JP6793108B2 - Corrosion amount estimation device and its method - Google Patents
Corrosion amount estimation device and its method Download PDFInfo
- Publication number
- JP6793108B2 JP6793108B2 JP2017229097A JP2017229097A JP6793108B2 JP 6793108 B2 JP6793108 B2 JP 6793108B2 JP 2017229097 A JP2017229097 A JP 2017229097A JP 2017229097 A JP2017229097 A JP 2017229097A JP 6793108 B2 JP6793108 B2 JP 6793108B2
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- rainfall
- amount
- soil
- change
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 0 C*OC(CCN)OC(C)(C)CC[C@@](C*)C(C)C(C)C Chemical compound C*OC(CCN)OC(C)(C)CC[C@@](C*)C(C)C(C)C 0.000 description 1
Images
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Description
本発明は、地中埋設された鋼材の腐食量を計算する腐食量推定装置とその方法に関する。 The present invention relates to a corrosion amount estimation device for calculating the corrosion amount of a steel material buried underground and a method thereof.
インフラ設備の多くは高度経済成長期に集中的に整備されたため、今後一斉に老朽化する。その一方で、設備の維持管理に割ける費用及び保守に関わる人員は減少する傾向にある。そのため、将来的にはインフラ設備の維持管理を適切に行うことができず、安心安全の確保が困難になる恐れがある。このようなインフラ設備の老朽化問題に対処するため、近年では、設備の劣化進行を予測し、その結果に基づいて効率的な保守計画を立案する試みがなされている。 Most of the infrastructure facilities were intensively constructed during the period of high economic miracle, so they will all deteriorate in the future. On the other hand, the cost for maintenance of equipment and the number of personnel involved in maintenance tend to decrease. Therefore, in the future, it will not be possible to properly maintain and manage infrastructure equipment, and it may be difficult to ensure safety and security. In order to deal with the problem of aging infrastructure equipment, in recent years, attempts have been made to predict the deterioration of the equipment and formulate an efficient maintenance plan based on the result.
インフラ設備の劣化を予測する方法として、統計学的手法がある。統計学的手法は、多様な自然環境に晒され劣化したサンプルを観察・分析し、そのデータを元に回帰分析や極値統計といった統計解析を行うことで予測式を導く方法である。 There is a statistical method as a method of predicting the deterioration of infrastructure equipment. The statistical method is a method of observing and analyzing a sample that has deteriorated due to exposure to various natural environments, and deriving a prediction formula by performing statistical analysis such as regression analysis and extreme value statistics based on the data.
また、実験的に予測式を求める方法もある。対象とする土壌を模擬した環境中に金属を埋設し、電気化学的手法を用いて土壌中の鋼材の腐食を計測する考えが提案されている(例えば非特許文献1)。 There is also a method of experimentally obtaining a prediction formula. An idea of burying a metal in an environment simulating the target soil and measuring the corrosion of a steel material in the soil by using an electrochemical method has been proposed (for example, Non-Patent Document 1).
しかしながら、従来の統計学的手法では、統計解析に必要な情報がそもそも収集困難か、もしくは多大なコストと時間を掛ける必要があるという課題がある。また、実験的に土壌中の鋼材の腐食を計測して腐食速度を表す腐食速度関数を求めるには、実験に長期間を要する。つまり、実験的に腐食量を求める方法もコストと時間を要するという課題がある。 However, the conventional statistical method has a problem that it is difficult to collect the information necessary for statistical analysis in the first place, or it is necessary to spend a great deal of cost and time. In addition, it takes a long period of time to experimentally measure the corrosion of steel materials in soil and obtain the corrosion rate function that expresses the corrosion rate. That is, there is a problem that the method of experimentally determining the amount of corrosion also requires cost and time.
本発明は、この課題に鑑みてなされたものであり、土壌の含水率変化に伴い経時的に変化する腐食速度の経時変化関数を求め、該変化関数と降雨データを用いて土壌中の鋼材の腐食量を、簡便かつ短期間に予測することができる腐食量推定装置とその方法を提供することを目的とする。 The present invention has been made in view of this problem. The time-dependent change function of the corrosion rate, which changes with time as the water content of the soil changes, is obtained, and the change function and the rainfall data are used to obtain the time-dependent change function of the steel material in the soil. It is an object of the present invention to provide a corrosion amount estimation device and a method thereof, which can easily predict the corrosion amount in a short period of time.
本実施形態の一態様に係る腐食量推定装置は、評価対象の鋼材を埋設した土壌に給水し、該土壌の含水率が飽和するまでの経過時間に対する前記鋼材の腐食速度、該土壌の含水率が飽和した状態を継続させた場合の経過時間と前記鋼材の腐食速度、及び該土壌の含水率が飽和した状態から給水を停止した後の経過時間と前記鋼材の腐食速度のそれぞれの腐食速度を複数回測定する腐食速度測定部と、前記経過時間に対するそれぞれの腐食速度を表す複数の変化関数を計算する変化関数計算部と、所定以上の降雨量のあった時間を表す複数の降雨データから、降雨時間と、次の降雨までの間隔を表す降雨間隔との組みからなる複数の降雨間隔データを抽出するデータ抽出部と、前記降雨間隔データと前記変化関数を用いて前記鋼材の腐食量を計算する腐食量計算部とを備えることを要旨とする。 The corrosion amount estimation device according to one aspect of the present embodiment supplies water to the soil in which the steel material to be evaluated is buried, and the corrosion rate of the steel material with respect to the elapsed time until the water content of the soil is saturated, and the water content of the soil. The elapsed time and the corrosion rate of the steel material when the saturated state is continued, and the elapsed time after the water supply is stopped from the saturated state of the soil and the corrosion rate of the steel material are shown. From a corrosion rate measuring unit that measures multiple times, a change function calculation unit that calculates a plurality of change functions that represent each corrosion rate with respect to the elapsed time, and a plurality of rainfall data that represent the time when the amount of rainfall exceeds a predetermined value. The amount of corrosion of the steel material is calculated using the data extraction unit that extracts a plurality of rainfall interval data consisting of a combination of the rainfall time and the rainfall interval representing the interval until the next rainfall, and the rainfall interval data and the change function. The gist is to provide a corrosion amount calculation unit.
