JP6792772B2 - Water level measurement system - Google Patents

Water level measurement system Download PDF

Info

Publication number
JP6792772B2
JP6792772B2 JP2018145312A JP2018145312A JP6792772B2 JP 6792772 B2 JP6792772 B2 JP 6792772B2 JP 2018145312 A JP2018145312 A JP 2018145312A JP 2018145312 A JP2018145312 A JP 2018145312A JP 6792772 B2 JP6792772 B2 JP 6792772B2
Authority
JP
Japan
Prior art keywords
water level
wireless communication
level gauge
electronic circuit
monitoring server
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018145312A
Other languages
Japanese (ja)
Other versions
JP2020020693A (en
Inventor
竹生 檜山
竹生 檜山
Original Assignee
株式会社エイビット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エイビット filed Critical 株式会社エイビット
Priority to JP2018145312A priority Critical patent/JP6792772B2/en
Publication of JP2020020693A publication Critical patent/JP2020020693A/en
Application granted granted Critical
Publication of JP6792772B2 publication Critical patent/JP6792772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、大雨時に生起する川の増水による災害対策のため、河川敷や街中に設置され、水位の上昇を測定する水位計を用いたシステムに関するものである。 The present invention relates to a system using a water level gauge installed in a riverbed or in a city to measure a rise in water level in order to prevent a disaster caused by a flood of a river that occurs during heavy rain.

川の水位を測定する方法は、特許文献1に示されるように、川底に設置されるGPS受信機と水面に設置されるGPS受信機を用い、2つのGPS受信機が受信したGPS情報を比較し、水面の高さを測定する方法や、特許文献2に示すように、複数の水位計データを無線通信などの通信手段で監視装置に送り監視装置で複数の水位計データをリアルタイムに把握・監視する方法が採られている。 As a method of measuring the water level of a river, as shown in Patent Document 1, a GPS receiver installed on the bottom of the river and a GPS receiver installed on the surface of the water are used to compare the GPS information received by the two GPS receivers. However, as shown in the method of measuring the height of the water surface and Patent Document 2, a plurality of water level gauge data are sent to the monitoring device by a communication means such as wireless communication, and the monitoring device grasps the plurality of water level gauge data in real time. The method of monitoring is adopted.

特開平11−257957JP-A-11-257957 特開2003−196776Japanese Patent Application Laid-Open No. 2003-196767

水位計測のために、無線通信手段を有した簡便で低コストの水位計を提供するとともに、水位上昇によって、アンテナ部が水で覆われ無線通信が困難になっても、無線通信を可能とするシステムを提供する。 A simple and low-cost water level gauge equipped with wireless communication means is provided for water level measurement, and wireless communication is possible even if the antenna portion is covered with water and wireless communication becomes difficult due to the rise in water level. Provide a system.

工事現場などで使用されるポール型コーンに、中空部を設け、水位を検出し、検出された水位を無線通信で、管理サーバに送信する電子回路装置をポール型コーンの上部に設置し、かつ電子回路装置のアンテナ部は電子回路装置の電子回路部と遊離可能な構成とし、ポール型コーン底部に水位測定用浮体を置き、コーンに水が浸入することで浮体が浮き上るが、その時の浮体の位置を計算することで水位を測定する。水位がさらに上昇し、浮体が電子回路装置を押し上げる位置まで到達した時は、ポール型コーンの蓋が浮体からの浮力で、アンテナ部により押し上げられて開き、アンテナ部がポール型コーンから外され、アンテナ部は電子回路部と遊離する。このときアンテナ部も水に浸されるが、アンテナ部は、アンテナ素子が第2の浮体に設置されていて、アンテナ素子は、アンテナ浮体によって水面上に浮かんだ状態で水に浸されず、無線通信は可能になる。 A hollow part is provided in the pole-shaped cone used at a construction site, etc., and an electronic circuit device that detects the water level and transmits the detected water level to the management server by wireless communication is installed above the pole-shaped cone. The antenna part of the electronic circuit device has a structure that can be separated from the electronic circuit part of the electronic circuit device, a floating body for water level measurement is placed at the bottom of the pole type cone, and the floating body rises when water infiltrates the cone, but the floating body at that time The water level is measured by calculating the position of. When the water level rises further and the floating body reaches the position where it pushes up the electronic circuit device, the lid of the pole-shaped cone is pushed up by the antenna part by the buoyancy from the floating body to open, and the antenna part is removed from the pole-shaped cone. The antenna part is separated from the electronic circuit part. At this time, the antenna portion is also immersed in water, but in the antenna portion, the antenna element is installed in the second floating body, and the antenna element is not immersed in water while floating on the water surface by the antenna floating body, and is wireless. Communication becomes possible.

水位計を簡便に安価に構成することができ、水位が、水位計の高さを上回る水位に達しても、そのことを通信することができ、設置しているすべての水位計の水位を管理できる。 The water level gauge can be configured easily and inexpensively, and even if the water level reaches a water level higher than the height of the water level gauge, it can be communicated and the water level of all the installed water level gauges can be managed. it can.

本発明による水位計が河川の河川敷に設置される形態を示す模式図である。It is a schematic diagram which shows the form in which the water level gauge according to this invention is installed in the riverbed of a river. 本発明の水位計の内部構成を示す図である。It is a figure which shows the internal structure of the water level gauge of this invention. 本発明の水位計情報を無線通信網を介して監視サーバに届け、警報装置へ連絡する接続形態図である。It is a connection form diagram which delivers the water level gauge information of this invention to a monitoring server via a wireless communication network, and communicates with an alarm device. 本発明の図3に示す無線通信網を構成する他の構成例を示す図である。It is a figure which shows the other structural example which constitutes the wireless communication network shown in FIG. 3 of this invention. 本発明の水位計内の電子回路部の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the electronic circuit part in the water level gauge of this invention. 本発明の水位計と監視サーバ、設置登録ツール間の通信信号形式を示す図である。It is a figure which shows the communication signal format between a water level meter of this invention, a monitoring server, and an installation registration tool. 本発明の水位計を設置する際に、水位計、監視サーバと通信を行いながら設置作業を行う設置登録ツールを示す図である。It is a figure which shows the installation registration tool which performs the installation work while communicating with the water level gauge and a monitoring server when installing the water level gauge of this invention. 本発明における電子回路部の第2の内部構成例を示すブロック図である。It is a block diagram which shows the 2nd internal structure example of the electronic circuit part in this invention.

