glos et al. Characterization of respiratory events in obstructive sleep apnea using suprasternal pressure monitoring
EP1469776A1 (en) Analysis of sleep apnea
JP2023518805A (en) Devices for predicting, identifying and/or managing pneumonia or other medical conditions
WO2016037982A2 (en) Pulse transit time measurement device and method
Penzel et al. Physics and applications for tracheal sound recordings in sleep disorders
JP6732188B2 (en) Biometric sensor
WO2023283935A1 (en) Cardiogenic interference identification method for medical ventilation device, and medical ventilation device
IL293622A (en) Systems and methods for determining a degree of respiratory effort exerted by a patient while breathing
Magalang et al. Monitoring respiration during sleep
Foo et al. Identifying obstructive from central apnoeas in infancy using pulse transit time
AU1635000A (en) Monitoring the occurence of apneic and hypopneic arousals

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171017

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200909

R150 Certificate of patent or registration of utility model

Ref document number: 6793287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250