JP6777477B2 - Electric module manufacturing method and electric module manufacturing equipment - Google Patents

Electric module manufacturing method and electric module manufacturing equipment Download PDF

Info

Publication number
JP6777477B2
JP6777477B2 JP2016176688A JP2016176688A JP6777477B2 JP 6777477 B2 JP6777477 B2 JP 6777477B2 JP 2016176688 A JP2016176688 A JP 2016176688A JP 2016176688 A JP2016176688 A JP 2016176688A JP 6777477 B2 JP6777477 B2 JP 6777477B2
Authority
JP
Japan
Prior art keywords
electrolytic solution
base material
electric module
manufacturing
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016176688A
Other languages
Japanese (ja)
Other versions
JP2018041908A (en
Inventor
壮一郎 鈴木
壮一郎 鈴木
俊介 功刀
俊介 功刀
泰博 稲垣
泰博 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2016176688A priority Critical patent/JP6777477B2/en
Publication of JP2018041908A publication Critical patent/JP2018041908A/en
Application granted granted Critical
Publication of JP6777477B2 publication Critical patent/JP6777477B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、電気モジュールの製造方法及び電気モジュールの製造装置に関する。 The present invention relates to a method for manufacturing an electric module and an apparatus for manufacturing an electric module.

近年、クリーンな発電源として、光エネルギーを直接かつ即時に電力に変換することができ、二酸化炭素等の汚染物質を排出しない太陽電池が注目されている。その中でも、色素増感太陽電池は、高い変換効率を有し、比較的簡易な方法により製造され、且つ原材料単価が安価であるため、次世代太陽電池として期待されている。 In recent years, as a clean power source, solar cells that can directly and immediately convert light energy into electric power and do not emit pollutants such as carbon dioxide have been attracting attention. Among them, dye-sensitized solar cells are expected as next-generation solar cells because they have high conversion efficiency, are manufactured by a relatively simple method, and the unit price of raw materials is low.

最近では、色素増感太陽電池をはじめとする太陽電池の実用化に向けて、ロール・ツー・ロール方式(以下、RtoR方式と記載する)を導入した連続生産が検討されている。例えば、特許文献1には、RtoR方式で製造可能であって、透明導電層と、半導体電極と、対極基板と、対電極と、封止材と、電解液と、集電電極と、を備えた色素増感太陽電池及びその製造方法が開示されている。特許文献1に記載の色素増感太陽電池では、対極基板及び複数個の封止材に形成された孔部を介して、透明導電層と集電電極とが電気的に接続されている。 Recently, continuous production by introducing a roll-to-roll method (hereinafter referred to as RtoR method) has been studied for practical use of solar cells such as dye-sensitized solar cells. For example, Patent Document 1 includes a transparent conductive layer, a semiconductor electrode, a counter electrode substrate, a counter electrode, a sealing material, an electrolytic solution, and a current collecting electrode, which can be manufactured by the RtoR method. A dye-sensitized solar cell and a method for manufacturing the same are disclosed. In the dye-sensitized solar cell described in Patent Document 1, the transparent conductive layer and the current collecting electrode are electrically connected to each other via a counter electrode substrate and holes formed in a plurality of sealing materials.

特許文献1に記載の色素増感太陽電池の製造方法は、透明導電層の一主面上の少なくとも一部に多孔質半導体層を形成する工程と、多孔質半導体層に増感色素を担持させ、半導体電極を形成する工程と、対極基板の一主面上の少なくとも一部に対電極を設ける工程と、半導体電極と対電極とを対向配置するとともに、半導体電極と対電極との間に複数個の封止材を介在させる工程と、半導体電極と対電極との間に電解液を設ける工程と、対極基板及び複数個の封止材のそれぞれに連通するようにして対極基板及び複数個の封止材のそれぞれに形成された孔部と対極基板の対電極が設けられた面とは反対側の主面上とに一体的に集電電極を形成する工程と、を備えている。 The method for manufacturing a dye-sensitized solar cell described in Patent Document 1 includes a step of forming a porous semiconductor layer on at least a part of one main surface of a transparent conductive layer and a step of supporting a sensitizing dye on the porous semiconductor layer. , The step of forming the semiconductor electrode, the step of providing the counter electrode on at least a part of the main surface of the counter electrode substrate, the semiconductor electrode and the counter electrode are arranged to face each other, and a plurality of steps are provided between the semiconductor electrode and the counter electrode. A step of interposing individual sealing materials, a step of providing an electrolytic solution between the semiconductor electrode and the counter electrode, and a counter electrode substrate and a plurality of counter electrode substrates so as to communicate with each of the counter electrode substrate and the plurality of encapsulants. A step of integrally forming a current collecting electrode on a hole formed in each of the sealing materials and a main surface on the opposite side of the surface on which the counter electrode of the counter electrode is provided is provided.

特開2012−174596号公報Japanese Unexamined Patent Publication No. 2012-174596

しかしながら、RtoR方式を用いた色素増感太陽電池等の電気モジュールの製造においては、電解液が半導体層に染みこむのに所定を要する。また、電解液の塗布後から基材同士の貼り合わせやモジュール完成までの時間、基材の搬送距離をできるだけ多くとることが重要であると考えられる。ところが、現状では、基材の搬送方向において電解液塗布装置のすぐ前方に、電気モジュールを完成させるための基材貼り合わせ部等の装置類があるため、半導体層に電解液が充分に染みこまずに電気モジュールが製造されてしまい、製造直後の電気モジュールで充分に性能が発揮されないという問題があった。現状では、仮に半導体層に電解液を染みこませるための時間や距離を稼ぐために基材の搬送距離を長くすると、装置が大型化するという別の問題が生じる。 However, in the manufacture of an electric module such as a dye-sensitized solar cell using the RtoR method, it takes a certain amount of time for the electrolytic solution to permeate into the semiconductor layer. In addition, it is considered important to take as much time as possible from the application of the electrolytic solution to the bonding of the base materials and the completion of the module, and the transport distance of the base materials. However, at present, there are devices such as a base material bonding part for completing an electric module immediately in front of the electrolytic solution coating device in the transfer direction of the base material, so that the electrolytic solution sufficiently permeates the semiconductor layer. First, the electric module is manufactured, and there is a problem that the electric module immediately after the manufacture does not fully exhibit its performance. At present, if the transport distance of the base material is increased in order to gain time and distance for impregnating the semiconductor layer with the electrolytic solution, another problem arises that the apparatus becomes large.

本発明は、上述の事情を鑑みてなされたものであり、製造直後に電気モジュールの性能を充分に発揮させることができ、製造装置の大型化を抑えることができる電気モジュールの製造方法及び電気モジュールの製造装置を提供する。 The present invention has been made in view of the above circumstances, and is a method for manufacturing an electric module and an electric module capable of fully exhibiting the performance of the electric module immediately after manufacturing and suppressing an increase in the size of the manufacturing apparatus. Providing manufacturing equipment for.

本発明に係る電気モジュールの製造方法は、二枚の基材の間に半導体層と電解液と封止材とを備え、前記二枚の基材のうち一方の基材の表面に沿って前記半導体層及び前記電解液が前記封止材の間に設けられた電気モジュールの製造方法であって、前記表面に前記半導体層を形成する半導体層形成工程と、前記半導体層の上に前記電解液を塗布する電解液塗布工程と、前記電解液を塗布した後に前記表面に前記封止材を塗布する封止材塗布工程と、を有することを特徴とする。 The method for manufacturing an electric module according to the present invention includes a semiconductor layer, an electrolytic solution, and a sealing material between two base materials, and is described along the surface of one of the two base materials. A method for manufacturing an electric module in which a semiconductor layer and the electrolytic solution are provided between the sealing materials, a step of forming the semiconductor layer on the surface and the electrolytic solution on the semiconductor layer. It is characterized by having an electrolytic solution coating step of applying the electrolytic solution and a sealing material coating step of applying the sealing material to the surface after applying the electrolytic solution.

上述の構成によれば、一方の基材(以下、単に「基材」という場合がある)に封止材を塗付する前に半導体層に電解液を塗布することで、電気モジュールの製造後までに電解液が半導体層に染みこむ時間や距離が長く確保され、製造後には半導体層に電解液が充分に染みこんだ状態になるので、製造直後であっても電気モジュールが充分に性能を発揮する。また、電解液を塗布してから電気モジュールの完成までの基材の搬送時間や距離を無理に長くする必要がなく、装置の大型化が抑えられる。 According to the above configuration, by applying the electrolytic solution to the semiconductor layer before applying the sealing material to one of the base materials (hereinafter, may be simply referred to as “base material”), after the electric module is manufactured. By the time, the time and distance for the electrolytic solution to soak into the semiconductor layer are secured for a long time, and after manufacturing, the electrolytic solution is sufficiently soaked into the semiconductor layer, so that the electric module has sufficient performance even immediately after manufacturing. Demonstrate. In addition, it is not necessary to forcibly lengthen the transport time and distance of the base material from the application of the electrolytic solution to the completion of the electric module, and the increase in size of the apparatus can be suppressed.

上述の電気モジュールの製造方法では、前記一方の基材を所定の方向に搬送しつつ、前記所定の方向において前記電解液塗布工程を行う位置と前記封止材塗布工程を行う位置との搬送距離間隔を50cm以上とすることが好ましい。 In the method for manufacturing an electric module described above, while transporting one of the base materials in a predetermined direction, a transport distance between a position where the electrolytic solution coating step is performed and a position where the sealing material coating step is performed in the predetermined direction. The interval is preferably 50 cm or more.

上述の構成によれば、電解液中に生じた気泡等が抜けた後に封止材が塗布されるので、気泡等が抜け切る前に電解液が封止材で覆われてしまうことで電解液に気泡が残存し、製造後の電気モジュールの品質が低下する虞がない。 According to the above configuration, since the sealing material is applied after the bubbles and the like generated in the electrolytic solution are removed, the electrolytic solution is covered with the sealing material before the bubbles and the like are completely removed. There is no risk that air bubbles will remain in the module and the quality of the electric module after production will deteriorate.

上述の電気モジュールの製造方法では、前記一方の基材を所定の方向に搬送しつつ、前記所定の方向において前記封止材塗布工程を行う位置から前記一方の基材を搬送する搬送距離を100cm以上とすることをことが好ましい。 In the method for manufacturing an electric module described above, while transporting the one base material in a predetermined direction, the transport distance for transporting the one base material from the position where the encapsulant coating step is performed in the predetermined direction is 100 cm. It is preferable to do the above.

封止材塗布工程
上述の構成によれば、基材が100cm以上の搬送距離で搬送されることで、電解液が半導体層に充分に浸透するための時間が確保される。従って、電解液が半導体層に充分に浸透し、半導体電極の良好な動作が見込まれる。
Encapsulant coating step According to the above configuration, the substrate is transported at a transport distance of 100 cm or more, so that a time for the electrolytic solution to sufficiently penetrate into the semiconductor layer is secured. Therefore, the electrolytic solution is sufficiently permeated into the semiconductor layer, and good operation of the semiconductor electrode is expected.

上述の電気モジュールの製造方法では、前記電解液を前記一方の基材に対して水平方向と上向きの方向との間の範囲の何れかの向きから塗布することが好ましい。 In the method for manufacturing an electric module described above, it is preferable to apply the electrolytic solution to the one base material from any direction in the range between the horizontal direction and the upward direction.

上述の構成によれば、電解液が水平方向と上向きの方向との間の範囲の何れかの向きから塗布されるので、例えば封止材より粘性の低い電解液を用いた場合であっても、電解液の自重によって電解液塗布装置から電解液が過剰に塗布されることなく、適量で塗布され、電解液の液漏れが防止されると共に、電解液が半導体層に良好に染みこむ。 According to the above configuration, the electrolytic solution is applied from any direction in the range between the horizontal direction and the upward direction, so that even when an electrolytic solution having a viscosity lower than that of the encapsulant is used, for example. The electrolytic solution is applied in an appropriate amount without being excessively applied from the electrolytic solution coating device due to the weight of the electrolytic solution, so that the electrolytic solution is prevented from leaking and the electrolytic solution is well permeated into the semiconductor layer.

上述の電気モジュールの製造方法では、前記電気モジュールは色素増感太陽電池であってもよい。 In the method for manufacturing an electric module described above, the electric module may be a dye-sensitized solar cell.

本発明に係る電気モジュールの製造装置は、上述の電気モジュールを製造するための電気モジュールの製造装置であって、前記一方の基材に前記電解液を塗布するための電解液塗布装置と、前記一方の基材に前記封止材を塗布するための封止材塗布装置と、を備え、
前記封止材塗布装置は、前記電解液塗布装置で塗布した電解液の近傍に前記封止材を塗布することが可能な位置に配置されていることを特徴とする。
The electric module manufacturing apparatus according to the present invention is an electric module manufacturing apparatus for manufacturing the above-mentioned electric module, and includes an electrolytic solution coating device for applying the electrolytic solution to the one base material and the above-mentioned electrolytic solution coating device. A sealing material coating device for coating the sealing material on one of the base materials is provided.
The encapsulant coating device is characterized in that it is arranged at a position where the encapsulant can be applied in the vicinity of the electrolytic solution applied by the electrolytic solution coating device.

上述の構成によれば、封止材塗布装置によって基材に封止材が塗付される前に、基材の搬送方向の上流側で電解液塗布装置によって半導体層に電解液が塗布されるので、電気モジュールの製造後までに電解液が半導体層に染みこむ時間が長く確保され、製造後には半導体層に電解液が充分に染みこんだ状態になる。これにより、製造直後であっても電気モジュールの高い性能が得られる。また、電気モジュールの製造装置の大型化が抑えられる。 According to the above configuration, the electrolytic solution is applied to the semiconductor layer by the electrolytic solution coating device on the upstream side in the transport direction of the base material before the sealing material is applied to the base material by the sealing material coating device. Therefore, a long time is secured for the electrolytic solution to soak into the semiconductor layer by the time the electric module is manufactured, and the semiconductor layer is sufficiently soaked with the electrolytic solution after manufacturing. As a result, high performance of the electric module can be obtained even immediately after manufacturing. In addition, the increase in size of the electric module manufacturing apparatus can be suppressed.

本発明に係る電気モジュールの製造装置では、前記一方の基材は所定の方向に搬送され、前記所定の方向に沿って上流側から下流側に向けて前記電解液塗布装置と、前記封止材塗布装置と、がその順で配置され、前記所定の方向における前記電解液塗布装置の設置位置と前記封止材塗布装置の設置位置との搬送距離間隔が50cm以上であることが好ましい。 In the electric module manufacturing apparatus according to the present invention, the one base material is conveyed in a predetermined direction, and the electrolytic solution coating apparatus and the sealing material are conveyed from the upstream side to the downstream side along the predetermined direction. It is preferable that the coating devices are arranged in this order, and the transport distance interval between the installation position of the electrolytic solution coating device and the installation position of the sealing material coating device in the predetermined direction is 50 cm or more.

上述の構成によれば、電解液中に生じた気泡等が抜けた後に封止材の塗布が行われるので、気泡等が抜け切る前に電解液が封止材で覆われる虞がない。 According to the above configuration, since the sealing material is applied after the bubbles and the like generated in the electrolytic solution are removed, there is no possibility that the electrolytic solution is covered with the sealing material before the bubbles and the like are completely removed.

本発明に係る電気モジュールの製造装置では、前記一方の基材は所定の方向に搬送され、前記所定の方向において前記封止材塗布装置の設置位置の下流側に100cm以上の搬送距離が設けられていることが好ましい。 In the electric module manufacturing apparatus according to the present invention, one of the base materials is transported in a predetermined direction, and a transport distance of 100 cm or more is provided on the downstream side of the installation position of the encapsulant coating device in the predetermined direction. Is preferable.

上述の構成によれば、100cm以上の搬送距離が確保されることで、電解液が半導体層に充分に浸透するための時間が得られるので、電解液が半導体層に充分に浸透し、半導体電極の良好な動作が見込まれる。 According to the above configuration, by securing a transport distance of 100 cm or more, it is possible to obtain a time for the electrolytic solution to sufficiently permeate the semiconductor layer, so that the electrolytic solution sufficiently permeates the semiconductor layer and the semiconductor electrode. Good operation is expected.

本発明に係る電気モジュールの製造装置では、前記電解液塗布装置の塗布口が横向きから上向きまでの範囲に位置していることが好ましい。 In the electric module manufacturing apparatus according to the present invention, it is preferable that the coating port of the electrolytic solution coating apparatus is located in the range from the sideways direction to the upward direction.

上述の構成によれば、上述の電気モジュールの製造方法と同様に、例えば封止材より粘性の低い電解液を用いた場合であっても、電解液の自重によって電解液塗布装置から電解液が過剰に塗布されることなく、適量で塗布され、電解液の液漏れが防止されると共に、電解液が半導体層に良好に染みこむ。 According to the above configuration, similarly to the above-described method for manufacturing an electric module, even when an electrolytic solution having a viscosity lower than that of the encapsulant is used, the electrolytic solution is released from the electrolytic solution coating device due to the weight of the electrolytic solution. It is applied in an appropriate amount without being excessively applied to prevent leakage of the electrolytic solution, and the electrolytic solution soaks into the semiconductor layer well.

上述の電気モジュールの製造装置においても、前記電気モジュールは色素増感太陽電池であってもよい。 In the above-mentioned electric module manufacturing apparatus, the electric module may be a dye-sensitized solar cell.

本発明に係る電気モジュールの製造方法及び電気モジュールの製造装置によれば、製造直後に電気モジュールの充分に高い性能を容易に得ることができる。 According to the method for manufacturing an electric module and the manufacturing apparatus for an electric module according to the present invention, it is possible to easily obtain sufficiently high performance of the electric module immediately after manufacturing.

本発明を適用した一実施形態の電気モジュールの製造方法を用いて製造可能な電池シートの構成を示す平面図である。It is a top view which shows the structure of the battery sheet which can be manufactured using the manufacturing method of the electric module of one Embodiment to which this invention is applied. 本発明を適用した一実施形態の電気モジュールの製造方法を用いて製造可能な電池シートの構成を示す図であり、図1に示すX−X線で矢視した断面図である。It is a figure which shows the structure of the battery sheet which can be manufactured by using the manufacturing method of the electric module of one Embodiment to which this invention is applied, and is the cross-sectional view seen by the XX line shown in FIG. 本発明を適用した一実施形態の電気モジュールの製造装置の概略側面図である。It is a schematic side view of the manufacturing apparatus of the electric module of one Embodiment to which this invention was applied. 本発明を適用した一実施形態の電気モジュールの製造装置の第一変形例を示す概略側面図である。It is a schematic side view which shows the 1st modification of the manufacturing apparatus of the electric module of one Embodiment to which this invention was applied. 本発明を適用した一実施形態の電気モジュールの製造装置の第二変形例を示す概略側面図である。It is a schematic side view which shows the 2nd modification of the manufacturing apparatus of the electric module of one Embodiment to which this invention was applied. 本発明を適用した一実施形態の電気モジュールの製造方法を説明するための電池シートの前駆体の断面図である。It is sectional drawing of the precursor of the battery sheet for demonstrating the manufacturing method of the electric module of one Embodiment to which this invention is applied. 本発明を適用した一実施形態の電気モジュールの製造方法を説明するための電池シートの前駆体の断面図である。It is sectional drawing of the precursor of the battery sheet for demonstrating the manufacturing method of the electric module of one Embodiment to which this invention is applied.

以下、本発明を適用した電気モジュールの製造方法及び電気モジュールの製造装置の実施形態について、図面を参照して説明する。なお、以下の説明で用いる図面は模式的なものであり、長さ、幅、及び厚みの比率等は実際のものと同一とは限らず、適宜変更することができる。 Hereinafter, an electric module manufacturing method to which the present invention is applied and an embodiment of an electric module manufacturing apparatus will be described with reference to the drawings. The drawings used in the following description are schematic, and the length, width, thickness ratio, etc. are not always the same as the actual ones and can be changed as appropriate.

(電気モジュールの構成)
以下では、後述する電気モジュールの製造方法を用いて製造される電気モジュールの一例として、RtoR方式を用いて製造されるフィルム型の色素増感太陽電池(電気モジュール)を挙げて、説明する。RtoR方式を用いて製造される色素増感太陽電池は、例えば図1及び図2に示す電池シート21を所望の大きさで切り出し、配線7の接続等を施したものである。
(Configuration of electrical module)
Hereinafter, as an example of an electric module manufactured by using the method for manufacturing an electric module described later, a film-type dye-sensitized solar cell (electric module) manufactured by using the RtoR method will be described. The dye-sensitized solar cell manufactured by using the RtoR method is, for example, a battery sheet 21 shown in FIGS. 1 and 2 cut out to a desired size and connected with wiring 7.

なお、本実施形態の電気モジュールの製造方法を用いて製造される電気モジュールは、色素増感太陽電池に限定されず、二枚の基材の間に半導体層と電解液と封止材とを備え、二枚の基材のうち少なくとも一方の基材の表面に沿って半導体層及び電解液が封止材の間に設けられたものであれば、色素増感太陽電池以外の電気モジュールを全て含んでいる。また、本実施形態の電気モジュールの製造方法を用いて製造される電気モジュールは、RtoR方式を用いて製造されるもの、即ち基材を所定の方向に搬送しつつ連続的に製造されるものに限定されず、予め切り分けられた基材毎にセル構造が形成されるものも含んでいる。 The electric module manufactured by using the method for manufacturing the electric module of the present embodiment is not limited to the dye-sensitized solar cell, and a semiconductor layer, an electrolytic solution, and a sealing material are placed between two base materials. All electric modules other than the dye-sensitized solar cell are provided as long as the semiconductor layer and the electrolytic solution are provided between the sealing materials along the surface of at least one of the two base materials. Includes. Further, the electric module manufactured by using the method for manufacturing an electric module of the present embodiment is manufactured by using the RtoR method, that is, a module manufactured continuously while transporting a base material in a predetermined direction. It is not limited to this, and includes those in which a cell structure is formed for each base material cut in advance.

図1及び図2に示すように、電池シート(色素増感太陽電池)21は、第一基材(一方の基材)1と、第一基材1の一方の表面1aの所定の領域に形成された半導体電極5と、配線7と、封止材9と、第二基材(基材)6と、第二基材6の一方の表面6aの所定の領域に形成された触媒層8と、を備えている。 As shown in FIGS. 1 and 2, the battery sheet (dye-sensitized solar cell) 21 is formed in a predetermined region of the first base material (one base material) 1 and one surface 1a of the first base material 1. The formed semiconductor electrode 5, the wiring 7, the sealing material 9, the second base material (base material) 6, and the catalyst layer 8 formed in a predetermined region on one surface 6a of the second base material 6. And have.

第一基材1は、半導体電極5、配線7、封止材9の基台となる部材である。第一基材1は、RtoR方式を用いた太陽電池の連続生産に適用できる適度な柔軟性を有し、大面積フィルム状に形成可能な材質であれば特に限定されない。第一基材1としては、例えば、ポリエチレンテレフタレート(PET)、アクリル、ポリカーボネート、ポリエチレンナフタレート(PEN)、ポリイミド等の透明の樹脂材料が挙げられる。 The first base material 1 is a member that serves as a base for the semiconductor electrode 5, the wiring 7, and the sealing material 9. The first base material 1 is not particularly limited as long as it has an appropriate flexibility applicable to continuous production of solar cells using the RtoR method and can be formed into a large area film. Examples of the first base material 1 include transparent resin materials such as polyethylene terephthalate (PET), acrylic, polycarbonate, polyethylene naphthalate (PEN), and polyimide.

半導体電極5は、透明導電膜3と、半導体層10と、電解液15で構成されている。
透明導電膜3は、第一基材1の表面1aの全体に亘って成膜されている。透明導電膜3としては、例えば、酸化スズ(ITO)、酸化亜鉛等が挙げられる。なお、製造対象の色素増感太陽電池の構成に応じて、第一基材1の表面1aには、適宜絶縁処理が施されていてもよい。また、透明導電膜3や上述の絶縁処理は、第一基材1の表面1aに沿って非連続的に形成されていても構わない。
The semiconductor electrode 5 is composed of a transparent conductive film 3, a semiconductor layer 10, and an electrolytic solution 15.
The transparent conductive film 3 is formed over the entire surface 1a of the first base material 1. Examples of the transparent conductive film 3 include tin oxide (ITO) and zinc oxide. Depending on the configuration of the dye-sensitized solar cell to be manufactured, the surface 1a of the first base material 1 may be appropriately insulated. Further, the transparent conductive film 3 and the above-mentioned insulation treatment may be formed discontinuously along the surface 1a of the first base material 1.

半導体層10は、第一基材1の透明導電膜3上の所定の領域R1に形成されている。領域R1は、第一基材1の搬送方向(所定の方向)P1及び搬送方向P1に直交する第一基材1における幅方向P2において、互いに間隔を空けて設けられている。ここで、搬送方向P1において、始点側を上流側とし、終点側を下流側として以下説明する。 The semiconductor layer 10 is formed in a predetermined region R1 on the transparent conductive film 3 of the first base material 1. The regions R1 are provided at intervals from each other in the transport direction (predetermined direction) P1 of the first base material 1 and the width direction P2 of the first base material 1 orthogonal to the transport direction P1. Here, in the transport direction P1, the start point side will be the upstream side and the end point side will be the downstream side.

半導体層10は、例えば、増感色素から電子を受け取り輸送する機能を有する金属酸化物からなる多孔質層に増感色素が担持されることで所謂染色された状態で形成されている。このような金属酸化物としては、例えば、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化スズ(SnO)、等が挙げられる。 The semiconductor layer 10 is formed in a so-called dyed state by supporting the sensitizing dye on a porous layer made of a metal oxide having a function of receiving and transporting electrons from the sensitizing dye, for example. Examples of such metal oxides include titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and the like.

上述の増感色素は、有機色素または金属錯体色素で構成されている。有機色素としては、例えば、クマリン系、ポリエン系、シアニン系、ヘミシアニン系、チオフェン系、等の各種有機色素等が挙げられる。金属錯体色素としては、例えば、ルテニウム錯体等が挙げられる。 The above-mentioned sensitizing dye is composed of an organic dye or a metal complex dye. Examples of the organic pigment include various organic pigments such as coumarin-based, polyene-based, cyanine-based, hemicyanine-based, and thiophene-based. Examples of the metal complex dye include a ruthenium complex and the like.

半導体層10には、電解液15が含浸されている。電解液15としては、例えば、アセトニトリル、ヨウ化ジメチルプロピルイミダゾリウム又はヨウ化ブチルメチルイミダゾリウム等のイオン液体などの液体成分に、ヨウ化リチウム等の支持電解質とヨウ素とが混合された溶液(具体的には、プロピオニトリル等の非水系溶剤)等が挙げられる。 The semiconductor layer 10 is impregnated with the electrolytic solution 15. The electrolytic solution 15 is a solution in which a supporting electrolyte such as lithium iodide and iodine are mixed with a liquid component such as an ionic liquid such as acetonitrile, dimethylpropyl imidazolium iodide or butyl methyl imidazolium iodide (specifically). Examples thereof include non-aqueous solvents such as propionitrile).

配線7は、第一基材1の透明導電膜3上において半導体層10が形成されない領域R2、即ち透明導電膜3上の所定の領域R1以外の領域R2に形成され、半導体電極5と触媒層8からなる電極構造C同士を接続するための導電構造である。配線7としては、導通可能な素材であれば特に限定されず、例えば、公知の導電材、導電ペースト、導電性微粒子と接着剤の混合物等が挙げられる。次に説明する封止材9と同様の材料からなるバインダーを配線7に用いてもよい。 The wiring 7 is formed in a region R2 on which the semiconductor layer 10 is not formed on the transparent conductive film 3 of the first base material 1, that is, a region R2 other than a predetermined region R1 on the transparent conductive film 3, and is formed on the semiconductor electrode 5 and the catalyst layer. It is a conductive structure for connecting the electrode structures C made of 8. The wiring 7 is not particularly limited as long as it is a conductive material, and examples thereof include known conductive materials, conductive pastes, and mixtures of conductive fine particles and adhesives. A binder made of the same material as the sealing material 9 described below may be used for the wiring 7.

封止材9は、第一基材1の透明導電膜3上の領域R2で幅方向P2において隣り合う半導体層10同士の間、且つ配線7の両側に形成され、第一基材1と第二基材6とを貼り合わせて接着するための樹脂等を含む。封止材9としては、例えば熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂のうち少なくとも一種を含む樹脂材料が挙げられる。 The sealing material 9 is formed between the semiconductor layers 10 adjacent to each other in the width direction P2 in the region R2 on the transparent conductive film 3 of the first base material 1 and on both sides of the wiring 7, and the first base material 1 and the first base material 9 are formed. (Ii) Contains a resin or the like for adhering and adhering to the base material 6. Examples of the sealing material 9 include a resin material containing at least one of a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin.

第二基材6は、触媒層8の基台となる部材である。第二基材6は、RtoR方式を用いた太陽電池の連続生産に適用できる適度な柔軟性を有し、大面積フィルム状に形成可能な材質であれば特に限定されない。第二基材6としては、第一基材1と同様の材質が挙げられる。 The second base material 6 is a member that serves as a base for the catalyst layer 8. The second base material 6 is not particularly limited as long as it has appropriate flexibility applicable to continuous production of solar cells using the RtoR method and can be formed into a large area film. Examples of the second base material 6 include the same materials as those of the first base material 1.

触媒層8は、第二基材6の表面6aの全体に亘って形成されている。触媒層8としては、プラチナ、ITO、ポリアニリン、ポリエチレンジオキシチオフェン(PEDOT)、カーボン等が挙げられる。 The catalyst layer 8 is formed over the entire surface 6a of the second base material 6. Examples of the catalyst layer 8 include platinum, ITO, polyaniline, polyethylene dioxythiophene (PEDOT), carbon and the like.

(電気モジュールの製造装置)
本発明を適用した電気モジュールの製造装置30(以下、単に「製造装置」という場合がある)は、前述した電池シート21を後述する本実施形態の電気モジュールの製造方法を用いて電池シート21(即ち、色素増感太陽電池)を製造するための装置であって、少なくとも第一基材1の所定の領域(即ち、図1に示す領域R1)に形成された半導体層10に電解液15を塗布する電解液塗布装置32と、電解液塗布装置32より所定の方向P1の下流に設けられ、第一基材1における電解液15の未塗布領域(即ち、図1に示す領域R2)に封止材9を塗布する封止材塗布装置34と、を備えている。
(Electrical module manufacturing equipment)
The electric module manufacturing apparatus 30 to which the present invention is applied (hereinafter, may be simply referred to as a “manufacturing apparatus”) is a battery sheet 21 (hereinafter, may be simply referred to as a “manufacturing apparatus”) using the battery sheet 21 described above using the method for manufacturing an electric module of the present embodiment described later. That is, it is an apparatus for manufacturing a dye-sensitized solar cell), and the electrolytic solution 15 is applied to a semiconductor layer 10 formed in at least a predetermined region (that is, region R1 shown in FIG. 1) of the first base material 1. The electrolytic solution coating device 32 to be coated and the electrolytic solution coating device 32 provided downstream of the electrolytic solution coating device 32 in a predetermined direction P1 and sealed in the uncoated region (that is, the region R2 shown in FIG. 1) of the electrolytic solution 15 in the first base material 1. A sealing material coating device 34 for coating the stopper 9 is provided.

図3に示すように、本実施形態の製造装置30は、電解液塗布装置32と、封止材塗布装置34に加え、第一基材1の表面1aの所定の領域に半導体電極を形成する半導体電極形成部(図示略)と、封止材同士の間に配線を形成する配線形成装置36と、第二基材6の表面6aの所定の領域に触媒層を形成する触媒層形成部(図示略)と、表面6aに触媒層が形成されている第二基材6を第一基材1に貼り合わせる基材貼り合わせ部38と、基材貼り合わせ部38によって貼り合された第一基材1と第二基材6(即ち、貼り合わせ材11,12)との接着を固定する接着部(図示略)と、第一基材1及び第二基材6が貼り合されてなる電池シート21の所定の位置に絶縁処理を施す絶縁処理部(図示略)と、を備えている。 As shown in FIG. 3, the manufacturing apparatus 30 of the present embodiment forms a semiconductor electrode in a predetermined region on the surface 1a of the first base material 1 in addition to the electrolytic solution coating apparatus 32 and the sealing material coating apparatus 34. A semiconductor electrode forming portion (not shown), a wiring forming device 36 for forming wiring between sealing materials, and a catalyst layer forming portion for forming a catalyst layer in a predetermined region on the surface 6a of the second base material 6 (not shown). (Not shown), the base material bonding portion 38 in which the second base material 6 having the catalyst layer formed on the surface 6a is bonded to the first base material 1, and the first base material bonding portion 38. A bonding portion (not shown) for fixing the adhesion between the base material 1 and the second base material 6 (that is, the bonding materials 11 and 12) is bonded to the first base material 1 and the second base material 6. It is provided with an insulation processing unit (not shown) that insulates a predetermined position of the battery sheet 21.

製造装置30において最も上流側の位置には、半導体電極形成部によって透明導電膜と、電解液15が含浸する前の状態の半導体層10が形成され、表面1aを径方向外側に向けて予めロール状に巻き取られた第一基材1Rが設置されている。 At the most upstream position in the manufacturing apparatus 30, a transparent conductive film and a semiconductor layer 10 in a state before being impregnated with the electrolytic solution 15 are formed by the semiconductor electrode forming portion, and the surface 1a is rolled in advance toward the outer side in the radial direction. The first base material 1R wound up in a shape is installed.

第一基材1Rの設置位置から下流には、第一基材1を折り返し巻き上げて搬送するための搬送ロール46が配置されている。搬送ロール46は、第一基材1の表面1a,1bのうち、表面1aには当接せず、半導体層10が形成されていない表面1bのみに当接するように構成されている。 A transport roll 46 for folding back, winding up, and transporting the first base material 1 is arranged downstream from the installation position of the first base material 1R. The transport roll 46 is configured so as not to abut on the surface 1a of the surfaces 1a and 1b of the first base material 1 but to abut only on the surface 1b on which the semiconductor layer 10 is not formed.

第一基材1を介して搬送ロール46に略水平に対向する位置には、電解液塗布装置32が配置されている。電解液塗布装置32としては、例えばダイコーターが挙げられる。電解液塗布装置32の塗布口32pは、搬送ロール44に巻回されている第一基材1の半導体層に電解液15を塗布可能な位置に向けられ、第一基材1に対して間隔s32をあけて配置されている。即ち、塗布口32pが横向き(水平方向を向く方向)に位置している。電解液15は、第一基材1の表面1aに水平方向から塗布可能とされている。なお、電解液15の粘性等を勘案すると、第一基材1の表面1aからの電解液塗布装置32の塗布口32pの高さh32は、10μm以上1000μm以下であることが好ましい。 The electrolytic solution coating device 32 is arranged at a position substantially horizontally facing the transport roll 46 via the first base material 1. Examples of the electrolytic solution coating device 32 include a die coater. The coating port 32p of the electrolytic solution coating device 32 is directed to a position where the electrolytic solution 15 can be applied to the semiconductor layer of the first base material 1 wound around the transport roll 44, and is spaced from the first base material 1. It is arranged with s32 open. That is, the coating port 32p is located sideways (direction facing the horizontal direction). The electrolytic solution 15 can be applied to the surface 1a of the first base material 1 from the horizontal direction. In consideration of the viscosity of the electrolytic solution 15, the height h32 of the coating port 32p of the electrolytic solution coating device 32 from the surface 1a of the first base material 1 is preferably 10 μm or more and 1000 μm or less.

搬送ロール46の設置位置から下流の位置には、封止材塗布装置34が配置されている。封止材塗布装置34の塗布口34pは、搬送ロール46による折り返し部に接する第一基材1の幅方向において電解液15を塗布した半導体層10の間に封止材9を塗工可能な位置に向けられ、第一基材1に対して間隔s32よりも大きい間隔s34をあけて配置されている。例えば、電解液15より粘性の高い封止材9は、第一基材1の表面1aに略鉛直方向に塗布可能とされている。 A sealing material coating device 34 is arranged at a position downstream from the installation position of the transport roll 46. The coating material 9 of the sealing material coating device 34 can be coated with the sealing material 9 between the semiconductor layers 10 coated with the electrolytic solution 15 in the width direction of the first base material 1 in contact with the folded-back portion of the transport roll 46. It is oriented toward the position and is arranged with an interval s34 larger than the interval s32 with respect to the first base material 1. For example, the sealing material 9 having a viscosity higher than that of the electrolytic solution 15 can be applied to the surface 1a of the first base material 1 in a substantially vertical direction.

なお、電解液15の粘性が封止材9の粘性より低い場合は、第一基材1の表面1aからの封止材塗布装置34の塗布口34pの高さh34は、電解液塗布装置32の塗布口32pの高さh32よりも10μm以上1000μm以下高いことが好ましい。 When the viscosity of the electrolytic solution 15 is lower than the viscosity of the sealing material 9, the height h34 of the coating port 34p of the sealing material coating device 34 from the surface 1a of the first base material 1 is the electrolytic solution coating device 32. It is preferable that the height of the coating port 32p is 10 μm or more and 1000 μm or less higher than the height h32.

また、図6には、わかりやすくするために、第一基材1の表面1aに塗布する封止材9の塗布位置と封止材塗布装置34の塗布口34pの位置を破線で示している。幅方向P2において、封止材塗布装置34の塗布口34pは、電解液塗布装置32の塗布口32pの両側に配置されている。特に電解液15の粘性等を勘案すると、電解液塗布装置32の塗布口32pの幅寸法w32は、図6及び図7に示すように幅方向P2において隣り合う封止材塗布装置34の塗布口34p同士の隙間s34の10%以上90%以下であることが好ましい。 Further, in FIG. 6, for the sake of clarity, the coating position of the sealing material 9 to be applied to the surface 1a of the first base material 1 and the position of the coating port 34p of the sealing material coating device 34 are shown by broken lines. .. In the width direction P2, the coating port 34p of the sealing material coating device 34 is arranged on both sides of the coating port 32p of the electrolytic solution coating device 32. In particular, considering the viscosity of the electrolytic solution 15, the width dimension w32 of the coating port 32p of the electrolytic solution coating device 32 is the coating port of the sealing material coating device 34 adjacent to each other in the width direction P2 as shown in FIGS. 6 and 7. It is preferably 10% or more and 90% or less of the gap s34 between 34p.

電解液塗布装置32の設置位置と封止材塗布装置34の設置位置との搬送距離間隔ds1は、50cm以上であることが好ましく、1m以上であることがより好ましい。ただし、搬送距離間隔ds1は、電解液15の種類や第一基材1の構成要素の材質、第一基材1の搬送速度等を総合的に勘案し、適切に設定されていればよい。 The transport distance interval ds1 between the installation position of the electrolytic solution coating device 32 and the installation position of the sealing material coating device 34 is preferably 50 cm or more, and more preferably 1 m or more. However, the transport distance interval ds1 may be appropriately set in consideration of the type of the electrolytic solution 15, the material of the component of the first base material 1, the transport speed of the first base material 1, and the like.

封止材塗布装置34の設置位置から下流の位置には、幅方向P2において配線を形成するための配線形成装置36が配置されている。配線形成装置36の配線材料排出口は、略水平方向に沿って搬送される第一基材1に配線7の材料を供給可能な位置に向けられている。 A wiring forming device 36 for forming wiring in the width direction P2 is arranged at a position downstream from the installation position of the sealing material coating device 34. The wiring material discharge port of the wiring forming device 36 is directed to a position where the material of the wiring 7 can be supplied to the first base material 1 which is conveyed along a substantially horizontal direction.

配線形成装置36の設置位置から下流の位置には、電解液15が塗布された半導体層10、配線及び封止材9が形成された第一基材1(以下、貼り合わせ材11とする、図1及び図2参照)と、触媒層が形成された第二基材6(以下、貼り合わせ材12とする、図1及び図2参照)と、を互いに貼り合わせるための基材貼り合わせ部38が配置されている。 At a position downstream from the installation position of the wiring forming device 36, the semiconductor layer 10 coated with the electrolytic solution 15, the wiring and the first base material 1 on which the sealing material 9 is formed (hereinafter referred to as the bonding material 11). (See FIGS. 1 and 2) and a base material bonding portion for bonding the second base material 6 on which the catalyst layer is formed (hereinafter referred to as a bonding material 12, see FIGS. 1 and 2) to each other. 38 are arranged.

基材貼り合わせ部38としては、例えば鉛直方向において互いに所定の間隔を空けて配置された一対の押圧ロール60,62が挙げられる。上方に配置された第一押圧ロール60と下方に配置された第二押圧ロール62との間隔は、貼り合わせ材11,12や電池シート21の厚み寸法等を勘案して適切に設定されている。 Examples of the base material bonding portion 38 include a pair of pressing rolls 60 and 62 arranged at predetermined intervals in the vertical direction. The distance between the first pressing roll 60 arranged above and the second pressing roll 62 arranged below is appropriately set in consideration of the thickness dimensions of the bonding materials 11 and 12 and the battery sheet 21. ..

基材貼り合わせ部38の設置位置から方向P1の上流の斜め上方には、不図示の対極電極形成部によって触媒層が形成され、表面6aを径方向内側に向けて予めロール状に巻き取られた第二基材6Rが設置されている。 A catalyst layer is formed by a counter electrode forming portion (not shown) diagonally above the upstream of the direction P1 from the installation position of the base material bonding portion 38, and the surface 6a is previously wound in a roll shape toward the inside in the radial direction. The second base material 6R is installed.

第一押圧ロール60は、斜め上方から搬送される第二基材6の表面6a,6bのうち、表面6aには当接せず、触媒層が形成されていない表面6bのみに当接するように構成されている。
第二押圧ロール62は、略水平に搬送される第一基材1の表面1a,1bのうち、表面1aには当接せず、封止材9が塗布されていない、且つ電解液15を含む半導体層10が形成されていない表面1bのみに当接するように構成されている。
The first pressing roll 60 does not abut on the surface 6a of the surfaces 6a and 6b of the second base material 6 conveyed from diagonally above, but only on the surface 6b on which the catalyst layer is not formed. It is configured.
The second pressing roll 62 does not abut on the surface 1a of the surfaces 1a and 1b of the first base material 1 which is conveyed substantially horizontally, the sealing material 9 is not applied, and the electrolytic solution 15 is applied. It is configured to abut only on the surface 1b on which the including semiconductor layer 10 is not formed.

基材貼り合わせ部38の設置位置から方向P1の僅かに下流には、第一押圧ロール60と第二押圧ロール62による押圧領域の外方から該押圧領域に例えば紫外線を照射し、封止材9に含まれる紫外線硬化樹脂を硬化させるための接着部が配置されている。 Slightly downstream in the direction P1 from the installation position of the base material bonding portion 38, the pressing region is irradiated with, for example, ultraviolet rays from the outside of the pressing region by the first pressing roll 60 and the second pressing roll 62 to form a sealing material. An adhesive portion for curing the ultraviolet curable resin contained in 9 is arranged.

図示していないが、基材貼り合わせ部38の設置位置から方向P1の下流には、基材貼り合わせ部38によって貼り合わせ材11,12が貼り合されてなる電池シート21の所望の位置に絶縁処理を施すための絶縁処理部が配置されている。 Although not shown, at a desired position of the battery sheet 21 in which the bonding materials 11 and 12 are bonded by the base material bonding portion 38 downstream from the installation position of the base material bonding portion 38 in the direction P1. An insulation treatment unit for performing insulation treatment is arranged.

封止材塗布装置34の設置位置の下流側には、100cm以上の搬送距離d2が確保されていることが好ましい。製造装置31Aでは、封止材塗布装置34の設置位置から電池シート21が製造され、色素増感太陽電池が完成する位置までの搬送距離が少なくとも100cm以上確保されている。ただし、搬送距離d2は、搬送距離間隔ds1、電解液15の種類や第一基材1の構成要素の材質、第一基材1の搬送速度等を総合的に勘案し、適切に設定されていればよい。 It is preferable that a transport distance d2 of 100 cm or more is secured on the downstream side of the installation position of the sealing material coating device 34. In the manufacturing apparatus 31A, the battery sheet 21 is manufactured from the installation position of the sealing material coating device 34, and the transport distance from the position where the dye-sensitized solar cell is completed is secured at least 100 cm or more. However, the transport distance d2 is appropriately set in consideration of the transport distance interval ds1, the type of the electrolytic solution 15, the material of the component of the first base material 1, the transport speed of the first base material 1, and the like. Just do it.

本実施形態の製造装置30の第一変形例である製造装置31Aでは、図4に示すように、第一基材1Rの設置位置と搬送ロール46との間に、第一基材1を上方に立ち上げて搬送するための搬送ロール44が配置されている。搬送ロール44は、第一基材1の表面1a,1bのうち、表面1bには当接せず、表面1aに当接するように構成されている。このような構成により、略水平な方向P1に巻き出された第一基材1Rは搬送ロール44で略鉛直方向に一旦折り曲げられ、電解液塗布工程の直後に搬送ロール46によって略水平な方向に折り曲げられた後、略水平の方向P1に搬送される。 In the manufacturing apparatus 31A, which is the first modification of the manufacturing apparatus 30 of the present embodiment, as shown in FIG. 4, the first substrate 1 is moved upward between the installation position of the first substrate 1R and the transport roll 46. A transport roll 44 for starting up and transporting the product is arranged. The transport roll 44 is configured so as not to abut on the surface 1b of the surfaces 1a and 1b of the first base material 1 but to abut on the surface 1a. With such a configuration, the first base material 1R unwound in the substantially horizontal direction P1 is once bent in the substantially vertical direction by the transport roll 44, and immediately after the electrolytic solution coating step, the first base material 1R is oriented in the substantially horizontal direction by the transport roll 46. After being bent, it is conveyed in the substantially horizontal direction P1.

製造装置31Aにおいて、電解液塗布装置32は、図4に実線で示すように、塗布口32pを横向きに位置させるようにして、配置されている。従って、電解液15は、第一基材1の表面1aに水平方向から塗布可能とされている。 In the manufacturing apparatus 31A, the electrolytic solution coating apparatus 32 is arranged so that the coating port 32p is positioned sideways as shown by a solid line in FIG. Therefore, the electrolytic solution 15 can be applied to the surface 1a of the first base material 1 from the horizontal direction.

また、本実施形態の製造装置30の第二変形例である製造装置31Bは、図5に示すように、製造装置30と同様の構成要素で構成されているが、電解液塗布装置32の塗布口32pが横向きから上向きまでの範囲に位置している。電解液塗布装置32の配置としては、例えば、図5に破線で示すように電解液塗布装置32の軸線を水平方向に対して下方に略45度傾斜させた斜め上向きの配置や、図5に一点鎖線で示すように電解液塗布装置32の軸線を鉛直方向にした上向きの配置等が挙げられる。これらの配置では、電解液15は、第一基材1の表面1aに水平方向より下方から塗工可能とされている。 Further, as shown in FIG. 5, the manufacturing apparatus 31B, which is a second modification of the manufacturing apparatus 30 of the present embodiment, is composed of the same components as the manufacturing apparatus 30, but is coated with the electrolytic solution coating apparatus 32. The mouth 32p is located in the range from sideways to upwards. As the arrangement of the electrolytic solution coating device 32, for example, as shown by the broken line in FIG. 5, the axis of the electrolytic solution coating device 32 is inclined downward by about 45 degrees with respect to the horizontal direction, and the arrangement is obliquely upward. As shown by the alternate long and short dash line, an upward arrangement in which the axis of the electrolytic solution coating device 32 is in the vertical direction can be mentioned. In these arrangements, the electrolytic solution 15 can be applied to the surface 1a of the first base material 1 from below the horizontal direction.

(電気モジュールの製造方法)
本発明を適用した電気モジュールの製造方法は、上述の製造装置30等を用いて所定の方向P1に沿って連続的に搬送され、表面1aの所定の領域に電解液15が含浸していない半導体層10が形成された第一基材1に対して第二基材6を貼り合わせることにより製造する色素増感太陽電池(図1及び図2参照)の製造方法である。この電気モジュールの製造方法は、第一基材1の半導体層(半導体電極)10に電解液15を塗布する電解液塗布工程と、電解液塗布工程の後に、第一基材1の表面1aにおける電解液15の未塗布領域に封止材を塗布する封止材塗布工程と、有する。
(Manufacturing method of electric module)
In the method for manufacturing an electric module to which the present invention is applied, a semiconductor that is continuously conveyed along a predetermined direction P1 by using the above-mentioned manufacturing apparatus 30 or the like and the predetermined region of the surface 1a is not impregnated with the electrolytic solution 15. This is a method for manufacturing a dye-sensitized solar cell (see FIGS. 1 and 2) manufactured by laminating a second base material 6 to a first base material 1 on which a layer 10 is formed. The method for manufacturing the electric module is a method of applying the electrolytic solution 15 to the semiconductor layer (semiconductor electrode) 10 of the first base material 1 and after the electrolytic solution coating step, on the surface 1a of the first base material 1. It has a sealing material coating step of coating a sealing material on an uncoated region of the electrolytic solution 15.

本実施形態の電気モジュールの製造方法は、電解液塗布工程と、封止材塗布工程に加え、封止材塗布工程の後に、表面6aに触媒層が形成されている第二基材6を第一基材1に貼り合わせる基材貼り合わせ工程と、封止材塗布工程と基材貼り合わせ工程との間に、第一基材1に配線を形成する配線形成工程と、をさらに有している。なお、配線形成工程は、電解液塗布工程の後、且つ封止材塗布工程の前に行っても構わない。
以下、上述の各工程を含めて、本実施形態の色素増感太陽電池の前駆体である電池シート21を製造する方法を、図3を参照し、説明する。
In the method for manufacturing an electric module of the present embodiment, in addition to the electrolytic solution coating step and the sealing material coating step, a second base material 6 having a catalyst layer formed on the surface 6a is used after the sealing material coating step. It further includes a base material bonding step of bonding to the base material 1 and a wiring forming step of forming wiring on the first base material 1 between the sealing material coating step and the base material bonding step. There is. The wiring forming step may be performed after the electrolytic solution coating step and before the sealing material coating step.
Hereinafter, a method of manufacturing the battery sheet 21, which is a precursor of the dye-sensitized solar cell of the present embodiment, including each of the above-mentioned steps, will be described with reference to FIG.

不図示のRtoR方式を用いた装置を用いて、第一基材1を所定の方向に沿って連続的に搬送しながら、公知のスパッタリング法や印刷法等により、第一基材1の表面1aに透明導電膜3を形成する。続いて、公知のエアロゾルデポジション法(Aerosol Deposition method:AD法)等により、第一基材1の表面1aの所定の領域に酸化チタン等の金属酸化物からなる多孔質層を形成する。さらに、該多孔質層に増感色素を担持することで、半導体層10を形成する。このようにして表面1aの所定の領域に電解液15を含浸する前の半導体層10が形成された第一基材1を、表面1aを外側に向けてロール状に巻き取り、ロール状の第一基材1Rとする。 Using a device using the RtoR method (not shown), the surface 1a of the first base material 1 is continuously conveyed along a predetermined direction by a known sputtering method, printing method, or the like. A transparent conductive film 3 is formed on the surface. Subsequently, a porous layer made of a metal oxide such as titanium oxide is formed in a predetermined region on the surface 1a of the first substrate 1 by a known aerosol deposition method (AD method) or the like. Further, the semiconductor layer 10 is formed by supporting the sensitizing dye on the porous layer. In this way, the first base material 1 on which the semiconductor layer 10 before impregnating the predetermined region of the surface 1a with the electrolytic solution 15 is formed is wound in a roll shape with the surface 1a facing outward, and the roll-shaped first base material 1 is wound. One base material is 1R.

不図示のRtoR方式を用いた装置を用いて、上述のロール状の第一基材1Rとは別途、第二基材6を所定の方向に沿って連続的に搬送しながら、公知のスパッタリング法や印刷法等により、第二基材6の表面6aに触媒層を形成し、表面6aを内側に向けてロール状に巻き取り、ロール状の第二基材6Rとする。 A known sputtering method using an apparatus using an RtoR method (not shown) while continuously transporting the second base material 6 along a predetermined direction separately from the roll-shaped first base material 1R described above. A catalyst layer is formed on the surface 6a of the second base material 6 by a printing method or the like, and the surface 6a is wound inward in a roll shape to form a roll-shaped second base material 6R.

図3に示すように、製造装置30にロール状の第一基材1Rを設置し、第一基材1Rから第一基材1を所定の方向P1に巻き出し、巻き出した第一基材1に対して必要に応じて絶縁処理を施す。 As shown in FIG. 3, a roll-shaped first base material 1R is installed in the manufacturing apparatus 30, the first base material 1 is unwound from the first base material 1R in a predetermined direction P1, and the unwound first base material is unwound. Insulation treatment is applied to 1 as necessary.

<電解液塗布工程>
次に、搬送ロール46を第一基材1の表面1bに当てて折り返すと共に、搬送ロール46に対向して略水平に向けて配置された電解液塗布装置32の塗布口32pから、電解液15の粘性や第一基材1の搬送速度等を勘案した適切な流量で電解液15を排出させ、第一基材1の表面1a側から半導体層10に電解液15を塗布する。電解液15の粘性が封止材9の粘性より低い場合は、電解液15の塗布位置における第一基材1の表面1aからの電解液15の高さhp15を、電解液15の粘性及び第一基材1の搬送速度等を勘案し、後述する封止材9の塗布位置における電解液15の高さh15よりも適度に高く設定する(図6及び図7参照)。また、電解液15の高さ(高さ寸法)hp15は、10μm以上1000μm以下とすることが好ましい。また、電解液塗布工程では、電解液15の幅寸法wp15を幅方向P2において隣り合う封止材9同士の隙間s9の10%以上90%以下とし、電解液15の粘性等を勘案して適度に設定することが好ましい。
<Electrolyte coating process>
Next, the transport roll 46 is applied to the surface 1b of the first base material 1 and folded back, and the electrolytic solution 15 is placed from the coating port 32p of the electrolytic solution coating device 32 arranged so as to face the transport roll 46 substantially horizontally. The electrolytic solution 15 is discharged at an appropriate flow rate in consideration of the viscosity of the first base material 1 and the transport speed of the first base material 1, and the electrolytic solution 15 is applied to the semiconductor layer 10 from the surface 1a side of the first base material 1. When the viscosity of the electrolytic solution 15 is lower than the viscosity of the sealing material 9, the height hp15 of the electrolytic solution 15 from the surface 1a of the first base material 1 at the coating position of the electrolytic solution 15 is set to the viscosity of the electrolytic solution 15 and the first. In consideration of the transport speed of one base material 1, the height of the electrolytic solution 15 at the coating position of the sealing material 9 described later is set to be appropriately higher than h15 (see FIGS. 6 and 7). Further, the height (height dimension) hp15 of the electrolytic solution 15 is preferably 10 μm or more and 1000 μm or less. Further, in the electrolytic solution coating step, the width dimension wp15 of the electrolytic solution 15 is set to 10% or more and 90% or less of the gap s9 between adjacent sealing materials 9 in the width direction P2, and is appropriate in consideration of the viscosity of the electrolytic solution 15. It is preferable to set to.

<封止材塗布工程>
次に、搬送ロール46から第一基材1を折り返すことにより、第一基材1を略水平な方向P1に搬送する。封止材塗布装置34の塗布口34pから、封止材9の粘性や第一基材1の搬送速度等を勘案した適切な流量で封止材9を排出させ、第一基材1の所定の領域に封止材9を塗布する。例えば、第一基材1の搬送速度が0.1m/分以上10m/分以下の範囲内であれば、所定の方向P1において前述の電解液塗布工程を行う位置と封止材塗布工程を行う位置との搬送距離間隔ds1を50cm以上とすることが好ましく、1m以上とすることが好ましい。搬送距離間隔ds1を50cm以上確保するのが難しい場合は、電解液塗布工程を行った後、10秒以上の時間間隔をおいて封止材塗布工程を行うことが好ましい。
<Encapsulant coating process>
Next, by folding back the first base material 1 from the transport roll 46, the first base material 1 is transported in a substantially horizontal direction P1. The sealing material 9 is discharged from the coating port 34p of the sealing material coating device 34 at an appropriate flow rate in consideration of the viscosity of the sealing material 9, the transport speed of the first base material 1, and the like, and the predetermined base material 1 is determined. The sealing material 9 is applied to the region of. For example, if the transport speed of the first base material 1 is within the range of 0.1 m / min or more and 10 m / min or less, the position where the above-mentioned electrolytic solution coating step is performed and the sealing material coating step are performed in the predetermined direction P1. The transport distance interval ds1 from the position is preferably 50 cm or more, and preferably 1 m or more. When it is difficult to secure the transport distance interval ds1 of 50 cm or more, it is preferable to perform the encapsulant coating step at intervals of 10 seconds or more after performing the electrolytic solution coating step.

電解液15の粘性が封止材9の粘性より低い場合は、電解液15の塗布位置から封止材9の塗布位置まで第一基材1が搬送される間に、電解液15の高さhp15は高さh15に減少し、電解液15の幅寸法wp15は幅寸法w15に拡がる。前述のように、間隔s34は間隔s32よりも大きく設定されているので、図6に示すように、封止材9の塗布時の高さh9は、封止材9の塗布位置における電解液15の高さh15よりも高くなる。このように、封止材9を塗布する位置において、図7に示すように、封止材9の高さh9を電解液15の高さh15よりも高くして塗布する。この際、封止材9の高さh9を電解液15の高さh15よりも10μm以上1000μm以下高くして塗布することが好ましい。 When the viscosity of the electrolytic solution 15 is lower than the viscosity of the sealing material 9, the height of the electrolytic solution 15 while the first base material 1 is transported from the coating position of the electrolytic solution 15 to the coating position of the sealing material 9. The hp15 decreases to the height h15, and the width dimension wp15 of the electrolytic solution 15 expands to the width dimension w15. As described above, since the interval s34 is set to be larger than the interval s32, as shown in FIG. 6, the height h9 at the time of coating the sealing material 9 is the electrolytic solution 15 at the coating position of the sealing material 9. The height is higher than h15. In this way, at the position where the sealing material 9 is applied, as shown in FIG. 7, the height h9 of the sealing material 9 is made higher than the height h15 of the electrolytic solution 15 and applied. At this time, it is preferable that the height h9 of the sealing material 9 is made higher than the height h15 of the electrolytic solution 15 by 10 μm or more and 1000 μm or less.

<配線形成工程>
次に、所定の方向P1に沿って搬送される第一基材1に対して配線形成装置36の配線材料排出口から、配線材料の粘性や第一基材1の搬送速度等を勘案した適切な流量で配線材料を排出させ、第一基材1の所定の領域に配線を形成する。
<Wiring formation process>
Next, with respect to the first base material 1 transported along the predetermined direction P1, the viscosity of the wiring material, the transport speed of the first base material 1, and the like are appropriately taken into consideration from the wiring material discharge port of the wiring forming device 36. The wiring material is discharged at a high flow rate, and the wiring is formed in a predetermined region of the first base material 1.

次に、製造装置30にロール状の第二基材6Rを設置し、第二基材6Rから第二基材6を所定の方向に巻き出し、巻き出した第二基材6に対して必要に応じて絶縁処理を施す。 Next, a roll-shaped second base material 6R is installed in the manufacturing apparatus 30, and the second base material 6 is unwound from the second base material 6R in a predetermined direction, which is necessary for the unwound second base material 6. Insulation is applied according to the above.

前述のように、半導体電極、配線及び封止材9が形成された第一基材1を貼り合わせ材11とし、触媒層が形成された第二基材6を貼り合わせ材12とする。 As described above, the first base material 1 on which the semiconductor electrode, the wiring, and the sealing material 9 are formed is used as the bonding material 11, and the second base material 6 on which the catalyst layer is formed is used as the bonding material 12.

<基材貼り合わせ工程>
次に、第一押圧ロール60と下方に配置された第二押圧ロール62との間に、略水平な方向P1に沿って貼り合わせ材11を導入すると共に、斜め上方の方向から貼り合わせ材12を導入し、第一押圧ロール60及び第二押圧ロール62を通過させ、貼り合わせ材11,12を互いに押圧して貼り合わせる。
<Base material bonding process>
Next, the laminating material 11 is introduced between the first pressing roll 60 and the second pressing roll 62 arranged below along the substantially horizontal direction P1, and the laminating material 12 is introduced from an obliquely upward direction. Is introduced, the first pressing roll 60 and the second pressing roll 62 are passed, and the bonding materials 11 and 12 are pressed against each other for bonding.

この後、必要に応じて、貼り合わせ材11、12を貼り合わせてなる色素増感太陽電池の前駆構造体にUVランプ等を用いて紫外線を照射し、封止材9を硬化させる。 After that, if necessary, the precursor structure of the dye-sensitized solar cell formed by laminating the bonding materials 11 and 12 is irradiated with ultraviolet rays using a UV lamp or the like to cure the sealing material 9.

封止材塗布工程を行う位置の下流側には、100cm以上の搬送距離d2を確保することが好ましい。即ち、製造装置31Aでは、封止材塗布工程を行う位置から電池シート21を製造し、上述のように色素増感太陽電池を完成させる位置までの搬送距離を少なくとも100cm以上確保することが好ましい。 It is preferable to secure a transport distance d2 of 100 cm or more on the downstream side of the position where the sealing material coating step is performed. That is, in the manufacturing apparatus 31A, it is preferable that the battery sheet 21 is manufactured from the position where the encapsulant coating step is performed, and the transport distance to the position where the dye-sensitized solar cell is completed as described above is at least 100 cm or more.

以上の工程により、図1及び図2に示す電池シート21を製造することができる。この後、必要に応じて、電池シート21から所望のパターンで色素増感太陽電池を切り出す。これにより、色素増感太陽電池が得られる。 Through the above steps, the battery sheet 21 shown in FIGS. 1 and 2 can be manufactured. After that, if necessary, the dye-sensitized solar cell is cut out from the battery sheet 21 in a desired pattern. As a result, a dye-sensitized solar cell is obtained.

なお、図4に示す製造装置31Aを用いた電気モジュールの製造方法は、ロール状の第一基材1Rから第一基材1を略水平な所定の方向P1に巻き出し、巻き出した第一基材1を搬送ロール44で一旦、略鉛直方向に折り返した後、搬送ロール46で巻き返すこと以外は、製造装置30を用いた電気モジュールの製造方法と同様である。
また、図5に示す製造装置31Bを用いた電気モジュールの製造方法は、製造装置30を用いた電気モジュールの製造方法と同様である。
In the method of manufacturing the electric module using the manufacturing apparatus 31A shown in FIG. 4, the first base material 1 is unwound from the roll-shaped first base material 1R in a substantially horizontal predetermined direction P1. The method is the same as that of the electric module manufacturing method using the manufacturing apparatus 30, except that the base material 1 is once folded back in the substantially vertical direction by the transport roll 44 and then rewound by the transport roll 46.
The method of manufacturing the electric module using the manufacturing apparatus 31B shown in FIG. 5 is the same as the method of manufacturing the electric module using the manufacturing apparatus 30.

以上説明した本実施形態の電気モジュールの製造方法によれば、半導体層形成工程、電解液塗布工程及び封止材塗布工程を経て、第一基材1の表面1aに先ず半導体層10を形成し、半導体層10の電解液15を塗布した後に、半導体層10が形成されていない第一基材1の表面1aに封止材9を塗布することで、電気モジュールの製造後までに電解液15が半導体層10に染みこむ時間を長く確保し、製造後には半導体層10に電解液15が充分に染みこんだ状態にして、製造直後であっても電気モジュールの充分に高い性能を得ることができる。また、電解液15を塗布してから色素増感太陽電池の完成までの第一基材1の搬送時間や距離を無理に長くする必要がなく、装置の大型化を抑えることができる。 According to the method for manufacturing an electric module of the present embodiment described above, the semiconductor layer 10 is first formed on the surface 1a of the first base material 1 through a semiconductor layer forming step, an electrolytic solution coating step, and a sealing material coating step. After applying the electrolytic solution 15 of the semiconductor layer 10, by applying the sealing material 9 to the surface 1a of the first base material 1 on which the semiconductor layer 10 is not formed, the electrolytic solution 15 is applied by the time the electric module is manufactured. Allows a long time to soak into the semiconductor layer 10 and allows the semiconductor layer 10 to be sufficiently soaked with the electrolytic solution 15 after manufacturing to obtain sufficiently high performance of the electric module even immediately after manufacturing. it can. Further, it is not necessary to forcibly lengthen the transport time and distance of the first base material 1 from the application of the electrolytic solution 15 to the completion of the dye-sensitized solar cell, and it is possible to suppress the increase in size of the apparatus.

また、本実施形態の電気モジュールの製造方法によれば、第一基材1を所定の方向P1に搬送しつつ、所定の方向P1において電解液塗布工程を行う位置と封止材塗布工程を行う位置との搬送距離間隔ds1を50cm以上とすることで、電解液15中に生じた気泡等が抜けた後に封止材9を塗布することができ、従来のように、例えば気泡等が残っている状態の電解液15が封止材9で覆われ、電解液15から気泡が抜け切らず、製造後の色素増感太陽電池の半導体電極5に気泡が残存することによって色素増感太陽電池の品質が低下するのを防止することができる。 Further, according to the method for manufacturing an electric module of the present embodiment, while transporting the first base material 1 in the predetermined direction P1, the position where the electrolytic solution coating step is performed and the sealing material coating step are performed in the predetermined direction P1. By setting the transport distance interval ds1 from the position to 50 cm or more, the sealing material 9 can be applied after the air bubbles or the like generated in the electrolytic solution 15 are removed, and for example, air bubbles or the like remain as in the conventional case. The electrolytic solution 15 in the present state is covered with the sealing material 9, and the bubbles are not completely removed from the electrolytic solution 15, and the bubbles remain in the semiconductor electrode 5 of the dye-sensitized solar cell after production, so that the dye-sensitized solar cell It is possible to prevent the quality from deteriorating.

また、本実施形態の電気モジュールの製造方法によれば、第一基材1を所定の方向P1に搬送しつつ、所定の方向P1において封止材塗布工程を行う位置から第一基材1を搬送する搬送距離を100cm以上とすることをことで、電解液15が半導体層10に充分に浸透するための時間をより確実に確保することができる。従って、電解液15が半導体層10に充分に浸透し、半導体電極5が良好に動作する色素増感太陽電池を製造することができる。 Further, according to the method for manufacturing an electric module of the present embodiment, the first base material 1 is conveyed from a position where the encapsulant coating step is performed in the predetermined direction P1 while the first base material 1 is conveyed in the predetermined direction P1. By setting the transport distance to 100 cm or more, it is possible to more reliably secure the time for the electrolytic solution 15 to sufficiently permeate the semiconductor layer 10. Therefore, it is possible to manufacture a dye-sensitized solar cell in which the electrolytic solution 15 sufficiently permeates the semiconductor layer 10 and the semiconductor electrode 5 operates well.

また、本実施形態の電気モジュールの製造方法によれば、電解液15が電解液塗布装置32から第一基材1に向けて水平または水平より下方から塗布されるので、封止材9よりも粘性の低い電解液15が電解液15の自重によって電解液塗布装置32から過剰に塗布されることなく、適量で塗布され、電解液15の液漏れを確実に防止することができる。 Further, according to the method of manufacturing the electric module of the present embodiment, the electrolytic solution 15 is applied horizontally or below the horizontal toward the first base material 1 from the electrolytic solution coating device 32, so that the electrolytic solution 15 is applied more than the sealing material 9. The low-viscosity electrolytic solution 15 is applied in an appropriate amount without being excessively applied from the electrolytic solution coating device 32 due to the weight of the electrolytic solution 15, and the leakage of the electrolytic solution 15 can be reliably prevented.

また、本実施形態の電気モジュールの製造方法において、封止材9の塗布位置における電解液15の高さ寸法h15を封止材の塗布時の高さ寸法h9よりも低くすれば、封止材9を塗付する際に、封止材塗布装置34に電解液15が擦れるのを確実に防止することができる(図6及び図7参照)。 Further, in the method for manufacturing the electric module of the present embodiment, if the height dimension h15 of the electrolytic solution 15 at the coating position of the sealing material 9 is lower than the height dimension h9 at the time of coating the sealing material, the sealing material It is possible to reliably prevent the electrolytic solution 15 from rubbing against the sealing material coating device 34 when the 9 is applied (see FIGS. 6 and 7).

本実施形態の電気モジュールの製造装置30,31A,31Bによれば、封止材塗布装置34によって第一基材1に封止材9が塗付される前に、第一基材1の搬送方向の後方(即ち、上流側)で電解液塗布装置32によって半導体層10に電解液15が塗布されるので、電気モジュールの製造後までに電解液15が半導体層10に染みこむための時間を長く確保することができる。そのため、製造後には半導体層10に電解液15が充分に染みこんだ状態にし、製造直後であっても電気モジュールの充分に高い性能を容易に得ることができる。また、電解液15を塗布してから色素増感太陽電池の完成までの第一基材1の搬送時間や距離を無理に延ばさずに済み、装置の大型化を抑えることができる。 According to the electric module manufacturing devices 30, 31A, and 31B of the present embodiment, the first base material 1 is conveyed before the sealing material 9 is applied to the first base material 1 by the sealing material coating device 34. Since the electrolytic solution 15 is applied to the semiconductor layer 10 by the electrolytic solution coating device 32 behind the direction (that is, on the upstream side), it takes time for the electrolytic solution 15 to soak into the semiconductor layer 10 by the time the electric module is manufactured. It can be secured for a long time. Therefore, the semiconductor layer 10 is sufficiently impregnated with the electrolytic solution 15 after manufacturing, and sufficiently high performance of the electric module can be easily obtained even immediately after manufacturing. Further, it is not necessary to forcibly extend the transport time and distance of the first base material 1 from the application of the electrolytic solution 15 to the completion of the dye-sensitized solar cell, and it is possible to suppress the increase in size of the apparatus.

以上、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the specific embodiments, and various aspects of the present invention are described within the scope of the claims. It can be transformed and changed.

1…第一基材(基材)、6…第二基材(基材)、9…封止材、10…半導体層、15…電解液、30,31A,31B…製造装置(電気モジュールの製造装置)、32…電解液塗布装置、34…封止材塗布装置、ds1…搬送距離間隔、d2…搬送距離 1 ... 1st base material (base material), 6 ... 2nd base material (base material), 9 ... encapsulant, 10 ... semiconductor layer, 15 ... electrolytic solution, 30, 31A, 31B ... manufacturing equipment (electrical module) Manufacturing equipment), 32 ... Electrolyte coating equipment, 34 ... Encapsulant coating equipment, ds1 ... Transport distance interval, d2 ... Transport distance

Claims (8)

二枚の基材の間に半導体層と電解液と封止材とを備え、前記二枚の基材のうち一方の基材の表面に沿って前記半導体層及び前記電解液が前記封止材の間に設けられた電気モジュールの製造方法であって、
前記表面に前記半導体層を形成する半導体層形成工程と、
前記半導体層の上に前記電解液を塗布する電解液塗布工程と、
前記電解液を塗布した後に前記表面に前記封止材を塗布する封止材塗布工程と、を有し、
前記一方の基材を所定の方向に搬送しつつ、
前記所定の方向において前記電解液塗布工程を行う位置と前記封止材塗布工程を行う位置との搬送距離間隔を50cm以上とすることを特徴とする電気モジュールの製造方法。
A semiconductor layer, an electrolytic solution, and a sealing material are provided between the two base materials, and the semiconductor layer and the electrolytic solution form the sealing material along the surface of one of the two base materials. It is a manufacturing method of the electric module provided between
A semiconductor layer forming step of forming the semiconductor layer on the surface,
An electrolytic solution coating step of applying the electrolytic solution on the semiconductor layer, and
Have a, a sealing material coating step of applying the sealing material on said surface after applying the electrolyte solution,
While transporting one of the base materials in a predetermined direction,
A method for manufacturing an electric module, characterized in that the transport distance interval between the position where the electrolytic solution coating step is performed and the position where the sealing material coating step is performed in the predetermined direction is 50 cm or more .
前記一方の基材を所定の方向に搬送しつつ、
前記所定の方向において前記封止材塗布工程を行う位置から前記一方の基材を搬送する搬送距離を100cm以上とすることを特徴とする請求項1に記載の電気モジュールの製造方法。
While transporting one of the base materials in a predetermined direction,
The method for manufacturing an electric module according to claim 1, wherein the transport distance for transporting one of the base materials from the position where the encapsulant coating step is performed in the predetermined direction is 100 cm or more.
前記電解液塗布工程において、
前記電解液を前記一方の基材に対して水平方向と上向きの方向との間の範囲の何れかの向きから塗布することを特徴とする請求項1又は2に記載の電気モジュールの製造方法。
In the electrolytic solution coating step
The method for manufacturing an electric module according to claim 1 or 2 , wherein the electrolytic solution is applied to the one base material from any direction in the range between the horizontal direction and the upward direction.
前記電気モジュールは色素増感太陽電池であることを特徴とする請求項1から請求項の何れか一項に記載の電気モジュールの製造方法。 The method for manufacturing an electric module according to any one of claims 1 to 3 , wherein the electric module is a dye-sensitized solar cell. 請求項1から請求項の何れか一項に記載の電気モジュールを製造するための電気モジュールの製造装置であって、
前記一方の基材に前記電解液を塗布するための電解液塗布装置と、前記一方の基材に前記封止材を塗布するための封止材塗布装置と、を備え、
前記封止材塗布装置は、前記電解液塗布装置で塗布した電解液の近傍に前記封止材を塗布することが可能な位置に配置されており、
前記一方の基材は所定の方向に搬送され、
前記所定の方向に沿って上流側から下流側に向けて前記電解液塗布装置と、前記封止材塗布装置と、がその順で配置され、
前記所定の方向における前記電解液塗布装置の設置位置と前記封止材塗布装置の設置位置との搬送距離間隔が50cm以上であることを特徴とする電気モジュールの製造装置。
A device for manufacturing an electric module for manufacturing the electric module according to any one of claims 1 to 4 .
An electrolytic solution coating device for applying the electrolytic solution to the one base material and a sealing material coating device for applying the sealing material to the one base material are provided.
The encapsulant coating device is arranged at a position where the encapsulant can be applied in the vicinity of the electrolytic solution applied by the electrolytic solution coating device .
One of the substrates is conveyed in a predetermined direction and
The electrolytic solution coating device and the sealing material coating device are arranged in this order from the upstream side to the downstream side along the predetermined direction.
Apparatus for producing electric modules conveying distance interval between the installation position of the installation position and the sealing material application device of the electrolyte coating apparatus in the predetermined direction, characterized in der Rukoto than 50 cm.
前記一方の基材は所定の方向に搬送され、
前記所定の方向において前記封止材塗布装置の設置位置の下流側に100cm以上の搬送距離が設けられていることを特徴とする請求項に記載の電気モジュールの製造装置。
One of the substrates is conveyed in a predetermined direction and
The electric module manufacturing apparatus according to claim 5 , wherein a transport distance of 100 cm or more is provided on the downstream side of the installation position of the encapsulant coating apparatus in the predetermined direction.
前記電解液塗布装置の塗布口が横向きから上向きまでの範囲に位置していることを特徴とする請求項5又は6に記載の電気モジュールの製造装置。 The electric module manufacturing apparatus according to claim 5 or 6 , wherein the coating port of the electrolytic solution coating apparatus is located in a range from sideways to upward. 前記電気モジュールは色素増感太陽電池であることを特徴とする請求項から請求項の何れか一項に記載の電気モジュールの製造装置。 The electric module manufacturing apparatus according to any one of claims 5 to 7 , wherein the electric module is a dye-sensitized solar cell.
JP2016176688A 2016-09-09 2016-09-09 Electric module manufacturing method and electric module manufacturing equipment Expired - Fee Related JP6777477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016176688A JP6777477B2 (en) 2016-09-09 2016-09-09 Electric module manufacturing method and electric module manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016176688A JP6777477B2 (en) 2016-09-09 2016-09-09 Electric module manufacturing method and electric module manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2018041908A JP2018041908A (en) 2018-03-15
JP6777477B2 true JP6777477B2 (en) 2020-10-28

Family

ID=61626541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016176688A Expired - Fee Related JP6777477B2 (en) 2016-09-09 2016-09-09 Electric module manufacturing method and electric module manufacturing equipment

Country Status (1)

Country Link
JP (1) JP6777477B2 (en)

Also Published As

Publication number Publication date
JP2018041908A (en) 2018-03-15

Similar Documents

Publication Publication Date Title
KR101574516B1 (en) Manufacturing method of a flexible Dye-sensitized solar cell and the device thereof
JP5086520B2 (en) Photoelectric conversion element module
US9991058B2 (en) Method for manufacturing solar cell
JP6777477B2 (en) Electric module manufacturing method and electric module manufacturing equipment
JP6918521B2 (en) Electric module and manufacturing method of electric module
JP6680651B2 (en) Electric module manufacturing method and electric module manufacturing apparatus
JP2022049017A (en) Laminate and manufacturing method of organic solar cell
JP2005093252A (en) Photoelectric conversion element module
JP2007280849A (en) Photoelectric conversion element
US20150325382A1 (en) Photoelectric conversion element
KR20140024505A (en) Dye-sensitized solar cell with serial structure for continuous process
JP2010037138A (en) Method for forming titanium oxide film and photoelectric conversion element
JP2009016174A (en) Photoelectric conversion element
JP6595894B2 (en) Viscous material supply device and method for producing dye-sensitized solar cell
CN110383407B (en) Laminate and method for manufacturing organic solar cell
JP2013201078A (en) Electric module and manufacturing method of the same
JP5083442B2 (en) Dye-sensitized solar cell
JP6412396B2 (en) Method for producing dye-sensitized solar cell
WO2010060154A1 (en) Photovoltaic devices
JP2013201079A (en) Electric module and manufacturing method of the same
WO2019146684A1 (en) Electric module and method for manufacturing electric module
JP4894133B2 (en) Method for producing metal oxide semiconductor fine particle layer laminate
JP6530686B2 (en) Electrical module manufacturing equipment
TW201635611A (en) Dye-sensitized solar cell and method thereof
JP6338458B2 (en) Photoelectric conversion element, photoelectric conversion module, and method for manufacturing photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200402

TRDD Decision of grant or rejection written
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201008

R151 Written notification of patent or utility model registration

Ref document number: 6777477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees