JP6785586B2 - Hot water storage tank - Google Patents

Hot water storage tank Download PDF

Info

Publication number
JP6785586B2
JP6785586B2 JP2016122421A JP2016122421A JP6785586B2 JP 6785586 B2 JP6785586 B2 JP 6785586B2 JP 2016122421 A JP2016122421 A JP 2016122421A JP 2016122421 A JP2016122421 A JP 2016122421A JP 6785586 B2 JP6785586 B2 JP 6785586B2
Authority
JP
Japan
Prior art keywords
electrode
baffle
tank
hot water
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016122421A
Other languages
Japanese (ja)
Other versions
JP2017225990A (en
Inventor
圭祐 久保
圭祐 久保
紘平 岡
紘平 岡
茂木 弘道
弘道 茂木
奥居 健司
健司 奥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60890695&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6785586(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016122421A priority Critical patent/JP6785586B2/en
Publication of JP2017225990A publication Critical patent/JP2017225990A/en
Application granted granted Critical
Publication of JP6785586B2 publication Critical patent/JP6785586B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Resistance Welding (AREA)

Description

本発明は、貯湯タンクに関するものである。 The present invention relates to savings hot water tank.

近年、省エネルギーに対する意識の高まりにより、貯湯式給湯器が普及している。このような貯湯式給湯器においては、沸かした湯を貯えるための金属製貯湯タンクを有しており、タンクの内部にはバッフルと呼ばれる、湯の流出口または水の流入口の近傍の水流を抑制するための板状の構造体が設置されている。特許文献1には、貯湯タンクを備えたヒートポンプ式給湯機が開示されている。特許文献1の貯湯タンクは、バッフルに相当する入水拡散板が貯湯タンクのタンク缶体における比較的低温な領域にスポット溶接を用いて取り付けられている。また、特許文献2には、電気温水器の缶体(タンク缶体)に用いるバッフル板が缶体ではなく給水管端面に溶接し取り付けたバッフル板取付構造が開示されている。 In recent years, hot water storage type water heaters have become widespread due to increasing awareness of energy conservation. Such a hot water storage type water heater has a metal hot water storage tank for storing boiling water, and inside the tank, a water flow called a baffle, which is near the hot water outlet or the water inlet, is provided. A plate-shaped structure for restraining is installed. Patent Document 1 discloses a heat pump type water heater provided with a hot water storage tank. In the hot water storage tank of Patent Document 1, a water inlet diffusion plate corresponding to a baffle is attached to a relatively low temperature region in the tank body of the hot water storage tank by spot welding. Further, Patent Document 2 discloses a baffle plate mounting structure in which a baffle plate used for a can body (tank body) of an electric water heater is welded to the end face of a water supply pipe instead of the can body.

特開2005−226858号公報(段落0044〜0063、図1、図2)Japanese Unexamined Patent Publication No. 2005-226858 (paragraphs 0044 to 0063, FIGS. 1, 2) 特開平2−203158号公報(第二頁右上段5行〜第二頁左下段8行、図1)Japanese Unexamined Patent Publication No. 2-203158 (page 2, upper right, line 5 to page 2, lower left, line 8, FIG. 1)

湯の流出口または水の流入口の近傍の水流を抑制するための板状の構造体であるバッフルは、タンク缶体にスポット溶接にて固定する方法が、最も単純なバッフル取付構造にでき、バッフル取付工程も短い。しかし、スポット溶接を行う場合は、一般的にスポット溶接にて接合された接合部の周辺に狭小な間隙が生じてしまう。例えば満水状態のステンレス製貯湯タンクであれば、水道水中の塩化物イオンによりステンレス材表面の不動態被膜が徐々に破壊されるが、狭小な間隙以外では酸素が水から供給されることにより不動態被膜が再生される。しかし、接合部の周辺における狭小な間隙内では不動態被膜の再生に必要な酸素が不足するため、隙間腐食を生じてしまう。その結果、接合部の周辺における隙間腐食が進行しタンク外部への水漏れ不良等が発生する可能性がある。 The baffle, which is a plate-shaped structure for suppressing the water flow near the hot water outlet or the water inlet, can be fixed to the tank can body by spot welding, which can be the simplest baffle mounting structure. The baffle mounting process is also short. However, when spot welding is performed, a narrow gap is generally generated around the joint portion joined by spot welding. For example, in a fully-filled stainless steel hot water storage tank, the passivation film on the surface of the stainless steel material is gradually destroyed by chloride ions in tap water, but the passivation is caused by the supply of oxygen from water except for narrow gaps. The coating is regenerated. However, since the oxygen required for the regeneration of the passivation film is insufficient in the narrow gap around the joint, gap corrosion occurs. As a result, crevice corrosion around the joint may progress, causing poor water leakage to the outside of the tank.

そこで、特許文献1のヒートポンプ式給湯機では、バッフルを比較的低温の位置にてタンク缶体にスポット溶接を行っており、耐隙間腐食性を向上させている。しかし、一般的なスポット溶接部の近傍では狭小な間隙が生じるため、高温水と比較すれば進行は遅いが、低温水であっても隙間腐食を生じてしまう。特許文献1のヒートポンプ式給湯機は、スポット溶接による接合部に生じてしまう隙間腐食の進行を遅らせるために、スポット溶接を限定的に実施しているものの、例えば塩化物イオンが含まれる水道水のような腐食雰囲気下では、スポット溶接による接合部における隙間腐食を長期間に亘って十分に抑制することはできなかった。 Therefore, in the heat pump type water heater of Patent Document 1, the baffle is spot-welded to the tank can body at a relatively low temperature position to improve the crevice corrosion resistance. However, since a narrow gap is generated in the vicinity of a general spot welded portion, the progress is slower than that of high-temperature water, but even low-temperature water causes crevice corrosion. The heat pump type water heater of Patent Document 1 performs spot welding in a limited manner in order to delay the progress of crevice corrosion that occurs at the joint due to spot welding, but for example, tap water containing chloride ions. Under such a corrosive atmosphere, crevice corrosion at the joint due to spot welding could not be sufficiently suppressed for a long period of time.

特許文献2においては、バッフル取り付けをタンク缶体ではなく給水管端面に溶接することで、隙間腐食が生じたとしてもタンク缶体に穴が開くことはなく、水漏れ不良に対しては効果がある。しかし、給水管とバッフルの間には間隙ができるため、隙間腐食そのものの抑制には至らない。 In Patent Document 2, by welding the baffle attachment to the end face of the water supply pipe instead of the tank can body, no hole is formed in the tank can body even if gap corrosion occurs, which is effective against poor water leakage. is there. However, since a gap is formed between the water supply pipe and the baffle, the gap corrosion itself cannot be suppressed.

本発明は、上述の課題を解決するものであり、スポット溶接時に被溶接材間の溶接部近傍の間隙を広げ、腐食雰囲気下で起こる隙間腐食を抑制する貯湯タンクを提供することを目的とする。 The present invention solves the above-mentioned problems, and an object of the present invention is to provide a hot water storage tank that widens the gap near the welded portion between the materials to be welded during spot welding and suppresses the gap corrosion that occurs in a corrosive atmosphere. ..

本発明の貯湯タンクは、不動態被膜を表面に有する金属製のタンク缶体、タンク缶体に水を導入する導入口、タンク缶体に貯えた温水を導出する導出口を備えたものであって、タンク缶体に水を導入する際又はタンク缶体から温水を導出する際の水流を抑制すると共に不動態被膜を表面に有する金属製のバッフルが、タンク缶体内部における導入口の周辺、導出口の周辺のいずれか一方、又は両方に設けられており、バッフルは、バッフル本体と、バッフル本体を支持するバッフル支持脚と、バッフル支持脚の端に設けられたバッフル支持脚底を備え、バッフル支持脚底に形成されている凹形状部は、前記タンク缶体側に凸状であり、凹形状部の底部でタンク缶体と接合されており、前記凹形状部の凹部の深さを、前記バッフルの板厚以上とすることにより、前記バッフル支持脚底と前記タンク缶体との間に、接合部周辺の前記不動態被膜の再生を容易にする間隙が形成されていることを特徴とする。 The hot water storage tank of the present invention is provided with a metal tank can body having a dynamic coating on the surface, an introduction port for introducing water into the tank can body, and an outlet for drawing out hot water stored in the tank can body. Therefore, a metal baffle that suppresses the water flow when introducing water into the tank can body or when hot water is drawn out from the tank can body and has an immovable coating on the surface is provided around the introduction port inside the tank can body. Provided on either or both of the periphery of the outlet, the baffle comprises a baffle body, a baffle support leg that supports the baffle body, and a baffle support leg sole provided at the end of the baffle support leg. The concave portion formed on the bottom of the support leg is convex toward the tank can body side, is joined to the tank can body at the bottom of the concave portion, and the depth of the concave portion of the concave portion is determined by the baffle. By making the thickness equal to or greater than that of the above, a gap is formed between the bottom of the baffle support leg and the tank can body to facilitate the regeneration of the dynamic coating around the joint .

本発明の貯湯タンクは、バッフル支持脚底とタンク缶体との接合部周辺における隙間腐食を抑制することができ、貯湯タンクの寿命を長くすることができる。

The hot water storage tank of the present invention can suppress crevice corrosion around the joint between the baffle support sole and the tank can body, and can prolong the life of the hot water storage tank.

本発明の実施の形態1によるスポット溶接方法を説明する説明図である。It is explanatory drawing explaining the spot welding method by Embodiment 1 of this invention. 本発明の実施の形態1によるスポット溶接方法を実行して形成した接合部を示す図である。It is a figure which shows the joint part formed by performing the spot welding method by Embodiment 1 of this invention. 本発明の実施の形態1による第一電極の正面図である。It is a front view of the 1st electrode according to Embodiment 1 of this invention. 本発明の実施の形態1による別の第一電極の正面図である。It is a front view of another first electrode according to Embodiment 1 of this invention. 本発明の実施の形態1による別の第一電極の正面図である。It is a front view of another first electrode according to Embodiment 1 of this invention. 本発明の実施の形態1による別の第一電極の正面図である。It is a front view of another first electrode according to Embodiment 1 of this invention. 本発明の実施の形態1による別の第一電極の正面図である。It is a front view of another first electrode according to Embodiment 1 of this invention. 本発明の実施の形態1による第一被溶接材の凹形状部の断面図である。It is sectional drawing of the concave part of the first welded material according to Embodiment 1 of this invention. 比較例によるスポット溶接方法を説明する説明図である。It is explanatory drawing explaining the spot welding method by the comparative example. 本発明の実施の形態2による貯湯タンクの正面図である。It is a front view of the hot water storage tank according to Embodiment 2 of this invention. 図10の貯湯タンクに取付けられるバッフルの平面図である。It is a top view of the baffle attached to the hot water storage tank of FIG. 図10の貯湯タンクにおけるバッフルのスポット溶接の説明図である。It is explanatory drawing of the spot welding of the baffle in the hot water storage tank of FIG. 図10の貯湯タンクにおけるバッフルの接合部を示す図である。It is a figure which shows the joint part of the baffle in the hot water storage tank of FIG.

実施の形態1.
図1は本発明の実施の形態1によるスポット溶接方法を説明する説明図であり、図2は本発明の実施の形態1によるスポット溶接方法を実行して形成した接合部を示す図である。スポット溶接方法は、2つの被溶接材13、14を2つの電極11、12で圧着しつつ電流を流し、その抵抗熱で被溶接材13、14の金属を溶かして接合する工程(溶接工程)を実行する接合方法である。2つの被溶接材がスポット溶接により接合された接合部15は、ナゲットと呼ばれる点状の接合部である。なお、図の上部に記載した電極を第一電極11と呼び、第一電極11側の被溶接材を第一被溶接材13と呼ぶ。また、図の下部に記載した電極を第二電極12と呼び、第二電極12側の被溶接材を第二被溶接材14と呼ぶことにする。また、第一被溶接材13には、第一電極11側に凹形状の凹形状部16が施され、凹形状部16で第一被溶接材13と第二被溶接材14は接触している。以下、第一電極11及び第一被溶接材13を上側、第二電極12及び第二被溶接材14を下側に設置しスポット溶接を行うものとして説明するが、これらはそれぞれの相対位置関係が同じであれば上下を入れ替えても構わないし、両電極11、12を水平方向や水平から斜めの方向に設置しても良い。また、第一電極11は、先端に第一被溶接材13に接触する端部11aを有し、第二電極12は、先端に第二被溶接材14に接触する端部12aを有する。
Embodiment 1.
FIG. 1 is an explanatory view for explaining the spot welding method according to the first embodiment of the present invention, and FIG. 2 is a diagram showing a joint formed by executing the spot welding method according to the first embodiment of the present invention. The spot welding method is a step of applying an electric current while crimping two materials 13 and 14 to be welded by two electrodes 11 and 12 and melting and joining the metals of the materials 13 and 14 to be welded by the resistance heat (welding process). Is a joining method to carry out. The joint portion 15 in which the two materials to be welded are joined by spot welding is a point-shaped joint portion called a nugget. The electrode described in the upper part of the figure is referred to as a first electrode 11, and the material to be welded on the side of the first electrode 11 is referred to as the first material to be welded 13. Further, the electrode described in the lower part of the drawing is referred to as a second electrode 12, and the material to be welded on the side of the second electrode 12 is referred to as a second material 14 to be welded. Further, the first welded material 13 is provided with a concave concave portion 16 on the first electrode 11 side, and the first welded material 13 and the second welded material 14 are in contact with each other at the concave portion 16. There is. Hereinafter, the first electrode 11 and the first material to be welded 13 will be installed on the upper side, the second electrode 12 and the second material to be welded 14 will be installed on the lower side, and spot welding will be performed. If they are the same, the top and bottom may be exchanged, and both electrodes 11 and 12 may be installed in the horizontal direction or in a direction oblique from horizontal. Further, the first electrode 11 has an end portion 11a at the tip that contacts the first material to be welded 13, and the second electrode 12 has an end portion 12a at the tip that contacts the second material to be welded 14.

図1、図2に示した第一電極11を、図3から図7を用いて説明する。第一電極11には多くの形状のものを用いることができる。
図3に示す電極1は第一電極11の一例であり、ドーム形と呼称される、第一被溶接材13に接触する端部1aが球面または半球形状の電極である。実施の形態1のスポット溶接方法を実施するにあたって、第一電極11は可能な範囲で先端径の小さいものが望ましいため、どちらかと言えば、大きな曲率半径の球面からなるラジアス形よりも曲率半径が小さな球面からなるドーム形の方がより適している。端部1aは、第一電極11の端部11aに相当する。
The first electrode 11 shown in FIGS. 1 and 2 will be described with reference to FIGS. 3 to 7. Many shapes can be used for the first electrode 11.
The electrode 1 shown in FIG. 3 is an example of the first electrode 11, and the end portion 1a in contact with the first welded material 13, which is called a dome shape, is a spherical or hemispherical electrode. In carrying out the spot welding method of the first embodiment, it is desirable that the first electrode 11 has a tip diameter as small as possible, so that the radius of curvature is rather larger than that of a radius shape composed of a spherical surface having a large radius of curvature. A dome shape consisting of a small spherical surface is more suitable. The end portion 1a corresponds to the end portion 11a of the first electrode 11.

図4に示す電極2は、同じく第一電極11の一例であり、球面もしくは半球形状の端部2aの中央部に円形平面形状の中央端部2bが形成された電極である。この電極2も同様に用いることができ、図1の第一電極11の例にはこの電極2を示している。また、図5に示す電極3のように、球面もしくは半球形状の端部3aの中央部に、端部3aよりも曲率半径の大きい球面を施した形状の中央端部3bが形成された電極も同様に用いることができる。ここで、電極2、3の端部2a、3aに形成された中央端部2b、3bの径は、スポット溶接の際に要求される接合部15の径に近い値にすることが望ましい。 The electrode 2 shown in FIG. 4 is also an example of the first electrode 11, and is an electrode in which a circular plane-shaped central end portion 2b is formed at the central portion of a spherical or hemispherical end portion 2a. The electrode 2 can be used in the same manner, and the electrode 2 is shown in the example of the first electrode 11 in FIG. Further, as in the electrode 3 shown in FIG. 5, there is also an electrode in which a central end portion 3b having a spherical or hemispherical shape and a spherical surface having a radius of curvature larger than that of the end portion 3a is formed at the central portion of the end portion 3a. It can be used in the same way. Here, it is desirable that the diameters of the central end portions 2b and 3b formed on the end portions 2a and 3a of the electrodes 2 and 3 are close to the diameter of the joint portion 15 required for spot welding.

また、第一電極11は、図6のように、一般に円錐台形と呼称される、端部4aの形状が円錐台形である電極4でもよく、図7のように、一般に円錐台ラジアス形と呼称される、端部5aの形状が円錐台ラジアス形である電極5を用いても良い。電極4は、端部4aの中央部に円形平面形状の中央端部4bが形成されている。電極5は、端部5aの中央部に、端部5aよりも曲率半径の大きい球面を施した形状の中央端部5bが形成されている。ここで、電極2、3と同様に、電極4、5の端部4a、5aに形成された中央端部4b、5bの径も、スポット溶接の際に要求される接合部15の径に近い値にすることが望ましい。 Further, the first electrode 11 may be an electrode 4 having a truncated cone shape at the end 4a, which is generally called a truncated cone shape as shown in FIG. 6, and is generally called a truncated cone radius shape as shown in FIG. An electrode 5 having a truncated cone radius shape at the end 5a may be used. The electrode 4 has a circular plane-shaped central end portion 4b formed at the central portion of the end portion 4a. The electrode 5 is formed with a central end portion 5b having a spherical surface having a radius of curvature larger than that of the end portion 5a at the central portion of the end portion 5a. Here, similarly to the electrodes 2 and 3, the diameters of the central end portions 4b and 5b formed at the end portions 4a and 5a of the electrodes 4 and 5 are also close to the diameter of the joint portion 15 required for spot welding. It is desirable to set it to a value.

第一電極11の更に他の形状としては、図には示さないが、ポイントドーム形、ポイントドームラジアス形の電極を用いることもできる。また、電極根元径と先端径が同じであるフラット形と呼ばれる形状の電極、またはこれまでに示した電極から端部形状が偏心した形状の電極を用いても構わないが、実施の形態2で後述するように、電極の端部形状に対応する凹形状部21dを施すのが比較的困難となるため望ましくはない。 As the other shape of the first electrode 11, although not shown in the figure, a point dome type or a point dome radius type electrode can also be used. Further, an electrode having a shape called a flat shape having the same electrode root diameter and tip diameter, or an electrode having an eccentric end shape from the electrodes shown so far may be used, but in the second embodiment. As will be described later, it is not desirable because it is relatively difficult to provide the concave portion 21d corresponding to the end shape of the electrode.

次に、図1、図2に示した第一被溶接材13に施された凹形状部16を、図8を用いて説明する。凹形状部16には、第一電極11同様に、多くの形状のものを用いることができ、凹形状部16の形成方法は問わない。図8に示す凹形状部16は、図1、図2に示した凹形状部16の一例であり、平面底部16aと傾斜部16bから形成された円台形状のものである。ここで、平面底部16aの径はスポット溶接の際に必要とされる接合部15の径よりもやや大きいもの、望ましくは1〜2ミリメートル程度大きいものが良い。言い換えると、第一電極11に図2から図5に示したような電極の中央端部2b、3b、4b、5bに平面または端部形状とは異なる球面を持つ電極を用いる場合、平面底部16aの径は第一電極11の中央端部11bの径(例えば、電極2の中央端部2bの径など)よりもやや大きいもの、望ましくは1〜2ミリメートル程度大きいものが良い。
凹形状16の深さ16cは特に問わないが、少なくとも0.1ミリメートル以上であり、可能であれば第一被溶接材13の板厚程度以上であるのが良い。また、凹形状部16の開口部16dの径であるが、第一電極11が凹形状部16の平面底部16aに接触する際に干渉しない程度に大きいものであれば良い。つまり、用いる第一電極11の径や端部形状によって決定するのが望ましい。
Next, the concave portion 16 formed on the first welded material 13 shown in FIGS. 1 and 2 will be described with reference to FIG. As for the concave portion 16, many shapes can be used as in the case of the first electrode 11, and the method for forming the concave portion 16 is not limited. The concave portion 16 shown in FIG. 8 is an example of the concave portion 16 shown in FIGS. 1 and 2, and has a circular table shape formed from a flat bottom portion 16a and an inclined portion 16b. Here, the diameter of the flat bottom portion 16a is slightly larger than the diameter of the joint portion 15 required for spot welding, preferably about 1 to 2 mm larger. In other words, when the first electrode 11 is a plane or an electrode having a spherical surface different from the end shape is used for the central ends 2b, 3b, 4b, and 5b of the electrodes as shown in FIGS. 2 to 5, the plane bottom portion 16a The diameter of the first electrode 11 is slightly larger than the diameter of the central end portion 11b of the first electrode 11 (for example, the diameter of the central end portion 2b of the electrode 2), preferably about 1 to 2 mm larger.
The depth 16c of the concave shape 16 is not particularly limited, but it is at least 0.1 mm or more, and if possible, it is preferably about the plate thickness of the first welded material 13. Further, the diameter of the opening 16d of the concave portion 16 may be large enough not to interfere when the first electrode 11 comes into contact with the flat bottom portion 16a of the concave portion 16. That is, it is desirable to determine by the diameter and end shape of the first electrode 11 to be used.

図8では、凹形状部16を円台形状のものとして説明したが、平面底部16aや傾斜部16bは曲面形状であっても構わないし、平面底部16aと傾斜部16bが一体化した曲面形状であっても良く、用いる第一電極11の径や端部形状によって最適化するのが望ましい。ただし、平面底部16aは平面の方が望ましく、曲面であっても可能な限り曲率半径の大きなものが良い。また、平面底部16aが曲面である場合も、曲面部分の径は第一電極11の中央端部11bの径よりも1〜2ミリメートル程度大きいものが最も望ましい。 In FIG. 8, the concave portion 16 has been described as having a circular shape, but the flat bottom portion 16a and the inclined portion 16b may have a curved shape, and the flat bottom portion 16a and the inclined portion 16b may have an integrated curved shape. It may be present, and it is desirable to optimize it according to the diameter and end shape of the first electrode 11 to be used. However, the flat bottom 16a is preferably a flat surface, and even if it is a curved surface, the radius of curvature is preferably as large as possible. Even when the flat bottom portion 16a is a curved surface, it is most desirable that the diameter of the curved surface portion is about 1 to 2 mm larger than the diameter of the central end portion 11b of the first electrode 11.

