JP6776040B2 - Wireless power transfer systems, control methods and programs - Google Patents

Wireless power transfer systems, control methods and programs Download PDF

Info

Publication number
JP6776040B2
JP6776040B2 JP2016144506A JP2016144506A JP6776040B2 JP 6776040 B2 JP6776040 B2 JP 6776040B2 JP 2016144506 A JP2016144506 A JP 2016144506A JP 2016144506 A JP2016144506 A JP 2016144506A JP 6776040 B2 JP6776040 B2 JP 6776040B2
Authority
JP
Japan
Prior art keywords
power transmission
coil
loop
power
receiving coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016144506A
Other languages
Japanese (ja)
Other versions
JP2018014864A5 (en
JP2018014864A (en
Inventor
一志 浅井
一志 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016144506A priority Critical patent/JP6776040B2/en
Publication of JP2018014864A publication Critical patent/JP2018014864A/en
Publication of JP2018014864A5 publication Critical patent/JP2018014864A5/ja
Priority to JP2020168584A priority patent/JP7013543B2/en
Application granted granted Critical
Publication of JP6776040B2 publication Critical patent/JP6776040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Accessory Devices And Overall Control Thereof (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、無線で電力を伝送するシステムに関する。 The present invention relates to a system that transmits electric power wirelessly.

近年、移動する機器に対して無線で電力を供給する無線電力伝送システムが提案されている。特許文献1には、プリンタの筺体に設置された狭長な送電コイルから、プリンタ内で移動するプリントヘッドに設置された受電コイルへ、無線で電力を伝送することが記載されている。また特許文献2には、コイルを用いた通信において、漏洩電磁波を抑制するために、8の字形状のコイルを用いることが記載されている。 In recent years, wireless power transmission systems that wirelessly supply electric power to mobile devices have been proposed. Patent Document 1 describes that electric power is wirelessly transmitted from a narrow power transmission coil installed in a housing of a printer to a power receiving coil installed in a print head moving in the printer. Further, Patent Document 2 describes that a figure-eight coil is used in order to suppress leakage electromagnetic waves in communication using a coil.

特開2013−14056号公報Japanese Unexamined Patent Publication No. 2013-14506 特開2013−5252号公報Japanese Unexamined Patent Publication No. 2013-5252

しかしながら、漏洩電磁波を抑制するために特許文献2に記載のコイルを送電コイルとして用い、互いの位置関係が可変である送電コイルと受電コイルの間で無線電力伝送を行う場合に、コイルの位置関係によっては電力伝送の効率が低下する虞がある。例えば、単一のループを有する移動可能な受電コイルと、特許文献2に記載のコイルのような8の字形状の送電コイルを用いて無線電力伝送を行う場合を考える。この場合には、同じ電圧が送電コイルに印加されていても、受電コイルと送電コイルの位置関係によって受電コイルに流れる電流の向きが異なる。そして、受電コイルに流れる電流の向きが変化する境界付近に受電コイルが位置すると、電力伝送の効率が低下することが考えられる。 However, when the coil described in Patent Document 2 is used as a power transmission coil in order to suppress leaked electromagnetic waves and wireless power transmission is performed between the power transmission coil and the power reception coil whose mutual positional relationship is variable, the positional relationship of the coils Depending on the situation, the efficiency of power transmission may decrease. For example, consider a case where wireless power transmission is performed using a movable power receiving coil having a single loop and a figure eight-shaped power transmission coil such as the coil described in Patent Document 2. In this case, even if the same voltage is applied to the power transmission coil, the direction of the current flowing through the power transmission coil differs depending on the positional relationship between the power reception coil and the power transmission coil. Then, if the power receiving coil is located near the boundary where the direction of the current flowing through the power receiving coil changes, it is considered that the efficiency of power transmission is lowered.

本発明は上記課題に鑑み、互いの位置関係が可変である送電コイルと受電コイルの間で無線電力伝送を行う場合に、漏洩電磁波を抑制しつつ電力伝送の効率低下を抑制することを目的とする。 In view of the above problems, it is an object of the present invention to suppress a decrease in power transmission efficiency while suppressing leakage electromagnetic waves when wireless power transmission is performed between a power transmission coil and a power reception coil whose positional relationship is variable. To do.

上記課題を解決するため、本発明に係る無線電力伝送システムは、例えば以下の構成を有する。すなわち、無線で送電するための送電コイルであって、当該送電コイルに対する電圧の印加に応じて互いに逆向きの磁界を生じる第1ループ及び第2ループを有する送電コイルと、前記送電コイルにより発生する磁界を介して無線で受電するための受電コイルと、前記受電コイルにより受電された電力を用いて記録媒体に対してインクを吐出するプリントヘッドと、前記送電コイルに対する前記受電コイルの位置を移動させる移動制御手段と、前記移動制御手段による前記位置の移動を、前記第1ループと前記第2ループとが並ぶ方向に対して略垂直な動き方向に制限するレールとを有し、前記移動制御手段は、前記受電コイルと前記プリントヘッドとを前記レールに沿って前記動き方向に連動して移動させることを特徴とする。
また、上記課題を解決するため、本発明にかかる別の側面の無線電力伝送システムは、例えば以下の構成を有する。すなわち、無線で送電するための送電コイルであって、当該送電コイルに対する電圧の印加に応じて互いに逆向きの磁界を生じる第1ループ及び第2ループを有する送電コイルと、前記送電コイルにより発生する磁界を介して無線で受電し、互いに逆向きの電流が流れる第3ループ及び第4ループを有する受電コイルと、前記送電コイルに対する前記受電コイルの位置を移動させる移動制御手段と、前記移動制御手段による前記位置の移動を、前記第1ループと前記第2ループとが並ぶ方向に対して略垂直な動き方向に制限する制限手段とを有し、前記動き方向における前記送電コイルに対する前記受電コイルの位置に関わらず、前記第1ループ及び前記第2ループが存在する平面に対して前記第3ループと前記第4ループとが互いに逆側に位置することを特徴とする。
In order to solve the above problems, the wireless power transmission system according to the present invention has, for example, the following configuration. That is, it is a transmission coil for wireless transmission, and is generated by a transmission coil having a first loop and a second loop that generate magnetic fields in opposite directions in response to application of a voltage to the transmission coil, and the transmission coil. The position of the power receiving coil for wirelessly receiving power via a magnetic field, the print head for discharging ink to a recording medium using the power received by the power receiving coil, and the position of the power receiving coil with respect to the power transmitting coil are moved. a movement control means, the movement of the position by the movement control means, have a rail to limit the substantially vertical movement to the direction in which said first loop and said second loop are aligned, the movement control unit Is characterized in that the power receiving coil and the print head are moved along the rail in conjunction with the movement direction .
Further, in order to solve the above problems, the wireless power transmission system of another aspect according to the present invention has, for example, the following configuration. That is, it is a transmission coil for wireless transmission, and is generated by the transmission coil and the transmission coil having the first loop and the second loop that generate magnetic fields in opposite directions in response to the application of a voltage to the transmission coil. A power receiving coil having a third loop and a fourth loop that receive power wirelessly via a magnetic field and flow currents in opposite directions, a movement control means for moving the position of the power receiving coil with respect to the power transmission coil, and the movement control means. It has a limiting means for limiting the movement of the position by the movement direction substantially perpendicular to the direction in which the first loop and the second loop are arranged, and the power receiving coil with respect to the power transmission coil in the movement direction. Regardless of the position, the third loop and the fourth loop are located on opposite sides of the plane in which the first loop and the second loop are present.

本発明によれば、互いの位置関係が可変である送電コイルと受電コイルの間で無線電力伝送を行う場合に、漏洩電磁波を抑制しつつ電力伝送の効率低下を抑制することができる。 According to the present invention, when wireless power transmission is performed between a power transmission coil and a power reception coil whose positional relationship is variable, it is possible to suppress a decrease in power transmission efficiency while suppressing leakage electromagnetic waves.

実施形態に係る無線電力伝送システム100のシステム構成について説明するための図である。It is a figure for demonstrating the system configuration of the wireless power transmission system 100 which concerns on embodiment. 実施形態に係る送電コイル110による漏洩電磁波の低減効果について説明するための図である。It is a figure for demonstrating the effect of reducing the leakage electromagnetic wave by the power transmission coil 110 which concerns on embodiment. 実施形態に係るコイル間の位置と結合係数の関係について説明するための図である。It is a figure for demonstrating the relationship between the position between the coils and the coupling coefficient which concerns on embodiment. 実施形態に係るコイル間の位置と結合係数の関係について説明するための図である。It is a figure for demonstrating the relationship between the position between the coils and the coupling coefficient which concerns on embodiment. 実施形態に係る受電コイルについて説明するための図である。It is a figure for demonstrating the power receiving coil which concerns on embodiment. 実施形態に係る無線電力伝送システム100のシステム構成について説明するための図である。It is a figure for demonstrating the system structure of the wireless power transmission system 100 which concerns on embodiment. 実施形態に係るコイル間の位置と結合係数の関係について説明するための図である。It is a figure for demonstrating the relationship between the position between the coils and the coupling coefficient which concerns on embodiment. 実施形態に係る受電コイル1020の位置について説明するための図である。It is a figure for demonstrating the position of the power receiving coil 1020 which concerns on embodiment. 実施形態に係る無線電力伝送システム100のシステム構成について説明するための図である。It is a figure for demonstrating the system configuration of the wireless power transmission system 100 which concerns on embodiment. 実施形態に係るコイル間の位置と結合係数の関係について説明するための図である。It is a figure for demonstrating the relationship between the position between the coils and the coupling coefficient which concerns on embodiment. 実施形態に係る無線電力伝送システム100のシステム構成について説明するための図である。It is a figure for demonstrating the system configuration of the wireless power transmission system 100 which concerns on embodiment. 実施形態に係るコイル間の位置と結合係数の関係について説明するための図である。It is a figure for demonstrating the relationship between the position between the coils and the coupling coefficient which concerns on embodiment. 実施形態に係る受電コイルについて説明するための図である。It is a figure for demonstrating the power receiving coil which concerns on embodiment. 実施形態に係るコイル間の位置と結合係数の関係について説明するための図である。It is a figure for demonstrating the relationship between the position between the coils and the coupling coefficient which concerns on embodiment. 実施形態に係る無線電力伝送システム1000のシステム構成について説明するための図である。It is a figure for demonstrating the system configuration of the wireless power transmission system 1000 which concerns on embodiment.

<第1実施形態>
以下、図面を用いて本発明の実施形態について説明する。図1は、本実施形態に係る無線電力伝送システム100(以降、システム100)のシステム構成について説明するための図である。なお図1は、互いに直交するX軸、Y軸及びZ軸により定義される座標系170のZ軸方向の視点からシステム100を見た場合の図である。
<First Embodiment>
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining a system configuration of a wireless power transmission system 100 (hereinafter, system 100) according to the present embodiment. Note that FIG. 1 is a view when the system 100 is viewed from a viewpoint in the Z-axis direction of the coordinate system 170 defined by the X-axis, the Y-axis, and the Z-axis that are orthogonal to each other.

システム100は、送電部101、受電部102、制御部103、プリントヘッド104、駆動部105、電源部106、レール150、伝送路130、伝送路131、伝送路160及び伝送路161を有する。また、送電部101は送電コイル110及び送電器111を有し、受電部102は受電コイル120及び受電器121を有する。 The system 100 includes a power transmission unit 101, a power reception unit 102, a control unit 103, a print head 104, a drive unit 105, a power supply unit 106, a rail 150, a transmission line 130, a transmission line 131, a transmission line 160, and a transmission line 161. Further, the power transmission unit 101 has a power transmission coil 110 and a power transmission 111, and the power reception unit 102 has a power reception coil 120 and a power receiver 121.

本実施形態では、システム100はプリンタに含まれ、送電コイル110から受電コイル120へ伝送される電力は、プリンタ内のプリントヘッド104においてインクの吐出を制御するために使用される。例えば、プリントヘッド104がピエゾ方式によるインク吐出を行う場合、伝送された電力は圧電素子への電圧の印加に使用される。また例えば、プリントヘッド104がサーマル方式によるインク吐出を行う場合、伝送された電力はヒーターによる加熱のために使用される。この吐出制御によって、プリンタに装着されたインクタンクからプリントヘッド104へ供給されるインクが、プリンタ内を搬送される用紙等の記録媒体に対して吐出され、記録媒体上に画像が形成される。ここで、プリントヘッド104が例えば記録媒体の搬送方向と垂直な方向に移動してインクの吐出を行うことによって、記録媒体の全体に画像を形成することが可能となる。具体的には、プリントヘッド104の移動及びインクの吐出と用紙の搬送とが交互に繰り返されながらプリントが行われる。 In the present embodiment, the system 100 is included in the printer, and the electric power transmitted from the power transmitting coil 110 to the power receiving coil 120 is used to control the ejection of ink in the print head 104 in the printer. For example, when the print head 104 ejects ink by the piezo method, the transmitted electric power is used to apply a voltage to the piezoelectric element. Further, for example, when the print head 104 ejects ink by a thermal method, the transmitted electric power is used for heating by the heater. By this ejection control, the ink supplied from the ink tank mounted on the printer to the print head 104 is ejected to a recording medium such as paper conveyed in the printer, and an image is formed on the recording medium. Here, the print head 104 moves, for example, in a direction perpendicular to the transport direction of the recording medium to eject ink, so that an image can be formed on the entire recording medium. Specifically, printing is performed while moving the print head 104, ejecting ink, and transporting paper alternately.

ただし、システム100の適用先はこれに限定されるものではない。例えば、工場で用いられる自動搬送車(AVG:Automatic Guided Vehicle)への電力伝送や、イメージスキャナのLED部への電力伝送など、所定の方向に移動し電力供給が必要な移動体全般への電力伝送に適用できる。なお、システム100をプリンタ以外に適用する場合、システム100はプリントヘッド104やレール150、駆動部105などを含まなくてよい。 However, the application destination of the system 100 is not limited to this. For example, power transmission to automatic guided vehicles (AVG: Automatic Guided Vehicle) used in factories, power transmission to the LED section of an image scanner, and other power transmission to all moving objects that move in a predetermined direction and require power supply. Applicable to transmission. When the system 100 is applied to a device other than the printer, the system 100 does not have to include the print head 104, the rail 150, the drive unit 105, and the like.

また、本実施形態において、送電コイル110から受電コイル120への電力伝送には電磁誘導方式又は磁界共鳴方式が用いられる。なお、電磁誘導方式と磁界共鳴方式とが選択的に用いられてもよいし、その他の方式が用いられてもよい。 Further, in the present embodiment, an electromagnetic induction method or a magnetic field resonance method is used for power transmission from the power transmission coil 110 to the power reception coil 120. The electromagnetic induction method and the magnetic field resonance method may be selectively used, or other methods may be used.

システム100内には、送電コイル110に流れる電流に応じて発生する磁界によって受電コイル120へ無線で電力を伝送するための送電コイル110と、送電コイル110から受電するための受電コイル120の2つのコイルが存在する。なお、システム100内のコイルの数はこれに限らない。例えば、1つの送電コイル110と複数の受電コイル120が存在してもよいし、複数の送電コイル110と1つの受電コイル120が存在してもよいし、複数の送電コイル110と複数の受電コイル120が存在してもよい。 In the system 100, there are two power transmission coils 110 for wirelessly transmitting power to the power reception coil 120 by a magnetic field generated according to the current flowing through the power transmission coil 110, and a power reception coil 120 for receiving power from the power transmission coil 110. There is a coil. The number of coils in the system 100 is not limited to this. For example, one power transmission coil 110 and a plurality of power receiving coils 120 may be present, a plurality of power transmission coils 110 and one power receiving coil 120 may be present, or a plurality of power transmission coils 110 and a plurality of power receiving coils. 120 may be present.

送電コイル110は、座標系170のX軸方向と略平行な線状の導体部分181、導体部分182、導体部分183、及び導体部分184を有し、図1に示すように8の字形状を成す。ただし、導体部分181−184はX軸方向と平行なものに限定されない。送電コイル110は、受電コイル120のX軸方向における移動に伴うコイル間の結合係数の変化が抑えられるような形状であればよい。なお、送電コイル110の8の字の交点180において交差する2本の線状の導体部分は接触しない。 The power transmission coil 110 has a linear conductor portion 181, a conductor portion 182, a conductor portion 183, and a conductor portion 184 substantially parallel to the X-axis direction of the coordinate system 170, and has a figure eight shape as shown in FIG. Make up. However, the conductor portions 181-184 are not limited to those parallel to the X-axis direction. The power transmission coil 110 may have a shape that suppresses a change in the coupling coefficient between the coils due to the movement of the power receiving coil 120 in the X-axis direction. The two linear conductor portions that intersect at the intersection 180 of the figure 8 of the power transmission coil 110 do not come into contact with each other.

ここで、送電コイル110による漏洩電磁波の低減効果について図2を用いて説明する。送電コイル110は、導体部分181及び導体部分182を含む第一のループと、導体部分183及び導体部分184を含む第二のループを有する。なお、本実施形態においてコイルが有するループとは、コイルの一部又は全体であって、コイルに対する電圧の印加に応じて磁界を生成する環状の部分であり、また、ループ内を貫通する磁界に応じてコイルに電流が流れるような環状の部分である。 Here, the effect of reducing the leakage electromagnetic wave by the power transmission coil 110 will be described with reference to FIG. The power transmission coil 110 has a first loop including a conductor portion 181 and a conductor portion 182 and a second loop including a conductor portion 183 and a conductor portion 184. In the present embodiment, the loop included in the coil is a part or the whole of the coil, which is an annular portion that generates a magnetic field in response to application of a voltage to the coil, and is a magnetic field penetrating the loop. It is an annular part in which a current flows through the coil accordingly.

第一のループと第二のループには、送電コイル110に対する電圧の印加に応じて互いに逆向きの電流が流れる。例えば、第一のループに座標系170のZ軸方向から見て右回りの電流が流れる場合には、第二のループにはZ軸方向から見て左回りの電流が流れる。これにより、第一のループと第二のループは互いに逆向きの磁束を発生させる。その結果、送電コイル110の近傍には図2のように閉じた磁界が形成される。つまり、本実施形態に係る送電コイル110を用いることで、遠方界へ伝搬する磁界が低減され、漏洩電磁波を抑制することができる。 Currents in opposite directions flow through the first loop and the second loop in response to the application of a voltage to the power transmission coil 110. For example, when a clockwise current flows in the first loop when viewed from the Z-axis direction of the coordinate system 170, a counterclockwise current flows in the second loop when viewed from the Z-axis direction. As a result, the first loop and the second loop generate magnetic fluxes in opposite directions. As a result, a closed magnetic field is formed in the vicinity of the power transmission coil 110 as shown in FIG. That is, by using the power transmission coil 110 according to the present embodiment, the magnetic field propagating to the distant field is reduced, and the leaked electromagnetic wave can be suppressed.

送電器111は、電磁誘導方式や磁界共鳴方式の無線電力伝送に用いられる公知の送電回路を有する。具体的には、送電器111は、電源部106から供給される直流電圧を、スイッチング回路を用いて送電に適した周波数の交流電圧へ変換し、送電コイル110に対して印加する。つまり、送電部101は、送電器111において直流電圧を交流電圧へ変換し、送電コイル110において交流磁界を生成する。 The power transmission 111 has a known power transmission circuit used for electromagnetic induction type or magnetic field resonance type wireless power transmission. Specifically, the power transmission 111 converts the DC voltage supplied from the power supply unit 106 into an AC voltage having a frequency suitable for power transmission by using a switching circuit, and applies the DC voltage to the power transmission coil 110. That is, the power transmission unit 101 converts the DC voltage into the AC voltage in the power transmission 111 and generates the AC magnetic field in the power transmission coil 110.

受電コイル120は、座標系170のX軸方向と略平行な線状の導体部分191、導体部分192、導体部分193、及び導体部分194を有し、送電コイル110と同様に8の字形状を成す。つまり、受電コイル120は、導体部分191及び導体部分192を含む第三のループと、導体部分193及び導体部分194を含む第四のループを有する。ただし、導体部分191−194はX軸方向と平行なものに限定されない。受電コイル120は、X軸方向における移動に伴うコイル間の結合係数の変化が抑えられるような形状であればよい。なお、受電コイル120の8の字の交点190において交差する2本の線状の導体部分は接触しない。第三のループと第四のループには、送電コイル110に対する電圧の印加に応じて互いに逆向きの電流が流れる。例えば、第三のループに座標系170のZ軸方向から見て右回りの電流が流れる場合には、第四のループにはZ軸方向から見て左回りの電流が流れる。 The power receiving coil 120 has a linear conductor portion 191, a conductor portion 192, a conductor portion 193, and a conductor portion 194 substantially parallel to the X-axis direction of the coordinate system 170, and has a figure eight shape like the power transmitting coil 110. To make. That is, the power receiving coil 120 has a third loop including the conductor portion 191 and the conductor portion 192, and a fourth loop including the conductor portion 193 and the conductor portion 194. However, the conductor portion 191-194 is not limited to the one parallel to the X-axis direction. The power receiving coil 120 may have a shape that suppresses a change in the coupling coefficient between the coils due to movement in the X-axis direction. The two linear conductor portions that intersect at the intersection 190 of the figure 8 of the power receiving coil 120 do not come into contact with each other. Currents in opposite directions flow in the third loop and the fourth loop in response to the application of a voltage to the power transmission coil 110. For example, when a clockwise current flows in the third loop when viewed from the Z-axis direction of the coordinate system 170, a counterclockwise current flows in the fourth loop when viewed from the Z-axis direction.

また、送電コイル110及び受電コイル120がX軸方向に平行な基準平面(XY平面)に投影された場合、即ちX軸方向に垂直な基準方向(Z軸方向)の視点から見た場合、送電コイル110の内部と受電コイルの内部は少なくとも一部が重なる。より具体的には、図1のように、第一のループの内部と第三のループの内部とが少なくとも一部重なり、第二のループの内部と第四のループの内部とが少なくとも一部重なる。このような構成により、送電コイル110により発生した磁束が第三のループの内部を貫通する方向と第四のループの内部を貫通する方向が逆方向となり、効率の良い電力伝送が実現される。 Further, when the power transmitting coil 110 and the power receiving coil 120 are projected on a reference plane (XY plane) parallel to the X-axis direction, that is, when viewed from a reference direction (Z-axis direction) perpendicular to the X-axis direction, power transmission is performed. At least a part of the inside of the coil 110 and the inside of the power receiving coil overlap. More specifically, as shown in FIG. 1, the inside of the first loop and the inside of the third loop overlap at least partly, and the inside of the second loop and the inside of the fourth loop partially overlap. Overlap. With such a configuration, the direction in which the magnetic flux generated by the power transmission coil 110 penetrates the inside of the third loop and the direction in which it penetrates the inside of the fourth loop are opposite to each other, and efficient power transmission is realized.

受電部102はプリントヘッド104と物理的に結合しているため、受電コイル120はレール150上をスライドするプリントヘッド104と連動して座標系170のX軸方向に移動可能である。即ち、受電コイル120は送電コイル110に対する位置がX軸方向において可変である。なお、受電コイル120は送電コイル110の8の字の横方向(X軸方向)に移動するため、上述した基準方向の視点におけるループの重なりの関係は、送電コイル110に対する受電コイル120の位置に応じて変化しない。即ち、受電コイル120の移動によって、受電コイル120のループの内部を貫通する磁束の向きは変化しない。そのため、受電コイル120に流れる電流の向きは、X軸方向における送電コイル110に対する受電コイル120の位置に関わらずに決まる。 Since the power receiving unit 102 is physically coupled to the print head 104, the power receiving coil 120 can move in the X-axis direction of the coordinate system 170 in conjunction with the print head 104 that slides on the rail 150. That is, the position of the power receiving coil 120 with respect to the power transmission coil 110 is variable in the X-axis direction. Since the power receiving coil 120 moves in the lateral direction (X-axis direction) of the figure 8 of the power transmission coil 110, the relationship of loop overlap in the above-mentioned reference direction viewpoint is the position of the power receiving coil 120 with respect to the power transmission coil 110. Does not change accordingly. That is, the direction of the magnetic flux penetrating the inside of the loop of the power receiving coil 120 does not change due to the movement of the power receiving coil 120. Therefore, the direction of the current flowing through the power receiving coil 120 is determined regardless of the position of the power receiving coil 120 with respect to the power transmission coil 110 in the X-axis direction.

もし仮に、受電コイル120が座標系のY軸方向に移動する場合、受電コイル120に流れる電流の向きが受電コイル120の位置によって変化する。例えば、Z軸方向から見て第三のループと第一のループが重なっている場合と、第四のループと第一のループが重なっている場合とで、受電コイル120に流れる電流の向きが異なる。そして、受電コイル120に流れる電流の向きが変化する境界付近に受電コイルが位置すると、コイル間の結合係数が大きく低下し、電力伝送の効率が低下する。一方、本実施形態に係るシステム100においては、受電コイル120はX軸方向に移動するため、このような送電コイル110と受電コイル120の位置関係に基づく電力伝送の効率低下を抑制できる。 If the power receiving coil 120 moves in the Y-axis direction of the coordinate system, the direction of the current flowing through the power receiving coil 120 changes depending on the position of the power receiving coil 120. For example, when the third loop and the first loop overlap when viewed from the Z-axis direction, and when the fourth loop and the first loop overlap, the direction of the current flowing through the power receiving coil 120 is different. different. When the power receiving coil is located near the boundary where the direction of the current flowing through the power receiving coil 120 changes, the coupling coefficient between the coils is greatly reduced, and the efficiency of power transmission is lowered. On the other hand, in the system 100 according to the present embodiment, since the power receiving coil 120 moves in the X-axis direction, it is possible to suppress such a decrease in power transmission efficiency based on the positional relationship between the power transmission coil 110 and the power receiving coil 120.

なお、送電コイル110は受電コイル120よりもX軸方向における長さが長いものとする。具体的には、受電コイル120が移動可能なX軸方向において、第一のループと第二のループのうち長い方の外径の長さは、第三のループと第四のループのうち長い方の外形の長さよりも長い。また、受電コイル120のY軸方向の長さは、コイル間の結合係数を高くするという目的から、送電コイル110のY軸方向の長さと同等である。すなわち、導体部分182と導体部分184との間の距離と、導体部分192と導体部分194との間の距離とが同等である。さらに、導体部分182と導体部分181との間の距離と、導体部分192と導体部分191との間の距離とが同等であり、導体部分183と導体部分184との間の距離と、導体部分193と導体部分194との間の距離とが同等であれば、より望ましい。 The power transmission coil 110 is longer than the power reception coil 120 in the X-axis direction. Specifically, in the X-axis direction in which the power receiving coil 120 can move, the length of the longer outer diameter of the first loop and the second loop is longer than that of the third loop and the fourth loop. It is longer than the outer shape of the one. Further, the length of the power receiving coil 120 in the Y-axis direction is equivalent to the length of the power transmitting coil 110 in the Y-axis direction for the purpose of increasing the coupling coefficient between the coils. That is, the distance between the conductor portion 182 and the conductor portion 184 is equivalent to the distance between the conductor portion 192 and the conductor portion 194. Further, the distance between the conductor portion 182 and the conductor portion 181 and the distance between the conductor portion 192 and the conductor portion 191 are equivalent, and the distance between the conductor portion 183 and the conductor portion 184 and the conductor portion It is more desirable if the distance between 193 and the conductor portion 194 is equal.

受電器121は、電磁誘導方式や磁界共鳴方式の無線電力伝送に用いられる公知の受電回路を有し、送電器111による送電コイル110への電圧の印加に応じて受電コイル120に発生する電力をプリントヘッド104へ出力する。より具体的には、受電器121は、受電コイル120において交流磁界から生じた交流電圧を、整流回路を用いて直流電圧へ変換し、さらに電圧変換回路を用いて適切な電圧へ変換し、伝送路161を介してプリントヘッド104へ電力供給する。つまり、受電部102は、送電部101により生成された交流磁界に基づいて受電コイル120において受電し、受電器121において交流電圧を直流電圧へ変換し、電力を出力する。上記の構成により、プリントヘッド104への無線での電力供給が実現される。 The power receiver 121 has a known power receiving circuit used for wireless power transmission of an electromagnetic induction method or a magnetic field resonance method, and receives power generated in the power receiving coil 120 in response to a voltage applied to the power transmitting coil 110 by the power transmitting device 111. Output to the print head 104. More specifically, the power receiver 121 converts the AC voltage generated from the AC magnetic field in the power receiving coil 120 into a DC voltage by using a rectifying circuit, further converts it into an appropriate voltage by using a voltage conversion circuit, and transmits the AC voltage. Power is supplied to the print head 104 via the path 161. That is, the power receiving unit 102 receives power in the power receiving coil 120 based on the alternating magnetic field generated by the power transmitting unit 101, converts the AC voltage into the DC voltage in the power receiving unit 121, and outputs the power. With the above configuration, wireless power supply to the print head 104 is realized.

制御部103は、伝送路130を介してプリントヘッド104と接続され、プリントヘッド104を制御する。また制御部103は、伝送路131を介して駆動部105と接続され、駆動部105を制御する。プリントヘッド104は、伝送路130を介して制御部103から伝送される制御信号に基づいてインク等を吐出し、紙などの媒体に文字や画像を記録する。駆動部105は、伝送路131を介して制御部103から伝送される制御信号に基づいて、プリントヘッド104をレール150に沿って移動させる。なお、プリントヘッド104と受電コイル120は連動するため、駆動部105はプリントヘッド104を移動させると共に、送電コイル110に対する受電コイル120の位置をX軸方向に移動させることになる。電源部106は、送電部101、制御部103及び駆動部105の各々に適した直流電圧を商用電源(不図示)などから生成し、伝送路160を介して電力供給する。 The control unit 103 is connected to the print head 104 via the transmission line 130 and controls the print head 104. Further, the control unit 103 is connected to the drive unit 105 via the transmission line 131 to control the drive unit 105. The print head 104 ejects ink or the like based on a control signal transmitted from the control unit 103 via the transmission line 130, and records characters or images on a medium such as paper. The drive unit 105 moves the print head 104 along the rail 150 based on the control signal transmitted from the control unit 103 via the transmission line 131. Since the print head 104 and the power receiving coil 120 are interlocked with each other, the drive unit 105 moves the print head 104 and the position of the power receiving coil 120 with respect to the power transmission coil 110 in the X-axis direction. The power supply unit 106 generates a DC voltage suitable for each of the power transmission unit 101, the control unit 103, and the drive unit 105 from a commercial power source (not shown) or the like, and supplies power via the transmission line 160.

なお、本実施形態では、受電部102により受電された電力はプリントヘッド104によるインクの吐出制御のために使用され、プリントヘッド104の移動は電源部106から供給される電力を用いて駆動部105により行われるものとして説明する。ただしこれに限らず、プリントヘッド104自身がレール150に沿って移動するための機構を有し、受電部102により受電された電力がプリントヘッド104の移動のために使用されても良い。 In the present embodiment, the electric power received by the power receiving unit 102 is used for ink ejection control by the print head 104, and the print head 104 is moved by using the electric power supplied from the power supply unit 106 to drive the drive unit 105. It will be described as being performed by. However, the present invention is not limited to this, and the print head 104 itself may have a mechanism for moving along the rail 150, and the electric power received by the power receiving unit 102 may be used for moving the print head 104.

また、伝送路130、伝送路131、伝送路160及び伝送路161は、有線の伝送路であってもよいし無線の伝送路であってもよい。なお、伝送路130を無線化すると、プリントヘッド104の移動が繰り返されることでケーブルが疲労することを回避できる。無線の伝送路は、Wi−Fiなどの標準規格に従った技術により実現してもよいし、独自の無線技術により実現してもよい。続いて、コイル間の位置と結合係数との関係について、図3を用いて説明する。図3(a)は、結合係数を算出するためのシミュレーションモデルにおける、送電コイル410と受電コイル420の斜視図である。8の字形状を成す送電コイル410上に、8の字形状を成す受電コイル420が配置されている。シミュレーションにおいて、送電コイル410のX軸方向の長さは1000mmとし、Y軸方向の幅は100mmとしている。また、受電コイル420のX軸方向の長さとY軸方向の長さはいずれも100mmとし、コイル間の距離は1mmとしている。 Further, the transmission line 130, the transmission line 131, the transmission line 160 and the transmission line 161 may be a wired transmission line or a wireless transmission line. If the transmission line 130 is made wireless, it is possible to avoid fatigue of the cable due to repeated movement of the print head 104. The wireless transmission line may be realized by a technology according to a standard such as Wi-Fi, or may be realized by a unique wireless technology. Subsequently, the relationship between the position between the coils and the coupling coefficient will be described with reference to FIG. FIG. 3A is a perspective view of the power transmission coil 410 and the power reception coil 420 in the simulation model for calculating the coupling coefficient. A power receiving coil 420 having a figure eight shape is arranged on a power transmission coil 410 having a figure eight shape. In the simulation, the length of the power transmission coil 410 in the X-axis direction is 1000 mm, and the width in the Y-axis direction is 100 mm. Further, the length of the power receiving coil 420 in the X-axis direction and the length in the Y-axis direction are both 100 mm, and the distance between the coils is 1 mm.

図3(b)は、図3(a)に示すモデルを用いたシミュレーションによる、コイル間の位置と結合係数との関係を示したグラフである。グラフの横軸は受電コイル420のX軸方向における位置(以降、受電コイル位置)を表しており、縦軸はコイル間の結合係数を表している。ここで受電コイル位置は、送電コイル410のX軸方向における端部と受電コイル420のX軸方向における端部との間の距離で表される。例えば、受電コイル位置が0mmのとき、送電コイル410の辺485と受電コイル420の辺495とがZ軸方向から見て重なりあう。 FIG. 3B is a graph showing the relationship between the position between the coils and the coupling coefficient by simulation using the model shown in FIG. 3A. The horizontal axis of the graph represents the position of the power receiving coil 420 in the X-axis direction (hereinafter, the power receiving coil position), and the vertical axis represents the coupling coefficient between the coils. Here, the position of the power receiving coil is represented by the distance between the end portion of the power transmitting coil 410 in the X-axis direction and the end portion of the power receiving coil 420 in the X-axis direction. For example, when the power receiving coil position is 0 mm, the side 485 of the power transmitting coil 410 and the side 495 of the power receiving coil 420 overlap each other when viewed from the Z-axis direction.

図3(b)から分かるように、受電コイル位置が0mm〜900mmの全ての範囲で結合係数が0.25以上となっている。つまり、受電コイル420の可動範囲全体において、結合係数が極端に低くなる点(NULL点)が存在しない。このことから、本実施形態に係るシステム100によれば、互いの位置関係が可変である送電コイルと受電コイルの間で無線電力伝送を行う場合に、コイルの位置関係に基づく電力伝送の効率低下を抑制できると言える。 As can be seen from FIG. 3B, the coupling coefficient is 0.25 or more in the entire range where the power receiving coil position is 0 mm to 900 mm. That is, there is no point (Null point) where the coupling coefficient becomes extremely low in the entire movable range of the power receiving coil 420. From this, according to the system 100 according to the present embodiment, when wireless power transmission is performed between the power transmission coil and the power reception coil whose positional relationship is variable, the efficiency of power transmission based on the positional relationship of the coils is reduced. It can be said that can be suppressed.

なお、図3(b)に示されるように受電コイル420の可動範囲内における広い範囲でコイル間の結合係数を略一定に保つことができる1つの理由として、第一のループと第二のループとの接続部(導体部分が交差する交点480)が送電コイル410のX軸方向における端部の近傍に位置していることがあげられる。 As shown in FIG. 3B, one reason why the coupling coefficient between the coils can be kept substantially constant in a wide range within the movable range of the power receiving coil 420 is that the first loop and the second loop. It can be mentioned that the connection portion (intersection 480 where the conductor portions intersect) with the transmission coil 410 is located near the end portion in the X-axis direction of the power transmission coil 410.

図4(a)は、第一のループと第二のループとの接続部(交点580)がX軸方向における中央部に位置する送電コイル510と、送電コイル510上の受電コイル520の斜視図である。また図4(b)は、図4(a)に示すモデルを用いたシミュレーションによる、コイル間の位置と結合係数との関係を示したグラフである。図4(b)からわかるように、受電コイル位置が450mmの場合、つまり受電コイル520が送電コイル510の中央部に位置する場合、その周辺に位置する場合(受電コイル位置が300mm又は600mmの場合)と比較して結合係数が高くなってしまう。 FIG. 4A is a perspective view of the power transmission coil 510 in which the connection portion (intersection point 580) between the first loop and the second loop is located at the center in the X-axis direction, and the power reception coil 520 on the power transmission coil 510. Is. Further, FIG. 4B is a graph showing the relationship between the position between the coils and the coupling coefficient by simulation using the model shown in FIG. 4A. As can be seen from FIG. 4B, when the power receiving coil position is 450 mm, that is, when the power receiving coil 520 is located at the center of the power transmission coil 510, or when it is located around it (when the power receiving coil position is 300 mm or 600 mm). ), The coupling coefficient is higher.

以上のことより、送電コイル510の交点580はX軸方向における端部の近傍に位置することが望ましい。例えば、送電コイル510のX軸方向における端部と交点580との間の距離が、受電コイル520のX軸方向における端部と交点590(第三ループと第四ループの接続部)との間の距離よりも短いことが望ましい。 From the above, it is desirable that the intersection 580 of the power transmission coil 510 is located near the end in the X-axis direction. For example, the distance between the end of the power transmission coil 510 in the X-axis direction and the intersection 580 is between the end of the power receiving coil 520 in the X-axis direction and the intersection 590 (the connection between the third loop and the fourth loop). It is desirable that it is shorter than the distance of.

なお、図1から図4の説明では、受電コイル120も送電コイル110と同様に2つのループを有する8の字形状を成すものとして説明したが、受電コイル120の形状はこれに限定されるものではない。例えば、図5(a)に示すように受電コイル320は1つのループを有する形状であってもよい。ただし図5(a)のように、Z軸方向の視点から見た場合に送電コイル110の第一のループと第二のループの双方と受電コイル320のループとが重なると、受電コイル320のループの内部を貫通する磁束が相殺され、無線電力伝送の効率が低下する。そのため、図5(b)のように、Z軸方向の視点から見た場合に第一のループの内部と第二のループの内部との何れか一方と受電コイル321のループの内部とが少なくとも一部重なるように、受電コイル321が配置されることが望ましい。そして、X軸方向における送電コイル110に対する受電コイル321の位置に関わらず、上記の重なりの関係が保たれることが望ましい。 In the description of FIGS. 1 to 4, the power receiving coil 120 is also described as having a figure eight shape having two loops like the power transmission coil 110, but the shape of the power receiving coil 120 is limited to this. is not. For example, as shown in FIG. 5A, the power receiving coil 320 may have a shape having one loop. However, as shown in FIG. 5A, when both the first loop and the second loop of the power transmission coil 110 and the loop of the power receiving coil 320 overlap when viewed from the viewpoint in the Z-axis direction, the power receiving coil 320 The magnetic flux penetrating the inside of the loop is canceled out, reducing the efficiency of wireless power transmission. Therefore, as shown in FIG. 5B, at least one of the inside of the first loop and the inside of the second loop and the inside of the loop of the power receiving coil 321 are at least when viewed from the viewpoint in the Z-axis direction. It is desirable that the power receiving coils 321 are arranged so as to partially overlap each other. Then, it is desirable that the above-mentioned overlapping relationship is maintained regardless of the position of the power receiving coil 321 with respect to the power transmitting coil 110 in the X-axis direction.

また、本実施形態では送電コイル110が2つのループを有する8の字形状をなす場合について説明したが、ループの数は2個より多くてもよい。ただし、漏洩電磁波を抑制する観点から、ループの数は偶数個であることが望ましい。具体的には、送電コイル110に対する電圧の印加に応じて右回りの電流が流れるループの数と左回りの電流が流れるループの数が等しい場合に、より効果的に漏洩電磁波を抑制できる。 Further, in the present embodiment, the case where the power transmission coil 110 has a figure eight shape having two loops has been described, but the number of loops may be more than two. However, from the viewpoint of suppressing leakage electromagnetic waves, it is desirable that the number of loops is an even number. Specifically, when the number of loops in which a clockwise current flows is equal to the number of loops in which a counterclockwise current flows according to the application of a voltage to the power transmission coil 110, the leakage electromagnetic wave can be suppressed more effectively.

なお、以上の説明では、送電コイル110の開口面(ループの内部の面)と受電コイル120の開口面とが略平行に配置される場合を中心に説明した。ただし、送電コイル110の開口面に対する受電コイル120の開口面の傾きはこれに限らない。例えば、送電コイル110の開口面と受電コイル120の開口面とが略垂直に配置されてもよい。以下、この場合のシステム100について説明する。 In the above description, the case where the opening surface of the power transmission coil 110 (the surface inside the loop) and the opening surface of the power receiving coil 120 are arranged substantially in parallel has been mainly described. However, the inclination of the opening surface of the power receiving coil 120 with respect to the opening surface of the power transmitting coil 110 is not limited to this. For example, the opening surface of the power transmission coil 110 and the opening surface of the power receiving coil 120 may be arranged substantially vertically. Hereinafter, the system 100 in this case will be described.

図6(a)は、送電コイル110の開口面と受電コイル1020の開口面とが略垂直に配置される場合のシステム100のシステム構成を示す図であり、図6(b)は、送電コイル110及び受電コイル1020の斜視図である。図1に示したシステム100と図6に示したシステム100との差異は、受電部102の受電コイル1020のみであり、その他の構成要素は図1を用いて説明したものと同様である。 FIG. 6A is a diagram showing a system configuration of the system 100 when the opening surface of the power transmission coil 110 and the opening surface of the power receiving coil 1020 are arranged substantially vertically, and FIG. 6B is a diagram showing a system configuration of the power transmission coil. It is a perspective view of 110 and the power receiving coil 1020. The difference between the system 100 shown in FIG. 1 and the system 100 shown in FIG. 6 is only the power receiving coil 1020 of the power receiving unit 102, and the other components are the same as those described with reference to FIG.

受電コイル1020は、送電コイル110の導体部分181と導体部分183との間の領域に配置され、座標系170におけるZX平面に平行な開口面を持つ。即ち、受電コイル1020はループを有し、X軸方向に垂直な基準方向(Z軸方向)の視点において、送電コイル110の第一のループと第二のループとの間に受電コイル1020のループが存在する。そして、X軸方向における送電コイル110に対する受電コイル1020の位置に関わらず、上記のようなループ間の位置関係は保たれる、なお、受電コイル1020のループは第一のループと第二のループが存在する平面と交差しないことが望ましい。このような配置及び形状の受電コイル1020を用いることで、漏洩電磁波を抑制する8の字形状を成す送電コイル110が生成する磁束が、効率よく受電コイル1020のループ内を貫通し、高効率な無線電力伝送を実現することができる。また、受電コイル1020を流れる電流の向きは受電コイル1020の移動によって変化しないため、受電コイル1020の位置に基づく電力伝送の効率低下が抑制される。 The power receiving coil 1020 is arranged in the region between the conductor portion 181 and the conductor portion 183 of the power transmission coil 110, and has an opening surface parallel to the ZX plane in the coordinate system 170. That is, the power receiving coil 1020 has a loop, and the loop of the power receiving coil 1020 is between the first loop and the second loop of the power transmission coil 110 from the viewpoint of the reference direction (Z axis direction) perpendicular to the X axis direction. Exists. The positional relationship between the loops as described above is maintained regardless of the position of the power receiving coil 1020 with respect to the power transmitting coil 110 in the X-axis direction. The loops of the power receiving coil 1020 are the first loop and the second loop. It is desirable that it does not intersect the plane in which. By using the power receiving coil 1020 having such an arrangement and shape, the magnetic flux generated by the power transmitting coil 110 having a figure eight shape that suppresses leakage electromagnetic waves efficiently penetrates the loop of the power receiving coil 1020, and is highly efficient. Wireless power transmission can be realized. Further, since the direction of the current flowing through the power receiving coil 1020 does not change due to the movement of the power receiving coil 1020, a decrease in power transmission efficiency based on the position of the power receiving coil 1020 is suppressed.

図7(a)は、上記のような構成を採用した場合の結合係数を算出するためのシミュレーションモデルにおける、送電コイル1110と受電コイル1120の斜視図である。XY平面と平行な開口面を有し8の字形状を成す送電コイル1110上に、ZX平面と平行な開口面を有する矩形の受電コイル1120が配置されている。シミュレーションにおいて、送電コイル1110のX軸方向の長さは1000mmとし、Y軸方向の幅は100mmとしている。また、受電コイル1120のX軸方向の長さとY軸方向の長さは何れも100mmとし、コイル間の距離は1mmとしている。 FIG. 7A is a perspective view of the power transmission coil 1110 and the power reception coil 1120 in the simulation model for calculating the coupling coefficient when the above configuration is adopted. A rectangular power receiving coil 1120 having an opening surface parallel to the ZX plane is arranged on a power transmitting coil 1110 having an opening surface parallel to the XY plane and forming a figure eight shape. In the simulation, the length of the power transmission coil 1110 in the X-axis direction is 1000 mm, and the width in the Y-axis direction is 100 mm. Further, the length of the power receiving coil 1120 in the X-axis direction and the length in the Y-axis direction are both 100 mm, and the distance between the coils is 1 mm.

図7(b)は、図7(a)に示すモデルを用いたシミュレーションによる、コイル間の位置と結合係数との関係を示したグラフである。図11(b)から分かるように、受電コイル位置が0mm〜900mmの全ての範囲で結合係数が0.07以上であり、受電コイル1120の可動範囲全体においてNULL点が存在しない。また、受電コイル位置が150mm〜750mmの範囲では結合係数がほぼ一定であることがわかる。このことから、受電コイル1020を用いたシステム100において、コイルのQ値が高い場合でも、受電コイル1020の可動範囲内における広い範囲で高い伝送効率を維持することができると言える。 FIG. 7B is a graph showing the relationship between the position between the coils and the coupling coefficient by simulation using the model shown in FIG. 7A. As can be seen from FIG. 11B, the coupling coefficient is 0.07 or more in the entire range where the power receiving coil position is 0 mm to 900 mm, and there is no NULL point in the entire movable range of the power receiving coil 1120. Further, it can be seen that the coupling coefficient is almost constant in the range of the power receiving coil position of 150 mm to 750 mm. From this, it can be said that in the system 100 using the power receiving coil 1020, high transmission efficiency can be maintained in a wide range within the movable range of the power receiving coil 1020 even when the Q value of the coil is high.

なお、受電コイル1020の位置は図6に示したものに限定されない。例えば、コイル間の結合係数は図6の場合と比べて低くなるが、図8に示すようにZ軸方向から見て送電コイル110の外側に受電コイル1020が位置してもよい。また、Z軸方向から見て第一のループの内部又は第二のループの内部に受電コイル1020が位置してもよい。 The position of the power receiving coil 1020 is not limited to that shown in FIG. For example, the coupling coefficient between the coils is lower than that in FIG. 6, but as shown in FIG. 8, the power receiving coil 1020 may be located outside the power transmission coil 110 when viewed from the Z-axis direction. Further, the power receiving coil 1020 may be located inside the first loop or inside the second loop when viewed from the Z-axis direction.

また、送電コイル110の開口面と受電コイル1020の開口面とが略垂直に配置されるシステム100において、受電コイル1020は2つのループを有する8の字形状であってもよい。図9(a)は、この場合のシステム100の構成を示す図であり、図9(b)は、送電コイル110及び受電コイル1420の斜視図を示す図である。なお、図6のシステム100との差異は、受電コイル1420の形状のみである。 Further, in the system 100 in which the opening surface of the power transmitting coil 110 and the opening surface of the power receiving coil 1020 are arranged substantially vertically, the power receiving coil 1020 may have a figure eight shape having two loops. FIG. 9A is a diagram showing the configuration of the system 100 in this case, and FIG. 9B is a diagram showing a perspective view of the power transmission coil 110 and the power reception coil 1420. The only difference from the system 100 in FIG. 6 is the shape of the power receiving coil 1420.

受電コイル1420は、座標系170のX軸方向と略平行な線状の導体部分1481、導体部分1482、導体部分1483、及び導体部分1484を有し、ZX平面と平行な開口面を有する8の字形状を成す。つまり、受電コイル1420は、導体部分1481及び導体部分1482を含む第三のループと、導体部分1483及び導体部分1484を含む第四のループを有する。第三のループと第四のループには、送電コイル110に対する電圧の印加に応じて互いに逆向きの電流が流れる。 The power receiving coil 1420 has a linear conductor portion 1481, a conductor portion 1482, a conductor portion 1484, and a conductor portion 1484 substantially parallel to the X-axis direction of the coordinate system 170, and has an opening surface parallel to the ZX plane. It forms a shape. That is, the power receiving coil 1420 has a third loop including the conductor portion 1481 and the conductor portion 1482, and a fourth loop including the conductor portion 1843 and the conductor portion 1484. Currents in opposite directions flow in the third loop and the fourth loop in response to the application of a voltage to the power transmission coil 110.

また、受電コイル1420は送電コイル110の導体部分181と導体部分183との間の領域に位置し、送電コイル110の第一のループ及び第二のループが存在する平面に対して、第三のループと第四のループとが互いに逆側に存在する。そして、X軸方向における送電コイル110に対する受電コイル1420の位置に関わらず、上記のようなループ間の位置関係は保たれる。即ち、送電コイル110により発生した磁束が第三ループをY軸の正方向に貫通するとき、Y軸の負方向の磁束が第四ループを貫通する。これにより、受電コイル1420は送電コイル110から効率的に受電することができる。 Further, the power receiving coil 1420 is located in the region between the conductor portion 181 and the conductor portion 183 of the power transmission coil 110, and is a third with respect to the plane in which the first loop and the second loop of the power transmission coil 110 exist. The loop and the fourth loop are on opposite sides of each other. Then, regardless of the position of the power receiving coil 1420 with respect to the power transmitting coil 110 in the X-axis direction, the positional relationship between the loops as described above is maintained. That is, when the magnetic flux generated by the power transmission coil 110 penetrates the third loop in the positive direction of the Y-axis, the magnetic flux in the negative direction of the Y-axis penetrates the fourth loop. As a result, the power receiving coil 1420 can efficiently receive power from the power transmission coil 110.

図10(a)は、上記のような構成を採用した場合の結合係数を算出するためのシミュレーションモデルにおける、送電コイル1510と受電コイル1520の斜視図である。XY平面と平行な開口面を有し8の字形状を成す送電コイル1510上に、ZX平面と平行な開口面を有する8の字形状を成す受電コイル1520が送電コイル1510と交差するよう配置されている。シミュレーションにおいて、送電コイル1510のX軸方向の長さは1000mmとし、Y軸方向の長さは100mmとしている。また、受電コイル1520のX軸方向の長さとY軸方向の長さは何れも100mmとしている。 FIG. 10A is a perspective view of the power transmission coil 1510 and the power reception coil 1520 in the simulation model for calculating the coupling coefficient when the above configuration is adopted. On the power transmission coil 1510 having an opening surface parallel to the XY plane and forming a figure eight, a power receiving coil 1520 having an opening surface parallel to the ZX plane and forming a figure eight is arranged so as to intersect the power transmission coil 1510. ing. In the simulation, the length of the power transmission coil 1510 in the X-axis direction is 1000 mm, and the length in the Y-axis direction is 100 mm. Further, the length of the power receiving coil 1520 in the X-axis direction and the length in the Y-axis direction are both set to 100 mm.

図10(b)は、図10(a)に示すモデルを用いたシミュレーションによる、コイル間の位置と結合係数との関係を示したグラフである。なお本シミュレーションにおいて、受電コイル位置が0mmの場合は送電コイル1510と受電コイル1520が物理的に接触してしまう為、当該位置における結合係数の算出結果はグラフから除外している。図10(b)から分かるように、受電コイル位置が150mm〜900mmの全ての範囲で結合係数が0.1以上であり、NULL点が存在しない。また、受電コイル位置が150mm〜750mmの範囲では結合係数が略一定であることがわかる。 FIG. 10B is a graph showing the relationship between the position between the coils and the coupling coefficient by simulation using the model shown in FIG. 10A. In this simulation, when the power receiving coil position is 0 mm, the power transmitting coil 1510 and the power receiving coil 1520 physically come into contact with each other, so the calculation result of the coupling coefficient at that position is excluded from the graph. As can be seen from FIG. 10B, the coupling coefficient is 0.1 or more in the entire range where the power receiving coil position is 150 mm to 900 mm, and there is no NULL point. Further, it can be seen that the coupling coefficient is substantially constant when the power receiving coil position is in the range of 150 mm to 750 mm.

以上説明したように、本実施形態に係るシステム100は、送電コイルに流れる電流に応じて発生する磁界によって受電コイルへ無線で電力を伝送するための送電コイルを有する。また、送電コイルに対する位置が所定の動き方向(X軸方向)において可変である受電コイルを有する。そして送電コイルは、送電コイルに対する電圧の印加に応じて互いに逆向きの電流が流れる第1ループ及び第2ループを有する。また受電コイルには、送電コイルに対する電圧の印加に応じて、該動き方向における送電コイルに対する位置に関わらずに決まる向きの電流が流れる。これにより、位置関係が可変である送電コイルと受電コイルの間で無線電力伝送を行う場合に、漏洩電磁波を抑制しつつ電力伝送の効率低下を抑制することができる。 As described above, the system 100 according to the present embodiment has a power transmission coil for wirelessly transmitting electric power to the power receiving coil by a magnetic field generated according to the current flowing through the power transmission coil. Further, it has a power receiving coil whose position with respect to the power transmission coil is variable in a predetermined movement direction (X-axis direction). The power transmission coil has a first loop and a second loop in which currents in opposite directions flow in response to the application of a voltage to the power transmission coil. Further, in the power receiving coil, a current flows in a direction determined by the application of a voltage to the power transmission coil regardless of the position with respect to the power transmission coil in the movement direction. As a result, when wireless power transmission is performed between the power transmission coil and the power reception coil whose positional relationship is variable, it is possible to suppress a decrease in power transmission efficiency while suppressing leakage electromagnetic waves.

<第2実施形態>
第1実施形態では、8の字形状を成す送電コイル110を用いることで漏洩電磁波を低減するシステム100について説明した。ただし、漏洩電磁波を低減するための送電コイル110の形状としては、8の字形状に限らず、例えば送電コイル110に囲まれる領域の面積(開口面積)を小さくできるメアンダ(蛇行)形状であっても良い。本実施形態では、送電コイル110をメアンダ形状とした場合のシステム100について説明する。なお、本実施形態においてもシステム100をプリンタへ適用する場合を中心に説明するが、第1実施形態と同様、適用先はこれに限定されるものではない。
<Second Embodiment>
In the first embodiment, the system 100 that reduces the leakage electromagnetic wave by using the power transmission coil 110 having a figure eight shape has been described. However, the shape of the power transmission coil 110 for reducing leaked electromagnetic waves is not limited to the figure eight shape, and is, for example, a meander shape that can reduce the area (opening area) of the area surrounded by the power transmission coil 110. Is also good. In the present embodiment, the system 100 when the power transmission coil 110 has a meander shape will be described. Although the case where the system 100 is applied to the printer will be mainly described in this embodiment as well, the application destination is not limited to this as in the first embodiment.

図11は、本実施形態に係るシステム100の構成を示す図である。図1との差異は送電部601の送電コイル610及び受電部602の受電コイル620の形状であり、それ以外の構成要素は図1を用いて説明したものと同様である。以下では、第1実施形態との差異を中心に説明する。 FIG. 11 is a diagram showing a configuration of the system 100 according to the present embodiment. The difference from FIG. 1 is the shape of the power transmission coil 610 of the power transmission unit 601 and the power reception coil 620 of the power reception unit 602, and the other components are the same as those described with reference to FIG. Hereinafter, the differences from the first embodiment will be mainly described.

送電コイル610は、座標系170のX軸方向に略平行な線状の導体部分681、導体部分682、導体部分683、及び導体部分684を有する。ただし、導体部分681−684はX軸方向と平行なものに限定されない。送電コイル610は、受電コイル620のX軸方向における移動に伴うコイル間の結合係数の変化が抑えられるような形状であればよい。 The transmission coil 610 has a linear conductor portion 681, a conductor portion 682, a conductor portion 683, and a conductor portion 684 that are substantially parallel to the X-axis direction of the coordinate system 170. However, the conductor portions 681 to 684 are not limited to those parallel to the X-axis direction. The power transmission coil 610 may have a shape that suppresses a change in the coupling coefficient between the coils due to movement of the power receiving coil 620 in the X-axis direction.

ここで、導体部分681と導体部分682は隣り合うように配置され、送電コイル610に対する電圧の印加に応じて流れる電流の方向が互いに逆向きである。例えば、導体部分681にX軸の正方向の電流が流れるとき、導体部分682にはX軸の負方向の電流が流れる。同様に、導体部分683と導体部分684は隣り合うように配置され、流れる電流の方向が互いに逆向きである。一方、導体部分681と導体部分683には同じ向きの電流が流れ、導体部分682と導体部分684には同じ向きの電流が流れる。即ち、受電コイル620へ無線で電力を伝送するための送電コイル610は、X軸方向と略平行な導体部分を4つ有するメアンダ形状を成す。なお、メアンダ形状の送電コイル610が有するX軸方向に略平行な導体部分は4つより多くてもよい。 Here, the conductor portion 681 and the conductor portion 682 are arranged so as to be adjacent to each other, and the directions of the currents flowing in response to the application of the voltage to the power transmission coil 610 are opposite to each other. For example, when a current in the positive direction of the X-axis flows through the conductor portion 681, a current in the negative direction of the X-axis flows through the conductor portion 682. Similarly, the conductor portion 683 and the conductor portion 684 are arranged so as to be adjacent to each other, and the directions of the flowing currents are opposite to each other. On the other hand, a current flowing in the same direction flows through the conductor portion 681 and the conductor portion 683, and a current flowing in the same direction flows through the conductor portion 682 and the conductor portion 684. That is, the power transmission coil 610 for wirelessly transmitting electric power to the power reception coil 620 has a meander shape having four conductor portions substantially parallel to the X-axis direction. The number of conductor portions substantially parallel to the X-axis direction of the meander-shaped power transmission coil 610 may be more than four.

受電コイル620は、第1実施形態と同様に、送電コイル610に対する位置が座標系170のX軸方向において可変である。また、受電コイル620は、X軸方向に略平行な線状の導体部分691、導体部分692、導体部分693、及び導体部分694を有する。ただし、導体部分691−694はX軸方向と平行なものに限定されない。受電コイル620はX軸方向における移動に伴うコイル間の結合係数の変化が抑えられるような形状であればよい。ここで、導体部分691と導体部分692は隣り合うよう配置され、送電コイル610に対する電圧の印加に応じて流れる電流の方向が互いに逆向きである。同様に、導体部分693と導体部分694は隣り合うよう配置され、送電コイル610に対する電圧の印加に応じて流れる電流の方向が互いに逆向きである。一方、導体部分691と導体部分693には同じ向きの電流が流れ、導体部分692と導体部分694には同じ向きの電流が流れる。即ち、受電コイル620は、送電コイル610と同様に、X軸方向と略平行な導体部分を4つ有するメアンダ形状を成す。なお、メアンダ形状の受電コイル620が有するX軸方向に略平行な導体部分は4つより多くてもよい。 Similar to the first embodiment, the position of the power receiving coil 620 with respect to the power transmission coil 610 is variable in the X-axis direction of the coordinate system 170. Further, the power receiving coil 620 has a linear conductor portion 691, a conductor portion 692, a conductor portion 693, and a conductor portion 694 that are substantially parallel to the X-axis direction. However, the conductor portions 691-694 are not limited to those parallel to the X-axis direction. The power receiving coil 620 may have a shape that suppresses a change in the coupling coefficient between the coils due to movement in the X-axis direction. Here, the conductor portion 691 and the conductor portion 692 are arranged so as to be adjacent to each other, and the directions of the currents flowing in response to the application of the voltage to the power transmission coil 610 are opposite to each other. Similarly, the conductor portion 693 and the conductor portion 694 are arranged so as to be adjacent to each other, and the directions of the currents flowing in response to the application of the voltage to the power transmission coil 610 are opposite to each other. On the other hand, a current flowing in the same direction flows through the conductor portion 691 and the conductor portion 693, and a current flowing in the same direction flows through the conductor portion 692 and the conductor portion 694. That is, the power receiving coil 620 has a meander shape having four conductor portions substantially parallel to the X-axis direction, like the power transmission coil 610. The number of conductor portions substantially parallel to the X-axis direction of the meander-shaped power receiving coil 620 may be more than four.

送電コイル610及び受電コイル620が座標系170のX軸方向に平行な基準平面(XY平面)に投影された場合、即ちX軸方向に垂直な基準方向(Z軸方向)の視点から見た場合、送電コイル110の内部と受電コイルの内部は少なくとも一部が重なる。例えば、受電コイル620が有するX軸方向と略平行な導体部分691−694がそれぞれ、送電コイル610が有するX軸方向と略平行な導体部分681−684に重なる。このような構成により、送電コイル610と受電コイル620との結合係数が大きくなり、高効率な無線電力伝送が実現できる。 When the power transmitting coil 610 and the power receiving coil 620 are projected on the reference plane (XY plane) parallel to the X-axis direction of the coordinate system 170, that is, when viewed from the viewpoint of the reference direction (Z-axis direction) perpendicular to the X-axis direction. At least a part of the inside of the power transmission coil 110 and the inside of the power reception coil overlap. For example, the conductor portions 691-694 substantially parallel to the X-axis direction of the power receiving coil 620 overlap with the conductor portions 681-684 substantially parallel to the X-axis direction of the transmission coil 610, respectively. With such a configuration, the coupling coefficient between the power transmission coil 610 and the power reception coil 620 becomes large, and highly efficient wireless power transmission can be realized.

以上のように、送電コイル610をメアンダ形状とすることで、上述したように送電コイル610の開口面積を小さくすることができ、結果、漏洩電磁波を低減することができる。また、NULL点の発生も抑止することができる。図12(a)は、本実施形態におけるコイル間の結合係数を算出するためのシミュレーションモデルにおける、送電コイル710と受電コイル720の斜視図である。メアンダ形状を成す送電コイル710上に、メアンダ形状を成す受電コイル720が配置されている。シミュレーションにおいて、送電コイル710のX軸方向の長さは1000mmとし、Y軸方向の幅は100mmとしている。また、受電コイル720のX軸方向の長さとY軸方向の長さは何れも100mmとし、コイル間の距離は1mmとしている。 As described above, by forming the power transmission coil 610 into a meander shape, the opening area of the power transmission coil 610 can be reduced as described above, and as a result, leakage electromagnetic waves can be reduced. In addition, the generation of NULL points can be suppressed. FIG. 12A is a perspective view of the power transmission coil 710 and the power reception coil 720 in the simulation model for calculating the coupling coefficient between the coils in the present embodiment. A power receiving coil 720 having a meander shape is arranged on a power transmission coil 710 having a meander shape. In the simulation, the length of the power transmission coil 710 in the X-axis direction is 1000 mm, and the width in the Y-axis direction is 100 mm. Further, the length of the power receiving coil 720 in the X-axis direction and the length in the Y-axis direction are both 100 mm, and the distance between the coils is 1 mm.

図12(b)は、図12(a)に示すモデルを用いたシミュレーションによる、コイル間の位置と結合係数との関係を示したグラフである。グラフの横軸は受電コイル720のX軸方向における位置(受電コイル位置)を示しており、縦軸はコイル間の結合係数を示している。ここで受電コイル位置は、送電コイル610のX軸方向における端部と受電コイル620のX軸方向における端部との間の距離で表される。例えば、受電コイル位置が0mmのとき、送電コイル710の辺785と受電コイル720の辺795とがZ軸方向から見て重なりあう。 FIG. 12B is a graph showing the relationship between the position between the coils and the coupling coefficient by simulation using the model shown in FIG. 12A. The horizontal axis of the graph shows the position of the power receiving coil 720 in the X-axis direction (power receiving coil position), and the vertical axis shows the coupling coefficient between the coils. Here, the position of the power receiving coil is represented by the distance between the end portion of the power transmitting coil 610 in the X-axis direction and the end portion of the power receiving coil 620 in the X-axis direction. For example, when the power receiving coil position is 0 mm, the side 785 of the power transmitting coil 710 and the side 795 of the power receiving coil 720 overlap each other when viewed from the Z-axis direction.

図12(b)から分かるように、受電コイル位置が0mm〜900mmの全ての範囲で結合係数が0.2以上となっている。つまり、受電コイル620の可動範囲全体においてNULL点が存在しない。また、受電コイル位置が150mm〜750mmの範囲では結合係数がほぼ一定であることがわかる。このことから、本実施形態に係るシステム100によれば、送電コイルと受電コイルの位置関係に基づく電力伝送の効率低下を抑制できると言える。 As can be seen from FIG. 12B, the coupling coefficient is 0.2 or more in the entire range where the power receiving coil position is 0 mm to 900 mm. That is, there is no NULL point in the entire movable range of the power receiving coil 620. Further, it can be seen that the coupling coefficient is almost constant in the range of the power receiving coil position of 150 mm to 750 mm. From this, it can be said that according to the system 100 according to the present embodiment, it is possible to suppress a decrease in power transmission efficiency based on the positional relationship between the power transmission coil and the power reception coil.

なお、図11の説明では、結合係数を大きくするために、受電コイル620も送電コイル610と同様にメアンダ形状を成すものとして説明した。ただし、受電コイル620の形状はこれに限定されるものではない。例えば、図13(a)に示すように受電コイル820は矩形であってもよい。なお、図13(a)のように、Z軸方向の視点から見た場合に送電コイル610の開口面の外側の領域が受電コイル820の開口面内に含まれてもよいが、図13(b)のように含まれない方がより効率の高い無線電力伝送を実現できる。 In the description of FIG. 11, in order to increase the coupling coefficient, the power receiving coil 620 also has a meander shape like the power transmission coil 610. However, the shape of the power receiving coil 620 is not limited to this. For example, as shown in FIG. 13A, the power receiving coil 820 may be rectangular. As shown in FIG. 13A, the region outside the opening surface of the power transmission coil 610 may be included in the opening surface of the power receiving coil 820 when viewed from the viewpoint in the Z-axis direction. More efficient wireless power transmission can be realized if it is not included as in b).

以上説明したように、本実施形態に係るシステム100は、送電コイルに対する位置が所定の動き方向(X軸方向)において可変である受電コイルを有する。また、送電コイルに流れる電流に応じて発生する磁界によって受電コイルへ無線で電力を伝送するための送電コイルを有する。そして送電コイルは、該動き方向と略平行な導体部分を4以上有するメアンダ形状を成す。これにより、位置関係が可変である送電コイルと受電コイルの間で無線電力伝送を行う場合に、漏洩電磁波を抑制しつつ電力伝送の効率低下を抑制することができる。 As described above, the system 100 according to the present embodiment has a power receiving coil whose position with respect to the power transmission coil is variable in a predetermined movement direction (X-axis direction). It also has a power transmission coil for wirelessly transmitting electric power to the power receiving coil by a magnetic field generated in response to a current flowing through the power transmission coil. The power transmission coil has a meander shape having four or more conductor portions substantially parallel to the moving direction. As a result, when wireless power transmission is performed between the power transmission coil and the power reception coil whose positional relationship is variable, it is possible to suppress a decrease in power transmission efficiency while suppressing leakage electromagnetic waves.

なお、上記の各実施形態に係る受電コイルは、磁性体コアを有していても良い。即ち、システム100は、受電コイルのループの内部に磁性体を有していてもよい。受電コイルが磁性体コアを有することで、送電コイルと受電コイルの結合係数を高めることができる。図14(a)は、上記のような構成を採用した場合のコイル間の結合係数を算出するためのシミュレーションモデルにおける、送電コイル1310、受電コイル1320及び磁性体コア1330の斜視図である。送電コイル1310及び受電コイル1320の形状は、図7(a)で説明した送電コイル1110及び受電コイル1120と同一であり、磁性体コア1330の比透磁率は1000としている。 The power receiving coil according to each of the above embodiments may have a magnetic core. That is, the system 100 may have a magnetic material inside the loop of the power receiving coil. Since the power receiving coil has a magnetic core, the coupling coefficient between the power transmitting coil and the power receiving coil can be increased. FIG. 14A is a perspective view of the power transmission coil 1310, the power receiving coil 1320, and the magnetic core 1330 in the simulation model for calculating the coupling coefficient between the coils when the above configuration is adopted. The shapes of the power transmission coil 1310 and the power reception coil 1320 are the same as those of the power transmission coil 1110 and the power reception coil 1120 described with reference to FIG. 7A, and the relative magnetic permeability of the magnetic core 1330 is 1000.

図14(b)は、図14(a)に示すモデルを用いたシミュレーションによる、コイル間の位置と結合係数との関係を示したグラフである。図14(b)から分かるように、受電コイル位置が0mm〜900mmの全ての範囲で結合係数が0.1以上となっており、磁性体コア1330を有さない受電コイル1120を用いた場合の図7(b)の結果と比べて、結合係数が増加していることがわかる。つまり、磁性体コア1330を有する受電コイル1320を用いることでより高効率な無線電力伝送を実現することができる。なお、図7(a)に示した受電コイル1120に限らず、上記の各実施形態で説明した何れの受電コイルを用いる場合でも、受電コイルの内部に磁性体コア1330を配置することで同様に無線電力伝送の効率を向上できる。 FIG. 14B is a graph showing the relationship between the position between the coils and the coupling coefficient by simulation using the model shown in FIG. 14A. As can be seen from FIG. 14B, the coupling coefficient is 0.1 or more in the entire range of the power receiving coil position of 0 mm to 900 mm, and the power receiving coil 1120 having no magnetic core 1330 is used. It can be seen that the coupling coefficient is increased as compared with the result of FIG. 7B. That is, more efficient wireless power transmission can be realized by using the power receiving coil 1320 having the magnetic core 1330. Not limited to the power receiving coil 1120 shown in FIG. 7A, regardless of which of the power receiving coils described in the above embodiments is used, the magnetic core 1330 is similarly arranged inside the power receiving coil. The efficiency of wireless power transmission can be improved.

また、上記の各実施形態においては、送電コイルが1つである場合を中心に説明した。しかしながら、送電コイルの数は1つに限定されず、例えば受電コイルの移動方向に複数の送電コイルを並べて配置してもよい。高効率な無線電力伝送を行うためには、送電コイルに印加される交流電圧の周波数よりも送電コイルの自己共振周波数の方が高いことが望ましく、送電コイルの長さに制約が生じる。そこで、複数の送電コイルを並べてその上で受電コイルを移動させることで、上記の制約を満たしつつ受電コイルが受電可能な範囲を広げることができる。 Further, in each of the above embodiments, the case where there is only one power transmission coil has been mainly described. However, the number of power transmission coils is not limited to one, and for example, a plurality of power transmission coils may be arranged side by side in the moving direction of the power receiving coils. In order to perform highly efficient wireless power transmission, it is desirable that the self-resonant frequency of the power transmission coil is higher than the frequency of the AC voltage applied to the power transmission coil, and the length of the power transmission coil is restricted. Therefore, by arranging a plurality of power transmission coils and moving the power receiving coil on the power transmission coil, it is possible to expand the range in which the power receiving coil can receive power while satisfying the above restrictions.

以下、この場合の無線電力伝送システムについて説明する。図15は、複数の送電コイルを有する無線電力伝送システム1000(以降、システム1000)の構成を示す図である。ここでは工場内において自動で移動する車両である自動搬送車への電力伝送にシステム1000を適用する場合について説明するが、システム1000の適用先はこれに限定されず、例えばプリンタにシステム1000を適用してもよい。 Hereinafter, the wireless power transmission system in this case will be described. FIG. 15 is a diagram showing a configuration of a wireless power transmission system 1000 (hereinafter, system 1000) having a plurality of power transmission coils. Here, the case where the system 1000 is applied to the power transmission to the automatic guided vehicle, which is a vehicle that automatically moves in the factory, will be described, but the application destination of the system 1000 is not limited to this, and the system 1000 is applied to a printer, for example. You may.

システム1000は、無線による受電を行い動作する自動搬送車900と、床面に配置される送電部901a、送電部901b、送電部901c、電源部907、及びライン908を有する。自動搬送車900は、受電部902、制御部903、車輪904a、車輪904b、車輪904c、車輪904d、駆動部905、及びラインセンサ906を有する。受電部902は、受電コイル920と受電器921を含む。また、送電部901aは、送電コイル910aと送電器911aを含む。同様に、送電部901bは送電コイル910bと送電器911bを含み、送電部901cは送電コイル910cと送電器911cを含む。以降、送電部901a−901cを区別しない場合は送電部901と記載する。同様に、送電コイル910a−910cを区別しない場合は送電コイル910と記載し、送電器911a−911cを区別しない場合は送電器911と記載し、車輪904a−904dを区別しない場合は車輪904と記載する。なお、座標系990のXY平面は送電部901が配置される床面と平行であり、図15はZ軸方向の視点からシステム1000を見た場合の図である。 The system 1000 includes an automatic guided vehicle 900 that receives and operates wirelessly, a power transmission unit 901a, a power transmission unit 901b, a power transmission unit 901c, a power supply unit 907, and a line 908 arranged on the floor. The automatic guided vehicle 900 has a power receiving unit 902, a control unit 903, wheels 904a, wheels 904b, wheels 904c, wheels 904d, a driving unit 905, and a line sensor 906. The power receiving unit 902 includes a power receiving coil 920 and a power receiving device 921. Further, the power transmission unit 901a includes a power transmission coil 910a and a power transmission 911a. Similarly, the power transmission unit 901b includes a power transmission coil 910b and a power transmission 911b, and a power transmission unit 901c includes a power transmission coil 910c and a power transmission 911c. Hereinafter, when the power transmission unit 901a-901c is not distinguished, it is described as the power transmission unit 901. Similarly, if the power transmission coils 910a-910c are not distinguished, the power transmission coil 910 is described, if the power transmission 911a-911c is not distinguished, the power transmission coil 911 is described, and if the wheels 904a-904d are not distinguished, the wheel 904 is described. To do. The XY plane of the coordinate system 990 is parallel to the floor surface on which the power transmission unit 901 is arranged, and FIG. 15 is a view when the system 1000 is viewed from a viewpoint in the Z-axis direction.

複数の送電部901は、図15のように座標系990のX軸方向に並べて配置される。送電部901は、図1で説明した送電部101と同様に、送電器911において直流電圧を交流電圧へ変換し、送電コイル910において交流磁界を生成する。電源部907は、送電部901に適した直流電圧を商用電源(不図示)などから生成し、伝送路970を介して電力供給する。なお、無線電力伝送の効率を高めるためには、複数の送電コイル910が互いに同じ向きの交流磁界を生成することが望ましい。また、システム1000が受電コイル920の位置を検知する機能を有し、受電コイル920に近い送電部901のみが送電動作を実施しても良い。 The plurality of power transmission units 901 are arranged side by side in the X-axis direction of the coordinate system 990 as shown in FIG. Similar to the power transmission unit 101 described with reference to FIG. 1, the power transmission unit 901 converts a DC voltage into an AC voltage in the power transmission 911 and generates an AC magnetic field in the power transmission coil 910. The power supply unit 907 generates a DC voltage suitable for the power transmission unit 901 from a commercial power source (not shown) or the like, and supplies power via the transmission line 970. In order to improve the efficiency of wireless power transmission, it is desirable that a plurality of power transmission coils 910 generate alternating magnetic fields in the same direction. Further, the system 1000 has a function of detecting the position of the power receiving coil 920, and only the power transmission unit 901 close to the power receiving coil 920 may perform the power transmission operation.

受電部902は、図1で説明した受電部102と同様に、送電部901により生成された交流磁界に基づいて受電コイル920により受電する。そして受電部902は、受電器921において交流電圧を直流電圧へ変換し、伝送路971を介して電力供給する。即ち受電器921は、送電コイル910に対する電圧の印加に応じて受電コイル920に発生する電力を、自動搬送車900を駆動させるための電力として駆動部905へ出力する。また、受電器921は制御部903及びラインセンサ906にも電力を出力する。 The power receiving unit 902 receives power from the power receiving coil 920 based on the alternating magnetic field generated by the power transmitting unit 901, similarly to the power receiving unit 102 described with reference to FIG. Then, the power receiving unit 902 converts the AC voltage into the DC voltage in the power receiving device 921, and supplies power through the transmission line 971. That is, the power receiver 921 outputs the electric power generated in the power receiving coil 920 in response to the application of the voltage to the power transmitting coil 910 to the driving unit 905 as the electric power for driving the automatic guided vehicle 900. The power receiver 921 also outputs electric power to the control unit 903 and the line sensor 906.

ラインセンサ906は、床面上にX軸方向に配置されるライン908をセンシングし、取得したセンシング情報を、伝送路930を介して制御部903へ出力する。制御部903は、ラインセンサ906が取得したセンシング情報を基に、自動搬送車900がライン908に沿って移動するよう、伝送路931を介して駆動部905へ制御信号を出力する。駆動部905は、制御部903から伝送される制御信号に基づいて、車輪904を駆動させる。このような構成により、受電コイル920は自動搬送車900と連動してX軸方向に移動可能である。 The line sensor 906 senses the line 908 arranged on the floor surface in the X-axis direction, and outputs the acquired sensing information to the control unit 903 via the transmission line 930. Based on the sensing information acquired by the line sensor 906, the control unit 903 outputs a control signal to the drive unit 905 via the transmission line 931 so that the automatic guided vehicle 900 moves along the line 908. The drive unit 905 drives the wheels 904 based on the control signal transmitted from the control unit 903. With such a configuration, the power receiving coil 920 can move in the X-axis direction in conjunction with the automatic guided vehicle 900.

このようにシステム1000においては、送電コイル910が座標系990のX軸方向に複数並べられ、Z軸方向の視点から見た場合に送電コイル910の開口面と受電コイル920の開口面が少なくとも一部重なるように受電コイル920がX軸方向に移動する。上記の構成により、単一の送電コイル910を用いる場合と比べて、受電コイル920が受電可能な範囲を拡張することができる。その結果、自動搬送車900の移動可能範囲が広がる。 As described above, in the system 1000, a plurality of transmission coils 910 are arranged in the X-axis direction of the coordinate system 990, and the opening surface of the transmission coil 910 and the opening surface of the power receiving coil 920 are at least one when viewed from the viewpoint in the Z-axis direction. The power receiving coil 920 moves in the X-axis direction so as to partially overlap. With the above configuration, the range in which the power receiving coil 920 can receive power can be expanded as compared with the case where a single power transmission coil 910 is used. As a result, the movable range of the automatic guided vehicle 900 is expanded.

なお図15において、送電コイル910の形状は図1の送電コイル110と同様であり、受電コイル920の形状は図1の受電コイル120と同様である。ただしコイルの形状はこれに限定されず、例えば上記の各実施形態で説明した何れの送電コイル及び受電コイルをシステム1000の送電コイル910及び受電コイル920として用いてもよい。 In FIG. 15, the shape of the power transmission coil 910 is the same as that of the power transmission coil 110 of FIG. 1, and the shape of the power reception coil 920 is the same as that of the power reception coil 120 of FIG. However, the shape of the coil is not limited to this, and for example, any of the power transmission coil and the power reception coil described in each of the above embodiments may be used as the power transmission coil 910 and the power reception coil 920 of the system 1000.

なお、上記の各実施形態においては、送電コイルと受電コイルの巻き数が何れも1turn(1巻き)である場合のシミュレーション結果を基に説明を行った。ただし、送電コイル及び受電コイルの巻き数は1turnに限定されるものではない。また、送電コイルと受電コイルの巻き数が異なっていてもよい。このような場合においても、漏洩電磁波を抑制しつつ電力伝送の効率低下を抑制することができる。 In each of the above embodiments, the description has been made based on the simulation results when the number of turns of the power transmitting coil and the power receiving coil are both 1 turn (1 turn). However, the number of turns of the power transmission coil and the power reception coil is not limited to one turn. Further, the number of turns of the power transmission coil and the power reception coil may be different. Even in such a case, it is possible to suppress a decrease in power transmission efficiency while suppressing leakage electromagnetic waves.

また、上記の各実施形態においては、送電コイルと受電コイルが何れも直線状の導体部分から構成される場合を中心に説明を行ったが、送電コイルと受電コイルの形状はこれに限らない。例えば、送電コイル及び受電コイルが有するループの少なくとも何れかが円形や楕円形であってもよい。 Further, in each of the above-described embodiments, the case where the power transmission coil and the power reception coil are both composed of a linear conductor portion has been mainly described, but the shapes of the power transmission coil and the power reception coil are not limited to this. For example, at least one of the loops of the power transmitting coil and the power receiving coil may be circular or elliptical.

また、上記の各実施形態においては、X軸方向において送電コイル上に受電コイルが位置する範囲内において、受電コイルが移動する場合のシミュレーション結果を基に説明を行った。ただし、X軸方向において送電コイル上から外れた位置まで受電コイルが移動してもよい。例えば、図3(b)における受電コイル位置が0mmより小さくなってもよいし、900mmより大きくなってもよい。 Further, in each of the above embodiments, the description has been made based on the simulation result when the power receiving coil moves within the range in which the power receiving coil is located on the power transmission coil in the X-axis direction. However, the power receiving coil may move to a position off the power transmission coil in the X-axis direction. For example, the position of the power receiving coil in FIG. 3B may be smaller than 0 mm or larger than 900 mm.

また、上記の各実施形態においては、送電コイルが固定されており受電コイルが移動する場合を中心に説明した。ただしこれに限らず、送電コイルと受電コイルとの位置関係が所定方向において可変であれば、本実施形態を適用できる。例えば、受電コイルが固定されており送電コイルが移動可能であってもよいし、送電コイルと受電コイルの両方が移動可能であってもよい。 Further, in each of the above embodiments, the case where the power transmission coil is fixed and the power reception coil moves has been mainly described. However, the present embodiment is not limited to this, and the present embodiment can be applied as long as the positional relationship between the power transmission coil and the power reception coil is variable in a predetermined direction. For example, the power receiving coil may be fixed and the power transmitting coil may be movable, or both the power transmitting coil and the power receiving coil may be movable.

本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC等)によっても実現可能である。また、そのプログラムをコンピュータにより読み取り可能な記録媒体に記録して提供してもよい。 The present invention supplies a program that realizes one or more functions of the above-described embodiment to a system or device via a network or storage medium, and one or more processors in the computer of the system or device reads and executes the program. It can also be realized by the processing to be performed. It can also be realized by a circuit (for example, ASIC or the like) that realizes one or more functions. Further, the program may be recorded and provided on a computer-readable recording medium.

100 無線電力伝送システム
110 送電コイル
111 送電器
120 受電コイル
121 受電器
100 Wireless power transmission system 110 Transmission coil 111 Transmitter 120 Power receiving coil 121 Power receiver

Claims (12)

無線で送電するための送電コイルであって、当該送電コイルに対する電圧の印加に応じて互いに逆向きの磁界を生じる第1ループ及び第2ループを有する送電コイルと、
前記送電コイルにより発生する磁界を介して無線で受電するための受電コイルと、
前記受電コイルにより受電された電力を用いて記録媒体に対してインクを吐出するプリントヘッドと、
前記送電コイルに対する前記受電コイルの位置を移動させる移動制御手段と、
前記移動制御手段による前記位置の移動を、前記第1ループと前記第2ループとが並ぶ方向に対して略垂直な動き方向に制限するレールとを有し、
前記移動制御手段は、前記受電コイルと前記プリントヘッドとを前記レールに沿って前記動き方向に連動して移動させることを特徴とする無線電力伝送システム。
A power transmission coil for transmitting power wirelessly, which has a first loop and a second loop that generate magnetic fields in opposite directions in response to application of a voltage to the power transmission coil.
A power receiving coil for wirelessly receiving power via a magnetic field generated by the power transmission coil,
A print head that ejects ink to a recording medium using the electric power received by the power receiving coil, and
A movement control means for moving the position of the power receiving coil with respect to the power transmission coil, and
The movement of the position by the movement control means have a rail which limits the substantially vertical movement to the direction in which the first loop and the second loop are aligned,
The movement control means is a wireless power transmission system characterized in that the power receiving coil and the print head are moved along the rail in conjunction with the movement direction .
前記受電コイルには、前記送電コイルに対する電圧の印加に応じて、前記動き方向における前記受電コイルの位置に依存しない向きの電流が流れることを特徴とする請求項1に記載の無線電力伝送システム。 Wherein the power receiving coil, the power transmission in response to application of a voltage to the coil, the wireless power transmission system according to claim 1, wherein the current direction that is independent of the position of the power receiving coil flows in the movement direction. 前記送電コイルは、前記動き方向における前記送電コイルの端部の近傍に、前記第1ループと前記第2ループとの接続部を有することを特徴とする請求項1または2に記載の無線電力伝送システム。 The wireless power transmission according to claim 1 or 2 , wherein the power transmission coil has a connection portion between the first loop and the second loop in the vicinity of an end portion of the power transmission coil in the movement direction. system. 前記受電コイルは第3ループを有し、
前記動き方向に垂直な基準方向の視点において、前記動き方向における前記送電コイルに対する前記受電コイルの位置に関わらず、前記第1ループの内部と前記第2ループの内部との何れか一方と前記第3ループの内部とが少なくとも一部重なることを特徴とする請求項1から3の何れか1項に記載の無線電力伝送システム。
The power receiving coil has a third loop.
From the viewpoint of the reference direction perpendicular to the movement direction, regardless of the position of the power receiving coil with respect to the power transmission coil in the movement direction, either the inside of the first loop or the inside of the second loop and the first. The wireless power transmission system according to any one of claims 1 to 3 , wherein at least a part of the inside of the three loops overlaps with each other.
前記受電コイルは、互いに逆向きの電流が流れる第3ループ及び第4ループを有し、
前記動き方向に垂直な基準方向の視点において、前記動き方向における前記送電コイルに対する前記受電コイルの位置に関わらず、前記第1ループの内部と前記第3ループの内部とが少なくとも一部重なり、前記第2ループの内部と前記第4ループの内部とが少なくとも一部重なることを特徴とする請求項1から3の何れか1項に記載の無線電力伝送システム。
The power receiving coil has a third loop and a fourth loop in which currents flowing in opposite directions flow.
From the viewpoint of the reference direction perpendicular to the movement direction, the inside of the first loop and the inside of the third loop overlap at least partly regardless of the position of the power receiving coil with respect to the power transmission coil in the movement direction. The wireless power transmission system according to any one of claims 1 to 3 , wherein the inside of the second loop and the inside of the fourth loop overlap at least partially.
前記受電コイルは第3ループを有し、
前記動き方向に垂直な基準方向の視点において、前記動き方向における前記送電コイルに対する前記受電コイルの位置に関わらず、前記第1ループと前記第2ループとの間に前記第3ループが位置することを特徴とする請求項1から3の何れか1項に記載の無線電力伝送システム。
The power receiving coil has a third loop.
The third loop is located between the first loop and the second loop regardless of the position of the power receiving coil with respect to the power transmission coil in the movement direction from the viewpoint of the reference direction perpendicular to the movement direction. The wireless power transmission system according to any one of claims 1 to 3 , wherein the wireless power transmission system is characterized.
無線で送電するための送電コイルであって、当該送電コイルに対する電圧の印加に応じて互いに逆向きの磁界を生じる第1ループ及び第2ループを有する送電コイルと、
前記送電コイルにより発生する磁界を介して無線で受電し、互いに逆向きの電流が流れる第3ループ及び第4ループを有する受電コイルと、
前記送電コイルに対する前記受電コイルの位置を移動させる移動制御手段と、
前記移動制御手段による前記位置の移動を、前記第1ループと前記第2ループとが並ぶ方向に対して略垂直な動き方向に制限する制限手段とを有し、
前記動き方向における前記送電コイルに対する前記受電コイルの位置に関わらず、前記第1ループ及び前記第2ループが存在する平面に対して前記第3ループと前記第4ループとが互いに逆側に位置することを特徴とする無線電力伝送システム
A power transmission coil for transmitting power wirelessly, which has a first loop and a second loop that generate magnetic fields in opposite directions in response to application of a voltage to the power transmission coil.
A power receiving coil having a third loop and a fourth loop, which receive power wirelessly via a magnetic field generated by the power transmission coil and flow currents in opposite directions to each other.
A movement control means for moving the position of the power receiving coil with respect to the power transmission coil, and
It has a limiting means for limiting the movement of the position by the movement control means in a movement direction substantially perpendicular to the direction in which the first loop and the second loop are arranged.
The third loop and the fourth loop are located on opposite sides of the plane in which the first loop and the second loop are present, regardless of the position of the power receiving coil with respect to the power transmitting coil in the moving direction. A wireless power transmission system characterized by that .
前記送電コイルは、前記受電コイルよりも前記動き方向における長さが長いことを特徴とする請求項1から7の何れか1項に記載の無線電力伝送システム。 The wireless power transmission system according to any one of claims 1 to 7 , wherein the power transmission coil has a longer length in the moving direction than the power receiving coil. 前記受電コイルのループの内部に位置する磁性体を有することを特徴とする請求項1から7の何れか1項に記載の無線電力伝送システム。 The wireless power transmission system according to any one of claims 1 to 7 , wherein the wireless power transmission system has a magnetic material located inside a loop of the power receiving coil. 無線で送電するための送電コイルであって、当該送電コイルに対する電圧の印加に応じて互いに逆向きの磁界を生じる第1ループ及び第2ループを有する送電コイルと、
前記送電コイルにより発生する磁界を介して無線で受電するための受電コイルと、
前記受電コイルにより受電された電力を用いて記録媒体に対してインクを吐出するプリントヘッドと、
前記送電コイルに対する前記受電コイルの位置を移動させる移動制御手段と、
前記移動制御手段による前記位置の移動を、前記第1ループと前記第2ループとが並ぶ方向に対して略垂直な動き方向に制限するレールとを有し、
前記移動制御手段は、前記受電コイルと前記プリントヘッドとを前記レールに沿って前記動き方向に連動して移動させることを特徴とする無線電力伝送システムの制御方法であって、
前記送電コイルに電圧を印加する印加工程と、
前記送電コイルに対する前記受電コイルの位置を前記動き方向に移動させる移動制御工程と、
前記印加工程における前記送電コイルに対する電圧の印加に応じて前記受電コイルに発生した電力を出力する出力工程とを有することを特徴とする制御方法。
A power transmission coil for transmitting power wirelessly, which has a first loop and a second loop that generate magnetic fields in opposite directions in response to application of a voltage to the power transmission coil.
A power receiving coil for wirelessly receiving power via a magnetic field generated by the power transmission coil,
A print head that ejects ink to a recording medium using the electric power received by the power receiving coil, and
A movement control means for moving the position of the power receiving coil with respect to the power transmission coil, and
The movement of the position by the movement control means have a rail which limits the substantially vertical movement to the direction in which the first loop and the second loop are aligned,
The movement control means is a control method for a wireless power transmission system, characterized in that the power receiving coil and the print head are moved along the rail in conjunction with the movement direction .
The application process of applying a voltage to the power transmission coil and
A movement control step of moving the position of the power receiving coil with respect to the power transmission coil in the movement direction, and
A control method comprising an output step of outputting electric power generated in the power receiving coil in response to application of a voltage to the power transmission coil in the application step.
無線で送電するための送電コイルであって、当該送電コイルに対する電圧の印加に応じて互いに逆向きの磁界を生じる第1ループ及び第2ループを有する送電コイルと、A power transmission coil for transmitting power wirelessly, which has a first loop and a second loop that generate magnetic fields in opposite directions in response to application of a voltage to the power transmission coil.
前記送電コイルにより発生する磁界を介して無線で受電し、互いに逆向きの電流が流れる第3ループ及び第4ループを有する受電コイルと、A power receiving coil having a third loop and a fourth loop, which receive power wirelessly via a magnetic field generated by the power transmission coil and flow currents in opposite directions to each other.
前記送電コイルに対する前記受電コイルの位置を移動させる移動制御手段と、A movement control means for moving the position of the power receiving coil with respect to the power transmission coil, and
前記移動制御手段による前記位置の移動を、前記第1ループと前記第2ループとが並ぶ方向に対して略垂直な動き方向に制限する制限手段とを有し、It has a limiting means for limiting the movement of the position by the movement control means in a movement direction substantially perpendicular to the direction in which the first loop and the second loop are arranged.
前記動き方向における前記送電コイルに対する前記受電コイルの位置に関わらず、前記第1ループ及び前記第2ループが存在する平面に対して前記第3ループと前記第4ループとが互いに逆側に位置することを特徴とする無線電力伝送システムの制御方法であって、The third loop and the fourth loop are located on opposite sides of the plane in which the first loop and the second loop exist, regardless of the position of the power receiving coil with respect to the power transmitting coil in the moving direction. It is a control method of a wireless power transmission system characterized by the above.
前記送電コイルに電圧を印加する印加工程と、The application process of applying a voltage to the power transmission coil and
前記送電コイルに対する前記受電コイルの位置を前記動き方向に移動させる移動制御工程と、A movement control step of moving the position of the power receiving coil with respect to the power transmission coil in the movement direction, and
前記印加工程における前記送電コイルに対する電圧の印加に応じて前記受電コイルに発生した電力を出力する出力工程とを有することを特徴とする制御方法。A control method comprising an output step of outputting electric power generated in the power receiving coil in response to application of a voltage to the power transmission coil in the application step.
コンピュータに、請求項10または11に記載の制御方法で無線電力伝送システムを制御させるためのプログラム。 A program for causing a computer to control a wireless power transmission system by the control method according to claim 10 or 11 .
JP2016144506A 2016-07-22 2016-07-22 Wireless power transfer systems, control methods and programs Active JP6776040B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016144506A JP6776040B2 (en) 2016-07-22 2016-07-22 Wireless power transfer systems, control methods and programs
JP2020168584A JP7013543B2 (en) 2016-07-22 2020-10-05 Wireless power transfer systems, control methods and programs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016144506A JP6776040B2 (en) 2016-07-22 2016-07-22 Wireless power transfer systems, control methods and programs

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020168584A Division JP7013543B2 (en) 2016-07-22 2020-10-05 Wireless power transfer systems, control methods and programs

Publications (3)

Publication Number Publication Date
JP2018014864A JP2018014864A (en) 2018-01-25
JP2018014864A5 JP2018014864A5 (en) 2019-08-15
JP6776040B2 true JP6776040B2 (en) 2020-10-28

Family

ID=61021248

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016144506A Active JP6776040B2 (en) 2016-07-22 2016-07-22 Wireless power transfer systems, control methods and programs
JP2020168584A Active JP7013543B2 (en) 2016-07-22 2020-10-05 Wireless power transfer systems, control methods and programs

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020168584A Active JP7013543B2 (en) 2016-07-22 2020-10-05 Wireless power transfer systems, control methods and programs

Country Status (1)

Country Link
JP (2) JP6776040B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10530177B2 (en) * 2017-03-09 2020-01-07 Cochlear Limited Multi-loop implant charger
CN108649682B (en) * 2018-04-20 2021-12-10 华南农业大学 Power supply device and method for automatic guidance vehicle controller

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3303686B2 (en) * 1996-09-17 2002-07-22 株式会社豊田自動織機 Non-contact power supply system for mobile object and pickup coil unit
JPH11176675A (en) * 1997-12-09 1999-07-02 Tokin Corp Small-sized noncontact transmitter
JP2004126750A (en) * 2002-09-30 2004-04-22 Toppan Forms Co Ltd Information write/read device, antenna and rf-id medium
JP5425449B2 (en) * 2008-11-27 2014-02-26 公益財団法人鉄道総合技術研究所 Non-contact power supply system for railway vehicles
JP2013184586A (en) * 2012-03-08 2013-09-19 Nissan Motor Co Ltd Contactless power supply device
JP6314661B2 (en) * 2014-05-29 2018-04-25 セイコーエプソン株式会社 Printing apparatus and power transmission method for head unit of printing apparatus

Also Published As

Publication number Publication date
JP7013543B2 (en) 2022-01-31
JP2021010297A (en) 2021-01-28
JP2018014864A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP7013543B2 (en) Wireless power transfer systems, control methods and programs
KR102488951B1 (en) Methods for steering a magnetic field for smart wireless power transmission
EP3213332B1 (en) Asymmetrically layered stacked coils and/or chamfered ferrite in wireless power transfer applications
US9929606B2 (en) Integration of positioning antennas in wireless inductive charging power applications
CN105530025A (en) Coil structure and wireless power receiving apparatus including the same
KR101705118B1 (en) The apparatus for controlling temperature of heating roller used in fusing device of image forming apparatus
JP2009147560A (en) Coil antenna and non-contact information medium
Kallel et al. MISO configuration efficiency in inductive power transmission for supplying wireless sensors
JP6625320B2 (en) Coil device, non-contact power supply system and auxiliary magnetic member
US11211825B2 (en) Wireless power transmission system, control method, and storage medium
JP6314661B2 (en) Printing apparatus and power transmission method for head unit of printing apparatus
JP6891369B2 (en) Power transmission system and seat for power transmission
JP2018007396A (en) Wireless power transmission system and power transmission device
KR20170072775A (en) Coil for wireless communication and wireless charging and mobile terminal using the same
JP6881083B2 (en) Coil device
JP2018014864A5 (en)
US8314372B2 (en) Induction heater with directional cores
JP2008203240A (en) Electromagnetic impedance sensor and passenger protection system using it
JP3652497B2 (en) Antenna device for reader / writer
JP6414820B2 (en) Non-contact power supply device, non-contact power supply system, control method and program
JP2015015417A (en) Power transmitting or power receiving device
KR101741776B1 (en) Apparatus for Transmitting Wireless Power of Magnetic Resonance Based on Structure of Segmentation
NL2031207B1 (en) Control for linear reluctance motor
KR102311706B1 (en) Wireless Power Transfer Apparatus and Control method thereof
JPH11316805A (en) Antenna equipment for reader/writer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201007

R151 Written notification of patent or utility model registration

Ref document number: 6776040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151