JP6785218B2 - Metal composite oxide catalyst for exhaust gas purification and its manufacturing method - Google Patents

Metal composite oxide catalyst for exhaust gas purification and its manufacturing method Download PDF

Info

Publication number
JP6785218B2
JP6785218B2 JP2017506525A JP2017506525A JP6785218B2 JP 6785218 B2 JP6785218 B2 JP 6785218B2 JP 2017506525 A JP2017506525 A JP 2017506525A JP 2017506525 A JP2017506525 A JP 2017506525A JP 6785218 B2 JP6785218 B2 JP 6785218B2
Authority
JP
Japan
Prior art keywords
composite oxide
exhaust gas
metal composite
gas purification
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017506525A
Other languages
Japanese (ja)
Other versions
JPWO2016148062A1 (en
Inventor
庸裕 田中
庸裕 田中
三郎 細川
三郎 細川
謙太郎 寺村
謙太郎 寺村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Publication of JPWO2016148062A1 publication Critical patent/JPWO2016148062A1/en
Application granted granted Critical
Publication of JP6785218B2 publication Critical patent/JP6785218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust

Description

本発明は,排ガス浄化用金属複合酸化物触媒及びその製造方法に関するものであり,詳しくは自動車排ガス浄化を指向した貴金属超低減化新規複合酸化物触媒の開発及びその製造方法に関するものである。 The present invention relates to a metal composite oxide catalyst for exhaust gas purification and a method for producing the same, and more particularly to the development of a new ultra-reduced precious metal composite oxide catalyst for purifying automobile exhaust gas and a method for producing the same.

自動車排ガス浄化触媒として現在用いられているのは,主にPdやRhなどの貴金属種である。Pdはリッチ条件(酸素希薄条件)での酸化活性が高く,Rhは極めて高いNOx還元活性を示すことが知られている(非特許文献1)。貴金属種は自動車排ガス浄化触媒として高い活性を示し,自動車に欠かせない元素である。しかし,これらの貴金属種は希少元素であることから,価格変動が激しいという問題がある。近年では,貴金属を代替する研究が盛んに行われており,遷移金属の中ではCuがNO選択還元に対して高い活性を示すことが明らかになっている(非特許文献2)。特に,炭化水素(HC)を還元剤として用いたNOx選択還元反応において,Cu2+イオン交換ZSM-5ゼオライト触媒が有効であることが有名である(非特許文献3)。当研究室においても,種々の担体と様々な活性金属成分の組み合わせの最適化を行った結果,Cu/Al2O3が最も有効であることを報告している(非特許文献4)。しかし,Cu系触媒では低温でのNO浄化効率が極めて低く,冷間時の排ガス浄化には向かないという問題点がある。そのため,低温時の浄化効率の向上には貴金属種の添加は不可欠である。Currently used as automobile exhaust gas purification catalysts are mainly precious metal species such as Pd and Rh. It is known that Pd has high oxidizing activity under rich conditions (oxygen-diluted conditions) and Rh exhibits extremely high NO x reducing activity (Non-Patent Document 1). Precious metal species show high activity as automobile exhaust gas purification catalysts and are indispensable elements for automobiles. However, since these precious metal species are rare elements, there is a problem that price fluctuations are severe. In recent years, research on alternatives to precious metals has been actively conducted, and it has been clarified that Cu exhibits high activity for NO selective reduction among transition metals (Non-Patent Document 2). In particular, it is well known that the Cu 2+ ion-exchanged ZSM-5 zeolite catalyst is effective in the NO x selective reduction reaction using a hydrocarbon (HC) as a reducing agent (Non-Patent Document 3). In our laboratory, we have reported that Cu / Al 2 O 3 is the most effective as a result of optimizing the combination of various carriers and various active metal components (Non-Patent Document 4). However, the Cu-based catalyst has a problem that the NO purification efficiency at low temperature is extremely low and it is not suitable for exhaust gas purification at cold time. Therefore, the addition of precious metal species is indispensable for improving the purification efficiency at low temperatures.

村木秀昭, 触媒, 1992, 34, 225.Hideaki Muraki, Catalyst, 1992, 34, 225. V. Parvulescu, P. Grange, B. Delmon, Catal. Today 1998, 46, 233.V. Parvulescu, P. Grange, B. Delmon, Catal. Today 1998, 46, 233. H. Yahiro, M. Iwamoto, Appl. Catal. A-Gen. 2001, 222, 163.H. Yahiro, M. Iwamoto, Appl. Catal. A-Gen. 2001, 222, 163. T. Yamamoto, T. Tanaka, R. Kuma, S. Suzuki, F. Amano, Y. Shimooka, Y. Kohno, T. Funabiki, S. Yoshida., Phys. Chem. Chem. Phys., 2002, 4, 2449.T. Yamamoto, T. Tanaka, R. Kuma, S. Suzuki, F. Amano, Y. Shimooka, Y. Kohno, T. Funabiki, S. Yoshida., Phys. Chem. Chem. Phys., 2002, 4, 2449.

本発明は、貴金属の使用量を低減化した新規触媒を開発することで,排ガス浄化用金属複合酸化物触媒の脱ないし省貴金属化を実現することを主な目的としている。 A main object of the present invention is to realize removal or reduction of precious metals from a metal composite oxide catalyst for exhaust gas purification by developing a new catalyst in which the amount of noble metal used is reduced.

本発明は、以下の排ガス浄化用金属複合酸化物触媒及びその製造方法を提供するものである。
項1. 下記式(I)
/MFeMn1−x (I)
(式中、MはPd、Rh及びPtからなる群から選ばれる貴金属を示す。MはGd,Tb,Dy,Ho,Er,Tm,Yb、Lu及びYからなる群から選ばれる希土類元素を示す。xは0.2〜1.0である。MFeMn1−xは金属複合酸化物担体を示し、Mは前記担体に担持されている。)
で表わされる、排ガス浄化用金属複合酸化物触媒。
項2. MがPdである、項1に記載の排ガス浄化用金属複合酸化物触媒。
項3. MがYbである、項1又は2に記載の排ガス浄化用金属複合酸化物触媒。
項4. xが0.4〜0.8である、項1〜3のいずれか1項に記載の排ガス浄化用金属複合酸化物触媒。
項5. xが0.6〜0.8である、項4に記載の排ガス浄化用金属複合酸化物触媒。
項6. 貴金属MがMFeMn1−x (MはGd,Tb,Dy,Ho,Er,Tm,Yb、Lu及びYからなる群から選ばれる希土類元素を示す。xは0.2〜1.0である。)で表わされる担体に対し質量で0.01〜2%含まれる、項1〜5のいずれか1項に記載の排ガス浄化用金属複合酸化物触媒。
項7. 貴金属MがMFeMn1−x (MはGd,Tb,Dy,Ho,Er,Tm,Yb、Lu及びYからなる群から選ばれる希土類元素を示す。xは0.2〜1.0である。)で表わされる複合酸化物に対し質量で0.1〜1.0%含まれる、項6に記載の排ガス浄化用金属複合酸化物触媒。
項8. 前記金属複合酸化物担体の結晶構造が六方晶構造である、項1〜7のいずれか1項に記載の排ガス浄化用金属複合酸化物触媒。
項9. MがPdであり、かつ、MがYbである、項1に記載の排ガス浄化用金属複合酸化物触媒。
項10. 前記金属複合酸化物担体がソルボサーマル法で合成されたものである、項1〜9のいずれか1項に記載の排ガス浄化用金属複合酸化物触媒。
項11. 溶媒中にGd,Tb,Dy,Ho,Er,Tm,Yb,Lu及びYからなる群から選ばれる希土類元素化合物、Fe化合物、Mn化合物を溶解もしくは懸濁し、加熱して下記式(II)
FeMn1−x (II)
(式中、MはGd,Tb,Dy,Ho,Er,Tm,Yb、Lu及びYからなる群から選ばれる希土類元素を示す。xは0.2〜1.0である。)
で表わされる担体を調製し、得られた担体をPd化合物、Rh化合物又はPt化合物溶液に接触し、焼成する工程を含む、下記式(I)
/MFeMn1−x (I)
(式中、MはPd、Rh及びPtからなる群から選ばれる貴金属を示す。MはGd,Tb,Dy,Ho,Er,Tm,Yb、Lu及びYからなる群から選ばれる希土類元素を示す。xは0.2〜1.0である。MFeMn1−xは金属複合酸化物担体を示し、Mは前記担体に担持されている。)
で表わされる、排ガス浄化用金属複合酸化物触媒の製造方法。
項12. 溶媒が1,4-ブタンジオールである、項11に記載の排ガス浄化用金属複合酸化物触媒の製造方法。
The present invention provides the following metal composite oxide catalyst for exhaust gas purification and a method for producing the same.
Item 1. The following formula (I)
M 1 / M 2 Fe x Mn 1-x O 3 (I)
(In the formula, M 1 represents a precious metal selected from the group consisting of Pd, Rh and Pt. M 2 is a rare earth element selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. X is 0.2 to 1.0. M 2 Fe x Mn 1-x O 3 indicates a metal composite oxide carrier, and M 1 is supported on the carrier.)
A metal composite oxide catalyst for exhaust gas purification represented by.
Item 2. Item 2. The metal composite oxide catalyst for exhaust gas purification, wherein M 1 is Pd.
Item 3. Item 2. The metal composite oxide catalyst for exhaust gas purification according to Item 1 or 2, wherein M 2 is Yb.
Item 4. Item 2. The metal composite oxide catalyst for exhaust gas purification according to any one of Items 1 to 3, wherein x is 0.4 to 0.8.
Item 5. Item 4. The metal composite oxide catalyst for exhaust gas purification, wherein x is 0.6 to 0.8.
Item 6. The precious metal M 1 indicates a rare earth element selected from the group consisting of M 2 Fe x Mn 1-x O 3 (M 2 is Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. X is 0.2 to 0.2 to Y. The metal composite oxide catalyst for exhaust gas purification according to any one of Items 1 to 5, which is contained in an amount of 0.01 to 2% by mass with respect to the carrier represented by (1.0).
Item 7. The precious metal M 1 is M 2 Fe x Mn 1-x O 3 (M 2 is a rare earth element selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. X is 0.2 to 0.2 to Y. Item 6. The metal composite oxide catalyst for purifying exhaust gas, which is contained in an amount of 0.1 to 1.0% by mass with respect to the composite oxide represented by (1.0).
Item 8. Item 2. The metal composite oxide catalyst for exhaust gas purification according to any one of Items 1 to 7, wherein the crystal structure of the metal composite oxide carrier is a hexagonal structure.
Item 9. Item 2. The metal composite oxide catalyst for exhaust gas purification according to Item 1, wherein M 1 is Pd and M 2 is Yb.
Item 10. Item 2. The metal composite oxide catalyst for exhaust gas purification according to any one of Items 1 to 9, wherein the metal composite oxide carrier is synthesized by a solvothermal method.
Item 11. A rare earth element compound, Fe compound, or Mn compound selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y is dissolved or suspended in a solvent and heated to the following formula (II).
M 2 Fe x Mn 1-x O 3 (II)
(In the formula, M 2 represents a rare earth element selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. X is 0.2 to 1.0.)
The following formula (I), which comprises a step of preparing a carrier represented by the above, contacting the obtained carrier with a solution of a Pd compound, a Rh compound or a Pt compound, and firing the carrier.
M 1 / M 2 Fe x Mn 1-x O 3 (I)
(In the formula, M 1 represents a precious metal selected from the group consisting of Pd, Rh and Pt. M 2 is a rare earth element selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. X is 0.2 to 1.0. M 2 Fe x Mn 1-x O 3 indicates a metal composite oxide carrier, and M 1 is supported on the carrier.)
A method for producing a metal composite oxide catalyst for purifying exhaust gas, which is represented by.
Item 12. Item 2. The method for producing a metal composite oxide catalyst for purifying exhaust gas, wherein the solvent is 1,4-butanediol.

本発明によれば、Pd、Rh及びPtからなる群から選ばれる貴金属(M)の担体をMFeMn1−x(M,xは前記に定義される通りである)にすることで、Mの担持量を少なくしても排ガス浄化用金属複合酸化物触媒として優れた性能を発揮できる。また、実施例で示されるようにPdを0.5質量%担持した触媒は、RhもしくはPdを1.0質量%担持したAl担持貴金属触媒と比較してもCO及びプロピレン酸化、NOx還元の温度(T50)が低く、従来のRh含有触媒やPd含有触媒よりも優れた性能を有する。According to the present invention, the carrier of the noble metal (M 1 ) selected from the group consisting of Pd, Rh and Pt is M 2 Fe x Mn 1-x O 3 (M 2 , x are as defined above). Therefore, even if the amount of M 1 supported is reduced, excellent performance as a metal composite oxide catalyst for exhaust gas purification can be exhibited. Further, as shown in Examples, the catalyst supporting 0.5% by mass of Pd is CO and propylene oxidation, NOx even when compared with the catalyst of Al 2 O 3 supporting noble metal supporting 1.0% by mass of Rh or Pd. The reduction temperature (T50) is low, and it has superior performance to conventional Rh-containing catalysts and Pd-containing catalysts.

六方晶YbFe0.6Mn0.4O3(ST)担持Pd触媒とγ-Al2O3担持貴金属触媒の触媒活性比較 。Comparison of catalytic activity between hexagonal YbFe 0.6 Mn 0.4 O 3 (ST) -supported Pd catalyst and γ-Al 2 O 3- supported noble metal catalyst. 六方晶YbFe0.6Mn0.4O3(ST)担持Pd触媒の担持量の影響。Hexagonal YbFe 0.6 Mn 0.4 O 3 (ST) The effect of the amount of supported Pd catalyst. 調製法の影響およびMnの添加効果 The effect of the preparation method and the effect of adding Mn . 各種触媒のXRDパターン及び比表面積の測定結果。XRDパターンにより本発明で使用する担体の結晶構造は、六方晶構造であることが確認された。また、図4に記載された比表面積は、BET比表面積である。Measurement results of XRD pattern and specific surface area of various catalysts. The XRD pattern confirmed that the crystal structure of the carrier used in the present invention was a hexagonal structure. The specific surface area shown in FIG. 4 is the BET specific surface area. 常圧固定床流通型反応装置を概略的に示す。The normal pressure fixed bed flow type reactor is shown schematically.

本発明の排気ガス浄化用金属複合酸化物触媒は、Pd、Rh及びPtからなる群から選ばれる貴金属を下記式(II)
FeMn1−x (II)
(式中、MはGd,Tb,Dy,Ho,Er,Tm,Yb、Lu及びYからなる群から選ばれる希土類元素を示す。xは0.2〜1.0である。MFeMn1−xは金属複合酸化物担体を示し、Pdは前記担体に担持されている。)
で表わされる金属複合酸化物担体に担持する。
The metal composite oxide catalyst for purifying exhaust gas of the present invention uses a noble metal selected from the group consisting of Pd, Rh and Pt according to the following formula (II).
M 2 Fe x Mn 1-x O 3 (II)
(In the formula, M 2 represents a rare earth element selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. X is 0.2 to 1.0. M 2 Fe x Mn 1- x O 3 indicates a metal composite oxide carrier, and Pd is supported on the carrier.)
It is supported on a metal composite oxide carrier represented by.

貴金属Mの担持量は、式(II)で表わされる担体の質量を基準にして、好ましくは0.01〜2%程度、より好ましくは0.05〜2%程度、さらに好ましくは0.1〜1%程度、特に好ましくは0.1〜0.5%程度である。貴金属の担持量は少ないほどコストが低減されて好ましいが、あまりに少なすぎるとNO還元活性の低下や長時間使用したときに排気ガス浄化が十分に行われないリスクがある。The amount of the noble metal M 1 supported is preferably about 0.01 to 2%, more preferably about 0.05 to 2%, still more preferably about 0.1 to 1%, particularly about 0.1 to 1%, based on the mass of the carrier represented by the formula (II). It is preferably about 0.1 to 0.5%. It is preferable that the amount of the precious metal supported is small because the cost is reduced, but if it is too small, there is a risk that the NO reduction activity is lowered and the exhaust gas is not sufficiently purified when used for a long time.

担体に担持される貴金属Mとしては、Pd、Rh及びPtからなる群から選ばれる少なくとも1種が挙げられ、好ましくはPd、Rh又はPtであり、より好ましくはPd、Rh、最も好ましくはPdである。The noble metal M 1 which is supported on a carrier, Pd, at least one can be mentioned is selected from the group consisting of Rh and Pt, preferably Pd, Rh or Pt, more preferably Pd, Rh, most preferably Pd Is.

で表わされる希土類元素としては、Gd,Tb,Dy,Ho,Er,Tm,Yb、Lu及びYが挙げられ、これらを1種又は2種以上使用することができる。好ましい希土類元素はEr,Tm,Yb、Lu又はYであり、より好ましくはYb、Lu、特に好ましくはYbである。Examples of the rare earth element represented by M 2 include Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y, and one or more of these can be used. Preferred rare earth elements are Er, Tm, Yb, Lu or Y, more preferably Yb, Lu, and particularly preferably Yb.

本発明の担体の結晶構造は、六方晶構造が挙げられる。 The crystal structure of the carrier of the present invention includes a hexagonal structure.

本発明の一般式(II)で表わされる担体は、ソルボサーマル法(ST法)、錯体重合法(PC法)などにより製造することができ、ST法が好ましい。 The carrier represented by the general formula (II) of the present invention can be produced by a solvothermal method (ST method), a complex polymerization method (PC method), or the like, and the ST method is preferable.

ST法は、密閉容器内で希土類元素(M)化合物、Fe化合物、必要に応じてさらにMn化合物を溶媒に溶解もしくは懸濁して加熱する方法であり、式(II)で表わされる担体は、沈殿物として生成する。溶媒としては、1,4-ブタンジオールなどの多価アルコール、エチレングリコールモノメチルエーテルなどのアルキレングリコールモノアルキルエーテル、グリセリンなどの1種又は2種以上を使用できる。好ましい溶媒は1,4-ブタンジオールである。反応は、密閉系で行うのが好ましい。また、反応は、不活性ガス(窒素、アルゴン等)で置換した雰囲気で行うのが好ましい。反応温度は、50〜350℃程度、好ましくは100〜350℃程度である。反応圧力は0.1〜10 MPa程度、好ましくは1.0〜5.0 MPa程度である。反応時間は、30分から24時間程度、好ましくは1〜12時間程度である。反応は、希土類元素(M)化合物1モルに対し、Fe化合物とMn化合物の合計量を0.5〜1.5モル程度、好ましくは0.8〜1.2モル程度使用すればよい。さらに、得られた試料を200〜800℃で0.2〜24時間焼成することにより、本発明で使用する式(II)の担体を得ることができる。The ST method is a method in which a rare earth element (M 2 ) compound, an Fe compound, and, if necessary, an Mn compound are further dissolved or suspended in a solvent and heated in a closed container. The carrier represented by the formula (II) is a method. Produces as a precipitate. As the solvent, one or more kinds of polyhydric alcohols such as 1,4-butanediol, alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, and glycerin can be used. The preferred solvent is 1,4-butanediol. The reaction is preferably carried out in a closed system. The reaction is preferably carried out in an atmosphere substituted with an inert gas (nitrogen, argon, etc.). The reaction temperature is about 50 to 350 ° C, preferably about 100 to 350 ° C. The reaction pressure is about 0.1 to 10 MPa, preferably about 1.0 to 5.0 MPa. The reaction time is about 30 minutes to 24 hours, preferably about 1 to 12 hours. In the reaction, the total amount of the Fe compound and the Mn compound may be about 0.5 to 1.5 mol, preferably about 0.8 to 1.2 mol, with respect to 1 mol of the rare earth element (M 2 ) compound. Furthermore, the carrier of the formula (II) used in the present invention can be obtained by calcining the obtained sample at 200 to 800 ° C. for 0.2 to 24 hours.

溶媒に溶解/懸濁する希土類元素(M)化合物としては、希土類元素にアセチルアセトン、アルコキシド(メトキシド、エトキシド、tert-ブトキシドなど)のような配位子が配位した錯体化合物、或いは希土類元素の硝酸塩、酢酸塩などの有機酸塩、炭酸塩、ハロゲン化物(フッ化物、塩化物、臭化物、ヨウ化物)などが挙げられ、アセチルアセトン、アルコキシド(メトキシド、エトキシド、tert-ブトキシドなど)のような配位子が配位した錯体化合物、酢酸塩等の有機酸塩、炭酸塩が好ましく使用できる。希土類元素(M)化合物は、1種又は2種以上を組み合わせて使用することができる。The rare earth element (M 2 ) compound dissolved / suspended in the solvent is a complex compound in which a ligand such as acetylacetone or alkoxide (methoxyd, ethoxydo, tert-butoxide, etc.) is coordinated with the rare earth element, or a rare earth element. Organic acid salts such as nitrates and acetates, carbonates, halides (fluorides, chlorides, bromides, iodides) and the like, and coordinations such as acetylacetone and alkoxides (methoxydo, ethoxydo, tert-butoxide, etc.) Complex compounds in which children are coordinated, organic acid salts such as acetates, and carbonates can be preferably used. The rare earth element (M 2 ) compound can be used alone or in combination of two or more.

Fe化合物としては、Feイオン(2価又は3価)にアセチルアセトン、アルコキシド(メトキシド、エトキシド、tert-ブトキシドなど)のような配位子が配位した錯体化合物、硝酸塩、酢酸塩などの有機酸塩、炭酸塩、ハロゲン化物(フッ化物、塩化物、臭化物、ヨウ化物)などが挙げられ、アセチルアセトン、アルコキシド(メトキシド、エトキシド、tert-ブトキシドなど)のような配位子が配位した錯体化合物、酢酸塩等の有機酸塩が好ましく使用できる。Fe化合物は、1種又は2種以上を組み合わせて使用することができる。 Fe compounds include complex compounds in which ligands such as acetylacetone and alkoxide (methoxydo, ethoxydo, tert-butoxide, etc.) are coordinated with Fe ions (divalent or trivalent), and organic acid salts such as nitrates and acetates. , Carbonate, halides (fluoride, chloride, bromide, iodide, etc.), and ligand-coordinated complex compounds such as acetylacetone, alkoxide (methoxydo, ethoxydo, tert-butoxide, etc.), acetic acid. Organic acid salts such as salts can be preferably used. The Fe compound may be used alone or in combination of two or more.

Mn化合物としては、Mnイオン(2価又は3価)にアセチルアセトン、アルコキシド(メトキシド、エトキシド、tert-ブトキシドなど)のような配位子が配位した錯体化合物、硝酸塩、酢酸塩などの有機酸塩、炭酸塩、ハロゲン化物(フッ化物、塩化物、臭化物、ヨウ化物)などが挙げられ、アセチルアセトン、アルコキシド(メトキシド、エトキシド、tert-ブトキシドなど)のような配位子が配位した錯体化合物、酢酸塩等の有機酸塩が好ましく使用できる。Mn化合物は、1種又は2種以上を組み合わせて使用することができる。 Mn compounds include complex compounds in which ligands such as acetylacetone and alkoxide (methoxydo, ethoxydo, tert-butoxide, etc.) are coordinated with Mn ions (divalent or trivalent), and organic acid salts such as nitrates and acetates. , Carbonate, halides (fluoride, chloride, bromide, iodide, etc.), and ligand-coordinated complex compounds such as acetylacetone, alkoxide (methoxydo, ethoxydo, tert-butoxide, etc.), acetic acid. Organic acid salts such as salts can be preferably used. The Mn compound may be used alone or in combination of two or more.

PC法は、Fe化合物、必要に応じてさらにMn化合物をクエン酸を溶解させた水溶液に溶かし、さらに前記の希土類元素(M)化合物(例えば希土類元素の炭酸塩)を加えて60〜90℃で1〜5時間反応し、エチレングリコールを加えてさらに100〜150℃で3〜8時間反応し、加熱する。その後、200〜500℃で2〜6時間仮焼成することにより式(II)の担体の前駆体生成物を得ることができる。反応は、希土類元素(M)化合物1モルに対し、Fe化合物とMn化合物の合計量を0.5〜1.5モル程度、好ましくは0.8〜1.2モル程度使用すればよい。さらに、700〜900℃で0.2〜5時間焼成することにより、本発明で使用する式(II)の担体を得ることができる。PC法は、開放系で行うことができる。PC method, Fe compound, dissolved in an aqueous solution in which a further Mn compound as necessary to dissolve the citric acid, in addition to the rare earth element (M 2) compound (e.g., carbonates of rare earth elements) 60 to 90 ° C. React in 1 to 5 hours, add ethylene glycol, react at 100 to 150 ° C. for 3 to 8 hours, and heat. Then, the precursor product of the carrier of the formula (II) can be obtained by calcining at 200 to 500 ° C. for 2 to 6 hours. In the reaction, the total amount of the Fe compound and the Mn compound may be about 0.5 to 1.5 mol, preferably about 0.8 to 1.2 mol, with respect to 1 mol of the rare earth element (M 2 ) compound. Further, the carrier of the formula (II) used in the present invention can be obtained by firing at 700 to 900 ° C. for 0.2 to 5 hours. The PC method can be performed in an open system.

本発明の触媒は、貴金属化合物を含む溶液に式(II)で表わされる担体を含浸もしくは浸漬し、或いは前記担体に貴金属化合物を含む溶液をスプレー等で塗布することにより接触させ、その後、焼成することにより製造することができる。貴金属化合物としては、ヘキサクロロ白金酸、テトラクロロ白金酸、テトラクロロ白金酸カリウム、テトラクロロ白金酸ナトリウム、塩化白金、ジニトロジアミン白金などの白金化合物;塩化パラジウム、硝酸パラジウム、硫酸パラジウム,酢酸パラジウムなどのパラジウム化合物;塩化ロジウム、硫酸ロジウム、硝酸ロジウム、水酸化ロジウム,アセチルアセトナトロジウムなどのロジウム化合物が挙げられる。焼成温度としては、400℃〜1000℃程度、好ましくは450〜600℃程度である。焼成時間は、10分から8時間程度、好ましくは30分〜2時間程度である。焼成は空気流通下で行うことができる。 The catalyst of the present invention is contacted by impregnating or immersing a carrier represented by the formula (II) in a solution containing a noble metal compound, or by applying a solution containing a noble metal compound to the carrier by spraying or the like, and then firing. It can be manufactured by. Noble metal compounds include platinum compounds such as hexachloroplatinic acid, tetrachloroplatinic acid, potassium tetrachloroplatinate, sodium tetrachloroplatinate, platinum chloride and dinitrodiamine platinum; palladium chloride, palladium nitrate, palladium sulfate, palladium acetate and the like. Platinum compounds; examples include rhodium compounds such as rhodium chloride, rhodium sulfate, rhodium nitrate, rhodium hydroxide, and acetylacetonatrodium. The firing temperature is about 400 ° C. to 1000 ° C., preferably about 450 to 600 ° C. The firing time is about 10 minutes to 8 hours, preferably about 30 minutes to 2 hours. Firing can be performed under air flow.

焼成した触媒をそのまま排ガス浄化用触媒として用いてもよいが、焼成後に水素還元処理をさらに行ってもよい。水素還元処理は、水素の存在下に加熱して行うことができる。水素還元処理の温度は、150〜850℃程度、より好ましくは500〜800℃程度であり、処理時間は30分から12時間程度、好ましくは1〜6時間程度である。 The fired catalyst may be used as it is as a catalyst for purifying exhaust gas, but hydrogen reduction treatment may be further performed after firing. The hydrogen reduction treatment can be carried out by heating in the presence of hydrogen. The temperature of the hydrogen reduction treatment is about 150 to 850 ° C., more preferably about 500 to 800 ° C., and the treatment time is about 30 minutes to 12 hours, preferably about 1 to 6 hours.

本発明の触媒は、NOxを低温で処理できるので、自動車排ガス浄化用の三元触媒として特に優れている。 Since the catalyst of the present invention can treat NOx at a low temperature, it is particularly excellent as a three-way catalyst for purifying automobile exhaust gas.

以下、本発明を実施例を用いてより詳細に説明するが、本発明がこれら実施例に限定されないことはいうまでもない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but it goes without saying that the present invention is not limited to these Examples.

製造例1:ソルボサーマル法(ST法)による担体の調製
酢酸イッテルビウム四水和物(Yb(OAc)3・4H2O, 15 mmol),トリスアセチルアセトナト鉄(III)(Fe(acac)3, 9 mmol)およびトリスアセチルアセトナトマンガン(III)(Mn(acac)3, 6 mmol)を乳鉢で磨砕したのち,プラスチック容器内で超音波を用いて1,4-ブタンジオール(1,4-BG)120 ml中に懸濁させた。なおFe(acac)3とMn(acac)3の仕込み量は合計で15 mmolとした(Fe 9 mmol, Mn 6 mmol)。この懸濁液をオートクレーブ反応管に移し,オートクレーブ(300 mL)に仕込み,間隙にも30 mlの1,4-BGを加えた。オートクレーブ内を窒素置換したのち,室温から2.3 ℃/minで 315 ℃まで昇温し,2時間反応させた。生成物をメタノールで洗浄し風乾することで六方晶YbFe0.6Mn0.4O3を得た。これを空気中,500 ℃で30 min焼成し触媒および触媒担体とした。
Preparation Example 1: solvothermal method (ST process) Preparation of carrier with acetic ytterbium tetrahydrate (Yb (OAc) 3 · 4H 2 O, 15 mmol), tris acetylacetonato iron (III) (Fe (acac) 3 , 9 mmol) and trisacetylacetonatomanganese (III) (Mn (acac) 3 , 6 mmol) are ground in a dairy pot and then 1,4-butanediol (1,4) in a plastic container using ultrasound. -BG) Suspended in 120 ml. The total amount of Fe (acac) 3 and Mn (acac) 3 charged was 15 mmol (Fe 9 mmol, Mn 6 mmol). This suspension was transferred to an autoclave reaction tube, charged into an autoclave (300 mL), and 30 ml of 1,4-BG was added to the gap. After substituting nitrogen in the autoclave, the temperature was raised from room temperature to 315 ° C at 2.3 ° C / min, and the reaction was carried out for 2 hours. The product was washed with methanol and air-dried to obtain hexagonal YbFe 0.6 Mn 0.4 O 3 . This was calcined in air at 500 ° C. for 30 min to prepare a catalyst and a catalyst carrier.

また,Mnを含まない六方晶YbFeO3はFe(acac)3を15 mmol(Mn(acac)3を0 mmol)とし,上記と同様の方法で合成した。Hexagonal YbFeO 3 containing no Mn was synthesized by the same method as above, with Fe (acac) 3 at 15 mmol (Mn (acac) 3 at 0 mmol).

製造例2:錯体重合法(PC法)による担体の調製
炭酸イッテルビウムn水和物(Yb2(CO3)3・nH2O, 5 mmol),硝酸鉄九水和物(Fe(NO3)3・9H2O, 6 mmol)および硝酸マンガン六水和物(Mn(NO3)2・6H2O, 4 mmol)をクエン酸400 mmolを含むイオン交換水(180 ml)に溶解させた。この際,Fe(NO3)3・9H2O とMn(NO3)2・6H2Oの仕込み量は合計10 mmolとした。この溶液を80 ℃で2 h撹拌後,エチレングリコール(400 mmol)を加え130 ℃で5 h撹拌することでゲル状生成物を得た。このゲル状生成物を350 ℃で4−5 h焼成し粉末としたのちに,さらに800 ℃で30 min焼成することで六方晶YbFe0.6Mn0.4O3を得た。
Production Example 2: Preparation of carrier by complex polymerization method (PC method) Ytterbium carbonate n hydrate (Yb 2 (CO 3 ) 3 · nH 2 O, 5 mmol), iron nitrate nine hydrate (Fe (NO 3 )) the 3 · 9H 2 O, 6 mmol ) and manganese nitrate hexahydrate (Mn (NO 3) 2 · 6H 2 O, 4 mmol) was dissolved in deionized water containing 400 mmol of citric acid (180 ml). In this case, Fe (NO 3) 3 · 9H 2 O and Mn (NO 3) charge of 2 · 6H 2 O was total 10 mmol. This solution was stirred at 80 ° C. for 2 h, ethylene glycol (400 mmol) was added, and the mixture was stirred at 130 ° C. for 5 h to obtain a gel product. This gel-like product was calcined at 350 ° C for 4-5 h to form a powder, and then calcined at 800 ° C for 30 min to obtain hexagonal YbFe 0.6 Mn 0.4 O 3 .

実施例1及び比較例1:含浸法による六方晶YbFe0.6Mn0.4O3担持Pd触媒およびγ-Al2O3担持貴金属触媒の調製
六方晶YbFe0.6Mn0.4O3担持Pd触媒は,製造例1又は2で調製した六方晶YbFe0.6Mn0.4O3(0.99 g) に対しPd(metal)が0.1−1.0wt%となるように酢酸パラジウム(II)(Pd(OAc)2, 0.0021−0.0211 g)を室温にて含浸担持し,乾燥後,空気中500 ℃にて30 min焼成することで得た。なお,溶媒にはアセトン9 mlを用いた。
Example 1 and Comparative Example 1: Preparation of hexagonal YbFe 0.6 Mn 0.4 O 3 supported Pd catalyst and γ-Al 2 O 3 supported noble metal catalyst by impregnation method Hexagonal YbFe 0.6 Mn 0.4 O 3 supported Pd catalyst is produced in Production Example 1. Or, palladium (II) acetate (Pd (OAc) 2 , 0.0021-0.0211 g) so that Pd (metal) is 0.1-1.0 wt% with respect to the hexagonal YbFe 0.6 Mn 0.4 O 3 (0.99 g) prepared in 2 . Was impregnated and supported at room temperature, dried, and then calcined in air at 500 ° C. for 30 min. Acetone 9 ml was used as the solvent.

γ-Al2O3担持貴金属触媒は,γ-Al2O3 (参照触媒ALO-7(180 m2/g),触媒学会提供、1.00 g) に対し貴金属(Pd、Rh、Pt)が金属として1.0wt%となるように酢酸パラジウム(II)(Pd(OAc)2, 0.0211 g),ジニトロジアミン白金水溶液(4.64wt% Pt(NO2)2(NH3)2 aq., 0.2154 g)もしくはトリスアセチルアセトナトロジウム(III)(Rh(acac)3,0.0389 g)を各種溶媒に加え含浸担持し,乾燥後,空気中500 ℃にて3 時間焼成することで得た。なお,Pd担持の際の溶媒にはアセトン9 mlを用い,Pt担持の際の溶媒は水 9 mlを用いた。また,Rh担持の際は酢酸エチルを9 ml用いた。γ-Al 2 O 3 carrying noble metal catalyst is γ-Al 2 O 3 (reference catalyst ALO-7 (180 m 2 / g), provided by Catalysis Society, 1.00 g), whereas noble metal (Pd, Rh, Pt) is metal Palladium acetate (II) (Pd (OAc) 2 , 0.0211 g), dinitrodiamine platinum aqueous solution (4.64 wt% Pt (NO 2 ) 2 (NH 3 ) 2 aq., 0.2154 g) or trisacetylacetonato rhodium (III) (Rh (acac) 3, 0.0389 g) was impregnated carrier was added to various solvents, after drying, was obtained by calcining for 3 hours in air at 500 ° C.. 9 ml of acetone was used as the solvent for supporting Pd, and 9 ml of water was used as the solvent for supporting Pt. In addition, 9 ml of ethyl acetate was used for supporting Rh.

試験例1:触媒反応
図5に概略的に示す常圧固定床流通型反応装置を用いて反応を行った。触媒(200 mg)を石英反応管に充填し,前処理としてHeを30 mL min-1,500℃で1 h流通させた。反応ガスとしてNO: 1000ppm,CO: 1000ppm,C3H6: 250ppm,O2: 1125ppm,He: balanceの混合ガスを100 mL min-1で触媒層に流通させた。出口ガス分析は100℃から500℃まで行い,50℃毎に20 min保持した後に出口ガス分析を行った。反応ガスの分析は2台のTCD-GC8A(Shimadzu製 MS-5A及びPorapak Q)およびNOxメーター(Horiba製 PG-350)により行った。2台のTCD-GC8A(MS-5A及びPorapak Q)によりC3H6、CO、CO2、N2、N2Oを測定し、NOxメーターによりNO、NO2を測定した。
Test Example 1: Catalytic reaction The reaction was carried out using the atmospheric pressure fixed bed flow type reactor schematically shown in FIG. A catalyst (200 mg) was filled in a quartz reaction tube, and He was circulated at 30 mL min- 1 at 500 ° C for 1 h as a pretreatment. A mixed gas of NO: 1000 ppm, CO: 1000 ppm, C 3 H 6 : 250 ppm, O 2 : 1125 ppm, and He: balance was circulated through the catalyst layer at 100 mL min -1 as the reaction gas. The outlet gas analysis was performed from 100 ° C to 500 ° C, and the outlet gas analysis was performed after holding 20 min at every 50 ° C. The reaction gas was analyzed by two TCD-GC8A (Shimadzu MS-5A and Polapak Q) and NOx meter (Horiba PG-350). C 3 H 6 , CO, CO 2 , N 2 , N 2 O were measured with two TCD-GC8A (MS-5A and Polapak Q), and NO and NO 2 were measured with a NOx meter.

結果と考察
図1に六方晶YbFe0.6Mn0.4O3担持Pd触媒とAl2O3担持貴金属(Rh,Pd,Pt)触媒のCO及びC3H6からのCO2生成量およびNOxからのN2生成量を示す。表1、表2にC3H6およびCOの酸化及びNO還元のT50(50%酸化/還元されるときの温度)を示す。
Results and discussion Fig. 1 shows the amount of CO 2 produced from CO and C 3 H 6 of the hexagonal YbFe 0.6 Mn 0.4 O 3 supported Pd catalyst and the Al 2 O 3 supported noble metal (Rh, Pd, Pt) catalyst and from NO x . Indicates the amount of N 2 produced. Tables 1 and 2 show T50 (temperature when 50% oxidation / reduction) of oxidation and NO reduction of C 3 H 6 and CO.

Figure 0006785218
Figure 0006785218

Figure 0006785218
Figure 0006785218

同量のPd担持量にもかかわらず,Pd/YbFe0.6Mn0.4O3触媒によるC3H6およびCOの酸化はいずれの貴金属/Al2O3触媒のものより極めて低温(T50=135℃)から進行していることが認められた。また,NO還元活性に関して,貴金属/Al2O3触媒の中ではRh/Al2O3触媒が300℃以上の温度域で安定して高い活性を示した。しかし,Pd/YbFe0.6Mn0.4O3触媒のNO還元活性はRh/Al2O3触媒より低温で高い活性を示した。さらに,Pd/Al2O3触媒の場合,350℃から500℃の反応温度域においてN2Oの生成が確認される場合があるが,Pd/YbFe0.6Mn0.4O3触媒は250℃以上の温度域においてもN2Oのような副生成物は見られず,反応ガス中のNOはすべてN2に還元されていた。 Despite the same amount of Pd supported, oxidation of C 3 H 6 and CO by Pd / YbFe 0.6 Mn 0.4 O 3 catalyst is much lower than that of any precious metal / Al 2 O 3 catalyst (T 50 = 135 ° C). ) Was confirmed to be progressing. Regarding the NO reduction activity, among the noble metal / Al 2 O 3 catalysts, the Rh / Al 2 O 3 catalyst showed stable and high activity in the temperature range of 300 ° C or higher. However, the NO reduction activity of the Pd / YbFe 0.6 Mn 0.4 O 3 catalyst showed higher activity at lower temperatures than that of the Rh / Al 2 O 3 catalyst. Furthermore, in the case of Pd / Al 2 O 3 catalyst, the formation of N 2 O may be confirmed in the reaction temperature range of 350 ° C to 500 ° C, but in the case of Pd / YbFe 0.6 Mn 0.4 O 3 catalyst, 250 ° C or higher. No by-products such as N 2 O were found even in the temperature range, and all NO in the reaction gas was reduced to N 2 .

図2にPd担持量の異なるPd/YbFe0.6Mn0.4O3触媒の活性を示す。担持量の低減化により,NOの還元活性は低下するものの,0.5 wt% Pd/YbFe0.6Mn0.4O3触媒のNO還元活性は,図1に示したRh/Al2O3触媒やPd/Al2O3触媒のものより高かった。さらに,C3H6およびCOの酸化活性は0.1 wt% Pd/YbFe0.6Mn0.4O3触媒においても高い活性を維持した。Figure 2 shows the activity of Pd / YbFe 0.6 Mn 0.4 O 3 catalysts with different Pd loadings. Although the NO reduction activity is reduced by reducing the loading amount, the NO reduction activity of the 0.5 wt% Pd / YbFe 0.6 Mn 0.4 O 3 catalyst is the Rh / Al 2 O 3 catalyst and Pd / Al shown in Fig. 1. It was higher than that of the 2 O 3 catalyst. Furthermore, the oxidative activity of C 3 H 6 and CO maintained high activity even in the 0.1 wt% Pd / YbFe 0.6 Mn 0.4 O 3 catalyst.

以上の結果から,本研究により開発した触媒は従来型の触媒に比べ貴金属使用量の低減化および貴金属元素の中で最も高価で希少なRh触媒の代替もしくは低減に成功したものと考えられる。 From the above results, it is considered that the catalyst developed by this study succeeded in reducing the amount of noble metal used and replacing or reducing the most expensive and rare Rh catalyst among the noble metal elements compared with the conventional catalyst.

図3に調製法の異なるPd/YbFe0.6Mn0.4O3およびMn添加無しの触媒の活性を示す。ソルボサーマル合成したYbFe0.6Mn0.4O3を担体に用いた触媒は錯体重合法で合成したものより高い活性を示した。また,ソルボサーマル合成したYbFeO3を触媒担体に用いた触媒はYbFe0.6Mn0.4O3のものより低活性に留まった。我々は,ソルボサーマル合成したYbFe0.6Mn0.4O3は六角板状の形態を形成しており,錯体重合法で合成したものは不規則な形態を有していることを報告している(S. Hosokawa, Y. Masuda, T. Nishimura, K. Wada, R. Abe, M. Inoue, Chem. Lett., 2014, 43, 874.)。また,ソルボサーマル合成したものの比表面積(78 m2/g)は錯体重合法で合成したもの(25 m2/g)より極めて高いことを見出している(S. Hosokawa, Y. Masuda, T. Nishimura, K. Wada, R. Abe, M. Inoue, Chem. Lett., 2014, 43, 874)。さらに,Mnの添加によりYbFeO3の結晶子サイズの低下および比表面積の向上が認められた。これらの結果から,ソルボサーマル合成したYbFe0.6Mn0.4O3特有の物理的特性が高い活性をもたらした一つの要因であると考えられる。 Figure 3 shows the activity of the catalysts with different preparation methods of Pd / YbFe 0.6 Mn 0.4 O 3 and without the addition of Mn. The catalyst using solvothermally synthesized YbFe 0.6 Mn 0.4 O 3 as a carrier showed higher activity than that synthesized by the complex polymerization method. In addition, the catalyst using solvothermally synthesized YbFeO 3 as a catalyst carrier remained less active than that of YbFe 0.6 Mn 0.4 O 3 . We report that solvothermally synthesized YbFe 0.6 Mn 0.4 O 3 has a hexagonal plate-like morphology, and that the one synthesized by the complex polymerization method has an irregular morphology (S). Hosokawa, Y. Masuda, T. Nishimura, K. Wada, R. Abe, M. Inoue, Chem. Lett., 2014, 43, 874.). It has also been found that the specific surface area (78 m 2 / g) of the solvothermal synthesis is much higher than that of the solvothermal synthesis (25 m 2 / g) (S. Hosokawa, Y. Masuda, T. Nishimura, K. Wada, R. Abe, M. Inoue, Chem. Lett., 2014, 43, 874). Furthermore, the addition of Mn reduced the crystallite size of YbFeO 3 and improved the specific surface area. From these results, it is considered that the physical properties peculiar to solvothermally synthesized YbFe 0.6 Mn 0.4 O 3 are one of the factors that brought about high activity.

Claims (11)

下記式(I)
1/M2FexMn1-x3 (I)
(式中、M1はPd、Rh及びPtからなる群から選ばれる貴金属を示す。M2はGd,Tb,Dy,Ho,Er,Tm,Yb、Lu及びYからなる群から選ばれる希土類元素を示す。xは0.2〜1.0である。M2FexMn1-x3は金属複合酸化物担体を示し、M1は前記担体に担持されている。)
で表わされる、排ガス浄化用金属複合酸化物触媒。
The following formula (I)
M 1 / M 2 Fe x Mn 1-x O 3 (I)
(In the formula, M 1 represents a precious metal selected from the group consisting of Pd, Rh and Pt. M 2 is a rare earth element selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. X is 0.2 to 1.0. M 2 Fe x Mn 1-x O 3 indicates a metal composite oxide carrier, and M 1 is supported on the carrier.)
A metal composite oxide catalyst for exhaust gas purification represented by.
1がPdである、請求項1に記載の排ガス浄化用金属複合酸化物触媒。 The metal composite oxide catalyst for exhaust gas purification according to claim 1, wherein M 1 is Pd. 2がYbである、請求項1又は2に記載の排ガス浄化用金属複合酸化物触媒。 The metal composite oxide catalyst for exhaust gas purification according to claim 1 or 2, wherein M 2 is Yb. xが0.4〜0.8である、請求項1〜3のいずれか1項に記載の排ガス浄化用金属複合酸化物触媒。 The metal composite oxide catalyst for exhaust gas purification according to any one of claims 1 to 3, wherein x is 0.4 to 0.8. xが0.6〜0.8である、請求項4に記載の排ガス浄化用金属複合酸化物触媒。 The metal composite oxide catalyst for exhaust gas purification according to claim 4, wherein x is 0.6 to 0.8. 貴金属M1がM2FexMn1-x3 (M2はGd,Tb,Dy,Ho,Er,Tm,Yb、Lu及びYからなる群から選ばれる希土類元素を示す。xは0.2〜1.0である。)で表わされる担体に対し質量で0.01〜2%含まれる、請求項1〜5のいずれか1項に記載の排ガス浄化用金属複合酸化物触媒。 The precious metal M 1 is M 2 Fe x Mn 1-x O 3 (M 2 is a rare earth element selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. X is 0.2 to 0.2. The metal composite oxide catalyst for exhaust gas purification according to any one of claims 1 to 5, which is contained in an amount of 0.01 to 2% by mass with respect to the carrier represented by 1.0). 貴金属M1がM2FexMn1-x3 (M2はGd,Tb,Dy,Ho,Er,Tm,Yb、Lu及びYからなる群から選ばれる希土類元素を示す。xは0.2〜1.0である。)で表わされる複合酸化物に対し質量で0.1〜1.0%含まれる、請求項6に記載の排ガス浄化用金属複合酸化物触媒。 The precious metal M 1 is M 2 Fe x Mn 1-x O 3 (M 2 is a rare earth element selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. X is 0.2 to 0.2. The metal composite oxide catalyst for exhaust gas purification according to claim 6, which is contained in an amount of 0.1 to 1.0% by mass with respect to the composite oxide represented by (1.0). 前記金属複合酸化物担体の結晶構造が六方晶構造である、請求項1〜7のいずれか1項に記載の排ガス浄化用金属複合酸化物触媒。 The metal composite oxide catalyst for exhaust gas purification according to any one of claims 1 to 7, wherein the crystal structure of the metal composite oxide carrier is a hexagonal structure. 1がPdであり、かつ、M2がYbである、請求項1に記載の排ガス浄化用金属複合酸化物触媒。 The metal composite oxide catalyst for exhaust gas purification according to claim 1, wherein M 1 is Pd and M 2 is Y b . 溶媒中にGd,Tb,Dy,Ho,Er,Tm,Yb,Lu及びYからなる群から選ばれる希土類元素化合物、Fe化合物、Mn化合物を溶解もしくは懸濁し、加熱して下記式(II)
2FexMn1-x3 (II)
(式中、M2はGd,Tb,Dy,Ho,Er,Tm,Yb、Lu及びYからなる群から選ばれる希土類元素を示す。xは0.2〜1.0である。)
で表わされる担体を調製し、得られた担体をPd化合物、Rh化合物又はPt化合物溶液に接触し、焼成する工程を含む、下記式(I)
1/M2FexMn1-x3 (I)
(式中、M1はPd、Rh及びPtからなる群から選ばれる貴金属を示す。M2はGd,Tb,Dy,Ho,Er,Tm,Yb、Lu及びYからなる群から選ばれる希土類元素を示す。xは0.2〜1.0である。M2FexMn1-x3は金属複合酸化物担体を示し、M1は前記担体に担持されている。)
で表わされる、排ガス浄化用金属複合酸化物触媒の製造方法。
A rare earth element compound, Fe compound, or Mn compound selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y is dissolved or suspended in a solvent and heated to the following formula (II).
M 2 Fe x Mn 1-x O 3 (II)
(In the formula, M 2 represents a rare earth element selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. X is 0.2 to 1.0.)
The following formula (I), which comprises a step of preparing a carrier represented by the above, contacting the obtained carrier with a solution of a Pd compound, a Rh compound or a Pt compound, and firing the carrier.
M 1 / M 2 Fe x Mn 1-x O 3 (I)
(In the formula, M 1 represents a precious metal selected from the group consisting of Pd, Rh and Pt. M 2 is a rare earth element selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. X is 0.2 to 1.0. M 2 Fe x Mn 1-x O 3 indicates a metal composite oxide carrier, and M 1 is supported on the carrier.)
A method for producing a metal composite oxide catalyst for purifying exhaust gas, which is represented by.
溶媒が1,4-ブタンジオールである、請求項10に記載の排ガス浄化用金属複合酸化物触媒の製造方法。 The method for producing a metal composite oxide catalyst for exhaust gas purification according to claim 10 , wherein the solvent is 1,4-butanediol.
JP2017506525A 2015-03-13 2016-03-11 Metal composite oxide catalyst for exhaust gas purification and its manufacturing method Active JP6785218B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015050348 2015-03-13
JP2015050348 2015-03-13
PCT/JP2016/057771 WO2016148062A1 (en) 2015-03-13 2016-03-11 Metal composite oxide catalyst for exhaust gas purification and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2016148062A1 JPWO2016148062A1 (en) 2018-02-01
JP6785218B2 true JP6785218B2 (en) 2020-11-18

Family

ID=56920097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017506525A Active JP6785218B2 (en) 2015-03-13 2016-03-11 Metal composite oxide catalyst for exhaust gas purification and its manufacturing method

Country Status (2)

Country Link
JP (1) JP6785218B2 (en)
WO (1) WO2016148062A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284584A (en) * 2009-06-10 2010-12-24 Honda Motor Co Ltd Oxidation catalyst for cleaning exhaust gas

Also Published As

Publication number Publication date
WO2016148062A1 (en) 2016-09-22
JPWO2016148062A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
EP3092072B1 (en) A process for vapor-phase methanol carbonylation to methyl formate
JP5737699B2 (en) Catalyst using PdRu solid solution type alloy fine particles
CN109718806B (en) Noble metal monoatomic catalyst and preparation method and application thereof
CN109647399B (en) Preparation method of monatomic catalyst for catalytic oxidation of aromatic VOCs at normal temperature
WO2011160577A1 (en) Catalyst having monolithic structure for manufacturing ethylene glycol by oxalate hydrogenation, preparation method and application thereof
JP3882044B2 (en) Method for preparing Fischer-Tropsch synthesis catalyst
JP5010547B2 (en) Highly active catalyst and method for producing the same
CN113797935A (en) Catalyst for low-temperature efficient treatment of VOCs and preparation method thereof
JP6272609B2 (en) Method for producing composite oxide and composite oxide catalyst
CN101543781B (en) Catalyst for preparing propylene by oxidizing and dehydrogenating propane and preparation method thereof
CN111013597A (en) Preparation method of cerium-based composite oxide low-temperature SCR catalyst with Ce-MOF as precursor
JP6785218B2 (en) Metal composite oxide catalyst for exhaust gas purification and its manufacturing method
CN111054384B (en) Catalyst for organic liquid hydrogen storage material dehydrogenation and preparation method thereof
JP6927590B2 (en) Highly heat-resistant composite oxide catalyst for exhaust gas purification and its manufacturing method
JP2014033992A (en) Catalyst for purifying exhaust gas and method for producing the same
JP3552766B2 (en) Ammonia synthesis catalyst and its preparation method
JP5831946B2 (en) Catalyst production method
KR20190071266A (en) Manufacturing method of decomposition catalyst for N2O abatement by adding mixed metal oxides in alumina support
JP6300280B2 (en) Method for producing conjugated diene
JP2013198888A (en) Carrier for exhaust emission control catalyst, nitrogen oxide removal catalyst obtained by using the same, and methods for producing them
JP6731665B2 (en) Method for producing carbon dioxide reforming catalyst
KR101988370B1 (en) Catalysts for methanation of carbon dioxide and the manufacturing method of the same
JP4133432B2 (en) Methanol steam reforming catalyst and method for producing hydrogen by steam reforming of methanol using the catalyst
RU2744920C1 (en) Method of bimetallic palladium-rhodium catalysts preparation (versions)
JP2840054B2 (en) Heat-resistant oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R150 Certificate of patent or registration of utility model

Ref document number: 6785218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150