平成30年7月に西日本に起きた集中豪雨で多大な犠牲者を出したニュースには痛ましさを感じるが、ここ数年は集中豪雨による河川の氾濫による被害が多く、河川や街中での水位の上昇をいち早く検知できる簡便な水位計の設置が期待されるところである。本発明では、設置が簡易で、低コストで、電池で10年間レベルでの使用可能な水位計による水位測定システムを提供するものである。 The news that the torrential rain that occurred in western Japan in July 2018 caused a great deal of casualties is painful, but in recent years there has been a lot of damage due to the flooding of rivers due to the torrential rain, and in rivers and towns. It is expected that a simple water level gauge that can quickly detect the rise in water level will be installed. The present invention provides a water level measurement system using a water level gauge that is easy to install, low cost, and can be used with a battery for 10 years.

以下本発明を図面に基づいて詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は河川の模様を横断的に示したものであり、河底4、河川敷3、斜面2、土手1による構成が一般的である。川の水面は平常時は5の位置にあり、河川敷3は散歩コースなどに活用されている例が多い。図1では本発明による水位計6が、河川敷3に設置されている。河川敷3には川の上流から数十メートルとかの適当な間隔で水位計6が設置されることが望ましい。また、河川敷に限らず、住宅地や街中で水のたまりやすい地域にも適当な間隔で設置することも望まれる。 FIG. 1 shows a cross-sectional pattern of a river, and is generally composed of a river bottom 4, a riverbed 3, a slope 2, and a bank 1. The water surface of the river is located at 5 in normal times, and the riverbed 3 is often used for walking courses. In FIG. 1, the water level gauge 6 according to the present invention is installed on the riverbed 3. It is desirable that the water level gauges 6 be installed on the riverbed 3 at appropriate intervals such as several tens of meters from the upstream of the river. It is also desirable to install them at appropriate intervals not only in riverbeds but also in residential areas and areas where water tends to collect in the city.

本発明による水位計6は、今日、工事現場などで多用されている高さ1メートル程度のポール型コーンを筐体として用い、その内部に電子回路などを内蔵したものである。ポール型コーンは円柱状のものが多いが、必ずしも円柱状である必要はなく、四角柱状でも良いが、コーン内部に電子回路などを内蔵できる貫通孔的な空間スペースが必要である。要は、内部に貫通孔のような空間を有する柱状筐体であれば良い、また、柱状筐体の底面は物体が強風などで倒れないように、コーンのように底面だけは面積を大きくする、あるいは固定用ビス穴を設けるなどの手段が必要である。 The water level gauge 6 according to the present invention uses a pole-shaped cone having a height of about 1 meter, which is often used at construction sites today, as a housing, and has an electronic circuit or the like built therein. Most of the pole-shaped cones are columnar, but they do not necessarily have to be columnar, and may be square columns, but a through-hole space in which an electronic circuit or the like can be built is required inside the cone. The point is that a columnar housing having a space like a through hole inside may be used, and the bottom surface of the columnar housing should have a large area like a cone so that the object does not fall down due to strong winds. Or, a means such as providing a fixing screw hole is required.

図2は、柱状筐体に内蔵される水位計6の内部構成を示す。 FIG. 2 shows the internal configuration of the water level gauge 6 built in the columnar housing.

水位計の筐体ともいえる柱状物体の前記した底面が強風などで倒れないようにする手段は、図示していないが、水位計6は縦方向に内部空間Kを有し、内部空間Kの下部には、底面から1cmほど上のところに、柱状筐体の側面から内部空間Kへ水の侵入を許す貫通孔的な水侵入穴68が設けられるとともに、発砲スチロールなどのような比重の小さい浮きやすい材質で構成される浮体67が置かれている。豪雨などで河川の水位が河川敷3までに達すると、水が柱状筐体の下部から内部空間Kに侵入し、浮体67が、図2の破線で示すように、上方に浮き始める。柱状筐体の側壁には、図2に示すように、水侵入穴68に加え、三つのマイクロスイッチSW1(69a)、SW2(69b)、SW3(69c)が下部、中部、上部に設置されている。浮体67が浮き始めたことは、浮体67が底面から5cmほど上のところの側壁内面に設置されたマイクロスイッチSW1(69a)の接点を押圧するので、そのことを電子回路部63が検知する。柱状筐体の内部空間Kの上部には電子回路部63がアンテナ浮体62と共に設置され、電子回路部63の両端は、柱状筐体の側面に設けられた溝66中で固定されているが、水位が上昇し浮体67が、電子回路部63に接し押圧するようになると、電子回路部63の設置位置がさらに上昇できるよう溝66は縦状になっている。柱状筐体の上蓋65は、柱状筐体の側壁上端に接合ゴム64で着脱容易に固定されていて、下部からの押圧で容易に外れるように構成されている。 Although the means for preventing the bottom surface of the columnar object, which can be said to be the housing of the water level gauge, from falling due to strong wind or the like is not shown, the water level gauge 6 has an internal space K in the vertical direction and is a lower portion of the internal space K. Is provided with a water entry hole 68, which is a through hole that allows water to enter the internal space K from the side surface of the columnar housing, about 1 cm above the bottom surface, and a float with a small specific gravity such as styrofoam. A floating body 67 made of an easy material is placed. When the water level of the river reaches the riverbed 3 due to heavy rain or the like, water invades the internal space K from the lower part of the columnar housing, and the floating body 67 begins to float upward as shown by the broken line in FIG. As shown in FIG. 2, three microswitches SW1 (69a), SW2 (69b), and SW3 (69c) are installed on the side wall of the columnar housing in addition to the water entry hole 68 at the lower part, the middle part, and the upper part. There is. When the floating body 67 starts to float, the floating body 67 presses the contact point of the micro switch SW1 (69a) installed on the inner surface of the side wall about 5 cm above the bottom surface, and the electronic circuit unit 63 detects this. An electronic circuit unit 63 is installed together with an antenna floating body 62 in the upper part of the internal space K of the columnar housing, and both ends of the electronic circuit unit 63 are fixed in grooves 66 provided on the side surface of the columnar housing. When the water level rises and the floating body 67 comes into contact with and presses against the electronic circuit section 63, the groove 66 is vertical so that the installation position of the electronic circuit section 63 can be further raised. The upper lid 65 of the columnar housing is easily attached to and detached from the upper end of the side wall of the columnar housing with the bonding rubber 64, and is configured to be easily removed by pressing from the lower part.

柱状筐体の内部の水位が上昇し、浮体67が電子回路部63にまで達し、さらに上昇すると、電子回路部63は溝66にそってさらに上昇し、電子回路部63の上に置かれ、電線61bで結ばれたアンテナ素子61を有すアンテナ浮体62(アンテナ素子61はアンテナ浮体62の上部に固定されている)が、上蓋65を押上げ、浮力が、接合ゴム64の押圧力を上回り、上蓋65は開く。電線61bの長さは、数10cmの長さであるが、アンテナ浮体62は水面上に浮かぶ。このときアンテナ素子61は、アンテナ浮体62によって空気中に露出し、水中にはないので、無線による通信が可能で、水位が水位計6の上限以上にあることが無線通信網7を介して監視サーバ110に伝えることができる。電線の長さは柱状筐体の高さと共に、水位計の設計時に、設置される環境条件を加味しながら決定されることになろう。 When the water level inside the columnar housing rises and the floating body 67 reaches the electronic circuit unit 63 and further rises, the electronic circuit unit 63 further rises along the groove 66 and is placed on the electronic circuit unit 63. The antenna floating body 62 having the antenna element 61 connected by the electric wire 61b (the antenna element 61 is fixed to the upper part of the antenna floating body 62) pushes up the upper lid 65, and the buoyancy exceeds the pushing pressure of the bonding rubber 64. , The upper lid 65 opens. The length of the electric wire 61b is several tens of centimeters, but the antenna floating body 62 floats on the water surface. At this time, since the antenna element 61 is exposed to the air by the antenna floating body 62 and is not in the water, wireless communication is possible, and it is monitored via the wireless communication network 7 that the water level is equal to or higher than the upper limit of the water level gauge 6. It can be transmitted to the server 110. The length of the wire will be determined not only by the height of the columnar housing, but also by considering the environmental conditions to be installed when designing the water level gauge.

アンテナ浮体62が柱状筐体から外れ、水位計6内の浮体の位置から水位を測定することが出来なくなった時、タイマ99によって1分とかの所定の間隔で、監視サーバ110に、「水位は、柱状筐体の高さを超えたが、電線61bの長さ以下にあること」を伝えることができる。 When the antenna floating body 62 is detached from the columnar housing and the water level cannot be measured from the position of the floating body in the water level gauge 6, the timer 99 tells the monitoring server 110 at a predetermined interval such as 1 minute. , The height of the columnar housing is exceeded, but it is less than or equal to the length of the electric wire 61b. "

しかし、水位が電線61bの長さ以上に上昇すると、アンテナ素子61は水に覆われるため、通信は不可能である。監視サーバ110は、水位計6からの情報が受信できなくなった時、「水位は水位計の高さと電線の長さ以上に達した」と判断する。 However, if the water level rises above the length of the electric wire 61b, the antenna element 61 is covered with water, and communication is impossible. When the monitoring server 110 cannot receive the information from the water level gauge 6, it determines that "the water level has reached the height of the water level gauge and the length of the electric wire or more".

図5は、電子回路部63と、アンテナ素子61、マイクロスイッチSW1(69a)、SW2(69b)、SW3(69c)の電気的接続(ブロック図)を示す。図示しないが、電子回路部63は、プリント基板1枚で構成され防水機能を有する筐体内に収められている。 FIG. 5 shows an electrical connection (block diagram) between the electronic circuit unit 63 and the antenna element 61, the microswitches SW1 (69a), SW2 (69b), and SW3 (69c). Although not shown, the electronic circuit unit 63 is housed in a housing which is composed of one printed circuit board and has a waterproof function.

電子回路部63は、電池90、電源スイッチ91、無線通信回路84(内部では、無線受信部92無線送信部93に分けられている)、電池残量検知部94、通信制御部95、水位検知部96、受光部97a、発光部97b、ID記憶部98、タイマ99よりなる。 The electronic circuit unit 63 includes a battery 90, a power switch 91, a wireless communication circuit 84 (internally divided into a wireless receiving unit 92 and a wireless transmitting unit 93), a battery remaining amount detecting unit 94, a communication control unit 95, and a water level detection. It includes a unit 96, a light receiving unit 97a, a light emitting unit 97b, an ID storage unit 98, and a timer 99.

電池90は、電池残量検知部94、無線受信部92、には常時給電しているが、電源スイッチ91により他の回路は必要なときにのみ給電することで、省電力化を図る。図5の電子回路部63の各回路の接続線において、電源スイッチ91から供給される電源供給線は太線で描かれている
電池残量検知部94で検知される電池残量は後述するが、電池残量が30%以下とかの数値を下回った時や自己診断時に、監視サーバ110に送信される。
The battery 90 constantly supplies power to the battery remaining amount detecting unit 94 and the wireless receiving unit 92, but the power switch 91 supplies power to other circuits only when necessary to save power. In the connection line of each circuit of the electronic circuit unit 63 of FIG. 5, the power supply line supplied from the power switch 91 is drawn with a thick line. The battery level detected by the battery level detection unit 94 will be described later. It is transmitted to the monitoring server 110 when the remaining battery level falls below a value such as 30% or less or at the time of self-diagnosis.

通信制御部95は監視サーバ110と通信を行うための通信信号を形成したり、受信した通信信号を復元するためのものである。ID記憶部98は、水位計6に特有のID符号を記憶しているが、ID符号は水位計6の設置の際に、後記する設置位置登録ツールから付与される。なお、ID記憶部98には、後記するが、水位計6が水位を測定する方法を示す情報も記憶されている。マイクロスイッチSW1(69a)によって、柱状筐体の内部に水が侵入してきたことが判ると、水位計6の動作を開始するため、電源スイッチ91が投入され、各回路に電源が供給される。このとき、タイマ99が始動し、電子回路部63と浮体67との距離の測定が開始される。電子回路部63の底面には、図示しないが発光窓と受光窓があり、それぞれレーザによる発光部97b、受光部97aと対峙している。距離測定のために、97bの発光部よりレーザ光線が発光され、浮体67からの反射光を受光部97aで検知し、発光から受光までの時間を水位検知部96で計算することで、電子回路部63の底面から浮体67までの距離が求まり、その距離をもとに、浮体67の柱状筐体底面からの高さ、つまり水位が検知測定できる。タイマ99は5分とかの時間間隔で、上記した方法で水位を測定し、測定結果つまり水位情報を通信制御部95に伝え、水位計6のID情報とともに無線送信部93からアンテナ素子61により無線通信網7を介して監視サーバ110に連絡する。 The communication control unit 95 is for forming a communication signal for communicating with the monitoring server 110 and restoring the received communication signal. The ID storage unit 98 stores an ID code peculiar to the water level gauge 6, and the ID code is assigned from the installation position registration tool described later when the water level gauge 6 is installed. As will be described later, the ID storage unit 98 also stores information indicating a method for the water level gauge 6 to measure the water level. When it is found by the micro switch SW1 (69a) that water has entered the inside of the columnar housing, the power switch 91 is turned on to start the operation of the water level gauge 6, and power is supplied to each circuit. At this time, the timer 99 starts, and the measurement of the distance between the electronic circuit unit 63 and the floating body 67 is started. Although not shown, a light emitting window and a light receiving window are provided on the bottom surface of the electronic circuit unit 63, and face the light emitting unit 97b and the light receiving unit 97a by the laser, respectively. For distance measurement, a laser beam is emitted from the light emitting unit of 97b, the reflected light from the floating body 67 is detected by the light receiving unit 97a, and the time from light emission to light reception is calculated by the water level detection unit 96. The distance from the bottom surface of the portion 63 to the floating body 67 can be obtained, and the height of the floating body 67 from the bottom surface of the columnar housing, that is, the water level can be detected and measured based on the distance. The timer 99 measures the water level by the above method at time intervals such as 5 minutes, transmits the measurement result, that is, the water level information to the communication control unit 95, and wirelessly transmits the measurement result, that is, the water level information from the wireless transmission unit 93 to the antenna element 61 together with the ID information of the water level meter 6. The monitoring server 110 is contacted via the communication network 7.

水位計6の動作の開始はマイクロスイッチSW1(69a)の接点情報を使用する方法の他に、監視サーバ110からの測定開始の指示信号を受信して開始する方法もある。このため、無線受信部92には常時電源が給電されている。監視サーバ110は、ある地域の降雨量が多くなったとき、水位測定が必要な水位計6に測定開始の指示を行う。 In addition to the method of using the contact information of the micro switch SW1 (69a), the operation of the water level gauge 6 can be started by receiving an instruction signal for starting measurement from the monitoring server 110. Therefore, the wireless receiving unit 92 is constantly supplied with power. When the amount of rainfall in a certain area increases, the monitoring server 110 instructs the water level gauge 6 that needs to measure the water level to start the measurement.

柱状筐体の内部水位の測定は、前記したレーザ光を用いた方法の他に、柱状筐体の側面に、マイクロスイッチを、20cmとかの間隔で、SW2(69b)、SW3(69c)のように設置し、浮体67が、各マイクロスイッチを押圧したことを検知する方法もある。水位検知部96には、マイクロスイッチの設置位置を柱状筐体の底面からの距離として記憶しているので、どのマイクロスイッチがオンになったかを知ることで水位が検知・測定できる。この場合、図5の、発光部97b、受光部97aは不要になるが、電子回路部63の第2の構成例として、図8を用い後記する。 In addition to the method using the laser beam described above, the water level inside the columnar housing can be measured by placing microswitches on the side surface of the columnar housing at intervals of 20 cm, such as SW2 (69b) and SW3 (69c). There is also a method of detecting that the floating body 67 presses each micro switch. Since the water level detection unit 96 stores the installation position of the microswitch as the distance from the bottom surface of the columnar housing, the water level can be detected and measured by knowing which microswitch is turned on. In this case, the light emitting unit 97b and the light receiving unit 97a in FIG. 5 are unnecessary, but FIG. 8 will be used later as a second configuration example of the electronic circuit unit 63.

なお、マイクロスイッチの設置は3つに限る必要はない。柱状筐体の高さが1メートル程度であれば、底面から5cmに1つ、30cmに一つ、70cmに一つとかになろうが、10cmごとに設置することもいいだろう。ただし、SW1(69a)は底面から5cmに設置され、水の侵入を検知するために必要なものである。 The installation of microswitches does not have to be limited to three. If the height of the columnar housing is about 1 meter, it may be one in 5 cm, one in 30 cm, one in 70 cm from the bottom, but it is also good to install it every 10 cm. However, SW1 (69a) is installed 5 cm from the bottom surface and is necessary for detecting the intrusion of water.

マイクロスイッチによる方法の場合でも、タイマ99で5分おきに水位がどのマイクロスイッチの位置まできているのかを検知・測定し、水位情報を通信制御部95に伝える。 Even in the case of the microswitch method, the timer 99 detects and measures the position of which microswitch the water level reaches every 5 minutes, and transmits the water level information to the communication control unit 95.

水位を検知する手段として、ここでは、レーザ光を利用する方法とマイクロスイッチによる方法の2種を述べたが、水位計6が、どの方法を採っているかは前記したID記憶部98にID符号とともに記憶されている。 As a means for detecting the water level, two methods, a method using a laser beam and a method using a microswitch, have been described here, but which method the water level gauge 6 adopts is determined by the ID code in the ID storage unit 98 described above. It is remembered with.

次に、水位計6の設置時の操作について述べる。 Next, the operation at the time of installing the water level gauge 6 will be described.

図7は設置に必要な設置登録ツール8の内部構成を示すもので、設置登録操作部81、ID符号発生器82、通信信号回路83、無線通信回路84、GPS検知器80よりなる。これらの回路は、スマートフォンに内蔵されているので、設置登録ツール8としては現実的にはスマートフォンが利用される。 FIG. 7 shows the internal configuration of the installation registration tool 8 required for installation, and includes an installation registration operation unit 81, an ID code generator 82, a communication signal circuit 83, a wireless communication circuit 84, and a GPS detector 80. Since these circuits are built in the smartphone, the smartphone is actually used as the installation registration tool 8.

設置作業者はこの設置登録ツール8を所持して設置作業を行うが、水位計6を設置する場所で、設置登録操作部81を用いて、その場所の郵便番号7桁と同一郵便番号内での連番3桁の10桁よりなるID符号がID符号発生器82から通信信号回路83で、図6(b)のように信号形成され、無線通信回路84から、電子回路部63に無線送信する。そのID符号は、電子回路部63内の ID記憶部98に記憶される。さらに、GPS検知器80で検知されたGPS情報が、通信信号回路83で、前記ID符号と共に、図6(c)のように信号形成され、無線通信回路83から、監視サーバ110にも送信する。監視サーバ110は設置されたすべての水位計6の設置個所(GPS情報値)とID符号を管理している。このようにすることで、水位計6はGPS検知器を搭載する必要はなく、水位計6の省電力化、低コスト化に貢献できる。 The installation worker carries this installation registration tool 8 to perform the installation work, but at the place where the water level gauge 6 is installed, using the installation registration operation unit 81, within the same zip code as the 7-digit zip code of that place. An ID code consisting of 10 digits of 3 serial numbers is formed from the ID code generator 82 in the communication signal circuit 83 as shown in FIG. 6B, and is wirelessly transmitted from the wireless communication circuit 84 to the electronic circuit unit 63. To do. The ID code is stored in the ID storage unit 98 in the electronic circuit unit 63. Further, the GPS information detected by the GPS detector 80 is formed by the communication signal circuit 83 together with the ID code as shown in FIG. 6C, and is transmitted from the wireless communication circuit 83 to the monitoring server 110. .. The monitoring server 110 manages the installation locations (GPS information values) and ID codes of all the installed water level gauges 6. By doing so, the water level gauge 6 does not need to be equipped with a GPS detector, and can contribute to power saving and cost reduction of the water level gauge 6.

また、水位計は、災害が予想される地域に常時設置する。あるいは、災害が予想されるとき、予想される地域にのみ設置するなど、水位計の管理は、自治体など水位計管理会社で行うことになろうが、一度設置した水位計を撤去するときは、撤去時に、一度付与したID符号を削除するとともに、監視サーバ110に登録しているIDとGPS情報を削除する必要がある。そのような操作も、設置登録操作部81で、行うことが出来る。この場合、水位計のID記憶部98に記憶している水位測定の方法を示す情報は、水位計に特有の情報であるため消去する必要はない。 In addition, the water level gauge will always be installed in areas where disasters are expected. Alternatively, when a disaster is expected, the water level gauge will be managed by a water level gauge management company such as a local government, such as installing it only in the expected area, but when removing the water level gauge once installed, At the time of removal, it is necessary to delete the ID code once assigned and also delete the ID and GPS information registered in the monitoring server 110. Such an operation can also be performed by the installation registration operation unit 81. In this case, the information indicating the method of measuring the water level stored in the ID storage unit 98 of the water level gauge does not need to be deleted because it is information peculiar to the water level gauge.

設置登録操作に必要な操作表示や、各回路への動作制御のためには、専用のアプリケーションソフトウエアが別途、設置登録ツール8にダウンロードされているが、ダウンロードの手順や操作部の操作表示方法は、スマートフォンの操作と同様な方法なので、ここでは省略する。 Dedicated application software is separately downloaded to the installation registration tool 8 for the operation display required for the installation registration operation and the operation control for each circuit, but the download procedure and the operation display method of the operation unit Is the same method as operating a smartphone, so it is omitted here.

本発明による水位計6が作動するのは、天気予報で大量の雨が降っているときであり、平常時には、水位計6が作動されることはない。そのため、大量の雨が予報されたとき、あるいは3か月に1回とかのペースで水位計6の動作が正常に作動するかの自己診断を行う必要がある。このため、監視サーバ110は、自己診断要求信号を送り、電子回路の正常動作を確認する。自己診断要求信号を受信したら、発光部97bよりレーザ光を発光し、受光部97a で浮体67が最下部にあることを確認し、自己診断OKの信号を、無線送信部93から監視サーバ110へ送信する。なお、3つのマイクロスイッチの自己診断は、スイッチがオフ状態になっていることを確認することで行う。 The water level gauge 6 according to the present invention operates when it is raining a lot according to the weather forecast, and the water level gauge 6 does not operate in normal times. Therefore, it is necessary to perform a self-diagnosis as to whether or not the operation of the water level gauge 6 operates normally when a large amount of rain is forecast or once every three months. Therefore, the monitoring server 110 sends a self-diagnosis request signal to confirm the normal operation of the electronic circuit. When the self-diagnosis request signal is received, the laser beam is emitted from the light emitting unit 97b, the light receiving unit 97a confirms that the floating body 67 is at the bottom, and the self-diagnosis OK signal is sent from the wireless transmission unit 93 to the monitoring server 110. Send. The self-diagnosis of the three microswitches is performed by confirming that the switches are in the off state.

自己診断は、監視サーバ110からの指令(自己診断要求信号の受信)によらず、水位計6自身が3か月ごととかの周期で自己診断を行い、その結果を監視サーバ110に報告するようにしてもよい。また、水位測定の開始を監視サーバ110からの指令(水位測定開始信号の受信)でなく、マイクロスイッチSW1(69a)がオンになったことで行うようにすると、無線受信部92への常時通電は不要となり、さらなる省電力化に貢献できる。この場合の電子回路部63の構成例を図7に示す。 In the self-diagnosis, the water level gauge 6 itself performs the self-diagnosis every 3 months or the like regardless of the command (reception of the self-diagnosis request signal) from the monitoring server 110, and reports the result to the monitoring server 110. It may be. Further, if the water level measurement is started not by the command from the monitoring server 110 (reception of the water level measurement start signal) but by turning on the micro switch SW1 (69a), the wireless receiver 92 is always energized. Is no longer necessary and can contribute to further power saving. FIG. 7 shows a configuration example of the electronic circuit unit 63 in this case.

電源スイッチ91を投入するタイミングは、3カ月に一回とかのタイマ出力、マイククロスイッチSW1(69a)がオン、電池残量が30%以下とかに減少した時の3つのケースとなり、電子回路部63としては最も省電力化が図れる。 The timing to turn on the power switch 91 is three cases: timer output such as once every three months, microphone cross switch SW1 (69a) on, and when the remaining battery level is reduced to 30% or less. As 63, the most power saving can be achieved.

表1は、通信信号の一覧を、図6に示す信号形式、信号形式の中での情報値、とともに信号の方向を矢印で示す。例えば自己診断要求信号は、監視サーバから水位計6に送られる信号であり信号形式は図6(a)であり、情報値はない。 Table 1 shows a list of communication signals with an arrow indicating the signal format shown in FIG. 6, the information value in the signal format, and the direction of the signal. For example, the self-diagnosis request signal is a signal sent from the monitoring server to the water level gauge 6, the signal format is FIG. 6A, and there is no information value.

図6に示す制御信号は、表1の制御信号に対応して符号化されている。制御信号の種類としては表1では10種あるが、制御信号としては1バイトあれば充分である。 The control signals shown in FIG. 6 are encoded corresponding to the control signals in Table 1. There are 10 types of control signals in Table 1, but 1 byte is sufficient as the control signal.

電池残量は、30%とかの数値情報、水位情報は、4段階程度の段階で示せばよい。 The remaining battery level may be indicated by numerical information such as 30%, and the water level information may be indicated in about four stages.

診断結果はOKかNGのどちらか、IDは数字10桁なので5バイトあれば充分である。 The diagnosis result is either OK or NG, and the ID is a 10-digit number, so 5 bytes is sufficient.

設置した水位計6を撤去する時、設置登録ツール8より、水位計6に「ID符号削除」信号を送るが、その返答として、水位計6は、ID記憶部98に記憶されているID符号とGPS情報を、設置登録ツール8に「ID,GPS連絡」信号として送る。その後、設置登録ツール8は受信したID符号とGPS情報を「設置情報削除」信号として監視サーバ110に送る。 When the installed water level gauge 6 is removed, the installation registration tool 8 sends an "ID code deletion" signal to the water level gauge 6, and in response, the water level gauge 6 has an ID code stored in the ID storage unit 98. And GPS information are sent to the installation registration tool 8 as an "ID, GPS contact" signal. After that, the installation registration tool 8 sends the received ID code and GPS information to the monitoring server 110 as an “installation information deletion” signal.

監視サーバ110には、設置されているすべての水位計6の水位が、郵便番号と対応した設置個所情報(ID符号)、水位計測の方法、とともに集積されている。監視サーバ110で水位マップを作成するときなど、ID符号が郵便番号と関連づけられているので便利なはずである。 In the monitoring server 110, the water levels of all the installed water level meters 6 are accumulated together with the installation location information (ID code) corresponding to the postal code and the water level measurement method. It should be convenient because the ID code is associated with the zip code, such as when creating a water level map on the monitoring server 110.

Figure 0006792772
Figure 0006792772

水位が50cmを超えると警報を発令することになろうが、本発明での監視サーバ110は、マイクロスイッチ1(SW1)がオンとなり、水位が5cmを超えた水位計6の水位情報を、ID符号と共に警報装置120に送信する役割を担っていて、警報装置からの警報の発令は、警報装置120を管理する自治体が行うことになろう。監視サーバと警報装置の役割分担は自治体と調整しながら行うことになろうが、監視サーバ110が警報装置120(図3参照)の機能をすべて有すれば、警報装置120は不要になる。 An alarm will be issued when the water level exceeds 50 cm, but in the monitoring server 110 of the present invention, the micro switch 1 (SW1) is turned on and the water level information of the water level meter 6 whose water level exceeds 5 cm is ID. It plays a role of transmitting to the alarm device 120 together with the code, and the local government that manages the alarm device 120 will issue the alarm from the alarm device. The division of roles between the monitoring server and the alarm device will be performed while coordinating with the local government, but if the monitoring server 110 has all the functions of the alarm device 120 (see FIG. 3), the alarm device 120 becomes unnecessary.

ここまでの説明において、電子回路部63の無線通信回路84(無線受信部92と無線送信部93)と設置登録ツール8の無線通信回路84は、LTE等の公衆無線通信網の利用を前提としていたが、電子回路部63のさらなる省電力化のためには、LPWA(Low Power Wide Area)無線通信方式を使用する方法もある。この場合は、図4に示すように、LPWA中継局を介して監視サーバ110に接続する形態を採る。そして多数のLPWA中継局と、中継局を集約するLPWA集計局72との通信、LPWA集計局72と監視サーバ110との通信は、無線でも有線でもよい。 In the description so far, the wireless communication circuit 84 (wireless receiving unit 92 and wireless transmitting unit 93) of the electronic circuit unit 63 and the wireless communication circuit 84 of the installation registration tool 8 are premised on the use of a public wireless communication network such as LTE. However, in order to further reduce the power consumption of the electronic circuit unit 63, there is also a method of using an LPWA (Low Power Wide Area) wireless communication method. In this case, as shown in FIG. 4, the monitoring server 110 is connected to the monitoring server 110 via the LPWA relay station. Communication between a large number of LPWA relay stations and the LPWA totaling station 72 that aggregates the relay stations, and communication between the LPWA totaling station 72 and the monitoring server 110 may be wireless or wired.

このLPWAによる方法は、省電力化に役立つだけでなく、LPWAが自営の無線通信網であるため、LTEのような公衆無線通信網に比し、通信料が無料あるいは低額に設定でき、運用コストにも貢献できる。なお、設置登録ツール8にも、LPWA通信回路が必要となるが、設置登録ツールとしてスマートフォンを用いる時、図示しないが、LTE-LPWA変換器をアダプタ的に用意する方法も必要となる。 Not only is this LPWA method useful for power saving, but because LPWA is a self-employed wireless communication network, communication charges can be set free or low compared to public wireless communication networks such as LTE, and operating costs can be set. Can also contribute to. The installation registration tool 8 also requires an LPWA communication circuit, but when a smartphone is used as the installation registration tool, a method of preparing an LTE-LPWA converter as an adapter is also required, although not shown.

これまでの説明では、水位計の内部構成の種類として、水位計測法がレーザ光型かマイクロスイッチ型か、自己診断法が、監視サーバ起動型か水位計自身のタイマ起動型か、無線通信方式として、公衆無線通信網か、自営無線通信網かに分かれるが、どの方式を採っているのかについての情報は、ID記憶部98に記憶しておく。そのことで、監視サーバ110は、設置している水位計の管理をキメ細かく行うことが出来る。 In the explanation so far, as the type of internal configuration of the water level gauge, whether the water level measurement method is a laser beam type or a microswitch type, the self-diagnosis method is a monitoring server activation type or a water level gauge own timer activation type, or a wireless communication method. As a result, it is divided into a public wireless communication network and a self-employed wireless communication network, and information about which method is adopted is stored in the ID storage unit 98. As a result, the monitoring server 110 can finely manage the installed water level gauge.

水位計が低コストでかつ10年レベルの長い間電池交換なく使用でき、さらに水位が水位計の高さ以上に上昇しても、水位情報が監視サーバに送信できるので、利用範囲が拡大される。 The water level gauge can be used at low cost for a long time of 10 years without battery replacement, and even if the water level rises above the height of the water level gauge, the water level information can be sent to the monitoring server, expanding the range of use. ..

1 土手
2 斜面
3 河川敷
4 河底
5 水面
6 水位計
7 無線通信網
8 設置登録ツール
61 アンテナ素子
61b 電線
62 アンテナ浮体
63 電子回路部
64 接合ゴム
65 上蓋
66 溝
67 浮体
68 水侵入穴
69a マイクロスイッチ1(SW1)
69b マイクロスイッチ2(SW2)
69c マイクロスイッチ3(SW3)
71 LPWA中継局
72 LPWA集計局
80 GPS検知器
81 設置登録操作部
82 ID符号発生器
83 通信信号回路
84 無線通信回路
90 電池
91 電源スイッチ
92 無線受信部
93 無線送信部
94 電池残量検知部
95 通信制御部
96 水位検知部
97a 受光部
97b 発光部
98 ID記憶部
99 タイマ
110 監視サーバ
120 警報装置
1 Bank 2 Slope 3 Riverbed 4 River bottom 5 Water surface 6 Water level gauge 7 Wireless communication network 8 Installation registration tool 61 Antenna element 61b Electric wire 62 Antenna floating body 63 Electronic circuit part 64 Joint rubber 65 Top lid 66 Groove 67 Floating body 68 Water entry hole 69a Micro switch 1 (SW1)
69b Micro switch 2 (SW2)
69c Micro switch 3 (SW3)
71 LPWA relay station 72 LPWA aggregation station 80 GPS detector 81 installation registration operation unit 82 ID code generator 83 communication signal circuit 84 wireless communication circuit 90 battery 91 power switch 92 wireless receiver 93 wireless transmitter 94 battery level detector 95 Communication control unit 96 Water level detection unit 97a Light receiving unit 97b Light emitting unit 98 ID storage unit 99 Timer 110 Monitoring server 120 Alarm device

Claims (2)

水位計と、無線通信網と、監視サーバとで構成されるシステムであって、前記水位計は、内部に空間を有する柱状筐体で構成され、該柱状筐体の上部には、アンテナ素子と電線で接続された電子回路部を配置し、前記柱状筐体の底部には浮体が置かれ、かつ前記柱状筐体の下部には水が流入できる穴を設け、前記電子回路部は、電池、無線通信回路、ID記憶部、水位検知部を設け、前記水位検知部では、前記浮体の位置をもとに水位を測定し、測定された水位情報が前記無線通信回路より無線通信網を介して前記監視サーバに送信されるとともに、前記柱状筐体の上部は上蓋で閉じられ、前記柱状筐体内部の水位が上昇し、該内部空間の最上部に到達した時、前記アンテナ素子を載置したアンテナ浮体が前記上蓋を押し開け、前記電子回路部と遊離するようにされるように構成されたことを特徴とする水位測定システム。 It is a system composed of a water level gauge, a wireless communication network, and a monitoring server. The water level gauge is composed of a columnar housing having an internal space, and an antenna element is provided on the upper portion of the columnar housing. An electronic circuit unit connected by an electric wire is arranged, a floating body is placed at the bottom of the columnar housing, and a hole through which water can flow is provided in the lower part of the columnar housing. The electronic circuit unit is a battery. A wireless communication circuit, an ID storage unit, and a water level detection unit are provided, and the water level detection unit measures the water level based on the position of the floating body, and the measured water level information is transmitted from the wireless communication circuit via a wireless communication network. Upon being transmitted to the monitoring server, the upper part of the columnar housing was closed with an upper lid, and when the water level inside the columnar housing rose and reached the uppermost part of the internal space, the antenna element was placed. A water level measuring system characterized in that an antenna floating body is configured to push open the upper lid and be separated from the electronic circuit portion . 請求項1において設置登録ツールがあり、該設置登録ツールは、無線通信回路とGPS検知器とID符号作成器とを備え、水位計の設置場所で、該ID符号作成器は前記水位計に付与するID符号を作成し、前記無線通信回路は、前記ID符号を前記電子回路へ送信するとともに、前記ID符号と前記GPS検知器で検知されたGPS情報を前記監視サーバへ送信することを特徴とする水位測定システム。 In claim 1, there is an installation registration tool, which includes a wireless communication circuit, a GPS detector, and an ID code maker, and the ID code maker is attached to the water level gauge at the installation location of the water level gauge. An ID code to be assigned is created, and the wireless communication circuit transmits the ID code to the electronic circuit and also transmits the ID code and GPS information detected by the GPS detector to the monitoring server. Water level measurement system.
JP2018145312A 2018-08-01 2018-08-01 Water level measurement system Active JP6792772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018145312A JP6792772B2 (en) 2018-08-01 2018-08-01 Water level measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018145312A JP6792772B2 (en) 2018-08-01 2018-08-01 Water level measurement system

Publications (2)

Publication Number Publication Date
JP2020020693A JP2020020693A (en) 2020-02-06
JP6792772B2 true JP6792772B2 (en) 2020-12-02

Family

ID=69587470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018145312A Active JP6792772B2 (en) 2018-08-01 2018-08-01 Water level measurement system

Country Status (1)

Country Link
JP (1) JP6792772B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345148Y2 (en) * 1981-02-28 1991-09-24
JP3426971B2 (en) * 1998-07-03 2003-07-14 三菱重工業株式会社 Oil level gauge for gas turbine main oil tank
JP2006194609A (en) * 2005-01-11 2006-07-27 Nie:Kk Liquid level indicator
JP5843526B2 (en) * 2011-09-02 2016-01-13 レッキス工業株式会社 Full water tester and full water test method
US8786453B2 (en) * 2012-08-15 2014-07-22 Belinda J. Walbert Alert system for detecting rising water levels
JP6324673B2 (en) * 2013-06-28 2018-05-16 東京都下水道サービス株式会社 Manhole cover with antenna
JP6793513B2 (en) * 2016-10-07 2020-12-02 セイコーインスツル株式会社 Electronic devices and control methods for electronic devices

Also Published As

Publication number Publication date
JP2020020693A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
KR102077502B1 (en) Integrated underground safety management system using underground manholes
KR100869571B1 (en) Steeped Slope Breakdown Sensing System and Sensing Method
Azid et al. SMS based flood monitoring and early warning system
KR102073918B1 (en) Slope Displacement Measuring Apparatus and Landslide Forecasting System Using the Same
CN203720380U (en) Mobile hydrology meteorology monitoring and compass positioning communication and alarm device
EP3524948B1 (en) System for the automatic wireless monitoring, remotely and in real time, of structures, infrastructures and mountain-slope sectors
CN111998912B (en) Integrated full-range inspection well water level monitoring equipment and monitoring method
KR100988016B1 (en) Low power wireless system for monitoring of manhole
WO2007100191A1 (en) A wireless system for monitoring of manhole
KR101204426B1 (en) Real-time monitoring system for flood
CN105894742A (en) Monitoring and early warning method for observing geological disaster warning and prevention area based on real-time rainfall
CA2962754A1 (en) Pipeline wireless sensor network
CN114235093A (en) Automatic early warning system and early warning method for water levels of subway tunnel and pipe gallery
WO2013077478A1 (en) Monitoring system for debris barrier disaster management
GB2497157A (en) Sewerage system level sensing
KR20070089468A (en) A antenna structure for monitoring of manhole
JP6792772B2 (en) Water level measurement system
WO2020214064A1 (en) Method and device for the automatic wireless monitoring of a liquid level
JP2003006775A (en) Earth/sand disaster previously sensing and warning system and debris flow detector
US11851855B2 (en) Drainage system and drain
CN112885040A (en) Disaster early warning system and method
CN112857535A (en) Water level alarm and water level alarm method
CN102110349A (en) Matrix type three-dimensional bedding surface mountain landslide monitoring and early-warning system
CN101858987B (en) Collapse monitoring device based on omnibearing tilt sensor
KR101660934B1 (en) Ground erosion sensor, apparatus and method for ground monitoring system using this same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201013

R150 Certificate of patent or registration of utility model

Ref document number: 6792772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250