JP6784965B2 - Gas permeation member - Google Patents

Gas permeation member Download PDF

Info

Publication number
JP6784965B2
JP6784965B2 JP2015220737A JP2015220737A JP6784965B2 JP 6784965 B2 JP6784965 B2 JP 6784965B2 JP 2015220737 A JP2015220737 A JP 2015220737A JP 2015220737 A JP2015220737 A JP 2015220737A JP 6784965 B2 JP6784965 B2 JP 6784965B2
Authority
JP
Japan
Prior art keywords
gas
hole
closed container
base material
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015220737A
Other languages
Japanese (ja)
Other versions
JP2016103631A5 (en
JP2016103631A (en
Inventor
聖一 斎
聖一 斎
邦年 睦月
邦年 睦月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mutsuki Electric KK
Original Assignee
Mutsuki Electric KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mutsuki Electric KK filed Critical Mutsuki Electric KK
Publication of JP2016103631A publication Critical patent/JP2016103631A/en
Publication of JP2016103631A5 publication Critical patent/JP2016103631A5/ja
Application granted granted Critical
Publication of JP6784965B2 publication Critical patent/JP6784965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、水蒸気などの水分を遮断して密閉容器の内部にて発生したガスを密閉容器の外部に排出しやすくするガス透過部材に関する。The present invention relates to a gas permeable member to facilitate exhausting gas generated in the interior of the sealed container to block moisture such as water vapor to the outside of the closed container.

密閉容器の内部にて発生したガスを密閉容器の外部に排出して密閉容器の内部の圧力上昇などによる不具合を解消するために、水蒸気などの水分を遮断して密閉容器の内部にて発生したガスを密閉容器の外部に適宜排出する必要のある密閉容器、例えば、電極素子及び電解質を有する電気二重層キャパシタやリチウム電池などの密閉型電気化学デバイスにあっては、電解質が密閉容器の内部に密閉されて収容されているので、充放電サイクルを繰り返したり、高温で放置したり、短絡・過充電・逆充電などにより電解質が分解されて、その密閉容器の内部で酸素や二酸化炭素などのガスが発生し、その発生したガスが密閉容器の内部に蓄積されることにより急激に内圧が上昇して、その密閉容器本体が膨れたり、破裂したりするおそれがあり、発生したガスをその都度、密閉容器の外部に排出させて内圧上昇となるガスを密閉容器の内部に蓄積させないようにするとともに密閉容器の外部で発生した水蒸気などの水分を遮断するガス透過部材が望まれている。In order to discharge the gas generated inside the closed container to the outside of the closed container and eliminate problems due to the pressure rise inside the closed container, etc., water such as water vapor is blocked and generated inside the closed container. In a closed container such as an electric double layer capacitor having an electrode element and an electrolyte or a lithium battery, the electrolyte is inside the closed container, for which the gas needs to be appropriately discharged to the outside of the closed container. Since it is housed in a sealed container, the electrolyte is decomposed by repeating the charge / discharge cycle, leaving it at a high temperature, short-circuiting, overcharging, reverse charging, etc., and gas such as oxygen and carbon dioxide inside the closed container. Is generated, and the generated gas accumulates inside the closed container, causing the internal pressure to rise sharply, which may cause the closed container body to swell or explode. There is a demand for a gas permeable member that prevents gas that is discharged to the outside of the closed container and increases the internal pressure from accumulating inside the closed container and blocks moisture such as water vapor generated outside the closed container.

発生したガスをその都度、密閉容器の外部に排出させて内圧上昇となるガスを密閉容器の内部に蓄積させないようにするガス透過部材の素材として、特許文献1にて、ボタン型アルカリ電池を取り上げて、ガス透過性に優れたポリオレフィン系樹脂をもちいたガス透過部材が提案されている。この特許文献1では、ケースを兼ねた負極缶(密閉容器本体に相当)に直径0.7mmのストレート穴を形成してガス抜き穴(貫通孔に相当)とするとともに、ガス透過性に優れた厚さ0.2mmのシート状のポリオレフィン系樹脂を熱圧着してその穴を閉塞している。また、特許文献2では、外装缶の開口を蓋で閉塞した密閉型電池を取り上げて、この蓋体に電池内での発生ガスを電池外へ逃散(排出)させるガス透過膜が取り付けられており、このガス透過膜として、水素、二酸化炭素、一酸化炭素、低級炭化水素などは透過するが、水分(水蒸気)は不透過であるという性質を備えたゼオライト膜;アルミナ,ジルコニア,シリカ,ムライト,コージェライト、チタニアのような無機酸化物の微粒子を焼結した膜;シリコーンゴム,シリコーン樹脂,シリコーンオイルを好適例とする有機高分子材料の膜;黒鉛を好適例とする炭素質物の膜;PdやPd系合金の膜を例示して提案されている。In Patent Document 1, a button-type alkaline battery is taken up as a material for a gas permeable member that discharges the generated gas to the outside of the closed container each time to prevent the gas that increases the internal pressure from accumulating inside the closed container. Therefore, a gas permeable member using a polyolefin resin having excellent gas permeability has been proposed. In Patent Document 1, a straight hole having a diameter of 0.7 mm is formed in a negative electrode can (corresponding to a closed container body) that also serves as a case to form a gas vent hole (corresponding to a through hole), and excellent gas permeability is achieved. A sheet-shaped polyolefin resin having a thickness of 0.2 mm is thermocompression bonded to close the hole. Further, in Patent Document 2, a sealed battery in which the opening of the outer can is closed with a lid is taken up, and a gas permeable membrane for escaping (exhausting) the gas generated in the battery to the outside of the battery is attached to the lid. , A zeolite membrane having the property that hydrogen, carbon dioxide, carbon monoxide, lower hydrocarbons, etc. are permeable, but water (water vapor) is impermeable; alumina, zirconia, silica, mullite, Membrane obtained by sintering fine particles of inorganic oxides such as hydrocarbonite and titania; membrane of organic polymer material such as silicone rubber, silicone resin and silicone oil; membrane of carbonaceous material such as graphite; Pd And Pd-based alloy films have been proposed as examples.

しかし、ガス透過部材が特許文献1及び特許文献2で提案されたようなガス透過部材の素材では、素材自体の特性でガス透過量が決まっているので、ガス透過量を多くするためにガス透過部材の厚さを薄くしたり、表面積を大きくしたりする必要があり、限られた大きさの密閉型電気化学デバイスにおいては、密閉容器の内部で発生するガスを密閉容器の外部へ充分に排出するのは困難である。However, in the material of the gas permeable member as proposed in Patent Document 1 and Patent Document 2, the gas permeation amount is determined by the characteristics of the material itself, so that the gas permeation amount is increased in order to increase the gas permeation amount. It is necessary to reduce the thickness of the member and increase the surface area, and in a closed-type electrochemical device of a limited size, the gas generated inside the closed container is sufficiently discharged to the outside of the closed container. It's difficult to do.

そこで、密閉容器の内部で発生するガスを密閉容器の外部へ充分に排出させるために、特許文献3では、電解コンデンサーを取り上げて、ベースの上面を封止するキャップにより電解液を収納する収納部を構成し、そのキャップがガス透過部材となるように、平均粒径1〜40μmのアルミナなどのフィラーからなるフェノール樹脂などの樹脂複合体を加圧成形し熱硬化させることによってフィラーの各粒子が一部で接合した状態で硬化し各粒子間の隙間により平均孔径0.01〜2μmの細孔を形成して、そのキャップにより、水素ガスを透過させ、電解液や水蒸気の透過は遮断させるようにしたガス透過部材が提案されている。Therefore, in order to sufficiently discharge the gas generated inside the closed container to the outside of the closed container, in Patent Document 3, the electrolytic capacitor is taken up and a storage unit for storing the electrolytic solution by a cap that seals the upper surface of the base. Each particle of the filler is electrolyzed by pressure molding a resin composite such as a phenol resin composed of a filler such as alumina having an average particle size of 1 to 40 μm so that the cap serves as a gas permeable member. It is cured in a partially bonded state to form pores with an average pore size of 0.01 to 2 μm by the gaps between the particles, and the cap allows hydrogen gas to permeate and block the permeation of electrolytic solution and water vapor. A gas permeable member has been proposed.

しかし、特許文献3で提案されたような水素ガスのみを透過させる樹脂複合体では、細孔は所定の孔径ではなく、平均粒径1〜40μmのフィラーの各粒子が一部で接合した状態で硬化し各粒子間の隙間により形成するので、細孔径や気孔率を安定して得るには、手間がかかり、しかも、水素ガスのみを透過させるガス透過部材では、電解液や水蒸気を遮断しても、密閉容器の内部にて発生した水素ガス以外のガスすなわち酸素や二酸化炭素などのガスを密閉容器の外部に排出することは配慮されていない。However, in the resin composite that allows only hydrogen gas to permeate as proposed in Patent Document 3, the pores are not the predetermined pore diameter, but the particles of the filler having an average particle size of 1 to 40 μm are partially bonded. Since it is cured and formed by the gaps between the particles, it takes time and effort to stably obtain the pore diameter and the pore ratio, and the gas permeable member that allows only hydrogen gas to permeate blocks the electrolytic solution and water vapor. However, consideration is not given to discharging a gas other than the hydrogen gas generated inside the closed container, that is, a gas such as oxygen or carbon dioxide, to the outside of the closed container.

以上の特許文献1、2及び3においては、それぞれボタン型アルカリ電池、密閉型電池及び電解コンデンサーにおけるガス透過部材の課題を取り上げたが、屋内の水周りで使用される機器、あるいは、車両用電装品、センサー類、ポータブル機器等の屋外で使用され密閉して使用される機器において、気圧や温度変化または内部でのガス発生が起きた場合に圧力調整ができないため、通気孔を設けると、この通気孔から空気中の水分、水蒸気が内部に進入し、錆やカビ等を発生させて回路、機器を劣化させ正常な機能を果たさなくなることを防止するガス透過部材も望まれている。In the above Patent Documents 1, 2 and 3, the problems of gas permeable members in button-type alkaline batteries, sealed batteries and electrolytic capacitors have been taken up, respectively, but devices used indoors around water or electrical equipment for vehicles have been taken up. In equipment such as products, sensors, portable devices, etc. that are used outdoors and are used in a sealed manner, pressure cannot be adjusted when pressure or temperature changes or gas is generated inside. There is also a demand for a gas permeable member that prevents moisture and water vapor in the air from entering the inside through the ventilation holes, causing rust and mold to deteriorate the circuit and equipment and prevent them from performing their normal functions.

このガス透過部材としては、特許文献4において、ポリオレフィン系樹脂と無機粉体と可塑剤を主体とする原料組成物を溶融混練して製膜した膜から可塑剤を除去することで、無機粉体の骨格がポリオレフィン系樹脂を接着機能材料として結合された形の三次元網目構造体に形成されて入り組んだ複雑な経路を有する無数の連通孔が形成された単層構造からなる多孔膜でできた水蒸気透過防止多孔膜を車両用電装品、センサー類、ポータブル機器等の屋外で使用され密閉して使用される機器にもちいることが提案されている。As this gas permeable member, in Patent Document 4, the plasticizer is removed from the film formed by melt-kneading a raw material composition mainly composed of a polyolefin resin, an inorganic powder, and a plasticizer to form an inorganic powder. The skeleton is made of a porous film consisting of a single-layer structure in which a three-dimensional network structure in which a polyolefin resin is bonded as an adhesive functional material is formed and innumerable communication holes having intricate and complicated paths are formed. It has been proposed to use the water vapor permeation prevention porous film in equipment used outdoors such as electrical components for vehicles, sensors, portable equipment, etc., which is used in a sealed manner.

しかし、特許文献4で提案されたガス透過部材は、ポリオレフィン系樹脂が重量平均分子量50万以上であり、無機粉体が比表面積100m/g以上の親水性無機粉体であり、ポリオレフィン系樹脂が20〜50質量%と無機粉体が50〜80質量%を含み、平均細孔径が0.05〜0.2μmの親水性の多孔膜でできており、この多孔膜の細孔に進入した水蒸気が細孔内で凝縮を生じる毛管凝縮作用を活用しているが、この多孔質構造では、適度な大きさの細孔を安定して得ることが配慮されていない。 However, in the gas permeation member proposed in Patent Document 4, the polyolefin-based resin is a hydrophilic inorganic powder having a weight average molecular weight of 500,000 or more, and the inorganic powder is a hydrophilic inorganic powder having a specific surface area of 100 m 2 / g or more. Is made of a hydrophilic porous film having an average pore diameter of 0.05 to 0.2 μm, containing 20 to 50% by mass and 50 to 80% by mass of inorganic powder, and has entered the pores of this porous film. Although the capillary condensing action in which water vapor causes condensation in the pores is utilized, consideration is not given to stably obtaining pores having an appropriate size in this porous structure .

特開平6−150895号公報Japanese Unexamined Patent Publication No. 6-150895 特開2003−217549号公報Japanese Unexamined Patent Publication No. 2003-217549 特開2000−286170号公報Japanese Unexamined Patent Publication No. 2000-286170 特開2012−30184号公報Japanese Unexamined Patent Publication No. 2012-30184

本発明は、電極素子及び電解質を有する密閉型電気化学デバイスを例示する密閉容器本体に形成したガス透過部材において、ガス透過量を安定して多くすることに着眼して、多孔質構造にしないで、密閉容器本体の構成部材となる基材に孔加工により微細な孔径の貫通孔を形成したガス透過部材を見出し、上記の問題点を解消することができた。The present invention focuses on increasing the gas permeation amount stably in the gas permeation member formed in the airtight container body exemplifying the hermetically sealed electrochemical device having an electrode element and an electrolyte, and does not make it a porous structure. , A gas permeable member in which a through hole having a fine hole diameter is formed in a base material which is a constituent member of a closed container body is found, and the above problem can be solved.

本発明のガス透過部材は、密閉容器本体の構成部材となり無機質フィラーを含有した熱可塑性合成樹脂材でできた基材に、レーザ光の照射により前記熱可塑性合成樹脂成分を溶解もしくは分解して微細な孔径の貫通孔を形成し、前記貫通孔を介して密閉容器の内部のガスを外部に排出するガス透過部材において、前記貫通孔は円錐形状の内周壁を有し、前記円錐形状の内周壁が上下に組み合わされてレーザ光の照射深さ方向の中間位置に孔径0.01〜100μmの孔からなる鼓形状であって、前記貫通孔の内周壁にはレーザ光の照射により前記無機質フィラーを残存させて、前記貫通孔に対する気体の透過性の差を利用したガス選択作用を発現させて水蒸気などの水分を遮断させることを特徴とする。The gas permeable member of the present invention dissolves or decomposes the thermoplastic synthetic resin component into a substrate made of a thermoplastic synthetic resin material containing an inorganic filler as a constituent member of a closed container body by irradiation with laser light to obtain fine particles. In a gas permeation member that forms a through hole having a large hole diameter and discharges gas inside a closed container to the outside through the through hole , the through hole has a conical inner peripheral wall and the conical inner peripheral wall. Is combined vertically and has a drum shape consisting of holes with a hole diameter of 0.01 to 100 μm at an intermediate position in the irradiation depth direction of the laser light, and the inorganic filler is applied to the inner peripheral wall of the through hole by irradiation with the laser light. It is characterized in that it is left to exhibit a gas selection action utilizing the difference in gas permeability with respect to the through hole to block water such as water vapor.

本発明の密閉型電気化学デバイスを例示するガス透過部材は、密閉容器本体の構成部材となり無機質フィラーを含有した熱可塑性合成樹脂材でできた基材に、レーザ光の照射により前記熱可塑性合成樹脂成分を溶解もしくは分解して微細な孔径の貫通孔を形成し、前記貫通孔を介して密閉容器の内部のガスを外部に排出するガス透過部材において、前記貫通孔は円錐形状の内周壁を有し、前記円錐形状の内周壁が上下に組み合わされてレーザ光の照射深さ方向の中間位置に孔径0.01〜100μmの孔からなる鼓形状であって、前記貫通孔の内周壁にはレーザ光の照射により前記無機質フィラーを残存させて、前記貫通孔に対する気体の透過性の差を利用したガス選択作用を発現させて水蒸気などの水分を遮断させるので、無機質材フィラーを含有しない熱可塑性合成樹脂材に比し基材が板状の薄肉材であっても強度が高く、ガスの透過性が向上してガス透過量を多くするようにしたガス透過部材が得られる。The gas permeable member exemplifying the sealed electrochemical device of the present invention is a base material made of a thermoplastic synthetic resin material containing an inorganic filler, which is a constituent member of a closed container body, and is subjected to laser light irradiation to the thermoplastic synthetic resin. In a gas permeation member that dissolves or decomposes a component to form a through hole having a fine hole diameter and discharges the gas inside the closed container to the outside through the through hole , the through hole has a conical inner peripheral wall. The conical inner peripheral wall is combined vertically and has a drum shape consisting of a hole having a hole diameter of 0.01 to 100 μm at an intermediate position in the irradiation depth direction of the laser beam, and the inner peripheral wall of the through hole is a laser. The inorganic filler is left by irradiation with light, and a gas selection action utilizing the difference in gas permeability to the through hole is exhibited to block water such as water vapor. Therefore, a thermoplastic synthesis containing no inorganic material filler. Compared with the resin material, even if the base material is a plate-shaped thin-walled material, the strength is high, and a gas permeable member having improved gas permeability and a large amount of gas permeation can be obtained.

本発明の実施形態1で密閉容器本体に形成または密閉容器本体に密着接合するように形成したガス透過部材を示し、図2のA−A断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 2 showing a gas permeable member formed in a closed container body or tightly bonded to the closed container body in the first embodiment of the present invention. 本発明の実施形態1で密閉容器本体に形成または密閉容器本体に密着接合するように形成したガス透過部材を示す平面図である。It is a top view which shows the gas permeation member formed in the closed container main body or tightly joined to the closed container main body in Embodiment 1 of this invention. 本発明の実施形態1で密閉容器本体に形成または密閉容器本体に密着接合するように形成したガス透過部材を示す背面図である。It is a rear view which shows the gas permeation member formed in the closed container main body or tightly joined to the closed container main body in Embodiment 1 of this invention. 本発明の実施形態2で密閉容器本体に形成または密閉容器本体に密着接合するように形成したガス透過部材を示し、図5のB−B断面図である。FIG. 5 is a cross-sectional view taken along the line BB of FIG. 5 showing a gas permeable member formed in the closed container body or tightly joined to the closed container body in the second embodiment of the present invention. 本発明の実施形態2で密閉容器本体に形成または密閉容器本体に密着接合するように形成したガス透過部材を示す平面図である。It is a top view which shows the gas permeation member formed in the closed container body or tightly joined to the closed container body in Embodiment 2 of this invention. 本発明の実施形態1または実施形態2のガス透過部材を密閉容器本体に密着接合させた密閉容器の一部を示す断面図である。It is sectional drawing which shows a part of the closed container in which the gas permeation member of Embodiment 1 or Embodiment 2 of this invention is tightly joined to the closed container main body. 本発明の実施形態1または実施形態2のガス透過部材を密閉容器本体に密着接合させかつガス透過表層シートを形成した密閉容器の一部を示す断面図である。It is sectional drawing which shows a part of the closed container which formed the gas permeation surface layer sheet by tightly joining the gas permeation member of Embodiment 1 or Embodiment 2 of this invention to a closed container main body. 本発明の実施形態1または実施形態2のガス透過部材を密閉容器本体に密着接合させかつ異なる実施形態でガス透過表層シートを形成した密閉容器の一部を示す断面図である。FIG. 5 is a cross-sectional view showing a part of a closed container in which a gas permeable member according to the first or second embodiment of the present invention is tightly bonded to a closed container body and a gas permeable surface sheet is formed in a different embodiment. 本発明の実施形態1または実施形態2のガス透過部材を密閉型電気化学デバイスの密閉容器本体に密着接合させた状態を示す断面図である。It is sectional drawing which shows the state which the gas permeation member of Embodiment 1 or Embodiment 2 of this invention is tightly joined to the closed container main body of the closed type electrochemical device. 本発明の実施形態3で密閉容器本体と一体成形した基材にレーザ加工をする状態を示す断面図である。It is sectional drawing which shows the state which laser-processes the base material integrally molded with the closed container body in Embodiment 3 of this invention. 図10のガス透過部材の基材にレーザ加工をしてできたガス透過部材を示す断面図である。It is sectional drawing which shows the gas transmission member formed by laser processing the base material of the gas transmission member of FIG. 図11のガス透過部材の基材にガス透過表層シートを形成する作業状態を示す断面図である。It is sectional drawing which shows the working state which forms the gas permeation surface layer sheet on the base material of the gas permeation member of FIG. 図12のガス透過表層シートの形成作業によりできたガス透過部材をもちいた密閉型電気化学デバイスの要部を示す断面図である。It is sectional drawing which shows the main part of the closed type electrochemical device which used the gas permeable member made by the formation work of the gas permeable surface layer sheet of FIG. 本発明の実施形態4でガス透過部材の基材にガス透過表層シートを形成した状態を示す断面図である。It is sectional drawing which shows the state which formed the gas permeation surface layer sheet on the base material of the gas permeation member in Embodiment 4 of this invention. 本発明の実施形態5で密閉容器本体に形成したガス透過部材を示し、図16のC−C断面図である。FIG. 5 is a cross-sectional view taken along the line CC of FIG. 16 showing a gas permeable member formed in a closed container body according to the fifth embodiment of the present invention. 本発明の実施形態5で密閉容器本体に形成したガス透過部材を示す平面図である。It is a top view which shows the gas permeation member formed in the closed container body in Embodiment 5 of this invention. 本発明の実施形態5でガス透過部材を密閉容器本体に形成させた密閉型電気化学デバイスを示す断面図である。It is sectional drawing which shows the closed type electrochemical device which formed the gas permeation member in the closed container body in Embodiment 5 of this invention. 本発明の実施形態6で密閉容器本体にレーザ加工をする状態を示す断面図である。It is sectional drawing which shows the state which laser-processes the closed container body in Embodiment 6 of this invention. 本発明の実施形態6で密閉容器本体にレーザ加工をしてできたガス透過部材を示す断面図である。It is sectional drawing which shows the gas transmission member which was made by laser processing the closed container body in Embodiment 6 of this invention. 本発明の実施形態6で図19のガス透過部材にガス透過表層シートを形成した密閉型電気化学デバイスの要部を示す断面図である。It is sectional drawing which shows the main part of the closed type electrochemical device which formed the gas permeation surface layer sheet on the gas permeation member of FIG. 19 in Embodiment 6 of this invention. 実施例1のレーザ加工された貫通孔における加工表面を示す光学顕微鏡写真であり、(A)及び(B)はそれぞれ上面及び下面から撮像した写真である。It is an optical micrograph which shows the processed surface in the laser-machined through hole of Example 1, and (A) and (B) are photograph taken from the upper surface and the lower surface, respectively. 実施例2のレーザ加工された貫通孔における加工表面を示す光学顕微鏡写真とであり、(A)及び(B)はそれぞれ上面及び下面から撮像した写真である。It is an optical micrograph showing the processed surface in the laser-machined through hole of Example 2, and (A) and (B) are photographs taken from the upper surface and the lower surface, respectively.

以下、本発明の実施形態について図面を参照して説明する。Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
図1から図3を参照して、密閉容器本体の構成部材となる基材に形成したガス透過部材を説明する。
(Embodiment 1)
The gas permeation member formed on the base material which is a constituent member of the closed container main body will be described with reference to FIGS. 1 to 3.

1は、基材2に形成した貫通孔3で構成されたガス透過部材である。この基材2は密閉容器本体4(図6〜図9参照)に接着や溶着や成形などの密着接合される部材で密閉容器本体4の構成部材となって、ガス透過部材1はこの基材2を介して密閉容器本体4に形成されている。この基材2の素材はポリアミド樹脂、ポリプロピレン樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンサルファイド樹脂などの熱可塑性樹脂やフェノール樹脂、エポキシ樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂などの熱硬化性樹脂の樹脂材であり、複数の樹脂材を混合させたり、樹脂材を主成分とし、エラストマー、可塑剤、難燃剤などの添加剤、炭素繊維、金属、ガラスやセラミックスや粘土鉱物などの無機質材を混合させたりした素材としてもよい。また、これら樹脂材以外にもブチルゴム、シリコーンゴム、フッ素ゴムなどのゴム材の素材やアルミニウム、ステンレスなどの金属材の素材やガラス、セラミックス、粘土鉱物などの無機質材の素材があり、特許文献1で提案されたガス透過性に優れたポリオレフィン系樹脂や特許文献3で提案された多孔質の素材であってもよい。Reference numeral 1 denotes a gas permeation member composed of through holes 3 formed in the base material 2. The base material 2 is a member that is tightly bonded to the closed container main body 4 (see FIGS. 6 to 9) by adhesion, welding, molding, etc., and serves as a constituent member of the closed container main body 4, and the gas permeation member 1 is the base material. It is formed in the closed container main body 4 via 2. The material of the base material 2 is a thermoplastic resin such as polyamide resin, polypropylene resin, polybutylene terephthalate resin, polyphenylene sulfide resin, or a heat-curable resin such as phenol resin, epoxy resin, polyimide resin, and unsaturated polyester resin. Yes, multiple resin materials were mixed, or resin materials were used as the main component, and additives such as elastomers, plastics, and flame retardants, and inorganic materials such as carbon fibers, metals, glass, ceramics, and clay minerals were mixed. It may be used as a material. In addition to these resin materials, there are rubber material materials such as butyl rubber, silicone rubber, and fluororubber, metal materials such as aluminum and stainless steel, and inorganic material materials such as glass, ceramics, and clay minerals. Patent Document 1 It may be a polyolefin resin having excellent gas permeability proposed in 1 or a porous material proposed in Patent Document 3.

基材2の形状としては、平板の形状で、厚さtは50〜200μmを例示するが、2mmより小さい薄肉材で、凹凸形状であってもよい。この基材2をもちいることにより、微細な孔径の貫通孔3が形成されているので、破断可能な防爆弁としても使用することができる。As the shape of the base material 2, a flat plate shape and a thickness t of 50 to 200 μm are exemplified, but a thin material smaller than 2 mm and an uneven shape may be used. By using this base material 2, a through hole 3 having a fine hole diameter is formed, so that it can also be used as a breakable explosion-proof valve.

なお、ガス透過部材1は後述の実施形態2と同様に基材2に形成されており、密閉容器本体4の構成部材とするために、この基材2を密閉容器本体4に密着接合させたり、後述の実施形態3に示すように基材2と一体に成形してもよいが、このように基材2と密閉容器本体4とを別体とせずに、後述の実施形態5及び6に示すように密閉容器本体4自体に微細な孔径の貫通孔32を形成した密閉容器本体21としてもよい。The gas permeation member 1 is formed on the base material 2 as in the second embodiment described later, and the base material 2 may be tightly bonded to the closed container main body 4 in order to form a constituent member of the closed container main body 4. Although it may be integrally molded with the base material 2 as shown in the third embodiment described later, the base material 2 and the closed container main body 4 are not separated in this way, and the following embodiments 5 and 6 can be used. As shown, the closed container main body 21 may have a through hole 32 having a fine hole diameter formed in the closed container main body 4 itself.

この基材2には上面2Aから下面2Bに貫通した1個または複数個の微細な孔径を有する鼓形状の貫通孔3が形成されており、この貫通孔3は断面形状が真円または長円の形状で、円筒形状や内周壁面の大きさが大小の異なる孔径でできた円錐形状や鼓形状で、その最小孔径Rが0.01〜100μmとなるように孔加工されており、この孔加工に際して貫通孔3の孔径は、気体の透過性の差を利用したガス選択作用が発現するように設定して水蒸気などの水分を遮断させている。その孔加工はYAGレーザ、YVO4レーザ、GdVO4レーザ及びYLFレーザなどのレーザ光源のレーザ装置L好ましくは波長変換による短波長パルスレーザ装置Lからレーザ光を照射するレーザ加工やマイクロドリル、マイクロニードルのような穿孔による機械加工や化学エッチング加工でもよい。この貫通孔3の加工としては、レーザ加工が好ましく、この実施形態1においては、図1に示すように、レーザ装置Lにより、基材2に微細な孔径の貫通孔3が形成されたガス透過部材1が得られる。このレーザ装置Lにより形成される貫通孔3は、集光レンズ(図示せず)にて焦点を調整して、最小孔径Rが0.01〜100μmの貫通孔3が得られ、基材2の上面2Aの孔径R1及び下面2Bの孔径R2に比し厚さ方向すなわちレーザ光の照射深さ方向が徐々に小さくなって中間位置において最小孔径Rが得られるように傾斜した内周壁面3Aを有する円錐形状の孔が上下に組み合わされて鼓形状に形成されたガス透過部材1が得られる。The base material 2 is formed with a drum-shaped through hole 3 having one or a plurality of fine hole diameters penetrating from the upper surface 2A to the lower surface 2B, and the through hole 3 has a perfect circle or an oval cross section. It has a cylindrical shape and a conical shape or a drum shape made up of holes with different sizes of the inner peripheral wall surface, and the holes are machined so that the minimum hole diameter R is 0.01 to 100 μm. At the time of processing, the hole diameter of the through hole 3 is set so as to exhibit a gas selection action utilizing the difference in gas permeability to block water vapor and the like. The hole processing is performed by laser processing of a laser light source such as a YAG laser, YVO4 laser, GdVO4 laser, and YLF laser, preferably laser processing that irradiates laser light from a short wavelength pulse laser device L by wavelength conversion, a microdrill, or a microneedle. It may be machined by drilling or chemically etched. Laser processing is preferable as the processing of the through hole 3, and in the first embodiment, as shown in FIG. 1, a gas permeation in which a through hole 3 having a fine hole diameter is formed in the base material 2 by the laser device L. Member 1 is obtained. The through hole 3 formed by the laser device L is focused by a condenser lens (not shown) to obtain a through hole 3 having a minimum hole diameter R of 0.01 to 100 μm, and the base material 2 has a through hole 3. It has an inner peripheral wall surface 3A that is inclined so that the thickness direction, that is, the irradiation depth direction of the laser beam gradually becomes smaller than the hole diameter R1 of the upper surface 2A and the hole diameter R2 of the lower surface 2B, and the minimum hole diameter R is obtained at the intermediate position. A gas permeable member 1 formed in a drum shape by combining conical holes vertically is obtained.

図21及び図22は、このガス透過部材1は基材2に最小孔径Rが0.01〜100μmの貫通孔3が得られるようにレーザ加工された貫通孔3における加工表面を示す光学顕微鏡写真を示す。21 and 22 are optical micrographs showing the processed surface of the gas permeable member 1 in the through hole 3 laser-machined so that the through hole 3 having a minimum hole diameter R of 0.01 to 100 μm can be obtained in the base material 2. Is shown.

図21において、ガス透過部材1の基材2は、ポリフェニレンサルファイド(PPS)樹脂でできた厚さ200μmのフイルムで、この基材2の中央の部位にYVO4レーザのレーザ光源の波長変換による短波長パルスレーザ装置L(レーザ波長355nm、パルス幅14ns、パルス周波数50KHz、レンズ焦点距離50mm、出力0.54W、1孔あたりのショット数5000)を基材2の上面2Aに照射することにより、図1に示すように、最小孔径R、基材2の上面2Aの孔径R1及び下面2Bの孔径R2が形成された貫通孔3が得られる(実施例1)。この貫通孔3におけるレーザ加工表面として図2に示すような基材2の上面2Aを光学顕微鏡装置により撮像することにより、図21(A)に示す光学顕微鏡写真となる。この写真によると、基材2の上面2Aはレーザ光の照射で樹脂が溶解もしくは分解して、その上面2Aに孔径R1に相当する凹所が見られ、その凹所の中央位置に最小孔径Rに相当する孔が示されている。また、基材2を裏返しにして下面2Bを光学顕微鏡装置により撮像することにより、図21(B)に示す光学顕微鏡写真となり、その下面2Bに孔径R2に相当する凹所が見られ、その凹所の中央位置に最小孔径Rに相当する孔が示されている。これら上面2Aにおける凹所及び孔と下面2Bにおける凹所及び孔とにより傾斜した内周壁面3Aのある鼓形状の貫通孔3が形成されていることが示されている。さらに、この鼓形状の貫通孔3の内周壁面3Aを観察すると、上面2Aにおける凹所及び孔と下面2Bにおける凹所及び孔の何れの内周壁面3Aにおいても凹凸が入り組んだ壁面形状が見られる。In FIG. 21, the base material 2 of the gas transmission member 1 is a 200 μm-thick film made of polyphenylene sulfide (PPS) resin, and has a short wavelength in the central portion of the base material 2 due to wavelength conversion of a laser light source of a YVO4 laser. FIG. 1 is obtained by irradiating the upper surface 2A of the base material 2 with a pulse laser device L (laser wavelength 355 nm, pulse width 14 ns, pulse frequency 50 KHz, lens focal length 50 mm, output 0.54 W, number of shots per hole 5000). As shown in (Example 1), a through hole 3 in which the minimum hole diameter R, the hole diameter R1 of the upper surface 2A of the base material 2 and the hole diameter R2 of the lower surface 2B are formed is obtained (Example 1). By imaging the upper surface 2A of the base material 2 as shown in FIG. 2 as the laser-machined surface in the through hole 3 with an optical microscope device, the optical micrograph shown in FIG. 21 (A) is obtained. According to this photograph, the resin is melted or decomposed on the upper surface 2A of the base material 2 by irradiation with a laser beam, and a recess corresponding to the pore diameter R1 is seen on the upper surface 2A, and the minimum pore diameter R is located at the center of the recess. A hole corresponding to is shown. Further, by turning the base material 2 upside down and imaging the lower surface 2B with an optical microscope device, an optical microscope photograph shown in FIG. 21 (B) is obtained, and a recess corresponding to the pore diameter R2 is seen on the lower surface 2B, and the recess is formed. A hole corresponding to the minimum hole diameter R is shown at the center position of the place. It is shown that a drum-shaped through hole 3 having an inclined inner peripheral wall surface 3A is formed by the recesses and holes on the upper surface 2A and the recesses and holes on the lower surface 2B. Further, when observing the inner peripheral wall surface 3A of the drum-shaped through hole 3, it can be seen that the inner peripheral wall surface 3A of any of the recesses and holes on the upper surface 2A and the recesses and holes on the lower surface 2B has an intricate wall shape. Be done.

図22において、ガス透過部材1の基材2は、ポリフェニレンサルファイド(PPS)樹脂でできた厚さ150μmの射出成形シートで、図21と同様なレーザ光の照射で基材2の上面2Aに複数個、照射することにより、図1に示すように、最小孔径R、基材2の上面2Aの孔径R1及び下面2Bの孔径R2が形成された複数個の貫通孔3が得られる(実施例2)。この貫通孔3におけるレーザ加工表面として図2に示すような基材2の上面2Aを光学顕微鏡装置により撮像することにより、図22(A)に示す光学顕微鏡写真となる。この写真によると、基材2の上面2Aに孔径R1に相当する凹所及びその凹所の中央位置に最小孔径Rに相当する孔が示されている。さらに、基材2を裏返して基材2の下面2Bを光学顕微鏡装置により撮像することにより、図22(B)に示す光学顕微鏡写真となり、基材2の下面2Bに孔径R2に相当する凹所及びその凹所の中央位置に最小孔径Rに相当する孔が示されている。これら上面2Aと下面2Bとにより傾斜した内周壁面3Aのある鼓形状の貫通孔3が形成されていることが示されている。これら上面2Aにおける凹所及び孔と下面2Bにおける凹所及び孔とにより傾斜した内周壁面3Aのある鼓形状の貫通孔3が形成されていることが示されている。さらに、この鼓形状の貫通孔3の内周壁面3Aを観察すると、図21と同様に、上面2Aにおける凹所及び孔と下面2Bにおける凹所及び孔の何れの内周壁面3Aにおいても凹凸が入り組んだ壁面形状が見られる。In FIG. 22, the base material 2 of the gas permeation member 1 is an injection-molded sheet made of polyphenylene sulfide (PPS) resin and having a thickness of 150 μm, which is irradiated on the upper surface 2A of the base material 2 in the same manner as in FIG. By irradiating the pieces, as shown in FIG. 1, a plurality of through holes 3 in which the minimum pore diameter R, the pore diameter R1 of the upper surface 2A of the base material 2 and the pore diameter R2 of the lower surface 2B are formed can be obtained (Example 2). ). By imaging the upper surface 2A of the base material 2 as shown in FIG. 2 as the laser-machined surface in the through hole 3 with an optical microscope device, the optical micrograph shown in FIG. 22 (A) is obtained. According to this photograph, a recess corresponding to the hole diameter R1 is shown on the upper surface 2A of the base material 2, and a hole corresponding to the minimum hole diameter R is shown at the center position of the recess. Further, by turning over the base material 2 and imaging the lower surface 2B of the base material 2 with an optical microscope device, an optical micrograph shown in FIG. 22B is obtained, and a recess corresponding to the pore diameter R2 is obtained on the lower surface 2B of the base material 2. A hole corresponding to the minimum hole diameter R is shown at the center position of the recess. It is shown that a drum-shaped through hole 3 having an inclined inner peripheral wall surface 3A is formed by the upper surface 2A and the lower surface 2B. It is shown that a drum-shaped through hole 3 having an inclined inner peripheral wall surface 3A is formed by the recesses and holes on the upper surface 2A and the recesses and holes on the lower surface 2B. Further, when observing the inner peripheral wall surface 3A of the drum-shaped through hole 3, as in FIG. 21, unevenness is found on any of the inner peripheral wall surface 3A of the recess and the hole on the upper surface 2A and the recess and the hole on the lower surface 2B. You can see the intricate wall shape.

上記、図21及び図22に撮像した光学顕微鏡写真において、基材2には凹所の中央位置の基部において、最小孔径Rがそれぞれ5μm及び1.49μmとなった貫通孔3がレーザ加工により形成されている。この最小孔径Rは、この鼓形状の貫通孔3の内周壁面3Aは凹凸が入り組んだ壁面形状となっているので、内周壁面3Aの部位によっては上記数値よりもさらに小さい孔径となっていると推測される。In the optical micrographs taken in FIGS. 21 and 22 above, the base material 2 has through holes 3 having minimum hole diameters R of 5 μm and 1.49 μm formed by laser processing at the base at the center of the recess, respectively. Has been done. Since the inner peripheral wall surface 3A of the drum-shaped through hole 3 has a wall shape in which irregularities are intricate, the minimum hole diameter R is even smaller than the above value depending on the portion of the inner peripheral wall surface 3A. It is presumed.

また、ガス透過部材1の貫通孔3の内周壁面にシリコーン系、フッ素樹脂系、アクリル系及びアミド系などの撥水剤または、親水性もしくは濡れ性をもたせるように界面活性剤を吹付けまたは浸漬またはプラズマ処理によって、撥水性の表面処理層または親水性もしくは濡れ性の表面処理層を施すことにより、水蒸気などの水分が貫通孔3の内周壁面ではじき飛ばされたり、毛管凝縮されたりする作用を促進して、水蒸気などの水分の透過をさらに少なくして水分の遮断作用が向上したガス透過部材1が得られる。Further, a water repellent such as silicone-based, fluororesin-based, acrylic-based or amide-based, or a surfactant is sprayed on the inner peripheral wall surface of the through hole 3 of the gas permeation member 1 so as to have hydrophilicity or wettability. By applying a water-repellent surface treatment layer or a hydrophilic or wet surface treatment layer by immersion or plasma treatment , moisture such as water vapor is repelled or condensed on the inner peripheral wall surface of the through hole 3. The gas permeation member 1 is obtained by further reducing the permeation of moisture such as water vapor and improving the moisture blocking action.

(実施形態2)
図4及び図5は、実施形態1と同様に、基材は密閉容器本体に密着接合されて、密閉容器の構成部材となっており、その基材に形成したガス透過部材について、以下、実施形態1と異なる点を説明する。
(Embodiment 2)
In FIGS. 4 and 5, similarly to the first embodiment, the base material is tightly joined to the closed container body to form a constituent member of the closed container, and the gas permeating member formed on the base material is described below. The points different from the first embodiment will be described.

基材2の素材は繊維状、鱗片状、粒子状もしくはこれらを組み合わせたガラスやセラミックス、さらには粘土鉱物などの無機質材をフィラーとして含有した熱可塑性樹脂でできており、ガス透過量を多くするようにこの基材2を孔加工して微細な孔径の貫通孔31を形成するために、この基材2にYAGレーザ、YVO4レーザ、GdVO4レーザ及びYLFレーザなどのレーザ光源のレーザ装置L好ましくは波長変換による短波長パルスレーザ装置Lからレーザ光を照射して熱可塑性樹脂を溶解もしくは分解して無機質材のフィラーが少なくとも内周壁面31Aに残存して露出し、気体の透過性の差を利用したガス選択作用が発現するように孔加工をして、最小孔径Rが0.01〜100μmの円錐形状となった貫通孔31が形成されて、この残存し露出した無機質材のフィラーにより平滑な内周壁面31Aに比し水蒸気などの水分を遮断させる作用が向上してガスを透過することができるガス透過部材1が得られる。この場合、貫通孔31の孔形状は円錐形状を例示したが、実施形態1の貫通孔3のように鼓形状でもよい。The material of the base material 2 is made of fibrous, scaly, particulate or a combination of these, glass and ceramics, and a thermoplastic resin containing an inorganic material such as clay mineral as a filler, which increases the amount of gas permeation. In order to form a through hole 31 having a fine pore diameter by drilling the base material 2 as described above, a laser device L preferably a laser light source such as a YAG laser, a YVO4 laser, a GdVO4 laser, and a YLF laser is formed on the base material 2. The thermoplastic resin is melted or decomposed by irradiating laser light from the short wavelength pulse laser device L by wavelength conversion, and the filler of the inorganic material remains at least on the inner peripheral wall surface 31A and is exposed, utilizing the difference in gas permeability. Holes are processed so that the gas selective action is exhibited, and through holes 31 having a minimum pore diameter R of 0.01 to 100 μm are formed and smoothed by the filler of the remaining exposed inorganic material. Compared to the inner peripheral wall surface 31A, the action of blocking moisture such as water vapor is improved, and the gas permeating member 1 capable of permeating gas can be obtained. In this case, the hole shape of the through hole 31 is exemplified by a conical shape, but it may be a drum shape like the through hole 3 of the first embodiment.

このように孔加工することにより貫通孔31に無機質材のフィラーを存在させたガス透過部材1が形成されるので、無機質材のフィラーを含有した熱可塑性合成樹脂材でできた基材2をもちいるので、無機質材のフィラーを含有しない熱可塑性合成樹脂材に比し基材2が板状の薄肉材であっても強度が高く、貫通孔31の孔加工によりガスの透過性が向上してガス透過量を多くするようにしたガス透過部材1が得られる。Since the gas permeation member 1 in which the filler of the inorganic material is present in the through hole 31 is formed by the hole processing in this manner, the base material 2 made of the thermoplastic synthetic resin material containing the filler of the inorganic material is used. Therefore, the strength is high even if the base material 2 is a plate-shaped thin-walled material as compared with the thermoplastic synthetic resin material that does not contain the filler of the inorganic material, and the gas permeability is improved by the hole processing of the through hole 31. A gas permeation member 1 having a large gas permeation amount can be obtained.

(実施形態1及び2のガス透過部材を有する密閉容器の実施形態)
図6及び図7は、ガス透過部材が形成された基材を密閉容器本体に密着接合させて、密閉容器本体にガス通過空間部を有する状態の一部を示す。
(Embodiment of a closed container having the gas permeable members of the first and second embodiments)
6 and 7 show a part of a state in which the base material on which the gas permeable member is formed is tightly bonded to the closed container body and the closed container body has a gas passage space.

図6において、密閉容器本体4は下面が密閉容器41の内部41Bに面する密閉容器41の外殻であり、この内部41Bには電気二重層キャパシタやリチウム電池などの密閉型電気化学デバイスの電解質や車用電子制御装置の電子回路の発熱素子などを収容できるような密閉された空間部となっている。この密閉容器本体4には実施形態1の貫通孔3または実施形態2の貫通孔31よりも孔径の大きな通気孔でできたガス通過空間部5が形成されている。ガス通過空間部5は、密閉容器41の外面41A(図6においては密閉容器本体4の上面)に貫通孔3、31を有する平板な形状の基材2でできたガス透過部材1が接着や溶着や成形などにより密着接合させることにより、密閉容器41の内部41Bおよび実施形態1の貫通孔3または実施形態2の貫通孔31に連通している。このようにして、貫通孔3、31は気体の透過性の差を利用したガス選択作用が発現するように水蒸気などの水分を遮断させる大きさの孔径に設定されており、水蒸気などの水分を遮断し、密閉容器41の内部41Bにて発生したガス(酸素や二酸化炭素)を密閉容器41に蓄積せずに外部に排出することができる。さらに、ガス通過空間部5により密閉容器41の内部41Bにて発生したガス(酸素や二酸化炭素)を貫通孔3、31に送り込みやすくしている。In FIG. 6, the closed container main body 4 is the outer shell of the closed container 41 whose lower surface faces the inner 41B of the closed container 41, and the inner 41B is an electrolyte of a closed electrochemical device such as an electric double layer capacitor or a lithium battery. It is a sealed space that can accommodate the heating elements of electronic circuits of electronic control devices for vehicles. The closed container main body 4 is formed with a gas passage space portion 5 formed of a through hole 3 of the first embodiment or a ventilation hole having a larger hole diameter than the through hole 31 of the second embodiment. The gas permeation member 1 made of a flat base material 2 having through holes 3 and 31 adheres to the outer surface 41A of the airtight container 41 (the upper surface of the airtight container body 4 in FIG. 6) in the gas passage space 5. It communicates with the inside 41B of the closed container 41 and the through hole 3 of the first embodiment or the through hole 31 of the second embodiment by being tightly bonded by welding or molding. In this way, the through holes 3 and 31 are set to have a hole diameter large enough to block water vapor and the like so that a gas selection action utilizing the difference in gas permeability is exhibited, and the water vapor and the like can be removed. It is possible to shut off and discharge the gas (oxygen or carbon dioxide) generated in the inside 41B of the closed container 41 to the outside without accumulating in the closed container 41 . Further, the gas passage space 5 makes it easy to send the gas (oxygen or carbon dioxide) generated in the inside 41B of the closed container 41 into the through holes 3 and 31.

次に、図7は、図6に示す密閉容器本体4において、ガス通過空間部5の内部にガス透過表層シート100を密着接合させた密閉容器本体4を示す。このガス透過表層シート100は合成樹脂材や金属材でできた不織布、布、多孔フイルムもしくはシートで、貫通孔3、31よりもガス透過性がよい素材でできている。ガス透過表層シート100はガス通過空間部5の内部でその内周壁に接着剤をもちいて固着して、ガス透過表層シート100の上面においてはガス通過空間部5の内部で貫通孔3、31とは接触せず空間スペース5Aがあり、ガス透過表層シート100の下面においては密閉容器41の内部41Bと空間スペース5Bが形成されている。なお、ガス透過表層シート100は図7においては1枚であるが、空間スペース5A、5Bがあれば複数枚を重合もしくは離間してもちいてもよい。このようにして密閉容器本体4に密着接合されたガス透過部材1の貫通孔3、31により、図6と同様に水蒸気などの水分を遮断し、密閉容器41の内部41Bにて発生したガス(酸素や二酸化炭素)を排出することができるとともに、ガス透過表層シート100にて密閉容器41の内部41Bに水分などの液体があってもその液体が貫通孔3、31に付着することによるガス透過性を低下させないようにすることができる。Next, FIG. 7 shows the closed container main body 4 in which the gas permeation surface layer sheet 100 is tightly bonded to the inside of the gas passage space 5 in the closed container main body 4 shown in FIG. The gas permeable surface layer sheet 100 is a non-woven fabric, cloth, porous film or sheet made of a synthetic resin material or a metal material, and is made of a material having better gas permeability than the through holes 3 and 31. The gas permeation surface sheet 100 is fixed to the inner peripheral wall of the gas permeation surface sheet 100 by using an adhesive, and on the upper surface of the gas permeation surface sheet 100, through holes 3 and 31 are formed inside the gas permeation space 5. There is a space 5A without contacting the gas, and the inside 41B of the closed container 41 and the space 5B are formed on the lower surface of the gas permeation surface sheet 100. Although the number of gas-permeable surface sheet 100 is one in FIG. 7, a plurality of gas-permeable surface sheets 100 may be polymerized or separated if there are space spaces 5A and 5B. Moisture such as water vapor is blocked by the through holes 3 and 31 of the gas permeation member 1 which are closely joined to the closed container body 4 in this way, and the gas generated in the inside 41B of the closed container 41 (as in FIG. 6). Oxygen and carbon dioxide) can be discharged, and even if there is a liquid such as water in the inside 41B of the closed container 41 in the gas permeation surface sheet 100, the liquid adheres to the through holes 3 and 31 to permeate the gas. It is possible not to reduce the sex.

図8は、図7同様なガス透過表層シートを複数枚もちいた密閉容器本体4を示す。ガス通過空間部51の内部でその内周壁は貫通孔3、31に近い方が孔径の小さくなった2段の階段状に形成されており、2枚のガス透過表層シート100を空間スペース51Cで上下に離間するようにそれぞれリング100Aで固着している。この場合、ガス透過表層シート100の枚数はガス通過空間部51の大きさにより1枚でも3枚以上でも任意に選定して、このガス透過表層シート100の固着は、リング100Aをもちいないで直接接着剤で接合したり、一体成形したりしてもよい。空間スペース51Cで上下に離間したガス透過表層シート100の上方のガス透過表層シート100は貫通孔3、31と接触しないように空間スペース51Aを有し、下方のガス透過表層シート100は密閉容器本体4の下面から空間スペース51Bを有するように形成されている。この場合、ガス透過表層シート100に多孔フイルムもしくはシートをもちいる場合、上下のガス透過表層シート100を上下で孔のピッチをずらすようにしてもちいてもよい。このようにしてガス透過表層シート100をガス通過空間部51内に形成することにより、密閉容器41の内部41Bにある水分などの液体を貫通孔3、31に付着しにくくして貫通孔3、31のガス透過性の低下を防止することができる。FIG. 8 shows a closed container main body 4 using a plurality of gas permeable surface sheets similar to those in FIG. 7. Inside the gas passage space 51, the inner peripheral wall is formed in a two-step step shape with a smaller hole diameter closer to the through holes 3 and 31, and two gas permeation surface sheets 100 are formed in the space 51C. The rings 100A are fixed so as to be separated from each other in the vertical direction. In this case, the number of gas permeable surface sheet 100 may be arbitrarily selected to be 1 or 3 or more depending on the size of the gas passage space 51, and the gas permeable surface sheet 100 is directly fixed without using the ring 100A. It may be joined with an adhesive or integrally molded. Above the gas permeable surface sheet 100 of a gas permeable surface sheet 100 spaced vertically in space space 51C has a spatial space 51A so as not to contact with the through-holes 3 and 31, the lower gas permeable surface layer sheet 100 sealed container It is formed so as to have a space 51B from the lower surface of the main body 4. In this case, when a porous film or sheet is used for the gas permeable surface layer sheet 100, the upper and lower gas permeable surface layer sheets 100 may be used so that the hole pitches are shifted vertically. By forming the gas permeation surface layer sheet 100 in the gas passage space 51 in this way, it is difficult for liquids such as water in the inside 41B of the closed container 41 to adhere to the through holes 3, 31. It is possible to prevent a decrease in the gas permeability of 31.

(実施形態1及び2のガス透過部材を密閉型電気化学デバイスに使用する実施形態)
図9は、図6に示すガス透過部材1が形成された基材2を密着接合させた密閉容器本体4でできた密閉容器41を密閉型電気化学デバイス42として使用する密閉型電気化学デバイス用ガス透過部材を示す。この図9においても、図7及び図8に示すガス透過表層シート100をガス通過空間部5、51内に形成してもよい。
(Embodiment in which the gas permeable members of Embodiments 1 and 2 are used in a sealed electrochemical device)
FIG. 9 is for a closed electrochemical device in which the closed container 41 made of the closed container main body 4 in which the base material 2 on which the gas permeation member 1 shown in FIG. 6 is closely bonded is used as the closed electrochemical device 42. The gas permeation member is shown. Also in FIG. 9, the gas permeation surface layer sheet 100 shown in FIGS. 7 and 8 may be formed in the gas passage spaces 5 and 51.

図9において、密閉型電気化学デバイス42としては、電気二重層キャパシタやリチウム電池などが例示でき、密閉容器本体4は、一対の電極端子9が並設された円板(楕円を含む)状や矩形状の板材で実施形態1の貫通孔3または実施形態2の貫通孔31よりも孔径の大きな通気孔が形成されており、この通気孔は、貫通孔3、31を有する板状で薄肉材の基材2でできたガス透過部材1を密閉容器本体4に接着や溶着や成形などにより密着接合させることにより、密閉型電気化学デバイス42の内部(密閉容器本体4及び箱型ケース6とで密閉された内部)および貫通孔3、31と連通したガス通過空間部5、51となっている。なお、密閉容器本体4の素材としては金属材を例示するが、他の素材例えば合成樹脂材でもよい。6は、電極素子8及び電解質の電解液7を密閉して収容する円筒状または直方体状の箱型ケースで、その素材は密閉容器本体4と同様な金属材を例示するが、他の素材でもよい。この箱型ケース6を密閉容器本体4と密着接合させて閉蓋することにより一対の電極端子9に電気接続されるリード10、10、電極素子8及び電解液7が密閉して収容されている。このように、電極素子8及び電解液7を有する電気二重層キャパシタやリチウム電池などの密閉型電気化学デバイス42にあっては、その内部が密閉容器本体4及び箱型ケース6とで密閉されているので、充放電サイクルを繰り返したり、高温で放置したり、短絡・過充電・逆充電などにより電解液7が分解されて、酸素や二酸化炭素などのガスが発生し、そのガスが蓄積されることにより急激に内圧が上昇して、その密閉容器本体4や箱型ケース6が膨れたり、破裂したりするおそれがあるが、発生したガスが密閉型電気化学デバイス42の内部(密閉容器本体4及び箱型ケース6とで密閉された内部)に蓄積しすぎないように密閉容器本体4の構成部材となる基材2を孔加工して形成された貫通孔3、31を有するガス透過部材1により、ガスを適宜、ガス通過空間部5、51から貫通孔3、31を介して密閉型電気化学デバイス42の外部に排出できるので、ガスが蓄積しつづけることを防止するとともに、この貫通孔3、31は水蒸気などの水分を遮断させる最小孔径に設定して行う孔加工により形成されているので、水蒸気などの水分をガス通過空間部5、51から貫通孔3、31を介して透過させないようにして水分を遮断している。In FIG. 9, examples of the closed-type electrochemical device 42 include an electric double-layer capacitor and a lithium battery, and the closed container main body 4 has a disk shape (including an ellipse) in which a pair of electrode terminals 9 are arranged side by side. A vent hole having a larger hole diameter than the through hole 3 of the first embodiment or the through hole 31 of the second embodiment is formed of a rectangular plate material, and the vent hole is a plate-shaped thin-walled material having the through holes 3 and 31. By adhering the gas permeable member 1 made of the base material 2 of the above to the closed container main body 4 by adhesion, welding, molding, etc., the inside of the closed electrochemical device 42 (the closed container main body 4 and the box type case 6) It is a gas passage space portion 5, 51 that communicates with the closed interior) and the through holes 3, 31. Although a metal material is exemplified as the material of the closed container main body 4, other materials such as synthetic resin materials may be used. Reference numeral 6 denotes a cylindrical or rectangular parallelepiped box-shaped case that hermetically houses the electrode element 8 and the electrolyte solution 7 of the electrolyte. The material thereof is the same metal material as that of the airtight container body 4, but other materials may be used. Good. The leads 10, 10 and the electrode element 8 and the electrolytic solution 7 that are electrically connected to the pair of electrode terminals 9 by closely joining the box-shaped case 6 to the closed container body 4 and closing the lid are hermetically accommodated. .. As described above, in the closed type electrochemical device 42 such as an electric double layer capacitor or a lithium battery having the electrode element 8 and the electrolytic solution 7, the inside thereof is sealed by the closed container body 4 and the box type case 6. Therefore, the electrolytic solution 7 is decomposed by repeating the charge / discharge cycle, leaving at a high temperature, short-circuiting, overcharging, reverse charging, etc., and gas such as oxygen and carbon dioxide is generated, and the gas is accumulated. As a result, the internal pressure rises sharply, and the closed container body 4 and the box-shaped case 6 may swell or burst, but the generated gas is inside the closed-type electrochemical device 42 (sealed container body 4). And the gas permeation member 1 having through holes 3 and 31 formed by perforating the base material 2 which is a constituent member of the closed container main body 4 so as not to accumulate too much in the inside sealed with the box-shaped case 6. As a result, the gas can be appropriately discharged from the gas passage spaces 5 and 51 to the outside of the closed type electrochemical device 42 through the through holes 3 and 31, so that the gas can be prevented from continuing to accumulate and the through holes 3 can be prevented from continuing to accumulate. , 31 are formed by hole processing performed by setting the minimum pore diameter to block moisture such as water vapor, so that moisture such as water vapor does not permeate through the gas passage spaces 5 and 51 through the through holes 3 and 31. To block water.

この場合も、図示しないが、図7及び図8に示すガス透過表層シート100をガス通過空間部5、51内に形成すれば、密閉容器本体4に密着接合されたガス透過部材1の貫通孔3、31は水蒸気などの水分を遮断し、密閉型電気化学デバイス42の内部にて発生したガス(酸素や二酸化炭素)をガス通過空間部5、51から貫通孔3、31を介して密閉型電気化学デバイス42の外部に排出する際、水蒸気などの水分をガス通過空間部5、51から貫通孔3、31を介して透過させないようにして水分を遮断するとともに、密閉型電気化学デバイス42の内部の電解液7が有する液体を貫通孔3、31に付着しにくくして貫通孔3、31のガス透過性の低下を防止することができる。Also in this case, although not shown, if the gas permeation surface layer sheets 100 shown in FIGS. 7 and 8 are formed in the gas passage spaces 5 and 51, the through holes of the gas permeation member 1 closely joined to the closed container body 4 are formed. 3 and 31 block moisture such as water vapor, and the gas (oxygen and carbon dioxide) generated inside the closed type electrochemical device 42 is closed type from the gas passage spaces 5 and 51 through the through holes 3 and 31. When discharged to the outside of the electrochemical device 42, the moisture such as water vapor is blocked from permeating through the through holes 3 and 31 from the gas passage spaces 5 and 51 to block the moisture, and the sealed electrochemical device 42. It is possible to prevent the liquid contained in the electrolytic solution 7 from adhering to the through holes 3 and 31 and prevent the gas permeability of the through holes 3 and 31 from being lowered.

(実施形態3)
図10から図13は、合成樹脂材でできたガス透過部材の基材を密閉容器本体と一体に成形したガス透過部材を示し、以下、説明する。
(Embodiment 3)
10 to 13 show a gas permeable member obtained by integrally molding a base material of a gas permeable member made of a synthetic resin material with a closed container body, and will be described below.

図10及び図11は、筒形状の合成樹脂材でできた基材2を金属材でできた密閉容器本体4と一体に成形して密閉容器本体4よりも厚さの大きい筒形状となったガス透過部材11を示す。基材2の素材としては、ポリアミド樹脂、ポリプロピレン樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンサルファイド樹脂などの熱可塑性樹脂が例示でき、密閉容器本体4の素材としては、アルミニウム(含む合金)、銅(含む合金)またはステンレスなどでできた孔付き金属板で、この金属板の孔に筒形状の基材2が配置される。図10において、基材2は上方に凹所20Aが形成され、下方にガス通過空間部52が形成されるように桟部20を有し、この桟部20は密閉容器本体4にインサート成形などで一体に成形されてできている。この桟部20にその上方からレーザ装置Lによるレーザ光を照射して、図11に示すように上方の孔径Rが下方の孔径R1よりも大きな円錐状の貫通孔32が得られ、この貫通孔32の上方及び下方にはそれぞれ凹所20A及びガス通過空間部52と連通したガス透過部材11が基材2に形成される。In FIGS. 10 and 11, the base material 2 made of a tubular synthetic resin material is integrally molded with the closed container main body 4 made of a metal material to form a tubular shape having a thickness larger than that of the closed container main body 4. The gas permeation member 11 is shown. Examples of the material of the base material 2 include thermoplastic resins such as polyamide resin, polypropylene resin, polybutylene terephthalate resin, and polyphenylene sulfide resin, and the material of the closed container body 4 includes aluminum (containing alloy) and copper (containing alloy). ) Or a metal plate with holes made of stainless steel or the like, and the tubular base material 2 is arranged in the holes of the metal plate. In FIG. 10, the base material 2 has a crosspiece 20 such that a recess 20A is formed above and a gas passage space 52 is formed below, and the crosspiece 20 is insert-molded into the closed container body 4 or the like. It is made by being integrally molded with. By irradiating the crosspiece 20 with laser light from the laser device L from above, a conical through hole 32 in which the upper hole diameter R is larger than the lower hole diameter R1 is obtained as shown in FIG. A gas permeation member 11 communicating with the recess 20A and the gas passage space 52 is formed on the base material 2 above and below the 32, respectively.

図12は、このようにして密閉容器本体4に形成されかつガス通過空間部52とガス透過部材11とを有する基材2にガス透過表層シート101、100を形成する作業状態を示し、基材2の上方及び下方からそれぞれガス透過表層シート101、100を基材2に押し付けると、図13に示すように、基材2の上方の凹所20Aはガス透過表層シート101で覆われるように接着剤で固着され、基材2の下方のガス通過空間部52はその内周壁にガス透過表層シート100が接着剤で固着される。このガス通過空間部52に固着されるガス透過表層シート100は、図7と同様に、その上面はガス通過空間部52内で貫通孔32と離間するように空間スペース52Bが形成されている。このガス透過表層シート100、101の素材としては、ポリアミド系樹脂の不織布やポリウレタン樹脂系のスポンジや繊維やポリプロピレン樹脂系の合成樹脂材やアルミニウム(含む合金)、ステンレスなどの金属材でできた多孔フイルムもしくはシートや不織布が例示できる。図13において、ガス透過表層シート100、101を有するガス透過部材11は、密閉容器本体4に一対の電極端子9が並設された密閉型電気化学デバイス42の上部を示し、この密閉型電気化学デバイス42は図9と同様に密閉容器本体4と箱型ケース6とで密閉されて電解質の電解液7が収容されているので、充放電サイクルを繰り返したり、高温で放置したり、短絡・過充電・逆充電などにより電解液7が分解されて、酸素や二酸化炭素などのガスが発生し、そのガスが蓄積されることにより急激に内圧が上昇して、その密閉容器本体4や箱型ケース6が膨れたり、破裂したりするおそれがあるが、発生したガスが密閉型電気化学デバイス42の内部(密閉容器本体4及び箱型ケース6とで密閉された内部)に蓄積しすぎないように密閉容器本体4の構成部材となる基材2を孔加工して形成された貫通孔32を有するガス透過部材11により、ガスを適宜、ガス通過空間部52から貫通孔32を介して密閉型電気化学デバイス42の外部に排出できるので、ガスが蓄積しつづけることを防止するとともに、このガス通過空間部52はガスの排出作用を促進させる。また、この実施形態3においても、貫通孔32は水蒸気などの水分を遮断させる最小孔径に設定して行う孔加工により形成されているので、水蒸気などの水分をガス通過空間部52から貫通孔32を介して透過させないようにしている。さらに、貫通孔32よりもガス透過性のよいガス透過表層シート100をガス通過空間部52の内部に形成することにより、貫通孔32に電解液7の液体の付着をしにくくしてガス透過性を低下させないようにしている。また、基材2は上方に形成された凹所20Aはガス表層シート101で覆われているので、密閉容器本体4の外部に発生した塵などが貫通孔32に付着することによるガス透過性の低下を防止することができる。FIG. 12 shows a working state in which the gas permeation surface layer sheets 101 and 100 are formed on the base material 2 thus formed in the closed container main body 4 and having the gas passage space 52 and the gas permeation member 11. When the gas permeable surface layer sheets 101 and 100 are pressed against the base material 2 from above and below, respectively, the recess 20A above the base material 2 is adhered so as to be covered with the gas permeable surface layer sheet 101, as shown in FIG. The gas permeation surface sheet 100 is fixed to the inner peripheral wall of the gas passage space 52 below the base material 2 with an adhesive. Similar to FIG. 7, the gas permeation surface layer sheet 100 fixed to the gas passage space 52 has a space 52B formed on the upper surface thereof so as to be separated from the through hole 32 in the gas passage space 52. The materials of the gas permeable surface sheets 100 and 101 are porous made of a polyamide-based resin non-woven fabric, a polyurethane resin-based sponge, a fiber, a polypropylene resin-based synthetic resin material, aluminum (including an alloy), and a metal material such as stainless steel. Examples include films, sheets, and non-woven fabrics. In FIG. 13, the gas permeable member 11 having the gas permeable surface layer sheets 100 and 101 shows the upper part of the closed type electrochemical device 42 in which a pair of electrode terminals 9 are arranged side by side on the closed container main body 4, and the closed type electrochemical is shown. Since the device 42 is sealed by the closed container main body 4 and the box-shaped case 6 and contains the electrolytic solution 7 of the electrolyte as in FIG. 9, the charge / discharge cycle is repeated, the device 42 is left at a high temperature, and a short circuit / excessive is performed. The electrolytic solution 7 is decomposed by charging / reverse charging, and gas such as oxygen and carbon dioxide is generated. The accumulation of the gas causes the internal pressure to rise sharply, and the closed container body 4 and the box-shaped case. 6 may swell or explode, but the generated gas should not accumulate too much inside the sealed electrochemical device 42 (the inside sealed by the closed container body 4 and the box case 6). A gas permeation member 11 having a through hole 32 formed by perforating a base material 2 which is a constituent member of the closed container main body 4 allows gas to be appropriately discharged from a gas passage space 52 through the through hole 32. Since the gas can be discharged to the outside of the chemical device 42, the gas can be prevented from continuing to accumulate, and the gas passage space 52 promotes the gas discharge action. Further, also in the third embodiment, since the through hole 32 is formed by hole processing performed by setting the minimum hole diameter to block water vapor and the like, moisture such as water vapor is allowed to pass through the gas passage space 52 through the through hole 32. It is prevented from being transmitted through. Further, by forming the gas permeable surface layer sheet 100 having better gas permeability than the through hole 32 inside the gas passage space 52, it is difficult for the liquid of the electrolytic solution 7 to adhere to the through hole 32 and the gas permeability is prevented. I try not to lower it. Further, since the recess 20A formed above the base material 2 is covered with the gas surface layer sheet 101, the gas permeability due to the dust generated outside the closed container main body 4 adhering to the through hole 32. It is possible to prevent the decrease.

(実施形態4)
図14は、実施形態3に示すガス透過表層シート100をガス通過空間部の内部に形成する異なる実施形態を示す。
(Embodiment 4)
FIG. 14 shows a different embodiment in which the gas permeation surface sheet 100 shown in the third embodiment is formed inside the gas passage space portion.

図14において、ガス透過部材11は、実施形態3と同様に筒形状の合成樹脂材でできた基材2を金属材でできた密閉容器本体4に一体に成形して筒形状となっているが、貫通孔32と連通したガス通過空間部53の形状は実施形態3とは異なり、ガス通過空間部53の内周壁は貫通孔32に近い方が孔径の小さくなった2段の階段状に形成されている。このガス通過空間部53には、上下に離間した2枚のガス透過表層シート100をそれぞれリング100Aで固着されている。この上下に離間した2枚のガス透過表層シート100において、ガス通過空間部53内の上側のガス透過表層シート100は貫通孔32とは空間スペースを有して離間しており、下側のガス透過表層シート100は密閉容器本体4の下面とは空間スペースを有して離間している。このガス透過表層シート100の素材は実施形態3のガス透過表層シート100と同様な合成樹脂材や金属材でできた多孔フイルムもしくはシートや不織布でできている。この場合、ガス透過表層シート100の枚数はガス通過空間部53の大きさにより1枚でも3枚以上でも任意に選定できる。特に、ガス透過表層シート100に多孔フイルムもしくはシートをもちいる場合、上下のガス透過表層シート100を上下で孔のピッチをずらすようにしてもちいてもよい。また、基材2の上方には実施形態3と同様に凹所20Aを有し、凹所20Aはガス表層シート101で覆われている。このようにしてできた密閉容器本体4に形成された基材2を図13に示す実施形態3と同様に密閉型電気化学デバイス42にもちいることにより、密閉型電気化学デバイス42の内部に収容された電解液の液体を貫通孔32に付着しにくくして貫通孔32のガス透過性の低下を防止することができる。また、ガス透過表層シート100の固着は、リング100Aをもちいないで直接接着剤で接合したり、一体成形したりしてもよい。このようにガス透過表層シート100をガス通過空間部53の内部に設けることにより、液体を貫通孔32に付着しにくくして貫通孔32のガス透過性の低下を防止することができる。In FIG. 14, the gas permeation member 11 has a tubular shape by integrally molding a base material 2 made of a tubular synthetic resin material into a closed container body 4 made of a metal material as in the third embodiment. However, the shape of the gas passage space portion 53 communicating with the through hole 32 is different from that of the third embodiment, and the inner peripheral wall of the gas passage space portion 53 has a two-step step shape in which the hole diameter is smaller near the through hole 32. It is formed. Two gas-permeable surface sheets 100 separated vertically are fixed to the gas passage space 53 by rings 100A, respectively. In the two gas permeable surface sheet 100 separated above and below, the upper gas permeable surface sheet 100 in the gas passage space 53 is separated from the through hole 32 with a space, and the lower gas. The transparent surface layer sheet 100 is separated from the lower surface of the closed container main body 4 with a space. The material of the gas permeable surface layer sheet 100 is a porous film made of a synthetic resin material or a metal material similar to that of the gas permeable surface layer sheet 100 of the third embodiment, or a sheet or a non-woven fabric. In this case, the number of gas-permeable surface layer sheets 100 can be arbitrarily selected to be one or three or more depending on the size of the gas passage space 53. In particular, when a porous film or a sheet is used for the gas permeable surface layer sheet 100, the upper and lower gas permeable surface layer sheets 100 may be used so that the hole pitches are shifted vertically. Further, the recess 20A is provided above the base material 2 as in the third embodiment, and the recess 20A is covered with the gas surface layer sheet 101. By using the base material 2 formed in the closed container main body 4 thus formed in the closed electrochemical device 42 as in the third embodiment shown in FIG. 13, it is housed inside the closed electrochemical device 42. It is possible to prevent the liquid of the electrolytic solution from adhering to the through hole 32 and prevent the gas permeability of the through hole 32 from being lowered. Further, the gas permeable surface layer sheet 100 may be fixed by directly joining with an adhesive or integrally molding without using the ring 100A. By providing the gas permeation surface layer sheet 100 inside the gas passage space 53 in this way, it is possible to prevent the liquid from adhering to the through hole 32 and prevent the gas permeation of the through hole 32 from being lowered.

(実施形態5)
図15及び図16は、基材が密閉容器の外殻である密閉容器本体となった状態のガス透過部材を示す。
(Embodiment 5)
15 and 16 show a gas permeable member in a state where the base material is the main body of the closed container, which is the outer shell of the closed container.

密閉容器本体21は、合成樹脂材または金属材でできた厚さtが1〜2mmの板材でできており、孔加工により円錐形状の貫通孔32を有するガス透過部材12が形成されている。この円錐形状の貫通孔32は、密閉容器本体21の上面21Aの孔径R1が下面21Bの最小孔径Rよりも大きい形状となっている。このような円錐形状の貫通孔32を得る孔加工としては、YAGレーザ、YVO4レーザ、GdVO4レーザ及びYLFレーザなどのレーザ光源のレーザ装置L好ましくは波長変換による短波長パルスレーザ装置Lからレーザ光を照射するレーザ加工を例示しているが、レーザ加工に代えてマイクロドリル、マイクロニードルのような穿孔による機械加工や化学エッチング加工でもよい。The closed container main body 21 is made of a plate material having a thickness t of 1 to 2 mm made of a synthetic resin material or a metal material, and a gas permeation member 12 having a conical through hole 32 is formed by hole processing. The conical through hole 32 has a shape in which the hole diameter R1 of the upper surface 21A of the closed container main body 21 is larger than the minimum hole diameter R of the lower surface 21B. For hole processing to obtain such a conical through hole 32, laser light is emitted from a laser device L of a laser light source such as a YAG laser, a YVO4 laser, a GdVO4 laser, and a YLF laser, preferably a short wavelength pulse laser device L by wavelength conversion. Although the laser processing for irradiating is illustrated, instead of the laser processing, mechanical processing by drilling such as a microdrill or a microneedle or chemical etching processing may be used.

(実施形態5のガス透過部材を密閉型電気化学デバイスに使用する実施形態)
図17は、密閉容器本体21の上面21Aが密閉型電気化学デバイス42の外面となり、この密閉容器本体21に貫通孔32を有し、一対の電極端子9が並設された密閉型電気化学デバイス42を示し、この密閉型電気化学デバイス42は電解質の電解液7を有する電気二重層キャパシタやリチウム電池などで、開口端のある円筒状または直方体状の箱型ケース6を閉蓋するように接合された密閉型電気化学デバイス42となる。この密閉型電気化学デバイス42の内部(密閉容器本体21と箱型ケース6とで密閉された内部)には、図9と同様に、リード10、10、電極素子部8及び電解液7が気密状態すなわち密閉されて設けられている。このように、電極素子8及び電解液7を有する電気二重層キャパシタやリチウム電池などの密閉型電気化学デバイス42にあっては、その内部が密閉されているので、充放電サイクルを繰り返したり、高温で放置したり、短絡・過充電・逆充電などにより電解液7が分解されて、酸素や二酸化炭素などのガスが発生し、そのガスが蓄積されることにより急激に内圧が上昇して、その密閉型電気化学デバイス42における密閉容器本体21や箱型ケース6が膨れたり、破裂したりするおそれがあるので、発生したガスが密閉型電気化学デバイス42の内部に蓄積しすぎないように貫通孔32によりそのガスを適宜、密閉型電気化学デバイス42の外部に排出させることができ、かつ水蒸気などの水分を透過させないようにして水分を遮断している。
(Embodiment in which the gas permeable member of Embodiment 5 is used for a closed-type electrochemical device)
In FIG. 17, the upper surface 21A of the closed container body 21 is the outer surface of the closed electrochemical device 42, and the closed electrochemical device 21 has a through hole 32 and a pair of electrode terminals 9 are arranged side by side. 42 is shown, and the sealed electrochemical device 42 is joined with an electric double-layer capacitor or a lithium battery having an electrolytic solution 7 of an electrolyte so as to close a cylindrical or rectangular box-shaped case 6 having an open end. It becomes the closed type electrochemical device 42. The leads 10 and 10, the electrode element portion 8 and the electrolytic solution 7 are airtight inside the sealed electrochemical device 42 (the inside sealed by the closed container body 21 and the box-shaped case 6) as in FIG. It is provided in a state, that is, sealed. As described above, in the sealed electrochemical device 42 such as the electric double layer capacitor and the lithium battery having the electrode element 8 and the electrolytic solution 7, since the inside thereof is sealed, the charge / discharge cycle is repeated and the temperature is high. The electrolytic solution 7 is decomposed by leaving it in the room, short-circuiting, overcharging, reverse charging, etc., and gas such as oxygen and carbon dioxide is generated, and the accumulated gas causes the internal pressure to rise sharply. Since the closed container body 21 and the box-shaped case 6 in the closed electrochemical device 42 may swell or explode, a through hole is provided so that the generated gas does not accumulate too much inside the closed electrochemical device 42. The gas can be appropriately discharged to the outside of the closed-type electrochemical device 42 by the 32, and the water is blocked by preventing the permeation of water such as water vapor.

(実施形態6)
図18〜図20は、実施形態5と同様に基材が密閉容器の外殻である密閉容器本体となった状態のガス透過部材を示し、実施形態5とは、基材の形状が異なる。
(Embodiment 6)
18 to 20 show gas permeable members in a state where the base material is the outer shell of the closed container, which is the main body of the closed container, as in the fifth embodiment, and the shape of the base material is different from that of the fifth embodiment.

図18において、密閉容器本体21はアルミニウム(含む合金)、銅(含む合金)またはステンレスなどでできた金属板で、この金属板は凹凸加工されて、密閉容器本体21の上面21Aの一部を上方に突出した凸曲面22が形成されており、下面21Bは密閉型電気化学デバイス42(図20参照)の内部となる。ガス透過量を多くするように微細な孔径の貫通孔を形成するために、この凸曲面22にレーザ装置Lにより、図19に示すように実施形態2と同様に密閉容器本体21の上面21Aの孔径が下面21Bの最小孔径よりも大きい形状で円錐状の貫通孔32が形成されている。このように、貫通孔32形成された密閉容器本体21には貫通孔32よりも大きな孔径で貫通孔32と連通したガス通過空間部54を有するガス透過部材13が得られ、ガスの排出作用を促進させている。 In FIG. 18, the closed container main body 21 is a metal plate made of aluminum (containing alloy), copper (containing alloy), stainless steel, or the like, and the metal plate is unevenly processed to form a part of the upper surface 21A of the closed container main body 21. A convex curved surface 22 protruding upward is formed, and the lower surface 21B is the inside of the sealed electrochemical device 42 (see FIG. 20). In order to form a through hole having a fine hole diameter so as to increase the amount of gas permeated, a laser device L is applied to the convex curved surface 22 of the upper surface 21A of the closed container main body 21 as shown in FIG. A conical through hole 32 is formed having a hole diameter larger than the minimum hole diameter of the lower surface 21B. As described above, in the closed container main body 21 formed with the through hole 32, a gas permeation member 13 having a gas passage space 54 communicating with the through hole 32 having a hole diameter larger than that of the through hole 32 is obtained, and a gas discharging action is performed. It is promoting .

図20は、図17のように、基材を一対の電極端子9が並設された密閉容器本体21とし、その上面21Aが密閉型電気化学デバイス42の外面となり、箱型ケース6とで密閉されて、電解質の電解液7が収容された密閉型電気化学デバイス42を示す。この密閉型電気化学デバイス42には、図17と異なり、ガス通過空間部54およびガス透過表層シート100を有する。In FIG. 20, as shown in FIG. 17, the base material is a closed container main body 21 in which a pair of electrode terminals 9 are arranged side by side, and the upper surface 21A thereof is the outer surface of the sealed electrochemical device 42 and is sealed with the box-shaped case 6. The sealed electrochemical device 42 containing the electrolytic solution 7 of the electrolyte is shown. Unlike FIG. 17, the sealed electrochemical device 42 has a gas passage space 54 and a gas permeation surface sheet 100.

図20において、密閉型電気化学デバイス42は密閉容器本体21と箱型ケース6とで密閉されて、電解質の電解液7が収容されているので、充放電サイクルを繰り返したり、高温で放置したり、短絡・過充電・逆充電などにより電解液7が分解されて、酸素や二酸化炭素などのガスが発生し、そのガスが蓄積されることにより急激に内圧が上昇して、その密閉容器本体21や箱型ケース6が膨れたり、破裂したりするおそれがあるが、発生したガスが密閉型電気化学デバイス42の内部(密閉容器本体21及び箱型ケース6とで密閉された内部)に蓄積しすぎないように密閉容器本体21の凸曲面22を孔加工して形成された貫通孔32により、ガスを適宜、ガス通過空間部54から貫通孔32を介して密閉型電気化学デバイス42の外部に排出できるので、ガスが蓄積しつづけることを防止するとともに、このガス通過空間部54はガスの排出作用を促進させる。さらに、このガス通過空間部54には、貫通孔32よりもガス透過性のよいガス透過表層シート100を凸曲面状に折り曲げてガス通過空間部54の凸曲面22の内周壁に固着することにより、このガス透過表層シート100の上面においては貫通孔32との間に空間スペース54Aが形成され、ガス透過表層シート100の下面においては空間スペース54Bが形成されたガス透過部材13が得られ、このガス透過表層シート100により密閉型電気化学デバイス42の電解液7が貫通孔32に付着しにくくなり、液体の付着によるガス透過性の低下を防止するなどの効果がある。In FIG. 20, since the closed-type electrochemical device 42 is sealed by the closed container main body 21 and the box-shaped case 6 and contains the electrolytic solution 7 of the electrolyte, the charging / discharging cycle is repeated or the gas is left at a high temperature. , The electrolytic solution 7 is decomposed by short circuit, overcharge, reverse charge, etc., and gas such as oxygen and carbon dioxide is generated, and the internal pressure rises sharply due to the accumulation of the gas, and the closed container body 21 The box-shaped case 6 may swell or explode, but the generated gas accumulates inside the sealed electrochemical device 42 (the inside sealed by the closed container body 21 and the box-shaped case 6). Through the through hole 32 formed by drilling the convex curved surface 22 of the closed container body 21 so as not to be too much, gas is appropriately sent from the gas passage space 54 to the outside of the closed electrochemical device 42 through the through hole 32. Since the gas can be discharged, the gas can be prevented from being continuously accumulated, and the gas passage space 54 promotes the gas discharge action. Further, in the gas passage space portion 54, the gas permeation surface layer sheet 100 having better gas permeability than the through hole 32 is bent into a convex curved shape and fixed to the inner peripheral wall of the convex curved surface 22 of the gas passage space portion 54. On the upper surface of the gas permeable surface sheet 100, a space 54A is formed between the gas permeable surface sheet 100 and the through hole 32, and on the lower surface of the gas permeable surface sheet 100, a gas permeable member 13 in which the space 54B is formed is obtained. The gas permeation surface sheet 100 makes it difficult for the electrolytic solution 7 of the sealed electrochemical device 42 to adhere to the through hole 32, and has an effect of preventing a decrease in gas permeability due to the adhesion of the liquid.

図1及び図2にもとづき気体の透過性の差を利用したガス選択作用が発現し、かつガス透過量を多くするように最小孔径Rが0.01〜100μmとなる貫通孔3を孔加工により基材2に形成したガス透過部材1により、水蒸気などの水分の遮断を維持するとともにガス透過性が向上することを見出した実施例を以下、説明する。Based on FIGS. 1 and 2, a through hole 3 having a minimum hole diameter R of 0.01 to 100 μm is formed by hole processing so that a gas selection action utilizing the difference in gas permeability is exhibited and the amount of gas permeation is increased. Hereinafter, an example in which it has been found that the gas permeable member 1 formed on the base material 2 maintains the blocking of moisture such as water vapor and improves the gas permeability will be described below.

基材2の薄肉材としては、厚さ200μmのポリフェニレンサルファイド(PPS)樹脂できた直径35mmの円板状のフイルムを用意した。この基材2にYVO4レーザ光源の波長変換による短波長パルスレーザ装置L(レーザ波長355nm、パルス幅14ns、パルス周波数50KHz、レンズ焦点距離50mm、出力0.54W、1孔あたりのショット数5000)からレーザ光を照射して上面及び下面に凹所及び厚さ方向すなわちレーザ光の照射深さ方向の中間位置に孔径5μmの孔からなる鼓形状の貫通孔3となった1個(実施例1−1)、500μmで離間した5個(実施例1−2)及び500μmで離間した10個(実施例1−1)の貫通孔3を形成して、GTRテック株式会社製のガス透過実験装置GTR−TUBE16−NITをもちいて、水分の透過度についてはJIS規格K7129にもとづいて、温度40℃、湿度90%で求め、また、酸素及び二酸化炭素のガス透過度についてはJIS規格K7126−2(等圧法)にもとづいて、温度80℃で求め、水分、酸素及び二酸化炭素のそれぞれの単位時間当たりの透過量を計算して表1に記載の24時間透過量を得た。As the thin-walled material of the base material 2, a disk-shaped film having a diameter of 35 mm made of polyphenylene sulfide (PPS) resin having a thickness of 200 μm was prepared. From the short wavelength pulse laser device L (laser wavelength 355 nm, pulse width 14 ns, pulse frequency 50 KHz, lens focal distance 50 mm, output 0.54 W, number of shots per hole 5000) by wavelength conversion of YVO4 laser light source on this base material 2. One piece (Example 1-) which is formed by irradiating laser light with a recess on the upper surface and the lower surface and a drum-shaped through hole 3 composed of a hole having a hole diameter of 5 μm at an intermediate position in the thickness direction, that is, the irradiation depth direction of the laser light. 1), 5 through holes 3 separated by 500 μm (Example 1-2) and 10 through holes 3 separated by 500 μm (Example 1-1) were formed to form a gas permeation experimental device GTR manufactured by GTR Tech Co., Ltd. Using −TUBE16-NIT, the water permeability is determined based on JIS standard K7129 at a temperature of 40 ° C and humidity of 90%, and the gas permeability of oxygen and carbon dioxide is determined by JIS standard K7126-2 (etc.). Based on the pressure method), it was determined at a temperature of 80 ° C., and the permeation amounts of water, oxygen, and carbon dioxide per unit time were calculated to obtain the 24-hour permeation amount shown in Table 1.

(比較例1)
基材2の薄肉材として実施例1と同じ大きさのポリフェニレンサルファイド(PPS)樹脂でできたフイルムを用意し、レーザ光を照射しないで、実施例1と同様に水分、酸素及び二酸化炭素のそれぞれの単位時間当たりの透過量を計算して表1に記載の24時間透過量を得た。
(Comparative Example 1)
A film made of polyphenylene sulfide (PPS) resin having the same size as that of Example 1 was prepared as a thin-walled material of the base material 2, and water, oxygen, and carbon dioxide were respectively prepared as in Example 1 without irradiating the laser beam. The permeation amount per unit time was calculated to obtain the permeation amount for 24 hours shown in Table 1.

Figure 0006784965
Figure 0006784965

基材2の薄肉材としては、ポリフェニレンサルファイド(PPS)樹脂を厚さ150μmで直径5.6mmの円板状に射出成形してできた射出成形シートを用意した。この基材2にYVO4レーザ光源で波長変換による短波長パルスレーザ装置L(レーザ波長355nm、パルス幅14ns、パルス周波数50KHz、レンズ焦点距離50mm、出力0.54W、1孔あたりのショット数5000)からレーザ光を照射して基材2の上面及び下面に凹所及び厚さ方向すなわちレーザ光の照射深さ方向の中間位置に孔径1.49μmの孔からなる鼓形状の貫通孔3となった1個、(実施例2−1)、500μmで離間した5個(実施例2−2)の貫通孔3を形成して、GTRテック株式会社製のガス透過実験装置GTR−TUBE16−NITをもちいて、実施例1のように水分の透過度についてはJIS規格K7129にもとづいて、温度40℃、湿度90%で求め、また、酸素及び二酸化炭素のガス透過度についてはJIS規格K7126−2(等圧法)にもとづいて、温度80℃で求め、水分、酸素及び二酸化炭素のそれぞれの単位時間当たりの透過量を計算して表2に記載の24時間透過量を得た。As the thin-walled material of the base material 2, an injection-molded sheet made by injection-molding a polyphenylene sulfide (PPS) resin into a disk shape having a thickness of 150 μm and a diameter of 5.6 mm was prepared. From the short wavelength pulse laser device L (laser wavelength 355 nm, pulse width 14 ns, pulse frequency 50 KHz, lens focal distance 50 mm, output 0.54 W, number of shots per hole 5000) by wavelength conversion with a YVO4 laser light source on this base material 2. Irradiating the laser beam, the upper surface and the lower surface of the base material 2 became a drum-shaped through hole 3 composed of a recess and a hole having a hole diameter of 1.49 μm at an intermediate position in the thickness direction, that is, the irradiation depth direction of the laser light. (Example 2-1), 5 through holes 3 (Example 2-2) separated by 500 μm were formed, and a gas permeation experimental device GTR-TUBE16-NIT manufactured by GTR Tech Co., Ltd. was used. As in Example 1, the water permeability is determined at a temperature of 40 ° C. and a humidity of 90% based on JIS standard K7129, and the gas permeability of oxygen and carbon dioxide is determined by JIS standard K7126-2 (isopressure method). ), The permeation amount of water, oxygen and carbon dioxide per unit time was calculated at a temperature of 80 ° C. to obtain the permeation amount for 24 hours shown in Table 2.

(比較例2)
基材2の薄肉材として実施例2と同じ大きさのポリフェニレンサルファイド(PPS)樹脂でできた射出成形シートを用意し、レーザ光を照射しないで、実施例2と同様に水分、酸素及び二酸化炭素の単位時間当たりのそれぞれの透過量を計算して表2に記載の24時間透過量を得た。
(Comparative Example 2)
An injection-molded sheet made of polyphenylene sulfide (PPS) resin having the same size as in Example 2 was prepared as a thin-walled material for the base material 2, and water, oxygen, and carbon dioxide were prepared in the same manner as in Example 2 without irradiating the laser beam. The permeation amount per unit time was calculated to obtain the 24-hour permeation amount shown in Table 2.

Figure 0006784965
Figure 0006784965

以上の測定により、実施例1及び2のような貫通孔の存在は、比較例1及び2のような貫通孔のないものに比し、ガスの透過量が大きく、かつ、水分の透過量は許容できる程度で水分の遮断を維持する結果を得た。また、貫通孔の個数を増やしたときのガス透過量は、酸素よりも二酸化炭素の方が少なかった。Based on the above measurements, the presence of through-holes as in Examples 1 and 2 has a larger gas permeation amount and a higher water permeation amount than those without through-holes as in Comparative Examples 1 and 2. The result was that the water blockage was maintained to an acceptable level. In addition, the amount of gas permeated when the number of through holes was increased was smaller for carbon dioxide than for oxygen.

このように微細な孔径の貫通孔3、31、32を形成してできたガス透過部材1は、気体の透過性の差を利用したガス選択作用が発現するように貫通孔3、31、32の孔径が水蒸気などの水分を遮断させる大きさに好ましくは0.01〜100μmに設定して孔加工して貫通孔3、31、32を得れば、水分の透過量は許容できる程度で水分の遮断をして、比較例1及び2のような素材自体の特性でガス透過量が決まっている素材よりもガス透過性が向上することが立証できた。The gas permeation member 1 formed by forming the through holes 3, 31, 32 having a fine pore diameter in this way has the through holes 3, 31, 32 so as to exhibit a gas selection action utilizing the difference in gas permeability. moisture degree preferably the size pore size causes the block moisture such as water vapor is if you get a through hole 3, 31, 32 and hole processing is set to 0.01 to 100 [mu] m, the amount of transmitted moisture acceptable It was proved that the gas permeability was improved as compared with the materials whose gas permeation amount was determined by the characteristics of the materials themselves such as Comparative Examples 1 and 2.

本発明のガス透過部材は、水分を遮断し密閉容器の内部で発生した酸素や二酸化炭素などのガスを排出させる必要のある上記のような電気二重層キャパシタやリチウム電池などの密閉型電気化学デバイスや車両用電装品、センサー類、ポータブル機器等の屋外で使用され密閉して使用される機器に通気性をもたせる用途として有用である。The gas permeable member of the present invention is a sealed electrochemical device such as an electric double layer capacitor or a lithium battery as described above, which needs to block water and discharge a gas such as oxygen or carbon dioxide generated inside a closed container. It is useful for making equipment that is used outdoors and used in a sealed manner, such as electrical components for vehicles, sensors, and portable devices, to have breathability.

1、11 ガス透過部材
2 基材
3、31、32 貫通孔
21、4 密閉容器本体
41 密閉容器
42 密閉型電気化学デバイス
5、51、52、53.54 ガス通過空間部
100、101 ガス透過表層シート
1, 11 Gas permeation member 2 Base material 3, 31, 32 Through hole 21, 4 Sealed container body 41 Sealed container 42 Sealed electrochemical device 5, 51, 52, 53.54 Gas passage space 100, 101 Gas permeation surface layer Sheet

Claims (1)

密閉容器本体の構成部材となり無機質フィラーを含有した熱可塑性合成樹脂材でできた基材に、レーザ光の照射により前記熱可塑性合成樹脂成分を溶解もしくは分解して微細な孔径の貫通孔を形成し、前記貫通孔を介して密閉容器の内部のガスを外部に排出するガス透過部材において、前記貫通孔は円錐形状の内周壁を有し、前記円錐形状の内周壁が上下に組み合わされてレーザ光の照射深さ方向の中間位置に孔径0.01〜100μmの孔からなる鼓形状であって、前記貫通孔の内周壁にはレーザ光の照射により前記無機質フィラーを残存させて、前記貫通孔に対する気体の透過性の差を利用したガス選択作用を発現させて水蒸気などの水分を遮断させることを特徴とするガス透過部材。A through hole having a fine pore size is formed by dissolving or decomposing the thermoplastic synthetic resin component by irradiating a laser beam on a base material made of a thermoplastic synthetic resin material which is a component of a closed container body and contains an inorganic filler. In the gas permeation member that discharges the gas inside the closed container to the outside through the through hole , the through hole has a conical inner peripheral wall, and the conical inner peripheral wall is vertically combined to emit laser light. It has a drum shape consisting of holes having a hole diameter of 0.01 to 100 μm at an intermediate position in the irradiation depth direction of the above, and the inorganic filler is left on the inner peripheral wall of the through hole by irradiation with laser light to the through hole. A gas permeable member characterized by exhibiting a gas selection action utilizing the difference in gas permeability to block water such as water vapor.
JP2015220737A 2014-11-18 2015-10-22 Gas permeation member Active JP6784965B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014247387 2014-11-18
JP2014247387 2014-11-18

Publications (3)

Publication Number Publication Date
JP2016103631A JP2016103631A (en) 2016-06-02
JP2016103631A5 JP2016103631A5 (en) 2018-11-01
JP6784965B2 true JP6784965B2 (en) 2020-11-18

Family

ID=56089210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015220737A Active JP6784965B2 (en) 2014-11-18 2015-10-22 Gas permeation member

Country Status (1)

Country Link
JP (1) JP6784965B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7140952B2 (en) * 2018-05-22 2022-09-22 睦月電機株式会社 gas permeable structure
CN113014520B (en) 2019-12-20 2022-08-26 华为技术有限公司 Frequency domain equalization method, equalizer, optical receiver and system
EP4343801A1 (en) * 2021-05-19 2024-03-27 Dai Nippon Printing Co., Ltd. Water-impermeable degassing film for power storage device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714565A (en) * 1993-06-24 1995-01-17 Nitto Denko Corp Battery
JP4477449B2 (en) * 2004-08-11 2010-06-09 国立大学法人信州大学 Gas vent valve and electric parts using the same
KR101967934B1 (en) * 2010-06-16 2019-04-10 닛토덴코 가부시키가이샤 Waterproof air-permeable filter and uses thereof
JP5444156B2 (en) * 2010-07-30 2014-03-19 日本板硝子株式会社 Water vapor permeation preventive porous membrane, ventilation structure and case
JP5469132B2 (en) * 2010-12-06 2014-04-09 信越ポリマー株式会社 Reefer container

Also Published As

Publication number Publication date
JP2016103631A (en) 2016-06-02

Similar Documents

Publication Publication Date Title
JP6784965B2 (en) Gas permeation member
US9005334B2 (en) Water-proof air-permeable filter and use of the same
EP2544841B1 (en) Biaxially oriented porous membranes, composites, and methods of manufacture and use
KR101624766B1 (en) Ventilation filter and electric device using same
US20090029641A1 (en) Ventilation member and vented housing using the same
WO2008149895A1 (en) Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
KR20130041805A (en) Ventilation member
WO2017002815A1 (en) Zinc air battery cell pack and battery pack using same
JP2004266211A (en) Ventilation material and ventilation case using this
JP2016103631A5 (en)
JP4797364B2 (en) Composite metal porous body and method for producing the same
JPWO2008018584A1 (en) Energy device separator and energy device including the same
CN111316763B (en) Ventilation assembly and ventilation shell
CN111316764B (en) Ventilation housing
JP2024042009A (en) Ventilation assembly and ventilation housing
JP2014191903A (en) Ventilation member
CN114556678A (en) Battery with improved gas to moisture permeability ratio
JP2024042043A (en) Ventilation housing
CN105374969A (en) Lithium battery diaphragm with interlayer, lithium battery and manufacturing method of lithium battery diaphragm
CN105742714A (en) Method for manufacturing battery
JP6638881B2 (en) Gas-permeable filters for sealed electrochemical devices
JP2015101775A (en) Method for producing diaphragm for alkali water electrolysis
CN111051591B (en) Waterproof and breathable sheet and manufacturing method thereof
JP2016163875A5 (en)
TH20556B (en) Air-permeable filters for cartridges and cartridges, including this air-permeable filter.

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200709

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201012

R150 Certificate of patent or registration of utility model

Ref document number: 6784965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250