本実施形態の一態様に係る腐食量推定方法は、上記の腐食量推定装置が実行する腐食量推定方法であって、評価対象の鋼材を埋設した土壌に給水し、該土壌の含水率が飽和するまでの経過時間に対する前記鋼材の腐食速度、該土壌の含水率が飽和した状態を継続させた場合の経過時間と前記鋼材の腐食速度、及び該土壌の含水率が飽和した状態から給水を停止した後の経過時間と前記鋼材の腐食速度のそれぞれの腐食速度を複数回測定し、前記経過時間に対するそれぞれの腐食速度を表す複数の変化関数を計算し、所定以上の降雨量のあった時間を表す複数の降雨データから、降雨時間と、次の降雨までの間隔を表す降雨間隔との組みからなる複数の降雨間隔データを抽出し、前記降雨間隔データと前記変化関数を用いて前記鋼材の腐食量を計算することを要旨とする。 The corrosion amount estimation method according to one aspect of the present embodiment is the corrosion amount estimation method executed by the above-mentioned corrosion amount estimation device, in which water is supplied to the soil in which the steel material to be evaluated is buried, and the water content of the soil is saturated. The water supply is stopped from the state where the corrosion rate of the steel material with respect to the elapsed time, the elapsed time when the water content of the soil is saturated, the corrosion rate of the steel material, and the water content of the soil are saturated. The elapsed time after the above and the corrosion rate of the steel material are measured multiple times, and a plurality of change functions representing the respective corrosion rates with respect to the elapsed time are calculated, and the time when the amount of rainfall exceeds a predetermined value is calculated. From the plurality of rainfall data represented, a plurality of rainfall interval data consisting of a combination of the rainfall time and the rainfall interval representing the interval until the next rainfall is extracted, and the corrosion of the steel material is used by using the rainfall interval data and the change function. The gist is to calculate the quantity.
本発明によれば、土壌の含水率に対する腐食速度の変化を表す変化関数と降雨データから腐食量を計算するので、土壌中の金属の腐食量を、簡便かつ短期間に予測することができる。 According to the present invention, since the amount of corrosion is calculated from the change function representing the change in the corrosion rate with respect to the water content of the soil and the rainfall data, the amount of corrosion of the metal in the soil can be predicted easily and in a short period of time.
以下、本発明の実施形態について図面を用いて説明する。複数の図面中同一のものに
は同じ参照符号を付し、説明は繰り返さない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same objects in a plurality of drawings, and the description is not repeated.
図1は、本発明の実施の形態に係る腐食量推定装置の機能構成例を示す図である。図1に示す腐食量推定装置1は、土壌中の鋼材の腐食量を、簡便かつ短期間に推定する装置である。
FIG. 1 is a diagram showing a functional configuration example of the corrosion amount estimation device according to the embodiment of the present invention. The corrosion
図1には、収容部2、土壌3、及びセンサ4も示す。センサ4は、評価対象の鋼材を含み、収容部2に収容された土壌3に埋設される。評価対象の鋼材(以降、鋼材は金属と称する)は特に制限しない。例えば、鋼管柱、支持アンカー、及び地中鋼配管等に用いられる金属である。
FIG. 1 also shows the
センサ4は、後述する3電極交流インピーダンス法の場合は評価対象の金属片を一つ、2電極交流インピーダンス法の場合は評価対象の金属片を二つ、それぞれの金属片が電気的絶縁を保持するように配置して構成される。
The
収容部2は、収容する土壌3の含有イオン成分を変化させない化学的に安定な素材で構成される。収容部2の材質は、例えばアクリルや塩ビなどのプラスチック、ガラスやセラミックスなどが好適である。
The
収容部2は、給水機能と排水機能を備える。給水機能と排水機能は、土壌3に対して十分な水を供給できることと、時間と共に土壌3中の水分量が減少できればよい。よって、給水は手動で行ってもよい。また、排水は収容部2に開口部(図示せず)が設けられていればよい。また、給水機能には、給水時間を設定可能なポンプを設けてもよい。また、排水のオン/オフを制御する開閉弁を設けてもよい。
The
土壌3は、対象とする土壌と分類上同種の土壌を用いる。現場の土壌を採取してもよいし、対象とする土壌を模擬した土壌を用いてもよい。土壌の分類には、例えば日本ペドロジー学会による日本土壌分類体系に基づく分類がある。 As the soil 3, a soil of the same type as the target soil is used. The soil at the site may be collected, or the soil simulating the target soil may be used. Soil classification includes, for example, classification based on the Japanese soil classification system by the Japan Pedology Society.
腐食量推定装置1は、腐食速度測定部10、変化関数計算部20、データ抽出部30、及び腐食量計算部40を備える。図2は、腐食量推定装置1の処理手順を示す動作フローである。図1と図2を参照してその動作を説明する。
The corrosion
腐食速度測定部10は、評価対象の金属を含むセンサ4を埋設した土壌に給水し、該土壌の含水率が飽和するまでの経過時間に対するセンサ4中の金属の腐食速度、該土壌3の含水率が飽和した状態を継続させた場合の経過時間とセンサ4中の金属の腐食速度、及び該土壌の含水率が飽和した状態から給水を停止した後の経過時間とセンサ4中の金属の腐食速度のそれぞれの腐食速度を複数回測定する(ステップS1)。センサ4中の金属の腐食速度の測定方法について詳しくは後述する。
The corrosion
変化関数計算部20は、経過時間に対するそれぞれの腐食速度を表す複数の変化関数を計算する(ステップS2)。詳しくは後述する。
The change
データ抽出部30は、所定以上の降雨量のあった日を表す複数の降雨データから、降雨日と、次の降雨日までの間隔を表す降雨日間隔との組みからなる複数の降雨間隔データを抽出する(ステップS3)。ここで所定以上の降雨量とは、土壌3の含水率が飽和するのに必要な雨量のことである。
The
また、降雨日とは、その雨量が降雨した日の数である。所定の降雨量の雨が1日降れば降雨日は1日、2日続けば降雨日は2日である。また、降雨日間隔とは、降雨日と降雨日の間隔である。例えば降雨日の後に晴天が3日間続いた場合の降雨日間隔は3日である。降雨間隔データについて具体例を示した説明は後述する。 The rainy day is the number of days when the amount of rain has fallen. If a predetermined amount of rainfall falls for one day, the rainy day is one day, and if it continues for two days, the rainy day is two days. The rainy day interval is an interval between rainy days. For example, if the sunny weather continues for 3 days after a rainy day, the interval between rainy days is 3 days. A specific example of the rainfall interval data will be described later.
腐食量計算部40は、降雨間隔データと変化関数を用いてセンサ4中の金属の腐食量を計算する(ステップS4)。腐食量の計算について具体例を示した説明は省略する。
The corrosion
以上述べた本実施形態に係る腐食量推定装置1によれば、土壌の含水率に対する腐食速度の変化を表す変化関数と降雨データから腐食量を計算するので、土壌中の金属の腐食量を、簡便かつ短期間に予測することができる。
According to the corrosion
図3は、降雨と土壌3の含水率との関係を模式的に示す図である。図3の横軸は経過時間である。 FIG. 3 is a diagram schematically showing the relationship between rainfall and the water content of soil 3. The horizontal axis of FIG. 3 is the elapsed time.
土壌3の含水率は、降雨と良く連動している。降雨と同時に含水率が増加し、雨が止むと土壌3の固有の速度で含水率が減少して行くサイクルを繰り返す。なお、図3から、所定量以下の降雨量は、土壌の含水率に影響を与えないことが分かる。 The moisture content of soil 3 is well linked to precipitation. The water content increases at the same time as the rainfall, and when the rain stops, the water content decreases at the rate peculiar to the soil 3 and repeats the cycle. From FIG. 3, it can be seen that the amount of rainfall below a predetermined amount does not affect the water content of the soil.
図3に示す関係から、土壌の含水率の変化と、腐食速度の関係からセンサ4中の金属の腐食量を計算することができる。
From the relationship shown in FIG. 3, the amount of metal corrosion in the
つまり、予め土壌3の含水率と腐食速度の関係を、経過時間(経過日数)で例えば30日程度の期間測定しておけば、ほとんどの降雨データに対応する腐食速度を計算することができる。その腐食速度を表す変化関数を、所定以上の降雨量のあった日を表す複数の降雨データから抽出した降雨間隔で積分することで腐食量が計算できる。したがって、短期間の実験で腐食量を推定することができる。 That is, if the relationship between the water content of the soil 3 and the corrosion rate is measured in advance for a period of, for example, about 30 days in terms of elapsed time (elapsed days), the corrosion rate corresponding to most of the rainfall data can be calculated. The amount of corrosion can be calculated by integrating the change function representing the corrosion rate at the rainfall interval extracted from a plurality of rainfall data representing the days when the amount of rainfall exceeds a predetermined value. Therefore, the amount of corrosion can be estimated by a short-term experiment.
次に、腐食量推定装置1の各機能構成部について詳しく説明する。
Next, each functional component of the corrosion
(腐食速度測定部)
腐食速度測定部10は、交流インピーダンス測定機能を有する。交流インピーダンス測定は、センサ4中の金属を電極とし、電極間に微少電圧もしくは電流を交流で印加し、電気的な応答を測定する。印加する電圧もしくは電流は、センサ4中の金属の表面が変化しないように微少にするのがよい。例えば5mV程度である。周波数は、例えば0.1Hz〜500Hzの幅で変化させる。
(Corrosion rate measuring unit)
The corrosion
交流インピーダンス測定を行うことでナイキスト線図を得ることができる。図4に、ナイキスト線図を模式的に示す。ナイキスト線図の横軸は実部、縦軸軸は虚部である。ナイキスト線図を元に、所定の等価回路に基づいてカーブフィッティングすることで電荷移動抵抗を導く。 A Nyquist diagram can be obtained by measuring the AC impedance. FIG. 4 schematically shows a Nyquist diagram. The horizontal axis of the Nyquist diagram is the real part, and the vertical axis is the imaginary part. Based on the Nyquist diagram, the charge transfer resistance is derived by curve fitting based on a predetermined equivalent circuit.
図5は、電荷移動抵抗を計算するのに仮定する等価回路の例である。図5(a)は、3電極で交流インピーダンスを測定した場合の等価回路である。図5(b)は、2電極で交流インピーダンスを測定した場合の等価回路である。 FIG. 5 is an example of an equivalent circuit assumed to calculate the charge transfer resistance. FIG. 5A is an equivalent circuit when the AC impedance is measured with three electrodes. FIG. 5B is an equivalent circuit when the AC impedance is measured with two electrodes.
図5中の電荷移動抵抗Rctは、土壌3中のセンサ4中の金属の腐食反応の抵抗を表す。電気二重層Cdlは、センサ4中の金属と土壌3の界面に存在する容量である。抵抗成分Rs1,Rs2は、土壌3中及びその他の抵抗を表す。容量Csは、土壌3の容量成分である。ワールブルグインピーダンスZwは、拡散過程によるインピーダンスである。なお、カーブフィッティングする際は、電気二重層Cdlと容量CSはCPE(Constant Phase Element)に置き代えてもよい。
The charge transfer resistance Rct in FIG. 5 represents the resistance of the corrosion reaction of the metal in the
図5に示す等価回路によれば、図4に示すようにナイキスト線図上に理論上二つの円弧が描かれる。高周波数側の円弧は土壌3に由来する。低周波数側の円弧は腐食反応に起因するものである。 According to the equivalent circuit shown in FIG. 5, two arcs are theoretically drawn on the Nyquist diagram as shown in FIG. The arc on the high frequency side is derived from soil 3. The arc on the low frequency side is due to the corrosion reaction.
電荷移動抵抗は、ナイキスト線図の低周波数側の円弧が横軸(実部)と交差する幅で与えられる。なお、2電極で交流インピーダンスを測定した場合の電荷移動抵抗は、その幅の半分の値である。 The charge transfer resistance is given by the width at which the arc on the low frequency side of the Nyquist diagram intersects the horizontal axis (real part). The charge transfer resistance when the AC impedance is measured with two electrodes is half the width.
腐食速度は、電荷移動抵抗の逆数に比例する。その比例係数Kは、アノード及びカソード分極曲線からTafel勾配を導いて算出する(参考文献:「コンクリート中鋼材の腐食速度測定方法(CIPE法)の開発)」、さび、148号、p2-8,2015)。 Corrosion rate is proportional to the reciprocal of charge transfer resistance. The proportional coefficient K is calculated by deriving the Tapel gradient from the anode and cathode polarization curves (Reference: "Development of Corrosion Rate Measuring Method for Steel in Concrete (CIPE Method)", Rust, No. 148, p2-8, 2015).
比例係数Kを用いることで、電荷移動抵抗の逆数から、腐食電流密度(腐食速度)を算出することができる。腐食電流密度を用いて重量減肉速度及び体積減肉速度等を算出することもできる。 By using the proportionality coefficient K, the corrosion current density (corrosion rate) can be calculated from the reciprocal of the charge transfer resistance. The weight thinning rate, the volume thinning rate, and the like can also be calculated using the corrosion current density.
腐食速度測定部10は、土壌3の含水率の変化に対応させて腐食速度を複数回測定する。図6は、その腐食速度の測定例を示す。横軸は経過時間、縦軸は腐食速度である。図6は、土壌3に給水している状態において経過時間を変えて5回腐食速度を測定し、給水を停止した後の排水している状態において15回腐食速度を測定した例を示している。
The corrosion
給水状態において土壌3の含水率は飽和し、飽和した後も給水は継続されている。5回の腐食速度の測定の内、4回と5回目のプロットは含水率が飽和している状態の腐食速度である。 The water content of the soil 3 is saturated in the water supply state, and the water supply is continued even after the saturation. Of the five corrosion rate measurements, the fourth and fifth plots are the corrosion rates with saturated moisture content.
このように、腐食速度測定部10は、評価対象のセンサ4中の金属を埋設した土壌3に給水し、該土壌3の含水率が飽和するまでの経過時間に対するセンサ4中の金属の腐食速度、該土壌3の含水率が飽和した状態を継続させた場合の経過時間と鋼材の腐食速度、及び該土壌3の含水率が飽和した状態から給水を停止した後の経過時間とセンサ4中の金属の腐食速度のそれぞれの腐食速度を複数回測定する。
In this way, the corrosion
(変化関数計算部)
変化関数計算部20は、図6に示した腐食速度の変化から複数の変化関数を計算する。つまり、変化関数計算部20は、経過時間に対する腐食速度の変化を表す複数の変化関数を計算する。
(Change function calculation unit)
The change
変化関数は、例えば図6に示す腐食速度の経過時間に対する変化を表す任意の関数V(t)である。関数V(t)は、例えば図6に示す腐食速度の変化に、任意の関数をカーブフィッティングして求める。 The change function is, for example, an arbitrary function V (t) representing the change of the corrosion rate with respect to the elapsed time shown in FIG. The function V (t) is obtained by curve fitting an arbitrary function to, for example, the change in the corrosion rate shown in FIG.
図7は、図6に示す腐食速度の変化を直線近似によってカーブフィッティングした例を模式的に示す。給水開始から腐食速度が上昇し、ほぼ安定値になるまでの関数はV1(t)=at、安定値になってからの関数はV2(t)=bである。また、給水を停止してから腐食速度が低下する部分の関数はV3(t)=ctである。 FIG. 7 schematically shows an example in which the change in the corrosion rate shown in FIG. 6 is curve-fitted by linear approximation. The function from the start of water supply until the corrosion rate increases and becomes almost a stable value is V1 (t) = at, and the function after the stable value is V2 (t) = b. Further, the function of the portion where the corrosion rate decreases after the water supply is stopped is V3 (t) = ct.
直線の他、二次関数、指数関数を用いてもよい。図8は、V3(t)の代わりにV4(t)=c×exp(dt)+bとした図である。なお、a,b,c,dは定数である。 In addition to a straight line, a quadratic function or an exponential function may be used. FIG. 8 is a diagram in which V4 (t) = c × exp (dt) + b instead of V3 (t). Note that a, b, c, and d are constants.
このように、変化関数計算部20は、土壌3に給水を開始してから該土壌3の含水率が飽和するまでのセンサ4中の金属の腐食速度の変化を表す第1変化関数V1(t)と、土壌3の含水率が飽和している状態におけるセンサ4中の金属の腐食速度の変化を表す第2変化関数V2(t)と、土壌3の排水過程におけるセンサ4中の金属の腐食速度の変化を表す第3変化関数V3(t)を計算する。これらの変化関数から所定期間における腐食量を計算することができる。
As described above, the change
図9は、変化関数の組み合わせで腐食量が計算できることを模式的に示す図である。図9の各図の横軸は経過時間、縦軸は腐食速度である。 FIG. 9 is a diagram schematically showing that the amount of corrosion can be calculated by combining the change functions. The horizontal axis of each figure of FIG. 9 is the elapsed time, and the vertical axis is the corrosion rate.
図9(a)は、土壌3の含水率を飽和させる量の雨が1日降り続いた場合の腐食速度の変化を示す。この場合の腐食量は、変化関数V1(t)とV2(t)のそれぞれを経過時間で積分した積分量の和で求められる(Qw1)。なお、図9では、雨が降り続くことを給水継続と表記している。 FIG. 9A shows a change in the corrosion rate when it rains in an amount that saturates the water content of the soil 3 for one day. The amount of corrosion in this case is obtained by the sum of the integrated amounts obtained by integrating each of the change functions V1 (t) and V2 (t) with the elapsed time (Qw1). In addition, in FIG. 9, continuous rain is described as continuous water supply.
図9(b)は、土壌3の含水率を飽和させる量の雨が2日降り続いた場合の腐食速度の変化を示す。この場合の腐食量は図9(a)と同様に、変化関数V1(t)とV2(t)のそれぞれを経過時間で積分した積分量の和で求められる(Qw2)。ただし、この場合V2(t)を積分する経過時間は2日である点で図9(a)と異なる。 FIG. 9B shows the change in the corrosion rate when the amount of rain that saturates the water content of the soil 3 continues to fall for two days. The amount of corrosion in this case is obtained by the sum of the integrated amounts obtained by integrating each of the change functions V1 (t) and V2 (t) with the elapsed time, as in FIG. 9A (Qw2). However, in this case, the elapsed time for integrating V2 (t) is 2 days, which is different from FIG. 9 (a).
図9(c)は、雨が止んだ後の1日の間の腐食速度の変化を示す。この場合の腐食量は、変化関数V3(t)を経過時間1日で積分した値である(Qd1)。 FIG. 9 (c) shows the change in corrosion rate during the day after the rain stopped. The amount of corrosion in this case is a value obtained by integrating the change function V3 (t) with an elapsed time of 1 day (Qd1).
図9(d)は、雨が止んだ後の2日の間の腐食速度の変化を示す。この場合の腐食量は、変化関数V3(t)を経過時間2日で積分した値である(Qd2)。 FIG. 9D shows the change in corrosion rate during the two days after the rain stopped. The amount of corrosion in this case is a value obtained by integrating the change function V3 (t) over an elapsed time of 2 days (Qd2).
このように変化関数と降雨状況から腐食量を計算することができる。降雨状況は、所定以上の降雨量があった日を表す複数の降雨データから抽出することができる。例えば、気象庁が発表する降雨データから、雨の降った時間が分かる降雨時間と、降雨と降雨との間隔を表す降雨間隔を抽出すれば、腐食量を計算することができる。 In this way, the amount of corrosion can be calculated from the change function and the rainfall situation. The rainfall situation can be extracted from a plurality of precipitation data representing the days when the amount of precipitation exceeds a predetermined value. For example, the amount of corrosion can be calculated by extracting the rainfall time, which indicates the time when it rained, and the rainfall interval, which represents the interval between rainfalls, from the precipitation data released by the Japan Meteorological Agency.
(データ抽出部)
データ抽出部30は、所定以上の降雨量のあった時間を表す複数の降雨データから、降雨と、次の降雨までの間隔を表す降雨間隔との組みからなる複数の降雨間隔データを抽出する。
(Data extraction unit)
The
図10は、42日間の降雨データの例を示す。1列目は何月何日の「日」であり、2列目はそれぞれの日の1日当たりの雨量(日雨量(mm))である。以降において説明する実施形態の降雨時間の単位は(日)で説明する。なお、降雨時間の単位が(時間)で有っても、以降で説明する方法で腐食量を計算することができる。 FIG. 10 shows an example of precipitation data for 42 days. The first column is the "day" of the month and day, and the second column is the daily rainfall (daily rainfall (mm)) of each day. The unit of the rainfall time of the embodiment described below will be described in (days). Even if the unit of rainfall time is (hours), the amount of corrosion can be calculated by the method described below.
○月×日に日雨量2mmの降雨があり、その後3日間雨が降らずに、○月×4日に日雨量7.5mmの降雨があったことが分かる。これ以降は省略するが、42日間で16回(日)、所定以上の降雨が有ったことが示されている。ここで所定以上の降雨とは、この例では日雨量0.5mm以上のことである。 It can be seen that there was a daily rainfall of 2 mm on the ○ month × day, and then there was no rainfall for 3 days, and there was a daily rainfall of 7.5 mm on the ○ month × 4. Although omitted from this point onward, it has been shown that there was more than the prescribed amount of precipitation 16 times (Sunday) in 42 days. Here, the precipitation above a predetermined level means that the daily rainfall is 0.5 mm or more in this example.
データ抽出部30は、図10に示す降雨データから、降雨日と、降雨日と降雨日との間隔を表す降雨日間隔との組みからなる複数の降雨間隔データを抽出する。
The
図10に示す降雨データからは、(tw1,td3)、(tw1,td2)、(tw1,td8)、…の降雨間隔データを抽出する。添え字のwはwet、数字は降雨が継続した連続日数を表す。添え字dはdry、数字は排水(雨の降らない日)が継続した連続日数を表す。 From the precipitation data shown in FIG. 10, the precipitation interval data of (tw1, td3), (tw1, td2), (tw1, td8), ... Is extracted. The subscript w is wet, and the number is the number of consecutive days of continuous rainfall. The subscript d represents dry, and the number represents the number of consecutive days of continuous drainage (days when it does not rain).
(腐食量計算部)
腐食量計算部40は、データ抽出部30で抽出した降雨間隔データと変化関数を用いてセンサ4中の金属の腐食量を計算する。
(Corrosion amount calculation unit)
The corrosion
○月×日は、前日に降雨がない条件で、降雨が1日だけあった日であり、図9(a)に示した条件と一致する。この場合、腐食量計算部40は、○月×日の腐食量を、変化関数V1(t)とV2(t)のそれぞれの積分和で求める(Qw1)。
○ Month × day is the day when there was only one day of rainfall under the condition that there was no rainfall on the previous day, which matches the condition shown in FIG. 9 (a). In this case, the corrosion
○月×日+1日〜○月×日+3日の腐食量は、変化関数V3(t)をt=3で積分して求める。 The amount of corrosion from ○ month × day +1 day to ○ month × day +3 day is obtained by integrating the change function V3 (t) with t = 3.
つまり、腐食量計算部40は、降雨間隔データの降雨日の大きさが1日以下の場合は、最初の1日の腐食量を第1変化関数V1(t)と第2変化関数V2(t)の積分和で求め、降雨間隔データの降雨日間隔の日数の腐食量を第3変化関数V3(t)を積分して求める。
That is, when the magnitude of the rainfall day in the rainfall interval data is one day or less, the corrosion
また、○月×日+16日〜○月×日+20日の降雨間隔データは、(tw2,td3)である。この場合、腐食量計算部40は、○月×日+16日〜○月×日+17日の腐食量を、変化関数V1(t)とV2(t)のそれぞれの積分和で求める(Qw2)。この場合の腐食量Qw2は、Qw1よりも第2変化関数V2(t)をt=1日で積分した分、腐食量が多い。また、○月×日+18日〜○月×日+20日の腐食量は、第3変化関数V3(t)をt=3日で積分して求める。
The rainfall interval data from XX month x day + 16 days to XX month x day + 20 days is (tw2, td3). In this case, the corrosion
つまり、腐食量計算部40は、降雨間隔データの降雨日の大きさが1日より大きい場合は、最初の1日の腐食量を第1変化関数V1(t)と第2変化関数V2(t)の積分和で求め、(降雨日−1日)の腐食量を第2変化関数V2(t)を積分して求め、降雨間隔データの降雨日間隔の日数の腐食量を第3変化関数V3(t)を積分して求める。
That is, when the magnitude of the rainfall day in the rainfall interval data is larger than one day, the corrosion
図11の3列目に、上記のように計算した腐食量を示す。図11の1〜2列目は、図10と同じである。 The third column of FIG. 11 shows the amount of corrosion calculated as described above. The first and second columns of FIG. 11 are the same as those of FIG.
腐食量計算部40は、図11に示すように計算した腐食量の合計を求める。この合計は、センサ4中の金属の42日間の腐食量である。
The corrosion
以上説明したように本実施形態の腐食量推定装置1によれば、土壌3中のセンサ4中の金属の腐食量を、簡便かつ短期間に推定することができる。腐食量推定装置1によって、土壌3の含水率と腐食速度の関係を、経過時間(経過日数)で例えば30日程度の期間測定しておけば、ほとんどの降雨データに対応する腐食速度を計算することができる。つまり、例えば30日程度の期間の実験を行って変化関数を求めておけば、長期間の降雨データを入力することで、その長期間の腐食量を推定することができる。
As described above, according to the corrosion
図12は、そのようにして推定した腐食量を模式的に示す図である。横軸は経過時間(例えば年)、縦軸は腐食量である。このように降雨データから、その降雨データを取得した期間の腐食量を推定することができる。 FIG. 12 is a diagram schematically showing the amount of corrosion estimated in this way. The horizontal axis is the elapsed time (for example, year), and the vertical axis is the amount of corrosion. In this way, it is possible to estimate the amount of corrosion during the period in which the rainfall data was acquired from the rainfall data.
本発明は、上記の実施形態に限定されるものではなく、その要旨の範囲内で変形が可能である。例えば、腐食量計算部40は、変化関数を積分して腐食量を計算する他に、計算した腐食量を補正するような機能を付加してもよい。
The present invention is not limited to the above-described embodiment, and can be modified within the scope of the gist thereof. For example, the corrosion
センサ4中の金属の表面に皮膜が形成され、腐食速度が経時的に低下する種類の鋼材の場合、腐食量Qは、Q=kTnに従うことが知られている。ここでkは、初期の1年間の腐食量である。Tは期間、nは0.4〜0.6の定数である。
In the case of a type of steel in which a film is formed on the surface of the metal in the
そこで、本発明の腐食量推定装置1で1年間の腐食量kを求め、予測したい期間Tを用いて1年以上先の期間の腐食量は上記の式で計算して求めてもよい。また、予測したい期間Tの降雨データを元に腐食量を算出し、これをTnで除して腐食量Qの予測値としてもよい。
Therefore, the corrosion amount k for one year may be obtained by the corrosion
また、降雨データの例を1日当たりの日雨量で示したが、時間当たりの1時間雨量で腐食量を計算してもよいことは上記した通りである。また、10分間雨量で計算してもよい。経過時間であればその大きさに関係なく同じ方法で腐食量が計算できる。 Moreover, although the example of the rainfall data is shown by the daily rainfall per day, the corrosion amount may be calculated by the hourly rainfall per hour as described above. Alternatively, it may be calculated by the amount of rainfall for 10 minutes. If it is the elapsed time, the amount of corrosion can be calculated by the same method regardless of its size.
このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 As described above, it goes without saying that the present invention includes various embodiments not described here. Therefore, the technical scope of the present invention is defined only by the matters specifying the invention relating to the reasonable claims from the above description.
1:腐食量推定装置
2:収容部
3:土壌
4:センサ(センサ中の金属)
10:腐食速度測定部
20:変化関数計算部
30:データ抽出部
40:腐食量計算部
1: Corrosion amount estimation device 2: Storage part 3: Soil 4: Sensor (metal in the sensor)
10: Corrosion rate measurement unit 20: Change function calculation unit 30: Data extraction unit 40: Corrosion amount calculation unit
Claims (4)
前記経過時間に対するそれぞれの腐食速度を表す複数の変化関数を計算する変化関数計算部と、
所定以上の降雨量のあった時間を表す複数の降雨データから、降雨時間と、次の降雨までの間隔を表す降雨間隔との組みからなる複数の降雨間隔データを抽出するデータ抽出部と、
前記降雨間隔データと前記変化関数を用いて前記鋼材の腐食量を計算する腐食量計算部と
を備えることを特徴とする腐食量推定装置。 The corrosion rate of the steel material with respect to the elapsed time until the water content of the soil is saturated by supplying water to the soil in which the steel material to be evaluated is buried, the elapsed time when the water content of the soil is kept saturated, and the above. A corrosion rate measuring unit that measures the corrosion rate of the steel material, the elapsed time after the water supply is stopped from the saturated water content of the soil, and the corrosion rate of the steel material multiple times.
A change function calculation unit that calculates a plurality of change functions representing each corrosion rate with respect to the elapsed time,
A data extraction unit that extracts a plurality of rainfall interval data consisting of a combination of a rainfall time and a rainfall interval representing an interval until the next rainfall from a plurality of rainfall data representing a time when a predetermined amount of rainfall or more has occurred.
A corrosion amount estimation device including a corrosion amount calculation unit that calculates the corrosion amount of the steel material by using the rainfall interval data and the change function.
前記変化関数は、
前記土壌に給水を開始してから該土壌の含水率が飽和するまでの前記鋼材の腐食速度の変化を表す第1変化関数と、
前記土壌の含水率が飽和している状態における前記鋼材の腐食速度の変化を表す第2変化関数と、
前記土壌の排水過程における前記鋼材の腐食速度の変化を表す第3変化関数とを含み、
前記腐食量計算部は、
前記降雨間隔データの降雨時間の大きさが1日以下の場合は、最初の1日の腐食量を前記第1変化関数、前記第2変化関数、及び前記第3変化関数をそれぞれに対応する降雨時間と降雨間隔で積分した値の和で求め、
前記降雨間隔データの降雨時間の大きさが1日より大きい場合は、最初の1日の腐食量を前記第1変化関数と前記第2変化関数にそれぞれに対応する降雨時間と降雨間隔で積分した値の和で求め、(降雨時間−1日)の腐食量を前記第2変化関数に対応する降雨時間及び前記第3変化関数に対応する降雨間隔でそれぞれ積分した値の和で求め、求めた腐食量の合計を前記鋼材の腐食量とする
ことを特徴とする腐食量推定装置。 In the corrosion amount estimation device according to claim 1,
The change function is
The first change function representing the change in the corrosion rate of the steel material from the start of water supply to the soil until the water content of the soil is saturated, and
A second change function representing a change in the corrosion rate of the steel material in a state where the water content of the soil is saturated, and
Including a third function of change representing the change in the corrosion rate of the steel material in the soil drainage process.
The corrosion amount calculation unit
When the magnitude of the rainfall time of the rainfall interval data is one day or less, the amount of corrosion in the first day corresponds to the first change function, the second change function, and the third change function, respectively. Calculated by the sum of the values integrated with time and rainfall interval
When the magnitude of the rainfall time in the rainfall interval data is larger than one day, the amount of corrosion in the first day is integrated by the rainfall time and the rainfall interval corresponding to the first change function and the second change function, respectively. It was calculated by the sum of the values, and the amount of corrosion (rainfall time-1 day) was calculated by the sum of the values integrated by the rainfall time corresponding to the second change function and the rainfall interval corresponding to the third change function. A corrosion amount estimation device characterized in that the total amount of corrosion is the amount of corrosion of the steel material.
評価対象の鋼材を埋設した土壌に給水し、該土壌の含水率が飽和するまでの経過時間に対する前記鋼材の腐食速度、該土壌の含水率が飽和した状態を継続させた場合の経過時間と前記鋼材の腐食速度、及び該土壌の含水率が飽和した状態から給水を停止した後の経過時間と前記鋼材の腐食速度のそれぞれの腐食速度を複数回測定し、
前記経過時間に対するそれぞれの腐食速度を表す複数の変化関数を計算し、
所定以上の降雨量のあった時間を表す複数の降雨データから、降雨時間と、次の降雨までの間隔を表す降雨間隔との組みからなる複数の降雨間隔データを抽出し、
前記降雨間隔データと前記変化関数を用いて前記鋼材の腐食量を計算する
ことを特徴とする腐食量推定方法。 It is a corrosion amount estimation method performed by the corrosion amount estimation device.
The corrosion rate of the steel material with respect to the elapsed time until the water content of the soil is saturated by supplying water to the soil in which the steel material to be evaluated is buried, the elapsed time when the water content of the soil is saturated, and the above-mentioned The corrosion rate of the steel material, the elapsed time after the water supply was stopped from the saturated water content of the soil, and the corrosion rate of the steel material were measured multiple times.
A plurality of function of change representing each corrosion rate with respect to the elapsed time was calculated.
From a plurality of rainfall data representing the time when the amount of rainfall exceeds a predetermined value, a plurality of rainfall interval data consisting of a combination of the rainfall time and the rainfall interval representing the interval until the next rainfall is extracted.
A method for estimating the amount of corrosion, which comprises calculating the amount of corrosion of the steel material using the rainfall interval data and the change function.
前記変化関数は、
前記土壌に給水を開始してから該土壌の含水率が飽和するまでの前記鋼材の腐食速度の変化を表す第1変化関数と、
前記土壌の含水率が飽和している状態における前記鋼材の腐食速度の変化を表す第2変化関数と、
前記土壌の排水過程における前記鋼材の腐食速度の変化を表す第3変化関数とを含み、
前記鋼材の腐食量は、
前記降雨間隔データの降雨時間の大きさが1日以下の場合は、最初の1日の腐食量を前記第1変化関数、前記第2変化関数、及び前記第3変化関数をそれぞれに対応する降雨時間と降雨間隔で積分した値の和で求め、
前記降雨間隔データの降雨時間の大きさが1日より大きい場合は、最初の1日の腐食量を前記第1変化関数と前記第2変化関数にそれぞれに対応する降雨時間と降雨間隔で積分した値の和で求め、(降雨時間−1日)の腐食量を前記第2変化関数に対応する降雨時間及び前記第3変化関数に対応する降雨間隔でそれぞれ積分した値の和で求め、求めた腐食量の合計である
ことを特徴とする腐食量推定方法。 In the method for estimating the amount of corrosion according to claim 3,
The change function is
The first change function representing the change in the corrosion rate of the steel material from the start of water supply to the soil until the water content of the soil is saturated, and
A second change function representing a change in the corrosion rate of the steel material in a state where the water content of the soil is saturated, and
Including a third function of change representing the change in the corrosion rate of the steel material in the soil drainage process.
The amount of corrosion of the steel material is
When the magnitude of the rainfall time of the rainfall interval data is one day or less, the amount of corrosion in the first day corresponds to the first change function, the second change function, and the third change function, respectively. Calculated by the sum of the values integrated with time and rainfall interval
When the magnitude of the rainfall time in the rainfall interval data is larger than one day, the amount of corrosion in the first day is integrated by the precipitation time and the precipitation interval corresponding to the first change function and the second change function, respectively. It was calculated by the sum of the values, and the amount of corrosion (rainfall time-1 day) was calculated by the sum of the values integrated by the rainfall time corresponding to the second change function and the rainfall interval corresponding to the third change function. A method for estimating the amount of precipitation, which is the total amount of corrosion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017229097A JP6793108B2 (en) | 2017-11-29 | 2017-11-29 | Corrosion amount estimation device and its method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017229097A JP6793108B2 (en) | 2017-11-29 | 2017-11-29 | Corrosion amount estimation device and its method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019100755A JP2019100755A (en) | 2019-06-24 |
JP6793108B2 true JP6793108B2 (en) | 2020-12-02 |
Family
ID=66973360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017229097A Active JP6793108B2 (en) | 2017-11-29 | 2017-11-29 | Corrosion amount estimation device and its method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6793108B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210341381A1 (en) * | 2018-09-27 | 2021-11-04 | Nippon Telegraph And Telephone Corporation | Corrosivity Evaluation Device and Method Thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220414486A1 (en) * | 2019-11-22 | 2022-12-29 | Nippon Telegraph And Telephone Corporation | Predictor and Method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0648241B2 (en) * | 1989-05-01 | 1994-06-22 | 新日本製鐵株式会社 | Underground environment test equipment |
JPH1021211A (en) * | 1996-06-28 | 1998-01-23 | Taisei Corp | Neural network, evaluating method and predicting method of corrosion of reinforcing bar in concrete structure |
JP6058442B2 (en) * | 2013-03-25 | 2017-01-11 | 一般財団法人電力中央研究所 | Corrosion sensor, corrosion rate measuring method and corrosion rate measuring apparatus using the same |
WO2015160927A1 (en) * | 2014-04-15 | 2015-10-22 | The University Of Akron | Methods for evaluation and estimation of external corrosion damage on buried pipelines |
-
2017
- 2017-11-29 JP JP2017229097A patent/JP6793108B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210341381A1 (en) * | 2018-09-27 | 2021-11-04 | Nippon Telegraph And Telephone Corporation | Corrosivity Evaluation Device and Method Thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2019100755A (en) | 2019-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6712543B2 (en) | Corrosion amount estimation device and method | |
WO2019225727A1 (en) | Corrosion rate estimating device and method | |
Mahmoodabadi et al. | WEPP calibration for improved predictions of interrill erosion in semi-arid to arid environments | |
Bagarello et al. | Predicting soil loss on moderate slopes using an empirical model for sediment concentration | |
Xiao et al. | Developing equations to explore relationships between aggregate stability and erodibility in Ultisols of subtropical China | |
JP7104326B2 (en) | Corrosion assessment device and its method | |
Reinfelds et al. | Hydrospatial assessment of streamflow yields and effects of climate change: Snowy Mountains, Australia | |
Mohamed et al. | Hydro-geophysical monitoring of the North Western Sahara Aquifer System's groundwater resources using gravity data | |
JP6793108B2 (en) | Corrosion amount estimation device and its method | |
Vedalakshmi et al. | Reliability of Galvanostatic Pulse Technique in assessing the corrosion rate of rebar in concrete structures: Laboratory vs field studies | |
Di Stefano et al. | Modeling rill erosion at the Sparacia experimental area | |
Yang et al. | Brief communication: The challenge and benefit of using sea ice concentration satellite data products with uncertainty estimates in summer sea ice data assimilation | |
JP2018205124A (en) | Device and method for measuring corrosion rate | |
US20220221393A1 (en) | Prediction Formula Derivation Method and Prediction Formula Derivation Apparatus | |
Liu et al. | A Bayesian analysis of Generalized Pareto Distribution of runoff minima | |
JP2011257245A (en) | Corrosion amount estimation method, corrosion amount estimation device, and management method for reinforced concrete | |
KR20170090728A (en) | Method for predicting annual exposure dose of radon and apparatus for reducing radon automatically using the same method | |
Gragne et al. | Recursively updating the error forecasting scheme of a complementary modelling framework for improved reservoir inflow forecasts | |
JP6026055B2 (en) | Method for measuring corrosion rate of metal bodies | |
JP7141006B2 (en) | Corrosivity predictor and method | |
Treble et al. | Separating isotopic impacts of karst and in-cave processes from climate variability using an integrated speleothem isotope-enabled forward model | |
Kuleshov et al. | Estimates of lightning ground flash density in Australia and its relationship to thunder-days | |
JP2007286736A (en) | Dam basin snow accumulation estimation device, dam inflow water quantity estimation device and program | |
Gauthier et al. | Modeling strength and stability in storm snow for slab avalanche forecasting | |
McPhee et al. | An approach to estimating hydropower impacts of climate change from a regional perspective |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201023 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201109 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6793108 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |