JP6780945B2 - Ionic liquids, lubricants and magnetic recording media - Google Patents
Ionic liquids, lubricants and magnetic recording media Download PDFInfo
- Publication number
- JP6780945B2 JP6780945B2 JP2016057804A JP2016057804A JP6780945B2 JP 6780945 B2 JP6780945 B2 JP 6780945B2 JP 2016057804 A JP2016057804 A JP 2016057804A JP 2016057804 A JP2016057804 A JP 2016057804A JP 6780945 B2 JP6780945 B2 JP 6780945B2
- Authority
- JP
- Japan
- Prior art keywords
- general formula
- hydrocarbon group
- bis
- acid
- imide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005291 magnetic effect Effects 0.000 title claims description 147
- 239000002608 ionic liquid Substances 0.000 title claims description 146
- 239000000314 lubricant Substances 0.000 title claims description 97
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 108
- 239000002253 acid Substances 0.000 claims description 87
- 125000004432 carbon atom Chemical group C* 0.000 claims description 72
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 27
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 18
- 150000002430 hydrocarbons Chemical class 0.000 description 116
- 230000000052 comparative effect Effects 0.000 description 111
- 239000002904 solvent Substances 0.000 description 91
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 86
- 239000002585 base Substances 0.000 description 72
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 51
- 238000005481 NMR spectroscopy Methods 0.000 description 51
- 239000000047 product Substances 0.000 description 50
- 239000010410 layer Substances 0.000 description 48
- 229910052731 fluorine Inorganic materials 0.000 description 46
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 45
- 229910052799 carbon Inorganic materials 0.000 description 45
- 239000011737 fluorine Substances 0.000 description 45
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 44
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 43
- 239000010702 perfluoropolyether Substances 0.000 description 40
- 230000015572 biosynthetic process Effects 0.000 description 39
- 238000003786 synthesis reaction Methods 0.000 description 39
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 38
- 238000012360 testing method Methods 0.000 description 38
- 238000005259 measurement Methods 0.000 description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 37
- 230000008602 contraction Effects 0.000 description 36
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 33
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 31
- 230000004580 weight loss Effects 0.000 description 29
- 238000010992 reflux Methods 0.000 description 27
- 238000005160 1H NMR spectroscopy Methods 0.000 description 26
- 150000003949 imides Chemical class 0.000 description 26
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 25
- 238000001228 spectrum Methods 0.000 description 25
- 239000010409 thin film Substances 0.000 description 25
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 24
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 24
- -1 imidazole cation Chemical class 0.000 description 24
- 239000010408 film Substances 0.000 description 23
- 239000012046 mixed solvent Substances 0.000 description 23
- 125000005151 nonafluorobutanesulfonyl group Chemical group FC(C(C(S(=O)(=O)*)(F)F)(F)F)(C(F)(F)F)F 0.000 description 23
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 22
- 239000001273 butane Substances 0.000 description 22
- 239000013078 crystal Substances 0.000 description 22
- 238000010521 absorption reaction Methods 0.000 description 21
- 239000000243 solution Substances 0.000 description 21
- 238000010438 heat treatment Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 20
- 239000000203 mixture Substances 0.000 description 20
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 238000001953 recrystallisation Methods 0.000 description 17
- 150000001450 anions Chemical class 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 16
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 15
- 238000000576 coating method Methods 0.000 description 15
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 15
- 239000000758 substrate Substances 0.000 description 15
- MFXWQGHKLXJIIP-UHFFFAOYSA-N 1-bromo-3,5-difluoro-2-methoxybenzene Chemical compound COC1=C(F)C=C(F)C=C1Br MFXWQGHKLXJIIP-UHFFFAOYSA-N 0.000 description 14
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 13
- 239000000956 alloy Substances 0.000 description 13
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 12
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 12
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 12
- KZJUHXVCAHXJLR-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,4-nonafluoro-n-(1,1,2,2,3,3,4,4,4-nonafluorobutylsulfonyl)butane-1-sulfonamide Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F KZJUHXVCAHXJLR-UHFFFAOYSA-N 0.000 description 11
- 229930195733 hydrocarbon Natural products 0.000 description 11
- 239000012044 organic layer Substances 0.000 description 11
- 238000003756 stirring Methods 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 239000004215 Carbon black (E152) Substances 0.000 description 10
- 150000001768 cations Chemical class 0.000 description 10
- UPOVHPYQWQWGOW-UHFFFAOYSA-N C[N+]1=CN(C=C1)C(C(C(C(C(C(C(CCC(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F Chemical compound C[N+]1=CN(C=C1)C(C(C(C(C(C(C(CCC(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F UPOVHPYQWQWGOW-UHFFFAOYSA-N 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 238000005461 lubrication Methods 0.000 description 9
- 239000011241 protective layer Substances 0.000 description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 230000008878 coupling Effects 0.000 description 8
- 238000010168 coupling process Methods 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 125000002883 imidazolyl group Chemical group 0.000 description 8
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 8
- GOILVCXZFJJOGX-UHFFFAOYSA-N 1-octadecylpyrrolidine Chemical compound CCCCCCCCCCCCCCCCCCN1CCCC1 GOILVCXZFJJOGX-UHFFFAOYSA-N 0.000 description 7
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 7
- 239000001294 propane Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 7
- MCIREKWIOYZQCC-UHFFFAOYSA-N 1-octadecylimidazole Chemical compound CCCCCCCCCCCCCCCCCCN1C=CN=C1 MCIREKWIOYZQCC-UHFFFAOYSA-N 0.000 description 6
- VIPPDKHQNVHDAX-UHFFFAOYSA-N 3-octadecyl-1H-imidazol-3-ium bromide Chemical compound [Br-].C(CCCCCCCCCCCCCCCCC)[N+]1=CNC=C1 VIPPDKHQNVHDAX-UHFFFAOYSA-N 0.000 description 6
- TYXPANSLVOZBHV-UHFFFAOYSA-N C(CCCCCCCCCCCCCCCCC)N1C2=NCCCN2CCC1 Chemical compound C(CCCCCCCCCCCCCCCCC)N1C2=NCCCN2CCC1 TYXPANSLVOZBHV-UHFFFAOYSA-N 0.000 description 6
- HNROGZAADIJBSD-UHFFFAOYSA-O CCCCCCCCCCCCCCCCCCC1CCCC[NH+]2C1=NCCC2.[C-](S(=O)(=O)C(F)(F)F)(S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F Chemical compound CCCCCCCCCCCCCCCCCCC1CCCC[NH+]2C1=NCCC2.[C-](S(=O)(=O)C(F)(F)F)(S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F HNROGZAADIJBSD-UHFFFAOYSA-O 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 6
- 230000001050 lubricating effect Effects 0.000 description 6
- 230000003449 preventive effect Effects 0.000 description 6
- OCKGFTQIICXDQW-ZEQRLZLVSA-N 5-[(1r)-1-hydroxy-2-[4-[(2r)-2-hydroxy-2-(4-methyl-1-oxo-3h-2-benzofuran-5-yl)ethyl]piperazin-1-yl]ethyl]-4-methyl-3h-2-benzofuran-1-one Chemical compound C1=C2C(=O)OCC2=C(C)C([C@@H](O)CN2CCN(CC2)C[C@H](O)C2=CC=C3C(=O)OCC3=C2C)=C1 OCKGFTQIICXDQW-ZEQRLZLVSA-N 0.000 description 5
- 101710134784 Agnoprotein Proteins 0.000 description 5
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 5
- NBPSBOPQIDSMKV-UHFFFAOYSA-N C(CCCCCCCCCCCCCCCCC)C1CCCCN2CCCN=C12 Chemical compound C(CCCCCCCCCCCCCCCCC)C1CCCCN2CCCN=C12 NBPSBOPQIDSMKV-UHFFFAOYSA-N 0.000 description 5
- 238000005452 bending Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 230000005294 ferromagnetic effect Effects 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- JGTNAGYHADQMCM-UHFFFAOYSA-N perfluorobutanesulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F JGTNAGYHADQMCM-UHFFFAOYSA-N 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- LWZJNIZMMVSRJW-UHFFFAOYSA-N 6-octadecyl-2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical group CCCCCCCCCCCCCCCCCCC1CCCCC2=NCCCN12 LWZJNIZMMVSRJW-UHFFFAOYSA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000010494 dissociation reaction Methods 0.000 description 4
- 230000005593 dissociations Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000006247 magnetic powder Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 229930195734 saturated hydrocarbon Natural products 0.000 description 4
- 229910001961 silver nitrate Inorganic materials 0.000 description 4
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- WSULSMOGMLRGKU-UHFFFAOYSA-N 1-bromooctadecane Chemical compound CCCCCCCCCCCCCCCCCCBr WSULSMOGMLRGKU-UHFFFAOYSA-N 0.000 description 3
- YEMRHWCKHSFFAT-UHFFFAOYSA-M C[N+]1=CN(C=C1)C(C(C(C(C(C(C(CCC(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F.[I-] Chemical compound C[N+]1=CN(C=C1)C(C(C(C(C(C(C(CCC(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F.[I-] YEMRHWCKHSFFAT-UHFFFAOYSA-M 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- UQWLFOMXECTXNQ-UHFFFAOYSA-N bis(trifluoromethylsulfonyl)methylsulfonyl-trifluoromethane Chemical compound FC(F)(F)S(=O)(=O)[C-](S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F UQWLFOMXECTXNQ-UHFFFAOYSA-N 0.000 description 3
- QDHFHIQKOVNCNC-UHFFFAOYSA-N butane-1-sulfonic acid Chemical compound CCCCS(O)(=O)=O QDHFHIQKOVNCNC-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 150000002391 heterocyclic compounds Chemical class 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- UQDUAYYLJZFIMC-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctane-1-sulfonic acid 1-octadecyl-2,3,4,6,7,8-hexahydropyrimido[1,2-a]pyrimidine Chemical compound C(CCCCCCCCCCCCCCCCC)N1C2=NCCC[NH+]2CCC1.FC(C(C(C(C(C(C(C(S(=O)(=O)[O-])(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F UQDUAYYLJZFIMC-UHFFFAOYSA-N 0.000 description 2
- GQUXQQYWQKRCPL-UHFFFAOYSA-N 1,1,2,2,3,3-hexafluorocyclopropane Chemical compound FC1(F)C(F)(F)C1(F)F GQUXQQYWQKRCPL-UHFFFAOYSA-N 0.000 description 2
- MPPPKRYCTPRNTB-UHFFFAOYSA-N 1-bromobutane Chemical compound CCCCBr MPPPKRYCTPRNTB-UHFFFAOYSA-N 0.000 description 2
- SILSPIMWCYBEOS-UHFFFAOYSA-M 1-butyl-1-octadecylpyrrolidin-1-ium bromide Chemical compound [Br-].C(CCC)[N+]1(CCCC1)CCCCCCCCCCCCCCCCCC SILSPIMWCYBEOS-UHFFFAOYSA-M 0.000 description 2
- JBOIAZWJIACNJF-UHFFFAOYSA-N 1h-imidazole;hydroiodide Chemical compound [I-].[NH2+]1C=CN=C1 JBOIAZWJIACNJF-UHFFFAOYSA-N 0.000 description 2
- FVKFHMNJTHKMRX-UHFFFAOYSA-N 3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]pyrimidine Chemical compound C1CCN2CCCNC2=N1 FVKFHMNJTHKMRX-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000007848 Bronsted acid Substances 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 229910020630 Co Ni Inorganic materials 0.000 description 2
- 229910002440 Co–Ni Inorganic materials 0.000 description 2
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 2
- XQOYWJFLDDEXGU-UHFFFAOYSA-N FC(C(C(C(C(C(C(F)(F)I)(F)F)(F)F)(F)F)(F)F)(F)F)(CCC(F)(F)F)F Chemical compound FC(C(C(C(C(C(C(F)(F)I)(F)F)(F)F)(F)F)(F)F)(F)F)(CCC(F)(F)F)F XQOYWJFLDDEXGU-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 239000002199 base oil Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical group OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000008236 heating water Substances 0.000 description 2
- 125000005462 imide group Chemical group 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- QIWLMMWTZVIAFK-UHFFFAOYSA-N lithium bis(1,1,2,2,3,3,4,4,4-nonafluorobutylsulfonyl)azanide Chemical compound [Li]N(S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F)S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F QIWLMMWTZVIAFK-UHFFFAOYSA-N 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- QLOAVXSYZAJECW-UHFFFAOYSA-N methane;molecular fluorine Chemical compound C.FF QLOAVXSYZAJECW-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- RZJRJXONCZWCBN-UHFFFAOYSA-N octadecane Chemical compound CCCCCCCCCCCCCCCCCC RZJRJXONCZWCBN-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000012312 sodium hydride Substances 0.000 description 2
- 229910000104 sodium hydride Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- RIQRGMUSBYGDBL-UHFFFAOYSA-N 1,1,1,2,2,3,4,5,5,5-decafluoropentane Chemical compound FC(F)(F)C(F)C(F)C(F)(F)C(F)(F)F RIQRGMUSBYGDBL-UHFFFAOYSA-N 0.000 description 1
- JGTNAGYHADQMCM-UHFFFAOYSA-M 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F JGTNAGYHADQMCM-UHFFFAOYSA-M 0.000 description 1
- YFSUTJLHUFNCNZ-UHFFFAOYSA-M 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctane-1-sulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YFSUTJLHUFNCNZ-UHFFFAOYSA-M 0.000 description 1
- VEFLKXRACNJHOV-UHFFFAOYSA-N 1,3-dibromopropane Chemical compound BrCCCBr VEFLKXRACNJHOV-UHFFFAOYSA-N 0.000 description 1
- PKEIGZIZGNPNLM-UHFFFAOYSA-N 1,5-dibromoheptane Chemical compound CCC(Br)CCCCBr PKEIGZIZGNPNLM-UHFFFAOYSA-N 0.000 description 1
- WGAXVZXBFBHLMC-UHFFFAOYSA-N 1,9-dibromononane Chemical compound BrCCCCCCCCCBr WGAXVZXBFBHLMC-UHFFFAOYSA-N 0.000 description 1
- RPNHERKGZHKXNA-UHFFFAOYSA-M 1-butyl-3-octadecylimidazol-3-ium bromide Chemical compound [Br-].C(CCC)[N+]1=CN(C=C1)CCCCCCCCCCCCCCCCCC RPNHERKGZHKXNA-UHFFFAOYSA-M 0.000 description 1
- IYGMOFAWEXCNAU-UHFFFAOYSA-N 1-fluorooctane-1-sulfonic acid Chemical compound CCCCCCCC(F)S(O)(=O)=O IYGMOFAWEXCNAU-UHFFFAOYSA-N 0.000 description 1
- TYTPXMXMCVKLPR-UHFFFAOYSA-N 1H-imidazol-1-ium 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate Chemical compound FC(C(C(C(S(=O)(=O)[O-])(F)F)(F)F)(F)F)(F)F.[NH2+]1C=NC=C1 TYTPXMXMCVKLPR-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- QGHDLJAZIIFENW-UHFFFAOYSA-N 4-[1,1,1,3,3,3-hexafluoro-2-(4-hydroxy-3-prop-2-enylphenyl)propan-2-yl]-2-prop-2-enylphenol Chemical group C1=C(CC=C)C(O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(O)C(CC=C)=C1 QGHDLJAZIIFENW-UHFFFAOYSA-N 0.000 description 1
- 229910001149 41xx steel Inorganic materials 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241000219495 Betulaceae Species 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 239000003341 Bronsted base Substances 0.000 description 1
- PSXHGCVMCSTKMU-UHFFFAOYSA-N C(CCC)C=1N=C(NC=1)CCCCCCCCCCCCCCCCCC Chemical compound C(CCC)C=1N=C(NC=1)CCCCCCCCCCCCCCCCCC PSXHGCVMCSTKMU-UHFFFAOYSA-N 0.000 description 1
- AXSYLWRSVSSZTC-UHFFFAOYSA-N C(CCCCCCCCCCCCCCCCC)N1N2CCCC=C2CCCC1 Chemical compound C(CCCCCCCCCCCCCCCCC)N1N2CCCC=C2CCCC1 AXSYLWRSVSSZTC-UHFFFAOYSA-N 0.000 description 1
- 229910020647 Co-O Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910020674 Co—B Inorganic materials 0.000 description 1
- 229910020704 Co—O Inorganic materials 0.000 description 1
- 229910020707 Co—Pt Inorganic materials 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- YAZASXLIILTQBQ-UHFFFAOYSA-N FC(C(C(C(C(C(C(N1C=NC=C1)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(CCC(F)(F)F)F Chemical group FC(C(C(C(C(C(C(N1C=NC=C1)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(CCC(F)(F)F)F YAZASXLIILTQBQ-UHFFFAOYSA-N 0.000 description 1
- 229910017061 Fe Co Inorganic materials 0.000 description 1
- NDJKXXJCMXVBJW-UHFFFAOYSA-N Heptadecane Natural products CCCCCCCCCCCCCCCCC NDJKXXJCMXVBJW-UHFFFAOYSA-N 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 239000002879 Lewis base Substances 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- 229910018104 Ni-P Inorganic materials 0.000 description 1
- 229910000943 NiAl Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910018536 Ni—P Inorganic materials 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical class CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-O Pyrrolidinium ion Chemical compound C1CC[NH2+]C1 RWRDLPDLKQPQOW-UHFFFAOYSA-O 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- MPUXBOMUHAWHHN-UHFFFAOYSA-M [I-].FC(C(C(C(C(C(C(F)(F)[N+]1=CN(C=C1)CCCCCCCCCCCCCCCCCC)(F)F)(F)F)(F)F)(F)F)(F)F)(CCC(F)(F)F)F Chemical compound [I-].FC(C(C(C(C(C(C(F)(F)[N+]1=CN(C=C1)CCCCCCCCCCCCCCCCCC)(F)F)(F)F)(F)F)(F)F)(F)F)(CCC(F)(F)F)F MPUXBOMUHAWHHN-UHFFFAOYSA-M 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 238000010669 acid-base reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- HDDMREWZGLZQMX-UHFFFAOYSA-N azanium;carbonofluoridate Chemical class [NH4+].[O-]C(F)=O HDDMREWZGLZQMX-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000005345 chemically strengthened glass Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229940090961 chromium dioxide Drugs 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- IAQWMWUKBQPOIY-UHFFFAOYSA-N chromium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Cr+4] IAQWMWUKBQPOIY-UHFFFAOYSA-N 0.000 description 1
- AYTAKQFHWFYBMA-UHFFFAOYSA-N chromium(IV) oxide Inorganic materials O=[Cr]=O AYTAKQFHWFYBMA-UHFFFAOYSA-N 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- HFWIMJHBCIGYFH-UHFFFAOYSA-N cyanoform Chemical compound N#CC(C#N)C#N HFWIMJHBCIGYFH-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000011903 deuterated solvents Substances 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 150000007527 lewis bases Chemical class 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- XLSZMDLNRCVEIJ-UHFFFAOYSA-N methylimidazole Natural products CC1=CNC=N1 XLSZMDLNRCVEIJ-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- GKTNLYAAZKKMTQ-UHFFFAOYSA-N n-[bis(dimethylamino)phosphinimyl]-n-methylmethanamine Chemical compound CN(C)P(=N)(N(C)C)N(C)C GKTNLYAAZKKMTQ-UHFFFAOYSA-N 0.000 description 1
- 150000004780 naphthols Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 229940038384 octadecane Drugs 0.000 description 1
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadecene Natural products CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- RJPWSGDBEHVWPP-UHFFFAOYSA-N potassium bis(trifluoromethylsulfonyl)methylsulfonyl-trifluoromethane Chemical compound [K+].FC(F)(F)S(=O)(=O)[C-](S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F RJPWSGDBEHVWPP-UHFFFAOYSA-N 0.000 description 1
- LVTHXRLARFLXNR-UHFFFAOYSA-M potassium;1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate Chemical compound [K+].[O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F LVTHXRLARFLXNR-UHFFFAOYSA-M 0.000 description 1
- XESFGOBWYAMCMB-UHFFFAOYSA-N potassium;bis(1,1,2,2,3,3,4,4,4-nonafluorobutylsulfonyl)azanide Chemical compound [K+].FC(F)(F)C(F)(F)C(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F XESFGOBWYAMCMB-UHFFFAOYSA-N 0.000 description 1
- GLGXXYFYZWQGEL-UHFFFAOYSA-M potassium;trifluoromethanesulfonate Chemical compound [K+].[O-]S(=O)(=O)C(F)(F)F GLGXXYFYZWQGEL-UHFFFAOYSA-M 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007157 ring contraction reaction Methods 0.000 description 1
- 238000006049 ring expansion reaction Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 125000005463 sulfonylimide group Chemical group 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000003930 superacid Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M171/00—Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/56—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
- C10M105/70—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen as ring hetero atom
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/50—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/72—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing sulfur, selenium or tellurium
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/06—Perfluorinated compounds
- C10M2211/063—Perfluorinated compounds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/221—Six-membered rings containing nitrogen and carbon only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/223—Five-membered rings containing nitrogen and carbon only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/223—Five-membered rings containing nitrogen and carbon only
- C10M2215/224—Imidazoles
- C10M2215/2245—Imidazoles used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/0406—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/044—Sulfonic acids, Derivatives thereof, e.g. neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/10—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
- C10M2219/104—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/077—Ionic Liquids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/08—Resistance to extreme temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/70—Soluble oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/14—Electric or magnetic purposes
- C10N2040/18—Electric or magnetic purposes in connection with recordings on magnetic tape or disc
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
- Magnetic Record Carriers (AREA)
Description
本発明は、イオン液体、該イオン液体を含有する潤滑剤、及びそれを用いた磁気記録媒体に関する。 The present invention relates to an ionic liquid, a lubricant containing the ionic liquid, and a magnetic recording medium using the ionic liquid.
従来、薄膜磁気記録媒体では、磁気ヘッドと媒体表面における摩擦や摩耗を減少させるために磁性層表面に潤滑剤が塗布される。実際の潤滑剤の膜厚は、スティクションのような接着を避けるため、分子レベルになる。それゆえ、薄膜磁気記録媒体において、最も重要なことは、あらゆる環境下においても、優れた耐摩耗性を有する潤滑剤の選択にあるといっても過言ではない。 Conventionally, in a thin film magnetic recording medium, a lubricant is applied to the surface of the magnetic layer in order to reduce friction and wear between the magnetic head and the surface of the medium. The actual lubricant film thickness is at the molecular level to avoid sticking-like adhesions. Therefore, it is no exaggeration to say that the most important thing in a thin film magnetic recording medium is the selection of a lubricant having excellent wear resistance under any environment.
磁気記録媒体のライフにおいて、脱離、スピンオフ、化学的な劣化などを生じさせずに、潤滑剤を媒体表面に存在させることは重要である。潤滑剤を媒体表面に存在させることは、薄膜磁気記録媒体の表面が平滑になるほど困難となる。これは、薄膜磁気記録媒体が塗布型磁気記録媒体のような潤滑剤の補充能力を有していないからである。 In the life of a magnetic recording medium, it is important that the lubricant is present on the surface of the medium without causing detachment, spin-off, chemical deterioration, or the like. The presence of the lubricant on the surface of the medium becomes more difficult as the surface of the thin film magnetic recording medium becomes smoother. This is because the thin film magnetic recording medium does not have the ability to replenish the lubricant like the coating type magnetic recording medium.
また、潤滑剤と磁性層表面の保護膜との接着力が弱い場合には、加熱や摺動時に潤滑剤膜厚の減少が生じ、摩耗を加速することになるため、多量の潤滑剤が必要とされる。多量の潤滑剤は、移動性の潤滑剤となり、消失した潤滑剤の補充機能を持たせることができる。しかし、過剰な潤滑剤は、潤滑剤の膜厚を表面疎度よりも大きくするため、接着に関連する問題が生じ、致命的な場合にはスティクションとなってドライブ不良の原因になるというジレンマがある。 In addition, if the adhesive force between the lubricant and the protective film on the surface of the magnetic layer is weak, the lubricant film thickness will decrease during heating and sliding, which will accelerate wear, so a large amount of lubricant is required. It is said that. A large amount of lubricant becomes a mobile lubricant and can have a function of replenishing the lost lubricant. However, the dilemma is that excess lubricant makes the film thickness of the lubricant larger than the surface sparseness, which causes problems related to adhesion, and in a fatal case, it becomes stiction and causes drive failure. There is.
また図1に示すように非特許文献1において、生産品のハードディスクドライブの面内記録密度の増加率はここ数年減少しているものの年率25%を達成しており、一つの目標である4Tb/in2に届こうとしている。図2に示すようにその記録密度の増加に対するヘッドディスクインターフェイス間の距離は減少していることが分かるが、それに伴い常に信頼性を改善する必要性が存在する。そのことは、例えば次の非特許文献2〜非特許文献4に述べられている。 Further, as shown in FIG. 1, in Non-Patent Document 1, although the increase rate of the in-plane recording density of the hard disk drive of the product has decreased in recent years, the annual rate has reached 25%, which is one target of 4Tb. It is about to reach / in 2 . As shown in FIG. 2, it can be seen that the distance between the head disk interfaces decreases with respect to the increase in the recording density, but there is always a need to improve the reliability accordingly. This is described in, for example, the following Non-Patent Documents 2 to 4.
現在の記録密度は約1Tb/in2で、スペーシングは約6nm、潤滑剤の厚みは0.8nmであり、将来的な4Tb/in2の記録密度ではその潤滑剤の厚さも減少させなければならない。ところが、従来のPFPE潤滑剤では膜厚を減少させるためにはその分子量を小さくする必要があるが、そうすると熱安定性が劣化してしまう欠点がある。これらの信頼性の問題は、従来のパーフルオロポリエーテル(PFPE)系潤滑剤では、十分には解決されていないことがわかる。 The current recording density is about 1 Tb / in 2 , the spacing is about 6 nm, the lubricant thickness is 0.8 nm, and the future 4 Tb / in 2 recording density must also reduce the lubricant thickness. It doesn't become. However, in the conventional PFPE lubricant, it is necessary to reduce the molecular weight in order to reduce the film thickness, but there is a drawback that the thermal stability is deteriorated. It can be seen that these reliability problems have not been fully solved by conventional perfluoropolyether (PFPE) -based lubricants.
特に、表面平滑性の高い薄膜磁気記録媒体では、これらのトレードオフを解消するために、新規潤滑剤が分子設計され、合成されている。また、PFPEの潤滑性に関する報告が数多く提出されている。このように、磁気記録媒体において、潤滑剤は、大変重要なものである。 In particular, in a thin film magnetic recording medium having high surface smoothness, a new lubricant is molecularly designed and synthesized in order to eliminate these trade-offs. In addition, many reports on the lubricity of PFPE have been submitted. As described above, the lubricant is very important in the magnetic recording medium.
表1に、代表的なPFPE系潤滑剤の化学構造を示す。 Table 1 shows the chemical structures of typical PFPE-based lubricants.
表1中のZ−DOLは、一般に使用されている薄膜磁気記録媒体用の潤滑剤の一つである。また、Z−tetraol(ZTMD)は、機能性の水酸基をPFPEの主鎖にさらに導入したものであり、ヘッドメディアインターフェイスの隙間を減少させながらドライブの信頼性を高めるとの報告がある。A20Hは、PFPE主鎖のルイス酸やルイス塩基による分解を抑え、トライボロジー特性を改善するとの報告がある。一方、Monoは、高分子主鎖及び極性基が、上記のPFPEと異なり、それぞれポリノルマルプロピルオキシとアミンであり、ニアコンタクトにおける接着相互作用を減少させるとの報告がある。 Z-DOL in Table 1 is one of the commonly used lubricants for thin film magnetic recording media. Further, it has been reported that Z-tellaol (ZTMD) further introduces a functional hydroxyl group into the main chain of PFPE and enhances the reliability of the drive while reducing the gap of the head media interface. It has been reported that A20H suppresses the decomposition of the PFPE main chain by Lewis acids and Lewis bases and improves tribological properties. On the other hand, it has been reported that the polymer main chain and polar group of Mono are polynormal propyloxy and amine, respectively, unlike the above-mentioned PFPE, and reduce the adhesive interaction in near contact.
しかし、融点が高く熱的に安定と考えられる一般的な固体潤滑剤では、非常に高感度である電磁変換プロセスを妨害し、また、ヘッドによって削られた摩耗粉が走行トラックに生じるために摩耗特性が悪くなる。前述のように液体潤滑剤では、ヘッドによる摩耗によって取り除かれた潤滑剤に対して隣の潤滑層から移動して補充するといった移動性がある。しかし、この移動性のために、特に高温では、ディスク稼働中にディスク表面からスピンオフして潤滑剤が減少し、その結果、防護機能が失われる。このため、粘度が高くまた低揮発性の潤滑剤が好適に用いられており、蒸発速度を抑え、ディスクドライブの寿命を延ばすことを可能としている。 However, common solid lubricants, which have a high melting point and are considered to be thermally stable, interfere with the highly sensitive electromagnetic conversion process and also wear due to the wear debris scraped by the head on the traveling truck. The characteristics deteriorate. As described above, the liquid lubricant has mobility such that the lubricant removed by the wear by the head is moved from the adjacent lubricating layer and replenished. However, due to this mobility, especially at high temperatures, the lubricant spins off from the disk surface during disk operation, resulting in loss of protective function. For this reason, a lubricant having high viscosity and low volatility is preferably used, which makes it possible to suppress the evaporation rate and extend the life of the disk drive.
これらの潤滑機構から鑑みると、薄膜磁気記録媒体に用いられる低摩擦、低摩耗の潤滑剤への要求としては、以下のようになる。
(1)低揮発性であること。
(2)表面補充機能のために低表面張力であること。
(3)末端極性基とディスク表面への相互作用があること。
(4)使用期間での分解、減少がないように、熱的及び酸化安定性が高いこと。
(5)金属、ガラス、高分子に対して化学的に不活性で、ヘッドやガイドに対して摩耗粉を生じないこと。
(6)毒性、可燃性がないこと。
(7)境界潤滑特性に優れていること。
(8)有機溶媒に溶解すること。
In view of these lubrication mechanisms, the requirements for a low-friction, low-wear lubricant used in a thin-film magnetic recording medium are as follows.
(1) Low volatility.
(2) Low surface tension due to surface replenishment function.
(3) There is an interaction between the terminal polar group and the disc surface.
(4) High thermal and oxidative stability so that there is no decomposition or decrease during the period of use.
(5) It is chemically inert to metals, glass, and polymers, and does not generate abrasion powder on the head and guide.
(6) No toxicity or flammability.
(7) Excellent boundary lubrication characteristics.
(8) Dissolve in an organic solvent.
近年、蓄電材料、分離技術、触媒技術などにおいて、イオン液体が、有機や無機材料合成のための環境にやさしい溶媒の一つとして、注目を集めている。イオン液体は、低融点の溶融塩という大きな範疇に入るが、一般的には、その中でも融点が100℃以下のものをいう。潤滑剤として使用するイオン液体の重要な特性として、揮発性が低いこと、可燃性がないこと、熱的に安定であること、溶解性能に優れていることがある。 In recent years, ionic liquids have been attracting attention as one of the environmentally friendly solvents for synthesizing organic and inorganic materials in electricity storage materials, separation technology, catalyst technology and the like. Ionic liquids fall into the broad category of molten salts with a low melting point, but generally, they have a melting point of 100 ° C. or lower. Important properties of ionic liquids used as lubricants are their low volatility, non-flammability, thermal stability, and excellent dissolution performance.
例えば金属やセラミックス表面での摩擦及び摩耗が、あるイオン液体を用いることにより、従来の炭化水素系潤滑剤と比較して低減することがある。例えばフルオロアルキル基で置換してイミダゾールカチオンベースのイオン液体が合成され、アルキルイミダゾリウムのテトラフルオロホウ酸塩やヘキサフルオロリン酸塩が、鋼、アルミニウム、銅、単結晶SiO2、シリコン、サイアロンセラミックス(Si−Al−O−N)に用いた場合、環状フォスファゼン(X−1P)やPFPEよりも優れたトライボロジー特性を示すとの報告がある。また、アンモニウムベースのイオン液体では、弾性流体から境界潤滑領域において、ベースオイルよりも摩擦を低下させる報告もある。また、イオン液体は、ベースオイルへの添加剤としての効果が調べられたり、化学的な及びトライボ化学的な反応が潤滑機構を理解するうえで研究されたりしているが、分子レベルでの潤滑特性が要求される磁気記録媒体としての応用例はほとんどない。 For example, friction and wear on the surface of metals and ceramics may be reduced by using a certain ionic liquid as compared with conventional hydrocarbon-based lubricants. For example, an imidazole cation-based ionic liquid is synthesized by substituting with a fluoroalkyl group, and the tetrafluoroborate and hexafluorophosphate of alkylimidazolium are steel, aluminum, copper, single crystal SiO 2 , silicon, and sialon ceramics. It has been reported that when used in (Si-Al-ON), it exhibits better tribological properties than cyclic phosphazene (X-1P) and PFPE. It has also been reported that ammonium-based ionic liquids have lower friction than base oils in the elastic fluid to boundary lubrication region. In addition, ionic liquids have been investigated for their effectiveness as additives to base oils, and chemical and tribochemical reactions have been studied to understand the lubrication mechanism. Lubricating properties at the molecular level There are few application examples as a magnetic recording medium that requires.
その中でパーフルオロオクタン酸アルキルアンモニウム塩は、プロトン性イオン液体(PIL)であるが、既述のZ−DOLと比較して、著しく磁気記録媒体の摩擦低減の効果があることを報告している(例えば、特許文献1、及び2、並びに非特許文献5〜7参照)。
しかし、これらのパーフルオロカルボン酸アンモニウム塩は、以下の反応式(A)に示す反応の中で、カチオンとアニオンの相互作用が弱く、Le Chatelier’sの法則から、高温では平衡が左側になり、解離した中性の化合物となって熱的な安定性が悪くなる。つまり、高温ではプロトンの移動が起こり、平衡が中性の物質へと移動して解離する(例えば、非特許文献8参照)。
Among them, the alkylammonium perfluorooctanoate salt is a protonated ionic liquid (PIL), but it has been reported that it has a remarkable effect of reducing the friction of the magnetic recording medium as compared with the Z-DOL described above. (See, for example, Patent Documents 1 and 2 and Non-Patent Documents 5 to 7).
However, in the reaction shown in the following reaction formula (A), these perfluorocarboxylic acid ammonium salts have a weak interaction between cations and anions, and according to Le Chatelier's law, the equilibrium is on the left side at high temperatures. , It becomes a dissociated neutral compound and its thermal stability deteriorates. That is, at high temperatures, protons move and the equilibrium moves to a neutral substance and dissociates (see, for example, Non-Patent Document 8).
ところで、ハードディスクの面記録密度の限界は、1−2.5Tb/in2と言われている。現在、その限界に近付きつつあるが、磁性粒子の微細化を大前提として、大容量化技術への精力的な開発が続けられている。大容量化の技術として、実効フライングハイトの減少、Shingle Writeの導入(BMP)などがある。 By the way, the limit of the surface recording density of the hard disk is said to be 1-2.5 Tb / in 2 . Currently, the limit is approaching, but vigorous development of large-capacity technology is being continued on the premise of miniaturization of magnetic particles. Techniques for increasing capacity include reduction of effective flying height and introduction of Shingle Write (BMP).
また、次世代記録技術として、「熱アシスト磁気記録(Heat Assisted Magnetic Recording)」がある。図3に、熱アシスト磁気記録の概略を示す。この技術の課題としては、記録再生時にレーザーで記録部分を加熱するために、磁性層表面の潤滑剤の蒸発あるいは分解による耐久性の悪化が挙げられる。熱アシスト磁気記録は、短い時間ではあるが400℃以上とも言われる高温に晒される可能性があり、一般に使用されている薄膜磁気記録媒体用の潤滑剤パーフルオロポリエーテル、例えばZ−DOLやZ−TETRAOLでは、その熱的な安定性が懸念されている。 In addition, as a next-generation recording technology, there is "heat-assisted magnetic recording (Heat Assisted Magnetic Recording)". FIG. 3 shows an outline of heat-assisted magnetic recording. An issue of this technique is deterioration of durability due to evaporation or decomposition of the lubricant on the surface of the magnetic layer because the recording portion is heated by a laser during recording / reproduction. Heat-assisted magnetic recording can be exposed to high temperatures, which are said to be 400 ° C or higher, for a short period of time, and are commonly used lubricants for thin-film magnetic recording media, such as perfluoropolyethers, such as Z-DOL and Z. -TETRAOL is concerned about its thermal stability.
プロトン性イオン液体は、前述のようにイオンを形成するために一般的には熱的な安定性が高い物質である。その平衡は次のScheme1に示される。
ここでHAはブレンステッド酸を、Bはブレンステッド塩基を示す。酸(HA)と塩基(B)はScheme1に示すように反応して塩(A−HB+)となる。
このときに酸及び塩基のそれぞれの解離定数Ka1及びKb2は、濃度を含めた形で次のScheme2のように表すことができる。
At this time, the dissociation constants Ka1 and Kb2 of the acid and the base, respectively, can be expressed as the following Scheme 2 in the form including the concentration.
Ka1及びKb2は物質によって大きく異なり、場合によっては大きな桁数になるため、取扱いに不便なため、負の常用対数で表される場合が多い。つまり、次のScheme3に示すように−log10Ka1=pKa1と定義し、明らかにpKa1が小さい酸ほど酸性が強い。
ここで酸と塩基の酸解離定数の差ΔpKaについて議論する。酸・塩基反応はお互いにその酸性・塩基性(あるいはその共役酸の酸性)に影響され、その酸性度の差ΔpKaは併せて次のScheme3に表すことができる。
Here, the difference ΔpKa between the acid dissociation constants of acids and bases will be discussed. The acid-base reaction is influenced by the acidity and basicity of each other (or the acidity of the conjugate acid), and the difference in acidity ΔpKa can be expressed in the following Scheme 3.
ΔpKaは、酸濃度及び塩基濃度に対して塩濃度[A−HB+]が大きくなると大きくなる、ことがわかる。 It can be seen that ΔpKa increases as the salt concentration [A − HB + ] increases with respect to the acid concentration and the base concentration.
その中でYoshizawaらは、酸と塩基のpKaの差(ΔpKa)が10以上となるとプロトン移動が起こりやすくなり、
[AH]+[B]⇔[A−HB+]
上記式の平衡がイオン側(右側)へシフトし、より安定性が増すことを報告している(例えば、非特許文献8参照)。また、渡邉らは、プロトン性イオン液体のプロトン移動性と熱的な安定性がΔpKaに大きく依存し、塩基としてDBU(1,8−ジアザビシクロ[5,4,0]ウンデ−7−センを用いた場合、そのΔpKaが15以上となる酸を用いることにより、イオン液体の熱的安定性が大きく向上することを報告している(非特許文献9参照)。また、近藤らは、ΔpKaが大きいパーフルオロオクタンスルホン酸オクタデシルアンモニウム塩系のプロトン性イオン液体が磁気記録媒体の耐久性を改善することを報告している(非特許文献10、特許文献3参照)。また、イオン液体の耐熱性に関しての最近の近藤らの報告では、ΔpKaがある程度までは分解温度は上昇するが、それ以上ではΔpKaを大きくしてもその分解温度はそれほど高くはならないことが報告されている(非特許文献11、及び12参照)。また、ジェミナルなジカチオンを持つピロリジニウム系イオン液体では、通常のモノカチオンのイオン液体よりも耐熱性を改善する場合があることが報告されている(非特許文献13参照)。しかし、非特許文献13にも掲載されているように、それを構成する分子構造と物理的又は化学的な性質との関係についてはよく理解されていない。カチオンとアニオンとのコンビネーションは、イオン液体の物理的又は化学的な性質に非常に影響を与える。アニオン部分はバライアティに富むが、構造的に類似なカチオンでなければその関係性は明確にはならない(例えば、非特許文献14参照)。例えば、ハロゲンの水素結合力が強いほど(Cl>Br>I)液体の粘性は増加する。しかし、粘性を増加させる方法はこれだけではなく、例えば、イミダゾールのアルキル鎖を変化させることによっても可能である。同様に融点、表面張力、熱安定性についても影響を与えるが、そのアニオンの効果は広範囲にわたっては研究されていない。それゆえ、カチオンやアニオンのコンビネーションにより、これらの物理的又は化学的な性質を変化させることは可能であるが、予測することは難しい。
Among them, Yoshizawa et al., When the difference in pKa between acid and base (ΔpKa) is 10 or more, proton transfer is likely to occur.
[AH] + [B] ⇔ [A − HB + ]
It has been reported that the equilibrium of the above equation shifts to the ion side (right side) and the stability is further increased (see, for example, Non-Patent Document 8). In addition, Watanabe et al. Used DBU (1,8-diazabicyclo [5,4,0] unde-7-sen as the base because the proton mobility and thermal stability of the protonic ionic liquid largely depend on ΔpKa. If so, it has been reported that the thermal stability of the ionic liquid is greatly improved by using an acid having a ΔpKa of 15 or more (see Non-Patent Document 9). Kondo et al. Also have a large ΔpKa. It has been reported that an octadecylammonium salt-based protonic ionic liquid of perfluorooctanesulfonate improves the durability of a magnetic recording medium (see Non-Patent Documents 10 and 3). Regarding the heat resistance of the ionic liquid. According to a recent report by Kondo et al., The decomposition temperature rises to a certain extent when ΔpKa is increased, but the decomposition temperature does not increase so much even if ΔpKa is increased above that (Non-Patent Document 11, Non-Patent Document 11, And 12). It has also been reported that a pyrrolidinium-based ionic liquid having a geminal dication may improve heat resistance as compared with a normal monocation ionic liquid (see Non-Patent Document 13). As described in Non-Patent Document 13, the relationship between the molecular structure constituting the structure and the physical or chemical properties is not well understood. The combination of a cation and an anion is an ionic liquid. It has a great influence on the physical or chemical properties. The anionic moiety is rich in variety, but the relationship is not clear unless it is a structurally similar proton (see, for example, Non-Patent Document 14). However, the stronger the hydrogen bonding force of the halogen (Cl>Br> I), the higher the viscosity of the liquid. However, the method of increasing the viscosity is not limited to this, and for example, the alkyl chain of the imidazole can be changed. It also affects melting point, surface tension, and thermal stability, but the effects of its anions have not been extensively studied. Therefore, depending on the combination of protons and anions, these physical or chemical properties. It is possible to change, but it is difficult to predict.
また、ハードディスクへの応用を考えた場合には、市販のパーフルオロポリエーテルがそうであるように、生産ラインで使用されているフッ素系溶媒(例えば、デュポン社製特殊溶媒バートレル)への溶解性が必要になる。なお、フッ素系溶媒は、生産ラインを防爆仕様にする必要がない点から、ハードディスクの生産ラインにおいて、潤滑剤に使用する溶媒として好適に使用されている。しかし、パーフルオロポリエーテル系以外の化合物のフッ素系溶媒への溶解性はあまり良くなく、それゆえ潤滑特性が良いにもかかわらずハードディスクへの用途は制限されていた。 Also, when considering application to hard disks, as is the case with commercially available perfluoropolyether, solubility in fluorine-based solvents used in production lines (for example, DuPont's special solvent Bartrel) Is required. It should be noted that the fluorine-based solvent is suitably used as a solvent used as a lubricant in the hard disk production line because it is not necessary to make the production line explosion-proof. However, the solubility of compounds other than perfluoropolyether-based compounds in fluorine-based solvents is not very good, and therefore the use for hard disks has been limited despite the good lubrication characteristics.
本発明は、このような従来の実情に鑑みて提案されたものであり、高温においても優れた潤滑性を有し、かつ磁気記録媒体の生産ラインへの適性に優れるイオン液体、高温においても優れた潤滑性を有し、かつ磁気記録媒体の生産ラインへの適性に優れる潤滑剤、及び優れた実用特性を有する磁気記録媒体を提供する。 The present invention has been proposed in view of such conventional circumstances, and is an ionic liquid having excellent lubricity even at high temperatures and excellent suitability for a production line of a magnetic recording medium, and is also excellent at high temperatures. Provided are a lubricant having excellent lubricity and excellent suitability for a production line of a magnetic recording medium, and a magnetic recording medium having excellent practical characteristics.
<1> 共役塩基と、共役酸とを有するイオン液体を含有し、
前記共役酸が、炭素数が6以上の直鎖状の炭化水素基を含む基を有し、
前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であり、
前記イオン液体のCF3(CHF)2CF2CF3に対する溶解性が、CF3(CHF)2CF2CF3100質量部に対して、0.1質量部以上であることを特徴とする潤滑剤である。
<2> 前記共役酸が、下記一般式(A)、下記一般式(B)、下記一般式(C)、下記一般式(D)、下記一般式(E)、及び下記一般式(F)のいずれかで表される前記<1>に記載の潤滑剤である。
ただし、前記一般式(B)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
ただし、前記一般式(C)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
ただし、前記一般式(D)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R2は、水素原子、及び炭化水素基のいずれかを表す。
ただし、前記一般式(E)中、R3は、炭化水素基を表し、R4は、水素原子、及び炭化水素基のいずれかを表し、R5は、炭素数が4以上のフッ素化炭化水素を含む炭素数8以上のフッ素化炭化水素基を含む基を表す。
ただし、前記一般式(F)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上3以下の整数を表す。
<3> 前記共役塩基が、下記一般式(X)、下記一般式(Y)、及び下記一般式(Z)のいずれかで表される前記<1>から<2>のいずれかに記載の潤滑剤である。
ただし、前記一般式(Y)中、nは、1以上12以下の整数を表す。
ただし、前記一般式(Z)中、nは、0以上6以下の整数を表す。
<4> 非磁性支持体と、前記非磁性支持体上に磁性層と、前記磁性層上に前記<1>から<3>のいずれかに記載の潤滑剤とを有することを特徴とする磁気記録媒体である。
<5> 共役塩基と、共役酸とを有し、
前記共役酸が、炭素数が6以上の直鎖状の炭化水素基を含む基を有し、
前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であり、
CF3(CHF)2CF2CF3に対する溶解性が、CF3(CHF)2CF2CF3100質量部に対して、0.1質量部以上であることを特徴とするイオン液体である。
<6> 前記共役酸が、下記一般式(A)、下記一般式(B)、下記一般式(C)、下記一般式(D)、下記一般式(E)、及び下記一般式(F)のいずれかで表される前記<5>に記載のイオン液体である。
ただし、前記一般式(B)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
ただし、前記一般式(C)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
ただし、前記一般式(D)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R2は、水素原子、及び炭化水素基のいずれかを表す。
ただし、前記一般式(E)中、R3は、炭化水素基を表し、R4は、水素原子、及び炭化水素基のいずれかを表し、R5は、炭素数が4以上のフッ素化炭化水素を含む炭素数8以上のフッ素化炭化水素基を含む基を表す。
ただし、前記一般式(F)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上3以下の整数を表す。
<7> 前記共役塩基が、下記一般式(X)、下記一般式(Y)、及び下記一般式(Z)のいずれかで表される前記<5>から<6>のいずれかに記載のイオン液体である。
ただし、前記一般式(Y)中、nは、1以上12以下の整数を表す。
ただし、前記一般式(Z)中、nは、0以上6以下の整数を表す。
<1> Contains an ionic liquid having a conjugate base and a conjugate acid,
The conjugate acid has a group containing a linear hydrocarbon group having 6 or more carbon atoms.
The pKa of the acid that is the source of the conjugate base in acetonitrile is 10 or less.
Lubricant characterized in that the solubility of the ionic liquid in CF 3 (CHF) 2 CF 2 CF 3 is 0.1 part by mass or more with respect to 100 parts by mass of CF 3 (CHF) 2 CF 2 CF 3. It is an agent.
<2> The conjugate acid is the following general formula (A), the following general formula (B), the following general formula (C), the following general formula (D), the following general formula (E), and the following general formula (F). The lubricant according to <1>, which is represented by any of the above.
However, in the general formula (B), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms.
However, in the general formula (C), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms.
However, in the general formula (D), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and R 2 represents either a hydrogen atom or a hydrocarbon group.
However, in the general formula (E), R 3 represents a hydrocarbon group, R 4 represents either a hydrogen atom or a hydrocarbon group, and R 5 is a fluorinated hydrocarbon having 4 or more carbon atoms. Represents a group containing a fluorinated hydrocarbon group having 8 or more carbon atoms including hydrogen.
However, in the general formula (F), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and n represents an integer of 1 or more and 3 or less.
<3> The above-mentioned <1> to <2>, wherein the conjugate base is represented by any of the following general formula (X), the following general formula (Y), and the following general formula (Z). It is a lubricant.
However, in the general formula (Y), n represents an integer of 1 or more and 12 or less.
However, in the general formula (Z), n represents an integer of 0 or more and 6 or less.
<4> Magnetism characterized by having a non-magnetic support, a magnetic layer on the non-magnetic support, and the lubricant according to any one of <1> to <3> on the magnetic layer. It is a recording medium.
<5> Having a conjugate base and a conjugate acid,
The conjugate acid has a group containing a linear hydrocarbon group having 6 or more carbon atoms.
The pKa of the acid that is the source of the conjugate base in acetonitrile is 10 or less.
Solubility CF 3 (CHF) 2 CF 2 CF 3 are, with respect to CF 3 (CHF) 2 CF 2 CF 3 100 parts by weight, and ionic liquids, characterized in that at least 0.1 part by weight.
<6> The conjugate acid is the following general formula (A), the following general formula (B), the following general formula (C), the following general formula (D), the following general formula (E), and the following general formula (F). The ionic liquid according to <5>, which is represented by any of the above.
However, in the general formula (B), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms.
However, in the general formula (C), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms.
However, in the general formula (D), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and R 2 represents either a hydrogen atom or a hydrocarbon group.
However, in the general formula (E), R 3 represents a hydrocarbon group, R 4 represents either a hydrogen atom or a hydrocarbon group, and R 5 is a fluorinated hydrocarbon having 4 or more carbon atoms. Represents a group containing a fluorinated hydrocarbon group having 8 or more carbon atoms including hydrogen.
However, in the general formula (F), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and n represents an integer of 1 or more and 3 or less.
<7> The above-mentioned <5> to <6>, wherein the conjugate base is represented by any of the following general formula (X), the following general formula (Y), and the following general formula (Z). It is an ionic liquid.
However, in the general formula (Y), n represents an integer of 1 or more and 12 or less.
However, in the general formula (Z), n represents an integer of 0 or more and 6 or less.
本発明によれば、潤滑剤の蒸発や熱分解といった熱的な安定性を改善し、かつ優れた潤滑特性を長期に亘り維持させることができる。また、潤滑剤を磁気記録媒体に用いた場合も、潤滑特性に優れ、走行性、耐摩耗性、耐久性等の実用特性を向上させることができる。更に、生産ラインを防爆仕様にする必要がない潤滑剤を提供できる。 According to the present invention, it is possible to improve thermal stability such as evaporation and thermal decomposition of the lubricant, and to maintain excellent lubricating characteristics for a long period of time. Further, even when the lubricant is used for the magnetic recording medium, the lubricating characteristics are excellent, and the practical characteristics such as running performance, wear resistance, and durability can be improved. Furthermore, it is possible to provide a lubricant that does not require the production line to be explosion-proof.
以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1. 潤滑剤及びイオン液体
2. 磁気記録媒体
3. 実施例
Hereinafter, embodiments of the present invention will be described in detail in the following order with reference to the drawings.
1. 1. Lubricant and ionic liquid 2. Magnetic recording medium 3. Example
<1.潤滑剤及びイオン液体>
本発明の一実施形態として示す潤滑剤は、共役酸と、共役塩基とを有するイオン液体を含有する。
本発明の一実施形態として示すイオン液体は、共役酸と、共役塩基とを有する。
前記イオン液体において、前記共役酸は、炭化水素基を含む基を有する。前記炭化水素基は、炭素数が6以上の直鎖状の炭化水素基である。ここで、「炭素数が6以上の直鎖状の炭化水素基」は、炭素に結合する水素原子の一部がフッ素原子に置換された部分フッ素化炭化水素基であってもよい。前記部分フッ素化炭化水素基としては、例えば、炭素数が4以上のフッ素化炭化水素を含む炭素数8以上のフッ素化炭化水素基が挙げられる。
前記イオン液体において、前記共役塩基の元となる酸のアセトニトリル中でのpKaは、10以下である。
前記イオン液体は、CF3(CHF)2CF2CF3に対する溶解性が、CF3(CHF)2CF2CF3100質量部に対して、0.1質量部以上であり、0.3質量部以上が好ましく、0.5質量部以上がより好ましい。溶解性の上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、一例としては、2.0質量部などが挙げられる。
なお、前記溶解性は、25℃における溶解性である。
<1. Lubricants and ionic liquids>
The lubricant shown as one embodiment of the present invention contains an ionic liquid having a conjugate acid and a conjugate base.
The ionic liquid shown as one embodiment of the present invention has a conjugate acid and a conjugate base.
In the ionic liquid, the conjugate acid has a group containing a hydrocarbon group. The hydrocarbon group is a linear hydrocarbon group having 6 or more carbon atoms. Here, the "linear hydrocarbon group having 6 or more carbon atoms" may be a partially fluorinated hydrocarbon group in which a part of hydrogen atoms bonded to carbon is replaced with a fluorine atom. Examples of the partially fluorinated hydrocarbon group include a fluorinated hydrocarbon group having 8 or more carbon atoms including a fluorinated hydrocarbon having 4 or more carbon atoms.
In the ionic liquid, the pKa of the acid that is the source of the conjugate base in acetonitrile is 10 or less.
The ionic liquid solubility CF 3 (CHF) 2 CF 2 CF 3 are, with respect to CF 3 (CHF) 2 CF 2 CF 3 100 parts by weight, is 0.1 parts by mass or more, 0.3 wt More than parts are preferable, and 0.5 parts by mass or more are more preferable. The upper limit of the solubility is not particularly limited and may be appropriately selected depending on the intended purpose, and an example thereof is 2.0 parts by mass.
The solubility is the solubility at 25 ° C.
本実施の形態におけるイオン液体は、共役酸と、共役塩基とを有し、前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であるため、優れた熱安定性を発揮することができる。またカチオン部分に炭素数6以上の炭化水素基を含む基を持つために優れた潤滑特性を併せ持つことができる。
さらに、フッ素系溶媒としてよく使用されるCF3(CHF)2CF2CF3に一定量溶解するため、フッ素系溶媒を用いた潤滑剤を作製できる。その結果、磁気記録媒体の生産ラインを防爆仕様にする必要がない。
ここで、イオン液体を含有する潤滑剤は、通常、イオン液体が0.05質量%又は0.1質量%程度の濃度で使用される。そのため、前記イオン液体のフッ素系溶媒に対する溶解性としては、0.05質量%以上が必要であり、0.1質量%以上が好ましい。また、使用状況によっては、それ以上の溶解性が要求されることもある。更には、潤滑剤の使用状況、保存状況の変化等を加味すると、0.1質量%以上〔CF3(CHF)2CF2CF3100質量部に対してイオン液体が0.1質量部以上〕の溶解性が要求され、好ましくは、0.3質量%以上の溶解性が要求される。
The ionic liquid in the present embodiment has a conjugate acid and a conjugate base, and the pKa of the acid that is the source of the conjugate base in acetonitrile is 10 or less, so that it exhibits excellent thermal stability. be able to. Further, since the cation portion has a group containing a hydrocarbon group having 6 or more carbon atoms, it can also have excellent lubrication characteristics.
Further, since it dissolves in a certain amount in CF 3 (CHF) 2 CF 2 CF 3 which is often used as a fluorine-based solvent, a lubricant using a fluorine-based solvent can be produced. As a result, it is not necessary to make the production line of the magnetic recording medium explosion-proof.
Here, the lubricant containing the ionic liquid is usually used at a concentration of about 0.05% by mass or 0.1% by mass of the ionic liquid. Therefore, the solubility of the ionic liquid in a fluorine-based solvent needs to be 0.05% by mass or more, preferably 0.1% by mass or more. Further, depending on the usage conditions, higher solubility may be required. Furthermore, taking into account changes in the usage and storage conditions of the lubricant, 0.1% by mass or more [CF 3 (CHF) 2 CF 2 CF 3 100 parts by mass and 0.1 parts by mass or more of ionic liquid ] Is required, and preferably 0.3% by mass or more is required.
なお、溶媒への溶解性については一般的な手法としてソルビリティパラメータを用いた解釈があり、経験的に溶解パラメーターが近い物質は混ざりやすい傾向を持つ。しかしながら、もともと元来のソルビリティパラメータ値による溶解度の推定自体に適用限界があるため、これらの経験値は参考程度にしかならない場合も多い。つまりこの手法は正則溶液理論をベースにしており、溶媒−溶質間に作用する力は分子間力のみとモデル化されていて、液体分子を凝集させる相互作用が分子間力のみであると考えられている。しかし実際の溶液が正則溶液であることは稀であり、溶媒−溶質分子間には水素結合など分子間力以外の力も作用し、2つの成分が混合するか相分離するかはそれらの成分の混合エンタルピーと混合エントロピーの差で熱力学的に決定されるからである。イオン液体の場合には分子中にイオンを含むこともあり、その溶媒への溶解性について予想することはかなり難しい。 As for the solubility in a solvent, there is an interpretation using the solubility parameter as a general method, and empirically, substances having similar solubility parameters tend to be easily mixed. However, since there is an application limit to the estimation of solubility based on the original solvability parameter value, these empirical values are often only for reference. In other words, this method is based on the regular solution theory, and the force acting between the solvent and the solute is modeled as only the intermolecular force, and the interaction that agglomerates the liquid molecule is considered to be only the intermolecular force. ing. However, it is rare that the actual solution is a regular solution, and forces other than intermolecular forces such as hydrogen bonds also act between the solvent and solute molecules, and whether the two components are mixed or phase-separated depends on those components. This is because it is determined thermodynamically by the difference between the mixed enthalpy and the mixed entropy. In the case of an ionic liquid, the molecule may contain ions, and its solubility in a solvent is quite difficult to predict.
前記pKaは、10以下の強酸であり、6.0以下が好ましい。
前記pKaの下限値としては、特に制限はなく、目的に応じて適宜選択することができるが、前記pKaは、−5.0以上が好ましい。
The pKa is a strong acid of 10 or less, preferably 6.0 or less.
The lower limit of the pKa is not particularly limited and may be appropriately selected depending on the intended purpose, but the pKa is preferably −5.0 or higher.
ここで、本明細書におけるpKaは、酸解離定数であって、アセトニトリル中における酸解離定数である。 Here, pKa in the present specification is an acid dissociation constant, which is an acid dissociation constant in acetonitrile.
<<共役塩基>>
前記共役塩基としては、元となる酸のアセトニトリル中でのpKaが10以下であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、下記一般式(V)で表される共役塩基、下記一般式(W)で表される共役塩基、下記一般式(X)で表される共役塩基、下記一般式(Y)で表される共役塩基、下記一般式(Z)で表される共役塩基などが挙げられる。これらの中でも、前記イオン液体のフッ素系溶媒に対する溶解性を高くできる点で、下記一般式(X)で表される共役塩基、下記一般式(Y)で表される共役塩基、及び下記一般式(Z)で表される共役塩基が好ましく、下記一般式(X)で表される共役塩基、及び下記一般式(Y)で表される共役塩基がより好ましい。
ただし、前記一般式(Y)中、nは、1以上12以下の整数を表し、1以上6以下の整数が好ましい。
ただし、前記一般式(Z)中、nは、0以上6以下の整数を表す。
<< Conjugate base >>
The conjugate base is not particularly limited as long as the pKa of the original acid in acetonitrile is 10 or less, and can be appropriately selected depending on the intended purpose. For example, it is represented by the following general formula (V). Conjugate base, conjugate base represented by the following general formula (W), conjugate base represented by the following general formula (X), conjugate base represented by the following general formula (Y), the following general formula (Z) Examples thereof include the represented conjugate base. Among these, the conjugate base represented by the following general formula (X), the conjugate base represented by the following general formula (Y), and the following general formula are used in that the solubility of the ionic liquid in a fluorine-based solvent can be increased. The conjugate base represented by (Z) is preferable, and the conjugate base represented by the following general formula (X) and the conjugate base represented by the following general formula (Y) are more preferable.
However, in the general formula (Y), n represents an integer of 1 or more and 12 or less, and an integer of 1 or more and 6 or less is preferable.
However, in the general formula (Z), n represents an integer of 0 or more and 6 or less.
前記共役塩基の元となる酸(HA)としては、ビス((パーフルオロアルキル)スルホニル)イミド〔(ClF2l+1SO2)2NH〕(pKa=0〜0.3)、パーフルオロシクロプロパンスルホイミド(pKa=−0.8)、パーフルオロアルキルスルホン酸(CmF2m+1SO3H)(pKa=0.7)、トリス(パーフルオロアルカンスルホニル)メチド化合物〔(CF3SO2)3CH〕(pKa=−3.7)、トリシアノメタン(pKa=5.1)、無機酸〔硝酸(pKa=9.4)、硫酸(pKa=8.7)等〕、テトラフルオロホウ酸(pKa=1.8)、ヘキサフルオロ燐酸などのスーパー酸に位置づけられるブレンステッド酸が好ましい。これらのpKaは、例えば、J. Org. Chem. Vol.76, No2, p.394に紹介されている。 Examples of the acid (HA) that is the source of the conjugated base include bis ((perfluoroalkyl) sulfonyl) imide [( Cl F 2l + 1 SO 2 ) 2 NH] (pKa = 0 to 0.3) and perfluorocyclopropane. Suruhoimido (pKa = -0.8), a perfluoroalkylsulfonic acid (C m F 2m + 1 SO 3 H) (pKa = 0.7), tris (perfluoroalkanesulfonyl) methide compound [(CF 3 SO 2) 3 CH] (pKa = -3.7), tricyanomethane (pKa = 5.1), inorganic acids [nitrate (pKa = 9.4), sulfuric acid (pKa = 8.7), etc.], tetrafluoroboric acid ( Bronsted acid, which is positioned as a super acid such as pKa = 1.8) and hexafluorophosphate, is preferable. These pKas are, for example, J. et al. Org. Chem. Vol. 76, No2, p. Introduced in 394.
<<共役酸>>
前記共役酸は、炭素数が6以上の直鎖状の炭化水素基を含む基を有する。
前記炭化水素基の炭素数としては、6以上であれば、特に制限はなく、目的に応じて適宜選択することができるが、10以上が好ましい。
<< Conjugate acid >>
The conjugate acid has a group containing a linear hydrocarbon group having 6 or more carbon atoms.
The number of carbon atoms of the hydrocarbon group is not particularly limited as long as it is 6 or more, and can be appropriately selected depending on the intended purpose, but 10 or more is preferable.
前記炭素数が6以上の直鎖状の炭化水素基の炭素数の上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、原材料の調達の観点から、前記炭素数は、30以下が好ましく、25以下がより好ましく、20以下が特に好ましい。前記炭化水素基が長鎖であることにより、摩擦係数を低減し、潤滑特性を向上させることができる。
前記炭素数が6以上の直鎖状の炭化水素基を含む基としては、前記炭素数が6以上の直鎖状の炭化水素基が好ましい。
ただし、炭素数が多すぎるとフッ素系溶媒への溶解性が低下する傾向にあるため、前記炭化水素基の炭素数は、摩擦係数低減の効果と、フッ素系溶媒への溶解性とを考慮して決定されることが好ましい。
The upper limit of the carbon number of the linear hydrocarbon group having 6 or more carbon atoms is not particularly limited and may be appropriately selected depending on the intended purpose. However, from the viewpoint of procuring raw materials, the carbon number of carbon atoms is not particularly limited. Is preferably 30 or less, more preferably 25 or less, and particularly preferably 20 or less. Since the hydrocarbon group has a long chain, the friction coefficient can be reduced and the lubrication characteristics can be improved.
As the group containing a linear hydrocarbon group having 6 or more carbon atoms, the linear hydrocarbon group having 6 or more carbon atoms is preferable.
However, if the number of carbon atoms is too large, the solubility in a fluorine-based solvent tends to decrease. Therefore, the carbon number of the hydrocarbon group takes into consideration the effect of reducing the coefficient of friction and the solubility in a fluorine-based solvent. Is preferably determined.
前記炭化水素基は直鎖状であればよく、飽和炭化水素基でも、一部に二重結合を有する不飽和炭化水素基、又は一部に分岐を有する不飽和分枝炭化水素基のいずれでもよい。これらの中でも、耐摩耗性の観点から飽和炭化水素基であるアルキル基であることが好ましい。また、一部にも分岐を有さない直鎖状の炭化水素基であることも好ましい。もちろん一部にも分岐を有する炭化水素基であってもよい。 The hydrocarbon group may be linear, and may be either a saturated hydrocarbon group, an unsaturated hydrocarbon group having a double bond in part, or an unsaturated branched hydrocarbon group having a branch in part. Good. Among these, an alkyl group, which is a saturated hydrocarbon group, is preferable from the viewpoint of wear resistance. It is also preferable that the hydrocarbon group is a linear hydrocarbon group having no branching. Of course, it may be a hydrocarbon group having a branch in part.
前記炭化水素基としては、例えば、下記一般式(I)で表される基、下記一般式(II)で表される基などが挙げられる。なお、前記一般式(II)で表される基は、前記部分フッ素化炭化水素基に相当する。
−(CH2)l−CH3 一般式(I)
−(CH2)m−(CF2)n−CF3 一般式(II)
前記一般式(I)中、lは、5以上の整数を表し、9以上29以下の整数が好ましく、9以上24以下の整数がより好ましく、9以上19以下の整数が特に好ましい。
前記一般式(II)中、mは、1以上6以下の整数を表し、nは、3以上20以下の整数を表す。ただし、m+nは、7以上である。mは、1以上3以下の整数が好ましく、nは、5以上10以下の整数が好ましい。
Examples of the hydrocarbon group include a group represented by the following general formula (I), a group represented by the following general formula (II), and the like. The group represented by the general formula (II) corresponds to the partially fluorinated hydrocarbon group.
− (CH 2 ) l −CH 3 General formula (I)
− (CH 2 ) m − (CF 2 ) n − CF 3 General formula (II)
In the general formula (I), l represents an integer of 5 or more, preferably an integer of 9 or more and 29 or less, more preferably an integer of 9 or more and 24 or less, and particularly preferably an integer of 9 or more and 19 or less.
In the general formula (II), m represents an integer of 1 or more and 6 or less, and n represents an integer of 3 or more and 20 or less. However, m + n is 7 or more. m is preferably an integer of 1 or more and 3 or less, and n is preferably an integer of 5 or more and 10 or less.
前記共役酸としては、下記一般式(A)で表される共役酸、下記一般式(B)で表される共役酸、下記一般式(C)で表される共役酸、下記一般式(E)で表される共役酸、及び下記一般式(F)で表される共役酸が、フッ素系溶媒への溶解性に優れる点で好ましい。通常、炭化水素構造が多いとフッ素系溶媒に対する溶解性が低いのが常識であるところ、下記一般式の共役酸は、予想に反してフッ素系溶媒への溶解性に優れる。
ただし、前記一般式(B)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
ただし、前記一般式(C)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
ただし、前記一般式(D)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R2は、水素原子、及び炭化水素基のいずれかを表す。
ただし、前記一般式(E)中、R3は、炭化水素基を表し、R4は、水素原子、及び炭化水素基のいずれかを表し、R5は、炭素数が4以上のフッ素化炭化水素を含む炭素数8以上のフッ素化炭化水素基を含む基を表す。
ただし、前記一般式(F)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上3以下の整数を表す。
Examples of the conjugate acid include a conjugate acid represented by the following general formula (A), a conjugate acid represented by the following general formula (B), a conjugate acid represented by the following general formula (C), and the following general formula (E). ) And the conjugate acid represented by the following general formula (F) are preferable because they are excellent in solubility in a fluorine-based solvent. Generally, it is common knowledge that when there are many hydrocarbon structures, the solubility in a fluorine-based solvent is low. However, the conjugate acid of the following general formula is unexpectedly excellent in solubility in a fluorine-based solvent.
However, in the general formula (B), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms.
However, in the general formula (C), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms.
However, in the general formula (D), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and R 2 represents either a hydrogen atom or a hydrocarbon group.
However, in the general formula (E), R 3 represents a hydrocarbon group, R 4 represents either a hydrogen atom or a hydrocarbon group, and R 5 is a fluorinated hydrocarbon having 4 or more carbon atoms. Represents a group containing a fluorinated hydrocarbon group having 8 or more carbon atoms including hydrogen.
However, in the general formula (F), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and n represents an integer of 1 or more and 3 or less.
前記一般式(A)、前記一般式(B)、前記一般式(C)、前記一般式(D)、及び前記一般式(F)の前記R1における前記炭化水素基の炭素数としては、6以上であれば、特に制限はなく、目的に応じて適宜選択することができるが、10以上が好ましい。
前記R1における前記炭化水素基の炭素数の上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、原材料の調達の観点から、前記炭素数は、30以下が好ましく、25以下がより好ましく、20以下が特に好ましい。前記炭化水素基が長鎖であることにより、摩擦係数を低減し、潤滑特性を向上させることができる。
前記R1としては、前記炭素数が6以上の直鎖状の炭化水素基が好ましい。
ただし、炭素数が多すぎるとフッ素系溶媒への溶解性が低下する傾向にあるため、前記炭化水素基の炭素数は、摩擦係数低減の効果と、フッ素系溶媒への溶解性とを考慮して決定されることが好ましい。
Formula (A), the foregoing formula (B), wherein the general formula (C), and number of carbon atoms of the hydrocarbon group for R 1 in the general formula (D), and the general formula (F) is As long as it is 6 or more, there is no particular limitation, and it can be appropriately selected depending on the intended purpose, but 10 or more is preferable.
The upper limit of the carbon number of the hydrocarbon group for R 1, is not particularly limited and may be appropriately selected depending on the intended purpose, in terms of procurement of raw materials, the number of carbon atoms is preferably 30 or less , 25 or less is more preferable, and 20 or less is particularly preferable. Since the hydrocarbon group has a long chain, the friction coefficient can be reduced and the lubrication characteristics can be improved.
As the R 1 , a linear hydrocarbon group having 6 or more carbon atoms is preferable.
However, if the number of carbon atoms is too large, the solubility in a fluorine-based solvent tends to decrease. Therefore, the carbon number of the hydrocarbon group takes into consideration the effect of reducing the coefficient of friction and the solubility in a fluorine-based solvent. Is preferably determined.
前記R1における前記炭化水素基は直鎖状であればよく、飽和炭化水素基でも、一部に二重結合を有する不飽和炭化水素基、又は一部に分岐を有する不飽和分枝炭化水素基のいずれでもよい。これらの中でも、耐摩耗性の観点から飽和炭化水素基であるアルキル基であることが好ましい。また、一部にも分岐を有さない直鎖状の炭化水素基であることも好ましい。 The hydrocarbon group in R 1 may be linear, and even if it is a saturated hydrocarbon group, it is an unsaturated hydrocarbon group having a double bond in part or an unsaturated branched hydrocarbon having a branch in part. It may be any of the groups. Among these, an alkyl group, which is a saturated hydrocarbon group, is preferable from the viewpoint of wear resistance. It is also preferable that the hydrocarbon group is a linear hydrocarbon group having no branching.
前記R1としては、例えば、下記一般式(III)で表される基などが挙げられる。
−(CH2)l−CH3 一般式(III)
前記一般式(III)中、lは、5以上の整数を表し、9以上29以下の整数が好ましく、9以上19以下の整数がより好ましい。
Examples of the R 1 include a group represented by the following general formula (III).
− (CH 2 ) l −CH 3 General formula (III)
In the general formula (III), l represents an integer of 5 or more, preferably an integer of 9 or more and 29 or less, and more preferably an integer of 9 or more and 19 or less.
前記一般式(E)の前記R3及びR4における前記炭化水素基としては、特に制限はなく、目的に応じて適宜選択することができるが、炭素数1〜20の炭化水素基が好ましい。 The hydrocarbon group in the R 3 and R 4 of the general formula (E) is not particularly limited and may be appropriately selected depending on the intended purpose, but a hydrocarbon group having 1 to 20 carbon atoms is preferable.
前記一般式(E)の前記R5は、炭素数が4以上のフッ素化炭化水素を含む炭素数8以上のフッ素化炭化水素基を含む基である。前記一般式(E)が係る基を有することにより、フッ素系溶媒への溶解性が改善される。
前記R5としては、以下の一般式(IV)で表される基が好ましい。
−(CH2)m−(CF2)n−CF3 一般式(IV)
前記一般式(IV)中、mは、1以上6以下の整数を表し、nは、3以上20以下の整数を表す。ただし、m+nは、7以上である。mは、1以上3以下の整数が好ましく、nは、7以上10以下の整数が好ましい。フッ素化炭素の炭素数も長すぎると溶媒への溶解性が低下するので、分子中のその他の構成要素によってその長さは決められる。
Wherein R 5 in the general formula (E) has a carbon number is a group containing a fluorinated hydrocarbon group having 8 or more carbon atoms containing 4 or more fluorinated hydrocarbons. By having the group according to the general formula (E), the solubility in a fluorine-based solvent is improved.
As the R 5, preferably a group represented by the following general formula (IV).
− (CH 2 ) m − (CF 2 ) n − CF 3 General formula (IV)
In the general formula (IV), m represents an integer of 1 or more and 6 or less, and n represents an integer of 3 or more and 20 or less. However, m + n is 7 or more. m is preferably an integer of 1 or more and 3 or less, and n is preferably an integer of 7 or more and 10 or less. If the number of carbon atoms in the fluorinated carbon is too long, the solubility in the solvent is reduced, and the length is determined by other components in the molecule.
<<イオン液体の好適例>>
前記イオン液体としては、下記一般式(1)で表されるイオン液体、下記一般式(2)表されるイオン液体、下記一般式(3)で表されるイオン液体、下記一般式(4)で表されるイオン液体、下記一般式(5)で表されるイオン液体、及び下記一般式(6)で表されるイオン液体が好ましい。
ただし、前記一般式(2)中、A−は、共役塩基を表し、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
ただし、前記一般式(3)中、A−は、共役塩基を表し、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
ただし、前記一般式(4)中、A−は、共役塩基を表し、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R2は、水素原子、及び炭化水素基のいずれかを表す。
ただし、前記一般式(5)中、A−は、共役塩基を表し、R3は、炭化水素基を表し、R4は、水素原子、及び炭化水素基のいずれかを表し、R5は、炭素数が4以上のフッ素化炭化水素を含む炭素数8以上のフッ素化炭化水素基を含む基を表す。
ただし、前記一般式(6)中、A−は、共役塩基を表し、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上3以下の整数を表す。
<< Preferable example of ionic liquid >>
Examples of the ionic liquid include an ionic liquid represented by the following general formula (1), an ionic liquid represented by the following general formula (2), an ionic liquid represented by the following general formula (3), and the following general formula (4). The ionic liquid represented by the following general formula (5), the ionic liquid represented by the following general formula (5), and the ionic liquid represented by the following general formula (6) are preferable.
However, in the general formula (2), A − represents a conjugate base, and R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms.
However, in the general formula (3), A − represents a conjugate base, and R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms.
However, in the general formula (4), A − represents a conjugate base, R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and R 2 represents a hydrogen atom and a hydrogen atom. Represents one of the hydrocarbon groups.
However, in the general formula (5), A − represents a conjugated base, R 3 represents a hydrocarbon group, R 4 represents either a hydrogen atom or a hydrocarbon group, and R 5 represents a hydrocarbon group. Represents a group containing a fluorinated hydrocarbon group having 4 or more carbon atoms and containing a fluorinated hydrocarbon group having 8 or more carbon atoms.
However, in the general formula (6), A − represents a conjugate base, R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and n represents 1 or more and 3 or less. Represents an integer.
前記一般式(1)で表されるイオン液体としては、下記一般式(1−1)で表されるイオン液体、及び下記一般式(1−2)で表されるイオン液体が好ましい。 As the ionic liquid represented by the general formula (1), an ionic liquid represented by the following general formula (1-1) and an ionic liquid represented by the following general formula (1-2) are preferable.
前記一般式(2)で表されるイオン液体としては、下記一般式(2−1)で表されるイオン液体、下記一般式(2−2)で表されるイオン液体が好ましい。
ただし、前記一般式(2−2)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上12以下の整数を表す。
As the ionic liquid represented by the general formula (2), an ionic liquid represented by the following general formula (2-1) and an ionic liquid represented by the following general formula (2-2) are preferable.
However, in the general formula (2-2), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and n represents an integer of 1 or more and 12 or less.
前記一般式(4)で表されるイオン液体としては、下記一般式(4−1)で表されるイオン液体、及び下記一般式(4−2)で表されるイオン液体が好ましい。
ただし、前記一般式(4−2)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R2は、水素原子、及び炭化水素基のいずれかを表し、nは、1以上12以下の整数を表す。
As the ionic liquid represented by the general formula (4), an ionic liquid represented by the following general formula (4-1) and an ionic liquid represented by the following general formula (4-2) are preferable.
However, in the general formula (4-2), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and R 2 represents either a hydrogen atom or a hydrocarbon group. Represented, n represents an integer of 1 or more and 12 or less.
前記一般式(5)で表されるイオン液体としては、下記一般式(5−1)で表されるイオン液体、及び下記一般式(5−2)で表されるイオン液体が好ましい。
ただし、前記一般式(5−2)中、R3は、炭化水素基を表し、R4は、水素原子、及び炭化水素基のいずれかを表し、R5は、炭素数が4以上のフッ素化炭化水素を含む炭素数8以上のフッ素化炭化水素基を含む基を表し、lは、1以上12以下の整数を表す。
As the ionic liquid represented by the general formula (5), an ionic liquid represented by the following general formula (5-1) and an ionic liquid represented by the following general formula (5-2) are preferable.
However, in the general formula (5-2), R 3 represents a hydrocarbon group, R 4 represents either a hydrogen atom or a hydrocarbon group, and R 5 is fluorine having 4 or more carbon atoms. It represents a group containing a fluorinated hydrocarbon group having 8 or more carbon atoms including a hydrocarbon, and l represents an integer of 1 or more and 12 or less.
前記一般式(6)で表されるイオン液体としては、下記一般式(6−1)で表されるイオン液体が好ましい。
前記イオン液体の一般式におけるR1の好ましい範囲は、対応する前記共役酸の一般式のR1の好ましい範囲と同じである。
前記イオン液体の一般式におけるR2の好ましい範囲は、対応する前記共役酸の一般式のR2の好ましい範囲と同じである。
前記イオン液体の一般式におけるR3の好ましい範囲は、対応する前記共役酸の一般式のR3の好ましい範囲と同じである。
前記イオン液体の一般式におけるR4の好ましい範囲は、対応する前記共役酸の一般式のR4の好ましい範囲と同じである。
前記イオン液体の一般式におけるR5の好ましい範囲は、対応する前記共役酸の一般式のR5の好ましい範囲と同じである。
前記イオン液体の一般式の共役塩基におけるlの好ましい範囲は、対応する前記共役塩基の一般式のlの好ましい範囲と同じである。
前記イオン液体の一般式の共役塩基におけるnの好ましい範囲は、対応する前記共役塩基の一般式のnの好ましい範囲と同じである。
The preferred range of R 1 in the general formula of the ionic liquid is the same as the preferred range of R 1 in the corresponding general formula of the conjugate acid.
The preferred range of R 2 in the general formula of the ionic liquid is the same as the preferred range of R 2 in the corresponding general formula of the conjugate acid.
The preferred range of R 3 in the general formula of the ionic liquid is the same as the preferred range of R 3 in the corresponding general formula of the conjugate acid.
The preferred range of R 4 in the general formula of the ionic liquid is the same as the preferred range of R 4 in the corresponding general formula of the conjugate acid.
The preferred range of R 5 in the general formula of the ionic liquid is the same as the preferred range of R 5 in the corresponding general formula of the conjugate acid.
The preferred range of l in the general formula of the ionic liquid is the same as the preferred range of l in the corresponding general formula of the conjugate base.
The preferred range of n in the conjugate base of the general formula of the ionic liquid is the same as the preferred range of n in the corresponding general formula of the conjugate base.
前記イオン液体の合成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、以下の実施例に記載の方法を参考にすることで、種々の前記イオン液体を合成することができる。 The method for synthesizing the ionic liquid is not particularly limited and may be appropriately selected depending on the intended purpose. For example, various ionic liquids are synthesized by referring to the methods described in the following examples. be able to.
本実施の形態における潤滑剤は、前述のイオン液体を単独で使用してもよいが、従来公知の潤滑剤と組み合わせて用いてもよい。例えば、長鎖カルボン酸、長鎖カルボン酸エステル、パーフルオロアルキルカルボン酸エステル、カルボン酸パーフルオロアルキルエステル、パーフルオロアルキルカルボン酸パーフルオロアルキルエステル、パーフルオロポリエーテル誘導体などと組み合わせて使用することが可能である。 As the lubricant in the present embodiment, the above-mentioned ionic liquid may be used alone, or may be used in combination with a conventionally known lubricant. For example, it can be used in combination with a long-chain carboxylic acid, a long-chain carboxylic acid ester, a perfluoroalkylcarboxylic acid ester, a carboxylic acid perfluoroalkyl ester, a perfluoroalkylcarboxylic acid perfluoroalkyl ester, a perfluoropolyether derivative, or the like. It is possible.
また、厳しい条件で潤滑効果を持続させるために、質量比30:70〜70:30程度の配合比で極圧剤を併用してもよい。前記極圧剤は、境界潤滑領域において部分的に金属接触が生じたときに、これに伴う摩擦熱によって金属面と反応し、反応生成物皮膜を形成することにより、摩擦・摩耗防止作用を行うものである。前記極圧剤としては、例えば、リン系極圧剤、イオウ系極圧剤、ハロゲン系極圧剤、有機金属系極圧剤、複合型極圧剤などのいずれも使用できる。 Further, in order to maintain the lubricating effect under severe conditions, an extreme pressure agent may be used in combination at a mass ratio of about 30:70 to 70:30. When a metal contact occurs partially in the boundary lubrication region, the extreme pressure agent reacts with the metal surface by the frictional heat associated therewith to form a reaction product film, thereby performing a friction / wear prevention action. It is a thing. As the extreme pressure agent, for example, a phosphorus-based extreme pressure agent, a sulfur-based extreme pressure agent, a halogen-based extreme pressure agent, an organometallic extreme pressure agent, a composite type extreme pressure agent, or the like can be used.
また、必要に応じて防錆剤を併用してもよい。前記防錆剤としては、通常この種の磁気記録媒体の防錆剤として使用可能であるものであればよく、例えば、フェノール類、ナフトール類、キノン類、窒素原子を含む複素環化合物、酸素原子を含む複素環化合物、硫黄原子を含む複素環化合物などが挙げられる。また、前記防錆剤は、潤滑剤として混合して用いてもよいが、非磁性支持体上に磁性層を形成し、その上部に防錆剤層を塗布した後、潤滑剤層を塗布するというように、2層以上に分けて被着してもよい。 In addition, a rust preventive may be used in combination if necessary. The rust preventive may be any one that can be usually used as a rust preventive for this type of magnetic recording medium. For example, phenols, naphthols, quinones, heterocyclic compounds containing nitrogen atoms, and oxygen atoms. Examples thereof include a heterocyclic compound containing a sulfur atom and a heterocyclic compound containing a sulfur atom. The rust preventive may be mixed and used as a lubricant, but a magnetic layer is formed on a non-magnetic support, a rust preventive layer is applied on the upper portion, and then a lubricant layer is applied. As such, the coating may be divided into two or more layers.
また、前記潤滑剤の溶媒としては、例えば、イソプロピルアルコール(IPA)、エタノール等のアルコール系溶媒などから単独又は組み合わせて使用することができる。例えば、ノルマルヘキサンのような炭化水素系溶剤やフッ素系溶媒を混合しても使用することができる。
前記溶媒としては、フッ素系溶媒が好ましい。前記フッ素系溶媒としては、例えば、ハイドロフルオロエーテル〔例えば、C3F7OCH3、C4F9OCH3、C4F9OC2H5、C2F5CF(OCH3)C3F7、CF3(CHF)2CF2CF3〕などが挙げられるが、それにIPAやエタノールあるいはメタノール等のアルコールを混合して用いても良い。
前記フッ素系溶媒は、市販品であってもよい。前記市販品としては、例えば、3M社製のNovecTM 7000、7100、7200、7300、71IPA、三井・デュポン フロロケミカル株式会社製のVertrel XF、X−P10などが挙げられる。
Further, as the solvent of the lubricant, for example, alcohol-based solvents such as isopropyl alcohol (IPA) and ethanol can be used alone or in combination. For example, it can also be used by mixing a hydrocarbon solvent such as normal hexane or a fluorine solvent.
As the solvent, a fluorine-based solvent is preferable. Examples of the fluorine-based solvent include hydrofluoroethers [for example, C 3 F 7 OCH 3 , C 4 F 9 OCH 3 , C 4 F 9 OC 2 H 5 , C 2 F 5 CF (OCH 3 ) C 3 F. 7 , CF 3 (CHF) 2 CF 2 CF 3 ] and the like, but an alcohol such as IPA, ethanol or methanol may be mixed and used.
The fluorine-based solvent may be a commercially available product. Examples of the commercially available products include Novec TM 7000, 7100, 7200, 7300, 71IPA manufactured by 3M, Vertrel XF and XP10 manufactured by Mitsui-DuPont Fluorochemical Co., Ltd. and the like.
<2.磁気記録媒体>
次に、前述の潤滑剤を用いた磁気記録媒体について説明する。本発明の一実施形態として示す磁気記録媒体は、非磁性支持体上に少なくとも磁性層を有してなり、前記磁性層に前述の潤滑剤を保有してなるものである。
<2. Magnetic recording medium>
Next, the magnetic recording medium using the above-mentioned lubricant will be described. The magnetic recording medium shown as an embodiment of the present invention has at least a magnetic layer on a non-magnetic support, and has the above-mentioned lubricant in the magnetic layer.
本実施の形態における潤滑剤は、磁性層が非磁性支持体表面に蒸着やスパッタリング等の手法により形成された、所謂、金属薄膜型の磁気記録媒体に適用することが可能である。また、非磁性支持体と磁性層との間に下地層を介した構成の磁気記録媒体にも適用することもできる。このような磁気記録媒体としては、磁気ディスク、磁気テープなどを挙げることができる The lubricant in the present embodiment can be applied to a so-called metal thin film type magnetic recording medium in which a magnetic layer is formed on the surface of a non-magnetic support by a method such as vapor deposition or sputtering. It can also be applied to a magnetic recording medium having a structure in which a base layer is interposed between a non-magnetic support and a magnetic layer. Examples of such a magnetic recording medium include magnetic disks and magnetic tapes.
図4は、ハードディスクの一例を示す断面図である。このハードディスクは、基板11と、下地層12と、磁性層13と、カーボン保護層14と、潤滑剤層15とが順次積層された構造を有する。 FIG. 4 is a cross-sectional view showing an example of a hard disk. This hard disk has a structure in which a substrate 11, a base layer 12, a magnetic layer 13, a carbon protective layer 14, and a lubricant layer 15 are sequentially laminated.
また、図5は、磁気テープの一例を示す断面図である。この磁気テープは、バックコート層25と、基板21と、磁性層22と、カーボン保護層23と、潤滑剤層24とが順次積層された構造を有する。 Further, FIG. 5 is a cross-sectional view showing an example of the magnetic tape. This magnetic tape has a structure in which a back coat layer 25, a substrate 21, a magnetic layer 22, a carbon protective layer 23, and a lubricant layer 24 are sequentially laminated.
図4に示す磁気ディスクにおいて、非磁性支持体は、基板11、下地層12が該当し、図5に示す磁気テープにおいて、非磁性支持体は、基板21が該当する。非磁性支持体として、Al合金板やガラス板等の剛性を有する基板を使用した場合、基板表面にアルマイト処理等の酸化皮膜やNi−P皮膜等を形成して、その表面を硬くしてもよい。 In the magnetic disk shown in FIG. 4, the non-magnetic support corresponds to the substrate 11 and the base layer 12, and in the magnetic tape shown in FIG. 5, the non-magnetic support corresponds to the substrate 21. When a rigid substrate such as an Al alloy plate or a glass plate is used as the non-magnetic support, even if an oxide film such as alumite treatment or a Ni-P film is formed on the surface of the substrate to harden the surface. Good.
磁性層13、22は、メッキ、スパッタリング、真空蒸着、プラズマCVD等の手法により、連続膜として形成される。磁性層13、22としては、Fe、Co、Ni等の金属や、Co−Ni系合金、Co−Pt系合金、Co−Ni−Pt系合金、Fe−Co系合金、Fe−Ni系合金、Fe−Co−Ni系合金、Fe−Ni−B系合金、Fe−Co−B系合金、Fe−Co−Ni−B系合金等からなる面内磁化記録金属磁性膜や、Co−Cr系合金薄膜、Co−O系薄膜等の垂直磁化記録金属磁性薄膜が例示される。 The magnetic layers 13 and 22 are formed as a continuous film by techniques such as plating, sputtering, vacuum deposition, and plasma CVD. Examples of the magnetic layers 13 and 22 include metals such as Fe, Co, and Ni, Co—Ni alloys, Co—Pt alloys, Co—Ni—Pt alloys, Fe—Co alloys, and Fe—Ni alloys. In-plane magnetization recording metal magnetic film composed of Fe-Co-Ni based alloy, Fe-Ni-B based alloy, Fe-Co-B based alloy, Fe-Co-Ni-B based alloy, etc., and Co-Cr based alloy. Vertical magnetization recording metal magnetic thin films such as thin films and Co—O thin films are exemplified.
特に、面内磁化記録金属磁性薄膜を形成する場合、予め非磁性支持体上にBi、Sb、Pb、Sn、Ga、In、Ge、Si、Tl等の非磁性材料を、下地層12として形成しておき、金属磁性材料を垂直方向から蒸着あるいはスパッタし、磁性金属薄膜中にこれら非磁性材料を拡散せしめ、配向性を解消して面内等方性を確保するとともに、抗磁力を向上するようにしてもよい。 In particular, when forming an in-plane magnetization recording metal magnetic thin film, a non-magnetic material such as Bi, Sb, Pb, Sn, Ga, In, Ge, Si, or Tl is previously formed as the base layer 12 on the non-magnetic support. In addition, the metallic magnetic material is vapor-deposited or sputtered from the vertical direction to diffuse these non-magnetic materials into the magnetic metal thin film, eliminating the orientation, ensuring in-plane isotropic property, and improving the coercive force. You may do so.
また、磁性層13、22の表面に、カーボン膜、ダイヤモンド状カーボン膜、酸化クロム膜、SiO2膜等の硬質な保護層14、23を形成してもよい。 Further, hard protective layers 14 and 23 such as a carbon film, a diamond-like carbon film, a chromium oxide film, and a SiO 2 film may be formed on the surfaces of the magnetic layers 13 and 22.
このような金属薄膜型の磁気記録媒体に前述の潤滑剤を保有させる方法としては、図4及び図5に示すように、磁性層13、22の表面や、保護層14、23の表面にトップコートする方法が挙げられる。潤滑剤の塗布量としては、0.1mg/m2〜100mg/m2であることが好ましく、0.5mg/m2〜30mg/m2であることがより好ましく、0.5mg/m2〜20mg/m2であることが特に好ましい。 As a method of holding the above-mentioned lubricant in such a metal thin film type magnetic recording medium, as shown in FIGS. 4 and 5, the top surface is on the surfaces of the magnetic layers 13 and 22 and the surfaces of the protective layers 14 and 23. There is a method of coating. The coating amount of the lubricant is preferably 0.1mg / m 2 ~100mg / m 2 , more preferably 0.5mg / m 2 ~30mg / m 2 , 0.5mg / m 2 ~ It is particularly preferably 20 mg / m 2 .
また、図5に示すように、金属薄膜型の磁気テープは、磁性層22である金属磁性薄膜の他に、バックコート層25が必要に応じて形成されていてもよい。 Further, as shown in FIG. 5, in the metal thin film type magnetic tape, a back coat layer 25 may be formed as needed in addition to the metal magnetic thin film which is the magnetic layer 22.
バックコート層25は、樹脂結合剤に導電性を付与するためのカーボン系微粉末や表面粗度をコントロールするための無機顔料を添加し塗布形成されるものである。本実施の形態においては、前述の潤滑剤を、バックコート層25に内添又はトップコートにより含有させてもよい。また、前述の潤滑剤を、磁性層22とバックコート層25のいずれにも内添、トップコートにより含有させてもよい。 The backcoat layer 25 is formed by adding carbon-based fine powder for imparting conductivity to the resin binder and an inorganic pigment for controlling the surface roughness. In the present embodiment, the above-mentioned lubricant may be contained in the back coat layer 25 by internal addition or top coat. Further, the above-mentioned lubricant may be contained in both the magnetic layer 22 and the back coat layer 25 by internal addition or top coating.
また、他の実施の形態として、磁性塗料を非磁性支持体表面に塗布することにより磁性塗膜が磁性層として形成される、所謂、塗布型の磁気記録媒体にも潤滑剤の適用が可能である。塗布型の磁気記録媒体において、非磁性支持体や磁性塗膜を構成する磁性粉末、樹脂結合剤などは、従来公知のものがいずれも使用可能である。 Further, as another embodiment, the lubricant can be applied to a so-called coating type magnetic recording medium in which a magnetic coating film is formed as a magnetic layer by applying a magnetic coating material to the surface of a non-magnetic support. is there. In the coating type magnetic recording medium, any conventionally known magnetic powder, resin binder, or the like constituting the non-magnetic support or the magnetic coating film can be used.
例えば、前記非磁性支持体としては、例えば、ポリエステル類、ポリオレフィン類、セルロース誘導体、ビニル系樹脂、ポリイミド類、ポリアミド類、ポリカーボネート等に代表されるような高分子材料により形成される高分子支持体や、アルミニウム合金、チタン合金等からなる金属基板、アルミナガラス等からなるセラミックス基板、ガラス基板などが例示される。また、その形状も何ら限定されるものではなく、テープ状、シート状、ドラム状等、如何なる形態であってもよい。さらに、この非磁性支持体には、その表面性をコントロールするために、微細な凹凸が形成されるような表面処理が施されたものであってもよい。 For example, as the non-magnetic support, for example, a polymer support formed of a polymer material such as polyesters, polyolefins, cellulose derivatives, vinyl resins, polyimides, polyamides, polycarbonate and the like. Examples thereof include a metal substrate made of an aluminum alloy, a titanium alloy, etc., a ceramics substrate made of alumina glass, a glass substrate, and the like. Further, the shape is not limited in any way, and any shape such as a tape shape, a sheet shape, a drum shape, or the like may be used. Further, the non-magnetic support may be surface-treated so as to form fine irregularities in order to control its surface property.
前記磁性粉末としては、γ−Fe2O3、コバルト被着γ−Fe2O3等の強磁性酸化鉄系粒子、強磁性二酸化クロム系粒子、Fe、Co、Ni等の金属や、これらを含んだ合金からなる強磁性金属系粒子、六角板状の六方晶系フェライト微粒子等が例示される。 Examples of the magnetic powder include ferromagnetic iron oxide-based particles such as γ-Fe 2 O 3 and cobalt-adhered γ-Fe 2 O 3 , ferromagnetic chromium dioxide-based particles, metals such as Fe, Co, and Ni, and these. Examples thereof include ferromagnetic metal particles made of the contained alloy, hexagonal plate-shaped hexagonal ferrite fine particles, and the like.
前記樹脂結合剤としては、塩化ビニル、酢酸ビニル、ビニルアルコール、塩化ビニリデン、アクリル酸エステル、メタクリル酸エステル、スチレン、ブタジエン、アクリロニトリル等の重合体、あるいはこれら二種以上を組み合わせた共重合体、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂等が例示される。これら結合剤には、磁性粉末の分散性を改善するために、カルボン酸基やカルボキシル基、リン酸基等の親水性極性基が導入されてもよい。 Examples of the resin binder include polymers such as vinyl chloride, vinyl acetate, vinyl alcohol, vinylidene chloride, acrylic acid ester, methacrylic acid ester, styrene, butadiene, and acrylonitrile, or copolymers obtained by combining two or more of these, polyurethane. Examples thereof include resins, polyester resins, and epoxy resins. Hydrophilic polar groups such as carboxylic acid groups, carboxyl groups, and phosphoric acid groups may be introduced into these binders in order to improve the dispersibility of the magnetic powder.
前記磁性塗膜には、前記の磁性粉末、樹脂結合剤の他、添加剤として分散剤、研磨剤、帯電防止剤、防錆剤等が加えられてもよい。 In addition to the magnetic powder and the resin binder, a dispersant, an abrasive, an antistatic agent, a rust preventive, and the like may be added to the magnetic coating film.
このような塗布型の磁気記録媒体に前述の潤滑剤を保有させる方法としては、前記非磁性支持体上に形成される前記磁性塗膜を構成する前記磁性層中に内添する方法、前記磁性層の表面にトップコートする方法、若しくはこれら両者の併用等がある。また、前記潤滑剤を前記磁性塗膜中に内添する場合には、前記樹脂結合剤100質量部に対して0.2質量部〜20質量部の範囲で添加される。 As a method of holding the above-mentioned lubricant in such a coating type magnetic recording medium, a method of internally adding the above-mentioned lubricant in the magnetic layer constituting the magnetic coating film formed on the non-magnetic support, the said magnetism. There is a method of top-coating the surface of the layer, or a combination of both of them. When the lubricant is internally added to the magnetic coating film, it is added in the range of 0.2 parts by mass to 20 parts by mass with respect to 100 parts by mass of the resin binder.
また、前記潤滑剤を前記磁性層の表面にトップコートする場合には、その塗布量は0.1mg/m2〜100mg/m2であることが好ましく、0.5mg/m2〜20mg/m2であることがより好ましい。なお、前記潤滑剤をトップコートする場合の被着方法としては、イオン液体を溶媒に溶解し、得られた溶液を塗布若しくは噴霧するか、又はこの溶液中に磁気記録媒体を浸漬すればよい。 Further, in the case of top coat the lubricant on the surface of the magnetic layer preferably has an applied amount is 0.1mg / m 2 ~100mg / m 2 , 0.5mg / m 2 ~20mg / m and more preferably 2. When the lubricant is top-coated, the ionic liquid may be dissolved in a solvent and the obtained solution may be applied or sprayed, or a magnetic recording medium may be immersed in the solution.
本実施の形態における潤滑剤を適用した磁気記録媒体は、潤滑作用により、優れた走行性、耐摩耗性、耐久性等を発揮し、さらに、熱的安定性を向上させることができる。 The magnetic recording medium to which the lubricant is applied according to the present embodiment exhibits excellent running performance, wear resistance, durability, and the like due to the lubricating action, and can further improve the thermal stability.
<3.実施例>
以下、本発明の具体的な実施例について説明する。本実施例では、イオン液体を合成し、イオン液体を含有する潤滑剤を作製した。そして、まずはフッ素系溶媒であるバートレル〔CF3(CHF)2CF2CF3〕への溶解性について調べた。その潤滑剤溶液を用いて磁気ディスク及び磁気テープの表面に塗布して、それぞれディスク耐久性及びテープ耐久性について評価した。磁気ディスクの製造、ディスク耐久性試験、磁気テープの製造、及びテープ耐久性試験は、次のように行った。なお、本発明は、これらの実施例に限定されるものではない。
<3. Example>
Hereinafter, specific examples of the present invention will be described. In this example, an ionic liquid was synthesized to prepare a lubricant containing the ionic liquid. Then, first, the solubility in Bartlel [CF 3 (CHF) 2 CF 2 CF 3 ], which is a fluorine-based solvent, was investigated. The lubricant solution was applied to the surfaces of a magnetic disk and a magnetic tape, and the disk durability and tape durability were evaluated, respectively. The production of the magnetic disk, the disk durability test, the production of the magnetic tape, and the tape durability test were carried out as follows. The present invention is not limited to these examples.
<磁気ディスクの製造>
例えば、国際公開第2005/068589号公報に従って、ガラス基板上に磁性薄膜を形成し、図4に示すような磁気ディスクを作製した。具体的には、アルミシリケートガラスからなる外径65mm、内径20mm、ディスク厚0.635mmの化学強化ガラスディスクを準備し、その表面をRmaxが4.8nm、Raが0.43nmになるように研磨した。ガラス基板を純水及び純度99.9%以上のイソプロピルアルコール(IPA)中で、それぞれ5分間超音波洗浄を行い、IPA飽和蒸気内に1.5分間放置後、乾燥させ、これを基板11とした。
<Manufacturing of magnetic disks>
For example, according to International Publication No. 2005/068589, a magnetic thin film was formed on a glass substrate to prepare a magnetic disk as shown in FIG. Specifically, a chemically strengthened glass disk made of aluminum silicate glass having an outer diameter of 65 mm, an inner diameter of 20 mm, and a disk thickness of 0.635 mm is prepared, and the surface thereof is polished so that Rmax is 4.8 nm and Ra is 0.43 nm. did. The glass substrate was ultrasonically cleaned in pure water and isopropyl alcohol (IPA) having a purity of 99.9% or more for 5 minutes, left in IPA saturated steam for 1.5 minutes, and then dried. did.
この基板11上に、DCマグネトロンスパッタリング法によりシード層としてNiAl合金(Ni:50モル%、Al:50モル%)薄膜を30nm、下地層12としてCrMo合金(Cr:80モル%、Mo:20モル%)薄膜を8nm、磁性層13としてCoCrPtB合金(Co:62モル%、Cr:20モル%、Pt:12モル%、B:6モル%)薄膜を15nmとなるように順次形成した。 On this substrate 11, a NiAl alloy (Ni: 50 mol%, Al: 50 mol%) thin film was formed as a seed layer by a DC magnetron sputtering method at 30 nm, and a CrMo alloy (Cr: 80 mol%, Mo: 20 mol%) was used as the base layer 12. %) A thin film of CoCrPtB alloy (Co: 62 mol%, Cr: 20 mol%, Pt: 12 mol%, B: 6 mol%) was sequentially formed so as to have a thickness of 8 nm and a magnetic layer 13 of 15 nm.
次に、プラズマCVD法によりアモルファスのダイヤモンドライクカーボンからなるカーボン保護層14を5nm製膜し、そのディスクサンプルを洗浄器内に純度99.9%以上のイソプロピルアルコール(IPA)中で10分間超音波洗浄を行い、ディスク表面上の不純物を取り除いた後に乾燥させた。その後、25℃50%相対湿度(RH)の環境においてディスク表面にイオン液体のn−ヘキサンとエタノールの混合溶媒を用いてディップコート法により塗布することで、潤滑剤層15を約1nm形成した。 Next, a carbon protective layer 14 made of amorphous diamond-like carbon was formed into a 5 nm film by a plasma CVD method, and the disk sample was ultrasonically placed in a washer in isopropyl alcohol (IPA) having a purity of 99.9% or more for 10 minutes. It was washed to remove impurities on the disk surface and then dried. Then, in an environment of 25 ° C. and 50% relative humidity (RH), the lubricant layer 15 was formed at about 1 nm by applying the ionic liquid n-hexane and ethanol in a mixed solvent by a dip coating method on the disk surface.
<熱安定性測定>
TG/DTA測定では、セイコーインスツルメント社製EXSTAR6000を使用し、200ml/minの流量で空気中を導入しながら、10℃/minの昇温速度で30℃−600℃の温度範囲で測定を行った。
<Measurement of thermal stability>
For TG / DTA measurement, EXSTAR6000 manufactured by Seiko Instruments Inc. is used, and measurement is performed in the temperature range of 30 ° C.-600 ° C. at a temperature rise rate of 10 ° C./min while introducing air at a flow rate of 200 ml / min. went.
<ディスク耐久性試験>
市販のひずみゲージ式ディスク摩擦・摩耗試験機を用いて、ハードディスクを14.7Ncmの締め付けトルクで回転スピンドルに装着後、ヘッドスライダーのハードディスクに対して内周側のエアベアリング面の中心が、ハードディスクの中心より17.5mmになるようにヘッドスライダーをハードディスク上に取り付けCSS耐久試験を行った。本測定に用いたヘッドは、IBM3370タイプのインライン型ヘッドであり、スライダーの材質はAl2O3−TiC、ヘッド荷重は63.7mNである。本試験は、クリーン清浄度100、25℃60%RHの環境下で、CSS(Contact、Start、Stop)毎に摩擦力の最大値をモニターした。摩擦係数が1.0を超えた回数をCSS耐久試験の結果とした。CSS耐久試験の結果において、50,000回を超える場合には「>50,000」と表示した。また、耐熱性を調べるために、200℃の温度で3分間加熱試験を行った後のCSS耐久性試験を同様に行った。
<Disc durability test>
After mounting the hard disk on the rotating spindle with a tightening torque of 14.7 Ncm using a commercially available strain gauge disc friction / wear tester, the center of the air bearing surface on the inner peripheral side of the hard disk of the head slider is the hard disk. A CSS durability test was conducted by mounting a head slider on the hard disk so that it was 17.5 mm from the center. The head used for this measurement is an IBM 3370 type in-line head, the slider material is Al 2 O 3- TiC, and the head load is 63.7 mN. In this test, the maximum value of the frictional force was monitored for each CSS (Control, Start, Stop) in an environment of clean cleanliness of 100 and 25 ° C. and 60% RH. The number of times the friction coefficient exceeded 1.0 was taken as the result of the CSS durability test. In the result of the CSS durability test, when it exceeds 50,000 times, it is displayed as ">50,000". Further, in order to examine the heat resistance, a CSS durability test after performing a heating test at a temperature of 200 ° C. for 3 minutes was also performed in the same manner.
<磁気テープの製造>
図5に示すような断面構造の磁気テープを作製した。先ず、5μm厚の東レ製ミクトロン(芳香族ポリアミド)フィルムからなる基板21に、斜め蒸着法によりCoを被着させ、膜厚100nmの強磁性金属薄膜からなる磁性層22を形成した。次に、この強磁性金属薄膜表面にプラズマCVD法により10nmのダイヤモンドライクカーボンからなるカーボン保護層23を形成させた後、6ミリ幅に裁断した。このカーボン保護層23上にIPAに溶解したイオン液体を、膜厚が1nm程度となるように塗布して潤滑剤層24を形成し、サンプルテープを作製した。
<Manufacturing of magnetic tape>
A magnetic tape having a cross-sectional structure as shown in FIG. 5 was produced. First, Co was adhered to a substrate 21 made of Toray's Mictron (aromatic polyamide) film having a thickness of 5 μm by an oblique vapor deposition method to form a magnetic layer 22 made of a ferromagnetic metal thin film having a film thickness of 100 nm. Next, a carbon protective layer 23 made of diamond-like carbon having a diameter of 10 nm was formed on the surface of the ferromagnetic metal thin film by a plasma CVD method, and then cut into a width of 6 mm. An ionic liquid dissolved in IPA was applied onto the carbon protective layer 23 so as to have a film thickness of about 1 nm to form a lubricant layer 24, and a sample tape was prepared.
<テープ耐久性試験>
各サンプルテープについて、温度−5℃環境下、温度40℃30%RH環境下のスチル耐久性、並びに、温度−5℃環境下、温度40℃90%RH環境下の摩擦係数及びシャトル耐久性について測定を行った。スチル耐久性は、ポーズ状態での出力が−3dB低下するまでの減衰時間を評価した。シャトル耐久性は、1回につき2分間の繰り返しシャトル走行を行い、出力が3dB低下するまでのシャトル回数で評価した。また、耐熱性を調べるために、100℃の温度で10分間加熱試験を行った後の耐久性試験も同様に行った。
<Tape durability test>
For each sample tape, the still durability under a temperature of -5 ° C and a temperature of 40 ° C and 30% RH, and the coefficient of friction and shuttle durability under a temperature of -5 ° C and a temperature of 40 ° C and 90% RH. Measurements were made. For still durability, the decay time until the output in the pause state decreased by -3 dB was evaluated. The shuttle durability was evaluated by the number of shuttle runs until the output decreased by 3 dB after repeated shuttle running for 2 minutes each time. Further, in order to examine the heat resistance, a durability test after performing a heating test at a temperature of 100 ° C. for 10 minutes was also performed in the same manner.
本実施の形態におけるイオン液体は、共役塩基と、共役酸とを有し、前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下である。更には、カチオン部分に炭素数6以上の炭化水素基を含む基を持つことが好ましい。そのようなイオン液体の熱安定性、及び前記イオン液体を用いた磁気記録媒体の耐久性についての影響を調べた。更に、フッ素系溶媒への溶解性について調べた。 The ionic liquid in the present embodiment has a conjugate base and a conjugate acid, and the pKa of the acid that is the source of the conjugate base in acetonitrile is 10 or less. Further, it is preferable to have a group containing a hydrocarbon group having 6 or more carbon atoms in the cation moiety. The effect on the thermal stability of such an ionic liquid and the durability of a magnetic recording medium using the ionic liquid was investigated. Furthermore, the solubility in a fluorine-based solvent was investigated.
(実施例1A)
<ビス(ノナフルオロブタンスルホニル)イミド−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセンの合成>
ビス(ノナフルオロブタンスルホニル)イミド−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセンの合成は、以下のスキームにしたがって行った。
<Synthesis of bis (nonaflate butane sulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene>
The synthesis of bis (nonafluorobutanesulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene was carried out according to the following scheme.
6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセン(6−オクタデシルDBU)は、Matsumuraらの非特許文献〔N. Matsumura, H. Nishiguchi, M. Okada, and S. Yoneda, J. Heterocyclic Chem. pp.885−887, Vol/23. Issue 3 (1986)〕に従って、合成した。 6-Octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene (6-octadecyl DBU) is described in the non-patent document of Matsumura et al. Matsumura, H. et al. Nishiguchi, M.M. Okada, and S. Yoneda, J.M. Heterocyclic Chem. pp. 885-887, Vol / 23. It was synthesized according to Issue 3 (1986)].
得られた6−オクタデシルDBU2.47gのエタノール溶液にビス(ノナフルオロブタンスルホニル)イミドの30%水溶液11.84gを加え、常温で1時間攪拌後、加熱還流を1時間行った。溶媒を除去後、ジクロルメタンに溶解させ、水で十分に洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を除去した。90℃で真空乾燥を3日間行い、無色の液体ビス(ノナフルオロブタンスルホニル)イミド−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセンを5.55g得た。収率92.2% 11.84 g of a 30% aqueous solution of bis (nonafluorobutanesulfonyl) imide was added to 2.47 g of the obtained 6-octadecyl DBU ethanol solution, and the mixture was stirred at room temperature for 1 hour and then heated to reflux for 1 hour. After removing the solvent, it was dissolved in dichloromethane and washed thoroughly with water. The organic layer was dried over anhydrous sodium sulfate, and the solvent was removed. Vacuum drying was performed at 90 ° C. for 3 days to obtain 5.55 g of colorless liquid bis (nonafluorobutanesulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene. Yield 92.2%
ここで、本明細書においてのFTIRの測定は、日本分光社製FT/IR−460を使用し、KBrプレート法あるいはKBr錠剤法を用いて透過法で測定を行った。そのときの分解能は4cm−1である。 Here, the measurement of FTIR in the present specification was carried out by the permeation method using the FT / IR-460 manufactured by JASCO Corporation and the KBr plate method or the KBr tablet method. The resolution at that time is 4 cm -1 .
1H−NMR及び13C−NMRスペクトルは、Varian MercuryPlus300核磁気共鳴装置(バリアン社製)で測定した。1H−NMRの化学シフトは、内部標準(0ppmにおけるTMSあるいは重水素化溶媒ピーク)との比較としてppmで表した。分裂パターンは、一重項をs、二重項をd、三重項をt、多重項をm、ブロードピークをbrとして示した。 1 1 H-NMR and 13 C-NMR spectra were measured by a Varian MercuryPlus 300 nuclear magnetic resonance apparatus (manufactured by Varian). 1 1 H-NMR chemical shifts are expressed in ppm as a comparison with internal standards (TMS or deuterated solvent peaks at 0 ppm). The splitting pattern was shown with the singlet as s, the doublet as d, the triplet as t, the multiplet as m, and the Broad Peak as br.
生成物のFTIR吸収とその帰属を以下に示す。
1042cm−1にSNSの逆対称伸縮振動、1091cm−1にSO2の対称伸縮振動、1164cm−1にCF2の対称伸縮振動、1360cm−1にSO2結合の逆対称伸縮振動、1633cm−1にC=Nの伸縮振動、2848cm−1にCH2の対称伸縮振動、2920cm−1にCH2の逆対称伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
1042 cm -1 is SNS inverse symmetric expansion and contraction vibration, 1091 cm -1 is SO 2 symmetric expansion and contraction vibration, 1164 cm -1 is CF 2 symmetric expansion and contraction vibration, 1360 cm -1 is SO 2 coupling inverse symmetric expansion and contraction vibration, 1633 cm -1 is stretching vibration of C = N, symmetric stretching vibration of CH 2 in 2848cm -1, antisymmetric stretching vibration of CH 2 was observed in 2920 cm -1.
また、CDCl3中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(CDCl3,δppm);0.853(t,3H,J=6.6Hz), 1.150−1.470(m,32H), 1.490−1.750(m,6H), 1.750−1.890(m,2H), 1.960−2.120(2H,m), 2.700−2.800(1H,m), 3.400−3.480(m,2H), 3.507(t,J=6.0Hz,2H), 3.550−3.650(m,2H),7.690(brs,1H)
13C−NMR(CDCl3,δppm);14.085, 19.199, 22.663, 25.502, 26.143, 27.105, 28.234, 28.982, 29.226, 29.349, 29.394, 29.501, 29.593, 29.639, 29.684, 31.913, 38.659, 43.375, 49.664, 53.953, 168.258
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 are shown below.
1 1 H-NMR (CDCl 3 , δppm); 0.853 (t, 3H, J = 6.6Hz), 1.150-1.470 (m, 32H), 1.490-1.750 (m, 6H) ), 1.750-1.890 (m, 2H), 1.960-2.120 (2H, m), 2.700-2.800 (1H, m), 3.400-3.480 (m) , 2H), 3.507 (t, J = 6.0Hz, 2H), 3.550-3.650 (m, 2H), 7.690 (brs, 1H)
13 C-NMR (CDCl 3 , δppm); 14.085, 19.199, 22.663, 25.502, 26.143, 27.105, 28.234, 28.982, 29.226, 29.349 , 29.394, 29.501, 29.593, 29.639, 29.684, 31.913, 38.659, 43.375, 49.664, 53.953, 168.258
これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセンであることが同定された。
なお、ビス(ノナフルオロブタンスルホニル)イミド−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセンにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。
From these spectra, the product was identified as bis (nonaflatebutanesulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene.
The acid [bis (nonafluorobutanesulfonyl) imide] that is the source of the conjugate base in bis (nonafluorobutanesulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene. The pKa in acetonitrile is 0.0.
(実施例2A)
<ビス(ノナフルオロブタンスルホニル)イミド−8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムの合成>
ビス(ノナフルオロブタンスルホニル)イミド−8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムの合成は、以下のスキームにしたがって行った。
<Synthesis of bis (nonaflate butane sulfonyl) imide-8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium>
The synthesis of bis (nonaflatebutanesulfonyl) imide-8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium was carried out according to the following scheme.
7.13gのDBUとオクタデシルブロミド17.28gとをフラスコに加え、250℃のホットプレート上で3時間加熱した。常温に戻すと結晶化した。この結晶を酢酸エチルから再結晶を行い、無色の結晶8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムブロミド19.06gを得た。収率83.8%。 7.13 g of DBU and 17.28 g of octadecyl bromide were added to the flask and heated on a hot plate at 250 ° C. for 3 hours. It crystallized when returned to room temperature. The crystals were recrystallized from ethyl acetate to obtain 19.06 g of colorless crystals 8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium bromide. Yield 83.8%.
得られた化合物のCDCl3中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(CDCl3,δppm);0.826(t,3H,J=6.9Hz), 1.180−1.310(m,30H), 1.530−1.640(m,2H), 1.710−1.810(m,6H), 2.100−2.170(m,2H), 2.850−2.910(2H,m), 3.452−3.505(m,2H), 3.613(t,J=7.5Hz,2H), 3.650−3.750(m,4H)
13C−NMR(CDCl3,δppm);13.918, 20.114, 22.465, 22.984, 25.930, 26.357, 28.234, 28.570, 28.982, 29.135, 29.242, 29.303, 29.394, 29.440, 29.486, 31.699, 47.252, 49.328, 54.182, 55.387, 166.259
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR of the obtained compound in CDCl 3 are shown below.
1 1 H-NMR (CDCl 3 , δppm); 0.826 (t, 3H, J = 6.9Hz), 1.180-1.310 (m, 30H), 1.530-1.640 (m, 2H) ), 1.710-1.810 (m, 6H), 2.100-2.170 (m, 2H), 2.850-2.910 (2H, m), 3.452-3.505 (m) , 2H), 3.613 (t, J = 7.5Hz, 2H), 3.650-3.750 (m, 4H)
13 C-NMR (CDCl 3 , δppm); 13.918, 20.114, 22.465, 22.984, 25.930, 26.357, 28.234, 28.570, 28.982, 29.135 , 29.242, 29.303, 29.394, 29.440, 29.486, 31.699, 47.252, 49.328, 54.182, 55.387, 166.259
これらのスペクトルから、生成物が8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムブロミドであることが同定された。 From these spectra, it was identified that the product was 8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium bromide.
8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムブロミド2.52gを水を加熱して溶解させ、ビス(ノナフルオロブタンスルホニル)イミドリチウム塩3.07gの水溶液を加えた。常温で1時間攪拌後、加熱還流を1時間行った。冷却後反応液をジクロルメタンで抽出し、これを硝酸銀テストが陰性になるまで水で十分に洗浄した。有機層を無水硫酸ナトリウムで乾燥後溶媒を除去して、無色の液体ビス(ノナフルオロブタンスルホニル)イミド−8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウム4.83gを得た。収率94.4%。 2.52 g of 8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium bromide is dissolved by heating water, and an aqueous solution of 3.07 g of bis (nonafluorobutanesulfonyl) imide lithium salt is dissolved. Was added. After stirring at room temperature for 1 hour, heating and reflux were performed for 1 hour. After cooling, the reaction solution was extracted with dichloromethane and washed thoroughly with water until the silver nitrate test was negative. The organic layer is dried over anhydrous sodium sulfate, the solvent is removed, and the colorless liquid bis (nonaflatebutanesulfonyl) imide-8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium 4.83 g. Got Yield 94.4%.
生成物のFTIR吸収とその帰属を以下に示す。
1072cm−1にSNSの逆対称伸縮振動、1163cm−1にCF2の対称伸縮振動、1352cm−1にSO2結合の逆対称伸縮振動、1469cm−1にCH2の変角振動、1626cm−1にC=Nの対称伸縮振動,2852cm−1にCH2の対称伸縮振動、2922cm−1にCH2の逆対称伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
1072 cm -1 is the inverse symmetric expansion and contraction vibration of SNS, 1163 cm -1 is the symmetrical expansion and contraction vibration of CF 2 , 1352 cm -1 is the inverse symmetric expansion and contraction vibration of SO 2 coupling, 1469 cm -1 is the variable angle vibration of CH 2 and 1626 cm -1 . symmetric stretching vibration of C = N, symmetric stretching vibration of CH 2 in 2852cm -1, antisymmetric stretching vibration of CH 2 were observed to 2922cm -1.
また、CDCl3中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(CDCl3,δppm);0.854(t,3H,J=6.6Hz), 1.170−1.320(m,30H), 1.520−1.610(m,2H), 1.650−1.810(m,6H), 2.030−2.130(m,2H), 2.750−2.800(2H,m), 3.380−3.440(m,2H), 3.450−3.540(m,4H), 3.580−3.630(m,2H)
13C−NMR(CDCl3,δppm);14.055, 19.855, 22.663, 22.953, 25.838, 26.433, 28.204, 28.433, 28.254, 29.059, 29.333, 29.394, 29.455, 29.562, 29.623, 29.669, 31.898, 46.977, 48.992, 54.121, 55.189, 166.381
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 are shown below.
1 1 H-NMR (CDCl 3 , δppm); 0.854 (t, 3H, J = 6.6Hz), 1.170-1.320 (m, 30H), 1.520-1.610 (m, 2H) ), 1.650-1.810 (m, 6H), 2.030-2.130 (m, 2H), 2.750-2.800 (2H, m), 3.380-3.440 (m) , 2H), 3.450-3.540 (m, 4H), 3.580-3.630 (m, 2H)
13 C-NMR (CDCl 3 , δppm); 14.055, 19.855, 22.663, 22.953, 25.838, 26.433, 28.204, 28.433, 28.254, 29.059 , 29.333, 29.394, 29.455, 29.562, 29.623, 29.669, 31.898, 46.977, 48.992, 54.121, 55.189, 166.381
これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド−8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムであることが同定された。
なお、ビス(ノナフルオロブタンスルホニル)イミド−8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムにおける共役塩基の元となる酸〔ビス(ノナフルオロメタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。
From these spectra, the product was identified as bis (nonaflatebutanesulfonyl) imide-8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium.
The acid [bis (nonafluoromethanesulfonyl) imide] that is the source of the conjugate base in bis (nonafluorobutanesulfonyl) imide-8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium The pKa in acetonitrile is 0.0.
(実施例3A)
<ノナフルオロブタンスルホン酸−8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムの合成>
ノナフルオロブタンスルホン酸−8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムの合成は、以下のスキームにしたがって行った。
<Synthesis of nonaflate butane sulfonic acid-8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium>
The synthesis of nonaflate butane sulfonic acid -8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium was carried out according to the following scheme.
実施例2Aと同様にして合成した8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムブロミド3.11gを温水に溶解させ、ノナフルオロブタンスルホン酸カリウム塩2.17gの水溶液を加えた。常温で1時間撹拌後、1時間加熱還流させた。冷却後反応液をジクロルメタンで抽出し、これを硝酸銀テストが陰性になるまで水で十分に洗浄した。有機層を無水硫酸ナトリウムで乾燥後溶媒を除去して、無色の液体ノナフルオロブタンスルホン酸−8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウム4.33gを得た。収率95.9%。 3.11 g of 8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium bromide synthesized in the same manner as in Example 2A was dissolved in warm water, and potassium nonafluorobutanesulfonic acid salt 2. 17 g of aqueous solution was added. After stirring at room temperature for 1 hour, the mixture was heated under reflux for 1 hour. After cooling, the reaction solution was extracted with dichloromethane and washed thoroughly with water until the silver nitrate test was negative. The organic layer was dried over anhydrous sodium sulfate and the solvent was removed to obtain 4.33 g of a colorless liquid nonaflate butanesulfonic acid-8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undeceneium. .. Yield 95.9%.
生成物のFTIR吸収とその帰属を以下に示す。
1132cm−1にSO2の対称伸縮振動、1230cm−1にCFの対称伸縮振動、1259cm−1にSO2結合の逆対称伸縮振動、1468cm−1にCH2の変角振動、2854cm−1にCH2の対称伸縮振動、2924cm−1にCH2の逆対称伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
1132 cm -1 is SO 2 symmetric expansion and contraction vibration, 1230 cm -1 is CF symmetric expansion and contraction vibration, 1259 cm -1 is SO 2 coupling inverse symmetric expansion and contraction vibration, 1468 cm -1 is CH 2 eccentric vibration, 2854 cm -1 is CH. 2 symmetric stretching vibration, antisymmetric stretching vibration of CH 2 was observed in 2924 cm -1.
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(CDCl3,δppm);0.850(t,3H,J=6.6Hz), 1.170−1.320(m,30H), 1.520−1.620(m,2H), 1.670−1.820(m,6H), 2.040−2.140(m,2H), 2.790−2.850(2H,m), 3.417−3.470(m,2H), 3.490−3.600(m,4H), 3.620−3.670(m,2H)
13C−NMR(CDCl3,δppm);14.040, 19.992, 22.618, 23.045, 25.899, 26.464, 28.341, 28.494, 28.555, 29.089, 29.288, 29.379, 29.440, 29.532, 29.593, 29.639, 31.852, 46.993, 49.038, 54.105, 55.220, 166.488
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 1 H-NMR (CDCl 3 , δppm); 0.850 (t, 3H, J = 6.6Hz), 1.170-1.320 (m, 30H), 1.520-1.620 (m, 2H) ), 1.670-1.820 (m, 6H), 2.040-2.140 (m, 2H), 2.790-2.850 (2H, m), 3.417-3.470 (m) , 2H), 3.490-3.600 (m, 4H), 3.620-3.670 (m, 2H)
13 C-NMR (CDCl 3 , δppm); 14.040, 19.992, 22.618, 23.045, 25.899, 26.464, 28.341, 28.494, 28.555, 29.089 , 29.288, 29.379, 29.440, 29.532, 29.593, 29.639, 31.852, 46.993, 49.038, 54.105, 55.220, 166.488
これらのスペクトルから、生成物がノナフルオロブタンスルホン酸−8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムであることが同定された。
なお、ノナフルオロブタンスルホン酸−8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムにおける共役塩基の元となる酸(ノナフルオロブタンスルホン酸)のアセトニトリル中でのpKaは、0.7である。
From these spectra, the product was identified as nonaflate butane sulfonic acid -8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium.
The pKa of the acid (nonafluorobutanesulfonic acid) that is the source of the conjugate base in nonaflatebutanesulfonic acid-8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium in acetonitrile is , 0.7.
(実施例4A)
<ビス(ノナフルオロブタンスルホニル)イミド−N−ブチル−N−オクタデシルピロリジニウムの合成>
ビス(ノナフルオロブタンスルホニル)イミド−N−ブチル−N−オクタデシルピロリジニウムの合成は、以下のスキームにしたがって行った。
<Synthesis of bis (nonaflate butane sulfonyl) imide-N-butyl-N-octadecylpyrrolidinium>
The synthesis of bis (nonafluorobutanesulfonyl) imide-N-butyl-N-octadecylpyrrolidinium was carried out according to the following scheme.
ブロモオクタデカン52.4gと水酸化カリウム8.75gとをアセトニトリル中に加え、ピロリジン11.09gを添加した。その後加熱還流を24時間行った。結晶を濾過後、有機層の溶媒を除去後にヘキサンと酢酸エチルの混合溶媒を用いてシリカゲルカラムクロマトグラフィーを行い精製して、オクタデシルピロリジン44.05gを得た。ガスクロマトグラフィーによる純度は99.0%以上であった。 52.4 g of bromooctadecane and 8.75 g of potassium hydroxide were added to acetonitrile, and 11.09 g of pyrrolidine was added. Then, heating and refluxing was carried out for 24 hours. After filtering the crystals, the solvent of the organic layer was removed, and silica gel column chromatography was performed using a mixed solvent of hexane and ethyl acetate to purify the crystals to obtain 44.05 g of octadecylpyrrolidin. The purity by gas chromatography was 99.0% or more.
オクタデシルピロリジン5.04gとブロモブタン2.15gとをアセトニトリル中に加え69時間加熱還流させて反応させた。反応終了後冷却して析出した結晶を濾過して、50℃で真空乾燥をさせ、N−ブチル−N−オクタデシルピロリジニウムブロミドの無色結晶5.85gを得た。収率81.0%。 5.04 g of octadecylpyrrolidine and 2.15 g of bromobutane were added to acetonitrile and heated under reflux for 69 hours for reaction. After completion of the reaction, the crystals cooled and precipitated were filtered and vacuum dried at 50 ° C. to obtain 5.85 g of colorless crystals of N-butyl-N-octadecylpyrrolidinium bromide. Yield 81.0%.
N−ブチル−N−オクタデシルピロリジニウムブロミド2.15gを温水に溶解させ、ビス(ノナフルオロブタンスルホニル)イミドカリウム塩2.88gのエタノール/水の混合溶液を加え、常温で1時間攪拌後に加熱還流を1時間行った。反応物をジクロルメタンに溶解後、水で硝酸銀試験が陰性になるまで十分に洗浄し、有機層を無水硫酸ナトリウムで乾燥後、溶媒を除去後、100℃で5時間真空乾燥させ、4.05gの淡黄色のワックス状物ビス(ノナフルオロブタンスルホニル)イミド−N−ブチル−N−オクタデシルピロリジニウムを得た。収率90.3%。 2.15 g of N-butyl-N-octadecylpyrrolidinium bromide is dissolved in warm water, 2.88 g of a mixed solution of ethanol / water of bis (nonafluorobutanesulfonyl) imide potassium salt is added, and the mixture is stirred at room temperature for 1 hour and then heated. Reflux was performed for 1 hour. After dissolving the reaction product in dichloromethane, wash it thoroughly with water until the silver nitrate test becomes negative, dry the organic layer with anhydrous sodium sulfate, remove the solvent, and vacuum dry at 100 ° C. for 5 hours to 4.05 g. A pale yellow waxy bis (nonafluorobutanesulfonyl) imide-N-butyl-N-octadecylpyrrolidinium was obtained. Yield 90.3%.
生成物のFTIR吸収とその帰属を以下に示す。
1072cm−1にSNSの逆対称伸縮振動、1134cm−1、1165cm−1、1196cm−1、1232cm−1にCF2の対称伸縮振動、1352cm−1にSO2の逆対称伸縮振動、1469cm−1にCH2の変角振動、2852cm−1にCH2の対称伸縮振動、2922cm−1にCH2の逆対称伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
Antisymmetric stretching vibration of SNS to 1072cm -1, 1134cm -1, 1165cm -1 , 1196cm -1, symmetric stretching vibration of CF 2 to 1232cm -1, antisymmetric stretching vibration of SO 2 to 1352cm -1, to 1469cm -1 deformation vibration of CH 2, symmetric stretching vibration of CH 2 in 2852cm -1, antisymmetric stretching vibration of CH 2 were observed to 2922cm -1.
また、重メタノール中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(δppm);0.890(t,3H,J=6.9Hz), 1.004(t,3H,J=6.9Hz), 1.220−1.470(m,32H), 1.625−1.770(m,4H), 2.000−2.140(m,4H), 3.221−3.288(m,4H), 3.489−3.536(m,4H)
13C−NMR(δppm);13.880, 14.444, 20.733, 22.824, 23.740, 24.213, 26.212, 27.418, 30.181, 30.486, 30.532, 30.608, 30.776, 33.081, 60.783, 60.997, 63.973
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated methanol are shown below.
1 1 H-NMR (δppm); 0.890 (t, 3H, J = 6.9Hz), 1.004 (t, 3H, J = 6.9Hz), 1.220-1.470 (m, 32H) , 1.625-1.770 (m, 4H), 2.000-2.140 (m, 4H), 3.221-3.288 (m, 4H), 3.489-3.536 (m, 4H)
13 C-NMR (δppm); 13.880, 14.444, 20.733, 22.824, 23.740, 24.213, 26.212, 27.418, 30.181, 30.486, 30. 532, 30.608, 30.576, 33.081, 60.783, 60.997, 63.973
これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド−N−ブチル−N−オクタデシルピロリジニウムであることが同定された。
なお、ビス(ノナフルオロブタンスルホニル)イミド−N−ブチル−N−オクタデシルピロリジニウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。
From these spectra, the product was identified as bis (nonaflate butanesulfonyl) imide-N-butyl-N-octadecylpyrrolidinium.
The pKa in acetonitrile of the acid [bis (nonafluorobutanesulfonyl) imide] which is the source of the conjugate base in bis (nonafluorobutanesulfonyl) imide-N-butyl-N-octadecylpyrrolidinium is 0.0. Is.
(実施例5A)
<ビス(ノナフルオロブタンスルホニル)イミド−N−オクタデシルピロリジニウムの合成>
ビス(ノナフルオロブタンスルホニル)イミド−N−オクタデシルピロリジニウムの合成は、以下のスキームにしたがって行った。
(Example 5A)
<Synthesis of bis (nonaflate butane sulfonyl) imide-N-octadecylpyrrolidinium>
The synthesis of bis (nonaflatebutanesulfonyl) imide-N-octadecylpyrrolidinium was carried out according to the following scheme.
実施例4Aと同様に合成したオクタデシルピロリジン2.69gをエタノールに溶解させ、ビス(ノナフルオロブタンスルホニル)イミドの30%水溶液を16.15g加えた。添加終了後常温で1時間攪拌後、加熱還流を1時間行った。溶媒を除去後、ジクロルメタンに溶解させ水で十分に洗浄後、溶媒を除去した。n−ヘキサンとエタノールの混合溶媒から再結晶を行い6.82gのビス(ノナフルオロブタンスルホニル)イミド−N−オクタデシルピロリジニウムの無色の結晶を得た。収率90.6%。 2.69 g of octadecylpyrrolidine synthesized in the same manner as in Example 4A was dissolved in ethanol, and 16.15 g of a 30% aqueous solution of bis (nonaflatebutanesulfonyl) imide was added. After completion of the addition, the mixture was stirred at room temperature for 1 hour and then heated under reflux for 1 hour. After removing the solvent, it was dissolved in dichloromethane and thoroughly washed with water, and then the solvent was removed. Recrystallization was performed from a mixed solvent of n-hexane and ethanol to obtain 6.82 g of colorless crystals of bis (nonafluorobutanesulfonyl) imide-N-octadecylpyrrolidinium. Yield 90.6%.
生成物のFTIR吸収とその帰属を以下に示す。
1076cm−1にSNSの逆対称伸縮振動、1151cm−1、1213cm−1、1232cm−1にCF2の対称伸縮振動、1354cm−1にSO2の逆対称伸縮振動、1469cm−1にCH2の変角振動、2852cm−1にCH2の対称伸縮振動、2920cm−1にCH2の逆対称伸縮振動、3182cm−1にNH伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
1076 cm -1 is the inverse symmetric expansion and contraction vibration of SNS, 1151 cm -1 , 1213 cm -1 , 1232 cm -1 is the symmetric expansion and contraction vibration of CF 2 , 1354 cm -1 is the inverse symmetric expansion and contraction vibration of SO 2 , and 1469 cm -1 is the change of CH 2 . angular oscillation, symmetric stretching vibration of CH 2 in 2852Cm -1, antisymmetric stretching vibration of CH 2 in 2920 cm -1, it was observed NH stretching vibration 3182cm -1.
また、重DMSO中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(δppm);0.855(t,3H,J=6.6Hz), 1.140−1.330(m,30H), 1.650−1.780(m,2H), 2.050−2.200(m,4H), 2.810−2.960(m,2H), 3.000−3.110(m,2H), 3.710−3.810(m,2H), 7.750(brs,1H)
13C−NMR(δppm);14.070, 22.663, 22.770, 25.731, 26.357, 28.921, 29.242, 29.349, 29.425, 29.532, 29.684, 31.913, 54.914, 56.532
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in heavy DMSO are shown below.
1 1 H-NMR (δppm); 0.855 (t, 3H, J = 6.6Hz), 1.140-1.330 (m, 30H), 1.650-1.780 (m, 2H), 2 .050-2.200 (m, 4H), 2.810-2.960 (m, 2H), 3.000-3.110 (m, 2H), 3.710-3.810 (m, 2H) , 7.750 (brs, 1H)
13 C-NMR (δppm); 14.070, 22.663, 22.770, 25.731, 26.357, 28.9211, 29.242, 29.349, 29.425, 29.532, 29. 684, 31.913, 54.914, 56.532
これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド−N−オクタデシルピロリジニウムであることが同定された。
なお、ビス(ノナフルオロブタンスルホニル)イミド−N−オクタデシルピロリジニウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。
From these spectra, the product was identified as bis (nonaflate butanesulfonyl) imide-N-octadecylpyrrolidinium.
The pKa of the acid [bis (nonafluorobutanesulfonyl) imide] which is the source of the conjugate base in bis (nonaflatebutanesulfonyl) imide-N-octadecylpyrrolidinium in acetonitrile is 0.0.
(実施例6A)
<ノナフルオロブタンスルホン酸−N−オクタデシルピロリジニウムの合成>
ノナフルオロブタンスルホン酸−N−オクタデシルピロリジニウムの合成は、以下のスキームにしたがって行った。
(Example 6A)
<Synthesis of nonaflate butane sulfonic acid-N-octadecylpyrrolidinium>
The synthesis of nonaflate butane sulfonic acid-N-octadecylpyrrolidinium was carried out according to the following scheme.
実施例4Aと同様に合成したオクタデシルピロリジン2.91gをエタノールに溶解させ、ノナフルオロブタンスルホン酸2.70g加えた。添加終了後常温で1時間攪拌後、加熱還流を1時間行った。溶媒を除去後、ジクロルメタンに溶解させ水で十分に洗浄後、溶媒を除去した。n−ヘキサンとエタノールの混合溶媒から再結晶を行い6.82gのノナフルオロブタンスルホン酸−N−オクタデシルピロリジニウム5.12gの無色の結晶を得た。収率91.3%。 2.91 g of octadecylpyrrolidine synthesized in the same manner as in Example 4A was dissolved in ethanol, and 2.70 g of nonaflate butane sulfonic acid was added. After completion of the addition, the mixture was stirred at room temperature for 1 hour and then heated under reflux for 1 hour. After removing the solvent, it was dissolved in dichloromethane and thoroughly washed with water, and then the solvent was removed. Recrystallization was performed from a mixed solvent of n-hexane and ethanol to obtain 6.82 g of nonaflate butane sulfonic acid-N-octadecylpyrrolidinium 5.12 g of colorless crystals. Yield 91.3%.
生成物のFTIR吸収とその帰属を以下に示す。
1134cm−1にSO2の対称伸縮振動、1232cm−1にCF2の対称伸縮振動、1352cm−1にSO2の逆対称伸縮振動、1468cm−1にCH2の変角振動、2850cm−1にCH2の対称伸縮振動、2918cm−1にCH2の逆対称伸縮振動、3076cm−1にNH伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
1134 cm -1 is SO 2 symmetrical expansion and contraction vibration, 1232 cm -1 is CF 2 symmetrical expansion and contraction vibration, 1352 cm -1 is SO 2 inverse symmetrical expansion and contraction vibration, 1468 cm -1 is CH 2 eccentric vibration, 2850 cm -1 is CH. 2 symmetric stretching vibration, antisymmetric stretching vibration of CH 2 in 2918Cm -1, the NH stretching vibration 3076cm -1 were observed.
また、重DMSO中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(δppm);0.842(t,3H,J=6.6Hz), 1.170−1.360(m,30H), 1.520−1.630(m,2H), 1.760−1.910(m,2H), 1.910−2.040(m,2H), 2.870−3.020(m,2H), 3.000−3.120(m,2H), 3.410−3.570(m,2H), 9.234(brs,1H)
13C−NMR(δppm);14.089, 22.254, 22.697, 25.399, 26.085, 28.650, 28.879, 28.985, 29.107, 29.214, 31.473, 53.406, 54.154
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in heavy DMSO are shown below.
1 1 H-NMR (δppm); 0.842 (t, 3H, J = 6.6Hz), 1.170-1.360 (m, 30H), 1.520-1.630 (m, 2H), 1 .760-1.910 (m, 2H), 1.910-2.040 (m, 2H), 2.870-3.020 (m, 2H), 3.000-3.120 (m, 2H) , 3.410-3.570 (m, 2H), 9.234 (brs, 1H)
13 C-NMR (δppm); 14.089, 22.254, 22.697, 25.399, 26.085, 28.650, 28.879, 28.985, 29.107, 29.214, 31. 473, 53.406, 54.154
これらのスペクトルから、生成物がノナフルオロブタンスルホン酸−N−オクタデシルピロリジニウムであることが同定された。
なお、ノナフルオロブタンスルホン酸−N−オクタデシルピロリジニウムにおける共役塩基の元となる酸(ノナフルオロブタンスルホン酸)のアセトニトリル中でのpKaは、0.7である。
From these spectra, the product was identified as nonaflate butane sulfonic acid-N-octadecylpyrrolidinium.
The pKa of the acid (nonafluorobutane sulfonic acid) that is the source of the conjugate base in nonafolic butane sulfonic acid-N-octadecylpyrrolidinium in acetonitrile is 0.7.
(実施例7A)
<トリフルオロメタンスルホン酸−8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムの合成>
トリフルオロメタンスルホン酸−8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムの合成は、以下のスキームにしたがって行った。
<Synthesis of -8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium trifluoromethanesulfonic acid>
The synthesis of -8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium trifluoromethanesulfonic acid was carried out according to the following scheme.
実施例2Aで合成した8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムブロミド3.29gを水を加熱して溶解させ、トリフルオロメタンスルホン酸カリウム塩1.36gの水溶液を加えた。常温で1時間攪拌後、加熱還流を1時間行った。冷却後反応液をジクロルメタンで抽出し、これを硝酸銀テストが陰性になるまで水で十分に洗浄した。有機層を無水硫酸ナトリウムで乾燥後溶媒を除去して、無色の液体トリフルオロメタンスルホン酸−8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウム3.74gを得た。収率99.5%。これをn−ヘキサンとジクロルメタンの混合溶媒から再結晶を行った。 3.29 g of 8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium bromide synthesized in Example 2A was dissolved by heating water to dissolve 1.36 g of potassium trifluoromethanesulfonate. Aqueous solution was added. After stirring at room temperature for 1 hour, heating and reflux were performed for 1 hour. After cooling, the reaction solution was extracted with dichloromethane and washed thoroughly with water until the silver nitrate test was negative. The organic layer was dried over anhydrous sodium sulfate and the solvent was removed to obtain 3.74 g of a colorless liquid trifluoromethanesulfonic acid -8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenenium. Yield 99.5%. This was recrystallized from a mixed solvent of n-hexane and dichloromethane.
生成物のFTIR吸収とその帰属を以下に示す。
1030cm−1にSO2結合の対称伸縮振動、1146cm−1にSO2結合の逆対称伸縮振動、1261cm−1にCF3の対称伸縮振動、1448cm−1にCH2の変角振動、1624cm−1にC=Nの対称伸縮振動,2848cm−1にCH2の対称伸縮振動、2916cm−1にCH2の逆対称伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
1030 cm -1 with SO 2 bond symmetric stretch vibration, 1146 cm -1 with SO 2 bond inverse symmetric stretch vibration, 1261 cm -1 with CF 3 symmetric stretch vibration, 1448 cm -1 with CH 2 variable angle vibration, 1624 cm -1 symmetric stretching vibration of C = N, symmetric stretching vibration of CH 2 in 2848cm -1, the antisymmetric stretching vibration of CH 2 in 2916Cm -1 was seen.
得られた化合物のCDCl3中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(CDCl3,δppm);0.843(t,J=6.6Hz,3H), 1.160−1.320(m,30H), 1.520−1.640(m,2H), 1.670−1.820(m,6H), 2.095(quint,J=6.0Hz,2H),2.790−2.850(m,2H), 3.416−3.470(m,2H), 3.490−3.600(m,4H), 3.610−3.680(m,2H)
13C−NMR(CDCl3,δppm);14.065, 20.048, 22.627, 23.070, 25.955, 26.474, 28.427, 28.519, 28.580, 29.114, 29.297, 29.389, 29.450, 29.542, 29.603, 29.648, 31.862, 47.048, 49.094, 54.146, 55.290, 166.513
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR of the obtained compound in CDCl 3 are shown below.
1 1 H-NMR (CDCl 3 , δppm); 0.843 (t, J = 6.6Hz, 3H), 1.160-1.320 (m, 30H), 1.520-1.640 (m, 2H) ), 1.670-1.820 (m, 6H), 2.095 (quint, J = 6.0Hz, 2H), 2.790-2.850 (m, 2H), 3.416-3.470 (M, 2H), 3.490-3.600 (m, 4H), 3.610-3.680 (m, 2H)
13 C-NMR (CDCl 3 , δppm); 14.065, 20.048, 22.627, 23.070, 25.955, 26.474, 28.427, 28.519, 28.580, 29.114 , 29.297, 29.389, 29.450, 29.542, 29.603, 29.648, 31.862, 47.048, 49.094, 54.146, 55.290, 166.513
これらのスペクトルから、生成物がトリフルオロメタンスルホン酸−8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムであることが同定された。
なお、トリフルオロメタンスルホン酸−8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムにおける共役塩基の元となる酸(トリフルオロメタンスルホン酸)のアセトニトリル中でのpKaは、0.7である。
From these spectra, the product was identified as trifluoromethanesulfonic acid -8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium.
The pKa of the acid (trifluoromethanesulfonic acid) that is the source of the conjugate base in trifluoromethanesulfonic acid-8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium in acetonitrile is 0. It is 0.7.
(実施例8A)
<ビス(ノナフルオロブタンスルホニル)イミド−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−オクタデシルイミダゾリウムの合成>
ビス(ノナフルオロブタンスルホニル)イミド−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−オクタデシルイミダゾリウムの合成は、以下のスキームにしたがって行った。
<Synthesis of bis (nonaflate butane sulfonyl) imide-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-octadecil imidazolium>
The synthesis of bis (nonaflatebutanesulfonyl) imide-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-octadecil imidazolium was carried out according to the following scheme.
1−オクタデシルイミダゾールは、3gのイミダゾールを100mLのアセトニトリルに溶解させ、オクタデシルブロミド14.9gと水酸化カリウム2.51gとを加えて撹拌しながら加熱して4時間還流させて得た。溶媒を除去後、ジクロルメタンで抽出し、カラムクロマトグラフィーで精製した。ガスクロマトグラフィーでの分析したところ98.5%以上の純度であった。 1-Octadecyl imidazole was obtained by dissolving 3 g of imidazole in 100 mL of acetonitrile, adding 14.9 g of octadecyl bromide and 2.51 g of potassium hydroxide, heating with stirring, and refluxing for 4 hours. After removing the solvent, it was extracted with dichloromethane and purified by column chromatography. Analysis by gas chromatography revealed a purity of 98.5% or higher.
1−オクタデシルイミダゾール3.95gと1’H,1’H,2’H,2’Hヘプタデカフルオロデシルヨーダイド7.29gを90℃で65時間反応させた。これに酢酸エチルを加えて析出した結晶を濾過して乾燥後、9.67gの薄黄色の結晶を得た。これを酢酸エチルから再結晶を行い、8.67gの無色の結晶を得た。 3.95 g of 1-octadecylimidazole and 7.29 g of 1'H, 1'H, 2'H, 2'H heptadecafluorodecyl iodide were reacted at 90 ° C. for 65 hours. Ethyl acetate was added thereto, and the precipitated crystals were filtered and dried to obtain 9.67 g of pale yellow crystals. This was recrystallized from ethyl acetate to obtain 8.67 g of colorless crystals.
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(CDCl3,δppm);0.841(t,3H,J=6.6Hz), 1.125−1.350(m,30H), 1.865−1.970(m,2H), 2.854−3.019(m,2H), 4.242−4.312(2H,m), 4.855−4.898(m,2H), 7.325−7.337(m,1H), 7.608−7.620(m,1H),10.196(s,1H)
13C−NMR(CDCl3,δppm);14.040, 22.633, 26.174, 28.891, 29.303, 29.440, 29.547, 29.608, 29.639, 29.959, 30.310, 31.608, 31.867, 42.689, 49.954, 50.641, 121.858, 122.942, 137.213
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 1 H-NMR (CDCl 3 , δppm); 0.841 (t, 3H, J = 6.6Hz), 1.125-1.350 (m, 30H), 1.865-1.970 (m, 2H) ), 2.854-3.019 (m, 2H), 4.242-4.312 (2H, m), 4.855-4.898 (m, 2H), 7.325-7.337 (m). , 1H), 7.608-7.620 (m, 1H), 10.196 (s, 1H)
13 C-NMR (CDCl 3 , δppm); 14.040, 22.633, 26.174, 28.891, 29.303, 29.440, 29.547, 29.608, 29.639, 29.959 , 30.310, 31.608, 31.867, 42.689, 49.954, 50.641, 121.858, 122.942, 137.213
これらのスペクトルから、生成物が1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−オクタデシルイミダゾリウムヨージドであることが同定された。 From these spectra, it was identified that the product was 1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-octadecil imidazolium iodide.
次に、1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−オクタデシルイミダゾリウムヨージド3.29gを水に溶解させ、カリウムビス(ノナフルオロブタンスルホニル)イミド2.51gを水とエタノールの混合溶媒に溶解させたものを加えた。加熱還流を2h行い、冷却後溶媒を除去し、ジクロルメタンで抽出を行った。有機層を純水でAgNO3試験が陰性になるまで洗浄を行った。無水硫酸ナトリウムで乾燥後溶媒を除去して3.69gの無色の結晶を得た。n−ヘキサンとエタノールの混合溶媒から再結晶を行い3.15g無色の結晶を得た。収率64%。 Next, 3.29 g of 1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-octadecylimidazolium iodide was dissolved in water, and potassium bis (nonafluorobutanesulfonyl) imide was dissolved. A solution prepared by dissolving 2.51 g in a mixed solvent of water and ethanol was added. The mixture was heated under reflux for 2 hours, cooled, the solvent was removed, and extraction was performed with dichloromethane. The organic layer was washed with pure water until the AgNO 3 test became negative. After drying over anhydrous sodium sulfate, the solvent was removed to obtain 3.69 g of colorless crystals. Recrystallization was performed from a mixed solvent of n-hexane and ethanol to obtain 3.15 g of colorless crystals. Yield 64%.
生成物のFTIR吸収とその帰属を以下に示す。
1074cm−1にSO2結合の対称伸縮振動、1149cm−1に及び1198cm−1にCF2の対称伸縮振動、1352cm−1にSO2結合の逆対称伸縮振動、1469cm−1にCH2の変角振動、1564cm−1にC=Nの対称伸縮振動,2850cm−1にCH2の対称伸縮振動、2920cm−1にCH2の逆対称伸縮振動、3099cm−1及び3158cm−1にイミダゾール環のCHの伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SO 2 bind to 1074cm -1, symmetric stretching vibration of CF 2 to 1149cm -1 and 1198cm -1, antisymmetric stretching vibration of SO 2 bind to 1352cm -1, bending of CH 2 in 1469Cm -1 vibration, symmetric stretching vibration of the 1564 cm -1 C = N, symmetric stretching vibration of CH 2 in 2850 cm -1, antisymmetric stretching vibration of CH 2 in 2920 cm -1, the 3099Cm -1 and 3158cm -1 of CH of the imidazole ring Expansion and contraction vibration was seen.
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(CDCl3,δppm);0.854(t,3H,J=6.6Hz), 1.150−1.350(m,30H), 1.760−1.900(m,2H), 2.644−2.805(m,2H), 4.136−4.185(m,2H), 4.562−4.606(m,2H), 7.252−7.263(m,1H), 7.454−7.465(m,1H),8.946(s,1H)
13C−NMR(CDCl3,δppm);14.024, 22.648, 26.006, 28.830, 29.247, 29.333, 29.440, 29.547, 29.669, 30.020, 31.913, 42.300, 50.457, 122.209, 123.003, 136.312
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 1 H-NMR (CDCl 3 , δppm); 0.854 (t, 3H, J = 6.6Hz), 1.150-1.350 (m, 30H), 1.760-1.900 (m, 2H) ), 2.644-2.805 (m, 2H), 4.136-4.185 (m, 2H), 4.562-4.606 (m, 2H), 7.252-7.263 (m). , 1H), 7.454-7.465 (m, 1H), 8.946 (s, 1H)
13 C-NMR (CDCl 3 , δppm); 14.024, 22.648, 26.006, 28.830, 29.247, 29.333, 29.440, 29.547, 29.669, 30.020 , 31.913, 42.300, 50.457, 122.209, 123.003, 136.312
これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−オクタデシルイミダゾリウムであることが同定された。
なお、ビス(ノナフルオロブタンスルホニル)イミド−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−オクタデシルイミダゾリウムにおける共役基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。
From these spectra, the product was identified as bis (nonaflatebutanesulfonyl) imide-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-octadecil imidazolium. It was.
Bis (nonafluorobutanesulfonyl) imide-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-octadecil The acid that is the source of the conjugate group in imidazolium [bis (nona) Fluorobutanesulfonyl) imide] has a pKa of 0.0 in acetonitrile.
(実施例9A)
<ビス(ノナフルオロブタンスルホニル)イミド−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−メチルイミダゾリウムの合成>
ビス(ノナフルオロブタンスルホニル)イミド−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−メチルイミダゾリウムの合成は、以下のスキームにしたがって行った。
<Synthesis of bis (nonaflate butane sulfonyl) imide-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-methylimidazolium>
The synthesis of bis (nonaflatebutanesulfonyl) imide-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-methylimidazolium was carried out according to the following scheme.
メチルイミダゾール1.88gと1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシルヨージド12.41gをフラスコに加え80℃で2h、密閉状態でマグネチックスターラーで攪拌させながら反応させた。冷却後酢酸エチルで洗浄して、固形物を濾過した。これを酢酸エチルとエタノールの混合溶媒から再結晶を行い、6.23gの無色結晶を得た。収率44%。 Add 1.88 g of methylimidazole and 12.41 g of 1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl iodide to a flask and stir with a magnetic stirrer at 80 ° C. for 2 hours in a closed state. I made it react. After cooling, the mixture was washed with ethyl acetate and the solid matter was filtered. This was recrystallized from a mixed solvent of ethyl acetate and ethanol to obtain 6.23 g of colorless crystals. Yield 44%.
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(CDCl3,δppm);2.976(tt/J=7.2Hz,18.6Hz,2H), 3.955(s,3H), 4.643(t/J=7.2Hz,2H), 7.618−7.630(m,1H), 7.766−7.772(m,1H),9.095(s,1H)
13C−NMR(CDCl3,δppm);32.119(t/J=21Hz), 36.790, 43.032, 123.926, 125.315, 138.716
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 1 H-NMR (CDCl 3 , δppm); 2.976 (tt / J = 7.2Hz, 18.6Hz, 2H), 3.955 (s, 3H), 4.643 (t / J = 7.2Hz) , 2H), 7.618-7.630 (m, 1H), 7.766-7.772 (m, 1H), 9.095 (s, 1H)
13 C-NMR (CDCl 3 , δppm); 32.119 (t / J = 21Hz), 36.790, 43.032, 123.926, 125.315, 138.716
これらのスペクトルから、生成物が1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−メチルイミダゾリウムヨージドであることが同定された。 From these spectra, it was identified that the product was 1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-methylimidazolium iodide.
1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−メチルイミダゾリウムヨージド2.06gを純水に溶解させ、ビス(ノナフルオロブタンスルホニル)イミドカリウム塩2.07gを純水とエタノールの混合溶媒に溶解させたものを加えた。常温で1h反応後、加熱還流を1h行った。析出物を濾過後水で十分に洗浄を行った。乾燥後n−ヘキサンとエタノールの混合溶媒から再結晶を行い、2.41gの無色の結晶を得た。収率67%。 1-1'H, 1'H, 2'H, 2'H Heptadecafluorodecyl-3-methylimidazolium iodide 2.06 g was dissolved in pure water, and bis (nonaflatebutanesulfonyl) imide potassium salt 2 .07 g dissolved in a mixed solvent of pure water and ethanol was added. After the reaction at room temperature for 1 hour, the mixture was heated under reflux for 1 hour. The precipitate was filtered and then thoroughly washed with water. After drying, recrystallization was performed from a mixed solvent of n-hexane and ethanol to obtain 2.41 g of colorless crystals. Yield 67%.
生成物のFTIR吸収とその帰属を以下に示す。
1072cm−1にSO2結合の対称伸縮振動、1147cm−1に及び1176cm−1にCF2の対称伸縮振動、1352cm−1にSO2結合の逆対称伸縮振動、1577cm−1にC=Nの対称伸縮振動,3097cm−1及び3157cm−1にイミダゾール環のCH伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SO 2 bind to 1072cm -1, symmetric stretching vibration of CF 2 to 1147cm -1 and 1176cm -1, antisymmetric stretching vibration of SO 2 bind to 1352cm -1, to 1577cm -1 of C = N symmetrical Expansion and contraction vibration, CH expansion and contraction vibration of the imidazole ring was observed in 3097 cm -1 and 3157 cm -1 .
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(CDCl3,δppm);2.836−3.020(m,2H), 3.934(s,3H), 4.613(t/J=7.2Hz,2H), 7.597−7.604(m,1H), 7.736−7.742(m,1H),9.095(s,1H)
13C−NMR(CDCl3,δppm);32.073(t/J=21Hz), 36.576, 42.941, 123.865, 125.254, 138.020
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 1 H-NMR (CDCl 3 , δppm); 2.833-3.020 (m, 2H), 3.934 (s, 3H), 4.613 (t / J = 7.2Hz, 2H), 7. 597-7.604 (m, 1H), 7.736-7.742 (m, 1H), 9.095 (s, 1H)
13 C-NMR (CDCl 3 , δppm); 32.073 (t / J = 21Hz), 36.576, 42.941, 123.865, 125.254, 138.020
これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−メチルイミダゾリウムであることが同定された。
なお、ビス(ノナフルオロブタンスルホニル)イミド−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−メチルイミダゾリウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。
From these spectra, the product was identified as a bis (nonaflatebutanesulfonyl) imide-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-methylimidazolium. It was.
In addition, bis (nonafluorobutanesulfonyl) imide-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-methylimidazolium acid [bis (nona) Fluorobutanesulfonyl) imide] has a pKa of 0.0 in acetonitrile.
(実施例10A)
<ノナフルオロブタンスルホン酸−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−メチルイミダゾリウムの合成>
ノナフルオロブタンスルホン酸−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−メチルイミダゾリウムの合成は、以下のスキームにしたがって行った。
<Synthesis of nonaflate butane sulfonic acid-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-methylimidazolium>
Nonaflate butane sulfonic acid-1-1'H, 1'H, 2'H, 2'H Heptadecafluorodecyl-3-methylimidazolium was synthesized according to the following scheme.
実施例9Aで合成した1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−メチルイミダゾリウムヨージド2.06gを純水に溶解させ、ノナフルオロブタンスルホン酸カリウム1.10gを純水に溶解させたものを加えた。常温で1h反応後、加熱還流を1h行った。析出物を濾過後水で十分に洗浄を行った。乾燥後n−ヘキサンとエタノールの混合溶媒から再結晶を行い、2.20gの無色の結晶を得た。収率85%。 To dissolve 2.06 g of 1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-methylimidazolium iodide synthesized in Example 9A in pure water, nonafluorobutanesulfonic acid A solution prepared by dissolving 1.10 g of potassium in pure water was added. After the reaction at room temperature for 1 hour, the mixture was heated under reflux for 1 hour. The precipitate was filtered and then thoroughly washed with water. After drying, recrystallization was performed from a mixed solvent of n-hexane and ethanol to obtain 2.20 g of colorless crystals. Yield 85%.
生成物のFTIR吸収とその帰属を以下に示す。
1047cm−1にSO2結合の対称伸縮振動、1147cm−1に及び1194cm−1にCF2の対称伸縮振動、1254cm−1にSO2結合の逆対称伸縮振動、1572cm−1にC=Nの対称伸縮振動,3093cm−1及び3159cm−1にイミダゾール環のCH伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SO 2 bind to 1047cm -1, symmetric stretching vibration of CF 2 to 1147cm -1 and 1194cm -1, antisymmetric stretching vibration of SO 2 bind to 1254cm -1, to 1572cm -1 of C = N symmetrical Expansion and contraction vibration, CH expansion and contraction vibration of the imidazole ring was observed at 3093 cm -1 and 3159 cm -1 .
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(CDCl3,δppm);2.886−3.020(m,2H), 3.938(s,3H), 4.619(t/J=7.2Hz,2H), 7.603−7.609(m,1H), 7.740−7.747(m,1H),9.098(s,1H)
13C−NMR(CDCl3,δppm);32.027(t/J=21Hz), 36.576, 42.941, 123.850, 125.239, 138.060
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 1 H-NMR (CDCl 3 , δppm); 2.886-3.020 (m, 2H), 3.938 (s, 3H), 4.619 (t / J = 7.2Hz, 2H), 7. 603-7.609 (m, 1H), 7.740-7.747 (m, 1H), 9.098 (s, 1H)
13 C-NMR (CDCl 3 , δppm); 32.027 (t / J = 21Hz), 36.576, 42.941, 123.850, 125.239, 138.060
これらのスペクトルから、生成物がノナフルオロブタンスルホン酸−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−メチルイミダゾリウムであることが同定された。
なお、ノナフルオロブタンスルホン酸−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−メチルイミダゾリウムにおける共役塩基の元となる酸(ノナフルオロブタンスルホン酸)のアセトニトリル中でのpKaは、0.7である。
From these spectra, the product was identified as nonaflate butane sulfonic acid-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-methylimidazolium.
Nonaflate butane sulfonic acid-1-1'H, 1'H, 2'H, 2'H Heptadecafluorodecyl-3-methylimidazolium acid (nonafluorobutane sulfonic acid) that is the source of the conjugate base. The pKa in acetonitrile is 0.7.
(実施例11A)
<1,3−ビス[ビス(ノナフルオロブタンスルホニル)イミド−N−オクタデシルイミダゾリウム)]プロパンの合成>
1,3−ビス[ビス(ノナフルオロブタンスルホニル)イミド−N−オクタデシルイミダゾリウム)]プロパンの合成は、以下のスキームにしたがって行った。
<Synthesis of 1,3-bis [bis (nonaflatebutanesulfonyl) imide-N-octadecylimidazolium] propane>
The synthesis of 1,3-bis [bis (nonaflatebutanesulfonyl) imide-N-octadecylimidazolium)] propane was carried out according to the following scheme.
1−オクタデシルイミダゾール11.51gと1,3−ジブロモプロパンを攪拌しながら80℃で1h反応させた後に反応温度を100℃に上げて更に3h反応を行った。反応物に酢酸エチルを加えて析出した沈殿を濾過した。真空乾燥後にn−ヘキサンとエタノール混合溶媒から再結晶を行い13.37gの無色の結晶を得た。収率89%。 11.51 g of 1-octadecylimidazole and 1,3-dibromopropane were reacted at 80 ° C. for 1 h with stirring, and then the reaction temperature was raised to 100 ° C. for another 3 hours. Ethyl acetate was added to the reaction product and the precipitated precipitate was filtered. After vacuum drying, recrystallization was performed from a mixed solvent of n-hexane and ethanol to obtain 13.37 g of colorless crystals. Yield 89%.
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(CDCl3,δppm);0.820(t/J=6.6Hz,6H)1.100−1.350(m,60H)1.800−1.920(m,4H), 2.852(quint/J=7.2Hz,2H), 4.191(t/J=7.2Hz,4H), 4.692(t/J=7.2Hz,4H), 7.201−7.213(m,2H), 8.209−8.221(m,2H),10.181(s,2H)
13C−NMR(CDCl3,δppm);14.022, 22.584, 26.217, 28.857, 29.254, 29.407, 29.498, 29.560, 29.605, 30.033, 30.811, 31.811, 46.700, 50.241, 121.291, 123.901, 136.447
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 1 H-NMR (CDCl 3 , δppm); 0.820 (t / J = 6.6Hz, 6H) 1.100-1.350 (m, 60H) 1.800-1.920 (m, 4H), 2.852 (quint / J = 7.2Hz, 2H), 4.191 (t / J = 7.2Hz, 4H), 4.692 (t / J = 7.2Hz, 4H), 7.201-7 .213 (m, 2H), 8.209-8.221 (m, 2H), 10.181 (s, 2H)
13 C-NMR (CDCl 3 , δppm); 14.022, 22.584, 26.217, 28.857, 29.254, 29.407, 29.498, 29.560, 29.605, 30.033 , 30.811, 31.811, 46.700, 50.241, 121.291, 123.901, 136.447
これらのスペクトルから、生成物が1,3−ビス[1−オクタデシルイミダゾリウムブロミド]プロパンであることが同定された。 From these spectra, the product was identified as 1,3-bis [1-octadecylimidazolium bromide] propane.
1,3−ビス[1−オクタデシルイミダゾリウムブロミド]プロパン2.49gを純水に溶解させ、ビス(ノナフルオロブタンスルホニル)イミドリチウム3.70gの水溶液を加え、常温で1h反応後、1h加熱還流させた。冷却後にジクロルメタンで抽出後、純水でAgNO3試験が陰性になるまで洗浄した。溶媒を除去した後にn−ヘキサンとエタノールの混合溶媒から再結晶を行い、4.80gの無色結晶を得た。収率85%。 1.49 g of 1,3-bis [1-octadecylimidazolium bromide] propane is dissolved in pure water, an aqueous solution of 3.70 g of bis (nonafluorobutanesulfonyl) imidelithium is added, and after 1 h reaction at room temperature, 1 h heating reflux I let you. After cooling, it was extracted with dichloromethane and washed with pure water until the AgNO 3 test became negative. After removing the solvent, recrystallization was performed from a mixed solvent of n-hexane and ethanol to obtain 4.80 g of colorless crystals. Yield 85%.
生成物のFTIR吸収とその帰属を以下に示す。
1072cm−1にSNS結合の逆対称振動、1167cm−1にCF2の対称伸縮振動、1352cm−1にSO2結合の逆対称伸縮振動、1468cm−1にCH2の変角振動、1566cm−1にC=Nの対称伸縮振動,2850cm−1にCH2の対称伸縮振動、2920cm−1にCH2の逆対称伸縮振動、3120cm−1及び3155cm−1にイミダゾール環のCH]伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
Antisymmetric vibration of SNS coupled to 1072cm -1, symmetric stretching vibration of CF 2 to 1167cm -1, antisymmetric stretching vibration of SO 2 bind to 1352cm -1, bending vibration of CH 2 in 1468cm -1, to 1566cm -1 symmetric stretching vibration of C = N, symmetric stretching vibration of CH 2 in 2850 cm -1, antisymmetric stretching vibration of CH 2 in 2920 cm -1, CH] stretching vibration of the imidazole ring was observed in 3120Cm -1 and 3155cm -1 ..
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(CDCl3,δppm);0.854(t/J=6.9Hz,6H), 1.150−1.350(m,60H), 1.780−1.900(m,4H), 2.481−2.587(m,2H), 4.098(t/J=6.9Hz,4H), 4.359(t/J=7.2Hz,4H), 7.189−7.200(m,2H), 7.600−7.610(m,2H),8.333(s,2H)
13C−NMR(CDCl3,δppm);14.085, 22.679, 26.143, 28.799, 29.257, 29.349, 29.455, 29.547, 29.654, 29.684, 29.883, 31.470, 31.913, 46.413, 50.412, 122.057, 123.308, 135.458
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 1 H-NMR (CDCl 3 , δppm); 0.854 (t / J = 6.9Hz, 6H), 1.150-1.350 (m, 60H), 1.780-1.900 (m, 4H) ), 2.481-2.587 (m, 2H), 4.098 (t / J = 6.9Hz, 4H), 4.359 (t / J = 7.2Hz, 4H), 7.189-7 .200 (m, 2H), 7.600-7.610 (m, 2H), 8.333 (s, 2H)
13 C-NMR (CDCl 3 , δppm); 14.085, 22.679, 26.143, 28.799, 29.257, 29.349, 29.455, 29.547, 29.654, 29.684 , 29.883, 31.470, 31.913, 46.413, 50.412, 122.057, 123.308, 135.458
これらのスペクトルから、生成物が1,3−ビス[ビス(ノナフルオロブタンスルホニル)イミド−N−オクタデシルイミダゾリウム)]プロパンであることが同定された。
なお、1,3−ビス[ビス(ノナフルオロブタンスルホニル)イミド−N−オクタデシルイミダゾリウム)]プロパンにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。
From these spectra, the product was identified as 1,3-bis [bis (nonaflatebutanesulfonyl) imide-N-octadecylimidazolium)] propane.
The pKa in acetonitrile of the acid [bis (nonafluorobutanesulfonyl) imide] which is the source of the conjugate base in 1,3-bis [bis (nonafluorobutanesulfonyl) imide-N-octadecylimidazolium)] propane is , 0.0.
(比較例1A)
<ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムの合成>
比較のために、実施例1Aの酸をビス(ノナフルオロブタンスルホニル)イミドからヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミドに変えた、ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムの合成を、以下のスキームにしたがって行った。
<Synthesis of hexafluorocyclopropane-1,3-bis (sulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium>
For comparison, the acid of Example 1A was changed from bis (nonafluorobutanesulfonyl) imide to hexafluorocyclopropane-1,3-bis (sulfonyl) imide, hexafluorocyclopropane-1,3-bis (sulfonyl). The synthesis of imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium was carried out according to the following scheme.
実施例1Aで合成した6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセン2.18gのエタノール溶液にヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド3.00gを加え、常温で1時間攪拌後、加熱還流を1時間行った。溶媒を除去後、ジクロルメタンに溶解させ、水で十分に洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を除去した。90℃で真空乾燥を3日間行い、無色の液体ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセンを4.86g得た。収率93.8% Hexafluorocyclopropane-1,3-bis (sulfonyl) imide 3.00 g in an ethanol solution of 6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene (2.18 g) synthesized in Example 1A. Was added, and the mixture was stirred at room temperature for 1 hour and then heated under reflux for 1 hour. After removing the solvent, it was dissolved in dichloromethane and washed thoroughly with water. The organic layer was dried over anhydrous sodium sulfate, and the solvent was removed. Vacuum dried at 90 ° C. for 3 days to add 4 colorless liquid hexafluorocyclopropane-1,3-bis (sulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene. I got .86g. Yield 93.8%
生成物のFTIR吸収とその帰属を以下に示す。
1042cm−1にSNSの逆対称伸縮振動、1091cm−1にSO2の対称伸縮振動、1164cm−1にCF2の対称伸縮振動、1360cm−1にSO2結合の逆対称伸縮振動、1633cm−1にC=Nの伸縮振動、2848cm−1にCH2の対称伸縮振動、2920cm−1にCH2の逆対称伸縮振動、3387cm−1にNH伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
1042 cm -1 is SNS inverse symmetric expansion and contraction vibration, 1091 cm -1 is SO 2 symmetric expansion and contraction vibration, 1164 cm -1 is CF 2 symmetric expansion and contraction vibration, 1360 cm -1 is SO 2 coupling inverse symmetric expansion and contraction vibration, 1633 cm -1 is stretching vibration of C = N, symmetric stretching vibration of CH 2 in 2848cm -1, antisymmetric stretching vibration of CH 2 in 2920 cm -1, is NH stretching vibration 3387cm -1 were observed.
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(CDCl3,δppm);0.869(t,3H,J=6.6Hz), 1.170−1.340(m,32H), 1.441−1.555(m,2H), 1.600−1.750(m,4H), 1.772−1.832(m,2H), 1.941−2.101(m,2H), 2.670−2.780(m,1H), 3.413(t,2H,J=6.6Hz), 3.508(t,2H,J=6.6Hz), 3.550−3.652(m,2H)
13C−NMR(CDCl3,δppm);14.055, 19.260, 22.633, 26.052, 27.090, 28.524, 29.120, 29.226, 29.318, 29.364, 29.486, 29.578, 29.608, 29.669, 31.867, 38.690, 43.177, 49.511, 53.861, 167.922
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 1 H-NMR (CDCl 3 , δppm); 0.869 (t, 3H, J = 6.6Hz), 1.170-1.340 (m, 32H), 1.441-1.555 (m, 2H) ), 1.600-1.750 (m, 4H), 1.772-1.832 (m, 2H), 1.941-2.101 (m, 2H), 2.670-2.780 (m) , 1H), 3.413 (t, 2H, J = 6.6Hz), 3.508 (t, 2H, J = 6.6Hz), 3.550-3.652 (m, 2H)
13 C-NMR (CDCl 3 , δppm); 14.055, 19.260, 22.633, 26.052, 27.090, 28.542, 29.120, 29.226, 29.318, 29.364 , 29.486, 29.578, 29.608, 29.669, 31.867, 38.690, 43.177, 49.511, 53.861, 167.922
これらのスペクトルから、生成物がヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムであることが同定された。
なお、ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムにおける共役塩基の元となる酸〔ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド〕のアセトニトリル中でのpKaは、−0.8である。
From these spectra, it was identified that the product was hexafluorocyclopropane-1,3-bis (sulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium. ..
Hexafluorocyclopropane-1,3-bis (sulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-Undeceneium is the acid that is the source of the conjugate base [hexafluorocyclopropane The pKa of -1,3-bis (sulfonyl) imide] in acetonitrile is -0.8.
(比較例2A)
<ヘプタデカフルオロオクタンスルホン酸−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムの合成>
比較のために、実施例1Aの酸をビス(ノナフルオロブタンスルホニル)イミドからヘプタデカフルオロオクタンスルホン酸に変えた、ヘプタデカフルオロオクタンスルホン酸−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムの合成を、以下のスキームにしたがって行った。
<Synthesis of heptadecafluorooctanesulfonic acid-6-octadecil-1,8-diazabicyclo [5.4.0] -7-undecenium>
For comparison, the acid of Example 1A was changed from bis (nonafluorobutanesulfonyl) imide to heptadecafluorooctanesulfonic acid, heptadecafluorooctanesulfonic acid-6-octadecil-1,8-diazabicyclo [5.4]. .0] -7-Undecenium was synthesized according to the following scheme.
実施例1Aで合成した6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセン4.04gのエタノール溶液にヘプタデカフルオロオクタンスルホン酸5.00gを加え、常温で1時間攪拌後、加熱還流を1時間行った。溶媒を除去後、ジクロルメタンに溶解させ、水で十分に洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を除去した。n−ヘキサンとエタノールの混合溶媒から再結晶を行い、ヘプタデカフルオロオクタンスルホン酸−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムを7.86g得た。収率86.9% To an ethanol solution of 6-octadecil-1,8-diazabicyclo [5.4.0] -7-undecene (4.04 g) synthesized in Example 1A, 5.00 g of heptadecafluorooctanesulfonic acid was added, and the mixture was stirred at room temperature for 1 hour. After that, heating and reflux was performed for 1 hour. After removing the solvent, it was dissolved in dichloromethane and washed thoroughly with water. The organic layer was dried over anhydrous sodium sulfate, and the solvent was removed. Recrystallization was performed from a mixed solvent of n-hexane and ethanol to obtain 7.86 g of -6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenenium heptadecafluorooctanesulfonic acid. Yield 86.9%
生成物のFTIR吸収とその帰属を以下に示す。
1055cm−1にSO2の対称伸縮振動、1252cm−1にCF2の対称伸縮振動、1368cm−1にSO2結合の逆対称伸縮振動、1467cm−1にCH2の変角振動、1643cm−1にC=Nの伸縮振動、2851cm−1にCH2の対称伸縮振動、2920cm−1にCH2の逆対称伸縮振動、3296cm−1にNH伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
1055 cm -1 is SO 2 symmetrical expansion and contraction vibration, 1252 cm -1 is CF 2 symmetrical expansion and contraction vibration, 1368 cm -1 is SO 2 coupling inverse symmetrical expansion and contraction vibration, 1467 cm -1 is CH 2 variable angle vibration, 1643 cm -1 is stretching vibration of C = N, symmetric stretching vibration of CH 2 in 2851cm -1, antisymmetric stretching vibration of CH 2 in 2920 cm -1, is NH stretching vibration 3296cm -1 were observed.
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(CDCl3,δppm);0.843(t,3H,J=6.6Hz), 1.205−1.287(m,32H), 1.544−1.800(m,8H), 1.975−2.033(m,2H), 2.792−2.816(m,1H), 3.440−3.559(m,6H), 8.713(brs,1H)
13C−NMR(CDCl3,δppm);14.024, 19.336, 22.633, 25.121, 26.311, 27.181, 28.311, 29.028, 29.303, 29.425, 29.532, 29.608, 29.654, 31.882, 38.491, 43.375, 49.725, 53.785, 168.029
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 1 H-NMR (CDCl 3 , δppm); 0.843 (t, 3H, J = 6.6Hz), 1.205-1.287 (m, 32H), 1.544-1.800 (m, 8H) ), 1.975-2.033 (m, 2H), 2.792-2.816 (m, 1H), 3.440-3.559 (m, 6H), 8.713 (brs, 1H)
13 C-NMR (CDCl 3 , δppm); 14.024, 19.336, 22.633, 25.121, 26.311, 27.181, 28.311, 29.028, 29.303, 29.425 , 29.532, 29.608, 29.654, 31.882, 38.491, 43.375, 49.725, 53.785, 168.029
これらのスペクトルから、生成物がヘプタデカフルオロオクタンスルホン酸−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムであることが同定された。
なお、ヘプタデカフルオロオクタンスルホン酸−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムにおける共役塩基の元となる酸〔ヘプタデカフルオロオクタンスルホン酸〕のアセトニトリル中でのpKaは、0.7である。
From these spectra, it was identified that the product was heptadecafluorooctanesulfonic acid-6-octadecil-1,8-diazabicyclo [5.4.0] -7-undecenium.
In addition, the acid [heptadecafluorooctanesulfonic acid] which is the source of the conjugate base in heptadecafluorooctanesulfonic acid-6-octadecil-1,8-diazabicyclo [5.4.0] -7-undecenium in acetonitrile pKa is 0.7.
(比較例3A)
<トリス(トリフルオロメタンスルホニル)メチド−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムの合成>
比較のために、実施例1Aの酸をビス(ノナフルオロブタンスルホニル)イミドからトリス(トリフルオロメタンスルホニル)メチドに変えた、トリス(トリフルオロメタンスルホニル)メチド−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムの合成を、以下のスキームにしたがって行った。
<Synthesis of tris (trifluoromethanesulfonyl) methide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium>
For comparison, the acid of Example 1A was changed from bis (nonaflatebutanesulfonyl) imide to tris (trifluoromethanesulfonyl) methide, tris (trifluoromethanesulfonyl) methide-6-octadecyl-1,8-diazabicyclo [5]. .4.0] -7-Undecenium was synthesized according to the following scheme.
実施例1Aと同様に合成した6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセン4.0gをエタノールに溶解させ、65%濃硝酸(d=1.400)0.96gのエタノール希釈液を添加して硝酸塩を合成した。終点はリトマス紙で中性になるところをチェックした。トリス(トリフルオロメタンスルホニル)メチドカリウム塩4.45gのエタノール溶液を加えて、30分間攪拌し、その後に30分間加熱還流した。溶媒除去後ジエチルエーテルで抽出し、有機層を水で十分に洗浄後に無水硫酸ナトリウムで乾燥させて溶媒除去後、7.60gのトリス(トリフルオロメタンスルホニル)メチド−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムを得た。収率94.0%。n−ヘキサンとエタノールの混合溶媒から再結晶を行った。 6.0 g of 6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene synthesized in the same manner as in Example 1A was dissolved in ethanol to make 65% concentrated nitric acid (d = 1.400) 0. Nitrate was synthesized by adding 96 g of ethanol diluent. The end point was checked with litmus paper where it became neutral. An ethanol solution of 4.45 g of tris (trifluoromethanesulfonyl) methide potassium salt was added, stirred for 30 minutes, and then heated to reflux for 30 minutes. After removing the solvent, the mixture is extracted with diethyl ether, the organic layer is thoroughly washed with water, dried over anhydrous sodium sulfate, and after removing the solvent, 7.60 g of tris (trifluoromethanesulfonyl) methide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-Undecenium was obtained. Yield 94.0%. Recrystallization was performed from a mixed solvent of n-hexane and ethanol.
生成物のFTIR吸収とその帰属を以下に示す。
1117cm−1にSO2の対称伸縮振動、1198cm−1にCF3の対称伸縮振動、1381cm−1にSO2結合の逆対称伸縮振動、1470cm−1にCH2の変角振動、1632cm−1にC=Nの伸縮振動、2850cm−1にCH2の対称伸縮振動、2918cm−1にCH2の逆対称伸縮振動、3408cm−1にNH伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
1117 cm -1 is SO 2 symmetric stretching vibration, 1198 cm -1 is CF 3 symmetric stretching vibration, 1381 cm -1 is SO 2 coupling inverse symmetric stretching vibration, 1470 cm -1 is CH 2 eccentric vibration, 1632 cm -1 is stretching vibration of C = N, symmetric stretching vibration of CH 2 in 2850 cm -1, antisymmetric stretching vibration of CH 2 in 2918cm -1, the NH stretching vibration 3408cm -1 were observed.
CDCl3中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(CDCl3,δppm);0.850(t,3H,J=6.6Hz), 1.174−1.335(m,32H), 1.485−1.557(m,2H), 1.590−1.740(m,4H), 1.774−1.842(m,2H), 1.994−2.057(m,2H), 2.640−2.740(m,1H), 3.360−3.430(m,2H), 3.450−3.690(m,4H), 7.160(brs,1H)
13C−NMR(CDCl3,δppm);14.070, 19.122, 22.648, 25.899, 27.044, 28.463, 29.013, 29.165, 29.333, 29.455, 29.578, 29.669, 31.882, 38.644, 43.238, 49.481, 53.968, 120.126(q、J=325Hz) , 168.197
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 are shown below.
1 1 H-NMR (CDCl 3 , δppm); 0.850 (t, 3H, J = 6.6Hz), 1.174-1.335 (m, 32H), 1.485-1.557 (m, 2H) ), 1.590-1.740 (m, 4H), 1.774-1.842 (m, 2H), 1.994-2.857 (m, 2H), 2.640-2.740 (m) , 1H), 3.360-3.430 (m, 2H), 3.450-3.690 (m, 4H), 7.160 (brs, 1H)
13 C-NMR (CDCl 3 , δppm); 14.070, 19.122, 22.648, 25.899, 27.044, 28.463, 29.013, 29.165, 29.333, 29.455 , 29.578, 29.669, 31.882, 38.644, 43.238, 49.481, 53.968, 120.126 (q, J = 325Hz), 168.197
これらのスペクトルから、生成物がトリス(トリフルオロメタンスルホニル)メチド−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムであることが同定された。
なお、トリス(トリフルオロメタンスルホニル)メチド−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムにおける共役塩基の元となる酸〔トリス(トリフルオロメタンスルホニル)メチド〕のアセトニトリル中でのpKaは、−3.7である。
From these spectra, the product was identified as tris (trifluoromethanesulfonyl) methide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium.
In acetonitrile of the acid [tris (trifluoromethanesulfonyl) methide] which is the source of the conjugate base in tris (trifluoromethanesulfonyl) methide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium. The pKa in is -3.7.
(比較例4A)
<ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド−7−オクタデシル−1,5,7−トリアザビシクロ[4.4.0]−5−デセニウムの合成>
カチオン部に7−オクタデシル−1,5,7−トリアザビシクロ[4.4.0]−5−デセン構造を有し、アニオン部にヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミドを有する、ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド−7−オクタデシル−1,5,7−トリアザビシクロ[4.4.0]−5−デセニウムの合成を、以下のスキームにしたがって行った。
<Synthesis of Hexafluorocyclopropane-1,3-bis (sulfonyl) imide-7-octadecyl-1,5,7-triazabicyclo [4.4.0] -5-decenium>
It has a 7-octadecyl-1,5,7-triazabicyclo [44.0] -5-decene structure in the cation part, and hexafluorocyclopropane-1,3-bis (sulfonyl) imide in the anion part. The synthesis of hexafluorocyclopropane-1,3-bis (sulfonyl) imide-7-octadecyl-1,5,7-triazabicyclo [4.4.0] -5-decenium having is carried out according to the following scheme. went.
まず、原料の7−n−オクタデシル−1,5,7−トリアザビシクロ[4.4.0]−5−デセン(オクタデシルTBD)の合成について示す。
R.W.Alderらの方法〔非特許文献、 Roger W. Alder, Rodney W. Mowlam, David J. Vachon and Gray R. Weisman, “New Synthetic Routes to Macrocyclic Triamines,” J. Chem. Sos. Chem. Commun. pp.507−508 (1992)参照〕を参考にして合成した。
即ち、水素化ナトリウム(55質量%ヘキサン)を、乾燥THFに溶解させた1,5,7−トリアザビシクロ[4.4.0]−5−デセン(TBD)8.72g中に10℃で加えて攪拌した。10℃に温度を保ったまま、臭素化オクタデカンを20分間かけて滴下した。その後、10℃で30分間撹拌し、続いて、常温で2時間撹拌した後に、1時間加熱還流した。常温に戻して過剰の水素化ナトリウムを加えて反応させた。溶媒を除去後、アミノ処理したシリカゲルでカラムクロマトグラフィーを行い、淡黄色の目的物を得た。
First, the synthesis of the raw material 7-n-octadecyl-1,5,7-triazabicyclo [4.4.0] -5-decene (octadecene TBD) will be described.
R. W. Method of Alder et al. [Non-patent literature, Roger W. et al. Alder, Rodney W. Mowlam, David J. et al. Vachon and Gray R. Weisman, "New Synthetic Routing to Macrocyclic Triamines," J. et al. Chem. Sos. Chem. Common. pp. See 507-508 (1992)] for synthesis.
That is, sodium hydride (55% by mass hexane) was dissolved in dry THF at 10 ° C. in 8.72 g of 1,5,7-triazabicyclo [4.4.0] -5-decene (TBD). In addition, it was stirred. Octadecane brominated was added dropwise over 20 minutes while maintaining the temperature at 10 ° C. Then, the mixture was stirred at 10 ° C. for 30 minutes, then stirred at room temperature for 2 hours, and then heated to reflux for 1 hour. The temperature was returned to room temperature, and excess sodium hydride was added for the reaction. After removing the solvent, column chromatography was performed on amino-treated silica gel to obtain a pale yellow object.
得られた目的物である7−オクタデシル−1,5,7−トリアザビシクロ[4.4.0]−5−デセン4.00gをエタノールに溶解させ、ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド3.00gのエタノール溶液を添加した。30分間攪拌後30分間加熱還流を行った後に溶媒を除去し、ジクロルメタンに溶解させ水で十分に洗浄を行った後に無水硫酸ナトリウムで乾燥後、溶媒を除去して無色のヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド−7−オクタデシル−1,5,7−トリアザビシクロ[4.4.0]−5−デセニウム4.60gを得た。収率92.0%。nヘキサンとエタノールの混合溶媒から再結晶を行った。 Hexafluorocyclopropane-1,3-bis was obtained by dissolving 4.00 g of 7-octadecyl-1,5,7-triazabicyclo [4.4.0] -5-decene, which is the desired product, in ethanol. An ethanol solution of 3.00 g of (sulfonyl) imide was added. After stirring for 30 minutes and refluxing by heating for 30 minutes, the solvent is removed, dissolved in dichloromethane, thoroughly washed with water, dried over anhydrous sodium sulfate, and the solvent is removed to remove the colorless hexafluorocyclopropane-1. , 3-Bis (sulfonyl) imide-7-octadecyl-1,5,7-triazabicyclo [4.4.0] -5-decenium 4.60 g was obtained. Yield 92.0%. Recrystallization was performed from a mixed solvent of n-hexane and ethanol.
生成物のFTIR吸収とその帰属を以下に示す。
1042cm−1にSNSの逆対称伸縮振動、1092cm−1にSO2の対称伸縮振動、1157cm−1にCF2の対称伸縮振動、1361cm−1にSO2結合の逆対称伸縮振動、1628cm−1にC=Nの伸縮振動、2849cm−1にCH2の対称伸縮振動、2921cm−1にCH2の逆対称伸縮振動、3412cm−1にNH伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
1042 cm -1 is SNS reverse symmetric stretch vibration, 1092 cm -1 is SO 2 symmetric stretch vibration, 1157 cm -1 is CF 2 symmetric stretch vibration, 1361 cm -1 is SO 2 bond reverse symmetric stretch vibration, 1628 cm -1 is stretching vibration of C = N, symmetric stretching vibration of CH 2 in 2849cm -1, antisymmetric stretching vibration of CH 2 in 2921cm -1, the NH stretching vibration 3412cm -1 were observed.
CDCl3中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(CDCl3,δppm);0.847(t,3H,J=6.6Hz), 1.222−1.274(m,30H), 1.460−1.600(m,2H), 1.969−2.055(m,4H), 3.210(t,2H,J=10Hz), 3.310−3.409(m,8H), 5.931(brs,1H)
13C−NMR(CDCl3,δppm);14.055, 20.450, 20.740, 22.633, 26.494, 27.044, 29.226, 29.303, 29.425, 29.532, 29.608, 29.654, 31.867, 38.980, 46.428, 47.298, 47.786, 50.183, 150.385
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 are shown below.
1 1 H-NMR (CDCl 3 , δppm); 0.847 (t, 3H, J = 6.6Hz), 1.222-1.274 (m, 30H), 1.460-1.600 (m, 2H) ), 1.969-2.855 (m, 4H), 3.210 (t, 2H, J = 10Hz), 3.310-3.409 (m, 8H), 5.931 (brs, 1H)
13 C-NMR (CDCl 3 , δppm); 14.055, 20.450, 20.740, 22.633, 26.494, 27.044, 29.226, 29.303, 29.425, 29.532 , 29.608, 29.654, 31.867, 38.980, 46.428, 47.298, 47.786, 50.183, 150.385
これらのスペクトルから、生成物がヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド−7−オクタデシル−1,5,7−トリアザビシクロ[4.4.0]−5−デセニウムであることが同定された。
なお、ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド−7−オクタデシル−1,5,7−トリアザビシクロ[4.4.0]−5−デセニウムにおける共役塩基の元となる酸〔ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド〕のアセトニトリル中でのpKaは、−0.8である。
From these spectra, the product is hexafluorocyclopropane-1,3-bis (sulfonyl) imide-7-octadecyl-1,5,7-triazabicyclo [4.4.0] -5-decenium. Was identified.
The acid that is the source of the conjugate base in hexafluorocyclopropane-1,3-bis (sulfonyl) imide-7-octadecyl-1,5,7-triazabicyclo [4.4.0] -5-decenium [ Hexafluorocyclopropane-1,3-bis (sulfonyl) imide] has a pKa of -0.8 in acetonitrile.
(比較例5A)
<ヘプタデカフルオロオクタンスルホン酸−7−オクタデシル−1,5,7−トリアザビシクロ[4.4.0]−5−デセニウムの合成>
カチオン部に7−オクタデシル−1,5,7−トリアザビシクロ[4.4.0]−5−デセン構造を有し、アニオン部にヘプタデカフルオロオクタンスルホン酸を有する、ヘプタデカフルオロオクタンスルホン酸−7−オクタデシル−1,5,7−トリアザビシクロ[4.4.0]−5−デセニウムの合成を、以下のスキームにしたがって行った。
<Synthesis of heptadecafluorooctanesulfonic acid-7-octadecyl-1,5,7-triazabicyclo [4.4.0] -5-decenium>
Heptadecafluorooctanesulfonic acid having a 7-octadecyl-1,5,7-triazabicyclo [4.4.0] -5-decene structure in the cation part and a heptadecafluorooctanesulfonic acid in the anion part. The synthesis of -7-octadecyl-1,5,7-triazabicyclo [4.4.0] -5-decenium was carried out according to the following scheme.
比較例4Aで合成した7−オクタデシル−1,5,7−トリアザビシクロ[4.4.0]−5−デセン3.91gをエタノールに溶解させ、ヘプタデカフルオロオクタンスルホン酸5.00gのエタノール溶液を添加した。30分間攪拌後30分間加熱還流を行った後に溶媒を除去し、ジクロルメタンと少量のエタノールに溶解させ水で十分に洗浄を行った後に無水硫酸ナトリウムで乾燥後、溶媒を除去して無色のヘプタデカフルオロオクタンスルホン酸−7−オクタデシル−1,5,7−トリアザビシクロ[4.4.0]−5−デセニウム8.50gを得た。収率95.4%。nヘキサンとエタノールの混合溶媒から再結晶を行った。 3.91 g of 7-octadecyl-1,5,7-triazabicyclo [4.4.0] -5-decene synthesized in Comparative Example 4A was dissolved in ethanol, and 5.00 g of heptadecafluorooctanesulfonic acid was dissolved in ethanol. The solution was added. After stirring for 30 minutes and heating under reflux for 30 minutes, the solvent is removed, dissolved in dichloromethane and a small amount of ethanol, thoroughly washed with water, dried over anhydrous sodium sulfate, and the solvent is removed to remove the colorless heptadeca. -7-Octadecyl-1,5,7-triazabicyclo [4.4.0] -5-decenium 8.50 g of fluorooctanesulfonic acid was obtained. Yield 95.4%. Recrystallization was performed from a mixed solvent of n-hexane and ethanol.
生成物のFTIR吸収とその帰属を以下に示す。
1151cm−1−1287cm−1にCFの対称伸縮振動、1373cm−1にSO2結合の逆対称伸縮振動、1602cm−1にC=Nの伸縮振動、2851cm−1にCH2の対称伸縮振動、2924cm−1にCH2の逆対称伸縮振動、3289cm−1にNH伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
1151cm -1 -1287cm -1 to symmetric stretching vibration of CF, antisymmetric stretching vibration of SO 2 bind to 1373cm -1, stretching vibration of C = N to 1602 cm -1, symmetric stretching vibration of CH 2 in 2851cm -1, 2924cm -1 antisymmetric stretching vibration of CH 2, was observed NH stretching vibration 3289cm -1.
CDCl3中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(CDCl3,δppm);0.841(t,3H,J=6.6Hz), 1.205−1.239(m,30H), 1.460−1.590(m,2H), 1.915−2.060(m,4H), 3.254−3.316(m,8H), 3.390−3.450(m,2H), 7.158(brs,1H)
13C−NMR(CDCl3,δppm);14.041, 20.619, 20.970, 22.649, 26.419, 27.091, 29.319, 29.350, 29.502, 29.670, 31.883, 38.767, 46.368, 47.314, 47.986, 50.230, 150.417
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 are shown below.
1 1 H-NMR (CDCl 3 , δppm); 0.841 (t, 3H, J = 6.6Hz), 1.205-1.239 (m, 30H), 1.460-1.590 (m, 2H) ), 1.915-2.060 (m, 4H), 3.254-3.316 (m, 8H), 3.390-3.450 (m, 2H), 7.158 (brs, 1H)
13 C-NMR (CDCl 3 , δppm); 14.041, 20.609, 20.970, 22.649, 26.419, 27.091, 29.319, 29.350, 29.502, 29.670 , 31.883, 38.767, 46.368, 47.314, 47.986, 50.230, 150.417
これらのスペクトルから、生成物がヘプタデカフルオロオクタンスルホン酸−7−オクタデシル−1,5,7−トリアザビシクロ[4.4.0]−5−デセニウムであることが同定された。
なお、ヘプタデカフルオロオクタンスルホン酸−7−オクタデシル−1,5,7−トリアザビシクロ[4.4.0]−5−デセニウムにおける共役塩基の元となる酸〔ヘプタデカフルオロオクタンスルホン酸〕のアセトニトリル中でのpKaは、0.7である。
From these spectra, it was identified that the product was heptadecafluorooctanesulfonic acid-7-octadecil-1,5,7-triazabicyclo [44.0] -5-decenium.
It should be noted that the acid [heptadecafluorooctanesulfonic acid] which is the source of the conjugate base in heptadecafluorooctanesulfonic acid-7-octadecyl-1,5,7-triazabicyclo [4.4.0] -5-decenium. The pKa in acetonitrile is 0.7.
(比較例6A)
<ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド−N−オクタデシルピロリジニウムの合成>
実施例5Aあるいは実施例6Aとは異なり、カチオン部にN−オクタデシルピロリジニウム構造を有するイオン液体ではあるが、アニオン部をヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミドに変えた、ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド−N−オクタデシルピロリジニウムの合成を、以下のスキームにしたがって行った。
(Comparative Example 6A)
<Synthesis of hexafluorocyclopropane-1,3-bis (sulfonyl) imide-N-octadecylpyrrolidinium>
Unlike Example 5A or Example 6A, it is an ionic liquid having an N-octadecylpyrrolidinium structure in the cation part, but the anion part is changed to hexafluorocyclopropane-1,3-bis (sulfonyl) imide. The synthesis of hexafluorocyclopropane-1,3-bis (sulfonyl) imide-N-octadecylpyrrolidinium was carried out according to the following scheme.
実施例4Aと同様に合成したオクタデシルピロリジン2.68gをエタノールに溶解させ、ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド2.67gをエタノールに溶解させたものを加えた。添加終了後常温で1時間攪拌後、加熱還流を1時間行った。溶媒を除去後、ジクロルメタンに溶解させ水で十分に洗浄し無水硫酸マグネシウムで乾燥後溶媒を除去して無色の固体を4.96g得た。収率92.8%。n−ヘキサンとエタノールの混合溶媒から再結晶を行い4.10gのヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド−N−オクタデシルピロリジニウムの無色の結晶を得た。 2.68 g of octadecylpyrrolidine synthesized in the same manner as in Example 4A was dissolved in ethanol, and 2.67 g of hexafluorocyclopropane-1,3-bis (sulfonyl) imide dissolved in ethanol was added. After completion of the addition, the mixture was stirred at room temperature for 1 hour and then heated under reflux for 1 hour. After removing the solvent, it was dissolved in dichloromethane, thoroughly washed with water, dried over anhydrous magnesium sulfate, and then the solvent was removed to obtain 4.96 g of a colorless solid. Yield 92.8%. Recrystallization was performed from a mixed solvent of n-hexane and ethanol to obtain 4.10 g of hexafluorocyclopropane-1,3-bis (sulfonyl) imide-N-octadecylpyrrolidinium.
生成物のFTIR吸収とその帰属を以下に示す。
1151cm−1にCF2の対称伸縮振動、1354cm−1にSO2の逆対称伸縮振動、1466cm−1にCH2の変角振動、2850cm−1にCH2の対称伸縮振動、2918cm−1にCH2の逆対称伸縮振動、3192cm−1にNH伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of CF 2 to 1151cm -1, antisymmetric stretching vibration of SO 2 to 1354cm -1, bending vibration of CH 2 in 1466cm -1, symmetric stretching vibration of CH 2 in 2850 cm -1, to 2918cm -1 CH Inverse symmetric expansion and contraction vibration of 2 and NH expansion and contraction vibration were observed at 3192 cm -1 .
また、重DMSO中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(δppm);0.843(t,3H,J=6.6Hz), 1.150−1.360(m,30H), 1.500−1.630(m,2H), 1.760−2.060(m,4H), 2.860−3.140(m,4H), 3.400−3.580(m,2H), 9.239(brs,1H)
13C−NMR(δppm);14.119, 22.270, 22.697, 25.399, 26.101, 28.650, 28.879, 28.985, 29.107, 29.214, 31.473, 53.406, 54.154
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in heavy DMSO are shown below.
1 1 H-NMR (δppm); 0.843 (t, 3H, J = 6.6Hz), 1.150-1.360 (m, 30H), 1.50-1.630 (m, 2H), 1 .760-2.060 (m, 4H), 2.860-3.140 (m, 4H), 3.400-3.580 (m, 2H), 9.239 (brs, 1H)
13 C-NMR (δppm); 14.119, 22.270, 22.697, 25.399, 26.101, 28.650, 28.879, 28.985, 29.107, 29.214, 31. 473, 53.406, 54.154
これらのスペクトルから、生成物がヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド−N−オクタデシルピロリジニウムであることが同定された。
なお、ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド−N−オクタデシルピロリジニウムにおける共役塩基の元となる酸〔ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド〕のアセトニトリル中でのpKaは、−0.8である。
From these spectra, the product was identified as hexafluorocyclopropane-1,3-bis (sulfonyl) imide-N-octadecylpyrrolidinium.
In acetonitrile of the acid [hexafluorocyclopropane-1,3-bis (sulfonyl) imide] which is the source of the conjugate base in hexafluorocyclopropane-1,3-bis (sulfonyl) imide-N-octadecylpyrrolidinium. The pKa at is -0.8.
(比較例7A)
<ノナフルオロブタンスルホン酸−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−オクタデシルイミダゾリウムの合成>
ノナフルオロブタンスルホン酸−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−オクタデシルイミダゾリウムの合成は、以下のスキームにしたがって行った。
<Synthesis of nonaflate butane sulfonic acid-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-octadecil imidazolium>
Nonaflate butane sulfonic acid-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-octadecil Imidazoleium was synthesized according to the following scheme.
次に実施例8Aで合成した1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−オクタデシルイミダゾリウムヨージド3.87gを水に溶解させ、ノナフルオロブタンスルホン酸カリウム1.76gを水に溶解させたものを加えた。常温で1h攪拌後、加熱還流を1h行い、冷却後溶媒を除去し、ジクロルメタンで抽出を行った。有機層を純水でAgNO3試験が陰性になるまで洗浄を行った。無水硫酸ナトリウムで乾燥後溶媒を除去し、n−ヘキサンとエタノールの混合溶媒から再結晶を行い4.20g無色の結晶を得た。収率91%。 Next, 3.87 g of 1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-octadecil imidazolium iodide synthesized in Example 8A was dissolved in water, and nonafluorobutane sulfone was added. A solution of 1.76 g of potassium acid in water was added. After stirring at room temperature for 1 h, the mixture was heated under reflux for 1 hour, cooled, the solvent was removed, and extraction was performed with dichloromethane. The organic layer was washed with pure water until the AgNO 3 test became negative. After drying over anhydrous sodium sulfate, the solvent was removed, and recrystallization was performed from a mixed solvent of n-hexane and ethanol to obtain 4.20 g of colorless crystals. Yield 91%.
生成物のFTIR吸収とその帰属を以下に示す。
1147cm−1にSO2結合の対称伸縮振動、1200cm−1にCF2の対称伸縮振動、1456cm−1にCH2の変角振動、1564cm−1にC=Nの対称伸縮振動,2850cm−1にCH2の対称伸縮振動、2916cm−1にCH2の逆対称伸縮振動、3113cm−1及び3150cm−1にイミダゾール環のCHの伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SO 2 bind to 1147cm -1, symmetric stretching vibration of CF 2 to 1200 cm -1, bending vibration of CH 2 in 1456cm -1, symmetric stretching vibration of C = N to 1564 cm -1, the 2850 cm -1 symmetric stretching vibration of CH 2, antisymmetric stretching vibration of CH 2 in 2916cm -1, to 3113cm -1 and 3150 cm -1 stretching vibration of CH of the imidazole ring was observed.
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(CDCl3,δppm);0.849(t/J=6.9Hz,3H), 1.160−1.380(m,30H), 1.860−1.970(m,2H), 2.620−3.010(m,2H), 4.254(t/J=6.6Hz,2H), 4.845(t/J=6.6Hz,2H), 7.276(s,1H), 7.526(s,1H),10.184(s,1H)
13C−NMR(CDCl3,δppm);14.070, 22.648, 26.189, 28.906, 29.318, 29.455, 29.562, 29.623, 29.669, 29.990, 31.882, 32.691, 32.722, 42.719, 50.671, 121.706, 122.881, 137.503
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform are shown below.
1 1 H-NMR (CDCl 3 , δppm); 0.849 (t / J = 6.9Hz, 3H), 1.160-1.380 (m, 30H), 1.860-1.970 (m, 2H) ), 2.620-3.010 (m, 2H), 4.254 (t / J = 6.6Hz, 2H), 4.845 (t / J = 6.6Hz, 2H), 7.276 (s) , 1H), 7.526 (s, 1H), 10.184 (s, 1H)
13 C-NMR (CDCl 3 , δppm); 14.070, 22.648, 26.189, 28.906, 29.318, 29.455, 29.5622, 29.623, 29.669, 29.990 , 31.882, 32.691, 32.722, 42.719, 50.671, 121.706, 122.881, 137.503
これらのスペクトルから、生成物がノナフルオロブタンスルホン酸−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−オクタデシルイミダゾリウムであることが同定された。
なお、ノナフルオロブタンスルホン酸−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−オクタデシルイミダゾリウムにおける役塩基の元となる酸(ノナフルオロブタンスルホン酸)のアセトニトリル中でのpKaは、0.7である。
From these spectra, the product was identified as nonaflate butane sulfonic acid-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-octadecil imidazolium.
Nonaflate butane sulfonic acid-1-1'H, 1'H, 2'H, 2'H heptadecafluorodecyl-3-octadecyl The acid that is the source of the base in imidazolium (nonafluorobutane sulfonic acid). The pKa in acetonitrile is 0.7.
(比較例8A)
<ビス(ノナフルオロブタンスルホニル)イミド−1−ブチル−3−n−オクタデシルイミダゾリウムの合成>
比較のために、モノカチオンイオン液体であるビス(ノナフルオロブタンスルホニル)イミド−1−ブチル−3−n−オクタデシルイミダゾリウムの合成を、以下のスキームにしたがって行った。
<Synthesis of bis (nonaflate butane sulfonyl) imide-1-butyl-3-n-octadecylimidazolium>
For comparison, the monocationic ionic liquid bis (nonafolic butanesulfonyl) imide-1-butyl-3-n-octadecylimidazolium was synthesized according to the following scheme.
1−オクタデシルイミダゾール10.7gとブロモブタン6.03gとをアセトニトリル中に溶解させ、加熱還流を5時間行った。溶媒を除去後、n−ヘキサンとエタノールとの混合溶媒から再結晶を行い、1−ブチル−3−オクタデシルイミダゾリウムブロミドを得た。このブロミド1.27gをエタノールに溶解させ、そこへ、ビス(ノナフルオロブタンスルホニル)イミドカリウム1.81gのエタノール溶液を添加し、撹拌すると無色の沈殿が発生した。この溶液を1時間加熱還流させ、冷却後に沈殿を分離し、純水で十分に洗浄した。n−ヘキサンとエタノールとの混合溶媒から再結晶を行い、無色の結晶ビス(ノナフルオロブタンスルホニル)イミド−1−ブチル−3−n−オクタデシルイミダゾリウム2.06gを得た。収率75%。 10.7 g of 1-octadecylimidazole and 6.03 g of bromobutane were dissolved in acetonitrile, and the mixture was heated under reflux for 5 hours. After removing the solvent, recrystallization was performed from a mixed solvent of n-hexane and ethanol to obtain 1-butyl-3-octadecylimidazolium bromide. 1.27 g of this bromide was dissolved in ethanol, 1.81 g of an ethanol solution of bis (nonaflatebutanesulfonyl) imide potassium was added thereto, and the mixture was stirred to generate a colorless precipitate. The solution was heated to reflux for 1 hour, cooled to separate the precipitate and thoroughly washed with pure water. Recrystallization was performed from a mixed solvent of n-hexane and ethanol to obtain 2.06 g of colorless crystalline bis (nonafluorobutanesulfonyl) imide-1-butyl-3-n-octadecylimidazolium. Yield 75%.
生成物のFTIR吸収とその帰属を以下に示す。
1072cm−1にSO2の対称伸縮振動、1137cm−1及び1168cm−1にCF2の対称伸縮振動、1352cm−1にSO2結合の逆対称伸縮振動、1469cm−1にCH2の変角振動、1564cm−1にC=Nの伸縮振動、2850cm−1にCH2の対称伸縮振動、2920cm−1にCH2の逆対称伸縮振動、3097cm−1及び3157cm−1にイミダゾール環のCHの伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
Symmetric stretching vibration of SO 2 to 1072cm -1, symmetric stretching vibration of CF 2 to 1137cm -1 and 1168cm -1, antisymmetric stretching vibration of SO 2 bind to 1352cm -1, bending vibration of CH 2 in 1469cm -1, stretching vibration of the 1564cm -1 C = N, symmetric stretching vibration of CH 2 in 2850 cm -1, antisymmetric stretching vibration of CH 2 in 2920 cm -1, the stretching vibration of CH of the imidazole ring to 3097cm -1 and 3157cm -1 It was seen.
また、重クロロホルム中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークとその帰属について、以下に示す。
1H−NMR(CDCl3,δppm);0.837(t/J=6.6Hz,3H), 0.885(t/J=7.2Hz,3H), 1.140−1.300(m,32H), 1.760(quint/J=7.2Hz,4H), 4.112−4.173(m,4H), 7.776(s,1H), 7.781(s,1H), 9.175(s,1H)
13C−NMR(CDCl3,δppm);13.341, 14.043, 18.927, 22.239, 25.627, 28.466, 28.863, 28.970, 29.062, 29.184, 29.413, 31.443, 48.751, 49.026, 122.624, 136.101
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in deuterated chloroform and their attribution are shown below.
1 1 H-NMR (CDCl 3 , δppm); 0.837 (t / J = 6.6Hz, 3H), 0.885 (t / J = 7.2Hz, 3H), 1.140-1.300 (m) , 32H), 1.760 (quint / J = 7.2Hz, 4H), 4.112-4.173 (m, 4H), 7.776 (s, 1H), 7.781 (s, 1H), 9.175 (s, 1H)
13 C-NMR (CDCl 3 , δppm); 13.341, 14.043, 18.927, 22.239, 25.627, 28.466, 28.863, 28.970, 29.062, 29.184 , 29.413, 31.443, 48.751, 49.026, 122.624, 136.101
これらのスペクトルから、生成物がビス(ノナフルオロブタンスルホニル)イミド−1−ブチル−3−n−オクタデシルイミダゾリウムであることが同定された。
なお、ビス(ノナフルオロブタンスルホニル)イミド−1−ブチル−3−n−オクタデシルイミダゾリウムにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは0.0である。
From these spectra, it was identified that the product was bis (nonaflatebutanesulfonyl) imide-1-butyl-3-n-octadecylimidazolium.
The pKa of the acid [bis (nonafluorobutanesulfonyl) imide], which is the source of the conjugate base in bis (nonafluorobutanesulfonyl) imide-1-butyl-3-n-octadecylimidazolium, in acetonitrile is 0.0. Is.
(比較例9A)
<1,5−ビス[ビス(ノナフルオロブタンスルホニル)イミド−1−オクタデシルイミダゾリウム]ペンタンの合成>
1,5−ビス[ビス(ノナフルオロブタンスルホニル)イミド−1−オクタデシルイミダゾリウム]ペンタンの合成は、以下のスキームにしたがって行った。
<Synthesis of 1,5-bis [bis (nonaflatebutanesulfonyl) imide-1-octadecylimidazolium] pentane>
The synthesis of 1,5-bis [bis (nonaflatebutanesulfonyl) imide-1-octadecylimidazolium] pentane was carried out according to the following scheme.
実施例8Aで合成した1−オクタデシルイミダゾール10.00gと1,5−ジブロモヘプタン3.58gとをイソプロパノールに溶解させた。得られた液を、スリーワンモーターと冷却器とを取り付けた三口フラスコに加えて3時間加熱還流させた。溶媒を除去後、酢酸エチルとエタノールとの混合溶媒から再結晶を行い、無色結晶の1,5−ビス(1−オクタデシルイミダゾリウムブロミド)ペンタン12.82gを得た。収率94%。 10.00 g of 1-octadecylimidazole synthesized in Example 8A and 3.58 g of 1,5-dibromoheptane were dissolved in isopropanol. The obtained liquid was added to a three-necked flask equipped with a three-one motor and a cooler, and was heated to reflux for 3 hours. After removing the solvent, recrystallization was performed from a mixed solvent of ethyl acetate and ethanol to obtain 12.82 g of colorless crystalline 1,5-bis (1-octadecylimidazolium bromide) pentane. Yield 94%.
1,5−ビス(1−オクタデシルイミダゾリウムブロミド)ペンタン1.93gを水に溶解させ、水と少量のエタノールに溶解させたビス(ノナフルオロブタンスルホニル)イミドカリウム塩2.76gを加え、常温で2時間撹拌後、2時間加熱還流させた。反応終了後濾過し、濾液のAgNO3試験が陰性になるまで水で十分に洗浄した。70℃で真空乾燥を10時間行い、1,5−ビス[ビス(ノナフルオロブタンスルホニル)イミド−1−オクタデシルイミダゾリウム]ペンタンのろう状化合物を4.00g得た。収率96.5%。 1.93 g of 1,5-bis (1-octadecylimidazolium bromide) pentane was dissolved in water, 2.76 g of bis (nonaflatebutanesulfonyl) imide potassium salt dissolved in water and a small amount of ethanol was added, and at room temperature. After stirring for 2 hours, the mixture was heated and refluxed for 2 hours. After completion of the reaction, the mixture was filtered and washed thoroughly with water until the AgNO 3 test of the filtrate became negative. Vacuum drying was carried out at 70 ° C. for 10 hours to obtain 4.00 g of a waxy compound of 1,5-bis [bis (nonaflatebutanesulfonyl) imide-1-octadecylimidazolium] pentane. Yield 96.5%.
生成物のFTIR吸収とその帰属を以下に示す。
1072cm−1にSO2の対称伸縮振動、1167cm−1にCF2の対称伸縮振動、1352cm−1にSO2結合の逆対称伸縮振動、1468cm−1にCH2の変角振動、1566cm−1にC=Nの伸縮振動、2854cm−1にCH2の対称伸縮振動、2924cm−1にCH2の逆対称伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
1072 cm -1 is SO 2 symmetrical expansion and contraction vibration, 1167 cm -1 is CF 2 symmetrical expansion and contraction vibration, 1352 cm -1 is SO 2 coupling inverse symmetrical expansion and contraction vibration, 1468 cm -1 is CH 2 variable angle vibration, 1566 cm -1 is stretching vibration of C = N, symmetric stretching vibration of CH 2 in 2854cm -1, antisymmetric stretching vibration of CH 2 was observed in 2924 cm -1.
また、重DMSO中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークとその帰属について、以下に示す。
1H−NMR(重DMSO,δppm);0.828(t,6H,J=6.9Hz), 1.130−1.340(m,62H), 1.710−1.880(m,8H), 4.106−4.169(m,8H), 7.750−7.761(m,2H), 7.772−7.782(m,2H), 9.141(s,2H)
13C−NMR(重DMSO,δppm);13.967, 22.239, 25.689, 28.543, 28.772, 28.879, 29.016, 29.138, 29.214, 29.520, 31.458, 48.675, 49.041, 122.594, 122.639, 136.086
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in heavy DMSO and their attribution are shown below.
1 1 H-NMR (deuterium DMSO, δppm); 0.828 (t, 6H, J = 6.9Hz), 1.130-1.340 (m, 62H), 1.710-1.880 (m, 8H) ), 4.106-4.169 (m, 8H), 7.750-7.761 (m, 2H), 7.772-7.782 (m, 2H), 9.141 (s, 2H)
13 C-NMR (heavy DMSO, δppm); 13.967, 22.239, 25.689, 28.543, 28.772, 28.879, 29.016, 29.138, 29.214, 29.520 , 31.458, 48.675, 49.041, 122.594, 122.639, 136.086
これらのスペクトルから、生成物が1,5−ビス[ビス(ノナフルオロブタンスルホニル)イミド−1−オクタデシルイミダゾリウム]ペンタンであることが同定された。
なお、1,5−ビス[1−オクタデシルイミダゾリウム−ビス(ノナフルオロブタンスルホニル)イミド]ペンタンにおける共役塩基の元となる酸[ビス(ノナフルオロブタンスルホニル)イミド]のアセトニトリル中でのpKaは、0.0である。
From these spectra, the product was identified as 1,5-bis [bis (nonaflatebutanesulfonyl) imide-1-octadecylimidazolium] pentane.
The pKa in acetonitrile of the acid [bis (nonafluorobutanesulfonyl) imide], which is the source of the conjugate base in 1,5-bis [1-octadecylimidazolium-bis (nonafluorobutanesulfonyl) imide] pentane, is It is 0.0.
(比較例10A)
<1,9−ビス[ビス(ノナフルオロブタンスルホニル)イミド−1−オクタデシルイミダゾリウム]ノナンの合成>
1,9−ビス[ビス(ノナフルオロブタンスルホニル)イミド−1−オクタデシルイミダゾリウム]ノナンの合成は、以下のスキームにしたがって行った。
<Synthesis of 1,9-bis [bis (nonafluorobutanesulfonyl) imide-1-octadecylimidazolium] nonane>
The synthesis of 1,9-bis [bis (nonafluorobutanesulfonyl) imide-1-octadecylimidazolium] nonane was carried out according to the following scheme.
実施例8Aで合成した1−オクタデシルイミダゾール10.91gと1,9−ジブロモノナン4.88gとをイソプロパノールに溶解させた。得られた液を、スリーワンモーターと冷却器とを取り付けた三口フラスコに加えて3時間加熱還流させた。溶媒を除去後、n−ヘキサンとエタノールとの混合溶媒から再結晶を行い、無色結晶の1,9−ビス(1−オクタデシルイミダゾリウムブロミド)ノナン14.11gを得た。収率89%。 10.91 g of 1-octadecylimidazole synthesized in Example 8A and 4.88 g of 1,9-dibromononane were dissolved in isopropanol. The obtained liquid was added to a three-necked flask equipped with a three-one motor and a cooler, and was heated to reflux for 3 hours. After removing the solvent, recrystallization was performed from a mixed solvent of n-hexane and ethanol to obtain 14.11 g of colorless crystals of 1,9-bis (1-octadecylimidazolium bromide) nonane. Yield 89%.
1,9−ビス(1−オクタデシルイミダゾリウムブロミド)ノナン3.00gを水に溶解させビス(ノナフルオロブタンスルホニル)イミドリチウム塩4.04gの水溶液を加えた。常温で1時間撹拌後、2時間加熱還流させた。反応終了後、結晶を濾過した。濾液のAgNO3試験が陰性になるまで水で十分に洗浄を行い、1,9−ビス[ビス(ノナフルオロブタンスルホニル)イミド−1−オクタデシルイミダゾリウム]ノナン5.16gを得た。収率73.7%。 3.00 g of 1,9-bis (1-octadecylimidazolium bromide) nonane was dissolved in water, and an aqueous solution of 4.04 g of bis (nonafluorobutanesulfonyl) imide lithium salt was added. After stirring at room temperature for 1 hour, the mixture was heated under reflux for 2 hours. After completion of the reaction, the crystals were filtered. The filtrate was thoroughly washed with water until the AgNO 3 test was negative to obtain 5.16 g of 1,9-bis [bis (nonafluorobutanesulfonyl) imide-1-octadecylimidazolium] nonane. Yield 73.7%.
生成物のFTIR吸収とその帰属を以下に示す。
1072cm−1にSNS逆対称伸縮振動、1169cm−1にCF2の対称伸縮振動、1352cm−1にSO2結合の逆対称伸縮振動、1469cm−1にCH2の変角振動、1564cm−1にC=Nの対称伸縮振動,2850cm−1にCH2の対称伸縮振動、2920cm−1にCH2の逆対称伸縮振動が見られた。
The FTIR absorption of the product and its attribution are shown below.
1072 cm -1 is SNS inverse symmetric expansion and contraction vibration, 1169 cm -1 is CF 2 symmetric expansion and contraction vibration, 1352 cm -1 is SO 2 coupling inverse symmetric expansion and contraction vibration, 1469 cm -1 is CH 2 variable angle vibration, 1564 cm -1 is C = symmetric stretching vibration of N, symmetric stretching vibration of CH 2 in 2850 cm -1, antisymmetric stretching vibration of CH 2 was observed in 2920 cm -1.
また、CDCl3中でのプロトン(1H)NMR及びカーボン(13C)NMRのピークについて、以下に示す。
1H−NMR(CDCl3,δppm);0.870(t/J=6.9Hz,6H), 1.180−1.370(m,70H), 1.780−1.920(m,8H), 4.151(quin/J=7.2Hz,8H), 7.244−7.257(m,2H), 7.398−7.410(m,2H), 8.816(s,2H)
13C−NMR(CDCl3,δppm);14.055, 22.663, 25.334, 26.082, 27.807, 27.929, 28.845, 29.288, 29.333, 29.455, 29.562, 29.669, 29.730, 30.127, 31.898, 50.015, 50.091, 121.980, 122.621, 135.366
The peaks of proton ( 1 H) NMR and carbon ( 13 C) NMR in CDCl 3 are shown below.
1 1 H-NMR (CDCl 3 , δppm); 0.870 (t / J = 6.9Hz, 6H), 1.180-1.370 (m, 70H), 1.780-1.920 (m, 8H) ), 4.151 (quin / J = 7.2Hz, 8H), 7.244-7.257 (m, 2H), 7.398-7.410 (m, 2H), 8.816 (s, 2H) )
13 C-NMR (CDCl 3 , δppm); 14.055, 22.663, 25.334, 26.082, 27.807, 27.929, 28.845, 29.288, 29.333, 29.455 , 29.562, 29.669, 29.730, 30.127, 31.898, 50.015, 50.091, 121.980, 122.621, 135.366
これらのスペクトルから、生成物が1,9−ビス[ビス(ノナフルオロブタンスルホニル)イミド−1−オクタデシルイミダゾリウム]ノナンであることが同定された。
なお、1,9−ビス[ビス(ノナフルオロブタンスルホニル)イミド−1−オクタデシルイミダゾリウム]ノナンにおける共役塩基の元となる酸〔ビス(ノナフルオロブタンスルホニル)イミド〕のアセトニトリル中でのpKaは、0.0である。
From these spectra, the product was identified as 1,9-bis [bis (nonafluorobutanesulfonyl) imide-1-octadecylimidazolium] nonane.
The pKa in acetonitrile of the acid [bis (nonafluorobutanesulfonyl) imide] which is the source of the conjugate base in 1,9-bis [bis (nonafluorobutanesulfonyl) imide-1-octadecylimidazolium] nonane is It is 0.0.
上記実施例及び比較例で合成したイオン液体を以下にまとめた。
(実施例1B〜実施例11B、及び比較例1B〜比較例10B)
<フッ素系溶媒への溶解性測定結果>
各実施例、及び各比較例で合成したイオン液体に対して、フッ素系溶媒として三井・デュポン フロロケミカル株式会社社製バートレルXF〔CF3(CHF)2CF2CF3〕を用いて溶解性試験を行った。
所定質量のバートレルXFに対してイオン液体を加え、超音波を5分間照射した後に1日間放置し、その溶解性を目視で確認した。
具体的には、バートレルXF(25℃)100質量部に対して、0.5質量部、0.1質量部それぞれのイオン液体を加え、超音波を5分間照射した後に1日間放置したのちに、その溶解性を目視で確認し、以下の評価基準で評価した。
なお、目視で確認し、透明である場合を溶解していると判断した。また、不透明である又は不溶分が見られる場合を溶解していない(不溶)と判断した。
結果を表2−1〜表2−2に示す。
(Example 1B to Example 11B, and Comparative Example 1B to Comparative Example 10B)
<Results of measurement of solubility in fluorine-based solvent>
Solubility test of the ionic liquids synthesized in each example and each comparative example using Bertrel XF [CF 3 (CHF) 2 CF 2 CF 3 ] manufactured by Mitsui-Dupont Fluorochemical Co., Ltd. as a fluorine-based solvent. Was done.
An ionic liquid was added to a predetermined mass of Bertrel XF, and after irradiating with ultrasonic waves for 5 minutes, the solution was left for 1 day, and its solubility was visually confirmed.
Specifically, 0.5 parts by mass and 0.1 parts by mass of ionic liquids were added to 100 parts by mass of Bertrel XF (25 ° C.), irradiated with ultrasonic waves for 5 minutes, and then left for 1 day. , The solubility was visually confirmed and evaluated according to the following evaluation criteria.
In addition, it was visually confirmed, and it was judged that the case where it was transparent was dissolved. In addition, when it was opaque or insoluble, it was judged to be insoluble (insoluble).
The results are shown in Tables 2-1 to 2-2.
〔評価基準〕
・0.5質量%以上:
0.5質量部の添加で溶解している。
・0.1質量%以上0.5質量%未満:
0.5質量部の添加では不溶であるが、0.1質量部の添加では溶解している。
・0.1質量%未満:
0.5質量部、及び0.1質量部のいずれの添加でも不溶である。
〔Evaluation criteria〕
・ 0.5% by mass or more:
It is dissolved by adding 0.5 parts by mass.
-0.1% by mass or more and less than 0.5% by mass:
It is insoluble when 0.5 parts by mass is added, but is dissolved when 0.1 parts by mass is added.
・ Less than 0.1% by mass:
It is insoluble with the addition of either 0.5 parts by mass or 0.1 parts by mass.
実施例1Aのイオン液体のフッ素系溶媒への溶解性は、0.5質量%以上であった。
実施例2Aのイオン液体のフッ素系溶媒への溶解性は、0.5質量%以上であった。
実施例3Aのイオン液体のフッ素系溶媒への溶解性は、0.5質量%以上であった。
実施例4Aのイオン液体のフッ素系溶媒への溶解性は、0.5質量%以上であった。
実施例5Aのイオン液体のフッ素系溶媒への溶解性は、0.5質量%以上であった。
実施例6Aのイオン液体のフッ素系溶媒への溶解性は、0.1質量%以上0.5質量%未満であった。
実施例7Aのイオン液体のフッ素系溶媒への溶解性は、0.5質量%以上であった。
実施例8Aのイオン液体のフッ素系溶媒への溶解性は、0.1質量%以上0.5質量%未満であった。
実施例9Aのイオン液体のフッ素系溶媒への溶解性は、0.5質量%以上であった。
実施例10Aのイオン液体のフッ素系溶媒への溶解性は、0.1質量%以上0.5質量%未満であった。
実施例11Aのイオン液体のフッ素系溶媒への溶解性は、0.5質量%以上であった。
The solubility of the ionic liquid of Example 1A in a fluorinated solvent was 0.5% by mass or more.
The solubility of the ionic liquid of Example 2A in a fluorine-based solvent was 0.5% by mass or more.
The solubility of the ionic liquid of Example 3A in a fluorine-based solvent was 0.5% by mass or more.
The solubility of the ionic liquid of Example 4A in a fluorinated solvent was 0.5% by mass or more.
The solubility of the ionic liquid of Example 5A in a fluorinated solvent was 0.5% by mass or more.
The solubility of the ionic liquid of Example 6A in a fluorinated solvent was 0.1% by mass or more and less than 0.5% by mass.
The solubility of the ionic liquid of Example 7A in a fluorinated solvent was 0.5% by mass or more.
The solubility of the ionic liquid of Example 8A in a fluorinated solvent was 0.1% by mass or more and less than 0.5% by mass.
The solubility of the ionic liquid of Example 9A in a fluorinated solvent was 0.5% by mass or more.
The solubility of the ionic liquid of Example 10A in a fluorinated solvent was 0.1% by mass or more and less than 0.5% by mass.
The solubility of the ionic liquid of Example 11A in a fluorinated solvent was 0.5% by mass or more.
比較例1A〜比較例10Aのイオン液体のフッ素系溶媒への溶解性は、0.1質量%未満であった。 The solubility of the ionic liquids of Comparative Examples 1A to 10A in a fluorine-based solvent was less than 0.1% by mass.
これからわかるように、実施例で用いたイオン液体は、フッ素系溶媒であるバートレルXFに対して0.1質量%以上の溶解性を持ち、ハードディスク用途としての生産に用いるには十分である。 As can be seen from this, the ionic liquid used in the examples has a solubility of 0.1% by mass or more in the fluorine-based solvent Bartrel XF, and is sufficient for production as a hard disk application.
また、同じ6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセン骨格を持つ場合でも、実施例1Bのように、アニオンとしてビス(ノナフルオロブタンスルホニル)イミドを持つ場合には、ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド(比較例1B)、ヘプタデカフルオロオクタンスルホン酸(比較例2B)、トリス(トリフルオロメタンスルホニル)メチド(比較例3B)の場合よりも溶解性に優れている。 Further, even when the same 6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene skeleton is used, as in Example 1B, when the bis (nonaflatebutanesulfonyl) imide is used as an anion. Is higher than that of hexafluorocyclopropane-1,3-bis (sulfonyl) imide (Comparative Example 1B), heptadecafluorooctanesulfonic acid (Comparative Example 2B), and tris (trifluoromethanesulfonyl) methide (Comparative Example 3B). Has excellent solubility.
また、同じ6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセン骨格を持つ場合でも、実施例7Bのように、アニオンとしてトリフルオロメタンスルホン酸を持つ場合には、ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド(比較例1B)、ヘプタデカフルオロオクタンスルホン酸(比較例2B)の場合よりも溶解性に優れている。 Further, even when the same 6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene skeleton is used, when trifluoromethanesulfonic acid is used as an anion as in Example 7B, hexafluoro It has better solubility than the cases of cyclopropane-1,3-bis (sulfonyl) imide (Comparative Example 1B) and heptadecafluorooctanesulfonic acid (Comparative Example 2B).
しかし、アニオン部の分子量に含まれるフッ素含有量は表3に示すように、それぞれ0.589、0.389、0.649、0.372であり、フッ素含有量が高いヘプタデカフルオロオクタンスルホン酸の場合に溶解性は低い。ただし、単なるフッ素含有量で溶解性を考察することは出来ない。その中でビス(ノナフルオロブタンスルホニル)イミド系のイオン液体はフッ素系溶媒への溶解性が改良されることがわかる。 However, as shown in Table 3, the fluorine contents contained in the molecular weight of the anion portion are 0.589, 0.389, 0.649 and 0.372, respectively, and heptadecafluorooctanesulfonic acid having a high fluorine content. In the case of, the solubility is low. However, it is not possible to consider the solubility simply by the fluorine content. Among them, it can be seen that the bis (nonaflatebutanesulfonyl) imide-based ionic liquid has improved solubility in a fluorine-based solvent.
また実施例8Bと比較例7Bとを比較すると、カチオン部のイミダゾールの構造は同じで、アニオン部がスルホン酸からスルホニルイミドに変わった場合に溶解性が改良した。実施例8Bと比較例8Bとを比較すると、1位がブチル基に対してフッ素化炭素を導入した分子設計にしたために溶解性が改良している。総じてではあるが、ビス(ノナフルオロブタンスルホニル)イミド系のイオン液体は対応するノナフルオロブタンスルホン酸に対してフッ素系溶媒への溶解性が改良することがわかる。 Further, when Example 8B and Comparative Example 7B were compared, the structure of the imidazole in the cation portion was the same, and the solubility was improved when the anion portion was changed from sulfonic acid to sulfonylimide. Comparing Example 8B and Comparative Example 8B, the solubility is improved because the molecular design is such that fluorinated carbon is introduced into the butyl group at the 1-position. As a whole, it can be seen that the bis (nonafolic butane sulfonyl) imide-based ionic liquid has improved solubility in the fluorine-based solvent with respect to the corresponding nonafluorobutane sulfonic acid.
また実施例9B及び10Bでは、実施例8Bのオクタデシル基をメチル基にすることにより、分子全体のフッ素含有量を増加させたために、その溶解性は改良して、スルホン酸塩でも溶解するようになった。 Further, in Examples 9B and 10B, since the fluorine content of the whole molecule was increased by changing the octadecyl group of Example 8B to a methyl group, its solubility was improved so that it could be dissolved even with a sulfonate. became.
実施例11B、比較例9B及び比較例10Bはジカチオンの比較であるが、その結合基の長さがそれぞれ3、5、9である。結果としては結合基の長さが短い場合に、フッ素系溶媒への溶解性が改良できることが分かった。 Example 11B, Comparative Example 9B and Comparative Example 10B are comparisons of dications, the lengths of which are binding groups are 3, 5 and 9, respectively. As a result, it was found that the solubility in a fluorine-based solvent can be improved when the length of the binding group is short.
本発明者らの検討結果から、イオン液体のフッ素系溶媒への溶解性に関して、以下の知見が得られた。
同じオクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセン構造を持つイオン液体でもそのオクタデシル基が導入される位置によっても溶解性は異なってくることが分かった。つまり6位に導入されたものでは、アニオンとしてのビス(ノナフルオロブタンスルホニル)イミド構造のものだけが溶解するが、8位に導入されたものでは実施例2Bび実施例3Bからわかるように、ビス(ノナフルオロブタンスルホニル)イミド構造ばかりではなく、6位に導入されたものでは溶解しなかったパーフルオロスルホン酸構造のものも溶解するようになる(比較例2B)。つまり8位にオクタデシル基を導入することにより溶解性は改善されることが分かる。
From the examination results of the present inventors, the following findings were obtained regarding the solubility of ionic liquids in fluorine-based solvents.
It was found that even in an ionic liquid having the same octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene structure, the solubility differs depending on the position where the octadecyl group is introduced. That is, in the case introduced at the 6-position, only the one having a bis (nonaflate sulfonyl) imide structure as an anion is dissolved, but in the case introduced at the 8-position, as can be seen from Examples 2B and 3B. Not only the bis (nonaflatebutanesulfonyl) imide structure but also the perfluorosulfonic acid structure that was not dissolved by the one introduced at the 6-position will be dissolved (Comparative Example 2B). That is, it can be seen that the solubility is improved by introducing an octadecyl group at the 8-position.
7−オクタデシル−1,5,7−トリアザビシクロ[4.4.0]−5−デセンをカチオン構造として持つイオン液体の場合には、比較例4Aのヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミドや比較例5Aのヘプタデカフルオロオクタンスルホン酸では溶解しない。比較例3Aではトリス(トリフルオロメタンスルホニル)メチド−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセンは溶解しない。更に、ここでは紹介しなかった他の検討の結果も踏まえると、溶解性に関しては7−オクタデシル−1,5,7−トリアザビシクロ[4.4.0]−5−デセンのカチオン構造が6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセンよりも溶解性は高いことが推察される。 In the case of an ionic liquid having 7-octadecyl-1,5,7-triazabicyclo [4.4.0] -5-decene as a cation structure, hexafluorocyclopropane-1,3-bis of Comparative Example 4A It does not dissolve in (sulfonyl) imide or heptadecafluorooctanesulfonic acid of Comparative Example 5A. In Comparative Example 3A, tris (trifluoromethanesulfonyl) methide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene is not dissolved. Furthermore, based on the results of other studies not introduced here, the cationic structure of 7-octadecyl-1,5,7-triazabicyclo [4.4.0] -5-decene is 6 in terms of solubility. It is presumed that the solubility is higher than that of -octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene.
オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセン構造を持つイオン液体でもそのアニオンの構造によっても溶解性は異なってくることが分かった。つまりアニオンとしてヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミドやヘプタデカフルオロオクタンスルホン酸の場合には溶解しないが、トリフルオロメタンスルホン酸の場合には溶解することを見出した。この場合にはアニオン部のフッ素含有量では溶解性は説明することができない。 It was found that the solubility of an ionic liquid having an octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene structure differs depending on the anion structure. That is, it was found that hexafluorocyclopropane-1,3-bis (sulfonyl) imide and heptadecafluorooctanesulfonic acid as anions do not dissolve, but trifluoromethanesulfonic acid dissolves. In this case, the solubility cannot be explained by the fluorine content of the anion portion.
1−ヘプタデカフルオロデシルイミダゾール骨格では3位にメチル基を持つ構造のものはオクタデシル基を持つものよりも溶解性に優れ、ノナフルオロブタンスルホン酸塩でもバートレルXFに溶解する。この場合には長鎖炭化水素がメチル基に変わったことにより分子全体のフッ素含有量が増加したためにフッ素系溶媒への溶解性が改良したものと考えられる。 In the 1-heptadecafluorodecylimidazole skeleton, the structure having a methyl group at the 3-position is more soluble than the one having an octadecyl group, and even nonafluorobutane sulfonate also dissolves in Bertrel XF. In this case, it is considered that the solubility in the fluorine-based solvent was improved because the fluorine content of the whole molecule was increased by changing the long-chain hydrocarbon to a methyl group.
ジカチオンの場合には更に結果はトリッキーであり、結合鎖の数が9及び5の場合には溶解性は0.1質量%未満であり、3の場合にのみ溶解性が改良した。ピロリジン骨格を持つN−ブチル−N−オクタデシルピロリジン骨格を持つイオン液体の場合にはフッ素系溶媒への溶解性は0.5質量%以上であるが、ジカチオンにした場合には0.1質量%未満と溶解性が悪化する。ところがイミダゾール骨格の場合にはブチル−オクタデシルイミダゾールのモノカチオンではフッ素系溶媒への溶解性は0.1質量%未満であるが、ジカチオンにすることにより溶解性は改良することを見出した。 In the case of the dication, the result was further tricky, the solubility was less than 0.1% by weight when the number of binding chains was 9 and 5, and the solubility was improved only when the number was 3. In the case of an ionic liquid having a pyrrolidine skeleton N-butyl-N-octadecylpyrrolidine skeleton, the solubility in a fluorosolvent is 0.5% by mass or more, but in the case of a dication, 0.1% by mass. If it is less than, the solubility deteriorates. However, in the case of the imidazole skeleton, the monocation of butyl-octadecylimidazole has a solubility of less than 0.1% by mass in a fluorine-based solvent, but it has been found that the solubility is improved by using a dication.
またここでは紹介しなかったが、長鎖のアルキル基を持つほとんどのイミダゾール系イオン液体はフッ素溶媒に溶解しない。しかしピロリジン系イオン液体の中には溶解するものが実施例4A、実施例5A及び実施例6Aであり、ピロリジン系が溶解しやすいことを見出した。 Although not introduced here, most imidazole-based ionic liquids having a long-chain alkyl group do not dissolve in a fluorine solvent. However, some of the pyrrolidine-based ionic liquids are soluble in Examples 4A, 5A and 6A, and it has been found that the pyrrolidine-based ionic liquid is easily dissolved.
そのため、カチオン部分及びアニオン部分のフッ素系溶媒への溶解性についてまとめると以下のような序列となる。
前記一般式(A−1)中、R21は、炭化水素基を表す。
前記一般式(E)中、R1、R2、及びR3は、それぞれ独立して、水素原子、及び長鎖の炭化水素基のいずれかを表す。ただし、R1、R2、及びR3の少なくとも1つは、長鎖の炭化水素基である。
前記一般式(Y)、及び前記一般式(Z)中、nは、前述のとおりである。
Therefore, the solubility of the cation moiety and the anion moiety in the fluorine-based solvent can be summarized as follows.
In the general formula (A-1), R 21 represents a hydrocarbon group.
In the general formula (E), R 1 , R 2 , and R 3 independently represent either a hydrogen atom or a long-chain hydrocarbon group. However, at least one of R 1 , R 2 , and R 3 is a long-chain hydrocarbon group.
In the general formula (Y) and the general formula (Z), n is as described above.
そのため、イオン液体における酸と塩基との組み合わせとしては塩基では窒素にアルキル基を導入した、ピロリジン〔一般式(D)〕、オクタデシルジアザビシクロ[5.4.0]−7−ウンデセン〔一般式(B)、一般式(A−1)、一般式(A−2)〕、あるいは1,5,7−トリアザビシクロ[4.4.0]−5−デセン〔一般式(C)〕骨格を用いるのが良い。また酸としてはパーフルオロアルカンスルホニルイミド〔一般式(X)〕あるいはアルキル鎖が短いパーフルオロスルホン酸〔一般式(Y)〕を用いるのが良い。
s
Therefore, as a combination of an acid and a base in an ionic liquid, an alkyl group is introduced into nitrogen as a base, pyrrolidine [general formula (D)], octadecyldiazabicyclo [5.4.0] -7-undecene [general formula]. (B), general formula (A-1), general formula (A-2)], or 1,5,7-triazabicyclo [4.4.0] -5-decene [general formula (C)] skeleton Is better to use. Further, as the acid, it is preferable to use perfluoroalkanesulfonylimide [general formula (X)] or perfluorosulfonic acid having a short alkyl chain [general formula (Y)].
s
(実施例1C)
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセンの5%、10%、20%重量減少温度は、それぞれ352.9℃、378.2℃、396.7℃であり、比較例として示した一般的に磁気記録媒体用途の潤滑剤として知られている市販品のパーフルオロポリエーテルZ−DOL(比較例11C)と比較すると100℃以上、またZ−TETRAOL(比較例12C)と比較しても50℃以上高いことが分かる。
(Example 1C)
<Results of thermal stability measurement>
5%, 10% and 20% weight loss temperatures of bis (nonafluorobutanesulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene are 352.9 ° C. and 378, respectively. The temperature is .2 ° C. and 396.7 ° C., which is 100 as compared with the commercially available perfluoropolyether Z-DOL (Comparative Example 11C) which is generally known as a lubricant for magnetic recording media applications shown as a comparative example. It can be seen that the temperature is higher than that of Z-TETRAOL (Comparative Example 12C) by 50 ° C or higher.
(実施例2C)
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド−8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセンの5%、10%、20%重量減少温度は、それぞれ341.1℃、372.9℃、396.3℃であった。市販品のパーフルオロポリエーテルZ−DOL(比較例11C)やZ−TETRAOL(比較例12C)と比較しても、熱安定性が改善されていることが分かる。
(Example 2C)
<Results of thermal stability measurement>
Bis (nonaflate butane sulfonyl) imide-8-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene 5%, 10%, 20% Weight loss temperatures are 341.1 ° C and 372, respectively. It was 9.9 ° C and 396.3 ° C. It can be seen that the thermal stability is also improved as compared with the commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
(実施例3C)
<熱安定性測定結果>
ノナフルオロブタンスルホン酸−8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセンの5%、10%、20%重量減少温度は、それぞれ346.9℃、373.1℃、396.8℃であり、比較例として示した一般的に磁気記録媒体用途の潤滑剤として知られている市販品のパーフルオロポリエーテルZ−DOL(比較例11C)と比較すると150℃以上、またZ−TETRAOL(比較例12C)と比較しても100℃以上高いことが分かる。
(Example 3C)
<Results of thermal stability measurement>
Nonaflate Butane Sulfonic Acid-8-Octadecyl-1,8-diazabicyclo [5.4.0] -7-Undecene 5%, 10%, 20% Weight loss temperatures are 346.9 ° C and 373.1 ° C, respectively. 396.8 ° C., 150 ° C. or higher as compared with the commercially available perfluoropolyether Z-DOL (Comparative Example 11C) shown as a comparative example, which is generally known as a lubricant for magnetic recording media applications. It can also be seen that the temperature is 100 ° C. or higher as compared with Z-TETRAOL (Comparative Example 12C).
(実施例4C)
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド−N−ブチル−N−オクタデシルピロリジニウムの5%、10%、20%重量減少温度は、それぞれ331.4℃、360.2℃、382.5℃であった。市販品のパーフルオロポリエーテルZ−DOL(比較例11C)やZ−TETRAOL(比較例12C)と比較しても、熱安定性が改善されていることが分かる。
(Example 4C)
<Results of thermal stability measurement>
The 5%, 10% and 20% weight loss temperatures of bis (nonaflatebutanesulfonyl) imide-N-butyl-N-octadecylpyrrolidinium were 331.4 ° C, 360.2 ° C and 382.5 ° C, respectively. It was. It can be seen that the thermal stability is also improved as compared with the commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
(実施例5C)
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド−N−オクタデシルピロリジニウムの5%、10%、20%重量減少温度は、それぞれ312.6℃、334.4℃、355.5℃であった。市販品のパーフルオロポリエーテルZ−DOL(比較例11C)やZ−TETRAOL(比較例12C)と比較しても、熱安定性が改善されていることが分かる。
(Example 5C)
<Results of thermal stability measurement>
The 5%, 10% and 20% weight loss temperatures of the bis (nonaflatebutanesulfonyl) imide-N-octadecylpyrrolidinium were 312.6 ° C., 334.4 ° C. and 355.5 ° C., respectively. It can be seen that the thermal stability is also improved as compared with the commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
(実施例6C)
<熱安定性測定結果>
ノナフルオロブタンスルホン酸−N−オクタデシルピロリジニウムの5%、10%、20%重量減少温度は、それぞれ339.4℃、359.0℃、377.3℃であった。市販品のパーフルオロポリエーテルZ−DOL(比較例11C)やZ−TETRAOL(比較例12C)と比較しても、熱安定性が改善されていることが分かる。
(Example 6C)
<Results of thermal stability measurement>
The 5%, 10% and 20% weight loss temperatures of nonaflate butane sulfonic acid-N-octadecylpyrrolidinium were 339.4 ° C, 359.0 ° C and 377.3 ° C, respectively. It can be seen that the thermal stability is also improved as compared with the commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
(実施例7C)
<熱安定性測定結果>
トリフルオロメタンスルホン酸−8−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムの5%、10%、20%重量減少温度は、それぞれ319.2℃、346.6℃、389.0℃であり、比較例として示した一般的に磁気記録媒体用途の潤滑剤として知られている市販品のパーフルオロポリエーテルZ−DOL(比較例11C)と比較すると140℃以上、またZ−TETRAOL(比較例12C)と比較しても80℃以上高いことが分かる。
(Example 7C)
<Results of thermal stability measurement>
Trifluoromethanesulfonic acid-8-octadecyl-1,8-diazabicyclo [5.4.0] -7-Undecenium 5%, 10%, 20% Weight loss temperatures are 319.2 ° C and 346.6 ° C, respectively. The temperature is 389.0 ° C., which is 140 ° C. or higher as compared with the commercially available perfluoropolyether Z-DOL (Comparative Example 11C) which is generally known as a lubricant for magnetic recording media applications shown as a comparative example. It can be seen that the temperature is 80 ° C. or higher even when compared with Z-TETRAOL (Comparative Example 12C).
(実施例8C)
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−オクタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ335.8℃、358.5℃、377.7℃であった。市販品のパーフルオロポリエーテルZ−DOL(比較例11C)やZ−TETRAOL(比較例12C)と比較しても、それぞれ150℃、90℃以上熱安定性が改善されていることが分かる。
(Example 8C)
<Results of thermal stability measurement>
Bis (Nonafluorobutane Sulfonyl) Imide-1-1'H, 1'H, 2'H, 2'H Heptadecafluorodecyl-3-octadecyl 5%, 10%, 20% weight loss temperature of imidazolium The temperature was 335.8 ° C, 358.5 ° C, and 377.7 ° C, respectively. It can be seen that the thermal stability is improved by 150 ° C. and 90 ° C. or higher, respectively, as compared with the commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
(実施例9C)
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−メチルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ350.3℃、365.5℃、381.3℃であり、比較例として示した一般的に磁気記録媒体用途の潤滑剤として知られている市販品のパーフルオロポリエーテルZ−DOL(比較例11C)と比較すると150℃以上、またZ−TETRAOL(比較例12C)と比較しても90℃以上高いことが分かる。
(Example 9C)
<Results of thermal stability measurement>
Bis (Nonafluorobutanesulfonyl) imide-1-1'H, 1'H, 2'H, 2'H Heptadecafluorodecyl-3-methylimidazolium 5%, 10%, 20% weight loss temperature The temperatures are 350.3 ° C. and 365.5 ° C., respectively, and 381.3 ° C., respectively, and the commercially available perfluoropolyether Z-DOL (comparative), which is generally known as a lubricant for magnetic recording media, shown as a comparative example. It can be seen that the temperature is 150 ° C. or higher as compared with Example 11C) and 90 ° C. or higher as compared with Z-TETRAOL (Comparative Example 12C).
(実施例10C)
<熱安定性測定結果>
ノナフルオロブタンスルホン酸−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−メチルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ373.8℃、389.3℃、401.7℃であった。市販品のパーフルオロポリエーテルZ−DOL(比較例11C)やZ−TETRAOL(比較例12C)と比較しても、それぞれ170℃、120℃以上熱安定性が改善されていることが分かる。
(Example 10C)
<Results of thermal stability measurement>
Nonaflate Butane Sulfonic Acid-1-1'H, 1'H, 2'H, 2'H Heptadecafluorodecyl-3-methylimidazolium 5%, 10%, 20% Weight loss temperature is 373. It was 8 ° C., 389.3 ° C., and 401.7 ° C. It can be seen that the thermal stability is improved by 170 ° C. and 120 ° C. or higher, respectively, as compared with the commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
(実施例11C)
<熱安定性測定結果>
1,3−ビス[ビス(ノナフルオロブタンスルホニル)イミド−N−オクタデシルイミダゾリウム)]プロパンの5%、10%、20%重量減少温度は、それぞれ352.3℃、381.9℃、401.4℃であった。市販品のパーフルオロポリエーテルZ−DOL(比較例11C)やZ−TETRAOL(比較例12C)と比較しても、それぞれ170℃、120℃以上熱安定性が改善されていることが分かる。
(Example 11C)
<Results of thermal stability measurement>
1,3-bis [bis (nonaflatebutanesulfonyl) imide-N-octadecylimidazolium)] 5%, 10%, 20% weight loss temperatures of propane were 352.3 ° C, 381.9 ° C, 401. It was 4 ° C. It can be seen that the thermal stability is improved by 170 ° C. and 120 ° C. or higher, respectively, as compared with the commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
(比較例1C)
<熱安定性測定結果>
ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムの5%、10%、20%重量減少温度は、それぞれ346.3℃、384.1℃、414.0℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ−DOL(比較例11C)やZ−TETRAOL(比較例12C)と比較しても、熱安定性は高い。
(Comparative Example 1C)
<Results of thermal stability measurement>
Hexafluorocyclopropane-1,3-bis (sulfonyl) imide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-Undecenium 5%, 10%, 20% weight loss temperature, respectively It was 346.3 ° C., 384.1 ° C., and 414.0 ° C. Since it is an ionic liquid, it has high thermal stability even when compared with commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
(比較例2C)
<熱安定性測定結果>
ヘプタデカフルオロオクタンスルホン酸−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムの5%、10%、20%重量減少温度は、それぞれ361.9℃、382.7℃、403.5℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ−DOL(比較例11C)やZ−TETRAOL(比較例12C)と比較しても、熱安定性は高い。
(Comparative Example 2C)
<Results of thermal stability measurement>
5%, 10% and 20% weight loss temperatures of heptadecafluorooctanesulfonic acid-6-octadecil-1,8-diazabicyclo [5.4.0] -7-undecenium were 361.9 ° C and 382.7, respectively. The temperature was 403.5 ° C. Since it is an ionic liquid, it has high thermal stability even when compared with commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
(比較例3C)
<熱安定性測定結果>
トリス(トリフルオロメタンスルホニル)メチド−6−オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセニウムの5%、10%、20%重量減少温度は、それぞれ354.9℃、385.0℃、404.3℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ−DOL(比較例11C)やZ−TETRAOL(比較例12C)と比較しても、熱安定性は高い。
(Comparative Example 3C)
<Results of thermal stability measurement>
Tris (trifluoromethanesulfonyl) methide-6-octadecyl-1,8-diazabicyclo [5.4.0] -7-undecenium 5%, 10%, 20% Weight loss temperature is 354.9 ° C., 385. It was 0 ° C. and 404.3 ° C. Since it is an ionic liquid, it has high thermal stability even when compared with commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
(比較例4C)
<熱安定性測定結果>
ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド−7−オクタデシル−1,5,7−トリアザビシクロ[4.4.0]−5−デセニウムの5%、10%、20%重量減少温度は、それぞれ288.4℃、376.2℃、412.1℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ−DOL(比較例11C)やZ−TETRAOL(比較例12C)と比較しても、熱安定性は高い。
(Comparative Example 4C)
<Results of thermal stability measurement>
5%, 10%, 20% weight loss of hexafluorocyclopropane-1,3-bis (sulfonyl) imide-7-octadecyl-1,5,7-triazabicyclo [4.4.0] -5-decenium The temperatures were 288.4 ° C, 376.2 ° C and 412.1 ° C, respectively. Since it is an ionic liquid, it has high thermal stability even when compared with commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
(比較例5C)
<熱安定性測定結果>
ヘプタデカフルオロオクタンスルホン酸−7−オクタデシル−1,5,7−トリアザビシクロ[4.4.0]−5−デセニウムの5%、10%、20%重量減少温度は、それぞれ356.1℃、380.4℃、401.5℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ−DOL(比較例11C)やZ−TETRAOL(比較例12C)と比較しても、熱安定性は高い。
(Comparative Example 5C)
<Results of thermal stability measurement>
5%, 10%, and 20% weight loss temperatures of -7-octadecyl-1,5,7-triazabicyclo [4.4.0] -5-decenium heptadecafluorooctanesulfonic acid were 356.1 ° C., respectively. , 380.4 ° C and 401.5 ° C. Since it is an ionic liquid, it has high thermal stability even when compared with commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
(比較例6C)
<熱安定性測定結果>
ヘキサフルオロシクロプロパン−1,3−ビス(スルホニル)イミド−N−オクタデシルピロリジニウムの5%、10%、20%重量減少温度は、それぞれ336.4℃、358.4℃、379.4℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ−DOL(比較例11C)やZ−TETRAOL(比較例12C)と比較しても、熱安定性は高い。
(Comparative Example 6C)
<Results of thermal stability measurement>
5%, 10% and 20% weight loss temperatures of hexafluorocyclopropane-1,3-bis (sulfonyl) imide-N-octadecylpyrrolidinium are 336.4 ° C., 358.4 ° C. and 379.4 ° C., respectively. Met. Since it is an ionic liquid, it has high thermal stability even when compared with commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
(比較例7C)
<熱安定性測定結果>
ノナフルオロブタンスルホン酸−1−1’H,1’H,2’H,2’Hヘプタデカフルオロデシル−3−オクタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ257.5℃、267.6℃、278.4℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ−DOL(比較例11C)やZ−TETRAOL(比較例12C)と比較しても、熱安定性は高い。
(Comparative Example 7C)
<Results of thermal stability measurement>
Nonaflate Butane Sulfonic Acid-1-1'H, 1'H, 2'H, 2'H Heptadecafluorodecyl-3-octadecyl The weight loss temperatures of 5%, 10% and 20% of imidazolium are 257. It was 5 ° C., 267.6 ° C., and 278.4 ° C. Since it is an ionic liquid, it has high thermal stability even when compared with commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
(比較例8C)
<熱安定性測定結果>
ビス(ノナフルオロブタンスルホニル)イミド−1−ブチル−3−n−オクタデシルイミダゾリウムの5%、10%、20%重量減少温度は、それぞれ347.2℃、367.0℃、387.8℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ−DOL(比較例11C)やZ−TETRAOL(比較例12C)と比較しても、熱安定性は高い。
(Comparative Example 8C)
<Results of thermal stability measurement>
5%, 10% and 20% weight loss temperatures of bis (nonaflate butane sulfonyl) imide-1-butyl-3-n-octadecylimidazolium at 347.2 ° C, 367.0 ° C and 387.8 ° C, respectively. there were. Since it is an ionic liquid, it has high thermal stability even when compared with commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
(比較例9C)
<熱安定性測定結果>
1,5−ビス[ビス(ノナフルオロブタンスルホニル)イミド−1−オクタデシルイミダゾリウム]ペンタンの5%、10%、20%重量減少温度は、それぞれ360.1℃、384.4℃、402.0℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ−DOL(比較例11C)やZ−TETRAOL(比較例12C)と比較しても、熱安定性はそれぞれ170℃、120℃以上高い。
(Comparative Example 9C)
<Results of thermal stability measurement>
5%, 10%, and 20% weight loss temperatures of 1,5-bis [bis (nonaflatebutanesulfonyl) imide-1-octadecylimidazolium] pentane are 360.1 ° C, 384.4 ° C, and 402.0, respectively. It was ° C. Since it is an ionic liquid, its thermal stability is 170 ° C. and 120 ° C. or higher, respectively, as compared with the commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
(比較例10C)
<熱安定性測定結果>
1,9−ビス[ビス(ノナフルオロブタンスルホニル)イミド−1−オクタデシルイミダゾリウム]ノナンの5%、10%、20%重量減少温度は、それぞれ355.1℃、381.0℃、400.9℃であった。イオン液体であるために市販品のパーフルオロポリエーテルZ−DOL(比較例11C)やZ−TETRAOL(比較例12C)と比較しても、熱安定性はそれぞれ170℃、110℃以上高い。
(Comparative Example 10C)
<Results of thermal stability measurement>
1,9-Bis [bis (nonafluorobutanesulfonyl) imide-1-octadecylimidazolium] 5%, 10% and 20% weight loss temperatures of nonane are 355.1 ° C, 381.0 ° C and 400.9, respectively. It was ° C. Since it is an ionic liquid, its thermal stability is 170 ° C. and 110 ° C. or higher, respectively, even when compared with commercially available perfluoropolyether Z-DOL (Comparative Example 11C) and Z-TETRAOL (Comparative Example 12C).
(比較例11C)
<熱安定性測定結果>
比較例11Cとして、末端に水酸基をもつ分子量約2000の市販品のパーフルオロポリエーテルZ−DOLの測定を行った結果、5%、10%、20%重量減少温度は、それぞれ165.0℃、197.0℃、226.0℃であり、重量減少は蒸発に起因している。
(Comparative Example 11C)
<Results of thermal stability measurement>
As Comparative Example 11C, as a result of measuring a commercially available perfluoropolyether Z-DOL having a hydroxyl group at the terminal and having a molecular weight of about 2000, the weight loss temperatures of 5%, 10% and 20% were 165.0 ° C., respectively. It was 197.0 ° C. and 226.0 ° C., and the weight loss was due to evaporation.
(比較例12C)
<熱安定性測定結果>
市販品で磁気記録媒体用潤滑剤として一般的に使用されている、末端に水酸基を複数個持つ分子量約2000のパーフルオロポリエーテル(Z−TETRAOL)を、比較例12Cの潤滑剤として用いた。Z−TETRAOLの5%、10%、20%重量減少温度は、それぞれ240.0℃、261.0℃、282.0℃であり、Z−DOL同様に重量減少は蒸発に起因している。
(Comparative Example 12C)
<Results of thermal stability measurement>
A commercially available perfluoropolyether (Z-TETRAOL) having a plurality of hydroxyl groups at the terminal and having a molecular weight of about 2000, which is generally used as a lubricant for a magnetic recording medium, was used as the lubricant of Comparative Example 12C. The 5%, 10%, and 20% weight loss temperatures of Z-TETRAOL are 240.0 ° C., 261.0 ° C., and 282.0 ° C., respectively, and the weight loss is due to evaporation as in Z-DOL.
実施例1C〜実施例11C、比較例1C〜比較例12Cの結果を表4にまとめた。 The results of Examples 1C to 11C and Comparative Examples 1C to 12C are summarized in Table 4.
このようにイオン液体系の潤滑剤は、比較例11C及び12Cの市販品のパーフルオロポリエーテルと比較して熱安定性に優れていることが分かる。
熱安定性についてのイオン液体の中での比較であるが、オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセン構造を持つものについては、実施例1C〜実施例3C、実施例7C及び比較例1C〜比較例3Cから比較できる。この場合には10℃〜50℃程度比較例のほうが重量減少温度は高い。しかし、オクタデシル−1,8−ジアザビシクロ[5.4.0]−7−ウンデセン構造を持つイオン液体は重量減少温度がかなり高く、20%の重量減少温度は400℃に近く、十分な熱安定性を持つものと考えられる。
また、N−オクタデシルピロリジン構造を持つイオン液体については、実施例4C〜実施例6C及び比較例6Cを比較して、熱安定性については、実施例と比較例とで大きな違いはない。しかし前述のようにイオン液体であるために、市販品のパーフルオロポリエーテル構造と比較して非常に高い熱安定性を示す。
また、イミダゾール構造を持つイオン液体については、実施例8C〜実施例11C及び比較例7C〜比較例10Cを比較して、熱安定性については比較例7Cを除いて、実施例と比較例とで大きな違いはない。しかし前述のようにイオン液体であるために、市販品のパーフルオロポリエーテル構造と比較して非常に高い熱安定性を示す。
As described above, it can be seen that the ionic liquid lubricant is excellent in thermal stability as compared with the commercially available perfluoropolyethers of Comparative Examples 11C and 12C.
Regarding the thermal stability in the ionic liquid, those having an octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene structure are described in Examples 1C to 3C. Comparisons can be made from Example 7C and Comparative Examples 1C to 3C. In this case, the weight loss temperature is higher in the comparative example at about 10 ° C. to 50 ° C. However, the ionic liquid having an octadecyl-1,8-diazabicyclo [5.4.0] -7-undecene structure has a considerably high weight loss temperature, and the weight loss temperature of 20% is close to 400 ° C., which is sufficient thermal stability. Is considered to have.
Further, regarding the ionic liquid having an N-octadecylpyrrolidine structure, Examples 4C to 6C and Comparative Example 6C are compared, and there is no significant difference in thermal stability between the Examples and the Comparative Examples. However, since it is an ionic liquid as described above, it exhibits extremely high thermal stability as compared with a commercially available perfluoropolyether structure.
Further, regarding the ionic liquid having an imidazole structure, Example 8C to Example 11C and Comparative Example 7C to Comparative Example 10C were compared, and the thermal stability was described in Example and Comparative Example except for Comparative Example 7C. There is no big difference. However, since it is an ionic liquid as described above, it exhibits extremely high thermal stability as compared with a commercially available perfluoropolyether structure.
(実施例1D〜実施例11D、及び比較例1D〜比較例10D)
<ディスク耐久性試験>
実施例1A〜実施例11A、及び比較例1A〜比較例10Aのそれぞれのイオン液体を含有する潤滑剤を塗布して、磁気ディスクを作製した。表5−1、及び表−2に示すように、磁気ディスクのCSS測定は、50,000回を超え、加熱試験後のCSS測定も50,000回を超え、優れた耐久性を示した。
(Example 1D to Example 11D, and Comparative Example 1D to Comparative Example 10D)
<Disc durability test>
A magnetic disk was prepared by applying a lubricant containing each of the ionic liquids of Examples 1A to 11A and Comparative Examples 1A to 10A. As shown in Tables 5-1 and 2, the CSS measurement of the magnetic disk exceeded 50,000 times, and the CSS measurement after the heating test also exceeded 50,000 times, showing excellent durability.
(比較例11D)
<ディスク耐久性試験>
Z−DOLを含有する潤滑剤を用いて、前述の磁気ディスクを作製した。表5−2に示すように、磁気ディスクのCSS測定は、50,000回を超えたものの、加熱試験後のCSS測定は12,000回であり、加熱試験により耐久性が悪化した。
(Comparative Example 11D)
<Disc durability test>
The above-mentioned magnetic disk was prepared using a lubricant containing Z-DOL. As shown in Table 5-2, the CSS measurement of the magnetic disk exceeded 50,000 times, but the CSS measurement after the heating test was 12,000 times, and the durability was deteriorated by the heating test.
(比較例12D)
<ディスク耐久性試験>
Z−TETRAOLを含有する潤滑剤を用いて、前述の磁気ディスクを作製した。表5−2に示すように、磁気ディスクのCSS測定は、50,000回を超えたものの、加熱試験後のCSS測定は36,000回であり、加熱試験により耐久性が悪化した。
(Comparative Example 12D)
<Disc durability test>
The above-mentioned magnetic disk was prepared using a lubricant containing Z-TETRAOL. As shown in Table 5-2, the CSS measurement of the magnetic disk exceeded 50,000 times, but the CSS measurement after the heating test was 36,000 times, and the durability was deteriorated by the heating test.
実施例1D〜実施例11D、及び比較例1D〜比較例12Dの結果を、表5−1及び表5−2にまとめた。 The results of Examples 1D to 11D and Comparative Examples 1D to 12D are summarized in Tables 5-1 and 5-2.
(実施例1E〜実施例11E、比較例1E〜比較例12E)
実施例1A〜11Aのイオン液体、比較例1A〜10Aのイオン液体、Z−DOL、及びZ−TETRAOLをそれぞれ含有する潤滑剤を用いて、前述の磁気テープを作製した。そして、以下の測定を行った。結果を表6−1、表6−2に示す。
・100回のシャトル走行後の磁気テープの摩擦係数
温度−5℃の環境下、又は温度40℃、相対湿度90%環境下
・スチル耐久試験
温度−5℃の環境下、又は温度40℃、相対湿度30%環境下
・シャトル耐久試験
温度−5℃の環境下、又は温度40℃、相対湿度90%環境下
・加熱試験後の100回のシャトル走行後の磁気テープの摩擦係数
温度−5℃の環境下、又は温度40℃、相対湿度90%環境下
・加熱試験後のスチル耐久試験
温度−5℃の環境下、又は温度40℃、相対湿度30%環境下
・加熱試験後のシャトル耐久試験
温度−5℃の環境下、又は温度40℃、相対湿度90%環境下
(Example 1E to Example 11E, Comparative Example 1E to Comparative Example 12E)
The above-mentioned magnetic tape was prepared by using a lubricant containing the ionic liquids of Examples 1A to 11A, the ionic liquids of Comparative Examples 1A to 10A, Z-DOL, and Z-TETRAOL, respectively. Then, the following measurements were made. The results are shown in Table 6-1 and Table 6-2.
・ Friction coefficient of magnetic tape after 100 shuttle runs In an environment with a temperature of -5 ° C or a temperature of 40 ° C and a relative humidity of 90% ・ Still durability test In an environment with a temperature of -5 ° C or a temperature of 40 ° C, relative Humidity 30% environment ・ Shuttle durability test Under temperature -5 ℃ environment, or temperature 40 ℃, relative humidity 90% environment ・ Friction coefficient of magnetic tape after 100 shuttle runs after heating test Temperature -5 ℃ Environment or temperature 40 ° C, relative humidity 90% environment-Still durability test after heating test Temperature -5 ° C environment or temperature 40 ° C, relative humidity 30% environment-Shuttle durability test temperature after heating test In an environment of -5 ° C, or in a temperature of 40 ° C and relative humidity of 90%
実施例1E〜11E、及び比較例1E〜12Eの結果を、表6−1及び表6−2にまとめる。 The results of Examples 1E to 11E and Comparative Examples 1E to 12E are summarized in Tables 6-1 and 6-2.
表中、スチル耐久性の「>60」は、60分超であることを表す。
表中、シャトル耐久性の「>200」は、200回超であることを表す。
In the table, ">60" for still durability indicates that it is over 60 minutes.
In the table, the shuttle durability ">200" indicates that the number of times exceeds 200 times.
以下のことが確認できた。
実施例1A〜実施例11Aのそれぞれのイオン液体を含有する潤滑剤を塗布した磁気テープは、優れた摩擦特性、スチル耐久性、及びシャトル耐久性を有することが分かった。
比較例1A〜比較例10Aのそれぞれのイオン液体を含有する潤滑剤を塗布した磁気テープは、優れた摩擦特性、スチル耐久性、及びシャトル耐久性を有することが分かった。この比較例潤滑剤はイオン液体であるゆえに加熱試験後にも優れた磁気テープ耐久性を示した。
Z−DOLを塗布した磁気テープは、スチル耐久性、及びシャトル耐久性の劣化が大きいことが分かった。
Z−TETRAOLを塗布した磁気テープは、スチル耐久性、及びシャトル耐久性の劣化が大きいことが分かった。
The following was confirmed.
The lubricant-coated magnetic tapes containing the respective ionic liquids of Examples 1A to 11A were found to have excellent frictional properties, still durability, and shuttle durability.
It was found that the magnetic tape coated with the lubricant containing each of the ionic liquids of Comparative Examples 1A to 10A had excellent friction characteristics, still durability, and shuttle durability. Since this comparative example lubricant is an ionic liquid, it showed excellent magnetic tape durability even after the heating test.
It was found that the magnetic tape coated with Z-DOL had a large deterioration in still durability and shuttle durability.
It was found that the magnetic tape coated with Z-TETRAOL had a large deterioration in still durability and shuttle durability.
表6−1及び表6−2から、共役塩基と、共役酸とを有するイオン液体を含有し、前記共役酸が、炭素数が6以上の直鎖状の炭化水素基を含む基を有し、前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であり、前記イオン液体のCF3(CHF)2CF2CF3に対する溶解性が、CF3(CHF)2CF2CF3100質量部に対して、0.1質量部以上であるイオン液体系潤滑剤を用いることにより、優れた耐熱性、並びに磁気テープ、及び磁気ディスクにおける耐久性を得られることが分かった。更には、耐熱性及び磁気記録媒体の耐久性に優れるばかりでなく、フッ素系溶媒にも溶解するので、特にハードディスクの応用を考えたときに製造プロセスの上でも問題はない。
以上の説明からも明らかなように、共役塩基と、共役酸とを有するイオン液体を含有し、前記共役酸が、炭素数が6以上の直鎖状の炭化水素基を含む基を有し、前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であり、前記イオン液体のCF3(CHF)2CF2CF3に対する溶解性が、CF3(CHF)2CF2CF3100質量部に対して、0.1質量部以上であるイオン液体系潤滑剤は、分解温度及び5%、10%、20%重量減少温度が高く熱安定性に優れる。また高温条件下においても従来のパーフルオロポリエーテルと比較しても優れた潤滑性を保つことができ、また、長期に亘って潤滑性を保つことができる。したがって、このイオン液体を含有する潤滑剤を用いた磁気記録媒体は、非常に優れた走行性、耐摩耗性、及び耐久性を得ることができる。またフッ素系溶媒にも溶解するので、特にハードディスクの応用を考えたときに製造プロセスの上でも問題はない。
From Tables 6-1 and 6-2, it contains an ionic liquid having a conjugate base and a conjugate acid, and the conjugate acid has a group containing a linear hydrocarbon group having 6 or more carbon atoms. , The pKa of the acid that is the source of the conjugate base in acetonitrile is 10 or less, and the solubility of the ionic liquid in CF 3 (CHF) 2 CF 2 CF 3 is CF 3 (CHF) 2 CF 2 CF. 3 It was found that excellent heat resistance and durability in magnetic tapes and magnetic disks can be obtained by using an ionic liquid lubricant having an amount of 0.1 parts by mass or more with respect to 100 parts by mass. Furthermore, not only is it excellent in heat resistance and durability of the magnetic recording medium, but it also dissolves in a fluorine-based solvent, so there is no problem in the manufacturing process, especially when considering the application of a hard disk.
As is clear from the above description, the conjugate acid contains an ionic liquid having a conjugate base and a conjugate acid, and the conjugate acid has a group containing a linear hydrocarbon group having 6 or more carbon atoms. The pKa of the acid that is the source of the conjugate base in acetonitrile is 10 or less, and the solubility of the ionic liquid in CF 3 (CHF) 2 CF 2 CF 3 is CF 3 (CHF) 2 CF 2 CF 3 The ionic liquid lubricant having 0.1 parts by mass or more with respect to 100 parts by mass has a high decomposition temperature and 5%, 10%, and 20% weight loss temperatures, and is excellent in thermal stability. Further, even under high temperature conditions, excellent lubricity can be maintained as compared with conventional perfluoropolyether, and lubricity can be maintained for a long period of time. Therefore, a magnetic recording medium using a lubricant containing this ionic liquid can obtain extremely excellent running performance, abrasion resistance, and durability. In addition, since it is soluble in fluorine-based solvents, there is no problem in the manufacturing process, especially when considering the application of hard disks.
11 基板
12 下地層
13 磁性層
14 カーボン保護層
15 潤滑剤層
21 基板
22 磁性層
23 カーボン保護層
24 潤滑剤層
25 バックコート層
11 Substrate 12 Underlayer 13 Magnetic layer 14 Carbon protective layer 15 Lubricant layer 21 Substrate 22 Magnetic layer 23 Carbon protective layer 24 Lubricant layer 25 Backcoat layer
Claims (3)
前記共役酸が、下記一般式(A)、下記一般式(B)、下記一般式(C)、下記一般式(D)、下記一般式(E)、及び下記一般式(F)のいずれかで表され、
前記共役塩基が、下記一般式(X)、下記一般式(Y)、及び下記一般式(Z)のいずれかで表され、
前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であり、
前記イオン液体のCF3(CHF)2CF2CF3に対する溶解性が、CF3(CHF)2CF2CF3100質量部に対して、0.1質量部以上であることを特徴とする潤滑剤。
ただし、前記一般式(B)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
ただし、前記一般式(C)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
ただし、前記一般式(D)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R2は、水素原子、及び炭化水素基のいずれかを表す。
ただし、前記一般式(E)中、R3は、炭化水素基を表し、R4は、水素原子、及び炭化水素基のいずれかを表し、R5は、下記一般式(IV)で表される基を表す。
−(CH 2 ) m −(CF 2 ) n −CF 3 一般式(IV)
前記一般式(IV)中、mは、1以上6以下の整数を表し、nは、3以上20以下の整数を表し、m+nは、7以上である。
ただし、前記一般式(F)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上3以下の整数を表す。
ただし、前記一般式(Y)中、nは、1以上12以下の整数を表す。
ただし、前記一般式(Z)中、nは、0以上6以下の整数を表す。 Contains an ionic liquid having a conjugate base and a conjugate acid,
The conjugate acid is any of the following general formula (A), the following general formula (B), the following general formula (C), the following general formula (D), the following general formula (E), and the following general formula (F). Represented by
The conjugate base is represented by any of the following general formula (X), the following general formula (Y), and the following general formula (Z).
The pKa of the acid that is the source of the conjugate base in acetonitrile is 10 or less.
Lubricant characterized in that the solubility of the ionic liquid in CF 3 (CHF) 2 CF 2 CF 3 is 0.1 part by mass or more with respect to 100 parts by mass of CF 3 (CHF) 2 CF 2 CF 3. Agent.
However, in the general formula (B), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms.
However, in the general formula (C), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms.
However, in the general formula (D), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and R 2 represents either a hydrogen atom or a hydrocarbon group.
However, in the general formula (E), R 3 represents a hydrocarbon group, R 4 represents either a hydrogen atom or a hydrocarbon group, and R 5 is represented by the following general formula (IV). Represents a group .
- (CH 2) m - ( CF 2) n -CF 3 formula (IV)
In the general formula (IV), m represents an integer of 1 or more and 6 or less, n represents an integer of 3 or more and 20 or less, and m + n is 7 or more .
However, in the general formula (F), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and n represents an integer of 1 or more and 3 or less.
However, in the general formula (Y), n represents an integer of 1 or more and 12 or less.
However, in the general formula (Z), n represents an integer of 0 or more and 6 or less.
前記共役酸が、下記一般式(A)、下記一般式(B)、下記一般式(C)、下記一般式(D)、下記一般式(E)、及び下記一般式(F)のいずれかで表され、
前記共役塩基が、下記一般式(X)、下記一般式(Y)、及び下記一般式(Z)のいずれかで表され、
前記共役塩基の元となる酸のアセトニトリル中でのpKaが、10以下であり、
CF3(CHF)2CF2CF3に対する溶解性が、CF3(CHF)2CF2CF3100質量部に対して、0.1質量部以上であることを特徴とするイオン液体。
ただし、前記一般式(B)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
ただし、前記一般式(C)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表す。
ただし、前記一般式(D)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、R2は、水素原子、及び炭化水素基のいずれかを表す。
ただし、前記一般式(E)中、R3は、炭化水素基を表し、R4は、水素原子、及び炭化水素基のいずれかを表し、R5は、下記一般式(IV)で表される基を表す。
−(CH 2 ) m −(CF 2 ) n −CF 3 一般式(IV)
前記一般式(IV)中、mは、1以上6以下の整数を表し、nは、3以上20以下の整数を表し、m+nは、7以上である。
ただし、前記一般式(F)中、R1は、炭素数が6以上の直鎖状の炭化水素基を含む基を表し、nは、1以上3以下の整数を表す。
ただし、前記一般式(Y)中、nは、1以上12以下の整数を表す。
ただし、前記一般式(Z)中、nは、0以上6以下の整数を表す。 It has a conjugate base and a conjugate acid,
The conjugate acid is any of the following general formula (A), the following general formula (B), the following general formula (C), the following general formula (D), the following general formula (E), and the following general formula (F). Represented by
The conjugate base is represented by any of the following general formula (X), the following general formula (Y), and the following general formula (Z).
The pKa of the acid that is the source of the conjugate base in acetonitrile is 10 or less.
CF 3 (CHF) solubility 2 CF 2 CF 3 are, CF 3 (CHF) against 2 CF 2 CF 3 100 parts by weight, ionic liquids, characterized in that at least 0.1 part by weight.
However, in the general formula (B), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms.
However, in the general formula (C), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms.
However, in the general formula (D), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and R 2 represents either a hydrogen atom or a hydrocarbon group.
However, in the general formula (E), R 3 represents a hydrocarbon group, R 4 represents either a hydrogen atom or a hydrocarbon group, and R 5 is represented by the following general formula (IV). Represents a group .
- (CH 2) m - ( CF 2) n -CF 3 formula (IV)
In the general formula (IV), m represents an integer of 1 or more and 6 or less, n represents an integer of 3 or more and 20 or less, and m + n is 7 or more .
However, in the general formula (F), R 1 represents a group containing a linear hydrocarbon group having 6 or more carbon atoms, and n represents an integer of 1 or more and 3 or less.
However, in the general formula (Y), n represents an integer of 1 or more and 12 or less.
However, in the general formula (Z), n represents an integer of 0 or more and 6 or less.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/753,231 US20180237713A1 (en) | 2015-08-20 | 2016-08-16 | Ionic Liquid, Lubricant, and Magnetic Recording Medium |
PCT/JP2016/073919 WO2017030122A1 (en) | 2015-08-20 | 2016-08-16 | Ionic liquid, lubricant, and magnetic recording medium |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015162876 | 2015-08-20 | ||
JP2015162876 | 2015-08-20 | ||
JP2016024995 | 2016-02-12 | ||
JP2016024995 | 2016-02-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017145378A JP2017145378A (en) | 2017-08-24 |
JP6780945B2 true JP6780945B2 (en) | 2020-11-04 |
Family
ID=59680643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016057804A Active JP6780945B2 (en) | 2015-08-20 | 2016-03-23 | Ionic liquids, lubricants and magnetic recording media |
Country Status (2)
Country | Link |
---|---|
US (1) | US20180237713A1 (en) |
JP (1) | JP6780945B2 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5631604B2 (en) * | 2009-02-19 | 2014-11-26 | ダブリュディ・メディア・シンガポール・プライベートリミテッド | Manufacturing method of magnetic disk |
JP5679680B2 (en) * | 2009-03-06 | 2015-03-04 | 日本合成化学工業株式会社 | Ionic liquid composition and use thereof |
JP5717460B2 (en) * | 2011-02-09 | 2015-05-13 | 株式会社ネオス | Fluorine-containing ionic liquid synthetic lubricant |
JP5957401B2 (en) * | 2012-03-30 | 2016-07-27 | 出光興産株式会社 | Lubricating base oil and lubricating oil composition |
JP5902074B2 (en) * | 2012-09-26 | 2016-04-13 | 出光興産株式会社 | Lubricating oil composition |
JP6283515B2 (en) * | 2012-12-28 | 2018-02-21 | デクセリアルズ株式会社 | Ionic liquid, lubricant and magnetic recording medium |
JP6391916B2 (en) * | 2013-06-21 | 2018-09-19 | 日東電工株式会社 | Optical pressure-sensitive adhesive layer, optical film with pressure-sensitive adhesive layer, and image display device |
-
2016
- 2016-03-23 JP JP2016057804A patent/JP6780945B2/en active Active
- 2016-08-16 US US15/753,231 patent/US20180237713A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
JP2017145378A (en) | 2017-08-24 |
US20180237713A1 (en) | 2018-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6305844B2 (en) | Ionic liquid, lubricant and magnetic recording medium | |
JP6294158B2 (en) | Ionic liquid, lubricant and magnetic recording medium | |
JP6374708B2 (en) | Ionic liquid, lubricant and magnetic recording medium | |
US20200216773A1 (en) | Ionic Liquid, Lubricant, and Magnetic Recording Medium | |
JP6862254B2 (en) | Ionic liquids, lubricants and magnetic recording media | |
JP6305845B2 (en) | Ionic liquid, lubricant and magnetic recording medium | |
WO2017141775A1 (en) | Ionic liquid, lubricant, and magnetic recording medium | |
JP6576656B2 (en) | Ionic liquid, lubricant and magnetic recording medium | |
JP6780965B2 (en) | Lubricant and magnetic recording medium | |
WO2017030122A1 (en) | Ionic liquid, lubricant, and magnetic recording medium | |
JP6780945B2 (en) | Ionic liquids, lubricants and magnetic recording media | |
JP6663793B2 (en) | Ionic liquid, lubricant and magnetic recording medium | |
JP6702778B2 (en) | Ionic liquid, lubricant and magnetic recording medium | |
WO2017022788A1 (en) | Ionic liquid, lubricant, and magnetic recording medium | |
JP6702816B2 (en) | Ionic liquid, lubricant and magnetic recording medium | |
WO2016121439A1 (en) | Ionic liquid, lubricant, and magnetic recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160830 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181011 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200421 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200518 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201006 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201015 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6780945 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |