JP6775753B2 - Road friction coefficient estimation method, estimation system and estimation program - Google Patents
Road friction coefficient estimation method, estimation system and estimation program Download PDFInfo
- Publication number
- JP6775753B2 JP6775753B2 JP2018002175A JP2018002175A JP6775753B2 JP 6775753 B2 JP6775753 B2 JP 6775753B2 JP 2018002175 A JP2018002175 A JP 2018002175A JP 2018002175 A JP2018002175 A JP 2018002175A JP 6775753 B2 JP6775753 B2 JP 6775753B2
- Authority
- JP
- Japan
- Prior art keywords
- strain
- tire
- road surface
- measurement
- friction coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Tires In General (AREA)
Description
本発明は、自動車の安全技術や自動運転技術に好適な路面摩擦係数の推定技術に関する。 The present invention relates to a technique for estimating a road surface friction coefficient suitable for automobile safety technology and automatic driving technology.
自動ブレーキシステムを代表とする自動車の安全技術や、実用化が期待される自動運転技術のさらなる発展には、走行路面の摩擦係数の推定が重要となる。現状では、これらの技術は比較的測定が容易な車輪速センサや加速度センサなどによる計測を基盤としているが(例えば、特許文献1、2参照。)、これらのセンサから走行路面の摩擦係数を正確に把握することは困難である。 Estimating the coefficient of friction of the road surface is important for the further development of automobile safety technology represented by automatic braking systems and automatic driving technology that is expected to be put into practical use. At present, these technologies are based on measurement by wheel speed sensors, acceleration sensors, etc., which are relatively easy to measure (see, for example, Patent Documents 1 and 2), but these sensors accurately determine the coefficient of friction of the traveling road surface. It is difficult to grasp.
また、タイヤに生じる変形などからタイヤと走行路面間の摩擦係数を測定する「インテリジェントタイヤ」について様々な研究が行われている(例えば、特許文献3、4参照。)。しかしながら、タイヤの変形の安定した測定が困難なことや、生じた変形から精度よく摩擦係数を推定することが困難であることから、未だ普及には至っていない。 In addition, various studies have been conducted on "intelligent tires" that measure the coefficient of friction between a tire and a traveling road surface from deformations that occur in the tire (see, for example, Patent Documents 3 and 4). However, it has not yet become widespread because it is difficult to stably measure the deformation of the tire and it is difficult to accurately estimate the friction coefficient from the generated deformation.
そこで、本発明が前述の状況に鑑み、解決しようとするところは、タイヤの変形をより安定して測定でき、該変形から走行路面の摩擦係数を精度よく推定することができる路面摩擦係数の推定技術を提供する点にある。 Therefore, what the present invention seeks to solve in view of the above situation is the estimation of the road surface friction coefficient, which enables more stable measurement of tire deformation and accurate estimation of the friction coefficient of the traveling road surface from the deformation. The point is to provide technology.
本発明者は、タイヤ側面に生ずるひずみを測定し、その結果から摩擦係数を推定する手法を既に提案している(非特許文献1参照。)。すなわち、本発明者は、タイヤ側面に3軸(タイヤ回転方向、半径方向、その中間方向)のひずみゲージを設け、鉛直荷重一定のもとで複数の大きさの摩擦力を作用させる実験、および摩擦力一定のもとで複数の大きさの鉛直荷重を作用させる実験を行うことで、3軸方向のひずみがいずれも、すべての回転角(α)において、タイヤに作用する荷重および摩擦力に対してほぼ線形に変化することを見出し、次の式を導き出したうえ、該式を用いて任意の2箇所の回転角αを選択し、それぞれで成り立つ式(5)を連立して摩擦力F、鉛直荷重Wを算出し、さらに摩擦係数μを算出することを提案した。 The present inventor has already proposed a method of measuring the strain generated on the side surface of a tire and estimating the friction coefficient from the result (see Non-Patent Document 1). That is, the present inventor provides a strain gauge of three axes (tire rotation direction, radial direction, and intermediate direction) on the side surface of the tire, and conducts an experiment in which a plurality of magnitudes of frictional force are applied under a constant vertical load. By conducting experiments in which vertical loads of multiple magnitudes are applied under a constant frictional force, the strains in all three axial directions are applied to the load and frictional force acting on the tire at all rotation angles (α). On the other hand, we found that it changes almost linearly, derived the following equation, selected arbitrary two rotation angles α using this equation, and combined the equations (5) that hold each of them together to create a frictional force F. , It was proposed to calculate the vertical load W and further to calculate the friction coefficient μ.
この方法は、タイヤ側面の測定ひずみを用いることから、安定した結果が得られ、精度もよく、外乱などの影響に強いロバストな摩擦係数測定手法となり得るものであるが、摩擦力の方向(タイヤ周方向、幅方向の成分)が特定できないことや、式が複雑になるといった課題があった。 Since this method uses the measured strain on the side surface of the tire, stable results can be obtained, the accuracy is good, and it can be a robust friction coefficient measuring method that is resistant to the influence of disturbances, but the direction of the frictional force (tire). There are problems that the components in the circumferential direction and the width direction cannot be specified and that the formula becomes complicated.
本発明者は、かかる現況に鑑み、鋭意検討した結果、タイヤ幅方向の摩擦力についても、3軸方向のひずみがいずれもすべての回転角(α)においてほぼ線形に変化し、上記式(5)の摩擦力をタイヤ周方向、幅方向の二成分に分けた下記式(6)が成立することを見出すとともに、さらに、タイヤの変形が表面側および裏面側(左右)で同じように変形すること、および表面側および裏面側の左右の対称位置(互いに対応する同じ回転角度位置かつ同じ半径方向位置)の測定ひずみを用いることで、式(6)を単純化できることを見出し、本発明を完成するに至ったものである。 As a result of diligent studies in view of the current situation, the present inventor has found that the frictional force in the tire width direction and the strain in the triaxial directions all change substantially linearly at all rotation angles (α), and the above equation (5) ) Is divided into two components, the tire circumferential direction and the width direction, and the following equation (6) is established. Furthermore, the deformation of the tire is similarly deformed on the front side and the back side (left and right). The present invention was completed by finding that the equation (6) can be simplified by using the measurement strains of the left and right symmetrical positions (the same rotation angle positions and the same radial positions corresponding to each other) on the front surface side and the back surface side. It came to be done.
すなわち、式(6)について、タイヤ左右の対称位置LA、LA’の回転角αにおける測定ひずみは、下記式(7)、(8)がそれぞれ成り立つ。ここで、タイヤの変形が左右対称であることを考慮することで、FYの係数(lA(α)とlA’(α))は等しく、Wの係数(mA(α)とmA’(α))は等しく、FXの係数(kA(α)と−kA’(α))は正負逆で絶対値が等しい関係となる。したがって、式(7)、(8)の両辺を足し合わせることで式(9)が導かれ、式(7)、(8)の両辺をそれぞれ引くことで式(10)が導かれる。 That is, for formula (6), symmetrically L A of the left and right tires, strain measurement in the rotation angle α of L A 'is represented by the following formula (7), it is established respectively (8). Here, by considering that deformation of the tire is symmetrical, the coefficient of F Y (and l A (α) l A ' (α)) is equal to the coefficients of W and (m A (α) m a '(α)) is equal to the coefficients of F X (k a (α) and -k a' (α)) is the absolute value is equal relationship opposite polarities. Therefore, the equation (9) is derived by adding both sides of the equations (7) and (8), and the equation (10) is derived by subtracting both sides of the equations (7) and (8), respectively.
式(9)は二元一次方程式であるため、左右対称位置(LA、LA’)の任意の2つの回転角(α1、α2)における測定ひずみを用いることにより、FYとWを求めることができる。また、式(10)は一元の一次方程式(FXの関数)であるため、左右対称位置(LA、LA’)の任意の1つの回転角(α3)(α3はα1又はα2と同じでもよい。)における測定ひずみを用いることにより、FXを求めることができる。 Since Equation (9) is a two-way linear equations, symmetrical position (L A, L A ') any two of the rotation angle of the (alpha 1, alpha 2) By using the strain measurement at, F Y and W Can be sought. Further, Equation (10) because it is a one yuan of linear equations (function F X), left-right symmetric positions (L A, L A ') any one of the rotation angle of the (alpha 3) (alpha 3 are alpha 1 or the use of strain measurement in may be the same as α 2.), it is possible to obtain the F X.
すなわち本発明は、以下の発明を包含する。
[1] タイヤの左右のサイドウォール部の互いに対応する一対の対称位置(LA、LA’)における、タイヤ回転時の同じ方向の各測定ひずみ(εA、εA’)であって、それぞれ2つの異なる所定のタイヤ回転角度位置(α1、α2)のときの測定ひずみ(εA(α1)、εA’(α1)、εA(α2)、εA’(α2))を、下記式(1)、式(2)にそれぞれ代入し、タイヤ回転時のタイヤ周方向の摩擦力(FY)とタイヤ回転時の鉛直荷重(W)を求める工程と、同じく前記位置(LA、LA’)における、前記各測定ひずみ(εA、εA’)であって、それぞれ所定のタイヤ回転角度位置(α3)のときの測定ひずみ(εA(α3)、εA’(α3))を、下記式(3)にそれぞれ代入し、タイヤ回転時のタイヤ幅方向の摩擦力(FX)を求める工程と、前記タイヤ周方向の摩擦力(FY)と前記タイヤ幅方向の摩擦力(FX)と前記鉛直荷重(W)とから路面摩擦係数の推測値を求める工程と、を備えることを特徴とする路面摩擦係数の推定方法。
That is, the present invention includes the following inventions.
[1] to one another corresponding pair of symmetrical positions of the left and right sidewall portions of the tire (L A, L A ') a in strain each measurement in the same direction at the time of tire rotation (ε A, ε A') , Measured strains (ε A (α 1 ), ε A' (α 1 ), ε A (α 2 ), ε A' (α) at two different predetermined tire rotation angle positions (α 1 , α 2 ), respectively. 2 )) is substituted into the following equations (1) and (2), respectively, and is the same as the process of obtaining the frictional force ( FY ) in the tire circumferential direction during tire rotation and the vertical load (W) during tire rotation. wherein the position (L a, L a ') in the respective measuring strain (ε a, ε a') a, respectively predetermined tire rotational angular position (alpha 3) measurement strain when the (ε a (α 3 ), epsilon a '(the alpha 3)), by substituting each of the following formula (3), the frictional force in the tire width direction at the time of tire rotation (F X) a step of determining, said tire circumferential direction of the frictional force (F method of estimating the road surface friction coefficient, characterized in that it comprises a step of obtaining the estimated value of road surface friction coefficient from Y) and the friction force of the tire width direction (F X) and the vertical load (W).
[2] 前記タイヤ回転角度位置(α3)が、前記タイヤ回転角度位置(α1)または(α2)と同じ位置である[1]記載の路面摩擦係数の推定方法。 [2] The method for estimating the road surface friction coefficient according to [1], wherein the tire rotation angle position (α 3 ) is the same position as the tire rotation angle position (α 1 ) or (α 2 ).
[3] 前記タイヤ回転角度位置(α1、α2)が、路面に最も近づく真下の角度位置から前後所定の角度範囲内の位置を除く位置である[1]又は[2]記載の路面摩擦係数の推定方法。 [3] The road surface friction according to [1] or [2], wherein the tire rotation angle position (α 1 , α 2 ) is a position excluding a position within a predetermined front-rear angle range from the angle position directly below the road surface closest to the road surface. How to estimate the coefficient.
[4] 前記タイヤ回転角度位置(α1、α2)が、下記式(4)の行列式の絶対値の値が大きくなるものから優先的に選択された位置である[1]〜[3]の何れかに記載の路面摩擦係数の推定方法。 [4] The tire rotation angle positions (α 1 , α 2 ) are positions preferentially selected from those having a larger absolute value of the determinant of the following equation (4) [1] to [3]. ]. The method for estimating the road surface friction coefficient according to any one of.
[5] 前記タイヤのサイドウォール部の前記対称位置(LA、LA’)に、それぞれ互いに同じ方向の各測定ひずみ(εA、εA’)を測定できるひずみゲージを設けてなる[1]〜[4]の何れかに記載の路面摩擦係数の推定方法。 'In each strain each measurement in the same directions (ε A, ε A [5 ] the symmetrical position of the side wall portion of the tire (L A, L A)' ) formed by providing a strain gauge capable of measuring [1 ] To [4], the method for estimating the road surface friction coefficient.
[6] タイヤの左右のサイドウォール部の互いに対応する一対の対称位置(LA、LA’)における、タイヤ回転時の同じ方向の各ひずみであって、それぞれ少なくとも2つの異なる所定のタイヤ回転角度位置のときのひずみを測定する手段を有するひずみ測定装置と、前記ひずみ測定装置により測定された前記各ひずみのデータを、内部または外部の記憶手段から読み込む手段、前記測定された位置(LA、LA’)における、タイヤ回転時の同じ方向の各測定ひずみ(εA、εA’)であって、それぞれ2つの異なる所定のタイヤ回転角度位置(α1、α2)のときの測定ひずみ(εA(α1)、εA’(α1)、εA(α2)、εA’(α2))を、下記式(1)、式(2)にそれぞれ代入し、タイヤ回転時のタイヤ周方向の摩擦力(FY)とタイヤ回転時の鉛直荷重(W)を求める手段、同じく前記位置(LA、LA’)における、前記各測定ひずみ(εA、εA’)であって、それぞれ所定のタイヤ回転角度位置(α3)のときの測定ひずみ(εA(α3)、εA’(α3))を、下記式(3)にそれぞれ代入し、タイヤ回転時のタイヤ幅方向の摩擦力(FX)を求める手段、ならびに、前記タイヤ周方向の摩擦力(FY)と前記タイヤ幅方向の摩擦力(FX)と前記鉛直荷重(W)とから路面摩擦係数の推測値(μ)を求める手段を有する摩擦係数算出装置と、を備える路面摩擦係数の推定システム。 [6] a pair of symmetrical positions corresponding to each other of the side wall portions of the left and right tires (L A, L A ') in, a the strain each in the same direction during tire rotation, at least two respective different predetermined tire rotation a strain measurement device comprises means for measuring the strain when the angular position, by said each distortion data measured by the strain measuring device, means for reading from the internal or external storage means, which is the measuring position (L a , LA ' ), each measured strain (ε A , ε A' ) in the same direction during tire rotation, and measured at two different predetermined tire rotation angle positions (α 1 , α 2 ), respectively. Substitute the strains (ε A (α 1 ), ε A' (α 1 ), ε A (α 2 ), ε A' (α 2 )) into the following equations (1) and (2), respectively, and tire. means for obtaining the tire circumferential direction of the frictional force during rotation (F Y) and vertical load at the time of tire rotation (W), also the location (L a, L a ') in the strain each measurement (ε a, ε a 'a), each predetermined tire rotational angular position (alpha 3) measurement strain when the (epsilon a (alpha 3), epsilon a' a (alpha 3)), by substituting each of the following formula (3), friction force in the tire width direction at the time of tire rotation (F X) means for obtaining, as well as the frictional force of the tire circumferential direction (F Y) and the friction force of the tire width direction (F X) and the vertical load (W) A road surface friction coefficient estimation system including a friction coefficient calculation device having a means for obtaining an estimated value (μ) of the road surface friction coefficient from the above.
[7] 前記ひずみ測定装置が、前記タイヤのサイドウォール部の前記対称位置(LA、LA’)に、それぞれ互いに同じ方向の各測定ひずみ(εA、εA’)を測定できるひずみゲージである[6]記載の路面摩擦係数の推定システム。 [7] The strain measurement device, the symmetrical positions (L A, L A ') of the sidewall portion of the tire, each strain each measurement in the same directions (ε A, ε A' strain) to be measured gauge [6] The road surface friction coefficient estimation system according to [6].
[8] コンピュータを、[6]又は[7]記載の摩擦係数算出装置として機能させるプログラムであって、前記ひずみ測定装置により測定された各ひずみのデータを、内部または外部の記憶手段から読み込む手段、前記測定された位置(LA、LA’)における、タイヤ回転時の同じ方向の各測定ひずみ(εA、εA’)であって、それぞれ2つの異なる所定のタイヤ回転角度位置(α1、α2)のときの測定ひずみ(εA(α1)、εA’(α1)、εA(α2)、εA’(α2))を、下記式(1)、式(2)にそれぞれ代入し、タイヤ回転時のタイヤ周方向の摩擦力(FY)とタイヤ回転時の鉛直荷重(W)を求める手段、同じく前記位置(LA、LA’)における、前記各測定ひずみ(εA、εA’)であって、それぞれ所定のタイヤ回転角度位置(α3)のときの測定ひずみ(εA(α3)、εA’(α3))を、下記式(3)にそれぞれ代入し、タイヤ回転時のタイヤ幅方向の摩擦力(FX)を求める手段、ならびに、前記タイヤ周方向の摩擦力(FY)と前記タイヤ幅方向の摩擦力(FX)と前記鉛直荷重(W)とから路面摩擦係数の推測値(μ)を求める手段としてコンピュータを機能させるための路面摩擦係数の推定プログラム。 [8] A program for causing a computer to function as the friction coefficient calculation device according to [6] or [7], and means for reading data of each strain measured by the strain measuring device from an internal or external storage means. the measured position (L a, L a ') in the strain each measurement in the same direction at the time of tire rotation (ε a, ε a') a, each of the two different predetermined tire rotational angular position (alpha 1, alpha 2) measurement strain when the (ε a (α 1), ε a '(α 1), ε a (α 2), ε a' a (alpha 2)), the following equation (1), wherein (2) substituted respectively, the frictional force in the tire circumferential direction at the time of tire rotation (F Y) and means for determining the vertical load (W) at the time of tire rotation, also the location (L a, L a ') in the The measured strains (ε A (α 3 ), ε A' (α 3 )) at the predetermined tire rotation angle positions (α 3 ) for each measured strain (ε A , ε A' ) are shown below. substituted respectively in equation (3), the frictional force in the tire width direction at the time of tire rotation (F X) means for obtaining, as well as the tire circumferential direction of the frictional force (F Y) and the friction force of the tire width direction (F A road surface friction coefficient estimation program for operating a computer as a means for obtaining an estimated value (μ) of the road surface friction coefficient from X ) and the vertical load (W).
以上にしてなる本願発明に係る路面摩擦係数の推定方法、推定システム及び推定プログラムによれば、式および演算が複雑になることを避けつつ、摩擦力についてタイヤ周方向、幅方向の双方の成分を求めることができるため、直進だけでなくコーナーリングの際にも即座に精度よく路面摩擦係数を求めることができ、実用的な路面摩擦係数の推定技術を提供することができる。 According to the road surface friction coefficient estimation method, estimation system, and estimation program according to the present invention as described above, the friction force is determined by both the tire circumferential direction and the width direction while avoiding complicated equations and calculations. Since it can be obtained, the road surface friction coefficient can be obtained immediately and accurately not only when traveling straight but also when cornering, and a practical road surface friction coefficient estimation technique can be provided.
次に、本発明の実施形態を添付図面に基づき詳細に説明する。 Next, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
本発明は、図2(a)に示すようにタイヤの左右のサイドウォール部の互いに対応する一対の対称位置(LA、LA’)における、タイヤ回転時の同じ方向の各測定ひずみであって、それぞれ2つ以上の異なる所定のタイヤ回転角度位置のときの各測定ひずみを用いて、タイヤ周方向の摩擦力(FY)、タイヤ幅方向の摩擦力(FX)、鉛直荷重(W)を効率よく求め、タイヤ幅方向の摩擦力も考慮した精度のよい路面摩擦係数の推定値を迅速に求めるものである。 The present invention includes a pair of symmetrical positions corresponding to each other of the left and right sidewall portions of the tire as shown in FIG. 2 (a) (L A, L A ') in, there in strain each measurement in the same direction during tire rotation Te, by using the strain each measurement when each of the two or more different predetermined tire rotational angle position, the frictional force in the tire circumferential direction (F Y), friction force in the tire width direction (F X), vertical load (W ) Is efficiently obtained, and an accurate estimated value of the road surface friction coefficient is quickly obtained in consideration of the frictional force in the tire width direction.
本発明に係る路面摩擦係数の推定システムSは、図1及び図2(a)に示すように、車輌10のタイヤ9のサイドウォール部のひずみを測定するひずみ測定装置11と、測定されたひずみデータに基づき路面摩擦係数の推定値を求める摩擦係数算出装置1と、該摩擦係数算出装置1内部または外部の記憶手段3とより構成されている。 As shown in FIGS. 1 and 2A, the road surface friction coefficient estimation system S according to the present invention includes a strain measuring device 11 for measuring the strain of the sidewall portion of the tire 9 of the vehicle 10 and the measured strain. It is composed of a friction coefficient calculation device 1 for obtaining an estimated value of a road surface friction coefficient based on data, and a storage means 3 inside or outside the friction coefficient calculation device 1.
対称位置(LA、LA’)にそれぞれ設けられるひずみ測定装置11は、タイヤ回転時のひずみを測定するものであり、互いに同じ方向のひずみを測定できるものであれば、その測定する具体的な方向は特に限定されず、タイヤ円周方向、半径方向又はこれらの間の中間方向など、いずれの方向に設定してもよい。好ましくは、ばらつきの小さい中間方向のひずみを測定するように設定される。さらに、中間方向のうち、図2(b)に示すように、円周方向からこれに直交する半径方向に向けて45度傾斜した方向がより好ましいが、円周方向側又は半径方向側に片寄った方向でもよい。円周方向から半径方向に向けた傾斜角度としては、30度から60度の範囲内の角度が好ましく、40度から55度の範囲内の角度がより好ましい。 Symmetrical positions (L A, L A ') to the strain measurement device is provided, respectively 11 is for measuring the strain at the tire rotation, as long as it can measure the strain in the same direction, specifically to the measurement The direction is not particularly limited, and may be set in any direction such as the tire circumferential direction, the radial direction, or the intermediate direction between them. Preferably, it is set to measure the strain in the intermediate direction with a small variation. Further, among the intermediate directions, as shown in FIG. 2B, a direction inclined by 45 degrees from the circumferential direction toward the radial direction orthogonal to the circumferential direction is more preferable, but the direction is offset to the circumferential direction side or the radial direction side. It may be in any direction. The angle of inclination from the circumferential direction to the radial direction is preferably an angle in the range of 30 to 60 degrees, and more preferably an angle in the range of 40 to 55 degrees.
このようなひずみ測定装置11は、好ましくはひずみゲージ4が用いられ、サイドウォール部の各外面又は内面に、箔型のひずみゲージを接着したり、或いは埋め込みしたり等、その設置形態は問わない。ただし、左右で同じ設置形態のものが好ましい。なお、ひずみゲージ以外のひずみ測定装置としてもよい。 As such a strain measuring device 11, a strain gauge 4 is preferably used, and the installation form thereof is not limited, such as adhering or embedding a foil type strain gauge on each outer surface or inner surface of the sidewall portion. .. However, it is preferable that the left and right have the same installation form. A strain measuring device other than the strain gauge may be used.
本例では、タイヤ側には、左右のひずみゲージ4で検出される各ひずみデータを車輌側の受信装置5に無線送信する図示しない送信部が設けられ、受信装置5は、車輌のタイヤに近い適所に設けられる。受信装置5で受信した各ひずみのデータは、同じく車輌の適所に設けられる、路面摩擦係数を演算する摩擦係数算出装置1に送信され、装置内外の記憶手段3に記憶される。他の装置に送信されて該装置を通じて記憶手段3に記憶されるように構成してもよい。 In this example, the tire side is provided with a transmission unit (not shown) that wirelessly transmits each strain data detected by the left and right strain gauges 4 to the reception device 5 on the vehicle side, and the reception device 5 is close to the tire of the vehicle. It is installed in the right place. The strain data received by the receiving device 5 is transmitted to the friction coefficient calculating device 1 that calculates the road surface friction coefficient, which is also provided at an appropriate position of the vehicle, and is stored in the storage means 3 inside and outside the device. It may be configured to be transmitted to another device and stored in the storage means 3 through the device.
摩擦係数算出装置1は、図3に示すように、演算処理装置2と記憶手段3を備えたコンピュータである。演算処理装置2は、マイクロプロセッサなどのCPUを主体に構成され、入出力部やバスラインを通じて、受信装置5や記憶手段3より各データが入力される。記憶手段3は、RAM、ROMなどの記憶メモリや装置2内外のハードディスク等より構成され、演算処理装置2における各種処理動作の手順を規定するプログラムや処理データが記憶される。 As shown in FIG. 3, the friction coefficient calculation device 1 is a computer including an arithmetic processing unit 2 and a storage means 3. The arithmetic processing unit 2 is mainly composed of a CPU such as a microprocessor, and each data is input from the receiving device 5 and the storage means 3 through the input / output unit and the bus line. The storage means 3 is composed of storage memories such as RAM and ROM, hard disks inside and outside the device 2, and stores programs and processing data that define procedures for various processing operations in the arithmetic processing device 2.
演算処理装置2は、機能的に、ひずみ測定装置11で測定された対称位置の各測定ひずみデータを受信装置5から受け取り、これを記憶手段3のひずみデータ記憶部30に記憶する測定ひずみ受信処理部20と、測定された2つの異なる所定のタイヤ回転角度位置のときの測定ひずみのデータをひずみデータ記憶部30から読み込む測定ひずみ読み込み処理部21と、読み込んだ2つの異なる所定のタイヤ回転角度位置のときの測定ひずみに基づきタイヤ回転時のタイヤ周方向の摩擦力(FY)とタイヤ回転時の鉛直荷重(W)を求め、周摩擦力・鉛直荷重データ記憶部31に記憶する周摩擦力・鉛直荷重算出処理部22と、読み込んだ2つの異なる所定のタイヤ回転角度位置のときの測定ひずみのうち、いずれか一方の角度位置のときの測定ひずみに基づきタイヤ回転時のタイヤ幅方向の摩擦力(FX)を求め、幅摩擦力データ記憶部32に記憶する幅摩擦力算出処理部23と、前記記憶手段3に記憶されたタイヤ周方向の摩擦力(FY)と鉛直荷重(W)とタイヤ幅方向摩擦力(FX)から路面摩擦係数の推測値(μ)を求め、摩擦係数データ記憶部33に記憶する摩擦係数算出処理部24とを少なくとも備え、これら機能は上記プログラムにより実現される。 The arithmetic processing device 2 functionally receives the measured strain data of the symmetrical positions measured by the strain measuring device 11 from the receiving device 5, and stores the measured strain data in the strain data storage unit 30 of the storage means 3. The measurement strain reading processing unit 21 that reads the measured strain data at the time of the measured two different predetermined tire rotation angle positions from the strain data storage unit 30, and the two different predetermined tire rotation angle positions that have been read. Based on the measured strain at the time of, the frictional force ( FY ) in the tire circumferential direction during tire rotation and the vertical load (W) during tire rotation are obtained, and the circumferential frictional force stored in the peripheral friction force / vertical load data storage unit 31. -The friction in the tire width direction during tire rotation based on the measured strain at one of the two different predetermined tire rotation angle positions read by the vertical load calculation processing unit 22 and the measured strain at one of the angle positions. force (F X) and determined, and the width frictional force calculation processing unit 23 to be stored in the width friction data storage unit 32, the frictional force in the tire circumferential direction stored in the storage unit 3 (F Y) and vertical load (W ) and estimated value of road surface friction coefficient (mu) determined from the tire width direction frictional force (F X), comprising at least a friction coefficient calculation processing unit 24 to be stored in the coefficient of friction data storage unit 33, these functions the program It will be realized.
周摩擦力・鉛直荷重算出処理部22によるタイヤ周方向の摩擦力(FY)および鉛直荷重(W)の算出は、前記読み込んだ対称位置(LA、LA’)の各測定ひずみ(εA、εA’)の2つの異なる所定のタイヤ回転角度位置(α1、α2)のときの測定ひずみ(εA(α1)、εA’(α1)、εA(α2)、εA’(α2))を、下記式(1)、式(2)にそれぞれ代入し、連立することにより算出される。lA+A’(α1)、mA+A’(α1)、bA+A’(α1)、lA+A’(α2)、mA+A’(α2)、bA+A’(α2)の実験定数は、タイヤ毎(タイヤの種類(銘柄、サイズ)ごと)に予め実験で定められる。 Calculated in the tire circumferential direction of the frictional force by the circumferential friction-vertical load calculation unit 22 (F Y) and vertical load (W), the read symmetrical positions (L A, L A ') strain each measurement of (epsilon a, ε a '2 different predetermined tire rotational angular position) (α 1, α 2) measured strain when the (ε a (α 1), ε a' (α 1), ε a (α 2) , Ε A' (α 2 )) is substituted into the following equations (1) and (2), respectively, and calculated by simultaneous. Experimental constants of l A + A' (α 1 ), m A + A' (α 1 ), b A + A' (α 1 ), l A + A' (α 2 ), m A + A' (α 2 ), b A + A' (α 2 ) Is determined in advance by experiment for each tire (for each tire type (brand, size)).
タイヤ回転角度位置(α1、α2)は、路面に最も近づく真下の角度位置から前後所定の角度範囲内の位置を除く位置とすることが好ましい。当該真下の角度位置から前後所定の角度範囲内は、タイヤが大きく変形する位置となるため、荷重との線形性が他の範囲に比べて低下してしまうためである。具体的には、前後30degの範囲内の角度位置は除外して選択することが好ましい。 The tire rotation angle position (α 1 , α 2 ) is preferably a position excluding a position within a predetermined front-rear angle range from the angle position directly below the road surface. This is because the tire is significantly deformed within a predetermined angle range in the front-rear direction from the angle position directly below the tire, so that the linearity with the load is lower than in other ranges. Specifically, it is preferable to exclude the angular position within the range of 30 deg before and after the selection.
さらに、タイヤ回転角度位置(α1、α2)は、下記式(4)の行列式の絶対値の値が大きくなるものから優先的に選択された位置とすることが好ましい。式(4)で示す行列式が零に近づくと解が不安定になり、反対に行列式の値が大きいほど、精度が高いためである。 Further, it is preferable that the tire rotation angle positions (α 1 , α 2 ) are preferentially selected from those in which the absolute value of the determinant of the following equation (4) becomes large. This is because the solution becomes unstable when the determinant shown in the equation (4) approaches zero, and conversely, the larger the value of the determinant, the higher the accuracy.
幅摩擦力算出処理部23によるタイヤ幅方向の摩擦力(FX)の算出は、読み込んだ2つの異なる所定のタイヤ回転角度位置のときの測定ひずみ(εA(α1)、εA’(α1)、εA(α2)、εA’(α2))のうち、いずれか一方の角度位置のときの測定ひずみ((εA(α1)、εA’(α1))または(εA(α2)、εA’(α2)))を(εA(α3)、εA’(α3))とし、これを下記式(3)にそれぞれ代入することにより算出される。 Friction force in the tire width direction by the width frictional force calculation processing unit 23 calculates the (F X) is measured when the two different predetermined tire rotational angle position read strain (ε A (α 1), ε A '( Measured strain at one of the angular positions of α 1 ), ε A (α 2 ), ε A' (α 2 )) ((ε A (α 1 ), ε A' (α 1 ))) Or, by changing (ε A (α 2 ), ε A' (α 2 ))) to (ε A (α 3 ), ε A' (α 3 )) and substituting this into the following equation (3), respectively. It is calculated.
ただし、回転角度位置α3をα1、α2と異なる第三の角度位置としてもよい。すなわち、回転角度位置α3については、あらかじめ校正実験の結果から、回転角αごとに、ひずみ(εA(α)−εA’(α))とFXの相関係数を算出し、その絶対値が大きいものを優先的に選択することが精度アップのうえで好ましい。kA−A’(α3)、bA−A’(α3)の実験定数は、同じくタイヤ毎(タイヤの種類(銘柄、サイズ)ごと)に予め実験で定められる。 However, the rotation angle position α 3 may be set to a third angle position different from α 1 and α 2 . That is, for the rotational angle position alpha 3, the results of pre-calibration experiments, for each rotation angle alpha, and calculates the correlation coefficient of the strain (ε A (α) -ε A '(α)) and F X, its It is preferable to preferentially select the one having a large absolute value in order to improve the accuracy. k A-A '(α 3 ), b A-A' experimental constants (alpha 3) is also determined in advance by experiment for each tire (each type of tire (brand, size)).
摩擦係数算出処理部24による路面摩擦係数の推測値(μ)の算出は、上記算出されたタイヤ周方向の摩擦力(FY)と鉛直荷重(W)とタイヤ幅方向摩擦力(FX)を下記式(11)に代入することにより算出される。 Estimate the road surface friction coefficient by the friction coefficient calculation unit 24 (mu) the calculation of the frictional force of the calculated tire circumferential direction (F Y) and vertical load (W) and the tire width direction frictional force (F X) Is calculated by substituting into the following equation (11).
以下、図4に基づき、本実施形態の路面摩擦係数の推定システムSによる処理の手順を説明する。 Hereinafter, the processing procedure by the road surface friction coefficient estimation system S of the present embodiment will be described with reference to FIG.
まず、対称位置LA、LA’の各ひずみゲージ4により同一方向のひずみが検出され、図示しない送信装置から車輌10側の受信装置5に送信される(S101)。受信装置5で受信された測定ひずみは、摩擦係数算出装置1の演算処理装置2の測定ひずみ受信処理部20により記憶手段3のひずみデータ記憶部30に記憶される(S102)。この測定ひずみデータは、当該タイヤの回転角を検出するセンサ(不図示)で入手された回転角データを直接または他の処理装置から受信し、該回転角データと組み合わせてひずみデータ記憶部30に記憶管理されることが好ましい。 First, symmetric position L A, strain in the same direction by the respective strain gauges 4 L A 'is detected, it is transmitted from a not-shown transmitting device to the receiving device 5 of the vehicle 10 side (S101). The measured strain received by the receiving device 5 is stored in the strain data storage unit 30 of the storage means 3 by the measurement strain receiving processing unit 20 of the arithmetic processing device 2 of the friction coefficient calculation device 1 (S102). For this measured strain data, the rotation angle data obtained by a sensor (not shown) that detects the rotation angle of the tire is received directly or from another processing device, and is combined with the rotation angle data in the strain data storage unit 30. It is preferable that the memory is managed.
次に、演算処理装置2の測定ひずみ読み込み処理部21により、ひずみデータ記憶部30に記憶されている測定ひずみデータのうち、2つの回転角α1、α2のときの各ひずみデータを読み込む(S103)。 Next, the measurement strain reading processing unit 21 of the arithmetic processing device 2 reads each strain data when the two rotation angles α 1 and α 2 are among the measured strain data stored in the strain data storage unit 30 ( S103).
次に、周摩擦力・鉛直荷重算出処理部22が、読み込まれた2つの異なる所定のタイヤ回転角度位置のときの各測定ひずみを、上記式(1)、(2)に代入し、タイヤ回転時のタイヤ周方向の摩擦力(FY)とタイヤ回転時の鉛直荷重(W)を求め、周摩擦力・鉛直荷重データ記憶部31に記憶する(S104)。 Next, the peripheral friction force / vertical load calculation processing unit 22 substitutes each measured strain at the two different predetermined tire rotation angle positions read into the above equations (1) and (2) to rotate the tire. The frictional force ( FY ) in the tire circumferential direction and the vertical load (W) during tire rotation are obtained and stored in the peripheral frictional force / vertical load data storage unit 31 (S104).
次に、幅摩擦力算出処理部23が、読み込んだ2つの異なる所定のタイヤ回転角度位置のときの測定ひずみのうち、いずれか一方の角度位置のときの測定ひずみを、上記式(3)に代入し、タイヤ回転時のタイヤ幅方向の摩擦力(FX)を求め、幅摩擦力データ記憶部32に記憶する(S105)。 Next, the width friction force calculation processing unit 23 applies the measured strain at one of the two different predetermined tire rotation angle positions read to the above equation (3). assignment, and the frictional force in the tire width direction when the tire rotates (F X) value is stored into the width frictional force data storage unit 32 (S105).
そして、摩擦係数算出処理部24が、前記算出されたタイヤ周方向の摩擦力(FY)と鉛直荷重(W)とタイヤ幅方向摩擦力(FX)とを上記式(11)に代入し、路面摩擦係数の推測値(μ)を算出して摩擦係数データ記憶部33に記憶する(S106)。 Then, the friction coefficient calculation processing unit 24, and a frictional force of the calculated tire circumferential direction (F Y) and vertical load (W) and the tire width direction frictional force (F X) are substituted into the formula (11) , The estimated value (μ) of the road surface friction coefficient is calculated and stored in the friction coefficient data storage unit 33 (S106).
以上、本発明の実施形態について説明したが、本発明はこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。 Although the embodiments of the present invention have been described above, the present invention is not limited to these examples, and it goes without saying that the present invention can be implemented in various forms without departing from the gist of the present invention.
以下、図5に示す実験装置を用いて、本発明の式(1)〜(3)の検証、および路面摩擦係数μについての算出値(推定値)と真値(実測値)との比較を行った結果について説明する。 Hereinafter, using the experimental apparatus shown in FIG. 5, the verification of the equations (1) to (3) of the present invention and the comparison between the calculated value (estimated value) and the true value (actual measurement value) of the road surface friction coefficient μ will be compared. The result of the test will be described.
(実験方法)
実験装置7を図5及び図6に示す。実験で用いるタイヤ9は、ダンロップ社製 DSX-2 155/80R13 79Qを用いた。図7(a)にも示すように、タイヤ9の表側面に2枚、裏面側に2枚の合計4枚の3軸ひずみゲージ(共和電業社製 KFG-2-120-D17-23 L3M2S)を貼付した。表面側のひずみゲージは、ホイール8に接している部分から半径方向に15mmの位置(図2の領域R1内となる位置LA1)、55mmの位置(図2の領域R2内となる位置LA2)にそれぞれ貼付し、ホイール8に近いほうからひずみゲージA1、ひずみゲージA2とした。裏面側のひずみゲージは、表面側と左右対称位置LA1’、LA2’にそれぞれひずみゲージA1’、A2’を貼付した。
(experimental method)
The experimental device 7 is shown in FIGS. 5 and 6. The tire 9 used in the experiment was a DSX-2 155 / 80R13 79Q manufactured by Dunlop. As shown in FIG. 7A, a total of four 3-axis strain gauges (KFG-2-120-D17-23 L3M2S manufactured by Kyowa Electric Co., Ltd.) are installed on the front side surface of the tire 9 and on the back surface side. I pasted it. Strain gauge surface side, the position of 15mm in a radial direction from the portion in contact with the wheel 8 (the position L A1 serving as the region R 1 of FIG. 2), the 55mm position (region R 2 of FIG. 2 position It was attached to LA2 ), respectively, and the strain gauge A1 and the strain gauge A2 were used from the side closest to the wheel 8. The back surface side of the strain gauge, symmetrical position with the surface side L A1 ', L A2' strain respectively gauges A1 ', A2' was affixed.
すなわち、左右対称位置のひずみゲージが2対(第1の対称位置LA1、LA1’それぞれ設けられたひずみゲージA1、A1’からなる第1の対と、第2の対称位置LA2、LA2’それぞれ設けられたひずみゲージA2、A2’からなる第2の対)設けられる。領域R1は、タイヤのサイドウォール部のビード部に近い領域、領域R2は、タイヤのサイドウォール部のもっとも側方に張り出した中央領域とした。3軸ひずみゲージは、同時に中間方向ひずみ、半径方向ひずみ、円周方向ひずみを検出する。 That is, there are two pairs of strain gauges at symmetrical positions (the first pair consisting of strain gauges A1 and A1'provided with the first symmetrical positions LA1 and LA1', respectively, and the second symmetrical positions LA2 and L. A2'A second pair of strain gauges A2 and A2', respectively) is provided. Region R 1, a region, a region R 2 near the bead portion of the sidewall portion of the tire, and a central region which protrudes most side of the sidewall portion of the tire. The triaxial strain gauge simultaneously detects intermediate strain, radial strain, and circumferential strain.
本実験装置7はフォースプレート73をZ軸方向に駆動させてタイヤ9のトレッド面に押し付けることで、鉛直荷重Wを負荷できる。Z軸方向への駆動は、フォースプレート73を支持している支持台72のリンクからなる前後の脚部71を互いに近づく方向又は遠ざかる方向に同じ量だけ水平に移動させる一対のねじ送り機構を有するパラレル式負荷ユニット70により実現される。 The experimental device 7 can apply a vertical load W by driving the force plate 73 in the Z-axis direction and pressing it against the tread surface of the tire 9. The drive in the Z-axis direction has a pair of screw feed mechanisms that horizontally move the front and rear legs 71 composed of the links of the support base 72 supporting the force plate 73 in the direction toward or away from each other by the same amount. It is realized by the parallel type load unit 70.
その状態で、タイヤ9をタイヤ固定軸と該軸を回転駆動する駆動モータとを有するタイヤ駆動ユニット74により回転させることで、タイヤ周方向の摩擦力FYを負荷することができる。さらに、フォースプレート73をX軸方向に駆動させることで、タイヤ9の幅方向の摩擦力FXを負荷できる。X軸方向への駆動は、前記パラレル式負荷ユニット70により脚部71を前後同じ方向へ同じ量だけ移動させることで実現される。FXとFYの大きさを調整することで、これらの合力である摩擦力Fを任意の方向に負荷可能である。本明細書では、図7(b)に示すように、摩擦力Fの摩擦力FY成分との為す角θを「摩擦角」θとする。 In this state, by rotating the tire driving unit 74 and a drive motor for the tire 9 is driven to rotate the shaft tire fixed shaft, it is possible to load a frictional force F Y in the tire circumferential direction. Further, by driving the force plate 73 in the X-axis direction, it can be loaded with frictional force F X in the width direction of the tire 9. The drive in the X-axis direction is realized by moving the legs 71 in the same direction in the front-rear direction by the same amount by the parallel load unit 70. By adjusting the magnitude of F X and F Y, it is a frictional force F is these force can be acted in any direction. In the present specification, as shown in FIG. 7B, the angle θ formed by the frictional force F with the frictional force FY component is defined as the “friction angle” θ.
タイヤに負荷されるW、FX、FYの大きさは、図6に示すようにフォースプレート73の裏面側の四隅に設けられた各押圧ブロック75を、X軸方向、Y軸方向、Z軸方向から支持する支持台72側のロードセル761、762、763によって測定され、これにより摩擦力Fおよび摩擦角θも同時に求められる。 W loaded on the tire, F X, magnitude of F Y are each pressing block 75 provided on the back surface side of the four corners of the force plate 73 as shown in FIG. 6, X-axis direction, Y axis direction, Z It is measured by load cells 761, 762, and 763 on the support base 72 side supported from the axial direction, whereby the friction force F and the friction angle θ are also obtained at the same time.
タイヤの回転にともなう、ひずみゲージの位置の変化は、図5中に示すように鉛直下方の位置から時計回りの回転角αで表す。 As shown in FIG. 5, the change in the position of the strain gauge with the rotation of the tire is represented by a clockwise rotation angle α from the position vertically below.
(式(1)〜(3)の検証)
タイヤ側面に生ずるひずみと接地面に作用するFx、FYおよびWの関係を検証するために、[1]FXのみを変化させ、FXとひずみの関係を確認する実験、[2]FYのみを変化させ、FYとひずみの関係を確認する実験、[3]Wのみを変化させ、Wとひずみの関係を確認する実験、をそれぞれ行った。なお、ひずみについては表面側のひずみゲージA1,A2のひずみの値を用いた。
(Verification of equations (1) to (3))
F x acting on the strain and the ground surface occurring in the tire side, in order to verify the relationship of F Y and W, [1] F X only is varied, to confirm the relationship between strain and F X experiment, [2] F Y only varied, experiments to confirm the relationship between strain and F Y, [3] W only is varied, experiments to confirm the relationship between strain is W, it was respectively. For the strain, the strain values of the strain gauges A1 and A2 on the surface side were used.
[1]FXとひずみの関係を確認する実験
FXのみを変化(FY=0N)させる実験を行った。まず、図5に示す実験装置のフォースプレート73をZ軸方向に駆動させてWを作用させ、この状態でフォースプレート73をX軸方向に駆動させることで、FXを作用させた。なお、FYを0とするために、実験時、タイヤは回転させなかった。そのため、1回の実験からでは1箇所の回転角αにおける結果しか得られなかった。
[1] was subjected to F X and strain changes only experiment F X to confirm the relationship (F Y = 0N) is to experiment. First, the force plate 73 of the experimental apparatus shown in FIG. 5 is driven in the Z-axis direction by the action of W by, by driving the force plate 73 in the X-axis direction in this state, was allowed to act F X. The tires were not rotated during the experiment in order to set FY to 0. Therefore, only one result at one rotation angle α was obtained from one experiment.
本実験では、回転角をα=−30deg、0deg、30degの3種類、すなわち、摩擦面に対してゲージの位置が異なる3つのパターンについて実験を行った。各αで共通の実験条件とした。実験条件を表1に示す。目標鉛直荷重を1360〜1390Nとし、摩擦面を平滑アクリル板、アルミ板、PTFE(テフロン(登録商標))の3種類とすることでFXを変化させた。さらに、摩擦角θを0deg、180degの2種類とすること、すなわちX軸方向へのフォースプレート73の駆動をX軸正および負方向の2種類とすることで、各αにつき計6種類のFXを作用させた。実験は各条件につき3回行った。 In this experiment, three types of rotation angles of α = -30 deg, 0 deg, and 30 deg, that is, three patterns in which the gauge positions are different with respect to the friction surface were tested. The experimental conditions were common to each α. The experimental conditions are shown in Table 1. The target vertical load and 1360~1390N, smooth acrylic plate friction surface, an aluminum plate, changing the F X by three kinds of PTFE (Teflon). Further, by setting the friction angle θ to 2 types of 0 deg and 180 deg, that is, by setting the drive of the force plate 73 in the X-axis direction to 2 types in the X-axis positive and negative directions, a total of 6 types of F for each α X was allowed to act. The experiment was performed 3 times for each condition.
実験結果の一例として、回転角αが30deg、摩擦面がPTFE板、摩擦角θが0degの場合を、図8に示す。図8では、t=13〜21sが摩擦区間(フォースプレート73とタイヤ9が摩擦している区間)である。まず、摩擦区間から比較的波形の安定した範囲(図8のt=15〜17s)を選択する。次に、同範囲の摩擦力FX、ひずみεを平均化する。このようにして求めたFXとεの関係について、α=30degの結果を図9に示す。図9より、いずれの方向のひずみにおいてもFXとεの関係はおおよそ線形であることが確認された。 As an example of the experimental results, FIG. 8 shows a case where the rotation angle α is 30 deg, the friction surface is a PTFE plate, and the friction angle θ is 0 deg. In FIG. 8, t = 13 to 21s is a friction section (a section in which the force plate 73 and the tire 9 are in friction). First, a relatively stable waveform range (t = 15 to 17s in FIG. 8) is selected from the friction section. Next, the frictional force FX and strain ε in the same range are averaged. This way, the relation of F X and ε obtained, shows the results of alpha = 30 deg in FIG. From FIG. 9, the relationship of F X and ε even distortion in either direction was confirmed to be approximately linear.
[2]FYとひずみの関係を確認する実験
FYのみを変化させる実験を同装置を用いて行った。実験条件を表2に示す。Wを2500Nとし、摩擦面を摩擦係数の異なるゴムシート、模様付アクリル板、PTFE板の3路面とすることで3段階のFYを作用させた。その他の主な実験条件は、摩擦角θを90deg、摩擦距離を2200mm(タイヤ1周分)、摩擦速度を30mm/s、タイヤの空気圧を200kPaとした。
[2] The F Y and experiments in which only the course experiment F Y to confirm the relationship between the strain was performed using the same device. The experimental conditions are shown in Table 2. The W and 2500N, different rubber sheet having a friction surface coefficient of friction, textured acrylic plate, allowed to act three stages of F Y by three road surface PTFE plate. Other main experimental conditions were a friction angle θ of 90 deg, a friction distance of 2200 mm (for one round of the tire), a friction speed of 30 mm / s, and a tire air pressure of 200 kPa.
ひずみゲージA1の実験結果を図10に、ひずみゲージA2の実験結果を図11にそれぞれ示す。凡例中に示した荷重はα=−180〜+180degの平均値である。図14は、図10及び図11のひずみ波形から、α=0degにおけるFYとひずみの関係を求めたものである。図14より、いずれのひずみゲージ(A1、A2)、いずれの方向のひずみ(円周方向ひずみ、半径方向ひずみ、中間方向ひずみ)においても、ひずみεはFYに対して線形に変化している。 The experimental results of the strain gauge A1 are shown in FIG. 10, and the experimental results of the strain gauge A2 are shown in FIG. The load shown in the legend is an average value of α = −180 to +180 deg. Figure 14 is a waveform distortion in FIGS. 10 and 11, in which the obtained relation and strain F Y in alpha = 0 deg. Than 14, one of the strain gauges (A1, A2), any direction of strain (strain circumferential, radial strain, intermediate direction strain) even, the strain ε is changed linearly with respect to F Y ..
[3]Wとひずみの関係を確認する実験
Wのみを変化させる実験を同装置を用いて行った。実験条件を表3に示す。摩擦面を摩擦係数の異なるゴムシート、模様付アクリル板、PTFE板の3路面とし、いずれもFYが1150Nとなるように、Wを変化(調整)した。その他の主な実験条件は、摩擦角θを90deg、摩擦距離を2200mm(タイヤ1周分)、摩擦速度を30mm/s、タイヤの空気圧を200kPaとした。
[3] Experiment to confirm the relationship between W and strain An experiment to change only W was performed using the same device. The experimental conditions are shown in Table 3. Different rubber sheet having a friction surface coefficient of friction, textured acrylic plate, and 3 a road surface of the PTFE sheet, both F Y is such that the 1150N, was changed W (adjustment). Other main experimental conditions were a friction angle θ of 90 deg, a friction distance of 2200 mm (for one round of the tire), a friction speed of 30 mm / s, and a tire air pressure of 200 kPa.
ひずみゲージA1の実験結果を図12に、ひずみゲージA2の実験結果を図13にそれぞれ示す。凡例中に示した荷重はα=−180〜+180degの平均値である。図15は、図12及び図13のひずみ波形からα=0degにおけるWとひずみの関係を求めたものである。図15より、いずれのひずみゲージ(A1、A2)、いずれの方向のひずみ(円周方向ひずみ、半径方向ひずみ、中間方向ひずみ)においても、ひずみεはWに対して線形に変化している。なお、Wについては、従来の式(5)から同じく線形に変化することがわかっている。 The experimental results of the strain gauge A1 are shown in FIG. 12, and the experimental results of the strain gauge A2 are shown in FIG. The load shown in the legend is an average value of α = −180 to +180 deg. FIG. 15 shows the relationship between W and strain at α = 0 deg from the strain waveforms of FIGS. 12 and 13. From FIG. 15, the strain ε changes linearly with respect to W in any strain gauge (A1, A2) and in any direction strain (circumferential strain, radial strain, intermediate strain). It is known that W changes linearly from the conventional equation (5).
このように、タイヤ側面に生ずるひずみと接地面に作用する荷重(Fx、FY、W)とは、いずれの方向においても線形の関係にあることが確認された。このことから、上述の式(6)〜(10)、ひいては(1)〜(3)が成立することが分かる。式(1)〜(3)の実験定数lA+A’(α1)、mA+A’(α1)、bA+A’(α1)、lA+A’(α2)、mA+A’(α2)、bA+A’(α2)、kA−A’(α3)、bA−A’(α3)は、このように実験で得られるグラフから最小二乗法を用いて求める。ただし、このような実験定数を求める際、本例のように摩擦面を複数用意して実験する代わりに、θの変更によりFXとFYを変化させることで、1種類の摩擦面からでも実験定数の校正が可能である。 As described above, it was confirmed that the strain generated on the side surface of the tire and the load acting on the ground contact surface (F x , FY , W) have a linear relationship in any direction. From this, it can be seen that the above equations (6) to (10), and by extension, (1) to (3) hold. Experimental constants of equations (1) to (3) l A + A' (α 1 ), mA + A' (α 1 ), b A + A' (α 1 ), l A + A' (α 2 ), mA + A' (α 2 ) , B A + A' (α 2 ), k A-A' (α 3 ), b A-A' (α 3 ) are obtained from the graph obtained in this way by the method of least squares. However, when obtaining such an empirical constant, instead of the experimental friction surface as in this example a plurality prepared by changing the θ by changing the F X and F Y, even from one type of friction surface Experimental constants can be calibrated.
(算出値と真値との比較実験)
ひずみゲージA1、A1’、A2、A2’の各測定ひずみのうち、中間方向測定ひずみを用い、式(1)〜(3)から摩擦係数μおよび摩擦角θを求めた。具体的には、表4に示すように、摩擦係数の異なる平滑アクリル板、PTFE(テフロン(登録商標))シート、アルミ板、油を塗布した平滑アクリル板(油塗布アクリル)を接地面として、摩擦力の方向、すなわち摩擦角θをそれぞれ変化させながら、Wを1500、2000、2500Nに変化させ、スリップ模擬実験を行い、ひずみゲージA1、A1’、A2、A2’でひずみを測定した。
(Comparison experiment between calculated value and true value)
Of the measured strains of the strain gauges A1, A1', A2, and A2', the friction coefficient μ and the friction angle θ were obtained from the equations (1) to (3) using the intermediate direction measurement strain. Specifically, as shown in Table 4, smooth acrylic plates having different friction coefficients, PTFE (Teflon (registered trademark)) sheets, aluminum plates, and oil-coated smooth acrylic plates (oil-coated acrylic) are used as grounding surfaces. While changing the direction of the frictional force, that is, the friction angle θ, W was changed to 1500, 2000, 2500N, a slip simulation experiment was performed, and the strain was measured with strain gauges A1, A1', A2, and A2'.
式(1)〜(3)の実験定数は、FX、FY、Wを種々変化させて装置7より上記のタイヤを用いて得たひずみの測定結果から求めた値を用いた。摩擦の方向(摩擦角θ)は60、90、120、240、270、300degの6種類、摩擦距離は2000mm(約タイヤ1周分)、摩擦速度は30mm/s、タイヤの空気圧は200kPaとした。式(1)、(2)によりFY、Wを算出するための測定ひずみの角度位置α1、α2、および式(3)によりFXを算出するための測定ひずみの角度位置α3は、それぞれ表5に示す上位5組(No.1〜No.5)の各αを用いた。行列式とは、上述した式(4)である。またひずみと荷重の相関係数とは、上述したひずみ(εA(α)−εA’(α))とFXの相関係数である。 Empirical constants of formula (1) to (3), F X, F Y, using a value obtained from the measurement results of the obtained strain using the above tire by the device 7 the W while varying. The direction of friction (friction angle θ) was 60, 90, 120, 240, 270, 300 deg, the friction distance was 2000 mm (about one round of the tire), the friction speed was 30 mm / s, and the tire air pressure was 200 kPa. .. Equation (1), by (2) F Y, the angular position alpha 1 measurement strain for calculating the W, alpha 2, and the angular position alpha 3 of the measuring strain for calculating F X by the formula (3) , Each α of the top 5 sets (No. 1 to No. 5) shown in Table 5 was used. The determinant is the above-mentioned equation (4). Also the correlation coefficient of the strain and the load is a correlation coefficient of the strain mentioned above (ε A (α) -ε A '(α)) and F X.
ひずみゲージA1、A1’の表5のNo.1の角度位置における各ひずみデータを用いた摩擦係数および摩擦角の測定値(算出値)と真値の結果を図16(a)、(b)に示す。また、ひずみゲージA2、A2’の同じく表5のNo.1の角度位置における各ひずみデータを用いた摩擦係数および摩擦角の測定値(算出値)と真値の結果を図17(a)、(b)に示す。図16、17より、いずれのゲージでもFYおよびW、さらに摩擦係数μを精度良く推定できていることが分かる。 Strain gauges A1 and A1'No. 5 in Table 5. The measured values (calculated values) and the true values of the friction coefficient and the friction angle using each strain data at the angle position of 1 are shown in FIGS. 16 (a) and 16 (b). In addition, the strain gauges A2 and A2'No. Figures 17 (a) and 17 (b) show the measured values (calculated values) and true values of the friction coefficient and friction angle using each strain data at the angle position of 1. From FIG. 16 and 17, any of F Y and W in the gauge, it is found that can more accurately estimate the friction coefficient mu.
また、表5の5組の各角度位置のひずみデータを用いた結果から、式(13)を用いて摩擦係数真値と測定値の平均平方二乗誤差および摩擦角真値と測定値の平均平方二乗誤差を算出した結果を、表6に示す。表6から分かるように、No.1の角度位置の組み合わせ以外でも、摩擦係数および摩擦角を精度よく算出できていることが分かる。 In addition, from the results using the strain data of each of the five sets of angular positions in Table 5, the average squared error of the true value of the friction coefficient and the measured value and the average squared of the true value of the friction angle and the measured value are used using equation (13). The results of calculating the square error are shown in Table 6. As can be seen from Table 6, No. It can be seen that the friction coefficient and the friction angle can be calculated accurately even if the combination of the angle positions of 1 is not used.
1 摩擦係数算出装置
2 演算処理装置
3 記憶手段
4 ひずみゲージ
5 受信装置
7 実験装置
8 ホイール
9 タイヤ
10 車輌
11 ひずみ測定装置
20 測定ひずみ受信処理部
21 測定ひずみ読み込み処理部
22 周摩擦力・鉛直荷重算出処理部
23 幅摩擦力算出処理部
24 摩擦係数算出処理部
30 ひずみデータ記憶部
31 周摩擦力・鉛直荷重データ記憶部
32 幅摩擦力データ記憶部
33 摩擦係数データ記憶部
70 パラレル式負荷ユニット
71 脚部
72 支持台
73 フォースプレート
74 タイヤ駆動ユニット
75 押圧ブロック
761、762、763 ロードセル
A1、A1’、A2、A2’ ひずみゲージ
LA1、LA1’、LA2、LA2’ 対称位置
R1、R2 領域
S 推定システム
1 Friction coefficient calculation device 2 Arithmetic processing device 3 Storage means 4 Strain gauge 5 Reception device 7 Experimental device 8 Wheels 9 Tires 10 Vehicles 11 Strain measurement device 20 Measurement strain reception processing unit 21 Measurement strain reading processing unit 22 Circumferential friction force / vertical load Calculation processing unit 23 Width friction force calculation processing unit 24 Friction coefficient calculation processing unit 30 Strain data storage unit 31 Circumferential friction force / vertical load data storage unit 32 Width friction force data storage unit 33 Friction coefficient data storage unit 70 Parallel load unit 71 legs 72 supporting stand 73 force plate 74 tire driving unit 75 press block 761,762,763 load cell A1, A1 ', A2, A2 ' strain gauge L A1, L A1 ', L A2, L A2' symmetrical positions R 1, R 2 region S estimation system
Claims (8)
同じく前記位置(LA、LA’)における、前記各測定ひずみ(εA、εA’)であって、それぞれ所定のタイヤ回転角度位置(α3)のときの測定ひずみ(εA(α3)、εA’(α3))を、下記式(3)にそれぞれ代入し、タイヤ回転時のタイヤ幅方向の摩擦力(FX)を求める工程と、
前記タイヤ周方向の摩擦力(FY)と前記タイヤ幅方向の摩擦力(FX)と前記鉛直荷重(W)とから路面摩擦係数の推測値を求める工程と、
を備えることを特徴とする路面摩擦係数の推定方法。
'In the strain each measurement (ε A, ε A similarly the position (L A, L A)' ) A, respectively predetermined tire rotational angular position (alpha 3) Measurement strain when the (ε A (α 3), epsilon a 'a (alpha 3)), a step of substituting respectively the following formula (3), determine the frictional force in the tire width direction when the tire rotates (F X),
A step of determining the estimated value of road surface friction coefficient from the frictional force of the tire circumferential direction (F Y) frictional forces of the tire width direction (F X) and the vertical load (W),
A method for estimating the coefficient of friction of the road surface, which comprises.
前記ひずみ測定装置により測定された前記各ひずみのデータを、内部または外部の記憶手段から読み込む手段、
前記測定された位置(LA、LA’)における、タイヤ回転時の同じ方向の各測定ひずみ(εA、εA’)であって、それぞれ2つの異なる所定のタイヤ回転角度位置(α1、α2)のときの測定ひずみ(εA(α1)、εA’(α1)、εA(α2)、εA’(α2))を、下記式(1)、式(2)にそれぞれ代入し、タイヤ回転時のタイヤ周方向の摩擦力(FY)とタイヤ回転時の鉛直荷重(W)を求める手段、
同じく前記位置(LA、LA’)における、前記各測定ひずみ(εA、εA’)であって、それぞれ所定のタイヤ回転角度位置(α3)のときの測定ひずみ(εA(α3)、εA’(α3))を、下記式(3)にそれぞれ代入し、タイヤ回転時のタイヤ幅方向の摩擦力(FX)を求める手段、
ならびに、前記タイヤ周方向の摩擦力(FY)と前記タイヤ幅方向の摩擦力(FX)と前記鉛直荷重(W)とから路面摩擦係数の推測値(μ)を求める手段を有する摩擦係数算出装置と、
を備える路面摩擦係数の推定システム。
A means for reading the data of each strain measured by the strain measuring device from an internal or external storage means,
The measured position (L A, L A ') a in strain each measurement in the same direction at the time of tire rotation (ε A, ε A') , each of the two different predetermined tire rotational angular position (alpha 1 , Α 2 ) measured strains (ε A (α 1 ), ε A' (α 1 ), ε A (α 2 ), ε A' (α 2 )) are expressed by the following equations (1) and (α 2 ). Means for obtaining the frictional force ( FY ) in the tire circumferential direction during tire rotation and the vertical load (W) during tire rotation by substituting into 2), respectively.
'In the strain each measurement (ε A, ε A similarly the position (L A, L A)' ) A, respectively predetermined tire rotational angular position (alpha 3) Measurement strain when the (ε A (α 3), epsilon a '(alpha 3)), and assigns each of the following formula (3), means for calculating the frictional force in the tire width direction when the tire rotates (F X),
And the friction coefficient comprises means for obtaining an estimated value of road surface friction coefficient (mu) from the friction force of the tire circumferential direction (F Y) the frictional force in the tire width direction (F X) and the vertical load (W) Calculator and
A system for estimating the coefficient of friction of the road surface.
前記ひずみ測定装置により測定された各ひずみのデータを、内部または外部の記憶手段から読み込む手段、
前記測定された位置(LA、LA’)における、タイヤ回転時の同じ方向の各測定ひずみ(εA、εA’)であって、それぞれ2つの異なる所定のタイヤ回転角度位置(α1、α2)のときの測定ひずみ(εA(α1)、εA’(α1)、εA(α2)、εA’(α2))を、下記式(1)、式(2)にそれぞれ代入し、タイヤ回転時のタイヤ周方向の摩擦力(FY)とタイヤ回転時の鉛直荷重(W)を求める手段、
同じく前記位置(LA、LA’)における、前記各測定ひずみ(εA、εA’)であって、それぞれ所定のタイヤ回転角度位置(α3)のときの測定ひずみ(εA(α3)、εA’(α3))を、下記式(3)にそれぞれ代入し、タイヤ回転時のタイヤ幅方向の摩擦力(FX)を求める手段、
ならびに、前記タイヤ周方向の摩擦力(FY)と前記タイヤ幅方向の摩擦力(FX)と前記鉛直荷重(W)とから路面摩擦係数の推測値(μ)を求める手段としてコンピュータを機能させるための路面摩擦係数の推定プログラム。
A means for reading the data of each strain measured by the strain measuring device from an internal or external storage means,
The measured position (L A, L A ') a in strain each measurement in the same direction at the time of tire rotation (ε A, ε A') , each of the two different predetermined tire rotational angular position (alpha 1 , Α 2 ) measured strains (ε A (α 1 ), ε A' (α 1 ), ε A (α 2 ), ε A' (α 2 )) are expressed by the following equations (1) and (α 2 ). Means for obtaining the frictional force ( FY ) in the tire circumferential direction during tire rotation and the vertical load (W) during tire rotation by substituting into 2), respectively.
'In the strain each measurement (ε A, ε A similarly the position (L A, L A)' ) A, respectively predetermined tire rotational angular position (alpha 3) Measurement strain when the (ε A (α 3), epsilon a '(alpha 3)), and assigns each of the following formula (3), means for calculating the frictional force in the tire width direction when the tire rotates (F X),
And the tire circumferential direction of the frictional force (F Y) and the friction force in the tire width direction (F X) and said computer function as means for obtaining a from the vertical load (W) estimated value of road surface friction coefficient (mu) A program for estimating the coefficient of friction of the road surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018002175A JP6775753B2 (en) | 2018-01-10 | 2018-01-10 | Road friction coefficient estimation method, estimation system and estimation program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018002175A JP6775753B2 (en) | 2018-01-10 | 2018-01-10 | Road friction coefficient estimation method, estimation system and estimation program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019119407A JP2019119407A (en) | 2019-07-22 |
JP6775753B2 true JP6775753B2 (en) | 2020-10-28 |
Family
ID=67305894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018002175A Active JP6775753B2 (en) | 2018-01-10 | 2018-01-10 | Road friction coefficient estimation method, estimation system and estimation program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6775753B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115326700B (en) * | 2022-08-05 | 2024-09-24 | 民航机场建设工程有限公司 | Airport pavement friction coefficient testing equipment and testing method |
CN116136478B (en) * | 2023-04-20 | 2023-06-27 | 东宁市九山木业制品有限责任公司 | Wood connection structure strength detection device and detection method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3783073B2 (en) * | 1997-05-21 | 2006-06-07 | 日本電子工業株式会社 | Method and apparatus for measuring the acting force of a structure |
FR2841336A1 (en) * | 2002-06-24 | 2003-12-26 | Michelin Soc Tech | MEASURING THE MAXIMUM ADHESION COEFFICIENT FROM MEASURING STRESSES IN A TIRE STICK |
JP5876667B2 (en) * | 2011-04-28 | 2016-03-02 | 住友ゴム工業株式会社 | Method for estimating force acting on tire |
US8983749B1 (en) * | 2013-10-24 | 2015-03-17 | The Goodyear Tire & Rubber Company | Road friction estimation system and method |
-
2018
- 2018-01-10 JP JP2018002175A patent/JP6775753B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019119407A (en) | 2019-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101622869B1 (en) | Calibration method for multi-component force detector provided in rolling resistance testing machine | |
US6269690B1 (en) | Method for estimating a tire wear life | |
TWI378232B (en) | ||
US9032789B2 (en) | Automotive shop service apparatus having a means for determining the rolling resistance coefficient of a tyre | |
EP2793013B1 (en) | Automotive shop service apparatus having means for determining the rolling resistance coefficient of a tyre | |
JP4817213B2 (en) | Method and apparatus for measuring tire rolling resistance | |
JP5225367B2 (en) | Calibration method for multi-component force detector in rolling resistance tester | |
KR101505345B1 (en) | Calibration method for multi-component force detector provided in rolling resistance testing machine | |
JP6775753B2 (en) | Road friction coefficient estimation method, estimation system and estimation program | |
TWI395936B (en) | Driving control method of tire testing machine and tire testing machine | |
CN105431849B (en) | Method for the rolling radius for emulating automobile tire | |
JP2011203207A (en) | Measuring method and measuring device of grounding characteristic of tire | |
JP6387793B2 (en) | Tire characteristic calculation method and tire characteristic calculation apparatus | |
JP7067923B2 (en) | Tire evaluation method and tire evaluation device | |
JP4665625B2 (en) | Tire testing machine | |
TW201907145A (en) | Calculation device and calculation method of dynamic load radius of tire | |
JP6775752B2 (en) | Road friction coefficient estimation method, estimation system and estimation program | |
JP6468651B2 (en) | Estimating tire performance values | |
JP2006290228A (en) | Wheel lateral force calculation method and wheel lateral force calculation device | |
JP2018009816A (en) | Tire rigidity test method | |
JP4876759B2 (en) | Method and apparatus for evaluating dynamic characteristics during braking / driving of tire | |
JP2014145785A (en) | Measuring method and measuring device of grounding characteristics of tire | |
JP2015016756A (en) | Calculation method of friction coefficient of tread rubber, calculation method of tire characteristic, calculation device of friction coefficient of tread rubber, and program | |
JP7390968B2 (en) | Tire stiffness measurement method | |
JP2023148932A (en) | Measurement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191003 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200901 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200917 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6775753 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |