JP6790693B2 - In-vehicle battery charging system - Google Patents

In-vehicle battery charging system Download PDF

Info

Publication number
JP6790693B2
JP6790693B2 JP2016196969A JP2016196969A JP6790693B2 JP 6790693 B2 JP6790693 B2 JP 6790693B2 JP 2016196969 A JP2016196969 A JP 2016196969A JP 2016196969 A JP2016196969 A JP 2016196969A JP 6790693 B2 JP6790693 B2 JP 6790693B2
Authority
JP
Japan
Prior art keywords
charging
power
battery
temperature
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016196969A
Other languages
Japanese (ja)
Other versions
JP2018061337A (en
Inventor
和樹 久保
和樹 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016196969A priority Critical patent/JP6790693B2/en
Publication of JP2018061337A publication Critical patent/JP2018061337A/en
Application granted granted Critical
Publication of JP6790693B2 publication Critical patent/JP6790693B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、車載バッテリの充電システムに関し、特に、電池を昇温させるヒータを備えた充電システムに関する。 The present invention relates to a charging system for an in-vehicle battery, and more particularly to a charging system including a heater for raising the temperature of the battery.

電気自動車やハイブリッド車両等、回転電機を駆動源とする車両には、直流電源である電池モジュールが搭載されている。電池モジュールは、複数の電池セル(単電池)が積層され接続されている。 Vehicles that use a rotating electric machine as a drive source, such as electric vehicles and hybrid vehicles, are equipped with a battery module that is a DC power source. A plurality of battery cells (cells) are stacked and connected to the battery module.

電気自動車やハイブリッド車両等のうち、プラグイン充電や非接触充電等の外部充電が可能な車両は、外部充電プロセスが2段階に分かれて実行される場合がある。例えば最初に相対的に大電力で充電を行う第1充電モード(CP1)が実行される。次に、相対的に小電力で充電を行う第2充電モード(CP2)が実行される。第2充電モードは押し込み充電とも呼ばれ、充電効率が相対的に低下する高SOC時に充電電力を絞ることで、充電効率の低下に伴う温度上昇や過電圧を抑制しつつ、充電を行っている。 Among electric vehicles, hybrid vehicles, and the like, vehicles capable of external charging such as plug-in charging and non-contact charging may carry out the external charging process in two stages. For example, first, a first charging mode (CP1) in which charging is performed with a relatively large amount of power is executed. Next, a second charging mode (CP2) for charging with relatively low power is executed. The second charging mode is also called push-in charging, and charging is performed while suppressing the temperature rise and overvoltage associated with the decrease in charging efficiency by reducing the charging power at the time of high SOC in which the charging efficiency is relatively decreased.

また、電池モジュールの充放電特性はその温度(電池温度)に影響することが知られている。例えば低温であるほど電池モジュールの充放電効率は低下する。十分な充電効率及び放電効率を得るために、外部充電時にはヒータを用いて電池モジュールが昇温(加温)される。 Further, it is known that the charge / discharge characteristics of a battery module affect its temperature (battery temperature). For example, the lower the temperature, the lower the charge / discharge efficiency of the battery module. In order to obtain sufficient charging efficiency and discharging efficiency, the battery module is heated (heated) by using a heater during external charging.

例えば特許文献1では、所望の充電効率を得るために外部充電時に昇温が実行される。すなわち、外部充電の際に、外部電力が充電電力(充電用電力)と昇温電力(昇温用電力)とに分配される。この分配に際して、第1充電モードでは、外部電力(最大電力)に対する昇温電力の比率を変化させた際の充電時間(充電効率)の変化を予め求めておき、充電時間が最短となる、言い換えると充電効率が最高となる昇温電力の比率を求めている。第2充電モードでは、充電電力を固定値とし、残りの電力(最大電力−充電電力)が昇温電力に割り当てられる。 For example, in Patent Document 1, the temperature rise is executed at the time of external charging in order to obtain a desired charging efficiency. That is, at the time of external charging, the external power is distributed to the charging power (charging power) and the temperature raising power (heating power). In this distribution, in the first charging mode, the change in the charging time (charging efficiency) when the ratio of the rising power to the external power (maximum power) is changed is obtained in advance, and the charging time is the shortest, in other words. And the ratio of the heating power that maximizes the charging efficiency is sought. In the second charging mode, the charging power is set to a fixed value, and the remaining power (maximum power-charging power) is assigned to the heating power.

また、特許文献2では、所望の放電効率を得るために外部充電時に昇温が実行される。すなわち、外部充電の完了時における電池モジュールの放電効率を、EV走行が可能な程度にまで引き上げるために、外部充電中に電池モジュールを昇温させる。具体的には、昇温電力を固定値として、電池温度の実測値と目標温度から昇温時間を求める。さらに充電完了時刻タイマーの設定時刻から昇温時間分遡って昇温開始時刻を設定している。 Further, in Patent Document 2, the temperature is raised at the time of external charging in order to obtain a desired discharge efficiency. That is, the temperature of the battery module is raised during external charging in order to raise the discharge efficiency of the battery module at the completion of external charging to a level that enables EV traveling. Specifically, the temperature rise time is obtained from the measured value of the battery temperature and the target temperature with the temperature rise power as a fixed value. Further, the temperature rise start time is set retroactively by the temperature rise time from the set time of the charge completion time timer.

特開2015−159633号公報JP-A-2015-159633 特開2016−51590号公報Japanese Unexamined Patent Publication No. 2016-51590

ところで、外部充電プロセスにおいて第1充電モード及び第2充電モードを実施する場合、第1充電モードでは充電効率に基づいて昇温電力が定められる。充電効率に基づいた昇温が行われることから、第1充電モードの終了時には、所望の放電特性が得られるまで電池モジュールが昇温されていない場合がある。そこで第2充電モードにて電池モジュールを放電特性に基づく目標温度まで昇温させることが考えられるが、第2充電モードが短期間である場合等に、昇温が間に合わずに第2充電モードの終了時点で電池モジュールの温度が放電特性ベースの目標温度に到達しないおそれがある。そこで本発明は、外部充電の完了までに放電特性ベースの目標温度まで電池モジュールを昇温可能な、車載バッテリの充電システムを提供することを目的とする。 By the way, when the first charging mode and the second charging mode are carried out in the external charging process, the heating power is determined based on the charging efficiency in the first charging mode. Since the temperature is raised based on the charging efficiency, the battery module may not be heated until the desired discharge characteristics are obtained at the end of the first charging mode. Therefore, it is conceivable to raise the temperature of the battery module to the target temperature based on the discharge characteristics in the second charging mode, but when the second charging mode is for a short period of time, the temperature rise is not in time and the temperature of the second charging mode At the end, the temperature of the battery module may not reach the target temperature based on the discharge characteristics. Therefore, an object of the present invention is to provide an in-vehicle battery charging system capable of raising the temperature of a battery module to a target temperature based on discharge characteristics by the time the external charging is completed.

本発明は、車両に搭載されたバッテリを車両外の外部電源から充電させる外部充電が可能な、車載バッテリ充電システムに関する。当該充電システムは、前記バッテリを昇温させるヒータと、前記バッテリの充電管理及び前記ヒータの制御を行う制御部と、を備える。前記制御部は、前記外部充電の際に、相対的に大電力で前記バッテリを充電する第1充電モードと、前記第1充電モード後に相対的に小電力で前記バッテリを充電する第2充電モードとを実行する。さらに前記制御部は、第1電力配分部、第2電力配分部、及び調整部を備える。第1電力配分部は、前記第1充電モードにおいて、前記外部電源から供給される外部電力を、前記バッテリの温度に応じた充電効率から求められ前記ヒータに供給される第1昇温電力と、前記バッテリへの第1充電電力とに配分する。第2電力配分部は、前記第2充電モードにおいて、前記外部電力から予め定められた第2充電電力を差し引いた最大昇温電力と、前記第2充電モードの実行期間から、前記第2充電モードにおける最大昇温量を求める。調整部は、前記第1昇温電力に基づく前記第1充電モード完了時点のバッテリ推定温度が、前記バッテリの温度に応じた放電効率から求められる放電目標温度から前記最大昇温量を差し引いた最低基準温度未満である場合に、前記最低基準温度と前記バッテリ推定温度との温度差に対応する追加昇温電力を前記第1昇温電力に加算するとともに、加算後の前記第1昇温電力と前記第1充電電力の和が前記外部電力以下となるように前記第1充電電力を低減させる。 The present invention relates to an in-vehicle battery charging system capable of external charging in which a battery mounted on a vehicle is charged from an external power source outside the vehicle. The charging system includes a heater that raises the temperature of the battery, and a control unit that manages the charging of the battery and controls the heater. The control unit has a first charging mode in which the battery is charged with a relatively large power during the external charging, and a second charging mode in which the battery is charged with a relatively small power after the first charging mode. And execute. Further, the control unit includes a first power distribution unit, a second power distribution unit, and an adjustment unit. In the first charging mode, the first power distribution unit obtains the external power supplied from the external power source from the charging efficiency according to the temperature of the battery, and supplies the first heating power to the heater. It is allocated to the first charging power to the battery. In the second charging mode, the second power distribution unit determines the second charging mode from the maximum heating power obtained by subtracting the predetermined second charging power from the external power and the execution period of the second charging mode. The maximum amount of temperature rise in. The adjusting unit has a minimum battery estimated temperature at the time of completion of the first charging mode based on the first heating power, which is obtained by subtracting the maximum heating amount from the discharge target temperature obtained from the discharge efficiency according to the battery temperature. When the temperature is lower than the reference temperature, the additional heating power corresponding to the temperature difference between the minimum reference temperature and the estimated battery temperature is added to the first heating power, and the addition is added to the first heating power after the addition. The first charging power is reduced so that the sum of the first charging power is equal to or less than the external power.

本発明によれば、外部充電の完了までに放電特性ベースの目標温度まで電池モジュールを昇温可能となる。 According to the present invention, the battery module can be heated to a target temperature based on the discharge characteristics by the time the external charging is completed.

本実施形態に係る車載バッテリの充電システム及びこれを搭載した車両の構成を例示する図である。It is a figure which illustrates the structure of the charge system of the vehicle-mounted battery which concerns on this embodiment, and the vehicle equipped with this. 制御部の機能ブロックを例示する図である。It is a figure which illustrates the functional block of a control part. 昇温付き外部充電フローを例示する図である。It is a figure which illustrates the external charge flow with a temperature rise. 第1充電モード(CP1)の充電効率マップを例示する図である。It is a figure which illustrates the charge efficiency map of the 1st charge mode (CP1). 外部充電の電力配分を例示する図である。It is a figure which illustrates the power distribution of the external charge. 外部充電の電力配分の別例(放電目標温度未達例)を示す図である。It is a figure which shows another example (the discharge target temperature not reached example) of the power distribution of external charge. 充電効率マップのシフト操作を説明する図である。It is a figure explaining the shift operation of the charge efficiency map. 外部充電の電力配分の別例(CP1調整例)を示す図である。It is a figure which shows another example (CP1 adjustment example) of power distribution of external charge. 昇温付き外部充電フローの別例を示す図である。It is a figure which shows another example of the external charge flow with a temperature rise. 昇温付き外部充電フローの別例を実行する際の、外部充電の電力配分(放電目標温度未達例)を例示する図である。It is a figure which illustrates the power distribution of the external charge (the discharge target temperature not reached example) when another example of the external charge flow with a temperature rise is executed.

図1に、本実施形態に係る車載バッテリ充電システム及び当該システムが搭載された車両の構成を例示する。なお、図示を簡略化するために、図1では、本実施形態に係る充電システムとの関連性の低い構成については適宜図示を省略している。また、図1の矢印線は信号線を表している。 FIG. 1 illustrates the configuration of an in-vehicle battery charging system according to the present embodiment and a vehicle equipped with the system. In addition, in order to simplify the illustration, in FIG. 1, the configuration which is not related to the charging system according to the present embodiment is omitted as appropriate. The arrow line in FIG. 1 represents a signal line.

メインバッテリ10は、ニッケル水素やリチウムイオン電池等の二次電池から構成される。例えばメインバッテリ10は、1〜5V程度の電池セル(単電池)を複数積層させたスタック(積層体)から構成される。 The main battery 10 is composed of a secondary battery such as a nickel hydrogen or lithium ion battery. For example, the main battery 10 is composed of a stack (laminated body) in which a plurality of battery cells (cells) of about 1 to 5 V are laminated.

メインバッテリ10から出力された直流電力は昇降圧DC/DCコンバータ12にて昇圧される。昇圧された直流電力はインバータ14にて直交変換される。変換後の交流電力は回転電機MG1,MG2の少なくとも一方に供給される。回転電機MG1,MG2から動力分配機構16を介して車輪18に動力が伝達される動力伝達経路については既知であるので、ここでは説明を省略する。 The DC power output from the main battery 10 is boosted by the buck-boost DC / DC converter 12. The boosted DC power is orthogonally converted by the inverter 14. The converted AC power is supplied to at least one of the rotary electric machines MG1 and MG2. Since the power transmission path in which power is transmitted from the rotary electric machines MG1 and MG2 to the wheels 18 via the power distribution mechanism 16 is known, the description thereof will be omitted here.

また、メインバッテリ10と昇降圧DC/DCコンバータ12とを繋ぐ電路から分岐して、降圧DC/DCコンバータ20に接続される分岐電路が設けられる。メインバッテリ10の高圧電力は降圧DC/DCコンバータ20により降圧されてサブバッテリ22、制御部24、バッテリヒータ26やその他の補機類に供給される。 Further, a branch electric circuit is provided which is branched from the electric circuit connecting the main battery 10 and the buck-boost DC / DC converter 12 and is connected to the step-down DC / DC converter 20. The high-voltage power of the main battery 10 is stepped down by the step-down DC / DC converter 20 and supplied to the sub-battery 22, the control unit 24, the battery heater 26, and other accessories.

また、図1に例示するプラグインハイブリッド車両は、車両外部のAC電源30(外部電源)からメインバッテリ10への充電(外部充電またはプラグイン充電)が可能となっている。外部充電は、本実施形態に係る充電システムによって制御される。なお、AC電源30は例えば家庭用の単相100V交流電源や単相200V交流電源である。 Further, in the plug-in hybrid vehicle illustrated in FIG. 1, the main battery 10 can be charged (external charging or plug-in charging) from the AC power source 30 (external power source) outside the vehicle. External charging is controlled by the charging system according to this embodiment. The AC power supply 30 is, for example, a household single-phase 100V AC power supply or a single-phase 200V AC power supply.

外部充電に当たり、AC電源30のコネクタ32(プラグ)が車両に設けられたコネクタ34(インレット)に接続される。外部充電が開始される、すなわち制御部24によって充電リレーCHRがオフ状態からオン状態に切り替わると、AC電源30から供給された交流電力が充電器38によって交直変換及び昇圧され、変換及び昇圧後の直流電力がメインバッテリ10に供給される。なお、充電器38によって直交変換及び昇圧後の直流電力のうち、AC電源30及び充電器38によって得られ得る最大の直流電力を、外部電力Psとして以下では取り扱ってもよい。外部電力Psは、例えば充電器38から制御部24に送られる出力電圧値及び出力電流値から求めることができる。 For external charging, the connector 32 (plug) of the AC power supply 30 is connected to the connector 34 (inlet) provided in the vehicle. When external charging is started, that is, when the charging relay CHR is switched from the off state to the on state by the control unit 24, the AC power supplied from the AC power supply 30 is AC / DC converted and boosted by the charger 38, and after conversion and boosting. DC power is supplied to the main battery 10. Of the DC power after orthogonal conversion and boosting by the charger 38, the maximum DC power that can be obtained by the AC power supply 30 and the charger 38 may be treated as external power Ps below. The external power Ps can be obtained from, for example, the output voltage value and the output current value sent from the charger 38 to the control unit 24.

本実施形態に係る外部充電プロセスは、第1充電モード(CP1)及びその後に実行される第2充電モード(CP2)の2段階に分かれて実行される。第1充電モードでは、充電時間の短縮を狙って、相対的に大電力で充電が行われる。次に、第2充電モードでは、充電効率が相対的に低下する高SOC時に、充電効率の低下に伴う温度上昇や過電圧を抑制するため、相対的に小電力で充電が行われる。第2充電モードは押し込み充電とも呼ばれる。 The external charging process according to the present embodiment is executed in two stages of a first charging mode (CP1) and a second charging mode (CP2) executed thereafter. In the first charging mode, charging is performed with a relatively large amount of power with the aim of shortening the charging time. Next, in the second charging mode, when the charging efficiency is relatively low at high SOC, charging is performed with relatively low power in order to suppress the temperature rise and overvoltage accompanying the decrease in the charging efficiency. The second charging mode is also called push charging.

また後述するように、外部充電中にメインバッテリ10の昇温(加温)が必要な場合には、バッテリヒータ26が用いられる。すなわち、制御部24によってシステムメインリレーSMR及びヒータリレー28がオフ状態からオン状態に切り替えられると、AC電源30から供給される外部電力の一部が降圧DC/DCコンバータ20によって降圧されてバッテリヒータ26に供給される。 Further, as will be described later, when the main battery 10 needs to be heated (heated) during external charging, the battery heater 26 is used. That is, when the system main relay SMR and the heater relay 28 are switched from the off state to the on state by the control unit 24, a part of the external power supplied from the AC power supply 30 is stepped down by the step-down DC / DC converter 20 and the battery heater. It is supplied to 26.

例えば、外部充電後に車両を運転する際に、メインバッテリ10の電力、つまり回転電機MG1、MG2の動力のみにて(内燃機関46の動力を用いずに)車両を駆動させるいわゆるEV走行モードが可能となるように、メインバッテリ10の放電効率に基づいて、放電目標温度Tdが設定される。放電効率はバッテリ温度Tbに応じて変化する。放電目標温度Tdは、例えば放電電力制限Woutが最も緩くなるメインバッテリ10の温度帯に含まれていればよく、例えば25℃に設定される。外部充電の完了時点においてメインバッテリ10の温度Tb(バッテリ温度)が放電目標温度Tdに到達するように、適宜バッテリヒータ26が用いられる。 For example, when driving a vehicle after external charging, a so-called EV driving mode in which the vehicle is driven only by the power of the main battery 10, that is, the power of the rotary electric machines MG1 and MG2 (without using the power of the internal combustion engine 46) is possible. The discharge target temperature Td is set based on the discharge efficiency of the main battery 10. The discharge efficiency changes according to the battery temperature Tb. The discharge target temperature Td may be included in, for example, the temperature zone of the main battery 10 where the discharge power limit Wout is the loosest, and is set to, for example, 25 ° C. The battery heater 26 is appropriately used so that the temperature Tb (battery temperature) of the main battery 10 reaches the discharge target temperature Td when the external charging is completed.

また、メインバッテリ10には放電目標温度Tdの他にも充電目標温度Tcが定められる。充電目標温度Tcは、インバッテリ10の充電効率に基づいて求められる。充電効率は、放電効率と同様にバッテリ温度Tbに応じて変化する。充電目標温度Tcは、例えば充電電力制限Winが最も緩くなるメインバッテリ10の温度帯に含まれていればよい。例えば充電目標温度Tcは5℃に設定される。このように一般的に、充電目標温度Tcは放電目標温度Tdよりも低い(Tc < Td)値に設定される。外部充電実施中に、メインバッテリ10が充電目標温度Tc以上となるように、適宜バッテリヒータ26が用いられる。 Further, in addition to the discharge target temperature Td, the charge target temperature Tc is set for the main battery 10. The charging target temperature Tc is determined based on the charging efficiency of the in-battery 10. The charging efficiency changes according to the battery temperature Tb as well as the discharging efficiency. The charging target temperature Tc may be included in, for example, the temperature zone of the main battery 10 where the charging power limit Win is the loosest. For example, the charging target temperature Tc is set to 5 ° C. As described above, the charging target temperature Tc is generally set to a value lower than the discharging target temperature Td (Tc <Td). During the external charging, the battery heater 26 is appropriately used so that the main battery 10 has a charging target temperature Tc or higher.

本実施形態に係る充電システムは、制御部24及びバッテリヒータ26を備える。制御部24は、メインバッテリ10の充放電管理及びバッテリヒータ26の制御を行う。制御部24は、例えばコンピュータから構成され、演算回路であるCPU42及び記憶部44を備える。記憶部44はSRAM等の揮発性メモリ及びROMやハードディスク等の不揮発性メモリを含んで構成される。記憶部44には後述する昇温付き外部充電フローを実行するためのプログラムや、目標SOC等、昇温付き外部充電フローに関する各種パラメータが記憶される。 The charging system according to the present embodiment includes a control unit 24 and a battery heater 26. The control unit 24 manages the charge / discharge of the main battery 10 and controls the battery heater 26. The control unit 24 is composed of, for example, a computer, and includes a CPU 42 and a storage unit 44, which are arithmetic circuits. The storage unit 44 includes a volatile memory such as SRAM and a non-volatile memory such as ROM and a hard disk. The storage unit 44 stores various parameters related to the external charge flow with temperature rise, such as a program for executing the external charge flow with temperature rise, which will be described later, and a target SOC.

記憶部44に記憶された昇温付き外部充電プログラムを実行することで、制御部24には、図2に示す機能部が生成される。この機能部は例えばCPU42や記憶部44等のリソースがそれぞれ割り当てられて生成されるものであり、仮想的にそれぞれ独立した機能ブロックとして図示される。この機能ブロックとして、制御部24は、SOC算出部50、CP1電力配分算出部52(第1電力配分部)、CP1充電効率マップデータベース54、CP2電力配分算出部56(第2電力配分部)、CP2充電条件データベース58、電力配分調整部60(調整部)、及び、充電電力制御部62を備える。 By executing the external charging program with temperature rise stored in the storage unit 44, the functional unit shown in FIG. 2 is generated in the control unit 24. This functional unit is generated by allocating resources such as the CPU 42 and the storage unit 44, respectively, and is illustrated as virtually independent functional blocks. As this functional block, the control unit 24 includes an SOC calculation unit 50, a CP1 power distribution calculation unit 52 (first power distribution unit), a CP1 charge efficiency map database 54, and a CP2 power distribution calculation unit 56 (second power distribution unit). It includes a CP2 charging condition database 58, a power distribution adjusting unit 60 (adjusting unit), and a charging power control unit 62.

SOC算出部50は、メインバッテリ10に供給される電流を電流センサ37を介してモニタリングし、またメインバッテリ10の電圧変化を電圧センサ39を介してモニタリングすることで、メインバッテリ10のSOCを算出する。 The SOC calculation unit 50 calculates the SOC of the main battery 10 by monitoring the current supplied to the main battery 10 via the current sensor 37 and monitoring the voltage change of the main battery 10 via the voltage sensor 39. To do.

CP1充電効率マップデータベース54には、複数の充電効率マップが記憶されている。図4には充電効率マップが例示されている。メインバッテリ10が低温状態にあると、充電効率が低下する。そこでAC電源30から供給される外部電力の一部をバッテリヒータ26に割り当ててメインバッテリ10を昇温しながら充電を行うことが考えられる。 A plurality of charge efficiency maps are stored in the CP1 charge efficiency map database 54. FIG. 4 illustrates a charging efficiency map. When the main battery 10 is in a low temperature state, the charging efficiency is lowered. Therefore, it is conceivable to allocate a part of the external power supplied from the AC power source 30 to the battery heater 26 to charge the main battery 10 while raising the temperature.

このとき、バッテリヒータ26に割り当てる電力(昇温電力)の割合が過度に大きくなると、充電電力への割り当てが減ることになり、充電に時間が掛かることになる。一方、バッテリヒータ26に割り当てる電力(昇温電力)を過度に絞ると、メインバッテリ10が昇温されないので、充電効率が低下して充電に時間が掛かることになる。そこで、充電電力と昇温電力との最良のバランスを得るために、図4に示すような充電効率マップが用いられる。充電効率マップは、予め実測やシミュレーション等により得ることができる。 At this time, if the ratio of the electric power (heating power) allocated to the battery heater 26 becomes excessively large, the allocation to the charging electric power is reduced, and it takes time to charge the battery. On the other hand, if the power allocated to the battery heater 26 (heating power) is excessively reduced, the temperature of the main battery 10 is not raised, so that the charging efficiency is lowered and charging takes time. Therefore, in order to obtain the best balance between the charging power and the heating power, the charging efficiency map as shown in FIG. 4 is used. The charging efficiency map can be obtained in advance by actual measurement, simulation, or the like.

図4のグラフは、横軸が外部電力(最大電力)に対する昇温電力の比を示し、縦軸は充電時間を表す。このようなグラフは、バッテリ温度Tb及びSOCごとに複数種類、CP1充電効率マップデータベース54に記憶されていてよい。また、バッテリ温度Tbが後述する充電目標温度Tc以上である場合に、第1昇温電力Pw_cp1を0とし、全外部電力を充電電力に充てるマップがCP1充電効率マップデータベース54に記憶されていてよい。 In the graph of FIG. 4, the horizontal axis represents the ratio of the rising power to the external power (maximum power), and the vertical axis represents the charging time. A plurality of types of such graphs may be stored in the CP1 charge efficiency map database 54 for each battery temperature Tb and SOC. Further, when the battery temperature Tb is equal to or higher than the charging target temperature Tc described later, a map in which the first heating power Pw_cp1 is set to 0 and all external power is allocated to the charging power may be stored in the CP1 charging efficiency map database 54. ..

CP1電力配分算出部52は、第1充電モード(CP1)において、外部電力Psを、メインバッテリ10に供給される第1充電電力Pc_cp1と、バッテリヒータ26に供給される第1昇温電力Pw_cp1とに配分する。配分にはCP1充電効率マップデータベース54が用いられる。また、配分された第1充電電力Pc_cp1と第1目標SOCとに基づいて、第1充電モードの実行時間t_cp1を算出する。CP1電力配分算出部52の詳細は後述する。 In the first charging mode (CP1), the CP1 power distribution calculation unit 52 uses the external power Ps as the first charging power Pc_cp1 supplied to the main battery 10 and the first heating power Pw_cp1 supplied to the battery heater 26. Allocate to. The CP1 charge efficiency map database 54 is used for allocation. Further, the execution time t_cp1 of the first charging mode is calculated based on the allocated first charging power Pc_cp1 and the first target SOC. Details of the CP1 power distribution calculation unit 52 will be described later.

CP2充電条件データベース58には、第2充電モード(CP2)の充電条件が記憶されている。具体的には、第1充電モードと第2充電モードとの切り替え基準となる第1目標SOC、第2充電モードの完了基準となる、つまり満充電状態を示す第2目標SOCが記憶される。さらに、第2充電モードにおける第2充電電力Pc_cp2が固定値として記憶されている。 The charging conditions of the second charging mode (CP2) are stored in the CP2 charging condition database 58. Specifically, the first target SOC that serves as a reference for switching between the first charging mode and the second charging mode and the second target SOC that serves as a completion reference for the second charging mode, that is, indicating a fully charged state, are stored. Further, the second charging power Pc_cp2 in the second charging mode is stored as a fixed value.

CP2電力配分算出部56は、第2充電モード(CP2)において、外部電力Psを、メインバッテリ10に供給される第2充電電力Pc_cp2と、バッテリヒータ26に供給される第2昇温電力Pw_cp2とに配分する。上述したように、第2充電電力Pc_cp2は固定値であることから、外部電力Psから第2充電電力Pc_cp2を差し引いた電力の何割かが第2昇温電力Pw_cp2に割り当てられることになる。後述するように、CP2電力配分算出部56は、第1充電モード(CP1)完了時点におけるバッテリ温度Tb(t1)の推定値と、放電目標温度Tdに基づいて、第2昇温電力Pw_cp2を求める。 In the second charging mode (CP2), the CP2 power distribution calculation unit 56 uses the external power Ps as the second charging power Pc_cp2 supplied to the main battery 10 and the second heating power Pw_cp2 supplied to the battery heater 26. Allocate to. As described above, since the second charging power Pc_cp2 is a fixed value, a percentage of the power obtained by subtracting the second charging power Pc_cp2 from the external power Ps is allocated to the second heating power Pw_cp2. As will be described later, the CP2 power distribution calculation unit 56 obtains the second temperature rising power Pw_cp2 based on the estimated value of the battery temperature Tb (t1) at the completion of the first charging mode (CP1) and the discharge target temperature Td. ..

電力配分調整部60は、CP1電力配分算出部52により算出された第1充電電力Pc_cp1、第1昇温電力Pw_cp1と、CP2電力配分算出部56により算出された第2充電電力Pc_cp2、第2昇温電力Pw_cp2とをそれぞれ調整する。後述するようにこの調整をすることで、第2充電モード(CP2)完了時点t2において、バッテリ温度Tb(t2)が放電目標温度Tdまで昇温可能となる。 The power distribution adjusting unit 60 includes a first charging power Pc_cp1 and a first heating power Pw_cp1 calculated by the CP1 power distribution calculation unit 52, and a second charging power Pc_cp2 and a second ascending power calculated by the CP2 power distribution calculation unit 56. The thermal power Pw_cp2 is adjusted respectively. By making this adjustment as described later, the battery temperature Tb (t2) can be raised to the discharge target temperature Td at t2 when the second charging mode (CP2) is completed.

充電電力制御部62は、電力配分調整部60によって調整された第1充電電力Pc_cp1、第1昇温電力Pw_cp1、及び第1充電時間t_cp1、ならびに、第2充電電力Pc_cp2、第2昇温電力Pw_cp2、及び第2充電時間t_cp2に基づいて、メインバッテリ10の充電電力及びバッテリヒータ26への供給電力(昇温電力)を制御する。例えば降圧DC/DCコンバータ20や充電器38のデューティ比を制御することで、上記のような電力制御を行う。 The charging power control unit 62 includes a first charging power Pc_cp1, a first heating power Pw_cp1, a first charging time t_cp1, a second charging power Pc_cp2, and a second heating power Pw_cp2 adjusted by the power distribution adjusting unit 60. , And the charging power of the main battery 10 and the power supplied to the battery heater 26 (heating power) are controlled based on the second charging time t_cp2. For example, by controlling the duty ratio of the step-down DC / DC converter 20 and the charger 38, the above power control is performed.

図3には、本実施形態に係る昇温付き外部充電フローチャートが例示されている。車両のスタートスイッチ(図示せず)が車両ユーザによってオフ操作され、システムメインリレーSMR(図1参照)が接続状態から遮断状態に切り替わった後、AC電源30のコネクタ32(プラグ)が車両のコネクタ34(インレット)に接続される(プラグイン)。このとき、コネクタ34から制御部24の電力配分調整部60に接続指令(コネクタ接続指令)が送信され、図3のフローが起動される。 FIG. 3 illustrates an external charging flowchart with temperature rise according to the present embodiment. After the vehicle start switch (not shown) is turned off by the vehicle user and the system main relay SMR (see FIG. 1) switches from the connected state to the disconnected state, the connector 32 (plug) of the AC power supply 30 is the vehicle connector. Connected to 34 (inlet) (plug-in). At this time, a connection command (connector connection command) is transmitted from the connector 34 to the power distribution adjustment unit 60 of the control unit 24, and the flow of FIG. 3 is activated.

電力配分調整部60は、接続指令受信時点t0におけるメインバッテリ10の温度Tb(t0)(バッテリ温度)をバッテリ温度センサ48から取得する。さらにバッテリ温度Tb(t0)が放電目標温度Td未満であるか否かを判定する(S10)。 The power distribution adjustment unit 60 acquires the temperature Tb (t0) (battery temperature) of the main battery 10 at the time t0 when the connection command is received from the battery temperature sensor 48. Further, it is determined whether or not the battery temperature Tb (t0) is less than the discharge target temperature Td (S10).

ステップS10にてバッテリ温度Tb(t0)が放電目標温度Td以上である場合、上述したように充電目標温度Tb(<Td)も超過していることから、外部充電時にメインバッテリ10の昇温の必要はない。したがってステップS10にてバッテリ温度Tb(t0)が放電目標温度Td以上である場合には、本フローは終了となり、例えば外部電力Psの全量が充電電力に充てられる。 When the battery temperature Tb (t0) is equal to or higher than the discharge target temperature Td in step S10, the charging target temperature Tb (<Td) is also exceeded as described above, so that the temperature of the main battery 10 is raised during external charging. There is no need. Therefore, when the battery temperature Tb (t0) is equal to or higher than the discharge target temperature Td in step S10, this flow ends, and for example, the entire amount of the external power Ps is allocated to the charging power.

ステップS10にてTb(t0) < Tdである場合、電力配分調整部60は、CP1電力配分算出部52に対して、CP1(第1充電モード)における第1充電電力Pc_cp1及び第1昇温電力Pw_cp1を算出させる算出指示を送信する(S12)。 When Tb (t0) <Td in step S10, the power distribution adjusting unit 60 tells the CP1 power distribution calculation unit 52 that the first charging power Pc_cp1 and the first heating power in CP1 (first charging mode). A calculation instruction for calculating Pw_cp1 is transmitted (S12).

CP1電力配分算出部52は、バッテリ温度センサ48から、接続指令受信時点t0におけるバッテリ温度Tb(t0)を取得する。または電力配分調整部60からバッテリ温度Tb(t0)を取得する。 The CP1 power distribution calculation unit 52 acquires the battery temperature Tb (t0) at the time t0 when the connection command is received from the battery temperature sensor 48. Alternatively, the battery temperature Tb (t0) is acquired from the power distribution adjustment unit 60.

さらにCP1電力配分算出部52は、SOC算出部50から接続指令受信時点t0におけるメインバッテリ10のSOC(t0)を取得する。 Further, the CP1 power distribution calculation unit 52 acquires the SOC (t0) of the main battery 10 at the connection command reception time t0 from the SOC calculation unit 50.

CP1電力配分算出部52は、バッテリ温度Tb(t0)及びSOC(t0)に対応する充電効率マップをCP1充電効率マップデータベース54より取得する。図4に示す充電効率マップから、充電時間(縦軸)が最短となる昇温電力/外部電力の比Rcp1を求める。 The CP1 power distribution calculation unit 52 acquires a charge efficiency map corresponding to the battery temperatures Tb (t0) and SOC (t0) from the CP1 charge efficiency map database 54. From the charging efficiency map shown in FIG. 4, the ratio Rcp1 of the heating power / external power that minimizes the charging time (vertical axis) is obtained.

さらにCP1電力配分算出部52は、求めた昇温電力/外部電力の比Rcp1に外部電力Psを掛けて昇温電力Pw_cp1を得る。さらに外部電力Psから昇温電力Pw_cp1を差し引くことで充電電力Pc_cp1を得る。また、充電効率マップから第1充電時間t_cp1を得る。昇温電力Pw_cp1、充電電力Pc_cp1、及び第1充電時間t_cp1は電力配分調整部60に送信される。 Further, the CP1 power distribution calculation unit 52 obtains the rising power Pw_cp1 by multiplying the obtained ratio Rcp1 of the rising power / external power by the external power Ps. Further, the charging power Pc_cp1 is obtained by subtracting the heating power Pw_cp1 from the external power Ps. Further, the first charging time t_cp1 is obtained from the charging efficiency map. The heating power Pw_cp1, the charging power Pc_cp1, and the first charging time t_cp1 are transmitted to the power distribution adjusting unit 60.

次に電力配分調整部60は、CP2電力配分算出部56に対して、CP2(第2充電モード)における第2充電時間t_cp2を算出させる算出指示を送信する(S14)。 Next, the power distribution adjusting unit 60 transmits a calculation instruction for calculating the second charging time t_cp2 in the CP2 (second charging mode) to the CP2 power distribution calculation unit 56 (S14).

CP2電力配分算出部56は、CP2充電条件データベース58を参照し、第1充電モードと第2充電モードとの切り替え基準となる第1目標SOC、第2充電モードの完了基準となる、つまり満充電状態を示す第2目標SOC、及び、第2充電モードにおける第2充電電力Pc_cp2を呼び出す。第1目標SOCと第2目標SOCとのSOC差(ΔSOC)と第2充電電力Pc_cp2から第2充電時間t_cp2が求められる。第2充電電力Pc_cp2及び第2充電時間t_cp2は外部電力Psとともに電力配分調整部60に送信される。 The CP2 power distribution calculation unit 56 refers to the CP2 charging condition database 58 and serves as a completion reference for the first target SOC and the second charging mode, which are criteria for switching between the first charging mode and the second charging mode, that is, fully charged. The second target SOC indicating the state and the second charging power Pc_cp2 in the second charging mode are called. The second charging time t_cp2 is obtained from the SOC difference (ΔSOC) between the first target SOC and the second target SOC and the second charging power Pc_cp2. The second charging power Pc_cp2 and the second charging time t_cp2 are transmitted to the power distribution adjusting unit 60 together with the external power Ps.

また、CP2電力配分算出部56は、外部電力Psから第2充電電力Pc_cp2を差し引いた最大昇温電力Pw_cp2maxを求める。加えてCP2電力配分算出部56は、最大昇温電力Pw_cp2maxと第2充電時間t_cp2から、第2充電時間における最大昇温量ΔTmaxを求める(S16)。 Further, the CP2 power distribution calculation unit 56 obtains the maximum heating power Pw_cp2max obtained by subtracting the second charging power Pc_cp2 from the external power Ps. In addition, the CP2 power distribution calculation unit 56 obtains the maximum temperature rise amount ΔTmax in the second charging time from the maximum temperature rising power Pw_cp2max and the second charging time t_cp2 (S16).

まず、最大昇温電力Pw_cp2maxと第2充電時間t_cp2を掛けることで熱量[J]が求められる。この熱量[J]をメインバッテリ10の質量及び比熱で割ると、最大昇温量ΔTmaxが求められる。なお、メインバッテリ10の質量及び比熱は予め求められ、制御部24の記憶部44に記憶される。最大昇温量ΔTmaxは電力配分調整部60に送信される。 First, the amount of heat [J] can be obtained by multiplying the maximum heating power Pw_cp2max by the second charging time t_cp2. By dividing this amount of heat [J] by the mass of the main battery 10 and the specific heat, the maximum amount of temperature rise ΔTmax can be obtained. The mass and specific heat of the main battery 10 are obtained in advance and stored in the storage unit 44 of the control unit 24. The maximum temperature rise amount ΔTmax is transmitted to the power distribution adjustment unit 60.

電力配分調整部60は、記憶部44に記憶された放電目標温度Tdから最大昇温量ΔTmaxを差し引いて、得られた値をTb(t1*)とする(S18)。これは第1充電モード完了時点t1におけるバッテリ温度Tbの基準値(最低基準温度)となる。 The power distribution adjusting unit 60 subtracts the maximum temperature rise amount ΔTmax from the discharge target temperature Td stored in the storage unit 44, and sets the obtained value as Tb (t1 *) (S18). This is the reference value (minimum reference temperature) of the battery temperature Tb at t1 when the first charging mode is completed.

さらに電力配分調整部60は、CP1電力配分算出部52から取得した、昇温電力Pw_cp1及び第1充電時間t_cp1から、第1充電モード(CP1)完了時点t1のバッテリ温度Tb(t1)を推定する(S20)。例えば、昇温電力Pw_cp1と第1充電時間t_cp1を掛けることで熱量[J]が求められる。この熱量[J]をメインバッテリ10の質量及び比熱で割ると、第1昇温量ΔTcp1が求められる。さらに、第1充電モード開始時点t0のバッテリ温度Tb(t0)に第1昇温量ΔTcp1を加えると、第1充電モード(CP1)完了時点t1のバッテリ推定温度Tb(t1)が求められる。 Further, the power distribution adjusting unit 60 estimates the battery temperature Tb (t1) at the time when the first charging mode (CP1) is completed from the temperature rising power Pw_cp1 and the first charging time t_cp1 acquired from the CP1 power distribution calculation unit 52. (S20). For example, the amount of heat [J] can be obtained by multiplying the heating power Pw_cp1 by the first charging time t_cp1. By dividing this amount of heat [J] by the mass of the main battery 10 and the specific heat, the first amount of temperature rise ΔTcp1 can be obtained. Further, by adding the first temperature rising amount ΔTcp1 to the battery temperature Tb (t0) at the start time of the first charging mode t0, the estimated battery temperature Tb (t1) at the time t1 when the first charging mode (CP1) is completed can be obtained.

電力配分調整部60は、第1充電モード完了時点t1におけるバッテリ推定温度Tb(t1)が、同時点における最低基準温度Tb(t1*)未満(Tb(t1*)>Tb(t1))か否かを判定する(S22)。つまり、第1昇温電力Pw_cp1に基づく第1充電モード完了時点t1のバッテリ推定温度Tb(t1)が、メインバッテリ10の放電効率から求められる放電目標温度Tdから最大昇温量ΔTmaxを差し引いた最低基準温度Tb(t1*)未満であるか否かが判定される。 The power distribution adjustment unit 60 determines whether or not the estimated battery temperature Tb (t1) at t1 at the completion of the first charging mode is less than the minimum reference temperature Tb (t1 *) at the same point (Tb (t1 *)> Tb (t1)). (S22). That is, the battery estimated temperature Tb (t1) at the time of completion of the first charging mode t1 based on the first heating power Pw_cp1 is the minimum obtained by subtracting the maximum temperature rise amount ΔTmax from the discharge target temperature Td obtained from the discharge efficiency of the main battery 10. It is determined whether or not the temperature is less than the reference temperature Tb (t1 *).

図5に示すように、バッテリ推定温度Tb(t1)(=Tc)が最低基準温度Tb(t1*)以上である場合、第2充電モード(CP2)において少なくとも最大昇温量ΔTmaxにてメインバッテリ10を昇温させれば、第2充電モード完了時点t2で、バッテリ温度Tbは放電目標温度Tdに到達することになる。そこで、電力配分調整部60は、CP1電力配分算出部52に対して、ステップS12にて求めた、第1昇温電力Pw_cp1、第1充電電力Pc_cp1、及び第1充電時間t_cp1を確定値として、充電電力制御部62に送信させる(S24)。 As shown in FIG. 5, when the estimated battery temperature Tb (t1) (= Tc) is equal to or higher than the minimum reference temperature Tb (t1 *), the main battery is at least the maximum temperature rise amount ΔTmax in the second charging mode (CP2). If the temperature of 10 is raised, the battery temperature Tb reaches the discharge target temperature Td at t2 when the second charging mode is completed. Therefore, the power distribution adjusting unit 60 sets the first heating power Pw_cp1, the first charging power Pc_cp1, and the first charging time t_cp1 obtained in step S12 as definite values for the CP1 power distribution calculation unit 52. It is transmitted to the charging power control unit 62 (S24).

次に電力配分調整部60は、CP2電力配分算出部56に対して放電目標温度Td及び第1充電モード完了時点t1におけるバッテリ推定温度Tb(t1)を送信する。さらに電力配分調整部60は、放電目標温度Td及びバッテリ推定温度Tb(t1)に基づいて第2昇温電力Pw_cp2を求める旨の算出指示をCP2電力配分算出部56に送信する。 Next, the power distribution adjustment unit 60 transmits the discharge target temperature Td and the battery estimated temperature Tb (t1) at the time when the first charge mode is completed t1 to the CP2 power distribution calculation unit 56. Further, the power distribution adjusting unit 60 transmits a calculation instruction to obtain the second temperature rising power Pw_cp2 based on the discharge target temperature Td and the battery estimated temperature Tb (t1) to the CP2 power distribution calculation unit 56.

図5を参照して、CP2電力配分算出部56は、放電目標温度Tdからバッテリ推定温度Tb(t1)(=Tc)を差し引いた温度差ΔTdbを求める。これに、メインバッテリ10の質量及び比熱を掛けることで熱量[J]が求められる。熱量[J]を第2充電時間t_cp2で割ることで昇温電力Pw_cp2[W]が求められる(S26)。第2昇温電力Pw_cp2、第2充電電力Pc_cp2、及び、第2充電時間t_cp2は、充電電力制御部62に送られる。 With reference to FIG. 5, the CP2 power distribution calculation unit 56 obtains the temperature difference ΔTdb obtained by subtracting the estimated battery temperature Tb (t1) (= Tc) from the discharge target temperature Td. The amount of heat [J] is obtained by multiplying this by the mass of the main battery 10 and the specific heat. The heating power Pw_cp2 [W] can be obtained by dividing the amount of heat [J] by the second charging time t_cp2 (S26). The second heating power Pw_cp2, the second charging power Pc_cp2, and the second charging time t_cp2 are sent to the charging power control unit 62.

このように、充電電力制御部62に、確定された第1昇温電力Pw_cp1、第1充電電力Pc_cp1、及び第1充電時間t_cp1、ならびに、第2昇温電力Pw_cp2、第2充電電力Pc_cp2、及び、第2充電時間t_cp2が送られることで本フローは終了する。充電電力制御部62は、これらのパラメータに基づいて充電器38や降圧DC/DCコンバータ20のPWM制御等を行うことで、外部充電プロセスが制御、管理される。 As described above, in the charging power control unit 62, the determined first heating power Pw_cp1, the first charging power Pc_cp1, the first charging time t_cp1, the second heating power Pw_cp2, the second charging power Pc_cp2, and , This flow ends when the second charging time t_cp2 is sent. The charging power control unit 62 controls and manages the external charging process by performing PWM control of the charger 38 and the step-down DC / DC converter 20 based on these parameters.

ステップS22に戻り、第1充電モード完了時点t1におけるバッテリ推定温度Tb(t1)(=Tc)が、同時点における最低基準温度Tb(t1*)未満である(Tb(t1*)>Tb(t1))場合、図6に示すように、昇温不足分が生じる。 Returning to step S22, the estimated battery temperature Tb (t1) (= Tc) at t1 when the first charging mode is completed is less than the minimum reference temperature Tb (t1 *) at the same point (Tb (t1 *)> Tb (t1). )) In that case, as shown in FIG. 6, there is an insufficient temperature rise.

これはつまり、第2充電モード(CP2)において最大昇温量ΔTmaxにてメインバッテリ10を昇温させても、第2充電モード完了時点t2で、バッテリ温度Tbは放電目標温度Tdを下回ることになる。そこで、電力配分調整部60は、CP1電力配分算出部52に対して、第1昇温電力Pw_cp1、第1充電電力Pc_cp1、及び第1充電時間t_cp1を再度算出させる算出指示を送信する(S28)。 This means that even if the main battery 10 is heated at the maximum temperature rise amount ΔTmax in the second charge mode (CP2), the battery temperature Tb is lower than the discharge target temperature Td at t2 when the second charge mode is completed. Become. Therefore, the power distribution adjustment unit 60 transmits a calculation instruction to the CP1 power distribution calculation unit 52 to recalculate the first heating power Pw_cp1, the first charging power Pc_cp1, and the first charging time t_cp1 (S28). ..

この再算出プロセスでは、基本的に、最低基準温度Tb(t1*)とバッテリ推定温度Tb(t1)との温度差に対応する追加昇温電力を、第1昇温電力Pw_cp1に加算する。まず、CP1電力配分算出部52は、ステップS12にて用いたCP1充電効率マップ、つまり、バッテリ温度Tb(t0)及びSOC(t0)に対応する充電効率マップをCP1充電効率マップデータベース54より取得する。 In this recalculation process, basically, the additional heating power corresponding to the temperature difference between the minimum reference temperature Tb (t1 *) and the estimated battery temperature Tb (t1) is added to the first heating power Pw_cp1. First, the CP1 power distribution calculation unit 52 acquires the CP1 charge efficiency map used in step S12, that is, the charge efficiency map corresponding to the battery temperatures Tb (t0) and SOC (t0) from the CP1 charge efficiency map database 54. ..

さらにCP1電力配分算出部52は、図7に示すように、昇温電力/外部電力の比Rcp1の値を所定量増加させる(横軸の増分にシフトさせる)。例えば昇温電力/外部電力の比Rcp1を1%刻みでプラス側にシフトさせる。上記シフトにて昇温電力/外部電力の比Rcp1’及び第1充電時間t_cp1’が得られる。 Further, as shown in FIG. 7, the CP1 power distribution calculation unit 52 increases the value of the ratio Rcp1 of the temperature rising power / external power by a predetermined amount (shifts to an increment on the horizontal axis). For example, the ratio Rcp1 of the heating power / external power is shifted to the plus side in 1% increments. With the above shift, the ratio of rising power / external power Rcp1'and the first charging time t_cp1' can be obtained.

CP1電力配分算出部52は、変更後の昇温電力/外部電力の比Rcp1’に外部電力Psを掛けて昇温電力Pw_cp1’を得る。さらに図8に示すように、外部電力Psから昇温電力Pw_cp1’を引くことで充電電力Pc_cp1’が得られる。 The CP1 power distribution calculation unit 52 obtains the temperature-increasing power Pw_cp1'by multiplying the changed ratio Rcp1'of the temperature-increasing power / external power by the external power Ps. Further, as shown in FIG. 8, the charging power Pc_cp1'is obtained by subtracting the raising power Pw_cp1'from the external power Ps.

なお、Rcp1 < Rcp1’より、昇温電力はPw_cp1 < Pw_cp1’となる。また、昇温電力と外部電力Psを取り合う充電電力はPc_cp1 > Pc_cp1’となる。つまり、昇温電力の増加分、充電電力は低減させられる。第1充電時間t_cp1’、昇温電力Pw_cp1’、及び充電電力Pc_cp1’は電力配分調整部60に送られる。 From Rcp1 <Rcp1', the heating power becomes Pw_cp1 <Pw_cp1'. Further, the charging power for competing the temperature rising power and the external power Ps is Pc_cp1> Pc_cp1'. That is, the charging power can be reduced by the increase in the heating power. The first charging time t_cp1', the heating power Pw_cp1', and the charging power Pc_cp1' are sent to the power distribution adjusting unit 60.

電力配分調整部60では、昇温電力Pw_cp1’と第1充電時間t_cp1’から、第1充電モード完了時点t1におけるバッテリ推定温度Tb(t1’)を求める(S30)。例えば、昇温電力Pw_cp1’と第1充電時間t_cp1’を掛けることで熱量[J]が求められる。この熱量[J]をメインバッテリ10の質量及び比熱で割ると、第1昇温量ΔTcp1’が求められる。さらに、第1充電モード開始時点t0のバッテリ温度Tb(t0)に第1昇温量ΔTcp1’を加えると、第1充電モード(CP1)完了時点t1’のバッテリ推定温度Tb(t1’)が求められる。 The power distribution adjustment unit 60 obtains the estimated battery temperature Tb (t1') at the time when the first charging mode is completed t1 from the rising power Pw_cp1'and the first charging time t_cp1' (S30). For example, the amount of heat [J] can be obtained by multiplying the heating power Pw_cp1'and the first charging time t_cp1'. By dividing this amount of heat [J] by the mass of the main battery 10 and the specific heat, the first amount of temperature rise ΔTcp1'is obtained. Further, when the first heating amount ΔTcp1'is added to the battery temperature Tb (t0) at the start time of the first charging mode t0, the estimated battery temperature Tb (t1') at the time t1'completion of the first charging mode (CP1) is obtained. Be done.

電力配分調整部60は、バッテリ推定温度Tb(t1’)が最低基準温度Tb(t1*)未満(Tb(t1*) > Tb(t1’))か否かを判定する(S32)。Tb(t1*) > Tb(t1’)である場合、ステップS28に戻り、CP1電力配分算出部52に対して再度第1充電時間t_cp1’、昇温電力Pw_cp1’、及び充電電力Pc_cp1’の算出を指示する。 The power distribution adjustment unit 60 determines whether or not the estimated battery temperature Tb (t1') is less than the minimum reference temperature Tb (t1 *) (Tb (t1 *)> Tb (t1')) (S32). If Tb (t1 *)> Tb (t1'), the process returns to step S28, and the CP1 power distribution calculation unit 52 is again calculated for the first charging time t_cp1', the heating power Pw_cp1', and the charging power Pc_cp1'. To instruct.

ステップS32にて、バッテリ推定温度Tb(t1’)が最低基準温度Tb(t1*)以上である場合、電力配分調整部60は、CP1電力配分算出部52に対して、ステップS28にて求めた、第1昇温電力Pw_cp1’、第1充電電力Pc_cp1’、及び第1充電時間t_cp1’を確定値として、充電電力制御部62に送信させる(S34)。 In step S32, when the estimated battery temperature Tb (t1') is equal to or higher than the minimum reference temperature Tb (t1 *), the power distribution adjustment unit 60 obtains the CP1 power distribution calculation unit 52 in step S28. , The first heating power Pw_cp1', the first charging power Pc_cp1', and the first charging time t_cp1' are set as definite values and transmitted to the charging power control unit 62 (S34).

次に電力配分調整部60は、CP2電力配分算出部56に対して放電目標温度Td及び第1充電モード完了時点t1’におけるバッテリ推定温度Tb(t1’)を送信する。さらに電力配分調整部60は、放電目標温度Td及びバッテリ推定温度Tb(t1’)の温度差ΔTdbに基づいて第2昇温電力Pw_cp2’を求める旨の算出指示をCP2電力配分算出部56に送信する。 Next, the power distribution adjustment unit 60 transmits the discharge target temperature Td and the battery estimated temperature Tb (t1') at the time when the first charge mode is completed t1'to the CP2 power distribution calculation unit 56. Further, the power distribution adjustment unit 60 transmits to the CP2 power distribution calculation unit 56 a calculation instruction to obtain the second temperature rising power Pw_cp2'based on the temperature difference ΔTdb of the discharge target temperature Td and the battery estimated temperature Tb (t1'). To do.

図5を参照して、放電目標温度Tdからバッテリ推定温度Tb(t1)(=Tc)を差し引いた温度差ΔTdbを求める。これに、メインバッテリ10の質量及び比熱を掛けることで熱量[J]が求められる。熱量[J]を第2充電時間t_cp2で割ることで昇温電力Pw_cp2’[W]が求められる(S36)。第2昇温電力Pw_cp2’、第2充電電力Pc_cp2、及び、第2充電時間t_cp2は、充電電力制御部62に送られる。 With reference to FIG. 5, the temperature difference ΔTdb obtained by subtracting the estimated battery temperature Tb (t1) (= Tc) from the discharge target temperature Td is obtained. The amount of heat [J] is obtained by multiplying this by the mass of the main battery 10 and the specific heat. The heating power Pw_cp2'[W] can be obtained by dividing the amount of heat [J] by the second charging time t_cp2 (S36). The second heating power Pw_cp2', the second charging power Pc_cp2, and the second charging time t_cp2 are sent to the charging power control unit 62.

充電電力制御部62は、確定された第1昇温電力Pw_cp1’、第1充電電力Pc_cp1’、及び第1充電時間t_cp1’、ならびに、第2昇温電力Pw_cp2’、第2充電電力Pc_cp2、及び、第2充電時間t_cp2に基づいて、充電器38や降圧DC/DCコンバータ20のPWM制御等を行う。 The charging power control unit 62 determines the first heating power Pw_cp1', the first charging power Pc_cp1', the first charging time t_cp1', the second heating power Pw_cp2', the second charging power Pc_cp2, and , PWM control of the charger 38 and the step-down DC / DC converter 20 is performed based on the second charging time t_cp2.

<第2実施形態>
図3に示すフローでは、第1充電フロー(CP1)完了時点t1における、バッテリ推定温度Tb(t1)と、最低基準温度Tb(t1*)とを比較したが、第2充電フロー完了時点における温度比較を行ってもよい。
<Second Embodiment>
In the flow shown in FIG. 3, the estimated battery temperature Tb (t1) and the minimum reference temperature Tb (t1 *) at the time when the first charging flow (CP1) is completed are compared. Comparisons may be made.

図9には、第2実施形態に係る、昇温付き外部充電フローが例示されている。図3と同一のステップ符号が付されたステップについては、内容が同一のため適宜説明を省略する。 FIG. 9 illustrates an external charging flow with temperature rise according to the second embodiment. Since the contents of the steps with the same step reference numerals as those in FIG. 3 are the same, the description thereof will be omitted as appropriate.

このフローでは、バッテリ推定温度Tb(t1)が最低基準温度Tb(t1*)未満か否かを判定するステップS22に代えて、第1充電フロー完了時点t1におけるバッテリ推定温度Tb(t1)と最大昇温量ΔTmaxの和が、放電目標温度Td未満となるか否かが判定される(S40)。同様にして、バッテリ推定温度Tb(t1’)が最低基準温度Tb(t1*)未満か否かを判定するステップS32に代えて、第1充電フロー完了時点t1’におけるバッテリ推定温度Tb(t1’)と最大昇温量ΔTmaxの和が、放電目標温度Td未満となるか否かが判定される(S42)。図10では、ステップS40において、Tb(t1)+ΔTmax < Tdである例が示されている。 In this flow, instead of step S22 for determining whether the estimated battery temperature Tb (t1) is less than the minimum reference temperature Tb (t1 *), the battery estimated temperature Tb (t1) at the time when the first charging flow is completed and the maximum is T1. It is determined whether or not the sum of the temperature rise amounts ΔTmax is less than the discharge target temperature Td (S40). Similarly, instead of step S32 for determining whether the estimated battery temperature Tb (t1') is less than the minimum reference temperature Tb (t1 *), the estimated battery temperature Tb (t1') at the first charge flow completion time t1' ) And the maximum temperature rise amount ΔTmax, it is determined whether or not the sum is less than the discharge target temperature Td (S42). FIG. 10 shows an example in which Tb (t1) + ΔTmax <Td in step S40.

このような判定基準を設けることで、第1充電フロー及び第2充電フローを通して昇温されたトータルのバッテリ温度Tb(t2)(=Tb(t1)+ΔTmax)が、放電目標温度Tdに到達しているか否かが明らかとなり、昇温の過不足を直感的に判定可能となる。 By providing such a criterion, the total battery temperature Tb (t2) (= Tb (t1) + ΔTmax) raised through the first charging flow and the second charging flow reaches the discharge target temperature Td. Whether or not it is clarified, and the excess or deficiency of the temperature rise can be intuitively determined.

10 メインバッテリ、24 制御部、26 バッテリヒータ、30 AC電源(外部電源)、48 バッテリ温度センサ、52 CP1電力配分算出部(第1電力配分部)、54 CP1充電効率マップデータベース、56 CP2電力配分算出部(第2電力配分部)、58 CP2充電条件データベース、60 電力配分調整部(調整部)、62 充電電力制御部。 10 Main battery, 24 Control unit, 26 Battery heater, 30 AC power supply (external power supply), 48 Battery temperature sensor, 52 CP1 power distribution calculation unit (1st power distribution unit), 54 CP1 charge efficiency map database, 56 CP2 power distribution Calculation unit (second power distribution unit), 58 CP2 charging condition database, 60 power distribution adjustment unit (adjustment unit), 62 charging power control unit.

Claims (1)

車両に搭載されたバッテリを車両外の外部電源から充電させる外部充電が可能な、車載バッテリ充電システムであって、
前記バッテリを昇温させるヒータと、
前記バッテリの充電管理及び前記ヒータの制御を行う制御部と、
を備え、
前記制御部は、
前記外部充電の際に、相対的に大電力で前記バッテリを充電する第1充電モードと、前記第1充電モード後に相対的に小電力で前記バッテリを充電する第2充電モードとを実行し、
前記第1充電モードにおいて、前記外部電源から供給される外部電力を、前記バッテリの温度に応じた充電効率に基づき充電時間が最短となるように、前記ヒータに供給される第1昇温電力と、前記バッテリへの第1充電電力とに配分する第1電力配分部と、
前記第2充電モードにおいて、前記外部電力から予め定められた第2充電電力を差し引いた最大昇温電力と、前記第2充電モードの実行期間から、前記第2充電モードにおける最大昇温量を求める第2電力配分部と、
前記第1昇温電力に基づく前記第1充電モード完了時点のバッテリ推定温度が、前記バッテリの温度に応じた放電効率から求められる放電目標温度から前記最大昇温量を差し引いた最低基準温度未満である場合に、前記第2充電モード完了時点におけるバッテリ温度が前記放電目標温度まで昇温可能となるように、前記最低基準温度と前記バッテリ推定温度との温度差に対応する追加昇温電力を前記第1昇温電力に加算するとともに、加算後の前記第1昇温電力と前記第1充電電力の和が前記外部電力の最大電力以下となるように前記第1充電電力を低減させる調整部と、
を備え
前記放電目標温度は、前記充電効率から求められる充電目標温度よりも高い温度である、車載バッテリ充電システム。
It is an in-vehicle battery charging system that can be charged externally by charging the battery mounted on the vehicle from an external power source outside the vehicle.
A heater that raises the temperature of the battery and
A control unit that manages the charge of the battery and controls the heater,
With
The control unit
At the time of the external charging, a first charging mode for charging the battery with a relatively large power and a second charging mode for charging the battery with a relatively small power after the first charging mode are executed.
In the first charging mode, the external power supplied from the external power source is combined with the first heating power supplied to the heater so that the charging time is the shortest based on the charging efficiency according to the temperature of the battery. , A first power distribution unit that allocates power to the first charging power to the battery,
In the second charging mode, the maximum heating amount in the second charging mode is obtained from the maximum heating power obtained by subtracting a predetermined second charging power from the external power and the execution period of the second charging mode. 2nd power distribution department and
When the estimated battery temperature at the time of completion of the first charging mode based on the first heating power is less than the minimum reference temperature obtained by subtracting the maximum heating amount from the discharge target temperature obtained from the discharge efficiency according to the temperature of the battery. In some cases, the additional heating power corresponding to the temperature difference between the minimum reference temperature and the estimated battery temperature is applied so that the battery temperature at the time of completion of the second charging mode can be raised to the discharge target temperature. An adjusting unit that adds to the first heating power and reduces the first charging power so that the sum of the added first heating power and the first charging power is equal to or less than the maximum power of the external power. ,
Equipped with a,
An in- vehicle battery charging system in which the discharge target temperature is a temperature higher than the charging target temperature obtained from the charging efficiency .
JP2016196969A 2016-10-05 2016-10-05 In-vehicle battery charging system Expired - Fee Related JP6790693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016196969A JP6790693B2 (en) 2016-10-05 2016-10-05 In-vehicle battery charging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016196969A JP6790693B2 (en) 2016-10-05 2016-10-05 In-vehicle battery charging system

Publications (2)

Publication Number Publication Date
JP2018061337A JP2018061337A (en) 2018-04-12
JP6790693B2 true JP6790693B2 (en) 2020-11-25

Family

ID=61908703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016196969A Expired - Fee Related JP6790693B2 (en) 2016-10-05 2016-10-05 In-vehicle battery charging system

Country Status (1)

Country Link
JP (1) JP6790693B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6911064B2 (en) * 2019-01-09 2021-07-28 本田技研工業株式会社 Storage battery charging system and storage battery charging system control device
CN111830413B (en) * 2019-04-16 2022-10-25 宇通客车股份有限公司 Control method of vehicle-mounted power supply water cooling system
JP7310722B2 (en) * 2020-06-02 2023-07-19 トヨタ自動車株式会社 Power storage system and vehicle
CN112498178B (en) * 2020-10-22 2022-04-08 东风汽车集团有限公司 Method for controlling temperature of battery pack before and after charging in high-temperature and low-temperature environment of electric vehicle
GB2613786A (en) * 2021-12-14 2023-06-21 Jaguar Land Rover Ltd Battery charging protocols

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4386057B2 (en) * 2006-08-10 2009-12-16 ソニー株式会社 Battery device
JP2014075297A (en) * 2012-10-05 2014-04-24 Toyota Motor Corp Power storage system
JP6024684B2 (en) * 2014-02-21 2016-11-16 トヨタ自動車株式会社 Power storage system
JP2015186364A (en) * 2014-03-25 2015-10-22 トヨタ自動車株式会社 Vehicular power apparatus
JP2015220956A (en) * 2014-05-21 2015-12-07 三菱自動車工業株式会社 Charger
JP6090265B2 (en) * 2014-08-29 2017-03-08 トヨタ自動車株式会社 vehicle

Also Published As

Publication number Publication date
JP2018061337A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
JP6790693B2 (en) In-vehicle battery charging system
JP6724701B2 (en) In-vehicle battery charging system
KR101896581B1 (en) Temperature-raising device and temperature-raising method for in-car battery
KR101971324B1 (en) Battery system
WO2019155751A1 (en) Vehicle-mounted charging device and vehicle-mounted charging device control method
JP5660102B2 (en) Vehicle power supply
JP5249277B2 (en) Vehicle charging device
JP6003930B2 (en) Power system
JP2012019678A (en) Battery charging system
US10343539B2 (en) Power supply device for supplying electricity to a load utilizing electric power of a storage-battery-equipped vehicle
JP3882703B2 (en) Power storage system
CN105555585A (en) Electrical storage system
WO2014167914A1 (en) Battery charging system and method
JP7291513B2 (en) vehicle
JP6974234B2 (en) Vehicle power system
JP6011080B2 (en) Vehicle charging system
JP2009201170A (en) Charge control system
JP2010028886A (en) System for controlling charge and discharge of energy storage device
US20160052396A1 (en) Electric vehicle
JP2010004667A (en) Power supply system
JP5704747B2 (en) Charge control unit
KR20190073151A (en) Method and system for battery charge
WO2019220560A1 (en) Power consumption control device
KR102703365B1 (en) How to charge an accumulator battery via a charging terminal
JP2015220956A (en) Charger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R151 Written notification of patent or utility model registration

Ref document number: 6790693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees