JP6791220B2 - Electrical measuring container, electrical measuring device and electrical measuring method - Google Patents

Electrical measuring container, electrical measuring device and electrical measuring method Download PDF

Info

Publication number
JP6791220B2
JP6791220B2 JP2018173691A JP2018173691A JP6791220B2 JP 6791220 B2 JP6791220 B2 JP 6791220B2 JP 2018173691 A JP2018173691 A JP 2018173691A JP 2018173691 A JP2018173691 A JP 2018173691A JP 6791220 B2 JP6791220 B2 JP 6791220B2
Authority
JP
Japan
Prior art keywords
electrical
biological sample
container
measurement
sample holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018173691A
Other languages
Japanese (ja)
Other versions
JP2019015735A (en
Inventor
洋一 勝本
洋一 勝本
マルクオレル ブルン
マルクオレル ブルン
義人 林
義人 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2018173691A priority Critical patent/JP6791220B2/en
Publication of JP2019015735A publication Critical patent/JP2019015735A/en
Application granted granted Critical
Publication of JP6791220B2 publication Critical patent/JP6791220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本技術は、液体状の生体試料の電気的特性測定のための電気的測定用容器に関する。より詳しくは、液体状の生体試料の電気特性を高精度に測定するための構造を備え、かつ、工業的生産が容易な電気的測定用容器、並びに該電気的測定用容器を用いた電気的測定装置および電気的測定方法に関する。 The present technology relates to an electrical measurement container for measuring the electrical characteristics of a liquid biological sample. More specifically, an electrical measurement container having a structure for measuring the electrical characteristics of a liquid biological sample with high accuracy and easy to produce industrially, and an electrical measurement container using the electrical measurement container. Regarding measuring devices and electrical measuring methods.

液体状の生体試料の電気的特性を測定し、その測定結果から試料の物性を判定したり、試料に含まれる細胞等の種類を判別したりすることが行われている(例えば、特許文献1参照)。測定される電気的特性としては、複素誘電率やその周波数分散(誘電スペクトル)が挙げられる。複素誘電率やその周波数分散は、一般に、溶液に対して電圧を印加するための電極を備えた溶液保持器等を用いて電極間の複素キャパシタンスないし複素インピーダンスを測定することで算出される。 The electrical characteristics of a liquid biological sample are measured, and the physical properties of the sample are determined from the measurement results, and the type of cells and the like contained in the sample is determined (for example, Patent Document 1). reference). Examples of the measured electrical characteristics include the complex permittivity and its frequency dispersion (dielectric spectrum). The complex permittivity and its frequency dispersion are generally calculated by measuring the complex capacitance or complex impedance between the electrodes using a solution cage or the like provided with electrodes for applying a voltage to the solution.

また、例えば、特許文献2には、血液の誘電率から血液凝固に関する情報を取得する技術が開示されており、「一対の電極と、上記一対の電極に対して交番電圧を所定の時間間隔で印加する印加手段と、上記一対の電極間に配される血液の誘電率を測定する測定手段と、血液に働いている抗凝固剤作用が解かれた以後から上記時間間隔で測定される血液の誘電率を用いて、血液凝固系の働きの程度を解析する解析手段と、を有する血液凝固系解析装置」が記載されている。 Further, for example, Patent Document 2 discloses a technique for acquiring information on blood coagulation from the dielectric constant of blood, and states that "a pair of electrodes and an alternating voltage are applied to the pair of electrodes at predetermined time intervals. The application means to be applied, the measuring means for measuring the dielectric constant of the blood arranged between the pair of electrodes, and the blood measured at the time interval after the anticoagulant action acting on the blood is released. A blood coagulation system analyzer having an analysis means for analyzing the degree of action of the blood coagulation system using the dielectric constant is described.

液体状の生体試料の電気的特性を測定する際に、生体試料を収容されるための容器としては、例えば、特許文献3に、絶縁性材料を筒状体に形成してなり、両端の開口から内空にそれぞれ挿入される電極の表面と、内空表面と、で構成される領域に液体試料を保持可能であり、前記領域には、対向する2つの電極の間に位置して、内空が狭窄された狭窄部が設けられた液体試料の電気的特性測定のためのサンプルカートリッジが開示されている。 When measuring the electrical characteristics of a liquid biological sample, as a container for accommodating the biological sample, for example, in Patent Document 3, an insulating material is formed into a tubular body, and openings at both ends are provided. It is possible to hold a liquid sample in a region composed of an electrode surface inserted into the inner space and an inner air surface, respectively, and the region is located between two opposing electrodes and is inside. A sample cartridge for measuring the electrical characteristics of a liquid sample provided with a constricted portion in which the sky is constricted is disclosed.

ところで、液体状の生体試料の電気的特性を測定するためには、測定用電極を液体状の生体試料に接触させる必要がある。従来は、測定用電極が接着固定された容器に、液体状の生体試料を収容した状態で測定が行われていた。しかし、この方法では、例えば、生体試料として血液の電気特性を測定する場合、用いる接着剤の種類によっては、血液の凝固活性が促進されてしまい、目的の測定に影響を及ぼす場合があるといった問題があった。 By the way, in order to measure the electrical characteristics of a liquid biological sample, it is necessary to bring the measurement electrode into contact with the liquid biological sample. Conventionally, measurement has been performed in a state where a liquid biological sample is contained in a container in which measurement electrodes are adhesively fixed. However, in this method, for example, when measuring the electrical characteristics of blood as a biological sample, there is a problem that the coagulation activity of blood is promoted depending on the type of adhesive used, which may affect the target measurement. was there.

また、仮に低凝固性の接着剤を用いた場合であっても、容器を製造するための製造工程が増えることから、生産性に劣るという問題もあった。 Further, even if a low-coagulation adhesive is used, there is a problem that the productivity is inferior because the number of manufacturing steps for manufacturing the container is increased.

一方、接着剤を用いない方法としては、例えば、生体試料を収容するための容器に、外部から電極を挿入した状態で、電気特性を測定する方法が行われている。しかし、この方法では、電極の液体試料中への挿入量の違いにより、測定誤差が生じるという問題があった。 On the other hand, as a method that does not use an adhesive, for example, a method of measuring electrical characteristics in a state where an electrode is inserted from the outside into a container for accommodating a biological sample is performed. However, this method has a problem that a measurement error occurs due to a difference in the amount of the electrode inserted into the liquid sample.

また、外部装置の構成が増えることから、装置の大型化や製造工程の煩雑化の問題や、装置の高価格化等の問題が生じていた。 Further, since the number of configurations of the external device is increased, there are problems such as an increase in the size of the device, a complicated manufacturing process, and an increase in the price of the device.

特開2009−042141号公報JP-A-2009-042141 特開2010−181400号公報JP-A-2010-181400 特開2012−052906号公報Japanese Unexamined Patent Publication No. 2012-052906

前述のように、電極が予め接着固定された容器を用いて液体試料の電気的測定を行うと、接着剤による生体物質への影響や低生産性が問題となっていた。一方、外部電極を用いた測定では、測定誤差の問題や装置の大型化、製造工程の煩雑化、装置の高価格化が問題となっていた。 As described above, when an electrical measurement of a liquid sample is performed using a container in which electrodes are adhered and fixed in advance, the influence of the adhesive on biological substances and low productivity have been problems. On the other hand, in the measurement using the external electrode, there are problems of measurement error, large size of the device, complicated manufacturing process, and high price of the device.

そこで、本技術では、液体状の生体試料の電気特性を高精度に測定するための構造を備え、かつ、工業的生産が容易な電気的測定用容器を提供することを主目的とする。 Therefore, the main purpose of this technique is to provide a container for electrical measurement, which has a structure for measuring the electrical characteristics of a liquid biological sample with high accuracy and is easy to produce industrially.

本願発明者らは、前記課題を解決するために、液体状の生体試料を電気的に測定する際に用いる容器の構造について鋭意研究を行った結果、粘着剤を用いないことに着目し、容器の成形方法を工夫することで、本技術を完成するに至った。 In order to solve the above problems, the inventors of the present application have conducted intensive research on the structure of a container used when electrically measuring a liquid biological sample, and as a result, focused on the fact that no adhesive is used, and the container. By devising the molding method of, this technology was completed.

即ち、本技術では、まず、沈降性成分を含有する血液試料を収容するための側壁を有する生体試料保持部と、該生体試料保持部に固定された電気伝導部と、を少なくとも備え、前記電気伝導部は、測定時に前記血液試料と接触する電極部と、外部回路と電気的に接続するための接続部と、を少なくとも備え、前記電極部は、前記生体試料保持部において、前記側壁と平行する方向に配置され、前記電極部は、前記生体試料保持部の側壁と接触し、前記電極部は、測定時に底部となる部分から所定距離上側、かつ、測定時に前記血液試料の液面となる部分から所定距離下側に位置する、血液試料の電気的測定用容器を提供する。
前記生体試料保持部は、樹脂で形成することができる。前記樹脂としては、ポリプロピレン、ポリスチレン、アクリル、およびポリサルホンから選ばれる一種以上の樹脂とすることができる。
前記電気伝導部における前記電極部は、測定の目的に応じて自由に配置することができるが、例えば、前記電極部を一対以上備えることも可能である。この場合、前記一対の電極部は、略平行に配置することができる。
また、前記電極部を、前記側壁に沿うように配置することもできる。
更に、前記電極部は、測定時に底部となる部分からの前記沈降性成分の累積堆積分率が体積分率以上となる位置より上側に位置するように配置することもできる。
加えて、本技術に係る電気的測定用容器において、測定に最低限必要な時間を経た時における血清層の下限よりも、電極部の上限が下方に位置するように配置することもできる。
また、本技術に係る電気的測定用容器は、蓋部を有していてもよい。
更に、前記電気伝導部の一部に、曲折部を備えていてもよい。
加えて、前記生体試料保持部は、円筒体、断面が多角の多角筒体、円錐体、断面が多角の多角錐体、或いはこれらを1種または2種以上組み合わせた形態であるものとすることができる。
また、前記電気伝導部に用いる電気伝導性を有する材料は特に限定されないが、例えば、チタンを含む電気伝導性素材を用いることができる。
本技術に係る電気的測定用容器は、あらゆる電気的測定に用いることができるが、例えば、前記血液試料の誘電率や前記血液試料のインピーダンスを測定するために用いることができる。
具体的には、例えば、血沈状況や血液凝固状況を測定するために用いることができる。
That is, in the present technology, first, at least a biological sample holding portion having a side wall for accommodating a blood sample containing a sedimentation component and an electrical conducting portion fixed to the biological sample holding portion are provided, and the electricity is provided. The conduction portion includes at least an electrode portion that comes into contact with the blood sample at the time of measurement and a connection portion for electrically connecting to an external circuit, and the electrode portion is parallel to the side wall in the biological sample holding portion. The electrode portion is in contact with the side wall of the biological sample holding portion, and the electrode portion is on the upper side by a predetermined distance from the portion that becomes the bottom portion at the time of measurement and becomes the liquid level of the blood sample at the time of measurement. Provided is a container for electrical measurement of a blood sample, which is located a predetermined distance below the portion.
The biological sample holding portion can be formed of a resin. The resin can be one or more resins selected from polypropylene, polystyrene, acrylic, and polysulfone.
The electrode portions in the electrical conduction portion can be freely arranged according to the purpose of measurement, but for example, a pair or more of the electrode portions can be provided. In this case, the pair of electrode portions can be arranged substantially in parallel.
Further, the electrode portion may be arranged along the side wall.
Further, the electrode portion may be arranged so as to be located above a position where the cumulative deposition fraction of the sedimentary component from the bottom portion at the time of measurement is equal to or higher than the volume fraction.
In addition, in the container for electrical measurement according to the present technology, the upper limit of the electrode portion may be located below the lower limit of the serum layer when the minimum time required for measurement has passed.
Further, the container for electrical measurement according to the present technology may have a lid portion.
Further, a bent portion may be provided as a part of the electric conduction portion.
In addition, the biological sample holding portion shall be a cylinder, a polygonal cylinder having a polygonal cross section, a cone, a polygonal pyramid having a polygonal cross section, or a form obtained by combining one or more of these. Can be done.
Further, the material having electric conductivity used for the electric conductive portion is not particularly limited, and for example, an electric conductive material containing titanium can be used.
The container for electrical measurement according to the present technology can be used for any electrical measurement, and can be used, for example, for measuring the dielectric constant of the blood sample or the impedance of the blood sample.
Specifically, for example, it can be used to measure a blood sinking state or a blood coagulation state.

本技術に係る電気的測定用容器は、電気的測定装置の一部として好適に用いることができる。
具体的には、沈降性成分を含有する血液試料を収容するための側壁を有する生体試料保持部と、測定時において少なくとも一部が前記血液試料と接触する電気伝導部と、該電気伝導部に電圧を印加する印加部と、前記血液試料の電気的特性を測定する測定部と、を少なくとも備え、前記電気伝導部は、測定時に前記血液試料と接触する電極部と、外部回路と電気的に接続するための接続部と、を少なくとも備え、前記電極部は、前記生体試料保持部において、前記側壁と平行する方向に配置され、前記電極部は、前記生体試料保持部の側壁と接触し、前記電極部は、測定時に底部となる部分から所定距離上側、かつ、測定時に前記血液試料の液面となる部分から所定距離下側に位置する、血液試料の電気的測定装置を提供する。
The container for electrical measurement according to the present technology can be suitably used as a part of the electrical measurement device.
Specifically, the biological sample holding portion having a side wall for accommodating the blood sample containing the sedimenting component, the electrical conduction portion in which at least a part of the blood sample comes into contact with the blood sample at the time of measurement, and the electrical conduction portion. It includes at least an application unit that applies a voltage and a measurement unit that measures the electrical characteristics of the blood sample, and the electrical conduction unit electrically communicates with an electrode unit that comes into contact with the blood sample during measurement and an external circuit. A connecting portion for connecting is provided at least, and the electrode portion is arranged in the biological sample holding portion in a direction parallel to the side wall, and the electrode portion comes into contact with the side wall of the biological sample holding portion. The electrode portion provides an electrical measuring device for a blood sample, which is located a predetermined distance above a portion that becomes a bottom portion at the time of measurement and a predetermined distance below a portion that becomes a liquid surface of the blood sample at the time of measurement.

また、本技術に係る電気的測定用容器は、血液試料の電気的測定方法に好適に用いることができる。
具体的には、沈降性成分を含有する血液試料を収容するための側壁を有する生体試料保持部と、該生体試料保持部に固定された電気伝導部と、を少なくとも備え、前記電気伝導部は、測定時に前記血液試料と接触する電極部と、外部回路と電気的に接続するための接続部と、を少なくとも備え、前記電極部は、前記生体試料保持部において、前記側壁と平行する方向に配置され、前記電極部は、前記生体試料保持部の側壁と接触し、前記電極部は、測定時に底部となる部分から所定距離上側、かつ、測定時に前記血液試料の液面となる部分から所定距離下側に位置する血液試料の電気的測定用容器を用いて、前記血液試料の電気的特性を測定する液体状の血液試料の電気的測定方法を提供する。
In addition, the container for electrical measurement according to the present technology can be suitably used for a method for electrically measuring a blood sample.
Specifically, it includes at least a biological sample holding portion having a side wall for accommodating a blood sample containing a sedimentation component and an electrical conducting portion fixed to the biological sample holding portion, and the electrical conducting portion At least an electrode portion that comes into contact with the blood sample at the time of measurement and a connection portion for electrically connecting to an external circuit are provided, and the electrode portion is in the biological sample holding portion in a direction parallel to the side wall. The electrode portion is arranged and comes into contact with the side wall of the biological sample holding portion, and the electrode portion is predetermined from a portion that is a predetermined distance above the portion that becomes the bottom portion at the time of measurement and is a liquid level portion of the blood sample at the time of measurement. Provided is an method for electrically measuring a liquid blood sample for measuring the electrical characteristics of the blood sample by using a container for electrically measuring the blood sample located on the lower side of the distance.

本技術に係る電気的測定用容器は、接着剤を用いずに電気伝導部を生体試料保持部に固定されている。そのため、接着剤の影響を受けることなく、液体状の生体試料の電気特性を高精度に測定することができる。また、本技術に係る電気的測定用容器は、製造が容易であるため、安価かつ大量に生産することが可能である。 In the container for electrical measurement according to the present technology, the electrical conduction portion is fixed to the biological sample holding portion without using an adhesive. Therefore, the electrical characteristics of the liquid biological sample can be measured with high accuracy without being affected by the adhesive. Further, since the container for electrical measurement according to the present technology is easy to manufacture, it can be mass-produced at low cost.

本技術に係る電気的測定用容器1の第1実施形態を模式的に示す断面模式図である。It is sectional drawing which shows typically the 1st Embodiment of the electric measurement container 1 which concerns on this technique. Aは本技術に係る電気的測定用容器1の第2実施形態を模式的に示す断面模式図であり、Bは、AのL−L’矢視断面図である。A is a schematic cross-sectional view schematically showing a second embodiment of the electrical measurement container 1 according to the present technology, and B is a cross-sectional view taken along the line L-L'of A. 本技術に係る電気的測定用容器1の第3実施形態を模式的に示す断面模式図である。It is sectional drawing which shows typically the 3rd Embodiment of the electric measurement container 1 which concerns on this technique. Aは本技術に係る電気的測定用容器1の第4実施形態を模式的に示す断面模式図であり、Bは、AのL−L’矢視断面図である。A is a schematic cross-sectional view schematically showing a fourth embodiment of the container 1 for electrical measurement according to the present technology, and B is a cross-sectional view taken along the line L-L'of A. 沈降性成分を含有する生体試料Sを用いる場合に、経時的な沈降性成分の沈降の様子と、電極部3の位置との関係を模式的に示す断面模式図である。FIG. 5 is a schematic cross-sectional view schematically showing the relationship between the state of sedimentation of the sedimentary component over time and the position of the electrode portion 3 when the biological sample S containing the sedimentation component is used. 図5に対応した電極部3の位置と、誘電率を測定した場合の測定値との関係の一例を示す図面代用グラフである。It is a drawing substitute graph which shows an example of the relationship between the position of the electrode part 3 corresponding to FIG. 5 and the measured value when the dielectric constant is measured. 本技術に係る電気的測定用容器1の第5実施形態を模式的に示す断面模式図である。It is sectional drawing which shows typically the 5th Embodiment of the electric measurement container 1 which concerns on this technique. 本技術に係る電気的測定用容器1の第6実施形態を模式的に示す断面模式図である。It is sectional drawing which shows typically the 6th Embodiment of the electric measurement container 1 which concerns on this technique. 本技術に係る電気的測定装置10の第1実施形態を模式的に示す模式図である。It is a schematic diagram which shows typically the 1st Embodiment of the electric measuring apparatus 10 which concerns on this technique.

以下、本技術を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、説明は以下の順序で行う。
1.電気的測定用容器1
(1)生体試料保持部2
(2)電気伝導部3
(a)電極部31
<第1実施形態>
<第2実施形態>
<第3実施形態>
<第4実施形態>
(b)接続部32
(c)保持部33
<第5実施形態>
(d)曲折部34
<第6実施形態>
(3)生体試料S
(4)その他
2.電気的測定装置10
(1)印加部4
(2)測定部5
(3)解析部6
3.電気的測定方法
Hereinafter, suitable embodiments for carrying out the present technology will be described with reference to the drawings. It should be noted that the embodiments described below show an example of typical embodiments of the present technology, and the scope of the present technology is not narrowly interpreted by this. The explanation will be given in the following order.
1. 1. Container for electrical measurement 1
(1) Biological sample holding unit 2
(2) Electrical conduction section 3
(A) Electrode portion 31
<First Embodiment>
<Second Embodiment>
<Third Embodiment>
<Fourth Embodiment>
(B) Connection unit 32
(C) Holding unit 33
<Fifth Embodiment>
(D) Bent part 34
<Sixth Embodiment>
(3) Biological sample S
(4) Others 2. Electrical measuring device 10
(1) Applying unit 4
(2) Measuring unit 5
(3) Analysis unit 6
3. 3. Electrical measurement method

1.電気的測定用容器1
図1は、本技術に係る電気的測定用容器1の第1実施形態を模式的に示す断面模式図である。本技術に係る電気的測定用容器1は、液体状の生体試料の電気的特性を測定する際に、該生体試料を保持するために用いる容器である。本技術に係る電気的測定用容器1は、大別して、生体試料保持部2と、電気的測定用容器伝導部3と、を少なくとも備える。以下、各部について詳細に説明する。なお、各図面において、説明上、生体試料Sを図示しているが、生体試料Sは、本技術に係る電気的測定用容器1には包含されない。
1. 1. Container for electrical measurement 1
FIG. 1 is a schematic cross-sectional view schematically showing a first embodiment of an electrical measurement container 1 according to the present technology. The electrical measurement container 1 according to the present technology is a container used for holding the biological sample when measuring the electrical characteristics of the liquid biological sample. The electrical measurement container 1 according to the present technology is roughly classified into at least a biological sample holding unit 2 and an electrical measurement container conduction unit 3. Hereinafter, each part will be described in detail. Although the biological sample S is illustrated in each drawing for explanation, the biological sample S is not included in the electrical measurement container 1 according to the present technology.

(1)生体試料保持部2
生体試料保持部2は、測定対象の液体状生体試料が保持される部位である。本技術に係る電気的測定用容器1では、この生体試料保持部2が樹脂からなること特徴とする。
(1) Biological sample holding unit 2
The biological sample holding unit 2 is a portion where the liquid biological sample to be measured is held. The electrical measurement container 1 according to the present technology is characterized in that the biological sample holding portion 2 is made of a resin.

本技術に係る電気的測定用容器1において、生体試料保持部2に用いる樹脂の種類は特に限定されず、液体状の生体試料の保持に適用可能な樹脂を、1種または2種以上自由に選択して用いることができる。例えば、ポリプロピレン、ポリメチルメタクリレート、ポリスチレン、アクリル、ポリサルホン、ポリテトラフルオロエチレンなどの疎水性かつ絶縁性のポリマーやコポリマー、ブレンドポリマーなどが挙げられる。本技術では、この中でも特に、ポリプロピレン、ポリスチレン、アクリル、およびポリサルホンから選ばれる一種以上の樹脂で生体試料保持部2を形成することが好ましい。これらの樹脂は、血液に対して低凝固活性であるという性質を有するため、例えば、血液を含有する生体試料の測定にも好適に用いることができる。 In the container 1 for electrical measurement according to the present technology, the type of resin used for the biological sample holding unit 2 is not particularly limited, and one or more kinds of resins applicable to holding a liquid biological sample can be freely used. It can be selected and used. Examples thereof include hydrophobic and insulating polymers such as polypropylene, polymethylmethacrylate, polystyrene, acrylic, polysulfone and polytetrafluoroethylene, copolymers and blended polymers. In the present technology, it is particularly preferable to form the biological sample holding portion 2 with one or more resins selected from polypropylene, polystyrene, acrylic, and polysulfone. Since these resins have a property of having low coagulation activity with respect to blood, they can be suitably used for, for example, measuring a biological sample containing blood.

本技術に係る電気的測定用容器1において、生体試料保持部2の具体的な形態も特に限定されず、液体状の生体試料Sを保持可能であれば、円筒体、断面が多角(三角、四角或いはそれ以上)の多角筒体、円錐体、断面が多角(三角、四角或いはそれ以上)の多角錐体、或いはこれらを1種または2種以上組み合わせた形態など、生体試料Sの種類や測定方法、用いる測定装置などに応じて自由に設計することができる。 In the electrical measurement container 1 according to the present technology, the specific form of the biological sample holding portion 2 is not particularly limited, and if the biological sample S in a liquid state can be held, a cylindrical body and a polygonal cross section (triangular, Types and measurements of biological sample S, such as polygonal cylinders (squares or more), cones, polygonal cones with polygonal cross sections (triangles, squares or more), or a combination of one or more of these. It can be freely designed according to the method, the measuring device to be used, and the like.

液体状の生体試料Sは、生体試料保持部2に保持された状態で、各種電気的特性の測定が行われる。そのため、生体試料保持部2は、生体試料Sを保持した状態で密封可能な構成であることが好ましい。ただし、液体状の生体試料Sの各種電気的特性を測定するのに要する時間停滞可能であって、測定に影響がなければ、気密な構成でなくてもよいものとする。 Various electrical characteristics of the liquid biological sample S are measured while being held by the biological sample holding unit 2. Therefore, it is preferable that the biological sample holding unit 2 has a structure that can be sealed while holding the biological sample S. However, if the time required to measure various electrical characteristics of the liquid biological sample S can be stagnant and the measurement is not affected, the airtight structure does not have to be used.

生体試料保持部2への液体状生体試料Sの具体的な導入および密閉方法は特に限定されず、生体試料保持部2の形態に応じて自由な方法で導入することができる。例えば、図示しないが、生体試料保持部2に蓋部を設け、ピペットなどを用いて生体試料Sを導入した後に蓋部を閉じて密閉する方法や、生体試料保持部の外表面から注射針を穿入し、液体状の生体試料Sを注入した後、注射針の貫通部分を、グリスなどで塞ぐことで、密閉する方法などが挙げられる。 The specific method for introducing and sealing the liquid biological sample S into the biological sample holding unit 2 is not particularly limited, and the liquid biological sample S can be introduced by any method depending on the form of the biological sample holding unit 2. For example, although not shown, a method in which a lid portion is provided on the biological sample holding portion 2 and the biological sample S is introduced using a pipette or the like and then the lid portion is closed and sealed, or an injection needle is inserted from the outer surface of the biological sample holding portion. Examples thereof include a method of sealing the penetrating portion of the injection needle by closing the penetrating portion of the injection needle with grease or the like after penetrating and injecting the liquid biological sample S.

(2)電気伝導部3
本技術に係る電気的測定用容器1において、電気伝導部3は、予め、生体試料保持部2に固定されていることを特徴とする。特に、本技術では、電気伝導部3の一部が生体試料保持部2に埋入された状態で、生体試料保持部2と電気伝導部3とが一体成形されていることが特徴である。即ち、生体試料保持部2と電気伝導部3との固定には、接着剤などの固定材料は用いない。
(2) Electrical conduction section 3
In the electrical measurement container 1 according to the present technology, the electrical conduction portion 3 is fixed in advance to the biological sample holding portion 2. In particular, the present technique is characterized in that the biological sample holding portion 2 and the electrical conducting portion 3 are integrally molded with a part of the electrical conducting portion 3 embedded in the biological sample holding portion 2. That is, no fixing material such as an adhesive is used for fixing the biological sample holding portion 2 and the electrical conducting portion 3.

接着剤を用いて固定する場合、用いる接着剤の種類によっては、生体試料Sの性質に影響を及ぼす場合がある。例えば、生体試料Sとして血液の電気特性を測定する場合、用いる接着剤の種類によっては、血液の凝固活性が促進されてしまい、目的の測定に影響を及ぼす場合がある。しかし、本技術に係る電気的測定用容器1は、生体試料保持部2と電気伝導部3との固定に接着剤を用いないため、接着剤による生体試料Sへの影響を排除することができる。その結果、生体試料Sの電気特性を高精度に測定することが可能となる。 When fixing with an adhesive, the properties of the biological sample S may be affected depending on the type of adhesive used. For example, when measuring the electrical characteristics of blood as a biological sample S, the coagulation activity of blood may be promoted depending on the type of adhesive used, which may affect the desired measurement. However, since the electrical measurement container 1 according to the present technology does not use an adhesive for fixing the biological sample holding portion 2 and the electrical conductive portion 3, the influence of the adhesive on the biological sample S can be eliminated. .. As a result, the electrical characteristics of the biological sample S can be measured with high accuracy.

また、仮に生体試料Sへの影響が少ない接着剤を用いた場合であっても、容器を製造する際に接着剤による接着工程が増えることから、生産性に劣るという問題もあった。しかし、本技術に係る電気的測定用容器1の製造工程では、生体試料保持部2と電気伝導部3とが一体成形するため、生体試料保持部2の成形工程に加えて接着工程を別に設ける必要がない。その結果、電気的測定用容器1の製造が容易となり、安価かつ大量に電気的測定用容器1を生産することが可能となる。 Further, even if an adhesive having little influence on the biological sample S is used, there is a problem that the productivity is inferior because the bonding process by the adhesive increases when the container is manufactured. However, in the manufacturing process of the electrical measurement container 1 according to the present technology, since the biological sample holding portion 2 and the electric conductive portion 3 are integrally molded, an bonding step is separately provided in addition to the molding step of the biological sample holding portion 2. There is no need. As a result, the electric measurement container 1 can be easily manufactured, and the electric measurement container 1 can be produced in a large amount at low cost.

一方、接着剤を用いない方法としては、例えば、生体試料を収容するための容器に、外部から電極を挿入した状態で、電気的特性を測定する方法がある。この方法では、電極の液体試料中への挿入量の違いにより、測定誤差が生じるという問題があった。しかし、本技術に係る電気的測定用容器1では、生体試料保持部2に予め電気伝導体3が固定されている。そのため、後述するように、この電気伝導体3を電極として用いることで、電極の液体試料中への挿入量の違いによる測定誤差をなくすことができる。その結果、生体試料Sの電気特性を高精度に測定することが可能である。 On the other hand, as a method that does not use an adhesive, for example, there is a method of measuring electrical characteristics with an electrode inserted from the outside in a container for accommodating a biological sample. This method has a problem that a measurement error occurs due to a difference in the amount of the electrode inserted into the liquid sample. However, in the container 1 for electrical measurement according to the present technology, the electric conductor 3 is fixed in advance to the biological sample holding portion 2. Therefore, as will be described later, by using this electric conductor 3 as an electrode, it is possible to eliminate a measurement error due to a difference in the amount of the electrode inserted into the liquid sample. As a result, it is possible to measure the electrical characteristics of the biological sample S with high accuracy.

また、生体試料保持部2に予め電気伝導体3が固定されていることで、装置側に電極と容器との相対的位置決め機構などを設置する必要がなく、装置の構成を簡易化することができる。その結果、装置の小型化や製造工程の簡易化、装置の低価格化などの実現にも貢献することができる。 Further, since the electric conductor 3 is fixed to the biological sample holding portion 2 in advance, it is not necessary to install a relative positioning mechanism between the electrode and the container on the device side, and the configuration of the device can be simplified. it can. As a result, it is possible to contribute to the realization of miniaturization of the device, simplification of the manufacturing process, and reduction of the price of the device.

更に、電気的測定用容器1の部品点数を減らすことができるため、使用者の利便性を向上させることも可能である。 Further, since the number of parts of the electrical measurement container 1 can be reduced, it is possible to improve the convenience of the user.

生体試料保持部2と電気伝導部3とを一体成形するための具体的な方法は特に限定されず、電気伝導部3の一部が生体試料保持部2に埋入された状態で、生体試料保持部2と電気伝導部3とを接着剤を用いずに固定することができれば、自由な方法を用いることができる。例えば、生体試料保持部2を形成する樹脂が溶融状態から固化する際に、電気伝導部3を所定位置に配置することで、生体試料保持部2と電気伝導部3とを一体成形することができる。より具体的な方法としては、例えば、金型内に電気伝導部3を挿入し、その周りに樹脂を注入して電気伝導部3と樹脂とを一体化する、所謂、インサート成形により、生体試料保持部2と電気伝導部3とを一体成形することも可能である。 The specific method for integrally molding the biological sample holding portion 2 and the electrical conducting portion 3 is not particularly limited, and the biological sample is in a state where a part of the electrical conducting portion 3 is embedded in the biological sample holding portion 2. If the holding portion 2 and the electrical conducting portion 3 can be fixed without using an adhesive, a free method can be used. For example, when the resin forming the biological sample holding portion 2 solidifies from the molten state, the biological sample holding portion 2 and the electrical conducting portion 3 can be integrally molded by arranging the electrical conducting portion 3 at a predetermined position. it can. As a more specific method, for example, a biological sample is formed by so-called insert molding, in which an electric conductive portion 3 is inserted into a mold, a resin is injected around the electric conductive portion 3, and the electric conductive portion 3 and the resin are integrated. It is also possible to integrally mold the holding portion 2 and the electrical conducting portion 3.

このように、本技術に係る電気的測定用容器1は、生体試料保持部2の成形を行う際に、同時に電気伝導部3を固定するため、製造工程の簡易化を図ることができる。その結果、安価かつ大量に電気的測定用容器1を生産することが可能となる。 As described above, in the container 1 for electrical measurement according to the present technology, when the biological sample holding portion 2 is molded, the electrical conductive portion 3 is fixed at the same time, so that the manufacturing process can be simplified. As a result, it becomes possible to produce the electric measurement container 1 in a large amount at low cost.

電気伝導部3は、電気伝導性の材料からなる。本技術に係る電気的測定用容器1において、電気伝導部3に用いる電気伝導性材料の種類は特に限定されず、液体状の生体試料Sの電気的測定に適用可能な材料を、1種または2種以上自由に選択して用いることができる。例えば、チタン、アルミニウム、ステンレス、白金、金、銅、黒鉛などが挙げられる。本技術では、この中でも特に、チタンを含む電気伝導性素材で電気伝導部3を形成することが好ましい。チタンは、血液に対して低凝固活性であるという性質を有するため、例えば、血液を含有する生体試料の測定にも好適に用いることができる。 The electrically conductive portion 3 is made of an electrically conductive material. In the electrical measurement container 1 according to the present technology, the type of the electrically conductive material used for the electrical conductive portion 3 is not particularly limited, and one or one material applicable to the electrical measurement of the liquid biological sample S can be used. Two or more types can be freely selected and used. For example, titanium, aluminum, stainless steel, platinum, gold, copper, graphite and the like can be mentioned. In the present technology, it is particularly preferable to form the electrically conductive portion 3 with an electrically conductive material containing titanium. Since titanium has a property of having low coagulation activity with respect to blood, it can be suitably used, for example, for measuring a biological sample containing blood.

電気伝導部3は、電極部31と、接続部32と、を備えることができる。また、必要に応じて、保持部33と、曲折部34と、を更に備えることもできる。以下、各部について、詳細に説明する。 The electrical conduction portion 3 can include an electrode portion 31 and a connection portion 32. Further, if necessary, a holding portion 33 and a bent portion 34 may be further provided. Hereinafter, each part will be described in detail.

(a)電極部31
電極部31は、測定時に生体試料Sと接触し、生体試料Sに必要な電圧を印加するために用いられる。本技術に係る電気的測定用容器1において、電極部31の数は、目的の電気的測定の方法などに応じて、自由に設計することができる。例えば、生体試料Sの誘電率やインピーダンスを測定する場合には、一対以上の電極部31を設けることができる。
(A) Electrode portion 31
The electrode portion 31 comes into contact with the biological sample S at the time of measurement and is used to apply a voltage required for the biological sample S. In the electrical measurement container 1 according to the present technology, the number of electrode portions 31 can be freely designed according to the target electrical measurement method and the like. For example, when measuring the dielectric constant or impedance of the biological sample S, a pair or more of electrode portions 31 can be provided.

また、電極部31の配置や形態なども特に限定されず、生体試料Sに必要な電圧を印加することができれば、目的の電気的測定の方法などに応じて、自由に設計することができる。以下、電極部31の配置の例について、詳細に説明する。 Further, the arrangement and form of the electrode portion 31 are not particularly limited, and if a required voltage can be applied to the biological sample S, it can be freely designed according to a target electrical measurement method or the like. Hereinafter, an example of the arrangement of the electrode portion 31 will be described in detail.

<第1実施形態>
図1に示す第1実施形態は、一対の電極部31を、生体試料保持部2の内壁に沿うように配置した例である。より具体的には、電気伝導部3の一部が生体試料保持部2の側壁に埋入された状態で、生体試料保持部2の内部に電極部31を、生体試料保持部2の外部に後述する接続部32を、配置した例である。電極部31は、生体試料保持部2の側壁の中央付近に配置されている。
<First Embodiment>
The first embodiment shown in FIG. 1 is an example in which a pair of electrode portions 31 are arranged along the inner wall of the biological sample holding portion 2. More specifically, with a part of the electrical conduction portion 3 embedded in the side wall of the biological sample holding portion 2, the electrode portion 31 is placed inside the biological sample holding portion 2 and outside the biological sample holding portion 2. This is an example in which the connection portion 32 described later is arranged. The electrode portion 31 is arranged near the center of the side wall of the biological sample holding portion 2.

<第2実施形態>
図2Aは、本技術に係る電気的測定用容器1の第2実施形態を模式的に示す断面模式図であり、図2Bは、図2AのL−L’矢視断面図である。第2実施形態は、一対の電気伝導部3を、生体試料保持部2の底壁部から突き出た状態で配置した例である。より具体的には、電気伝導部3の一部が生体試料保持部2の底壁部に埋入された状態で、生体試料保持部2の内部に電極部31を、生体試料保持部2の外部に後述する接続部32を、配置した例である。
<Second Embodiment>
FIG. 2A is a schematic cross-sectional view schematically showing a second embodiment of the electrical measurement container 1 according to the present technology, and FIG. 2B is a cross-sectional view taken along the line LL'of FIG. 2A. The second embodiment is an example in which the pair of electrical conductive portions 3 are arranged in a state of protruding from the bottom wall portion of the biological sample holding portion 2. More specifically, in a state where a part of the electrical conduction portion 3 is embedded in the bottom wall portion of the biological sample holding portion 2, the electrode portion 31 is provided inside the biological sample holding portion 2 and the biological sample holding portion 2 is provided. This is an example in which the connection unit 32 described later is arranged outside.

本実施形態において、電極部31の形態は特に限定されず、生体試料保持部2の形状や目的の電気的測定方法に応じて自由に設計することができる。本発明では特に、測定効率を向上させるためにも、平面的に液体試料に接することが好ましい。具体的な形態としては、図2Bに示すように、電極部31の液体試料と接触する部分を幅広に形成することで、液体試料に対し平面的に接することが可能である。 In the present embodiment, the form of the electrode portion 31 is not particularly limited, and the electrode portion 31 can be freely designed according to the shape of the biological sample holding portion 2 and the desired electrical measurement method. In the present invention, in particular, in order to improve the measurement efficiency, it is preferable to contact the liquid sample in a plane. As a specific form, as shown in FIG. 2B, by forming a wide portion of the electrode portion 31 in contact with the liquid sample, it is possible to make a plane contact with the liquid sample.

<第3実施形態>
図3は、本技術に係る電気的測定用容器1の第3実施形態を模式的に示す断面模式図である。第3実施形態は、一対の電極部31を、電気的測定用容器1の内壁の一部を構成するように、配置した例である。より具体的には、各電極部31の一部が生体試料保持部2の側壁に埋入された状態で、電気的測定用容器1の内壁の一部として電極部31を、生体試料保持部2の外部に後述する接続部32を、配置した例である。
<Third Embodiment>
FIG. 3 is a schematic cross-sectional view schematically showing a third embodiment of the electrical measurement container 1 according to the present technology. The third embodiment is an example in which the pair of electrode portions 31 are arranged so as to form a part of the inner wall of the electrical measurement container 1. More specifically, in a state where a part of each electrode portion 31 is embedded in the side wall of the biological sample holding portion 2, the electrode portion 31 is used as a part of the inner wall of the electrical measurement container 1, and the biological sample holding portion 31 is used. This is an example in which the connection portion 32 described later is arranged outside the 2.

このように、電極部31が電気的測定用容器1の内壁の一部を構成するように配置する場合、図3の第3実施形態に示すように、生体試料保持部2と電極部31との接続部が平滑になるように一体成形することが好ましい。液体状の生体試料Sの場合、容器内に段差などがあると、気泡などがその部分に留まってしまい、測定値に影響を及ぼす場合がある。しかし、生体試料保持部2と電極部31との境界に段差などが生じないように設計することで、気泡などの留まりを防止し、その結果、生体試料Sの電気特性をより高精度に測定することが可能となる。 When the electrode portion 31 is arranged so as to form a part of the inner wall of the electrical measurement container 1 in this way, as shown in the third embodiment of FIG. 3, the biological sample holding portion 2 and the electrode portion 31 It is preferable to integrally mold the connecting portion of the above so as to be smooth. In the case of the liquid biological sample S, if there is a step or the like in the container, air bubbles or the like may stay in that portion and affect the measured value. However, by designing so that a step or the like does not occur at the boundary between the biological sample holding portion 2 and the electrode portion 31, the retention of air bubbles or the like is prevented, and as a result, the electrical characteristics of the biological sample S are measured with higher accuracy. It becomes possible to do.

なお、一対以上の電極部31を備える場合、生体試料Sの電気的特性を測定する上では、各電極部31を平行に配置することが好ましい。ただし、例えば、インサート成形などを行う場合の離型性などを考慮して、数度の傾きを持たせた状態で、各電極部31を配置することも可能である。 When a pair or more of the electrode portions 31 are provided, it is preferable to arrange the electrode portions 31 in parallel in order to measure the electrical characteristics of the biological sample S. However, for example, in consideration of releasability in the case of insert molding or the like, it is possible to arrange each electrode portion 31 in a state of having an inclination of several degrees.

<第4実施形態>
図4Aは、本技術に係る電気的測定用容器1の第4実施形態を模式的に示す断面模式図であり、図4Bは、図4AのL−L’矢視断面図である。第4実施形態は、一対の電気伝導部3を、生体試料保持部2の上壁部から突き出た状態で配置した例である。より具体的には、電気伝導部3の一部が生体試料保持部2の上壁部に埋入された状態で、生体試料保持部2の内部に電極部31を、生体試料保持部2の外部に後述する接続部32を、配置した例である。生体試料保持部2の上壁部から電気伝導部3を突き出すことで、例えば、前述した第2実施例のように底壁部から電気伝導部3を突き出す実施形態に比べて、試料の液漏れをより確実に防止することができる。
<Fourth Embodiment>
FIG. 4A is a schematic cross-sectional view schematically showing a fourth embodiment of the electrical measurement container 1 according to the present technology, and FIG. 4B is a cross-sectional view taken along the line LL'of FIG. 4A. The fourth embodiment is an example in which the pair of electrical conductive portions 3 are arranged in a state of protruding from the upper wall portion of the biological sample holding portion 2. More specifically, in a state where a part of the electric conduction portion 3 is embedded in the upper wall portion of the biological sample holding portion 2, the electrode portion 31 is provided inside the biological sample holding portion 2 and the biological sample holding portion 2 is provided. This is an example in which the connection unit 32 described later is arranged outside. By projecting the electrical conductive portion 3 from the upper wall portion of the biological sample holding portion 2, for example, as compared with the embodiment in which the electrical conductive portion 3 is projected from the bottom wall portion as in the second embodiment described above, the sample leaks. Can be prevented more reliably.

本実施形態において、電極部31の形態は特に限定されず、生体試料保持部2の形状や目的の電気的測定方法に応じて自由に設計することができる。例えば、前述した第2実施形態と同様に、電極部31の液体試料と接触する部分を幅広に形成することで(図4B参照)、液体試料に対し平面的に接するように設計すれば、測定効率を向上させることが可能である。 In the present embodiment, the form of the electrode portion 31 is not particularly limited, and the electrode portion 31 can be freely designed according to the shape of the biological sample holding portion 2 and the desired electrical measurement method. For example, as in the second embodiment described above, if the electrode portion 31 is designed so as to be in flat contact with the liquid sample by forming a wide portion in contact with the liquid sample (see FIG. 4B), the measurement can be performed. It is possible to improve efficiency.

第1、第3、第4実施形態に係る電気的測定用容器1は、電極部3を測定時に底部となる部分から所定距離上側に位置するように配置することも特徴とする。例えば、後述するように、生体試料Sとして沈降性成分を含有する生体試料を用いる場合、電極部3が測定時に底部となる部分から所定距離上側に位置することで、経時的な沈降性成分の沈降による影響を抑えることができる。その結果、生体試料Sの電気特性をより高精度に測定することが可能となる。 The electrical measurement container 1 according to the first, third, and fourth embodiments is also characterized in that the electrode portion 3 is arranged so as to be located on the upper side by a predetermined distance from the portion that becomes the bottom portion at the time of measurement. For example, as will be described later, when a biological sample containing a sedimentation component is used as the biological sample S, the electrode portion 3 is located on the upper side by a predetermined distance from the bottom portion at the time of measurement, so that the sedimentation component over time can be used. The effect of sedimentation can be suppressed. As a result, it becomes possible to measure the electrical characteristics of the biological sample S with higher accuracy.

沈降性成分を含有する生体試料Sを用いる場合の電極部3の好適な位置決めについて、図5および図6を参照しながら説明する。図5は、沈降性成分を含有する生体試料Sを用いる場合に、経時的な沈降性成分の沈降の様子と、電極部3の位置との関係を模式的に示す断面模式図である。図6は、図5に対応した電極部3の位置と、誘電率を測定した場合の測定値との関係の一例を示す図面代用グラフである。 The suitable positioning of the electrode portion 3 when the biological sample S containing the sedimentation component is used will be described with reference to FIGS. 5 and 6. FIG. 5 is a schematic cross-sectional view schematically showing the relationship between the state of sedimentation of the sedimentation component over time and the position of the electrode portion 3 when the biological sample S containing the sedimentation component is used. FIG. 6 is a drawing substitute graph showing an example of the relationship between the position of the electrode portion 3 corresponding to FIG. 5 and the measured value when the dielectric constant is measured.

例えば、図5Bに示すように、電極部3を、測定時に底部となる部分から所定距離上側に位置するように配置した場合、図6Bに示すように、測定から一定の間は、一定の誘電率を示す。これは、図5Bに示すように、経時的に沈降性成分の沈降が進行した場合でも、一定時間までは、一対の電極部3で挟まれた領域の沈降性成分の濃度にほとんど変化がないからである。 For example, as shown in FIG. 5B, when the electrode portion 3 is arranged so as to be located above a predetermined distance from the bottom portion at the time of measurement, as shown in FIG. 6B, a constant dielectric constant during a certain period from the measurement. Shows the rate. This is because, as shown in FIG. 5B, there is almost no change in the concentration of the sedimentary component in the region sandwiched between the pair of electrode portions 3 until a certain period of time even when the sedimentation component has progressed over time. Because.

一方、図5Aに示すように、電極部3を高い位置に配置した場合、図6Aに示すように、測定開始からすぐに、誘電率が上昇する。これは、図5Aに示すように、沈降性成分の沈降の進行により、測定開始からすぐに、一対の電極部3で挟まれた領域の沈降性成分の濃度が低下していくためである。 On the other hand, when the electrode portion 3 is arranged at a high position as shown in FIG. 5A, the dielectric constant increases immediately after the start of measurement as shown in FIG. 6A. This is because, as shown in FIG. 5A, as the sedimentation of the sedimentation component progresses, the concentration of the sedimentation component in the region sandwiched between the pair of electrode portions 3 decreases immediately after the start of measurement.

また、図5Cに示すように、電極部3を低い位置に配置した場合、図6Cに示すように、測定開始からすぐに、誘電率が下降する。これは、図5Cに示すように、沈降性成分の沈降の進行により、測定開始からすぐに、一対の電極部3で挟まれた領域の沈降性成分の濃度が上昇していくためである。 Further, as shown in FIG. 5C, when the electrode portion 3 is arranged at a low position, the dielectric constant decreases immediately after the start of measurement as shown in FIG. 6C. This is because, as shown in FIG. 5C, as the sedimentation of the sedimentation component progresses, the concentration of the sedimentation component in the region sandwiched between the pair of electrode portions 3 increases immediately after the start of measurement.

このように、図5Bに示すように、電極部3を、測定時に底部となる部分から所定距離上側に位置するように配置することで、生体試料S中で沈降性成分の沈降が進行した場合であっても、途中までは、測定値に影響を与えることなく正確な測定が可能である(図6B参照)。より具体的な位置としては、電極部3を、測定時に底部となる部分からの沈降性成分の累積堆積分率が体積分率以上となる位置より上側に位置するように配置することが好ましい。このような位置に配置することで、より長い時間、正確な測定が可能となる。 In this way, as shown in FIG. 5B, when the electrode portion 3 is arranged so as to be located on the upper side by a predetermined distance from the portion that becomes the bottom portion at the time of measurement, the sedimentation of the sedimentation component progresses in the biological sample S. Even so, accurate measurement is possible up to the middle without affecting the measured value (see FIG. 6B). As a more specific position, it is preferable to arrange the electrode portion 3 so as to be located above the position where the cumulative deposition fraction of the sedimentation component from the bottom portion at the time of measurement is equal to or higher than the volume fraction. By arranging it in such a position, accurate measurement can be performed for a longer time.

なお、図6の図面代用グラフの誘電率の相対変化は、あくまでも一例を示すものであり、測定対象の生体試料Sの種類などによっても、その変化はそれぞれ異なる。 The relative change in the dielectric constant of the drawing substitute graph of FIG. 6 is merely an example, and the change differs depending on the type of the biological sample S to be measured and the like.

沈降性成分を含有する生体試料Sの一例として、全血を測定対象とする場合について説明する。健常成人の場合、全血は、体積割合40%程度の赤血球を含む。赤血球は、静置条件下で沈降し、最終的には容器下部に沈殿する。一方、上層部には主に血清が集合する。沈降プロセスが進行中は、大まかに、下方から赤血球沈殿層、全血層、血清層の3層が存在することになる。 As an example of the biological sample S containing a sedimentation component, a case where whole blood is to be measured will be described. In the case of a healthy adult, whole blood contains red blood cells having a volume ratio of about 40%. Red blood cells settle under static conditions and eventually settle in the lower part of the vessel. On the other hand, serum mainly collects in the upper layer. While the precipitation process is in progress, there will be roughly three layers from below: the erythrocyte precipitation layer, the whole blood layer, and the serum layer.

全血を測定対象とする場合、全血の測定をできる限り長時間行えるように、電極部3を配置することが望ましい。具体的には、電極部3から発せられ対象試料を貫く電気力線の大部分が、容器中に順次生じる赤血球沈殿層と血清層とを避け、継続して全血層を通過するように配置するのが望ましい。これを満たすより具体的な配置としては、下方からの累積体積分率が赤血球体積分率以上となる位置より電極部3の下限が上方に位置するように、電極部3を配置することが好ましい。また、測定に最低限必要な時間を経た時における血清層の下限よりも、電極部3の上限が下方に位置するように、電極部3を配置することが好ましい。 When whole blood is to be measured, it is desirable to arrange the electrode portion 3 so that the whole blood can be measured for as long as possible. Specifically, most of the lines of electric force emitted from the electrode portion 3 and penetrating the target sample are arranged so as to avoid the erythrocyte precipitation layer and the serum layer that are sequentially generated in the container and continuously pass through the whole blood layer. It is desirable to do. As a more specific arrangement satisfying this, it is preferable to arrange the electrode portion 3 so that the lower limit of the electrode portion 3 is located above the position where the cumulative volume fraction from below is equal to or higher than the erythrocyte volume fraction. .. Further, it is preferable to arrange the electrode portion 3 so that the upper limit of the electrode portion 3 is located below the lower limit of the serum layer when the minimum time required for measurement has passed.

(b)接続部32
接続部32は、外部回路と電気的に接続する部位である。接続部32の具体的な形態は特に限定されず、外部回路と電気的に接続することが可能であれば、自由な形態に設計することができる。
(B) Connection unit 32
The connection portion 32 is a portion that electrically connects to an external circuit. The specific form of the connecting portion 32 is not particularly limited, and any form can be designed as long as it can be electrically connected to an external circuit.

(c)保持部33
<第5実施形態>
図7は、本技術に係る電気的測定用容器1の第5実施形態を模式的に示す断面模式図である。第5実施形態は、一対の電極部31の容器外側部分に、樹脂を備えない構成である。このような構成にすることで、例えば、生体試料保持部2の成形時に、電気伝導部3を、例えば、マグネットMなどを用いて位置決め固定することで、電気伝導部3(特に電極部31)を電気的測定用容器1の所望の位置に位置決めすることができる(図7B参照)。
(C) Holding unit 33
<Fifth Embodiment>
FIG. 7 is a schematic cross-sectional view schematically showing a fifth embodiment of the electrical measurement container 1 according to the present technology. In the fifth embodiment, the outer portion of the container of the pair of electrode portions 31 is not provided with resin. With such a configuration, for example, when the biological sample holding portion 2 is molded, the electrical conductive portion 3 is positioned and fixed by using, for example, a magnet M or the like, so that the electrical conductive portion 3 (particularly the electrode portion 31) Can be positioned at the desired position of the electrical measurement container 1 (see FIG. 7B).

なお、容器外部からの固定手段としては、図7Bに示すマグネットMに限らず、容器外部から電気伝導部3を固定することができる手段であれば、あらゆる手段を用いることができる。 The fixing means from the outside of the container is not limited to the magnet M shown in FIG. 7B, and any means that can fix the electric conductive portion 3 from the outside of the container can be used.

このように、電気伝導部3の少なくとも一部を、一体成形時に電気伝導部3を生体試料保持部2の所定箇所に配置させるための保持部33として機能させることで、電気伝導部3が所望の位置に位置決めされた電気的測定用容器1を容易に製造することが可能である。 In this way, the electric conduction part 3 is desired by allowing at least a part of the electric conduction part 3 to function as a holding part 33 for arranging the electric conducting part 3 at a predetermined position of the biological sample holding part 2 at the time of integral molding. It is possible to easily manufacture the electrical measurement container 1 positioned at the position of.

また、生体試料保持部2の成形時に、電気伝導部3が保持されることで、一体成形時に電気伝導部3が変形することも防止可能である。 Further, since the electric conductive part 3 is held at the time of molding the biological sample holding part 2, it is possible to prevent the electric conductive part 3 from being deformed at the time of integral molding.

なお、図7に示す第5実施形態では、電極部31が同時に保持部33としても機能する構成であるが、本技術ではこれに限定されない。例えば、接続部32が同時に保持部33を機能するように設計することも自由である。 In the fifth embodiment shown in FIG. 7, the electrode portion 31 also functions as the holding portion 33 at the same time, but the present technology is not limited to this. For example, the connecting portion 32 may be freely designed to function as the holding portion 33 at the same time.

(d)曲折部34
<第6実施形態>
図8は、本技術に係る電気的測定用容器1の第6実施形態を模式的に示す断面模式図である。第6実施形態は、電気伝導部3の生体試料保持部2に埋入された部分に、曲折部34を備えることを特徴とする。
(D) Bent part 34
<Sixth Embodiment>
FIG. 8 is a schematic cross-sectional view schematically showing a sixth embodiment of the electrical measurement container 1 according to the present technology. The sixth embodiment is characterized in that the bent portion 34 is provided in the portion embedded in the biological sample holding portion 2 of the electrical conduction portion 3.

本技術に係る電気的測定用容器1は、生体試料保持部2と電気伝導部3とが接着剤などを用いずに一体成形されたことを特徴とするため、生体試料保持部2と電気伝導部3との境界から、液体状の生体試料Sが漏れ出すことは非常に稀である。しかし、樹脂と電気伝導性素材とのひずみの違いなどによって、温度などの保管条件や測定条件によっては、生体試料保持部2と電気伝導部3との境界から、液体状の生体試料Sが漏れ出す可能性は否定できない。そこで、図8に示す第6実施形態のように、電気伝導部3の生体試料保持部2に埋入された部分に、曲折部34を備えることで、例えば、曲折部34を備えない第5実施形態(図7参照)などに比べ、生体試料保持部2と電気伝導部3との境界からの生体試料Sの漏れ出しを、防止することが可能である。 The electrical measurement container 1 according to the present technology is characterized in that the biological sample holding portion 2 and the electrical conducting portion 3 are integrally molded without using an adhesive or the like. Therefore, the biological sample holding portion 2 and the electrical conduction portion 2 are electrically conducted. It is extremely rare for the liquid biological sample S to leak from the boundary with the part 3. However, due to the difference in strain between the resin and the electrically conductive material, the liquid biological sample S leaks from the boundary between the biological sample holding portion 2 and the electrically conductive portion 3 depending on the storage conditions such as temperature and the measurement conditions. The possibility of issuing it cannot be denied. Therefore, as in the sixth embodiment shown in FIG. 8, by providing the bent portion 34 in the portion embedded in the biological sample holding portion 2 of the electrical conduction portion 3, for example, the fifth not provided with the bent portion 34. Compared with the embodiment (see FIG. 7), it is possible to prevent the biological sample S from leaking from the boundary between the biological sample holding portion 2 and the electrical conduction portion 3.

また、電気伝導部3の生体試料保持部2に埋入された部分に、曲折部34を備えることで、生体試料保持部2と電気伝導部3との固定がより強固になるため、より頑丈な電気的測定用容器1とすることができる。 Further, by providing the bent portion 34 in the portion embedded in the biological sample holding portion 2 of the electric conducting portion 3, the fixing between the biological sample holding portion 2 and the electric conducting portion 3 becomes stronger, so that it is more robust. It can be a container 1 for electrical measurement.

(3)生体試料S
本技術で測定対象とすることが可能な生体試料Sは、液体状であれば特に限定されず、自由に選択することができる。例えば、沈降性成分を含有する生体試料Sなどが挙げられる。より具体的には、全血、血漿、またはこれらの希釈液および/または薬剤添加物などの血液成分を含有する生体試料Sなどを挙げることができる。
(3) Biological sample S
The biological sample S that can be measured by the present technology is not particularly limited as long as it is in a liquid state, and can be freely selected. For example, a biological sample S containing a sedimentation component can be mentioned. More specifically, a biological sample S containing whole blood, plasma, or a blood component such as a diluted solution thereof and / or a drug additive can be mentioned.

(4)その他
本技術に係る電気的測定用容器1には、予め、所定の薬剤を入れておくことも可能である。例えば、血液成分を含有する生体試料Sを測定対象とする場合などは、抗凝固剤、凝固開始剤などを予め電気的測定用容器1の生体試料保持部2に入れておくことができる。
(4) Others It is also possible to put a predetermined drug in advance in the container 1 for electrical measurement according to the present technology. For example, when a biological sample S containing a blood component is to be measured, an anticoagulant, a coagulation initiator, or the like can be previously placed in the biological sample holding portion 2 of the electrical measurement container 1.

本技術に係る電気的測定用容器1は、前述の通り、安価かつ大量に生産することが可能である。この特徴を利用して、例えば、本技術に係る電気的測定用容器1を使い捨てのカートリッジとすることも可能である。本技術に係る電気的測定用容器1を使い捨てのカートリッジとすることで、容器の洗浄などの手間を省くことができ、測定の効率化を図ることができる。また、容器内に残った別の生体試料Sによる測定誤差などの発生を防止でき、生体試料Sの電気特性をより高精度に測定することが可能となる。 As described above, the container 1 for electrical measurement according to the present technology can be mass-produced at low cost. Utilizing this feature, for example, the electrical measurement container 1 according to the present technology can be used as a disposable cartridge. By using the electrical measurement container 1 according to the present technology as a disposable cartridge, it is possible to save time and effort such as cleaning the container and improve the efficiency of measurement. In addition, it is possible to prevent the occurrence of measurement error due to another biological sample S remaining in the container, and it is possible to measure the electrical characteristics of the biological sample S with higher accuracy.

2.電気的測定装置10
図9は、本技術に係る電気的測定装置10の第1実施形態を模式的に示す模式図である。本実施形態では、前述した第6実施形態に係る電気的測定用容器1を用いている。本技術に係る電気的測定装置10は、大別して、前述した電気的測定用容器1と、印加部4と、測定部5と、を少なくとも備える。また、必要に応じて、解析部6を更に備えることもできる。以下、各部について詳細に説明する。なお、電気的測定用容器1は、前述と同様であるため、ここでは説明を割愛する。
2. 2. Electrical measuring device 10
FIG. 9 is a schematic view schematically showing a first embodiment of the electrical measuring device 10 according to the present technology. In this embodiment, the container 1 for electrical measurement according to the sixth embodiment described above is used. The electrical measuring device 10 according to the present technology is roughly classified and includes at least the above-mentioned electrical measuring container 1, an applying section 4, and a measuring section 5. Further, if necessary, the analysis unit 6 may be further provided. Hereinafter, each part will be described in detail. Since the container 1 for electrical measurement is the same as described above, the description thereof is omitted here.

(1)印加部4
印加部4は、本技術に係る電気的測定用容器1の電気伝導部3に電圧を印加する。印加部4は、測定を開始すべき命令を受けた時点または電気的測定装置10の電源が投入された時点を開始時点として、電気的測定用容器1の電気伝導部3に電圧を印加する。より具体的には、印加部4は、設定される測定間隔ごとに、電気伝導部3に対して、所定の周波数の交流電圧を印加する。なお、印加部4が印加する電圧は、測定する電気特性に応じて直流電圧とすることも可能である。
(1) Applying unit 4
The application unit 4 applies a voltage to the electrical conduction unit 3 of the electrical measurement container 1 according to the present technology. The application unit 4 applies a voltage to the electrical conduction unit 3 of the electrical measurement container 1 with the time when a command to start the measurement is received or the time when the power of the electrical measurement device 10 is turned on as the start time. More specifically, the application unit 4 applies an AC voltage having a predetermined frequency to the electrical conduction unit 3 at each set measurement interval. The voltage applied by the application unit 4 can be a DC voltage according to the electrical characteristics to be measured.

(2)測定部5
測定部5では、本技術に係る電気的測定用容器1に保持された液体状の生体試料Sの電気的特性を測定する。具体的には、測定を開始すべき命令を受けた時点または電気的測定装置10の電源が投入された時点を開始時点として、複素誘電率(以下、単に「誘電率」とも称する)やその周波数分散などの電気特性を測定する。より具体的には、例えば、誘電率が測定される場合、測定部5は、電気的測定用容器1の電極部31間における電流またはインピーダンスを所定周期で測定し、当該測定値から誘電率を導出する。この誘電率の導出には、電流またはインピーダンスと誘電率との関係を示す既知の関数や関係式を用いることができる。
(2) Measuring unit 5
The measuring unit 5 measures the electrical characteristics of the liquid biological sample S held in the electrical measuring container 1 according to the present technology. Specifically, the complex permittivity (hereinafter, also simply referred to as “dielectric constant”) and its frequency are set at the time when a command to start measurement or the time when the power of the electrical measuring device 10 is turned on is set as the start time. Measure electrical characteristics such as dispersion. More specifically, for example, when the permittivity is measured, the measuring unit 5 measures the current or impedance between the electrode units 31 of the electrical measurement container 1 at a predetermined cycle, and calculates the permittivity from the measured value. Derived. A known function or relational expression showing the relationship between the current or impedance and the permittivity can be used to derive the permittivity.

(3)解析部6
解析部6では、測定部5から導出された生体試料Sの電気的特性データを受けて、生体試料Sの物性の判定などを行う。本技術に係る電気的測定装置10において、解析部6は必須ではなく、例えば、前記測定部5で測定された電気的特性データから、外部のコンピュータなどを用いて解析を行うことも可能である。
(3) Analysis unit 6
The analysis unit 6 receives the electrical characteristic data of the biological sample S derived from the measurement unit 5 and determines the physical properties of the biological sample S. In the electrical measuring device 10 according to the present technology, the analysis unit 6 is not indispensable. For example, it is possible to perform analysis from the electrical characteristic data measured by the measuring unit 5 using an external computer or the like. ..

具体的には、解析部6には、測定部5から導出された生体試料Sの電気的特性データが測定間隔ごとに与えられ、解析部6は、測定部5から与えられる電気的特性データを受けて、液体試料の物性判定等を開始する。解析部6は、液体試料の物性判定などの結果および/または誘電率データを通知する。この通知は、例えば、グラフ化してモニタに表示あるいは所定の媒体に印刷することにより行うことができる。 Specifically, the analysis unit 6 is given the electrical characteristic data of the biological sample S derived from the measurement unit 5 at each measurement interval, and the analysis unit 6 is given the electrical characteristic data given by the measurement unit 5. In response, the physical property determination of the liquid sample is started. The analysis unit 6 notifies the result of the physical property determination of the liquid sample and / or the dielectric constant data. This notification can be performed, for example, by graphing and displaying on a monitor or printing on a predetermined medium.

3.電気的測定方法
本技術に係る電気的測定用容器1は、液体状の生体試料Sの電気的特性の測定に好適に用いることができる。本技術に係る電気的測定方法で測定可能な電気的特性は特に限定されず、測定対象となる生体試料Sの種類や、解析すべき物性などに応じて、自由に測定することができる。例えば、誘電率やインピーダンスなどを測定することができる。
3. 3. Electrical Measurement Method The electrical measurement container 1 according to the present technology can be suitably used for measuring the electrical characteristics of the liquid biological sample S. The electrical characteristics that can be measured by the electrical measurement method according to the present technology are not particularly limited, and can be freely measured according to the type of the biological sample S to be measured, the physical properties to be analyzed, and the like. For example, the permittivity and impedance can be measured.

本技術に係る電気的測定方法を用いれば、例えば、測定対象を血液とした場合、誘電率やインピーダンスの測定値から、血液凝固状況や血沈状況を解析することができる。より具体的には、例えば、解析期間内に受け取った複数の誘電率および/またはインピーダンスの測定値からそれぞれの特徴を示すパラメータを抽出し、このパラメータと、血液凝固能の亢進や血沈プロセス進行の基準を定める基準値との比較に基づき、血液凝固状況や血沈状況を解析することができる。 By using the electrical measurement method according to the present technology, for example, when the measurement target is blood, the blood coagulation status and the blood sinking status can be analyzed from the measured values of the dielectric constant and the impedance. More specifically, for example, a parameter indicating each characteristic is extracted from a plurality of measured values of permittivity and / or impedance received during the analysis period, and this parameter is used as well as the enhancement of blood coagulation ability and the progress of the blood sinking process. The blood coagulation status and blood sinking status can be analyzed based on the comparison with the standard value that sets the standard.

なお、本技術は、以下のような構成も取ることができる。
(1)液体状の生体試料を収容するための樹脂からなる生体試料保持部と、
該生体試料保持部に固定された電気伝導部と、を少なくとも備え、
前記電気伝導部の一部が前記生体試料保持部に埋入された状態で、前記生体試料保持部と前記電気伝導部が一体成形された液体状の生体試料の電気的測定用容器。
(2)前記電気伝導部は、前記生体試料保持部にインサート成型されることにより一体化された(1)記載の電気的測定用容器。
(3)前記電気伝導部は、
測定時に前記生体試料と接触する電極部と、
外部回路と電気的に接続するための接続部と、
を少なくとも備える(1)または(2)に記載の電気的測定用容器。
(4)前記電極部が一対以上備えられた(3)記載の電気的測定用容器。
(5)前記電極部は、前記電気的測定用容器の内壁の一部を構成する(3)または(4)に記載の電気的測定用容器。
(6)前記内壁において、前記生体試料保持部と前記電極部との接続部が平滑である(5)記載の電気的測定用容器。
(7)前記電極部は、測定時に底部となる部分から所定距離上側に位置する(3)から(6)のいずれか一項に記載の電気的測定用容器。
(8)前記電気伝導部の少なくとも一部は、前記一体成型時に前記電気伝導部を前記生体試料保持部の所定箇所に配置させるための保持部として機能する(1)から(7)のいずれか一項に記載の電気的測定用容器。
(9)前記生体試料は、沈降性成分を含有する(1)から(8)のいずれか一項に記載の電気的測定用容器。
(10)前記生体試料は、血液成分を含有する(1)から(9)のいずれか一項に記載の電気的測定用容器。
(11)前記生体試料は、沈降性成分を含有し、
前記電極部は、測定時に底部となる部分からの前記沈降性成分の累積堆積分率が累積堆積分率が前記沈降性成分の体積分率以上となる位置より上側に位置する(9)記載の電気的測定用容器。
(12)前記電気伝導部の前記生体保持部に埋入された部分に、曲折部を備える(1)から(11)のいずれか一項に記載の電気的測定用容器。
(13)前記樹脂は、ポリプロピレン、ポリスチレン、アクリル、およびポリサルホンから選ばれる一種以上の樹脂である(1)から(12)のいずれか一項に記載の電気的測定用容器。
(14)前記電気伝導部は、チタンを含む電気伝導性素材からなる(1)から(13)のいずれか一項に記載の電気的測定用容器。
(15)前記生体試料の誘電率を測定するために用いられる(1)から(14)のいずれか一項に記載の電気的測定用容器。
(16)前記生体試料のインピーダンスを測定するために用いられる(1)から(15)のいずれか一項に記載の電気的測定用容器。
(17)血沈状況を測定するために用いられる(10)記載の電気的測定用容器。
(18)血液凝固状況を測定するために用いられる(10)または(17)に記載の電気的測定用容器。
(19)液体状の生体試料を収容するための樹脂からなる生体試料保持部と、
測定時において少なくとも一部が前記生体試料と接触する電気伝導部と、
該電気伝導部に電圧を印加する印加部と、
前記生体試料を電気的に測定する測定部と、
を少なくとも備え、
前記電気伝導部の一部が前記生体試料保持部に埋入された状態で、前記生体試料保持部と前記電気伝導部が一体成形された液体状の生体試料の電気的測定装置。
(20)液体状の生体試料を収容するための樹脂からなる生体試料保持部と、
該生体試料保持部に固定された電気伝導部と、を少なくとも備え、
前記電気伝導部の一部が前記生体試料保持部に埋入された状態で、前記生体試料保持部と前記電気伝導部が一体成形された液体状の生体試料の電気的測定用容器を用いて、前記生体試料を電気的に測定する液体状の生体試料の電気的測定方法。
The present technology can also have the following configurations.
(1) A biological sample holding portion made of resin for accommodating a liquid biological sample, and
It is provided with at least an electrical conduction portion fixed to the biological sample holding portion.
A container for electrical measurement of a liquid biological sample in which the biological sample holding portion and the electrical conducting portion are integrally molded with a part of the electrical conducting portion embedded in the biological sample holding portion.
(2) The container for electrical measurement according to (1), wherein the electrical conduction portion is integrated by being insert-molded into the biological sample holding portion.
(3) The electric conduction part is
The electrode part that comes into contact with the biological sample during measurement,
A connection for electrical connection to an external circuit,
The container for electrical measurement according to (1) or (2).
(4) The container for electrical measurement according to (3), which is provided with a pair or more of the electrode portions.
(5) The container for electrical measurement according to (3) or (4), wherein the electrode portion constitutes a part of an inner wall of the container for electrical measurement.
(6) The container for electrical measurement according to (5), wherein the connection portion between the biological sample holding portion and the electrode portion is smooth on the inner wall.
(7) The container for electrical measurement according to any one of (3) to (6), wherein the electrode portion is located above a predetermined distance from a portion that becomes a bottom portion at the time of measurement.
(8) Any of (1) to (7), at least a part of the electric conduction part functions as a holding part for arranging the electric conducting part at a predetermined position of the biological sample holding part at the time of the integral molding. The container for electrical measurement according to item 1.
(9) The container for electrical measurement according to any one of (1) to (8), wherein the biological sample contains a sedimentation component.
(10) The container for electrical measurement according to any one of (1) to (9), wherein the biological sample contains a blood component.
(11) The biological sample contains a sedimentation component and contains
The electrode portion is located above the position where the cumulative deposition fraction of the sedimentation component from the bottom portion at the time of measurement is equal to or higher than the volume fraction of the sedimentation component (9). Container for electrical measurement.
(12) The container for electrical measurement according to any one of (1) to (11), which is provided with a bent portion in a portion of the electrical conduction portion embedded in the living body holding portion.
(13) The container for electrical measurement according to any one of (1) to (12), wherein the resin is one or more resins selected from polypropylene, polystyrene, acrylic, and polysulfone.
(14) The container for electrical measurement according to any one of (1) to (13), wherein the electrically conductive portion is made of an electrically conductive material containing titanium.
(15) The container for electrical measurement according to any one of (1) to (14) used for measuring the dielectric constant of the biological sample.
(16) The container for electrical measurement according to any one of (1) to (15) used for measuring the impedance of the biological sample.
(17) The container for electrical measurement according to (10), which is used for measuring a blood sink state.
(18) The container for electrical measurement according to (10) or (17) used for measuring a blood coagulation status.
(19) A biological sample holding portion made of a resin for accommodating a liquid biological sample,
At least a part of the electrical conduction part that comes into contact with the biological sample during measurement,
An application unit that applies a voltage to the electrical conduction unit,
A measuring unit that electrically measures the biological sample,
At least
An electrical measuring device for a liquid biological sample in which the biological sample holding portion and the electrical conducting portion are integrally molded with a part of the electrical conducting portion embedded in the biological sample holding portion.
(20) A biological sample holding portion made of a resin for accommodating a liquid biological sample, and
It is provided with at least an electrical conduction portion fixed to the biological sample holding portion.
Using a liquid biological sample electrical measurement container in which the biological sample holding portion and the electrical conducting portion are integrally molded, with a part of the electrical conducting portion embedded in the biological sample holding portion. , A method for electrically measuring a liquid biological sample for electrically measuring the biological sample.

本技術に係る電気的測定用容器1は、生体試料保持部2と電気伝導部3との固定に接着剤を用いないため、接着剤による生体試料Sへの影響を排除することができる。その結果、生体試料Sの電気特性を高精度に測定することが可能である。 Since the electrical measurement container 1 according to the present technology does not use an adhesive for fixing the biological sample holding portion 2 and the electrical conductive portion 3, it is possible to eliminate the influence of the adhesive on the biological sample S. As a result, it is possible to measure the electrical characteristics of the biological sample S with high accuracy.

また、本技術に係る電気的測定用容器1の製造工程では、生体試料保持部2と電気伝導部3とが一体成形するため、生体試料保持部2の成形工程に加えて接着工程を別に設ける必要がない。その結果、電気的測定用容器1の製造が容易となり、安価かつ大量に電気的測定用容器1を生産することが可能となる。 Further, in the manufacturing process of the electrical measurement container 1 according to the present technology, since the biological sample holding portion 2 and the electric conductive portion 3 are integrally molded, an bonding step is separately provided in addition to the molding step of the biological sample holding portion 2. There is no need. As a result, the electric measurement container 1 can be easily manufactured, and the electric measurement container 1 can be produced in a large amount at low cost.

更に、本技術に係る電気的測定用容器1では、生体試料保持部2に予め電気伝導体3が固定されている。そのため、この電気伝導体3を電極として用いることで、電極の液体試料中への挿入量の違いによる測定誤差をなくすことができる。その結果、生体試料Sの電気特性を高精度に測定することが可能である。 Further, in the container 1 for electrical measurement according to the present technology, the electric conductor 3 is fixed in advance to the biological sample holding portion 2. Therefore, by using this electric conductor 3 as an electrode, it is possible to eliminate a measurement error due to a difference in the amount of the electrode inserted into the liquid sample. As a result, it is possible to measure the electrical characteristics of the biological sample S with high accuracy.

加えて、生体試料保持部2に予め電気伝導体3が固定されていることで、装置の構成を簡易化することができ、装置の小型化や製造工程の簡易化、装置の低価格化などの実現にも貢献することができる。 In addition, since the electric conductor 3 is fixed to the biological sample holding unit 2 in advance, the configuration of the device can be simplified, the device can be downsized, the manufacturing process can be simplified, the price of the device can be reduced, and the like. Can also contribute to the realization of.

1:電気的測定用容器
2:生体試料保持部
3:電気伝導部
31:電極部
32:接続部
33:保持部
34:曲折部
S:生体試料
10:電気的測定装置
4:印加部
5:測定部
6:解析部
M:マグネット
1: Electrical measurement container 2: Biological sample holding part 3: Electrical conducting part 31: Electrode part 32: Connecting part 33: Holding part 34: Bent part S: Biological sample 10: Electrical measuring device 4: Applying part 5: Measurement unit 6: Analysis unit M: Magnet

Claims (20)

沈降性成分を含有する血液試料を収容するための側壁を有する生体試料保持部と、
該生体試料保持部に固定された電気伝導部と、
を少なくとも備え、
前記電気伝導部の一部は、前記生体試料保持部の壁に埋入し、
前記電気伝導部は、測定時に前記血液試料と接触する電極部と、外部回路と電気的に接続するための接続部と、を少なくとも備え
前記電気伝導部の一部であって、前記生体試料保持部に埋入された部分に、曲折部を備える、血液試料の電気的測定用容器。
A biological sample holder having a side wall for accommodating a blood sample containing a sedimentation component,
An electrically conductive portion fixed to the biological sample holding portion and
At least
Some of the electrical conduction part, and embedded in a side wall of the biological sample holding section,
The electrical conduction portion includes at least an electrode portion that comes into contact with the blood sample at the time of measurement and a connection portion for electrically connecting to an external circuit .
A part of the electrically conductive portion, the embedded portions in the biological sample holding section, Ru provided with a bent portion, electrical measuring container of a blood sample.
前記側壁に埋入された前記電気伝導部の一部は、平行に配置された、請求項に記載の電気的測定用容器。 The container for electrical measurement according to claim 1 , wherein a part of the electrical conduction portion embedded in the side wall is arranged in parallel. 前記生体試料保持部の下端から前記電気伝導部までの第一の距離と、前記生体試料保持部の上端から前記電気伝導部までの第二の距離と、が異なる、請求項に記載の電気的測定用容器。 A first distance from the bottom of the biological sample holding portion to the electrically conductive portion, a second distance from the top of the biological sample holding portion to the electrically conductive portion is different, electrical of claim 1 Target measurement container. 前記第一の距離は、前記第二の距離よりも短い、請求項に記載の電気的測定用容器。 The container for electrical measurement according to claim 3 , wherein the first distance is shorter than the second distance. 前記生体試料保持部は、樹脂からなる請求項1からのいずれか一項に記載の電気的測定用容器。 The container for electrical measurement according to any one of claims 1 to 4 , wherein the biological sample holding portion is made of a resin. 前記樹脂は、ポリプロピレン、ポリスチレン、アクリル、およびポリサルホンから選ばれる一種以上の樹脂である請求項に記載の電気的測定用容器。 The container for electrical measurement according to claim 5 , wherein the resin is one or more resins selected from polypropylene, polystyrene, acrylic, and polysulfone. 前記電極部が一対以上備えられた請求項1からのいずれか一項に記載の電気的測定用容器。 The container for electrical measurement according to any one of claims 1 to 6 , which is provided with a pair or more of the electrode portions. 前記一対の電極部は、略平行に配置された請求項に記載の電気的測定用容器。 The container for electrical measurement according to claim 7 , wherein the pair of electrode portions are arranged substantially in parallel. 前記電極部は、前記側壁に沿うように配置された請求項1からのいずれか一項に記載の電気的測定用容器。 The container for electrical measurement according to any one of claims 1 to 8 , wherein the electrode portion is arranged along the side wall. 前記電極部は、測定時に底部となる部分からの前記沈降性成分の累積堆積分率が体積分率以上となる位置より上側に位置する請求項1からのいずれか一項に記載の電気的測定用容器。 The electrical aspect according to any one of claims 1 to 9 , wherein the electrode portion is located above a position where the cumulative deposition fraction of the sedimentary component from the bottom portion at the time of measurement is equal to or higher than the volume fraction. Measuring container. 測定に最低限必要な時間を経た時における血清層の下限よりも、電極部の上限が下方に位置する請求項1から10のいずれか一項に記載の電気的測定用容器。 The container for electrical measurement according to any one of claims 1 to 10 , wherein the upper limit of the electrode portion is located below the lower limit of the serum layer when the minimum time required for measurement has passed. 蓋部を有する請求項1から11のいずれか一項に記載の電気的測定用容器。 The container for electrical measurement according to any one of claims 1 to 11 , which has a lid. 前記生体試料保持部は、円筒体、断面が多角の多角筒体、円錐体、断面が多角の多角錐体、或いはこれらを1種または2種以上組み合わせた形態である請求項1から12のいずれか一項に記載の電気的測定用容器。 The biological sample holding portion is any of claims 1 to 12 , which is a cylindrical body, a polygonal cylinder having a polygonal cross section, a cone, a polygonal pyramid having a polygonal cross section, or a form obtained by combining one or more of these. The container for electrical measurement according to item 1. 前記電気伝導部は、チタンを含む電気伝導性素材からなる請求項1から13のいずれか一項に記載の電気的測定用容器。 The container for electrical measurement according to any one of claims 1 to 13 , wherein the electrically conductive portion is made of an electrically conductive material containing titanium. 前記血液試料の誘電率を測定するために用いられる請求項1から14のいずれか一項に記載の電気的測定用容器。 The container for electrical measurement according to any one of claims 1 to 14 , which is used for measuring the dielectric constant of the blood sample. 前記血液試料のインピーダンスを測定するために用いられる請求項1から15のいずれか一項に記載の電気的測定用容器。 The container for electrical measurement according to any one of claims 1 to 15 , which is used for measuring the impedance of the blood sample. 血沈状況を測定するために用いられる請求項1から16のいずれか一項に記載の電気的測定用容器。 The container for electrical measurement according to any one of claims 1 to 16 , which is used for measuring a blood sink state. 血液凝固状況を測定するために用いられる請求項1から17のいずれか一項に記載の電気的測定用容器。 The container for electrical measurement according to any one of claims 1 to 17 , which is used for measuring a blood coagulation status. 沈降性成分を含有する血液試料を収容するための側壁を有する生体試料保持部と、
測定時において少なくとも一部が前記血液試料と接触する電気伝導部と、
該電気伝導部に電圧を印加する印加部と、
前記血液試料の電気的特性を測定する測定部と、
を少なくとも備え、
前記電気伝導部の一部は、前記生体試料保持部の壁に埋入し、
前記電気伝導部は、測定時に前記血液試料と接触する電極部と、外部回路と電気的に接続するための接続部と、を少なくとも備え
前記電気伝導部の一部であって、前記生体試料保持部に埋入された部分に、曲折部を備える、血液試料の電気的測定装置。
A biological sample holder having a side wall for accommodating a blood sample containing a sedimentation component,
An electrical conduction part that at least partly contacts the blood sample at the time of measurement,
An application unit that applies a voltage to the electrical conduction unit,
A measuring unit that measures the electrical characteristics of the blood sample,
At least
Some of the electrical conduction part, and embedded in a side wall of the biological sample holding section,
The electrical conduction portion includes at least an electrode portion that comes into contact with the blood sample at the time of measurement and a connection portion for electrically connecting to an external circuit .
A part of the electrically conductive portion, the embedded portions in the biological sample holding section, Ru provided with a bent portion, the electrical measuring device of the blood sample.
沈降性成分を含有する血液試料を収容するための側壁を有する生体試料保持部と、
該生体試料保持部に固定された電気伝導部と、
を少なくとも備え、
前記電気伝導部の一部は、前記生体試料保持部の壁に埋入し、
前記電気伝導部は、測定時に前記血液試料と接触する電極部と、外部回路と電気的に接続するための接続部と、を少なくとも備え
前記電気伝導部の一部であって、前記生体試料保持部に埋入された部分に、曲折部を備える、血液試料の電気的測定用容器を用いて、前記血液試料の電気的特性を測定する液体状の血液試料の電気的測定方法。
A biological sample holder having a side wall for accommodating a blood sample containing a sedimentation component,
An electrically conductive portion fixed to the biological sample holding portion and
At least
Some of the electrical conduction part, and embedded in a side wall of the biological sample holding section,
The electrical conduction portion includes at least an electrode portion that comes into contact with the blood sample at the time of measurement and a connection portion for electrically connecting to an external circuit .
A part of the electrically conductive portion, the embedded portions in the biological sample holding section, Ru provided with a bent portion, using an electrical measuring container of a blood sample, the electrical characteristics of the blood sample An electrical method for measuring a liquid blood sample to be measured.
JP2018173691A 2018-09-18 2018-09-18 Electrical measuring container, electrical measuring device and electrical measuring method Active JP6791220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018173691A JP6791220B2 (en) 2018-09-18 2018-09-18 Electrical measuring container, electrical measuring device and electrical measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018173691A JP6791220B2 (en) 2018-09-18 2018-09-18 Electrical measuring container, electrical measuring device and electrical measuring method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017000489A Division JP6414234B2 (en) 2017-01-05 2017-01-05 Electrical measurement container, electrical measurement device, and electrical measurement method

Publications (2)

Publication Number Publication Date
JP2019015735A JP2019015735A (en) 2019-01-31
JP6791220B2 true JP6791220B2 (en) 2020-11-25

Family

ID=65357504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018173691A Active JP6791220B2 (en) 2018-09-18 2018-09-18 Electrical measuring container, electrical measuring device and electrical measuring method

Country Status (1)

Country Link
JP (1) JP6791220B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI793043A (en) * 1978-10-02 1980-04-03 Wellcome Found OIL ANCHORING FOER AOTERGIVANDE AV TROMBOSYTANHOPNING
JPS5822946A (en) * 1981-08-03 1983-02-10 Olympus Optical Co Ltd Method and device for detecting boundary surface
DE3202067C2 (en) * 1982-01-23 1984-06-20 Holger Dr. 5100 Aachen Kiesewetter Device for determining the hematocrit value
SE465140B (en) * 1989-12-13 1991-07-29 Tesi Ab PROCEDURE AND DEVICE TO DETERMINE BLOOD RECONCILIATION REACTION
FR2664981B1 (en) * 1990-07-20 1994-04-29 Serbio DEVICE FOR DETECTING THE CHANGE IN VISCOSITY OF A LIQUID ELECTROLYTE BY THE EFFECT OF DEPOLARIZATION.
JP4027596B2 (en) * 1998-03-19 2007-12-26 オージェニクス バイオセンサーズ リミテッド Device for determining blood clotting by capacitance or resistance
GB0030929D0 (en) * 2000-12-19 2001-01-31 Inverness Medical Ltd Analyte measurement
JP2005077148A (en) * 2003-08-28 2005-03-24 Japan Clinical Laboratories Inc Blood examination method and device
US7901629B2 (en) * 2003-12-16 2011-03-08 Dynabyte Informationssysteme Gmbh Cartridge device for blood analysis

Also Published As

Publication number Publication date
JP2019015735A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
JP2014115256A (en) Container for electrical measurement, apparatus for electrical measurement, and method for electrical measurement
JP5549484B2 (en) Sample cartridge and apparatus for measuring electrical properties of liquid samples
JP6421749B2 (en) Blood state analysis apparatus, blood state analysis system, blood state analysis method, and blood state analysis program for causing a computer to realize the method
US11125709B2 (en) Cartridge, kit comprising cartridge, electric measuring apparatus, and electric measuring method
US20170156648A1 (en) Method and apparatus for measuring hematocrit
JP2014115256A5 (en)
WO2016113984A1 (en) Cartridge for electrical measurement, electrical measurement device for biological sample, and electrical measurement method for biological sample
JP6070892B2 (en) Electrical measurement container, electrical measurement device, and electrical measurement method
JP6791220B2 (en) Electrical measuring container, electrical measuring device and electrical measuring method
JP6414234B2 (en) Electrical measurement container, electrical measurement device, and electrical measurement method
CN106574909B (en) Contact structure body and electrical measurement device for biological sample using the same
JP6816792B2 (en) Cartridge for electrical measurement, electrical measuring device and electrical measuring method
WO2016013300A1 (en) Cartridge for electrical measurement, electrical measurement device for biosample, electrical measurement system for biosample and electrical measurement method for biosample
JP2015169432A (en) Electrical measurement cartridge, electrical measurement apparatus and electrical measuring method
JP6780733B2 (en) A contact structure and an electrical measuring device for a biological sample using the contact structure.
JP6876911B2 (en) Cartridge for electrical measurement, electrical measuring device and electrical measuring method
JP2017058384A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R151 Written notification of patent or utility model registration

Ref document number: 6791220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151