JP6779768B2 - Adsorbent containing amorphous iron (III) hydroxide and its production method - Google Patents

Adsorbent containing amorphous iron (III) hydroxide and its production method Download PDF

Info

Publication number
JP6779768B2
JP6779768B2 JP2016234552A JP2016234552A JP6779768B2 JP 6779768 B2 JP6779768 B2 JP 6779768B2 JP 2016234552 A JP2016234552 A JP 2016234552A JP 2016234552 A JP2016234552 A JP 2016234552A JP 6779768 B2 JP6779768 B2 JP 6779768B2
Authority
JP
Japan
Prior art keywords
hydroxide
iii
iron
adsorbent
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016234552A
Other languages
Japanese (ja)
Other versions
JP2018089570A (en
Inventor
弘行 桑野
弘行 桑野
慎介 宮部
慎介 宮部
木ノ瀬 豊
豊 木ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2016234552A priority Critical patent/JP6779768B2/en
Priority to PCT/JP2017/042708 priority patent/WO2018101286A1/en
Publication of JP2018089570A publication Critical patent/JP2018089570A/en
Application granted granted Critical
Publication of JP6779768B2 publication Critical patent/JP6779768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Iron (AREA)

Description

本発明は、特にヨウ素イオンの吸着性能に優れた吸着剤及びその製造方法に関するものである。 The present invention particularly relates to an adsorbent having excellent iodine ion adsorption performance and a method for producing the same.

原子力施設から排出される放射性ヨウ素は、ヨウ素(I2)、ヨウ化水素酸(HI)及びヨウ化メチル(CH3I)の3種類と言われている。 Radioiodine emitted from nuclear facilities is said to be of three types: iodine (I 2 ), hydroiodic acid (HI) and methyl iodide (CH 3 I).

これらの放射性ヨウ素の除去方法としては、次の方法が用いられている。
(1)ヨウ素含有気体又は液体を、銀ゼオライトに接触させてヨウ化銀として捕集する方法。
(2)ヨウ化カリウムを添着した添着活性炭を大量に使用して、放射性ヨウ素(ヨウ素131)を非放射性ヨウ素と同位体交換することによって捕集する方法。
(3)ヨウ素含有気体又は液体を、アミノ基を有するイオン交換性繊維に接触させて、除去する方法。
(4)不溶性のシクロデキストリン又はその誘導体を有効成分としてヨウ素を吸着する方法。
(5)水酸化セリウムを吸着剤として用いてヨウ素酸を吸着する方法。
The following methods are used as methods for removing these radioactive iodines.
(1) A method in which an iodine-containing gas or liquid is brought into contact with silver zeolite and collected as silver iodide.
(2) A method of collecting radioactive iodine (iodine-131) by isotope exchange with non-radioactive iodine using a large amount of impregnated activated carbon impregnated with potassium iodide.
(3) A method for removing an iodine-containing gas or liquid by contacting it with an ion-exchangeable fiber having an amino group.
(4) A method for adsorbing iodine using insoluble cyclodextrin or a derivative thereof as an active ingredient.
(5) A method of adsorbing iodic acid using cerium hydroxide as an adsorbent.

また、水酸化鉄(III)を吸着剤として用いる方法も提案されている。
非特許文献1では、ヨウ素酸イオンを含む溶液に硝酸鉄(III)と水酸化ナトリウムを添加して生成される水酸化鉄(III)にヨウ素酸イオンを共沈させて除去することが提案されている。
また、特許文献1では、鉄イオンを含む水溶液を、アルカリで中和して沈殿を生成させ、該沈澱を脱イオン水で洗浄し、乾燥した水酸化鉄(III)を吸着剤とすることが提案されている。
A method of using iron (III) hydroxide as an adsorbent has also been proposed.
Non-Patent Document 1 proposes to remove iodic acid ions by coprecipitating iron (III) hydroxide produced by adding iron (III) nitrate and sodium hydroxide to a solution containing iodic acid ions. ing.
Further, in Patent Document 1, an aqueous solution containing iron ions is neutralized with an alkali to form a precipitate, the precipitate is washed with deionized water, and dried iron (III) hydroxide is used as an adsorbent. Proposed.

特開2016−123902号公報Japanese Unexamined Patent Publication No. 2016-12302

RADIOISOTOPES,51,149−156頁、2002年RADIOISOTOPES, 51, 149-156, 2002

最近、ヨウ素、ヨウ化水素酸、ヨウ化メチルの他に、ヨウ素酸(IO3)イオンの除去が問題になっている。これは、原発汚染水の処理工程において、次亜塩素酸ソーダが使用されているため、汚染水中のヨウ素イオンが次亜塩素酸ソーダにより酸化されてヨウ素酸イオンが生成することに起因しているものと推定される。 Recently, in addition to iodine, hydroiodic acid, and methyl iodide, the removal of iodic acid (IO 3 ) ions has become a problem. This is because sodium hypochlorite is used in the process of treating contaminated water from the nuclear power plant, so iodine ions in the contaminated water are oxidized by sodium hypochlorite to generate iodic acid ions. It is presumed to be.

銀ゼオライトや水酸化セリウム等の無機系の吸着剤は、ヨウ素酸イオンの吸着性能に優れているが、高価であり工業的に有利でない。 Inorganic adsorbents such as silver zeolite and cerium hydroxide are excellent in adsorbing performance of iodic acid ions, but they are expensive and not industrially advantageous.

水酸化鉄(III)は、安価な材料ではあるが、ヨウ素酸イオン等に対する更なる吸着性能の向上が求められている。 Although iron (III) hydroxide is an inexpensive material, it is required to further improve its adsorption performance for iodic acid ions and the like.

例えば、原子力施設から排出される放射性物質は、放射性物質の吸着剤を充填したカラム(吸着塔)を有した水処理システムにより吸着除去されている。 For example, radioactive substances discharged from a nuclear facility are adsorbed and removed by a water treatment system having a column (adsorption tower) filled with an adsorbent for radioactive substances.

従来の水酸化鉄(III)の吸着剤に係る非特許文献1では、ヨウ素酸イオンを含む溶液から生成される水酸化鉄(III)にヨウ素酸イオンを共沈させて除去するにあたり、ヨウ素酸イオンを含む溶液側の条件の検討を行っているが、該水酸化鉄(III)を反応液から回収し、カラム等に充填して用いる吸着剤の技術については何ら検討していない。 In Non-Patent Document 1 relating to a conventional adsorbent for iron (III) hydroxide, iodic acid is used for co-precipitating and removing iodate ions in iron (III) hydroxide generated from a solution containing iodate ions. Although the conditions on the solution side containing ions are being investigated, no study has been made on the technology of the adsorbent used by recovering the iron (III) hydroxide from the reaction solution and filling it in a column or the like.

また、カラム等に充填して用いる吸着剤は、通常は造粒品が用いられるが、バインダーを使用して水酸化鉄(III)を造粒した吸着剤をヨウ素酸イオンの除去に適用しようとすると、バインダー成分により、ヨウ素酸イオンに対する吸着性能が低下しやすい。また、他の無機材料及び有機材料に水酸化鉄(III)を担持させた吸着剤は、有効成分とする水酸化鉄(III)の含有率が低いために、吸着性能が低くなると言う問題がある。 In addition, as the adsorbent used by filling the column or the like, a granulated product is usually used, but an adsorbent obtained by granulating iron (III) hydroxide using a binder is applied to remove iodic acid ions. Then, the adsorption performance for iodate ions tends to decrease due to the binder component. Further, the adsorbent in which iron (III) hydroxide is supported on other inorganic materials and organic materials has a problem that the adsorption performance is lowered because the content of iron (III) hydroxide as an active ingredient is low. is there.

従って、本発明の目的は、カラム等に充填しても用いることができ、特にヨウ素酸イオンの吸着性能に優れた水酸化鉄(III)を含有する吸着剤及びその工業的に有利な製造方法を提供することにある。 Therefore, an object of the present invention is an adsorbent containing iron (III) hydroxide, which can be used even when packed in a column or the like and has excellent adsorption performance of iodic acid ions, and an industrially advantageous production method thereof. Is to provide.

本発明者らは上記実情に鑑み鋭意研究を重ねた結果、25〜700℃の昇温過程のDSC昇温特性曲線上に現れる発熱ピークの温度が特定範囲にあり、25〜700℃まで温度上昇したときの重量減少率が特定値以上で、且つ電気伝導度が特定範囲以下にある非晶質の水酸化鉄(III)を得ることにより、特にヨウ素酸イオンの吸着性能に優れ、また、バインダーを用いることなく造粒可能な非晶質の水酸化鉄(III)になること。さらに該非晶質の水酸化鉄(III)は、造粒品として用いても、特にヨウ素酸イオンの吸着性能に優れたものであることを見出し本発明を完成するに到った。 As a result of diligent research in view of the above circumstances, the present inventors have a specific range of the temperature of the exothermic peak appearing on the DSC temperature rise characteristic curve in the temperature rise process of 25 to 700 ° C, and the temperature rises to 25 to 700 ° C. By obtaining amorphous iron (III) hydroxide having a weight loss rate of more than a specific value and an electrical conductivity of less than a specific range, the adsorption performance of iodic acid ions is particularly excellent, and the binder is also used. To become amorphous iron hydroxide (III) that can be granulated without using. Further, they have found that the amorphous iron (III) hydroxide is particularly excellent in the adsorption performance of iodic acid ions even when used as a granulated product, and have completed the present invention.

即ち、本発明が提供しようとする吸着剤は、25〜700℃の昇温過程のDSC昇温特性曲線上に現れる発熱ピークの温度が350〜400℃で、25〜700℃まで温度上昇したときの重量減少率が18%以上で、且つ電気伝導度が、14mS/cm以下である非晶質の水酸化鉄(III)を含有することを特徴とするものである。 That is, the adsorbent to be provided by the present invention has an exothermic peak temperature of 350 to 400 ° C. that appears on the DSC temperature rise characteristic curve in the temperature rise process of 25 to 700 ° C., and the temperature rises to 25 to 700 ° C. It is characterized by containing amorphous iron (III) hydroxide having a weight loss rate of 18% or more and an electric conductivity of 14 mS / cm or less.

また、本発明が提供しようとする吸着剤の製造方法は、水溶媒中で、鉄の鉱酸塩と水酸化アルカリとの中和反応を行い水酸化鉄(III)を含むスラリーを調製する第一工程、該スラリーをpH3.0〜5.0で熟成する第二工程、次いで水酸化鉄(III)を含む10質量%スラリーの電気伝導度が14mS/cm以下となるまで水で洗浄処理する第三工程、次いで洗浄処理後の含水状態の水酸化鉄(III)を押出成形し、得られる成形品を150℃以下で乾燥する第四工程と、を有することを特徴とするものである。 Further, the method for producing an adsorbent to be provided by the present invention is to prepare a slurry containing iron (III) hydroxide by performing a neutralization reaction between an iron mineral salt and an alkali hydroxide in an aqueous solvent. One step, the second step of aging the slurry at pH 3.0-5.0, then washing with water until the electrical conductivity of the 10 mass% slurry containing iron (III) hydroxide is 14 mS / cm or less. It is characterized by having a third step, and then a fourth step of extrusion-molding the water-containing iron (III) after the washing treatment and drying the obtained molded product at 150 ° C. or lower.

本発明によれば、カラム等に充填しても用いることができ、特にヨウ素酸イオンの吸着性能に優れた非晶質の水酸化鉄(III)を含有する吸着剤を提供することができるとともに、該吸着剤として有効な非晶質の水酸化鉄(III)を工業的に有利な方法で製造することができる。 According to the present invention, it is possible to provide an adsorbent containing amorphous iron (III) hydroxide, which can be used even if it is packed in a column or the like and has particularly excellent adsorption performance for iodate ions. , Amorphous iron hydroxide (III) effective as the adsorbent can be produced by an industrially advantageous method.

実施例1で得られた非晶質の水酸化鉄(III)のX線回折図。X-ray diffraction pattern of amorphous iron (III) hydroxide obtained in Example 1. 実施例2で得られた非晶質の水酸化鉄(III)のX線回折図。X-ray diffraction pattern of amorphous iron (III) hydroxide obtained in Example 2. 実施例1で得られた非晶質の水酸化鉄(III)のDSC昇温特性曲線。The DSC temperature rising characteristic curve of amorphous iron (III) hydroxide obtained in Example 1. FIG. 実施例2で得られた非晶質の水酸化鉄(III)のDSC昇温特性曲線。The DSC temperature rising characteristic curve of amorphous iron (III) hydroxide obtained in Example 2. FIG. 比較例1で得られた非晶質の水酸化鉄(III)のDSC昇温特性曲線。The DSC temperature rising characteristic curve of amorphous iron (III) hydroxide obtained in Comparative Example 1. 比較例2で得られた非晶質の水酸化鉄(III)のDSC昇温特性曲線。The DSC temperature rising characteristic curve of amorphous iron (III) hydroxide obtained in Comparative Example 2. 実施例2で得られた非晶質の水酸化鉄(III)を吸着剤とするカラム試験の結果を示す図。The figure which shows the result of the column test using the amorphous iron (III) hydroxide obtained in Example 2 as an adsorbent.

以下、本発明をその好ましい実施形態に基づいて説明する。
本発明に係る吸着剤は、非晶質の水酸化鉄(III)を含有するものである。本発明の吸着剤として用いる非晶質の水酸化鉄(III)は、粉体であってもよいし、該粉体を粒状化した造粒粒子であってもよく、それらの混合物であってもよい。
ここでいう粉体はレーザー回折散乱式粒度分布法によるメディアン径D50が1〜100μmであることが好ましい。
Hereinafter, the present invention will be described based on the preferred embodiment thereof.
The adsorbent according to the present invention contains amorphous iron (III) hydroxide. The amorphous iron (III) hydroxide used as the adsorbent of the present invention may be a powder, or may be granulated particles obtained by granulating the powder, or a mixture thereof. May be good.
The powder referred to here preferably has a median diameter D50 of 1 to 100 μm according to a laser diffraction / scattering type particle size distribution method.

本発明で吸着剤として用いる非晶質の水酸化鉄(III)は、カラムに充填して用いる観点から、造粒品であることが好ましい。造粒品の粒度は好ましくは200〜1000μm、さらに好ましくは300〜600μmである。具体的にはJIS Z8801−1規格による目開きが212μmの篩と1mmの篩とを用いたときに、吸着剤の98質量%以上、特に99質量%以上が目開き1mmの篩を通り、且つ98質量%以上、特に99質量%以上が目開き212μmの篩を通らないことが好ましい。このように、本発明の吸着剤中に212μm未満の粒径のものが少ない場合、吸着剤を吸着塔に充填して通水すると、粉体が吸着塔内で詰まりにくいため好ましい。また、本発明の吸着剤中に1mm超の粒径のものが少ない場合、吸着剤の吸着能力が高く、全体の吸着性能が高くすることができるため、好ましい。特にJIS Z8801−1規格による目開きが300μmの篩と600μmの篩とを用いたときに、吸着剤の98質量%以上、特に99質量%以上が目開き600μmの篩を通り、且つ98質量%以上、特に99質量%以上が目開き300μmの篩を通らないことが好ましい。 The amorphous iron (III) hydroxide used as an adsorbent in the present invention is preferably a granulated product from the viewpoint of filling the column and using it. The particle size of the granulated product is preferably 200 to 1000 μm, more preferably 300 to 600 μm. Specifically, when a sieve having a mesh size of 212 μm and a sieve having a mesh size of 1 mm according to the JIS Z8801-1 standard are used, 98% by mass or more of the adsorbent, particularly 99% by mass or more, passes through the sieve having a mesh size of 1 mm. It is preferable that 98% by mass or more, particularly 99% by mass or more, does not pass through a sieve having an opening of 212 μm. As described above, when the adsorbent of the present invention has a small particle size of less than 212 μm, it is preferable to fill the adsorbent with the adsorbent and pass water through the adsorbent because the powder is less likely to be clogged in the adsorbent. Further, when the adsorbent of the present invention has a small particle size of more than 1 mm, the adsorbent has a high adsorbing ability and the overall adsorbing performance can be improved, which is preferable. In particular, when a sieve having a mesh size of 300 μm and a sieve having a mesh size of 600 μm according to the JIS Z8801-1 standard are used, 98% by mass or more of the adsorbent, particularly 99% by mass or more, passes through the sieve having a mesh size of 600 μm and 98% by mass. As described above, it is particularly preferable that 99% by mass or more does not pass through a sieve having an opening of 300 μm.

本発明の吸着剤で用いる非晶質の水酸化鉄(III)は、25〜700℃の昇温過程のDSC昇温特性曲線上に現れる発熱ピークの温度が350〜400℃であるものを用いることに特徴の一つがある。 As the amorphous iron (III) hydroxide used in the adsorbent of the present invention, one having an exothermic peak temperature of 350 to 400 ° C. appearing on the DSC temperature rising characteristic curve in the heating process of 25 to 700 ° C. is used. There is one of the features in particular.

本発明の吸着剤で用いる非晶質の水酸化鉄(III)において、発熱ピークの温度を上記範囲にする理由は、発熱ピークの温度が上記範囲以外では、特にヨウ素酸イオンの吸着性能が低くなり、造粒処理も難しくなるからである。また、本発明の吸着剤で用いる非晶質の水酸化鉄(III)は、特にヨウ素酸イオンの吸着性能をより向上させる観点から、上記発熱ピークは、370〜400℃であることが好ましく、370〜390℃であることが特に好ましい。 In the amorphous iron (III) hydroxide used in the adsorbent of the present invention, the reason why the temperature of the exothermic peak is set in the above range is that the adsorption performance of iodic acid ion is particularly low when the temperature of the exothermic peak is not in the above range. This is because the granulation process becomes difficult. Further, the amorphous iron (III) hydroxide used in the adsorbent of the present invention preferably has an exothermic peak of 370 to 400 ° C., particularly from the viewpoint of further improving the adsorption performance of iodic acid ions. It is particularly preferable that the temperature is 370 to 390 ° C.

本発明の吸着剤で用いる非晶質の水酸化鉄(III)は、25〜700℃まで温度上昇したときの重量減少率が18%以上であるものを用いることも特徴の一つである。 One of the features of the amorphous iron (III) hydroxide used in the adsorbent of the present invention is that the weight loss rate when the temperature rises to 25 to 700 ° C. is 18% or more.

本発明の吸着剤で用いる非晶質の水酸化鉄(III)において、25〜700℃まで温度上昇したときの重量減少率を上記範囲にする理由は、重量減少率が上記範囲以外では、特にヨウ素酸イオンの吸着性能が低くなるからである。
本発明において、特にヨウ素酸イオンの吸着性能を向上させる観点から25〜700℃まで温度上昇したときの重量減少率は、好ましくは18〜35%、一層好ましくは18〜30%である。
In the amorphous iron (III) hydroxide used in the adsorbent of the present invention, the reason why the weight loss rate when the temperature rises to 25 to 700 ° C. is within the above range is that the weight loss rate is not in the above range. This is because the adsorption performance of iodic acid ions is low.
In the present invention, the weight loss rate when the temperature is raised to 25 to 700 ° C. is preferably 18 to 35%, more preferably 18 to 30%, particularly from the viewpoint of improving the adsorption performance of iodic acid ions.

本発明の吸着剤で用いる非晶質の水酸化鉄(III)は、上記物性を有することに加えて、電気伝導度が14mS/cm以下であるものを用いることも特徴の一つである。 One of the features of the amorphous iron (III) hydroxide used in the adsorbent of the present invention is that it has the above physical properties and also has an electric conductivity of 14 mS / cm or less.

本発明者らによれば、非晶質の水酸化鉄(III)を造粒処理する上で電気伝導度を14mS/cm以下のものを用いることで、優れた吸着性能を有した造粒品になることを見出した。本発明において、非晶質の水酸化鉄(III)の電気伝導度は、優れた吸着性能を有した造粒品とする観点から12mS/cm以下であることが好ましく、10mS/cm以下が特に好ましい。 According to the present inventors, a granulated product having excellent adsorption performance by using an amorphous iron (III) hydroxide having an electric conductivity of 14 mS / cm or less for granulation treatment. I found that it would be. In the present invention, the electrical conductivity of amorphous iron (III) hydroxide is preferably 12 mS / cm or less, particularly preferably 10 mS / cm or less, from the viewpoint of producing a granulated product having excellent adsorption performance. preferable.

本発明において、電気伝導度とは25℃の水に10質量%スラリーとしたときの電気伝導度を示す。
なお、電気伝導度は、該非晶質の水酸化鉄(III)に含有されるハロゲンイオン、硫酸イオン、硝酸イオン、アンモニウムイオン、アルカリ金属イオン等のイオン性不純物に起因する値である。
In the present invention, the electric conductivity means the electric conductivity when a 10% by mass slurry is prepared in water at 25 ° C.
The electrical conductivity is a value caused by ionic impurities such as halogen ions, sulfate ions, nitrate ions, ammonium ions, and alkali metal ions contained in the amorphous iron hydroxide (III).

本発明の吸着剤で用いる非晶質の水酸化鉄(III)は、上記物性であることに加えて、BET比表面積が100〜300m/g、好ましくは150〜300m/g、一層好ましくは200〜300m/gであることが、特にヨウ素酸イオンの吸着性能を向上させる観点から好ましい。 The amorphous iron (III) hydroxide used in the adsorbent of the present invention has the above physical properties and a BET specific surface area of 100 to 300 m 2 / g, preferably 150 to 300 m 2 / g, more preferably. Is preferably 200 to 300 m 2 / g, particularly from the viewpoint of improving the adsorption performance of iodic acid ions.

本発明の吸着剤に係る非晶質の水酸化鉄(III)は、例えば、水溶媒中で、鉄の鉱酸塩と水酸化アルカリとの中和反応を行い水酸化鉄(III)を含むスラリーを調製する第一工程、該スラリーをpH3.0〜5.0で熟成する第二工程、次いで水酸化鉄(III)を含む10質量%スラリーの電気伝導度が14mS/cm以下となるまで水で洗浄処理する第三工程、次いで洗浄処理後の含水状態の水酸化鉄(III)を押出成形し、得られる成形品を150℃以下で乾燥する第四工程と、を有することにより、製造されるものが好ましい。 The amorphous iron hydroxide (III) according to the adsorbent of the present invention contains, for example, iron (III) hydroxide obtained by performing a neutralization reaction between an iron mineral salt and an alkali hydroxide in an aqueous solvent. The first step of preparing the slurry, the second step of aging the slurry at pH 3.0 to 5.0, and then until the electrical conductivity of the 10 mass% slurry containing iron (III) hydroxide becomes 14 mS / cm or less. Manufactured by having a third step of washing with water, and then a fourth step of extrusion-molding the hydrous iron (III) after the washing treatment and drying the obtained molded product at 150 ° C. or lower. What is preferred.

以下、本発明に係る吸着剤の製造方法について説明する。
第一工程は、水溶媒中で、鉄の鉱酸塩と水酸化アルカリとの中和反応を行い水酸化鉄(III)を含むスラリーを調製する工程である。
Hereinafter, a method for producing an adsorbent according to the present invention will be described.
The first step is a step of preparing a slurry containing iron (III) hydroxide by performing a neutralization reaction between an iron mineral acid salt and an alkali hydroxide in an aqueous solvent.

第一工程に係る鉄の鉱酸塩としては、塩化鉄(III)、硫酸鉄(III)、硝酸鉄(III)等が挙げられる。
鉄の鉱酸塩は、鉄の鉱酸塩を水に溶解した水溶液として用いられる。鉄の鉱酸塩を含む水溶液の濃度は1〜50質量%、好ましくは10〜45質量%である。
Examples of the iron mineral acid salt according to the first step include iron (III) chloride, iron (III) sulfate, iron (III) nitrate and the like.
The iron mineral acid salt is used as an aqueous solution in which the iron mineral acid salt is dissolved in water. The concentration of the aqueous solution containing the iron mineral acid salt is 1 to 50% by mass, preferably 10 to 45% by mass.

第一工程に係る水酸化アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア水等が挙げられる。
水酸化アルカリは、水酸化アルカリを水に溶解した水溶液として用いられる。水酸化アルカリ水溶液の濃度は1〜50質量%、好ましくは5〜25質量%である。
Examples of the alkali hydroxide according to the first step include sodium hydroxide, potassium hydroxide, lithium hydroxide, aqueous ammonia and the like.
Alkali hydroxide is used as an aqueous solution in which alkali hydroxide is dissolved in water. The concentration of the aqueous alkali hydroxide solution is 1 to 50% by mass, preferably 5 to 25% by mass.

第一工程の中和反応の操作方法は、特に制限されるものではなく、水酸化アルカリ水溶液と鉄の鉱酸塩を含む水溶液を接触させればよい。例えば(1)水酸化アルカリ水溶液に鉄の鉱酸塩を含む水溶液を添加して中和反応を行う方法、(2)鉄の鉱酸塩を含む水溶液に水酸化アルカリ水溶液を添加して中和反応を行う方法、(3)水酸化アルカリ水溶液と鉄の鉱酸塩を含む水溶液を水溶媒中に同時に添加して中和反応を行う方法が挙げられる。
本製造方法において、水酸化アルカリ水溶液と鉄の鉱酸塩を含む水溶液の接触方法は、前記(1)の方法で行うことが、収率よく吸着性能が優れたものが得られると言う観点から好ましい。
The operation method of the neutralization reaction in the first step is not particularly limited, and an aqueous alkali hydroxide solution and an aqueous solution containing an iron mineral acid salt may be brought into contact with each other. For example, (1) a method of adding an aqueous solution containing an iron mineral salt to an aqueous solution of an alkaline hydroxide to perform a neutralization reaction, and (2) adding an aqueous solution of an alkaline hydroxide to an aqueous solution containing an iron mineral salt to neutralize Examples thereof include a method of carrying out the reaction and (3) a method of simultaneously adding an aqueous solution containing an aqueous alkali hydroxide solution and an aqueous solution containing an iron salt salt to an aqueous solvent to carry out a neutralization reaction.
In this production method, the contact method between the alkaline hydroxide aqueous solution and the aqueous solution containing the iron mineral acid salt is performed by the method (1) above, from the viewpoint that a product having good yield and excellent adsorption performance can be obtained. preferable.

鉄の鉱酸塩を含む水溶液及び/又は水酸化アルカリ水溶液の添加は、反応温度が高い場合、水酸化鉄(III)の結晶化が進み吸着性能が低下する恐れがあるため、90℃以下、好ましくは70℃以下、一層好ましくは10〜70℃で行うことが好ましい。 Addition of an aqueous solution containing an iron mineral acid salt and / or an aqueous alkali hydroxide solution may cause iron (III) hydroxide to crystallize and the adsorption performance to deteriorate when the reaction temperature is high. It is preferably performed at 70 ° C. or lower, more preferably 10 to 70 ° C.

鉄の鉱酸塩を含む水溶液或いは水酸化アルカリ水溶液の添加速度は、特に制限されるものではないが一定速度となるように、もう一方の溶液に添加することが、安定した品質のものを得る観点から好ましい。 The rate of addition of the aqueous solution containing iron mineral salt or the aqueous alkali hydroxide solution is not particularly limited, but it is possible to obtain a stable quality by adding the solution to the other solution so that the rate is constant. Preferred from the point of view.

第一工程終了後の水酸化鉄(III)を含むスラリーは、第二工程に付し熟成を行う。 The slurry containing iron (III) hydroxide after the completion of the first step is subjected to the second step and aged.

第二工程は、第一工程で得られる水酸化鉄(III)を含むスラリーのpH調整を行って熟成する工程である。 The second step is a step of adjusting the pH of the slurry containing iron (III) hydroxide obtained in the first step and aging it.

本吸着剤の製造方法において、この第二工程を行うことにより、特にヨウ素酸イオンの吸着性能が優れ、また、後述する第三工程の洗浄処理との相乗効果で造粒処理が可能な非晶質の水酸化鉄(III)を製造することが出来る。 In the method for producing this adsorbent, by performing this second step, the adsorption performance of iodic acid ions is particularly excellent, and the amorphous treatment can be performed by a synergistic effect with the cleaning treatment of the third step described later. Quality iron (III) hydroxide can be produced.

第二工程では、第一工程で得られた水酸化鉄(III)を含むスラリーのpHを3.0〜5.0に調整して熟成することが重要である。この理由は、第二工程において、水酸化鉄(III)を含むスラリーのpHが上記範囲以外では、特にヨウ素酸イオンの吸着性能が劣り、また、造粒処理も難しくなるからである。本発明において、第二工程は、特にヨウ素酸イオンの吸着性能に優れ、また、造粒処理が可能な非晶質の水酸化鉄(III)を得る観点から水酸化鉄(III)を含むスラリーのpHは4.0〜5.0に調整することが好ましい。 In the second step, it is important to adjust the pH of the slurry containing iron (III) hydroxide obtained in the first step to 3.0 to 5.0 for aging. The reason for this is that in the second step, if the pH of the slurry containing iron (III) hydroxide is not in the above range, the adsorption performance of iodic acid ions is particularly inferior, and the granulation treatment becomes difficult. In the present invention, the second step is a slurry containing iron (III) hydroxide from the viewpoint of obtaining amorphous iron (III) hydroxide which is particularly excellent in adsorption performance of iodic acid ions and can be granulated. The pH of is preferably adjusted to 4.0 to 5.0.

なお、第二工程では、必要により、酸或いはアルカリを用いて第一工程後に得られる水酸化鉄(III)を含むスラリーのpH調整を行うことができる。 In the second step, if necessary, the pH of the slurry containing iron (III) hydroxide obtained after the first step can be adjusted using an acid or an alkali.

第二工程に係る熟成温度は、水酸化鉄(III)の結晶化を防止する観点から90℃以下、好ましくは70℃以下、一層好ましくは10〜70℃とすることが好ましい。第二工程に係る熟成時間は、1時間以上、好ましくは1〜12時間である。 The aging temperature according to the second step is preferably 90 ° C. or lower, preferably 70 ° C. or lower, and more preferably 10 to 70 ° C. from the viewpoint of preventing crystallization of iron (III) hydroxide. The aging time according to the second step is 1 hour or more, preferably 1 to 12 hours.

第二工程の熟成処理した水酸化鉄(III)を含むスラリーは、第三工程に付し洗浄処理を行う。 The slurry containing iron (III) hydroxide that has been aged in the second step is subjected to a cleaning treatment in the third step.

第三工程は、第二工程で熟成処理した水酸化鉄(III)を洗浄処理して該水酸化鉄(III)を含む10質量%スラリーの電気伝導度が14mS/cm以下、好ましくは12mS/cm以下となるまで水で十分に洗浄処理する工程である。 In the third step, the iron (III) hydroxide aged in the second step is washed and the electric conductivity of the 10 mass% slurry containing the iron (III) hydroxide is 14 mS / cm or less, preferably 12 mS / cm. This is a step of sufficiently washing with water until the size becomes cm or less.

本吸着剤の製造方法において、前述した第二工程に加えてこの第三工程でハロゲンイオン、硫酸イオン、硝酸イオン、アンモニウムイオン、アルカリ金属イオン等のイオン性不純物を水酸化鉄(III)から除去することで水酸化鉄(III)の優れた吸着性能を維持しつつ造粒処理も可能な非晶質の水酸化鉄(III)を得ることができる。 In the method for producing this adsorbent, in addition to the above-mentioned second step, ionic impurities such as halogen ion, sulfate ion, nitrate ion, ammonium ion and alkali metal ion are removed from iron (III) hydroxide in this third step. By doing so, it is possible to obtain amorphous iron (III) hydroxide that can be granulated while maintaining the excellent adsorption performance of iron (III) hydroxide.

第三工程で水酸化鉄(III)を洗浄方法としては、特に制限はないがリパルプ等の手段により行うことが特に好ましい。 The method for cleaning iron (III) hydroxide in the third step is not particularly limited, but it is particularly preferable to use iron (III) hydroxide by means such as repulp.

第三工程後に得られる洗浄処理した水酸化鉄(III)は、含水状態で第四工程に付して造粒処理する。 The washed iron (III) hydroxide obtained after the third step is subjected to the fourth step in a water-containing state for granulation treatment.

第四工程は、第三工程後の洗浄処理を施した含水状態の水酸化鉄(III)を押出成形して成形品を得、該成形品を乾燥して非晶質の水酸化鉄(III)を含む吸着剤を得る工程である。 In the fourth step, the water-containing iron (III) hydroxide that has been washed after the third step is extruded to obtain a molded product, and the molded product is dried to obtain an amorphous iron hydroxide (III). ) Is a step of obtaining an adsorbent containing.

含水状態の水酸化鉄(III)は、造粒処理を行うに当たって、予め水酸化鉄(III)に含有されている含水量を40〜60質量%、好ましくは45〜55質量%となるように調整したものを用いることが未成形品の発生を抑制し、収率よく成形品を得る観点から好ましい。 The water content of iron (III) hydroxide in a water-containing state is 40 to 60% by mass, preferably 45 to 55% by mass, which is contained in iron (III) hydroxide in advance when the granulation treatment is performed. It is preferable to use the adjusted product from the viewpoint of suppressing the generation of unmolded products and obtaining a molded product in good yield.

含水状態の水酸化鉄(III)の含水量の調整は、例えば吸引濾過、遠心分離、フィルタープレス、自然乾燥、送風乾燥、凍結乾燥、熱風乾燥等により行うことが出来る。 The water content of iron (III) hydroxide in a water-containing state can be adjusted by, for example, suction filtration, centrifugation, filter press, natural drying, blast drying, freeze drying, hot air drying, or the like.

第四工程では、まず含水状態の水酸化鉄(III)を複数の開孔が形成された開孔部材から押出成形して成形品を得る。 In the fourth step, first, the hydrous iron (III) hydroxide is extruded from the perforated member in which a plurality of perforations are formed to obtain a molded product.

開孔部材に形成された孔の形状としては、円形、三角形、多角形、環形等を挙げることができる。開孔の真円換算径は0.1mm以上10mm以下が好ましく、0.3mm以上5mm以下がより好ましい。ここでいう真円換算径は、孔一つの面積を円面積とした場合の該面積から算出される円の直径である。 Examples of the shape of the hole formed in the opening member include a circle, a triangle, a polygon, and a ring shape. The perfect circle equivalent diameter of the hole is preferably 0.1 mm or more and 10 mm or less, and more preferably 0.3 mm or more and 5 mm or less. The perfect circle conversion diameter referred to here is the diameter of a circle calculated from the area when the area of one hole is taken as the circle area.

本製造方法において、押出成形後に得られる成形品は、150℃以下で乾燥処理することが重要である。 In this production method, it is important that the molded product obtained after extrusion molding is dried at 150 ° C. or lower.

本発明者らによれば、成形品を乾燥する温度が、ヨウ素酸イオン等の吸着性能にも影響することを見出した。
本製造方法において、成形品の乾燥温度を上記範囲にする理由は、成形品の乾燥温度が150℃を超えると吸着に寄与する表面水酸基の減少が顕著になり、十分な吸着性能を示さなくなるからである。また、本製造方法において、成形品の乾燥温度は、特にヨウ素酸イオンの吸着性能を向上させる観点から好ましくは80〜150℃、一層好ましくは80〜120℃である。
According to the present inventors, it has been found that the temperature at which the molded product is dried also affects the adsorption performance of iodic acid ions and the like.
In this manufacturing method, the reason why the drying temperature of the molded product is within the above range is that when the drying temperature of the molded product exceeds 150 ° C., the surface hydroxyl groups that contribute to adsorption become remarkable, and sufficient adsorption performance is not exhibited. Is. Further, in the present production method, the drying temperature of the molded product is preferably 80 to 150 ° C., more preferably 80 to 120 ° C., particularly from the viewpoint of improving the adsorption performance of iodic acid ions.

また、乾燥時間は、重量が一定となるまで乾燥を行えばよい。多くの場合は、乾燥時間は8時間以上、好ましくは8〜24時間である。 In addition, the drying time may be such that the drying may be performed until the weight becomes constant. In most cases, the drying time is 8 hours or more, preferably 8 to 24 hours.

乾燥して得られる造粒品は、そのままでも吸着剤として用いることができるし、軽くほぐして用いてもよい。また乾燥後の造粒品は粉砕して用いてもよい。 The granulated product obtained by drying can be used as it is as an adsorbent, or it may be lightly loosened and used. Further, the granulated product after drying may be crushed and used.

上記のようにして得られる水酸化鉄(III)は、更に分級してから吸着剤として用いることが、特にヨウ素酸イオンの吸着効率を高める等の観点から好ましい。分級は、例えばJISZ8801−1に規定する公称目開きが1000μm以下、特に600μm以下の第1の篩を用いることが好ましい。また前記の公称目開きが212μm以上、特に300μm以上の第2の篩を用いて行うことも好ましい。更に、これら第1及び第2の篩を用いて行うことが好ましい。 The iron (III) hydroxide obtained as described above is preferably further classified and then used as an adsorbent, particularly from the viewpoint of increasing the adsorption efficiency of iodic acid ions. For classification, for example, it is preferable to use a first sieve having a nominal opening of 1000 μm or less, particularly 600 μm or less, as defined in JISZ8801-1. It is also preferable to use a second sieve having a nominal opening of 212 μm or more, particularly 300 μm or more. Further, it is preferable to use these first and second sieves.

本発明に係る非晶質の水酸化鉄(III)を含有する吸着剤は、ヨウ素酸イオンの他、例えば、Cr、Mn、Mo、As、Sb、Se等の重金属を含むオキソ酸イオン、リン酸イオン、フッ素イオン等の吸着剤としても用いることが出来る。 The adsorbent containing amorphous iron (III) hydroxide according to the present invention includes not only iodic acid ions, but also oxoacid ions and phosphorus containing heavy metals such as Cr, Mn, Mo, As, Sb and Se. It can also be used as an adsorbent for acid ions, fluorine ions and the like.

更に、本発明に係る非晶質の水酸化鉄(III)を含有する吸着剤は、難溶性銀化合物と併用して用いることで、ヨウ素酸イオンとヨウ化物イオンを同時に吸着する吸着剤として用いることが出来る。 Further, the adsorbent containing amorphous iron (III) hydroxide according to the present invention is used as an adsorbent that simultaneously adsorbs iodic acid ion and iodide ion when used in combination with a poorly soluble silver compound. Can be done.

前記難溶性銀化合物は、20℃における水100gへの溶解度が10mg以下、好ましくは5mg以下であるものが、本発明の吸着剤が通液等の水処理に供される際に、銀化合物が溶解、流出してしまうことを防止することができるという観点から好ましい。前記難溶性銀化合物の好ましいものとしては、例えば、銀ゼオライト、リン酸銀、塩化銀、炭酸銀等が挙げられる。 The poorly soluble silver compound has a solubility in 100 g of water at 20 ° C. of 10 mg or less, preferably 5 mg or less, but when the adsorbent of the present invention is subjected to water treatment such as passing liquid, the silver compound is used. It is preferable from the viewpoint that it can be prevented from melting and flowing out. Preferred examples of the poorly soluble silver compound include silver zeolite, silver phosphate, silver chloride, silver carbonate and the like.

本発明の吸着剤中、難溶性銀化合物の含有量は、銀として1質量%以上であることが、ヨウ素酸イオン及びヨウ化物イオン、特にヨウ化物イオンの吸着性能を高める観点から好ましい。また、難溶性銀化合物の含有量は、銀として5質量%以下であることが、ヨウ素酸イオン及びヨウ化物イオンをバランスよく吸着する観点から好ましい。 The content of the poorly soluble silver compound in the adsorbent of the present invention is preferably 1% by mass or more as silver from the viewpoint of enhancing the adsorption performance of iodate ions and iodide ions, particularly iodide ions. The content of the poorly soluble silver compound is preferably 5% by mass or less as silver from the viewpoint of adsorbing iodic acid ions and iodide ions in a well-balanced manner.

なお、非晶質の水酸化鉄(III)と難溶性銀化合物を含む吸着剤は、例えば水酸化鉄(III)と難溶性銀化合物を乾式又は湿式で混合処理する方法や、非晶質の水酸化鉄(III)を製造する工程中に難溶性銀化合物を添加し第四工程で押出成形する方法等を用いて調製することが出来る。 The adsorbent containing amorphous iron (III) hydroxide and a poorly soluble silver compound may be, for example, a method of mixing iron (III) hydroxide and a poorly soluble silver compound in a dry or wet manner, or an amorphous one. It can be prepared by adding a sparingly soluble silver compound during the process of producing iron (III) hydroxide and extruding in the fourth step.

第四工程で押出成形する場合は、難溶性銀化合物の添加により押出成形が困難になる場合があるが、必要により滑材等を添加することが出来る。
用いることができる滑材としては、例えば、タルク、ステアリン酸、ステアリルアルコール、ステアリン酸亜鉛、ステアリン酸鉛、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、ステアリン酸モノグリセリド、ステアリルステアレート、硬化油、流動パラフィン、パラフィンワックス、合成ポリエチレンワックス等が挙げられる。
滑材の添加量は非晶質の水酸化鉄(III)に対し1〜20質量%、好ましくは2〜10質量%とすることで、十分な吸着性能を維持したまま押出成形することが出来る。
In the case of extrusion molding in the fourth step, extrusion molding may be difficult due to the addition of the sparingly soluble silver compound, but a lubricant or the like can be added if necessary.
Examples of the lubricant that can be used include talc, stearic acid, stearyl alcohol, zinc stearate, lead stearate, magnesium stearate, calcium stearate, stearic acid amide, oleic acid amide, erucic acid amide, and methylene bisstearic acid. Examples thereof include amide, ethylene bisstearic acid amide, stearic acid monoglyceride, stearyl stearate, hardened oil, liquid paraffin, paraffin wax, and synthetic polyethylene wax.
By adding the amount of the lubricating material to 1 to 20% by mass, preferably 2 to 10% by mass with respect to the amorphous iron (III) hydroxide, extrusion molding can be performed while maintaining sufficient adsorption performance. ..

以下、本発明を実施例により説明するが本発明は、これらの実施例に限定されるものではない。
<評価装置>
・X線回折装置:リガク社製粉末X線回折装置UltimaIVにより測定した。線源としてCu−Kαを用いた。測定条件は管電圧40kV、管電流40mA、走査速度2°/minとした。
・熱分析(TG−DSC分析):メトラー・トレド社製熱重量測定装置 TGA/DSC1を用い、10mgの試料を、25℃から700℃まで昇温速度10℃/minで大気中で温度上昇したときのDSC昇温特性曲線上に現れる発熱ピークの温度を測定した。
また、25℃における試料の重量と700℃における試料の重量を測定し、下記計算式より重量減少率を算出した。
重量減少率(%)=(A−B)/A×100
(A:25℃における試料重量、B:700℃における試料重量)
・ヨウ素酸の吸着試験におけるヨウ素酸イオン濃度及びヨウ化物イオン濃度:イオンクロマトグラフ測定装置(DIONEX社製ICS−1600)により測定した。
・BET比表面積:Mountech社製Macsorb1201により測定した。
・pH:堀場製作所社製pHメータD−71により測定した。
・電気伝導度:堀場製作所社製電気伝導率計ES−51により測定した。
Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples.
<Evaluation device>
-X-ray diffractometer: Measured by a powder X-ray diffractometer Ultima IV manufactured by Rigaku. Cu-Kα was used as the radiation source. The measurement conditions were a tube voltage of 40 kV, a tube current of 40 mA, and a scanning speed of 2 ° / min.
-Thermal analysis (TG-DSC analysis): Using the thermogravimetric analyzer TGA / DSC1 manufactured by METTLER TOLEDO, a 10 mg sample was heated from 25 ° C. to 700 ° C. at a heating rate of 10 ° C./min in the atmosphere. The temperature of the exothermic peak appearing on the DSC temperature rise characteristic curve at that time was measured.
Further, the weight of the sample at 25 ° C. and the weight of the sample at 700 ° C. were measured, and the weight loss rate was calculated from the following formula.
Weight loss rate (%) = (AB) / A × 100
(A: Sample weight at 25 ° C, B: Sample weight at 700 ° C)
-Iodic acid ion concentration and iodide ion concentration in the iodic acid adsorption test: Measured by an ion chromatograph measuring device (ICS-1600 manufactured by DIONEX).
-BET specific surface area: Measured by Maxorb 1201 manufactured by Mountech.
-PH: Measured with a pH meter D-71 manufactured by HORIBA, Ltd.
-Electrical conductivity: Measured with an electric conductivity meter ES-51 manufactured by HORIBA, Ltd.

{実施例1〜4及び比較例1〜6}
<第一工程>
20wt%水酸化ナトリウム水溶液250mlに、塩化鉄(III)を39wt%含む水溶液150mlを40分かけて室温(25℃)で添加した(pH 8.8)。
<第二工程>
次いで、塩酸でpHが表1になるように調整した。25℃で1時間攪拌を継続し熟成を行った。
<第三工程>
次いで、熟成後のスラリーを表1の電気伝導度となるまでリパルプして水で洗浄した。なお、表1の電気伝導度は、該水酸化鉄(III)を10質量%スラリーとしたときの25℃での電気伝導度である。
<第四工程>
次いで、水酸化鉄(III)スラリーをフィルタープレスで脱水し、更に圧搾することにより、表1に示す含水量の含水状態の水酸化鉄(III)を調製した。
なお、含水量は含水状態の水酸化鉄(III)2.0gを110℃で乾燥し、乾燥減量を含水量として算出して求めた。
次いで、含水量を調整した含水状態の水酸化鉄(III)を真円換算径0.6mmのスクリーンを先端部に備えたダルトン社製湿式押出造粒機マルチグランMG‐55に投入して押出成形した。次いでスクリーンから押し出された成形品を、下記表1に記した温度で12時間、常圧で乾燥処理を行った。
また、成形処理中の押出成形器の様子を目視で観察し、造粒操作性を評価した。その結果を表1に併記した。なお、表1中の記号は下記のことを示す。
◎;連続的に押出される。スクリーンの大部分から押出されている。
○;連続的に押出される。スクリーンの一部のみから押出されている。
△;少量押出された。
×;ほとんど押出されない。
次いで、得られた造粒品をメノウ乳鉢にて軽く粉砕し、得られた粉砕物を目開き600μmの篩にかけた。このとき篩上は再度粉砕し、粉砕物を全て目開き600μmの篩に通した。篩下を回収して目開き300μmの篩にかけた。この篩上を回収しサンプルとした。
実施例1〜4、比較例1〜3及び比較例6で得られたサンプルをX線回折分析したところ、明らかな回折ピークは観察されず、非晶質の水酸化鉄(III)であることを確認した。
実施例1及び実施例2で得られたサンプルのX線回折図を図1〜2に示す。
{Examples 1 to 4 and Comparative Examples 1 to 6}
<First process>
To 250 ml of a 20 wt% sodium hydroxide aqueous solution, 150 ml of an aqueous solution containing 39 wt% of iron (III) chloride was added over 40 minutes at room temperature (25 ° C.) (pH 8.8).
<Second process>
Then, the pH was adjusted to Table 1 with hydrochloric acid. Stirring was continued at 25 ° C. for 1 hour for aging.
<Third process>
Then, the aging slurry was repulped to the electrical conductivity shown in Table 1 and washed with water. The electric conductivity in Table 1 is the electric conductivity at 25 ° C. when the iron (III) hydroxide is made into a 10% by mass slurry.
<Fourth process>
Next, the iron (III) hydroxide slurry was dehydrated with a filter press and further squeezed to prepare iron (III) hydroxide having a water content shown in Table 1.
The water content was determined by drying 2.0 g of iron (III) hydroxide in a water-containing state at 110 ° C. and calculating the weight loss by drying as the water content.
Next, iron (III) hydroxide in a water-containing state with an adjusted water content was put into a wet extrusion granulator Multigran MG-55 manufactured by Dalton Co., Ltd., which was equipped with a screen having a perfect circle equivalent diameter of 0.6 mm at the tip and extruded. Molded. Next, the molded product extruded from the screen was dried at normal pressure for 12 hours at the temperature shown in Table 1 below.
In addition, the state of the extrusion molding machine during the molding process was visually observed to evaluate the granulation operability. The results are also shown in Table 1. The symbols in Table 1 indicate the following.
⊚; Extruded continuously. Extruded from most of the screen.
◯; Extruded continuously. Extruded from only part of the screen.
Δ: A small amount was extruded.
×; Almost not extruded.
Next, the obtained granulated product was lightly pulverized in an agate mortar, and the obtained pulverized product was sieved with an opening of 600 μm. At this time, the sieve was pulverized again, and all the pulverized products were passed through a sieve having an opening of 600 μm. The bottom of the sieve was collected and sieved with a mesh opening of 300 μm. This sieve was collected and used as a sample.
When the samples obtained in Examples 1 to 4, Comparative Examples 1 to 3 and Comparative Example 6 were subjected to X-ray diffraction analysis, no obvious diffraction peak was observed, and the sample was amorphous iron (III) hydroxide. It was confirmed.
The X-ray diffraction patterns of the samples obtained in Example 1 and Example 2 are shown in FIGS. 1 and 2.

Figure 0006779768
Figure 0006779768

<物性評価>
実施例、比較例1〜3及び比較例6で得られたサンプルについて、発熱ピーク温度、重量減少率、電気伝導度、BET比表面積を測定した。また、実施例1、実施例2、比較例1及び比較例2で得られたサンプルのDSC昇温特性曲線を図3、図4、図5及び図6にそれぞれ示す。
なお、電気伝導度は、第三工程において該水酸化鉄(III)を10重量%スラリーとした時の25℃における電気伝導度を電気伝導度計により測定した。
<Physical property evaluation>
For the samples obtained in Examples, Comparative Examples 1 to 3 and Comparative Example 6, the exothermic peak temperature, the weight loss rate, the electric conductivity, and the BET specific surface area were measured. Further, the DSC temperature rise characteristic curves of the samples obtained in Example 1, Example 2, Comparative Example 1 and Comparative Example 2 are shown in FIGS. 3, 4, 5 and 6, respectively.
As for the electric conductivity, the electric conductivity at 25 ° C. when the iron (III) hydroxide was made into a 10% by weight slurry in the third step was measured by an electric conductivity meter.

Figure 0006779768
注)表中の「−」は未測定であることを示す。
Figure 0006779768
Note) "-" in the table indicates that it has not been measured.

<吸着試験1>
試験1;
試薬としてヨウ素酸ナトリウム(NaIO)をイオン交換水に溶解してヨウ素酸のヨウ素換算濃度が200ppmである試験液を調製した。
この試験液100mlと実施例、比較例1〜3及び比較例6で得られたサンプル0.10gとを100mlガラス製ビーカーに入れて蓋をした。蓋をした後、マグネチックスターラーで1時間攪拌した。攪拌後、試験液を孔径0.45μmのメンブランフィルターでろ過し、得られたろ液中のヨウ素酸量としてヨウ素濃度を測定した。吸着前後における濃度の差を、吸着試験前の濃度で除することにより、ヨウ素酸イオンの吸着率を求めた。その結果を表3に示す。また、市販の水酸化セリウム吸着剤についても同様な試験を行い、その結果を比較例7として表3に併記した。
<Adsorption test 1>
Test 1;
Sodium iodate (NaIO 3 ) was dissolved in ion-exchanged water as a reagent to prepare a test solution having an iodine-equivalent concentration of iodic acid of 200 ppm.
100 ml of this test solution and 0.10 g of the samples obtained in Examples, Comparative Examples 1 to 3 and Comparative Example 6 were placed in a 100 ml glass beaker and covered. After closing the lid, the mixture was stirred with a magnetic stirrer for 1 hour. After stirring, the test solution was filtered through a membrane filter having a pore size of 0.45 μm, and the iodine concentration was measured as the amount of iodic acid in the obtained filtrate. The adsorption rate of iodate ions was determined by dividing the difference in concentration before and after adsorption by the concentration before the adsorption test. The results are shown in Table 3. A similar test was also performed on a commercially available cerium hydroxide adsorbent, and the results are also shown in Table 3 as Comparative Example 7.

試験2;
以下に示す試験海水原液を調製し、更に以下に示す配合でヨウ素酸200ppmを含有する試験用海水1を調製した。
<試験海水原液>
NaCl: 2.649%
MgCl: 0.326%
MgSO: 0.207%
CaSO: 0.136%
KCl: 0.071%
<試験用海水1>
試験用海水原液: 50.00g
イオン交換水 : 949.69g
NaIO : 0.31g
この試験液100mlと実施例、比較例1〜3及び比較例6で得られたサンプル0.10gを100mlガラス製ビーカーに入れて蓋をした。蓋をした後、マグネチックスターラーで1時間攪拌した。攪拌後、試験液を孔径0.45μmのメンブランフィルターでろ過し、得られたろ液中のヨウ素酸量としてヨウ素濃度を測定した。吸着前後における濃度の差を、吸着試験前の濃度で除することにより、ヨウ素酸イオンの吸着率を求めた。その結果を表3に示す。
Exam 2;
The test seawater stock solution shown below was prepared, and the test seawater 1 containing 200 ppm of iodic acid was further prepared with the formulation shown below.
<Test seawater stock solution>
NaCl: 2.649%
MgCl 2 : 0.326%
Sulfonyl 4 : 0.207%
CaSO 4 : 0.136%
KCl: 0.071%
<Test seawater 1>
Test seawater stock solution: 50.00 g
Ion-exchanged water: 949.69 g
NaIO 3 : 0.31g
100 ml of this test solution and 0.10 g of the samples obtained in Examples, Comparative Examples 1 to 3 and Comparative Example 6 were placed in a 100 ml glass beaker and covered. After closing the lid, the mixture was stirred with a magnetic stirrer for 1 hour. After stirring, the test solution was filtered through a membrane filter having a pore size of 0.45 μm, and the iodine concentration was measured as the amount of iodic acid in the obtained filtrate. The adsorption rate of iodate ions was determined by dividing the difference in concentration before and after adsorption by the concentration before the adsorption test. The results are shown in Table 3.

Figure 0006779768
注)表中の「−」は未測定であることを示す。
Figure 0006779768
Note) "-" in the table indicates that it has not been measured.

試験3;
ガラス製のカラム(内径120mm、長さ450mm)に実施例2で得られたサンプル 5mlを入れ、イオン交換水で液が透明になるまで通水洗浄した。次に試験2で用いた試験海水原液405gにイオン交換水7695gとNaIO0.46gを加えてヨウ素酸50ppmを含有する試験用海水2(8100g)を用意した。この試験用海水をマスターフレックス(cole-parmer社製)を使用して、16.7ml/minでカラムに通液し、カラム通過後の試験海水をサンプリングし、ヨウ素酸濃度を測定した。上記で得られた測定結果から、縦軸に試験用海水の初期ヨウ素酸濃度をCoとし、カラム通液後のヨウ素酸の濃度をCとしたとき、C/Coで表される数値を示し、横軸に吸着剤サンプル5mlに対する試験用海水2の総通液容量(B.V.)を示したものを図7に示す。
Exam 3;
5 ml of the sample obtained in Example 2 was placed in a glass column (inner diameter 120 mm, length 450 mm) and washed with ion-exchanged water until the liquid became transparent. Next, 7695 g of ion-exchanged water and 0.46 g of NaIO 3 were added to 405 g of the test seawater stock solution used in Test 2 to prepare test seawater 2 (8100 g) containing 50 ppm of iodic acid. This test seawater was passed through a column at 16.7 ml / min using Masterflex (manufactured by cole-parmer), and the test seawater after passing through the column was sampled and the iodic acid concentration was measured. From the measurement results obtained above, when the initial iodic acid concentration of the test seawater is Co and the iodic acid concentration after column passage is C, the numerical value represented by C / Co is shown on the vertical axis. FIG. 7 shows the total liquid flow capacity (VV) of the test seawater 2 with respect to 5 ml of the adsorbent sample on the horizontal axis.

{実施例5〜8}
実施例2の第一工程終了後、非晶質の水酸化鉄(III)に対して、表3に示す添加量で難溶性銀化合物を添加し、湿式で十分に混合して非晶質の水酸化鉄(III)と難溶性銀化合物を含有する吸着剤サンプルを調製した。なお、表4中の銀含有量は、難溶性銀化合物を銀換算した添加量を示す。
{Examples 5 to 8}
After the completion of the first step of Example 2, a sparingly soluble silver compound was added to the amorphous iron (III) hydroxide in the amount shown in Table 3, and the mixture was sufficiently wet and mixed to form an amorphous iron (III) hydroxide. An adsorbent sample containing iron (III) hydroxide and a poorly soluble silver compound was prepared. The silver content in Table 4 indicates the amount of the poorly soluble silver compound added in terms of silver.

Figure 0006779768
注)塩化銀(AgCl)は硝酸銀と塩化ナトリウムの反応により調製した。なお、塩化銀を含有する吸着剤サンプルを調製は、下記のように調製した。
硝酸銀59.3gを178mLのイオン交換水に溶解させた。塩化ナトリウム20.4gを61mLのイオン交換水に溶解して硝酸銀溶液に添加し反応させた。反応により得られた塩化銀スラリーを第一工程終了後の非晶質の水酸化鉄(III)に添加した。
リン酸銀(AgPO)は硝酸銀とリン酸水素2ナトリウムの反応により調製した。なお、リン酸銀を含有する吸着剤サンプルを調製は、下記のように調製した。
リン酸水素2ナトリウム12水塩35.8gを300mLのイオン交換水に溶解した。硝酸銀51.0gを150mLのイオン交換水に溶解して、リン酸水素2ナトリウム水溶
液に添加し反応させた。反応により得られたリン酸銀スラリーを第一工程終了後の非晶質の水酸化鉄(III)に添加した。
Figure 0006779768
Note) Silver chloride (AgCl) was prepared by the reaction of silver nitrate and sodium chloride. The adsorbent sample containing silver chloride was prepared as follows.
59.3 g of silver nitrate was dissolved in 178 mL of ion-exchanged water. 20.4 g of sodium chloride was dissolved in 61 mL of ion-exchanged water and added to a silver nitrate solution for reaction. The silver chloride slurry obtained by the reaction was added to amorphous iron (III) hydroxide after completion of the first step.
Silver phosphate (Ag 3 PO 4 ) was prepared by the reaction of silver nitrate and disodium hydrogen phosphate. The adsorbent sample containing silver phosphate was prepared as follows.
35.8 g of disodium hydrogen phosphate 12 hydroxide was dissolved in 300 mL of ion-exchanged water. 51.0 g of silver nitrate was dissolved in 150 mL of ion-exchanged water and added to a disodium hydrogen phosphate aqueous solution for reaction. The silver phosphate slurry obtained by the reaction was added to amorphous iron (III) hydroxide after completion of the first step.

<吸着試験2>試験4;
塩化ナトリウム、塩化カルシウム、塩化マグネシウム、ヨウ化カリウム及びヨウ素酸をイオン交換水に溶解することにより、下記の組成の試験用海水3を調製した。
試験用海水3
NaCl 0.132%
Ca2+ 20ppm
Mg2+ 63ppm
200ppm
IO 200ppm
この試験用海水3 100mlと、実施例2及び実施例5〜8の何れかで得られたサンプル0.10gとを100mlガラス製ビーカーに入れて蓋をした。蓋をした後、マグネチックスターラーで1時間攪拌した。攪拌後、試験液を孔径0.45μmのメンブランフィルターでろ過し、得られたろ液におけるヨウ化物イオン(I-)及びヨウ素酸イオン(IO3 -)の濃度を測定した。吸着前後における濃度の差を、吸着試験前の濃度で除すことにより、ヨウ化物イオン(I-)及びヨウ素酸イオン(IO3 -)の吸着率を求めた。これらの結果を表5に示す。
<Adsorption test 2> Test 4;
By dissolving sodium chloride, calcium chloride, magnesium chloride, potassium iodide and iodic acid in ion-exchanged water, test seawater 3 having the following composition was prepared.
Test seawater 3
NaCl 0.132%
Ca 2+ 20ppm
Mg 2+ 63ppm
I - 200ppm
IO 3 - 200ppm
100 ml of this test seawater 3 and 0.10 g of the sample obtained in any of Examples 2 and 5 to 8 were placed in a 100 ml glass beaker and covered. After closing the lid, the mixture was stirred with a magnetic stirrer for 1 hour. After stirring, the test solution was filtered through a pore size of 0.45μm membrane filter, iodide ion in the obtained filtrate (I -) - to determine the concentration of and iodate (IO 3). The difference in concentration before and after adsorption, by dividing the density before adsorption test, iodide ion was determined adsorption rate (I - -) and iodate (IO 3). These results are shown in Table 5.

Figure 0006779768
Figure 0006779768

表5から明らかな通り、実施例5ないし8で製造された、非晶質の水酸化鉄(III)と難溶性銀化合物とを含有する吸着剤は、ヨウ化物イオンの吸着率が難溶性銀化合物を添加しないものと比べて向上することが分かる。また、吸着剤に含有させる難溶性銀化合物の添加量を調整することにより、ヨウ素酸イオンとヨウ化物イオンの吸着除去量のバランスを調整することが出来ることが分かる。
As is clear from Table 5, the adsorbent containing amorphous iron (III) hydroxide and the poorly soluble silver compound produced in Examples 5 to 8 has a poorly soluble silver iodide ion adsorption rate. It can be seen that the improvement is improved as compared with the case where the compound is not added. Further, it can be seen that the balance between the amount of adsorption and removal of iodic acid ion and iodide ion can be adjusted by adjusting the amount of the sparingly soluble silver compound contained in the adsorbent.

Claims (5)

水溶媒中で、鉄の鉱酸塩と水酸化アルカリとの中和反応を行い水酸化鉄(III)を含むスラリーを調製する第一工程、該スラリーを70℃以下で、1時間以上pH3.0〜5.0で熟成する第二工程、次いで水酸化鉄(III)を含む10質量%スラリーの電気伝導度が14mS/cm以下となるまで水で洗浄処理する第三工程、次いで洗浄処理後の含水状態の水酸化鉄(III)を押出成形し、得られる成形品を150℃以下で乾燥して造粒品を得る第四工程と、を有することを特徴とする吸着剤の製造方法。 The first step of preparing a slurry containing iron (III) hydroxide by neutralizing an iron mineral salt and an alkali hydroxide in an aqueous solvent. The pH of the slurry is 70 ° C. or lower for 1 hour or longer. The second step of aging from 0 to 5.0, then the third step of washing with water until the electrical conductivity of the 10 mass% slurry containing iron (III) hydroxide becomes 14 mS / cm or less, and then after the washing treatment. A method for producing an adsorbent, which comprises a fourth step of extruding iron (III) hydroxide in a water-containing state and drying the obtained molded product at 150 ° C. or lower to obtain a granulated product. 第一工程は、水酸化アルカリ水溶液に鉄の鉱酸塩を含む溶液を添加して中和反応を行うことを特徴とする請求項1に記載の吸着剤の製造方法。 The method for producing an adsorbent according to claim 1, wherein the first step is to add a solution containing an iron mineral acid salt to an alkaline hydroxide aqueous solution to carry out a neutralization reaction. 第四工程の含水状態の水酸化鉄(III)は、含水量が40〜60質量%であるものを用いることを特徴とする請求項1又は2に記載の吸着剤の製造方法。 The method for producing an adsorbent according to claim 1 or 2, wherein the iron (III) hydroxide in the water-containing state of the fourth step is used having a water content of 40 to 60% by mass. 第四工程後の乾燥処理した造粒品を解砕又は粉砕することを特徴とする請求項1乃至3の何れか一項に記載の吸着剤の製造方法。 The method for producing an adsorbent according to any one of claims 1 to 3, wherein the dried granulated product after the fourth step is crushed or pulverized. 水酸化鉄(III)を製造する第一工程の開始から第三工程の終了までの間に難溶性銀化合物を添加し第四工程で押出成形することを特徴とする請求項1乃至4の何れか一項に記載の吸着剤の製造方法。
Any of claims 1 to 4, wherein a poorly soluble silver compound is added between the start of the first step of producing iron (III) hydroxide and the end of the third step, and extrusion molding is performed in the fourth step. The method for producing an adsorbent according to item 1.
JP2016234552A 2016-12-01 2016-12-01 Adsorbent containing amorphous iron (III) hydroxide and its production method Active JP6779768B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016234552A JP6779768B2 (en) 2016-12-01 2016-12-01 Adsorbent containing amorphous iron (III) hydroxide and its production method
PCT/JP2017/042708 WO2018101286A1 (en) 2016-12-01 2017-11-29 Adsorbent containing amorphous iron (iii) hydroxide and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016234552A JP6779768B2 (en) 2016-12-01 2016-12-01 Adsorbent containing amorphous iron (III) hydroxide and its production method

Publications (2)

Publication Number Publication Date
JP2018089570A JP2018089570A (en) 2018-06-14
JP6779768B2 true JP6779768B2 (en) 2020-11-04

Family

ID=62241449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016234552A Active JP6779768B2 (en) 2016-12-01 2016-12-01 Adsorbent containing amorphous iron (III) hydroxide and its production method

Country Status (2)

Country Link
JP (1) JP6779768B2 (en)
WO (1) WO2018101286A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196684B (en) * 2022-07-25 2024-10-01 武汉海斯普林科技发展有限公司 High-activity high-purity ferric hydroxide, preparation method and application thereof in synthesizing iron p-toluenesulfonate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002218168A1 (en) * 2000-09-26 2002-04-08 Bayer Aktiengesellschaft Contact and adsorber granulates
JP2003334542A (en) * 2002-03-15 2003-11-25 Tohoku Techno Arch Co Ltd Anion adsorbent, method for removing anion using the adsorbent, method for regenerating anion adsorbent, and method for recovering element
KR100889171B1 (en) * 2004-07-23 2009-03-17 미쓰이 긴조꾸 고교 가부시키가이샤 Fluorine absorption/desorption agent for electrolysis solution in zinc electrolytic refining, and method for removing fluorine using said fluorine absorption/desorption agent
JP2006218359A (en) * 2005-02-08 2006-08-24 Kochi Univ Heavy metal remover and removal method for heavy metal
JP2007021412A (en) * 2005-07-19 2007-02-01 Toyobo Co Ltd Adsorbing and removing agent for organic compound
JP5781279B2 (en) * 2010-06-15 2015-09-16 三菱重工業株式会社 Radioactive iodine adsorbent and radioactive iodine removal device
JP2016022465A (en) * 2014-07-24 2016-02-08 株式会社東芝 Iodine adsorbent, water treatment tank, and iodine adsorption system
JP2016123902A (en) * 2014-12-26 2016-07-11 東亞合成株式会社 Iodate ion scavenger, and method for removing iodate ion

Also Published As

Publication number Publication date
WO2018101286A1 (en) 2018-06-07
JP2018089570A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
Campisi et al. Tailoring the structural and morphological properties of hydroxyapatite materials to enhance the capture efficiency towards copper (II) and lead (II) ions
CN106458633B (en) Layered double-hydroxide for purified water
JP2016123902A (en) Iodate ion scavenger, and method for removing iodate ion
JP5969636B2 (en) Adsorbent and production method thereof
JP6779768B2 (en) Adsorbent containing amorphous iron (III) hydroxide and its production method
JP6213978B2 (en) Cesium adsorbent and method for removing cesium using the same
KR102314371B1 (en) Alginate beads having buckwheat hull biochar and radionuclide removal method using the same
JP4184600B2 (en) Absorbent
EP2583944A1 (en) Composite magnesium hydroxide, method for producing same, and adsorbent
CA3007617C (en) Adsorbent for radioactive antimony, radioactive iodine and radioactive ruthenium, and treatment method of radioactive waste water using the adsorbent
JP5793231B1 (en) Iodate ion adsorbent and method for producing the same
JP6279539B2 (en) Method for treating radioactive liquid waste containing radioactive cesium and radioactive strontium
WO2015125809A1 (en) Method for producing nonatitanate of alkali metal
EP3898517A1 (en) Production of high purity lithium carbonate from brines
JP6028652B2 (en) Method for producing fluorine ion adsorbent and fluorine ion adsorbent
JP6356567B2 (en) Method for producing crystalline silicotitanate
JP5793230B1 (en) Iodate ion adsorbent and method for producing the same
JP6708663B2 (en) Method for treating radioactive liquid waste containing radioactive cesium and radioactive strontium
JP6812415B2 (en) Metal ion adsorbent
JP7341047B2 (en) Antimony adsorbent and antimony-containing liquid treatment equipment and treatment method
JP6083966B2 (en) Method for producing granular material having ion exchange capacity
JP2020111478A (en) Carbonate apatite having high carbonate group content
JP4238111B2 (en) Fluorine ion recovery material manufacturing method and fluorine ion recovery method
WO2016063843A1 (en) Adsorbent and method for producing same
JPWO2016056530A1 (en) Adsorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201014

R150 Certificate of patent or registration of utility model

Ref document number: 6779768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250