次に、図1、図2に示した第二電極12について説明する。第二電極12は第一電極11同様多くの形状のものを用いることができ、上記にて第一電極11の形状例として示した形状はすべて用いることができる。ただし、第二電極12は、端部が平面であるのが最も望ましく、平面でない場合はできるだけ曲率半径の大きな曲面であるのが望ましい。また、第二電極12は電極根元径と先端径が同じであるフラット形と呼ばれる形状のものも同様に望ましい。後述のように、第二被溶接材14にも凹形状部16を施す場合は、第一電極11の形状例と同様なものが望ましい。
また、第二電極12の端部径は、第一電極11の端部径と同じかまたはそれ以上の大きさであることが望ましい。ただし、後述のように、第二被溶接材14にも凹形状部を施す場合は、第一電極11の端部径と同じであるのが最も望ましい。
第二被溶接材14に関しては、図1、図2に示すように必ずしも凹形状部16を施す必要はないが、第一被溶接材13同様に凹形状部16を施しても構わない。その場合、第一被溶接材13と同形状であることが望ましいが、別形状であっても良い。
第一電極11と第二電極12の電極材料は、銅、クロム銅、ベリリウム銅、ジルコニウム銅をはじめとした、一般的なスポット溶接用の電極材料を用いて構わない。ただし、第一電極11と第二電極12の電極材料は、被溶接材(第一被溶接材13、第二被溶接材14)よりも熱伝導率の高い材料でなければならない。また、第一電極11と第二電極12は一体形電極であってもキャップ形電極であっても良い。
Next, the second electrode 12 shown in FIGS. 1 and 2 will be described. As the second electrode 12, many shapes can be used as in the first electrode 11, and all the shapes shown as the shape examples of the first electrode 11 above can be used. However, it is most desirable that the end of the second electrode 12 is flat, and if it is not flat, it is desirable that the second electrode 12 has a curved surface having a radius of curvature as large as possible. Further, it is also desirable that the second electrode 12 has a shape called a flat shape having the same electrode root diameter and tip diameter. As will be described later, when the concave portion 16 is also provided on the second welded material 14, it is desirable that the second electrode 11 has the same shape as the first electrode 11.
Further, it is desirable that the end diameter of the second electrode 12 is the same as or larger than the end diameter of the first electrode 11. However, as will be described later, when the second welded material 14 is also provided with a concave portion, it is most desirable that the diameter is the same as the end diameter of the first electrode 11.
Regarding the second material to be welded 14, it is not always necessary to provide the concave portion 16 as shown in FIGS. 1 and 2, but the concave portion 16 may be provided as in the first material 13 to be welded. In that case, it is desirable that the shape is the same as that of the first welded material 13, but a different shape may be used.
As the electrode material of the first electrode 11 and the second electrode 12, general electrode materials for spot welding such as copper, chromium copper, beryllium copper, and zirconium copper may be used. However, the electrode materials of the first electrode 11 and the second electrode 12 must be materials having a higher thermal conductivity than the materials to be welded (the first material to be welded 13 and the second material to be welded 14). Further, the first electrode 11 and the second electrode 12 may be an integral type electrode or a cap type electrode.

本発明の実施の形態1によるスポット溶接方法を、図9の比較例と対比しながら説明する。図1に、実施の形態1のスポット溶接方法において第一電極11、第二電極12に電流を流す前の状態を示し、図2に実施の形態1のスポット溶接方法を行った後の接合部周辺の状態を示している。
また、図9に一般的なスポット溶接方法である比較例のスポット溶接方法を行った後の接合部周辺の状態を示した。図9の比較例のスポット溶接では、第一被溶接材33に接触する中央端部31bが形成された端部31aを有する第一電極31と、第二被溶接材34に接触する中央端部32bが形成された端部32aを有する第二電極32を有しており、第一電極31の端部31aおよび中央端部32bと第二電極32の端部32aおよび中央端部32bの形状は一般的にそれぞれ同じであることが多い。図9のような比較例のスポット溶接方法では、第一被溶接材33と第二被溶接材34は溶接の際に極端に変形せず、接合部35の周辺に狭小な間隙37が生じていた。
The spot welding method according to the first embodiment of the present invention will be described in comparison with the comparative example of FIG. FIG. 1 shows a state before passing an electric current through the first electrode 11 and the second electrode 12 in the spot welding method of the first embodiment, and FIG. 2 shows a joint portion after the spot welding method of the first embodiment is performed. It shows the surrounding condition.
In addition, FIG. 9 shows the state around the joint after performing the spot welding method of the comparative example, which is a general spot welding method. In the spot welding of the comparative example of FIG. 9, the first electrode 31 having the end portion 31a formed with the central end portion 31b in contact with the first material to be welded 33 and the central end portion in contact with the second material to be welded 34 It has a second electrode 32 having an end portion 32a on which 32b is formed, and the shapes of the end portion 31a and the central end portion 32b of the first electrode 31 and the end portion 32a and the central end portion 32b of the second electrode 32 are In general, they are often the same. In the spot welding method of the comparative example as shown in FIG. 9, the first material to be welded 33 and the second material to be welded 34 are not extremely deformed during welding, and a narrow gap 37 is formed around the joint portion 35. Welded.

これに対して、図1および図2に示す実施の形態1のスポット溶接方法では、第一被溶接材13に凹形状部16が施してあり、さらに、凹形状部16の平面底部16aは、用いる第一電極11の端部11aに施された中央端部11bの径よりも1〜2ミリメートル程度大きいものである。第一被溶接材13と第二被溶接材14との溶接の際に凹形状部16の部分を溶接すると、溶接後には第一電極11の端部11aに施された中央端部11bの径に近い径を持つ接合部15が形成される。ここで、前述のように、接合部15の径に対して凹形状部16の平面底部16aの径は(望ましくは1〜2ミリメートル程度)大きなものとなっている。そのため、接合部15の周辺に生じる狭小な間隙17の長さは、最大でも凹形状部16の平面底部16aの径から接合部15の径を差し引いた長さとなる。また、接合部15から見て狭小な間隙17の先の部分には、従来のスポット溶接方法に相当する比較例のスポット溶接方法よりも大きな間隙18が生じる。 On the other hand, in the spot welding method of the first embodiment shown in FIGS. 1 and 2, the first workpiece 13 is provided with a concave portion 16, and the flat bottom portion 16a of the concave portion 16 is formed. It is about 1 to 2 millimeters larger than the diameter of the central end portion 11b applied to the end portion 11a of the first electrode 11 to be used. When the portion of the concave portion 16 is welded when the first material to be welded 13 and the second material to be welded 14 are welded, the diameter of the central end portion 11b applied to the end portion 11a of the first electrode 11 after welding. A joint portion 15 having a diameter close to is formed. Here, as described above, the diameter of the flat bottom portion 16a of the concave portion 16 is larger (preferably about 1 to 2 mm) with respect to the diameter of the joint portion 15. Therefore, the length of the narrow gap 17 generated around the joint portion 15 is at most the diameter obtained by subtracting the diameter of the joint portion 15 from the diameter of the flat bottom portion 16a of the concave shape portion 16. Further, in the portion beyond the narrow gap 17 seen from the joint portion 15, a gap 18 larger than that of the spot welding method of the comparative example corresponding to the conventional spot welding method is generated.

実施の形態1のスポット溶接方法がステンレス鋼の第一被溶接材13、第二被溶接材14に適用された製造物や、従来と同様の比較例のスポット溶接方法がステンレス鋼の第一被溶接材33、第二被溶接材34に適用された製造物を、塩化物イオンを含む雰囲気、すなわち腐食雰囲気下においた場合を考える。
一般に、隙間腐食は幅30〜40マイクロメートル以下の間隙が約2ミリメートル以上の長さで存在する場合に発生するとされている。したがって、従来と同様の比較例のスポット溶接方法がステンレス鋼の第一被溶接材33、第二被溶接材34に適用された製造物は、図5の比較例で示したように、接合部35の周辺において数マイクロメートル〜数十マイクロメートル以下の狭小な間隙37が生じてしまうため、塩化物イオンによる不動態被膜の破壊が局所的に生じ、その破壊部が再生されるのに必要な酸素の供給が追い付かず、不動態被膜がステンレス鋼表面から欠損し、最終的に隙間腐食が発生してしまう。
The product in which the spot welding method of the first embodiment is applied to the first welded material 13 and the second welded material 14 of stainless steel, and the spot welding method of the comparative example similar to the conventional one is the first welded material of stainless steel. Consider a case where the products applied to the welded material 33 and the second welded material 34 are placed in an atmosphere containing chloride ions, that is, in a corrosive atmosphere.
Generally, crevice corrosion is said to occur when a crevice with a width of 30 to 40 micrometers or less exists with a length of about 2 mm or more. Therefore, as shown in the comparative example of FIG. 5, the product in which the spot welding method of the comparative example similar to the conventional one is applied to the first welded material 33 and the second welded material 34 of stainless steel is a joint portion. Since a narrow gap 37 of several micrometer to several tens of micrometer or less is generated around 35, the passivation film is locally destroyed by chloride ions, which is necessary for the fractured portion to be regenerated. The supply of oxygen cannot keep up, the passivation film is lost from the surface of the stainless steel, and finally crevice corrosion occurs.

一方で、実施の形態1のスポット溶接方法の場合、第一電極11の端部11aに施された中央端部11bの径と凹形状部16の平面底部16aの径との差が1〜2ミリメートルであるとすると、接合部15の周辺に生じる狭小な間隙17の長さは1〜2ミリメートル以下であり、さらに周辺には大きな間隙18が生じている。そのため、ステンレス鋼表面の不動態被膜の表面が多少破壊されても、接合部15の周りの狭小な間隙17にも酸素の供給が十分なものとなり不動態被膜の再生が迅速に行われ、不動態被膜がステンレス鋼表面から欠損することはない。したがって、実施の形態1のスポット溶接方法により溶接された製造物は、接合部15の周辺の狭小な間隙17においても不動態被膜が破壊されにくくなり、隙間腐食を抑制することができる。ステンレス鋼における不動態被膜は、クロムの酸化膜である。 On the other hand, in the case of the spot welding method of the first embodiment, the difference between the diameter of the central end portion 11b applied to the end portion 11a of the first electrode 11 and the diameter of the flat bottom portion 16a of the concave portion 16 is 1-2. If it is in millimeters, the length of the narrow gap 17 generated around the joint portion 15 is 1 to 2 mm or less, and a large gap 18 is further formed around the joint portion 15. Therefore, even if the surface of the passivation film on the surface of the stainless steel is slightly destroyed, oxygen is sufficiently supplied to the narrow gap 17 around the joint portion 15, and the passivation film is rapidly regenerated. The passivation film is not chipped from the stainless steel surface. Therefore, in the product welded by the spot welding method of the first embodiment, the passivation film is less likely to be destroyed even in the narrow gap 17 around the joint portion 15, and the gap corrosion can be suppressed. The passivation film in stainless steel is an oxide film of chromium.

なお、2つの被溶接材(第一被溶接材13、第二被溶接材14)にステンレス鋼を用いる例を示したが、不動態被膜を形成するアルミニウム合金やチタン合金をはじめとした材料を用いても同様の効果を得ることができ、これらの材料を組み合わせて用いても良い。アルミニウム合金における不動態被膜はアルミの酸化膜であり、チタン合金における不動態被膜はチタンの酸化膜である。また、2つの被溶接材(第一被溶接材13、第二被溶接材14)は、板厚に関しては一般的なスポット溶接が可能な範囲内の値であることが望ましく、2つの被溶接材(第一被溶接材13、第二被溶接材14)の間に板厚差がある場合もどちらを第一被溶接材13としても構わない。 An example of using stainless steel for the two materials to be welded (first material to be welded 13 and second material to be welded 14) has been shown, but materials such as aluminum alloys and titanium alloys that form a passivation film may be used. The same effect can be obtained by using these materials, and these materials may be used in combination. The passivation film in an aluminum alloy is an oxide film of aluminum, and the passivation film in a titanium alloy is an oxide film of titanium. Further, it is desirable that the two materials to be welded (first material to be welded 13 and second material to be welded 14) have a plate thickness within a range in which general spot welding is possible, and the two materials to be welded. When there is a difference in plate thickness between the materials (first material to be welded 13 and second material to be welded 14), either of them may be used as the first material to be welded 13.

以上のように、実施の形態1のスポット溶接方法では、接合部周辺の被溶接材間の狭小な間隙の長さが短くなり、さらにその周辺に大きな間隙が形成されるため、腐食雰囲気下にある被溶接材間の狭小な間隙部において局所的に不動態被膜が破壊されることで生じる隙間腐食を抑制することができる。 As described above, in the spot welding method of the first embodiment, the length of the narrow gap between the materials to be welded around the joint is shortened, and a large gap is formed around the gap, so that the atmosphere is corrosive. It is possible to suppress crevice corrosion caused by local destruction of the passivation film in a narrow gap between certain materials to be welded.

実施の形態2.
実施の形態2では、実施の形態1のスポット溶接方法を用いて製造した金属製貯湯タンクの一例を示す。図10は本発明の実施の形態2による貯湯タンクを示す正面図であり、図11は図10のバッフルを示す平面図である。図12は図10の貯湯タンクにおけるバッフルのスポット溶接方法を示す説明図であり、図13は図10の貯湯タンクにおけるバッフルの接合部を示す図である。貯湯タンク50は、タンク缶体22と、水を貯湯タンク50に導入する水導入口23と、貯湯タンク50に貯められた温水を外部に導出する温水導出口24と、水導入口23の周辺及び温水導出口24の周辺のそれぞれに設けられたバッフル21を備えている。バッフル21は、板状の構造体であり、タンク缶体22の内部の湯の流出口または水の流入口の近傍の水流を抑制する効果がある。図10では、水導入口23がタンク缶体22の下部に設けられ、温水導出口24がタンク缶体22の上部に設けられた例を示した。水導入口23の周辺に設けられたバッフル21は、水導入口23から流入する水の水流を抑制する。温水導出口24の周辺に設けられたバッフル21は、貯湯タンク50の内部から温水導出口24へ流出する温水の水流を抑制する。
Embodiment 2.
The second embodiment shows an example of a metal hot water storage tank manufactured by using the spot welding method of the first embodiment. FIG. 10 is a front view showing a hot water storage tank according to a second embodiment of the present invention, and FIG. 11 is a plan view showing a baffle of FIG. FIG. 12 is an explanatory view showing a spot welding method of the baffle in the hot water storage tank of FIG. 10, and FIG. 13 is a view showing a joint portion of the baffle in the hot water storage tank of FIG. The hot water storage tank 50 includes a tank can body 22, a water introduction port 23 for introducing water into the hot water storage tank 50, a hot water outlet 24 for leading out hot water stored in the hot water storage tank 50 to the outside, and a vicinity of the water introduction port 23. And baffles 21 provided around the hot water outlet 24 are provided. The baffle 21 is a plate-shaped structure, and has an effect of suppressing the water flow in the vicinity of the hot water outlet or the water inlet inside the tank can body 22. FIG. 10 shows an example in which the water introduction port 23 is provided in the lower part of the tank can body 22 and the hot water outlet 24 is provided in the upper part of the tank can body 22. The baffle 21 provided around the water introduction port 23 suppresses the flow of water flowing in from the water introduction port 23. The baffle 21 provided around the hot water outlet 24 suppresses the flow of hot water flowing out from the inside of the hot water storage tank 50 to the hot water outlet 24.

図11に示すバッフル21は、中央に孔21eの空いた平板状のバッフル本体21aと、それを支持するための複数のバッフル支持脚21b及びバッフル支持脚底21cを備えている。また、バッフル支持脚底21cには実施の形態1で説明した凹形状部16を例とする凹形状部21dが施され、タンク缶体22側には凸状となり、これと接触している。凹形状部21dはバッフル支持脚底21cの中心部に施すのが望ましいが、スポット溶接時に第一電極11とバッフル支持脚21bが接触してしまう場合は中心部からずらして施しても構わない。 The baffle 21 shown in FIG. 11 includes a flat plate-shaped baffle body 21a having a hole 21e in the center, a plurality of baffle support legs 21b for supporting the baffle body 21a, and a baffle support leg bottom 21c. Further, the baffle support leg bottom 21c is provided with a concave portion 21d, which is an example of the concave portion 16 described in the first embodiment, and is in contact with the concave portion 21d on the tank can body 22 side. The concave portion 21d is preferably applied to the central portion of the baffle support leg bottom 21c, but if the first electrode 11 and the baffle support leg 21b come into contact with each other during spot welding, the concave portion 21d may be provided so as to be offset from the central portion.

貯湯タンク50に実施の形態1のスポット溶接方法を実施するにあたり、バッフル21のバッフル本体21aの孔21eの有無や位置、バッフル支持脚21b及びバッフル支持脚底21cの数は問わないが、少なくともタンク缶体22とバッフル21をスポット溶接により接合する被接合部となるバッフル支持脚底21cおよび凹形状部21dを持つ構造であることが望ましい。また、図11では、4つのバッフル支持脚21b及びバッフル支持脚底21cを備えたバッフル21を示した。
また、バッフル21は一般的に金属製であり、貯湯タンク50と同じ材質であることが多い。図13のバッフル21および貯湯タンク50のタンク缶体22はステンレス製のものとして説明するが、不動態被膜を形成するアルミニウム合金やチタン合金をはじめとした材料を用いても構わないし、これらの材料を組み合わせて用いても良い。バッフル21
の板厚は、タンク缶体22と同程度であれば良く、タンク缶体22の製造の際の端材を用いて同板厚のものを製造することが資源の有効利用の面からも望ましい。
In carrying out the spot welding method of the first embodiment on the hot water storage tank 50, the presence or absence and position of the hole 21e in the baffle body 21a of the baffle 21, and the number of the baffle support legs 21b and the baffle support leg bottom 21c are not limited, but at least the tank can It is desirable that the structure has a baffle support leg bottom 21c and a concave portion 21d, which are joint portions for joining the body 22 and the baffle 21 by spot welding. Further, FIG. 11 shows a baffle 21 having four baffle support legs 21b and a baffle support leg bottom 21c.
Further, the baffle 21 is generally made of metal, and is often made of the same material as the hot water storage tank 50. The baffle 21 and the tank can body 22 of the hot water storage tank 50 of FIG. 13 will be described as being made of stainless steel, but materials such as an aluminum alloy and a titanium alloy forming a passivation film may be used, and these materials may be used. May be used in combination. Baffle 21
The plate thickness of the tank can body 22 may be about the same as that of the tank can body 22, and it is desirable to manufacture a tank can body 22 having the same plate thickness from the viewpoint of effective use of resources. ..

図12は、バッフル支持脚底21cをタンク缶体22に実施の形態1のスポット溶接方法を用いて取り付ける際における溶接前の状態を示している。図12では第一電極11のおよび第二電極12の例として、図4で説明した電極2を用いている。しかし、この例に限らず、例えば実施の形態1で説明した特徴を有している電極であれば、その他の形状の電極を第一電極11として用いることができ、第二電極12に関しても、実施の形態1で説明した特徴を有している電極であれば、その他の形状の電極を第二電極12として用いることができる。また、第一電極11と第二電極12の電極材料は、銅、クロム銅、ベリリウム銅、ジルコニウム銅をはじめとした、一般的なスポット溶接用の電極材料を用いて構わない。ただし、被溶接材(タンク缶体22、バッフル支持脚底21c)よりも熱伝導率の高い材料でなければならない。さらに、第一電極11と第二電極12は一体形電極であってもキャップ形電極であっても良い。 FIG. 12 shows a state before welding when the baffle support leg bottom 21c is attached to the tank can body 22 by using the spot welding method of the first embodiment. In FIG. 12, the electrode 2 described in FIG. 4 is used as an example of the first electrode 11 and the second electrode 12. However, the present invention is not limited to this example, and any electrode having the characteristics described in the first embodiment can be used as the first electrode 11, and the second electrode 12 can also be used. An electrode having another shape can be used as the second electrode 12 as long as the electrode has the characteristics described in the first embodiment. Further, as the electrode material of the first electrode 11 and the second electrode 12, general electrode materials for spot welding such as copper, chromium copper, beryllium copper, and zirconium copper may be used. However, it must be a material with a higher thermal conductivity than the material to be welded (tank body 22, baffle support sole 21c). Further, the first electrode 11 and the second electrode 12 may be an integral electrode or a cap electrode.

第1電極11と第2電極12の狙い位置であるが、バッフル支持脚底21cに施した凹形状部21dの底部に合わせるようにする。ここで、バッフル支持脚底21cを第一電極11側の被溶接材として、かつ、タンク缶体22を第二電極12側の被溶接材として用いるようにする。被溶接材を入れ替える、もしくはタンク缶体22にも凹形状部を施すことも可能ではあるが、タンクの構造上および機能上望ましくはない。また、タンク缶体22の変形を小さくするためには、第二電極12の中央端部12bが平面になっている電極、もしくは可能な限り先端球面の端部の曲率半径が大きな電極を用いた方が良い。 The target positions of the first electrode 11 and the second electrode 12 are aligned with the bottom of the concave portion 21d provided on the baffle support leg bottom 21c. Here, the baffle support leg bottom 21c is used as the material to be welded on the first electrode 11 side, and the tank can body 22 is used as the material to be welded on the second electrode 12 side. It is possible to replace the material to be welded or to provide a concave portion on the tank can body 22, but this is not desirable due to the structure and function of the tank. Further, in order to reduce the deformation of the tank can body 22, an electrode having a flat center end 12b of the second electrode 12 or an electrode having a radius of curvature at the end of the tip spherical surface as large as possible was used. Better.

図13に、本発明の実施の形態2において、バッフル支持脚底21cに施した凹形状部21dおよびタンク缶体22に実施の形態1のスポット溶接を行った後の状態を示す。 バッフル支持脚底21cに施した凹形状部21dは実施の形態1の凹形状部16の平面底部16aのように、用いる第一電極11の端部11aに施された中央端部11bの径よりも1〜2ミリメートル程度大きいものである。したがって、バッフル支持脚底21cに施した凹形状21dとタンク缶体22の溶接後には第一電極11の端部11aに施された中央端部11bの径に近い径を持つ接合部25が形成されるが、接合部25の径に対して凹形状部21dの底部の径は(望ましくは1〜2ミリメートル程度)大きなものとなっている。そのため、接合部25の周辺に生じる狭小な間隙27の長さは、最大でも凹形状部21dの底部の径から接合部25の径を差し引いた長さとなる。また、接合部25から見て狭小な間隙27の先の部分には、従来のスポット溶接方法に相当する比較例のスポット溶接方法よりも大きな間隙28が生じる。 FIG. 13 shows a state after spot welding of the first embodiment to the concave portion 21d and the tank can body 22 provided on the baffle support leg bottom 21c in the second embodiment of the present invention. The concave portion 21d provided on the baffle support leg bottom 21c is larger than the diameter of the central end portion 11b provided on the end portion 11a of the first electrode 11 to be used, as in the flat bottom portion 16a of the concave portion 16 of the first embodiment. It is about 1 to 2 millimeters larger. Therefore, after welding the concave shape 21d applied to the baffle support leg bottom 21c and the tank can body 22, a joint portion 25 having a diameter close to the diameter of the central end portion 11b applied to the end portion 11a of the first electrode 11 is formed. However, the diameter of the bottom of the concave portion 21d is larger (preferably about 1 to 2 mm) with respect to the diameter of the joint portion 25. Therefore, the length of the narrow gap 27 generated around the joint portion 25 is at most the diameter obtained by subtracting the diameter of the joint portion 25 from the diameter of the bottom portion of the concave portion 21d. Further, in the portion beyond the narrow gap 27 seen from the joint portion 25, a gap 28 larger than that of the spot welding method of the comparative example corresponding to the conventional spot welding method is generated.

このようにスポット溶接による接合部25の周辺に大きな間隙28が開いた貯湯タンク50であれば、内部が水道水で満たされていても、塩化物イオンによる貯湯タンク50の内部に形成された不動態被膜の表面が多少破壊されても、接合部25の周りの狭小な間隙27にも酸素の供給が十分なものとなり不動態被膜の再生(修復)が迅速に行われ、不動態被膜がタンク缶体22の金属(ステンレス鋼等)表面から欠損することはない。
したがって、実施の形態1のスポット溶接方法により溶接(接合)された実施の形態2の貯湯タンク50は、接合部25の周辺の狭小な間隙27においても不動態被膜が破壊されにくくなり、隙間腐食を抑制することができる。
In the case of the hot water storage tank 50 in which a large gap 28 is opened around the joint portion 25 by spot welding in this way, even if the inside is filled with tap water, the hot water storage tank 50 formed inside the hot water storage tank 50 by chloride ions. Even if the surface of the passivation film is slightly destroyed, oxygen is sufficiently supplied to the narrow gap 27 around the joint 25, the passivation film is rapidly regenerated (repaired), and the passivation film is tanked. There is no loss from the metal (stainless steel, etc.) surface of the can body 22.
Therefore, in the hot water storage tank 50 of the second embodiment welded (joined) by the spot welding method of the first embodiment, the passivation film is less likely to be destroyed even in the narrow gap 27 around the joint portion 25, and the gap corrosion Can be suppressed.

このように、本発明によれば、特許文献1のヒートポンプ式給湯機と異なり、実施の形態2の貯湯タンク50、すなわち実施の形態1のスポット溶接方法を用いた貯湯タンク50では、接合部25の周辺に長さが最大で2ミリメートル以下の狭小な間隙27および大きな間隙28が形成されるので、高温部であっても隙間腐食を抑制することができる。したがって、実施の形態2の貯湯タンク50は、高温部であっても低温部であってもバッフル取り付け構造をスポット溶接に統一できるため、タンク構造を簡素化することができる。また、接合部の周囲に狭小な隙間が形成される従来のスポット溶接方法を用いた貯湯タンクでは、低温部であっても隙間腐食が進行してしまう。しかし、実施の形態1のスポット溶接方法を用いた実施の形態2の貯湯タンク50では、従来のスポット溶接方法を用いた貯湯タンクにおいて低温部であっても進行する隙間腐食をも、抑制することができるため、タンク缶体22からの水漏れ不良を抑制でき、タンク寿命を長くすることができる。 As described above, according to the present invention, unlike the heat pump type water heater of Patent Document 1, the hot water storage tank 50 of the second embodiment, that is, the hot water storage tank 50 using the spot welding method of the first embodiment, has a joint portion 25. Since a narrow gap 27 and a large gap 28 having a maximum length of 2 mm or less are formed around the surface, gap corrosion can be suppressed even in a high temperature portion. Therefore, in the hot water storage tank 50 of the second embodiment, the baffle mounting structure can be unified to spot welding regardless of whether it is a high temperature portion or a low temperature portion, so that the tank structure can be simplified. Further, in a hot water storage tank using a conventional spot welding method in which a narrow gap is formed around a joint portion, gap corrosion progresses even in a low temperature portion. However, in the hot water storage tank 50 of the second embodiment using the spot welding method of the first embodiment, it is possible to suppress the crevice corrosion that progresses even in a low temperature portion in the hot water storage tank using the conventional spot welding method. Therefore, poor water leakage from the tank can body 22 can be suppressed, and the tank life can be extended.

また、特許文献2のバッフル板取付構造では、バッフル取り付けをタンク缶体ではなく給水管端面に溶接することでタンク缶体からの水漏れ不良を防止しているが、複雑な取り付け構造となっている。しかし、実施の形態1のスポット溶接方法を用いた実施の形態2の貯湯タンク50では、特許文献2のバッフル板取付構造のような構造を取らずとも水漏れ不良を抑制できるため、タンク構造を簡素化することができる。また、特許文献2のバッフル板取付構造では給水管とバッフルを従来のスポット溶接方法を用いて溶接しているため、接合部の周辺には狭小な間隙が生じ隙間腐食そのものの抑制には至らない。しかし、実施の形態1のスポット溶接方法を用いた実施の形態2の貯湯タンク50では、隙間腐食が抑制されタンク品質が向上する。 Further, in the baffle plate mounting structure of Patent Document 2, water leakage failure from the tank can body is prevented by welding the baffle mounting to the end face of the water supply pipe instead of the tank can body, but the mounting structure is complicated. There is. However, in the hot water storage tank 50 of the second embodiment using the spot welding method of the first embodiment, water leakage failure can be suppressed without adopting a structure like the baffle plate mounting structure of Patent Document 2, so that the tank structure can be used. It can be simplified. Further, in the baffle plate mounting structure of Patent Document 2, since the water supply pipe and the baffle are welded by using a conventional spot welding method, a narrow gap is generated around the joint portion, and the gap corrosion itself cannot be suppressed. .. However, in the hot water storage tank 50 of the second embodiment using the spot welding method of the first embodiment, crevice corrosion is suppressed and the tank quality is improved.

ここまで金属製貯湯タンク内部へバッフルを、スポット溶接を用いて接合する例について述べたが、貯湯タンクの他の箇所に実施の形態1のスポット溶接を用いても同様の効果を得ることができる。また、実施の形態1のスポット溶接方法は、貯湯タンクのみに限らず、腐食雰囲気下で使用するステンレス材等でできた構造体の接合に適用することができる。例えば、ステンレス製の燃料タンクや給油管等の内部構造に実施の形態1のスポット溶接を実施しても、隙間腐食の抑制による長寿命化やスポット溶接を用いることでの構造の簡素化が達成できる。なお、2つの被溶接材(第一被溶接材13、第二被溶接材14)にステンレス鋼を用いる例で説明したが、不動態被膜を形成するアルミニウム合金やチタン合金をはじめとした材料を用いても同様の効果を得ることができ、これらの材料を組み合わせて用いても良い。 Up to this point, an example of joining a baffle to the inside of a metal hot water storage tank by spot welding has been described, but the same effect can be obtained by using spot welding of the first embodiment to other parts of the hot water storage tank. .. Further, the spot welding method of the first embodiment is not limited to the hot water storage tank, and can be applied to joining a structure made of stainless steel or the like used in a corrosive atmosphere. For example, even if spot welding of the first embodiment is performed on an internal structure such as a stainless steel fuel tank or a refueling pipe, the life is extended by suppressing crevice corrosion and the structure is simplified by using spot welding. it can. Although stainless steel has been used as the two materials to be welded (first material to be welded 13 and second material to be welded 14), materials such as aluminum alloys and titanium alloys that form a passivation film may be used. The same effect can be obtained by using these materials, and these materials may be used in combination.

なお、本発明は、矛盾のない範囲内において、各実施の形態の内容を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 In the present invention, the contents of each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted within a consistent range.

1、2、3、4、5:電極、1a、2a、3a、4a、5a、11a、31a、32a:端部、2b、3b、4b、5b、11b、31b、32b:中央端部、11、31:第一電極、12、32:第二電極、13、33:第一被溶接材、14、34:第二被溶接材
15、35:接合部(ナゲット)、16、21d:凹形状部、16a:平面底部、16b:傾斜部、16c:凹形状の深さ、16d:開口部、17、37、27:狭小な間隙、18:大きな間隙、21:バッフル、21a:バッフル本体、21b:バッフル支持脚、21c:バッフル支持脚底、21e:孔、22:タンク缶体、23:水導入口、24:温水導出口、50:貯湯タンク
1, 2, 3, 4, 5: Electrodes, 1a, 2a, 3a, 4a, 5a, 11a, 31a, 32a: Ends, 2b, 3b, 4b, 5b, 11b, 31b, 32b: Central ends, 11 , 31: 1st electrode, 12, 32: 2nd electrode, 13, 33: 1st welded material, 14, 34: 2nd welded material 15, 35: joint (nugget), 16, 21d: concave shape Part, 16a: Flat bottom, 16b: Inclined, 16c: Concave depth, 16d: Opening, 17, 37, 27: Narrow gap, 18: Large gap, 21: Baffle, 21a: Baffle body, 21b : Baffle support leg, 21c: Baffle support leg bottom, 21e: Hole, 22: Tank can body, 23: Water inlet, 24: Hot water outlet, 50: Hot water storage tank

Claims (2)

不動態被膜を表面に有する金属製のタンク缶体、前記タンク缶体に水を導入する導入口、前記タンク缶体から当該タンク缶体に貯えた温水を導出する導出口を備えた貯湯タンクであって、
前記タンク缶体に水を導入する際又は前記タンク缶体から温水を導出する際の水流を抑制すると共に不動態被膜を表面に有する金属製のバッフルが、前記タンク缶体内部における前記導入口の周辺、前記導出口の周辺のいずれか一方、又は両方に設けられており、前記バッフルは、バッフル本体と、前記バッフル本体を支持するバッフル支持脚と、前記バッフル支持脚の端に設けられたバッフル支持脚底を備え、前記バッフル支持脚底に形成されている凹形状部は、前記タンク缶体側に凸状であり、前記凹形状部の底部で前記タンク缶体と接合されており、前記凹形状部の凹部の深さを、前記バッフルの板厚以上とすることにより、前記バッフル支持脚底と前記タンク缶体との間に、接合部周辺の前記不動態被膜の再生を容易にする間隙が形成されていることを特徴とする貯湯タンク。
A hot water storage tank equipped with a metal tank can body having a passivation coating on the surface, an introduction port for introducing water into the tank can body, and an outlet for drawing out hot water stored in the tank can body from the tank can body. There,
A metal baffle that suppresses the water flow when introducing water into the tank can body or when hot water is drawn out from the tank can body and has an immobile coating on the surface of the introduction port inside the tank can body. The baffle is provided on the periphery, the periphery of the outlet, or both, and the baffle is provided on the baffle body, the baffle support leg that supports the baffle body, and the baffle provided at the end of the baffle support leg. The concave portion provided with the support leg bottom and formed on the baffle support leg bottom is convex toward the tank can body side, and is joined to the tank can body at the bottom of the concave shape portion. By setting the depth of the recess to be equal to or greater than the thickness of the baffle, a gap is formed between the baffle support leg bottom and the tank can body to facilitate the regeneration of the dynamic coating around the joint. A hot water storage tank characterized by being
前記バッフルの板厚は、前記タンク缶体の板厚と同じであることを特徴とする請求項1に記載の貯湯タンク。The hot water storage tank according to claim 1, wherein the plate thickness of the baffle is the same as the plate thickness of the tank body.
JP2016122421A 2016-06-21 2016-06-21 Hot water storage tank Active JP6785586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016122421A JP6785586B2 (en) 2016-06-21 2016-06-21 Hot water storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016122421A JP6785586B2 (en) 2016-06-21 2016-06-21 Hot water storage tank

Publications (2)

Publication Number Publication Date
JP2017225990A JP2017225990A (en) 2017-12-28
JP6785586B2 true JP6785586B2 (en) 2020-11-18

Family

ID=60890695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016122421A Active JP6785586B2 (en) 2016-06-21 2016-06-21 Hot water storage tank

Country Status (1)

Country Link
JP (1) JP6785586B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10857618B2 (en) * 2018-02-28 2020-12-08 GM Global Technology Operations LLC Improving mechanical performance of Al-steel weld joints by limiting steel sheet deformation
KR102259380B1 (en) * 2018-04-20 2021-06-01 주식회사 엘지에너지솔루션 Battery Module Having Bus-bar and Battery Pack
JP6762445B1 (en) * 2019-03-29 2020-09-30 株式会社神戸製鋼所 Spot welding method for aluminum material

Also Published As

Publication number Publication date
JP2017225990A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP6785586B2 (en) Hot water storage tank
CN105499762B (en) A kind of welding procedure for avoiding P92 steel weld metal microcracks
CN101784363B (en) Laser welding of hightly reflective materials
WO2007111453A1 (en) Welding apparatus of stainless steel pipe and welding method of the same
CN106670640A (en) Electron beam welding method applicable to small-diameter flange plates on thin-wall top cover
CN106312317A (en) Welding method of aluminum-magnesium alloy with medium thickness
US20070181646A1 (en) Friction Stir Welding Method
CN103358036A (en) Welding technology for stainless steel composite tubes
KR20080103557A (en) Support structure for heat transfer tube
CN104154412A (en) Fire protection heptafluoropropane steel cylinder and manufacturing method thereof
CN107876958A (en) The welding method of weld jig and alloy product
TWI551388B (en) An inner sleeve for tube welding
JP5535799B2 (en) Repair method of metal parts and repaired metal parts
JP2004170413A (en) Nuclear reactor head having integrated nozzle
JP2012148304A (en) Method for welding thin plate member and method for manufacturing can body using the method
JP7155903B2 (en) Electrode for resistance spot welding and method for manufacturing resistance spot welding joint
US20060218792A1 (en) Co-extruded generating bank swaged tubing
CN104204710A (en) Surface treatment for corrosion resistance of aluminum
CN112676690B (en) Enhanced resistance welding cap
CN106624278B (en) A kind of change wall thickness aluminium welding method
CN209223338U (en) Conducive to the welded steel structure of solder circulation
WO2016111232A1 (en) Weld joint for thin sheet member, method for manufacturing can provided with said weld joint, and pipe-laying method for pipe provided with said weld joint
CN109877482B (en) Ship multi-plate assembly welding structure and welding method
JP4958578B2 (en) Liquefied natural gas vaporizer heat transfer tube
US4969420A (en) Magnesium pressure vessel water tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201027

R151 Written notification of patent or utility model registration

Ref document number: 6785586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250