JP6775219B2 - Electromagnetic fuel injection valve - Google Patents

Electromagnetic fuel injection valve Download PDF

Info

Publication number
JP6775219B2
JP6775219B2 JP2016249470A JP2016249470A JP6775219B2 JP 6775219 B2 JP6775219 B2 JP 6775219B2 JP 2016249470 A JP2016249470 A JP 2016249470A JP 2016249470 A JP2016249470 A JP 2016249470A JP 6775219 B2 JP6775219 B2 JP 6775219B2
Authority
JP
Japan
Prior art keywords
fuel
surface portion
valve seat
valve
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016249470A
Other languages
Japanese (ja)
Other versions
JP2018105141A (en
Inventor
敬弘 安田
敬弘 安田
涼介 竹中
涼介 竹中
貴則 窪田
貴則 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Misuzu Industries Corp
Original Assignee
Keihin Corp
Misuzu Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp, Misuzu Industries Corp filed Critical Keihin Corp
Priority to JP2016249470A priority Critical patent/JP6775219B2/en
Publication of JP2018105141A publication Critical patent/JP2018105141A/en
Application granted granted Critical
Publication of JP6775219B2 publication Critical patent/JP6775219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

本発明は、主として内燃機関の燃料供給系に使用される燃料噴射弁に関し、特に、弁座及びその中心部を貫通する弁孔を有する弁座部材と、弁座と協働して弁孔を開閉する弁体と、燃料噴孔を有して弁座部材の外端面に結合されるインジェクタプレートとを備え、弁座部材及びインジェクタプレート間に、弁孔及び燃料噴孔間を連通する燃料通路を設けるようにした電磁式燃料噴射弁に関する。 The present invention relates to a fuel injection valve mainly used in a fuel supply system of an internal combustion engine, and in particular, a valve seat member having a valve hole penetrating the valve seat and a central portion thereof, and a valve hole in cooperation with the valve seat. A fuel passage that includes a valve body that opens and closes and an injector plate that has a fuel injection hole and is coupled to the outer end surface of the valve seat member, and communicates between the valve seat member and the injector plate and between the valve hole and the fuel injection hole. It relates to an electromagnetic fuel injection valve which is provided with.

上記電磁式燃料噴射弁において、弁座部材端面への燃料通路の切削加工を廃止し且つインジェクタプレートの薄肉化及び成形性確保等を図るために、プレス成形された金属板でインジェクタプレートを構成し、そのプレス成形と同時に燃料通路画成用の凹みをインジェクタプレートの一面(即ち弁座部材との対向面)に成形することが知られている(例えば下記特許文献1を参照)。 In the above-mentioned electromagnetic fuel injection valve, the injector plate is composed of a press-molded metal plate in order to eliminate the cutting process of the fuel passage to the end face of the valve seat member and to reduce the thickness of the injector plate and ensure the formability. It is known that, at the same time as the press molding, a recess for defining the fuel passage is formed on one surface of the injector plate (that is, the surface facing the valve seat member) (see, for example, Patent Document 1 below).

特開2005−201081号公報Japanese Unexamined Patent Publication No. 2005-201081

ところでインジェクタプレートの一面にプレス成形により複雑形状の燃料通路(例えば弁孔との連通部から放射方向に延びる案内通路と、案内通路に連なる旋回室と)を凹設する場合に、プレス成形時の金属材料の絞り深さが深くなればなる程、即ちプレス量が大きくなる程、燃料通路の形成負荷が大きくなり、これが成形品の燃料通路周辺部にクラックや破断を生じさせるリスクを高くする。 By the way, when a fuel passage having a complicated shape (for example, a guide passage extending in the radial direction from the communication portion with the valve hole and a swivel chamber connected to the guide passage) is recessed on one surface of the injector plate by press molding, during press molding. The deeper the drawing depth of the metal material, that is, the larger the pressing amount, the larger the load for forming the fuel passage, which increases the risk of cracking or breaking around the fuel passage of the molded product.

本発明は、上記に鑑み提案されたもので、インジェクタプレートの一面にプレス成形により燃料通路を凹設する場合に、絞り深さを深くしても燃料通路の形成負荷を軽減できるようにして、燃料通路周辺部のクラックや破断を効果的に防止可能な電磁式燃料噴射弁を提供することを目的とする。 The present invention has been proposed in view of the above, and when the fuel passage is recessed on one surface of the injector plate by press molding, the load of forming the fuel passage can be reduced even if the drawing depth is increased. An object of the present invention is to provide an electromagnetic fuel injection valve capable of effectively preventing cracks and breakage in a peripheral portion of a fuel passage.

上記目的を達成するために、本発明は、弁座、及び該弁座の中心部を貫通する弁孔を有する弁座部材と、前記弁座と協働して前記弁孔を開閉する弁体と、燃料噴孔を有して前記弁座部材の外端面に結合されるインジェクタプレートとを備え、前記インジェクタプレートが、プレス成形された金属板で構成される電磁式燃料噴射弁において、前記インジェクタプレートの、前記弁座部材との対向面には、前記弁孔から前記燃料噴孔に向けて燃料を案内する燃料通路が凹設されると共に、その燃料通路の、前記弁座部材側の開放面が該弁座部材で塞がれており、前記インジェクタプレートの、前記弁座部材とは反対側の外表面には、前記プレス成形により前記燃料通路に対応した隆起部が形成されており、前記隆起部の外周面は、前記隆起部の各部を横切る方向の横断面で見て、前記隆起部の根元部分から頂面に向かって前記隆起部の中央寄りに傾斜したテーパ面を備え、前記燃料通路の周面は、該燃料通路の底面から真っ直ぐに立ち上がる起立面部と、その起立面部の上端に連なり前記対向面まで延びる、該起立面部よりも深い曲面部とを有し、前記起立面部は、該起立面部と直交する横断面で見て、前記インジェクタプレートの板面に沿う方向で前記隆起部の頂面における前記テーパ面の起点となる外周端と略同じ位置、又は前記外周端よりも内方側の位置に配置されており、前記曲面部は、前記起立面部と直交する横断面で見て前記燃料通路側に凸に湾曲していて、前記対向面に近づくにつれて前記起立面部から前記板面に沿う方向で外方側に徐々に離れるように形成されていることを第1の特徴とする。
In order to achieve the above object, the present invention comprises a valve seat, a valve seat member having a valve hole penetrating the central portion of the valve seat, and a valve body that opens and closes the valve hole in cooperation with the valve seat. And an injector plate having a fuel injection hole and coupled to the outer end surface of the valve seat member, the injector plate is the injector in an electromagnetic fuel injection valve composed of a press-molded metal plate. A fuel passage for guiding fuel from the valve hole toward the fuel injection hole is recessed on the surface of the plate facing the valve seat member, and the fuel passage is opened on the valve seat member side. The surface is closed with the valve seat member, and a raised portion corresponding to the fuel passage is formed on the outer surface of the injector plate on the side opposite to the valve seat member by the press molding. The outer peripheral surface of the raised portion is provided with a tapered surface that is inclined toward the center of the raised portion from the root portion of the raised portion toward the top surface when viewed in a cross section in a direction crossing each portion of the raised portion. The peripheral surface of the fuel passage has an upright surface portion that rises straight from the bottom surface of the fuel passage, and a curved surface portion that extends from the upper end of the upright surface portion to the facing surface and is deeper than the upright surface portion. When viewed in a cross section orthogonal to the upright surface portion, the position along the plate surface of the injector plate is substantially the same as the outer peripheral end serving as the starting point of the tapered surface on the top surface of the raised portion, or more than the outer peripheral end. It is arranged at a position on the inner side, and the curved surface portion is convexly curved toward the fuel passage side when viewed in a cross section orthogonal to the upright surface portion, and as it approaches the facing surface, the upright surface portion is described as described. The first feature is that the fuel is formed so as to gradually separate outward in the direction along the plate surface.

また本発明は、前記第1の特徴に加えて、前記横断面で見て、前記板面に沿う方向での前記曲面部の幅が、前記インジェクタプレートの最小肉厚以上の長さに設定されることを第2の特徴とする。 Further, in the present invention, in addition to the first feature, the width of the curved surface portion in the direction along the plate surface is set to a length equal to or larger than the minimum wall thickness of the injector plate when viewed in the cross section. The second feature is that.

また本発明は、前記第1の特徴に加えて、前記起立面部と直交する横断面で見て、前記板面に沿う方向での前記曲面部の幅が、前記インジェクタプレートの最小肉厚以上の長さに設定されることを第2の特徴とする。
Further, in the present invention, in addition to the first feature, the width of the curved surface portion in the direction along the plate surface is equal to or larger than the minimum wall thickness of the injector plate when viewed in a cross section orthogonal to the upright surface portion . The second feature is that the length is set.

また本発明は、前記第1又は第2の特徴に加えて、前記曲面部の外周端は、前記起立面部と直交する横断面で見て、前記板面に沿う方向で前記隆起部よりも外方側に位置していることを第3の特徴とする。
Further, in the present invention, in addition to the first or second feature, the outer peripheral edge of the curved surface portion is outside the raised portion in the direction along the plate surface when viewed in a cross section orthogonal to the upright surface portion. The third feature is that it is located on the side.

本発明の第1の特徴によれば、燃料通路の周面は、通路底面から真っ直ぐに立ち上がる起立面部と、起立面部の上端に連なりインジェクタプレートの、弁座部材との対向面まで延びる、起立面部よりも深い曲面部とを有し、起立面部は、起立面部と直交する横断面で見て、インジェクタプレートの板面に沿う方向で隆起部の頂面の外周端と略同じ位置、又は前記外周端よりも内方側の位置に配置されており、曲面部は、前記横断面で見て燃料通路側に凸に湾曲していて、前記対向面に近づくにつれて起立面部から前記板面に沿う方向で外方側に徐々に離れるように形成されているので、起立面部に対し隆起部の頂部が比較的外方寄りとなり且つ起立面部に連ねて比較的深く幅広の曲面部(ダレ部分)が形成される成形態様で、燃料通路をプレス成形可能となり、従って、プレス成形時に、金属材料の流動量を極力抑えながら起立面部及び曲面部を比較的小さなプレス荷重で精度よく形成可能となる。これにより、プレス成形時の絞り深さが深い場合でも、燃料通路の形成負荷を効果的に軽減可能となってインジェクタプレートの燃料通路周辺部でのクラックや破断の発生防止に有効であり、成形不良品の発生頻度を低減可能となる。また成形態様によっては、燃料通路の深さを、例えばインジェクタプレートの板厚以上に深くするようなことも可能となり、設計自由度が高められる。また、燃料通路の周面のうち底面寄りの起立面部は、底面より真っ直ぐ立ち上がるため、燃料通路内で燃料噴孔に向かう燃料の流れを安定させることができる。 According to the first feature of the present invention, the peripheral surface of the fuel passage has an upright surface portion that rises straight from the bottom surface of the passage and an upright surface portion that is connected to the upper end of the upright surface portion and extends to the surface of the injector plate facing the valve seat member. It has a deeper curved surface portion, and the upright surface portion is located at substantially the same position as the outer peripheral edge of the top surface of the raised portion in the direction along the plate surface of the injector plate when viewed in a cross section orthogonal to the upright surface portion, or the outer periphery thereof. It is arranged at a position inward from the end, and the curved surface portion is convexly curved toward the fuel passage side when viewed in the cross section, and the direction from the upright surface portion to the plate surface as it approaches the facing surface. Since it is formed so as to gradually separate from the outer side, the top of the raised portion is relatively outward with respect to the upright surface portion, and a relatively deep and wide curved surface portion (sagging portion) is formed in connection with the upright surface portion. In the molding mode, the fuel passage can be press-molded, and therefore, the upright surface portion and the curved surface portion can be accurately formed with a relatively small press load while suppressing the flow amount of the metal material as much as possible during press molding. As a result, even when the drawing depth during press molding is deep, the load of forming the fuel passage can be effectively reduced, which is effective in preventing cracks and breakage in the vicinity of the fuel passage of the injector plate. It is possible to reduce the frequency of defective products. Further, depending on the molding mode, the depth of the fuel passage can be made deeper than, for example, the thickness of the injector plate, which increases the degree of freedom in design. Further, since the upright portion of the peripheral surface of the fuel passage near the bottom surface rises straight from the bottom surface, the flow of fuel toward the fuel injection hole in the fuel passage can be stabilized.

また特に第2の特徴によれば、起立面部と直交する方向での曲面部の幅が、インジェクタプレートの最小肉厚以上の長さに設定されるので、曲面部が十分に拡幅され、燃料通路の形成負荷の更なる軽減に寄与することができる。 Further, in particular, according to the second feature, since the width of the curved surface portion in the direction orthogonal to the upright surface portion is set to a length equal to or larger than the minimum wall thickness of the injector plate, the curved surface portion is sufficiently widened and the fuel passage is provided. It can contribute to further reduction of the forming load of.

また特に第3の特徴によれば、曲面部の外周端は隆起部よりも外方側に位置しているので、インジェクタプレートの部分的な肉厚低下を極力抑えながら、曲面部を燃料通路の外方側に十分に拡幅可能となり、燃料通路の形成負荷の更なる軽減に寄与することができる。 Further, in particular, according to the third feature, since the outer peripheral edge of the curved surface portion is located on the outer side of the raised portion, the curved surface portion is used as the fuel passage while suppressing the partial decrease in the wall thickness of the injector plate as much as possible. The width can be sufficiently widened to the outer side, which can contribute to further reduction of the load for forming the fuel passage.

また第4の特徴によれば、燃料通路は、弁孔との連通部から所定方向に延びる案内通路と、案内通路の下流端に接続されて燃料を旋回させる旋回室とを有するので、旋回室で通過燃料にスワールを付与して噴射燃料の微粒化促進に寄与することができる。また、このように案内通路及び旋回室を有することで燃料通路が複雑な通路形態となっても、これをインジェクタプレートにプレス成形で容易に且つ精度よく形成可能であり、しかも、そのプレス成形時に案内通路及び旋回室の周辺部でクラックや破断が発生するのを、比較的深く幅広の曲面部(ダレ部分)の特設により効果的に回避可能である。 Further, according to the fourth feature, the fuel passage has a guide passage extending in a predetermined direction from the communication portion with the valve hole and a swivel chamber connected to the downstream end of the guide passage to swivel the fuel. It is possible to add swirl to the passing fuel and contribute to the promotion of atomization of the injected fuel. Further, even if the fuel passage has a complicated passage form by having the guide passage and the swivel chamber in this way, it can be easily and accurately formed on the injector plate by press molding, and at the time of the press molding. It is possible to effectively avoid cracks and breaks in the peripheral parts of the guide passage and the swivel chamber by specially installing a relatively deep and wide curved surface part (sagging part).

本発明の一実施形態に係る内燃機関用電磁式燃料噴射弁の縦断面図Longitudinal sectional view of an electromagnetic fuel injection valve for an internal combustion engine according to an embodiment of the present invention. 図1の2矢視部拡大図(図3の2−2線断面図)及びその部分拡大図Enlarged view of the 2 arrow view in FIG. 1 (cross-sectional view taken along line 2-2 in FIG. 3) and a partially enlarged view thereof. 図2の3−3矢視図及びその部分拡大図3-3 arrow view of FIG. 2 and its partially enlarged view 図3の4−4線断面部分に着目してインジェクタプレートのプレス成形工程の一例を説明した工程説明図であって、(A)はワークを金型にセットした成形直前状態を示し、(B)はプレス成形直後で離型前の状態を示すIt is a process explanatory view explaining an example of the press molding process of an injector plate paying attention to 4-4 line cross section part of FIG. 3, (A) shows the state just before molding which set a work in a mold, and (B) ) Indicates the state immediately after press molding and before mold release.

本発明の実施形態を、添付図面を参照して、以下に説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

先ず、図1及び図2において、内燃機関用電磁式燃料噴射弁Iのケーシング1は、円筒状の弁ハウジング2(磁性体)と、この弁ハウジング2の前端部に液密に結合される有底円筒状の弁座部材3と、弁ハウジング2の後端に環状スペーサ4を挟んで液密に結合される円筒状の固定コア5とから構成される。 First, in FIGS. 1 and 2, the casing 1 of the electromagnetic fuel injection valve I for an internal combustion engine is liquid-tightly coupled to the cylindrical valve housing 2 (magnetic material) and the front end portion of the valve housing 2. It is composed of a bottom cylindrical valve seat member 3 and a cylindrical fixed core 5 that is liquid-tightly coupled with an annular spacer 4 sandwiched at the rear end of the valve housing 2.

環状スペーサ4は、ステンレス鋼等の非磁性金属製であり、その両端面に弁ハウジング2及び固定コア5が突き当てられて液密に全周溶接され、その溶接にはレーザビームが使用される。 The annular spacer 4 is made of a non-magnetic metal such as stainless steel, and the valve housing 2 and the fixed core 5 are abutted against both end surfaces thereof and are liquid-tightly welded all around, and a laser beam is used for the welding. ..

弁座部材3及び弁ハウジング2の対向端部には、第1嵌合筒部3a及び第2嵌合筒部2aがそれぞれ形成される。そして第1嵌合筒部3aが第2嵌合筒部2a内にストッパプレート6と共に圧入され、ストッパプレート6は、弁ハウジング2と弁座部材3間で挟持される。その後、第1嵌合筒部3aの外周面と第2嵌合筒部2aの端面とに挟まれる隅部の全周にわたりレーザ溶接又はビーム溶接を施すことにより、弁ハウジング2及び弁座部材3が相互に液密に結合される。 A first fitting cylinder portion 3a and a second fitting cylinder portion 2a are formed at the opposite ends of the valve seat member 3 and the valve housing 2, respectively. Then, the first fitting cylinder portion 3a is press-fitted into the second fitting cylinder portion 2a together with the stopper plate 6, and the stopper plate 6 is sandwiched between the valve housing 2 and the valve seat member 3. After that, the valve housing 2 and the valve seat member 3 are subjected to laser welding or beam welding over the entire circumference of the corner sandwiched between the outer peripheral surface of the first fitting cylinder portion 3a and the end surface of the second fitting cylinder portion 2a. Are tightly coupled to each other.

弁座部材3には、それの平坦な前端面即ち外端面に下流端を開口する円錐状の弁座8と、この弁座8の中心部を貫通して弁座部材3の外端面に開口する弁孔10と、弁座8の上流端、即ち大径部に連なる円筒状のガイド孔9とが設けられており、そのガイド孔9は、前記第2嵌合筒部2aと同軸状に形成される。 The valve seat member 3 has a conical valve seat 8 that opens a downstream end to its flat front end surface, that is, an outer end surface, and an opening to the outer end surface of the valve seat member 3 that penetrates the central portion of the valve seat 8. A valve hole 10 to be provided and a cylindrical guide hole 9 connected to the upstream end of the valve seat 8, that is, a large diameter portion are provided, and the guide hole 9 is coaxial with the second fitting cylinder portion 2a. It is formed.

弁ハウジング2及び環状スペーサ4内には、固定コア5の前端面に対向する可動コア12が摺動自在に収容され、この可動コア12に、前記ガイド孔9に軸方向摺動自在に収容される弁体16が一体的に結合される。この弁体16は、弁座8に着座し得る球状の弁部16aと、ガイド孔9に摺動自在に支承される前後一対のジャーナル部16b,16bと、前記ストッパプレート6に当接して弁体16の開弁限界を規定するフランジ16cとを一体に備えており、各ジャーナル部16bには、燃料の流通を可能にする複数の平坦面17,17…が設けられる。 A movable core 12 facing the front end surface of the fixed core 5 is slidably housed in the valve housing 2 and the annular spacer 4, and is slidably housed in the guide hole 9 in the movable core 12. The valve body 16 is integrally connected. The valve body 16 comes into contact with a spherical valve portion 16a that can be seated on the valve seat 8, a pair of front and rear journal portions 16b and 16b that are slidably supported in the guide hole 9, and a valve that comes into contact with the stopper plate 6. A flange 16c that defines a valve opening limit of the body 16 is integrally provided, and each journal portion 16b is provided with a plurality of flat surfaces 17, 17 ... That enable the flow of fuel.

固定コア5は、弁ハウジング2内と連通する中空部21を有しており、その中空部21に、可動コア12を弁体16の閉じ方向、即ち弁座8への着座方向に付勢するコイル状の弁ばね22と、この弁ばね22の後端を支承するパイプ状のリテーナ23とが収容される。このリテーナ23は、中空部21においてカシメにより固定される。 The fixed core 5 has a hollow portion 21 communicating with the inside of the valve housing 2, and the movable core 12 is urged into the hollow portion 21 in the closing direction of the valve body 16, that is, in the seating direction to the valve seat 8. A coil-shaped valve spring 22 and a pipe-shaped retainer 23 that supports the rear end of the valve spring 22 are housed. The retainer 23 is fixed by caulking in the hollow portion 21.

固定コア5の後端には、パイプ状のリテーナ23を介して固定コア5の中空部21に連通する燃料入口25aを持つ入口筒25が一体に連設され、その燃料入口25aに燃料フィルタ27が装着される。 At the rear end of the fixed core 5, an inlet cylinder 25 having a fuel inlet 25a communicating with the hollow portion 21 of the fixed core 5 via a pipe-shaped retainer 23 is integrally provided, and a fuel filter 27 is connected to the fuel inlet 25a. Is installed.

環状スペーサ4及び固定コア5の外周にはコイル組立体28が嵌装される。このコイル組立体28は、環状スペーサ4及び固定コア5に外周面に嵌合するボビン29と、これに巻装されるコイル30とからなっており、このコイル組立体28を囲繞するコイルハウジング31の一端部が弁ハウジング2の外周面に溶接により結合される。 A coil assembly 28 is fitted on the outer periphery of the annular spacer 4 and the fixed core 5. The coil assembly 28 includes a bobbin 29 that is fitted to an annular spacer 4 and a fixed core 5 on an outer peripheral surface, and a coil 30 that is wound around the bobbin 29. A coil housing 31 that surrounds the coil assembly 28. One end of the valve housing 2 is welded to the outer peripheral surface of the valve housing 2.

コイルハウジング31、コイル組立体28及び固定コア5は合成樹脂製の被覆体32内に埋封され、この被覆体32の中間部には、前記コイル30に連なる接続端子33を収容する備えたカプラ34が一体に連設される。 The coil housing 31, the coil assembly 28, and the fixed core 5 are embedded in a coating body 32 made of synthetic resin, and a coupler provided in the middle portion of the coating body 32 is provided with a connection terminal 33 connected to the coil 30. 34 are integrally installed.

図2に明示するように、弁座部材3の前端面には円板状のインジェクタプレート36が液密に全周溶接wされ、その溶接にはレーザビームが使用される。このインジェクタプレート36は、金属板(例えば、ステンレス鋼板、その他の鋼板)を所定形状にプレス成形して得られるプレス成形品より構成される。インジェクタプレート36には、弁孔10の軸線回りの同一円周上で等間隔おきに並ぶ複数の燃料噴孔43が穿設される。インジェクタプレート36は、その板厚が、例えば0.1mm前後の薄肉の板状である。尚、図面上は、発明を理解し易くするためにインジェクタプレート36の板厚を多少誇張して描いている。 As is clearly shown in FIG. 2, a disk-shaped injector plate 36 is liquid-tightly welded all around the front end surface of the valve seat member 3, and a laser beam is used for the welding. The injector plate 36 is composed of a press-molded product obtained by press-molding a metal plate (for example, a stainless steel plate or another steel plate) into a predetermined shape. The injector plate 36 is provided with a plurality of fuel injection holes 43 arranged at equal intervals on the same circumference around the axis of the valve hole 10. The injector plate 36 has a thin plate shape having a thickness of, for example, about 0.1 mm. In the drawings, the thickness of the injector plate 36 is slightly exaggerated in order to make the invention easier to understand.

インジェクタプレート36の上面、即ち弁座部材3外端面との対向面36iには、弁孔10から燃料噴孔43に向けて燃料を流動案内する燃料通路FPとなる浅い凹みが、上記プレス成形により形成される。この燃料通路FPは、通過燃料にスワールを付与して燃料噴孔43からの噴射燃料の微粒化促進に寄与すべく、以下に説明するような複雑な平面形態(本実施形態では花弁状)に燃料通路FPの周面FPsが形成される。 On the upper surface of the injector plate 36, that is, the surface 36i facing the outer end surface of the valve seat member 3, a shallow recess serving as a fuel passage FP for guiding the flow of fuel from the valve hole 10 toward the fuel injection hole 43 is formed by the above press molding. It is formed. The fuel passage FP has a complicated planar shape (petal shape in the present embodiment) as described below in order to impart swirl to the passing fuel and contribute to the promotion of atomization of the fuel injected from the fuel injection hole 43. The peripheral surfaces FPs of the fuel passage FP are formed.

即ち、燃料通路FPは、弁孔10に直接連通する連通部としての中央油室37と、その中央油室37からインジェクタプレート36の板面に沿う所定方向(本実施形態では弁孔10の中心に対し放射方向)に直線状に延びる複数の案内通路38と、各案内通路38の下流端が接線方向に開口する旋回室39とを備える。その旋回室39は、案内通路38の中心線Lに対し案内通路38の幅方向で一方側(換言すればインジェクタプレート36の周方向で一方側)にオフセット配置される。 That is, the fuel passage FP has a central oil chamber 37 as a communication portion that directly communicates with the valve hole 10, and a predetermined direction from the central oil chamber 37 along the plate surface of the injector plate 36 (in the present embodiment, the center of the valve hole 10). A plurality of guide passages 38 extending linearly in the radial direction with respect to the guide passage 38, and a swivel chamber 39 in which the downstream end of each guide passage 38 opens in the tangential direction are provided. The swivel chamber 39 is offset from the center line L of the guide passage 38 on one side in the width direction of the guide passage 38 (in other words, on one side in the circumferential direction of the injector plate 36).

そして、旋回室39の底面には燃料噴孔43の上流端が開口している。尚、燃料噴孔43は、例えばプレス成形後のインジェクタプレート36に対しドリル加工等で形成される。 The upstream end of the fuel injection hole 43 is opened on the bottom surface of the swivel chamber 39. The fuel injection hole 43 is formed by, for example, drilling the injector plate 36 after press molding.

燃料通路FPの大部分(より具体的には中央油室37の外周部、各案内通路39及び各旋回室39)の、弁座部材3側の開放面は、弁座部材3で塞がれる。またインジェクタプレート36の上面36iの、燃料通路FPを取り囲む領域は、弁座部材3の外端面に密着状態におかれる。そして、燃料通路FPを流れる燃料は、外部に漏れ出すことなく、弁孔10から中央油室37、案内通路38及び旋回室39を順次経て燃料噴孔43まで到達する。 The open surface on the valve seat member 3 side of most of the fuel passage FP (more specifically, the outer peripheral portion of the central oil chamber 37, each guide passage 39 and each swivel chamber 39) is closed by the valve seat member 3. .. Further, the region of the upper surface 36i of the injector plate 36 surrounding the fuel passage FP is placed in close contact with the outer end surface of the valve seat member 3. Then, the fuel flowing through the fuel passage FP reaches the fuel injection hole 43 from the valve hole 10 through the central oil chamber 37, the guide passage 38, and the swivel chamber 39 in order without leaking to the outside.

また、旋回室39の周面は、径方向外方側に凸に彎曲した彎曲周面39fとされ、その彎曲周面39fの旋回案内作用により、案内通路38を経て旋回室39に流入した燃料をスムーズに旋回させる。これにより、燃料噴孔43に流入する直前の燃料にスワールを付与することができる。 Further, the peripheral surface of the swivel chamber 39 is a curved peripheral surface 39f that is convexly curved outward in the radial direction, and the fuel that has flowed into the swivel chamber 39 through the guide passage 38 due to the swivel guidance action of the curved peripheral surface 39f. Turns smoothly. As a result, swirl can be applied to the fuel immediately before flowing into the fuel injection hole 43.

一方、案内通路38の相対向する両内側面、即ち第1,第2内側面38i,38oは、案内通路38の長手方向(即ち弁孔10の中心に対し放射方向)に直線状に延びる。 On the other hand, both inner side surfaces of the guide passage 38 facing each other, that is, the first and second inner side surfaces 38i and 38o extend linearly in the longitudinal direction of the guide passage 38 (that is, the radial direction with respect to the center of the valve hole 10).

上記した第1,第2内側面38i,38oのうち、特に案内通路38の幅方向で旋回室39中心部寄り(即ち通路中心線Lに対し旋回室39がオフセット配置される側)に位置する第1内側面38iは、それの下流端と、旋回室39の彎曲周面39fの下流側終端とが曲面rで滑らかに接続される。尚、第1内側面38iの下流端と彎曲周面39fの下流側終端とは、その相互間を例えば曲面rを介さずに直接接続させるようにしてもよい。 Of the first and second inner side surfaces 38i and 38o described above, the swivel chamber 39 is located closer to the center of the swivel chamber 39 in the width direction of the guide passage 38 (that is, the side where the swivel chamber 39 is offset with respect to the passage center line L). The downstream end of the first inner surface 38i and the downstream end of the curved peripheral surface 39f of the swivel chamber 39 are smoothly connected by a curved surface r. The downstream end of the first inner side surface 38i and the downstream end of the curved peripheral surface 39f may be directly connected to each other without, for example, a curved surface r.

また、案内通路38の第2内側面38oの下流端と、旋回室39の彎曲周面39fの上流側始端とは、段差なく滑らかに接続される。これにより、案内通路38から旋回室39へ高圧燃料がスムーズに流入し得るようになっている。 Further, the downstream end of the second inner side surface 38o of the guide passage 38 and the upstream start end of the curved peripheral surface 39f of the swivel chamber 39 are smoothly connected without a step. As a result, the high-pressure fuel can smoothly flow into the swivel chamber 39 from the guide passage 38.

ところでインジェクタプレート36の下面(即ち弁座部材3とは反対側の外表面)36oには、後述するようにインジェクタプレート36をプレス成形することで燃料通路FPに対応して隆起した形状(本実施形態では花弁状)の隆起部41が形成される。この隆起部41の外周面は、隆起部41の各部を横切る方向の横断面で見て、隆起部41の根元部分から頂面41fに向かって隆起部41の中央寄り(即ち先細り状)に傾斜したテーパ面41tに形成される。 By the way, on the lower surface of the injector plate 36 (that is, the outer surface opposite to the valve seat member 3) 36o, the injector plate 36 is press-molded as described later to form a raised shape corresponding to the fuel passage FP (this implementation). A petal-shaped ridge 41 is formed in the form. The outer peripheral surface of the raised portion 41 is inclined toward the center of the raised portion 41 (that is, tapered) from the root portion of the raised portion 41 toward the top surface 41f when viewed in a cross section in a direction crossing each portion of the raised portion 41. It is formed on the tapered surface 41t .

また、燃料通路FPの周面FPsは、燃料通路FPの平坦な底面FPbから真っ直ぐに略垂直に立ち上がる起立面部101と、起立面部101の上端に連なり且つインジェクタプレート36の上面36iまで湾曲して延びる曲面部102とを、周面FPsの全周に亘って有している。而して、燃料通路FPの深さdは、起立面部101の深さd1と、曲面部102の深さd2の和となる。尚、本実施形態では、燃料通路FPの底面FPbと起立面部101との間に僅かにアールを設けているが、このアールを省略して底面FPbから起立面部101を急峻(直角)に起立させてもよい。 Further, the peripheral surfaces FPs of the fuel passage FP are connected to the upright surface portion 101 that rises straight and substantially vertically from the flat bottom surface FPb of the fuel passage FP, and extends curvedly to the upper surface 36i of the injector plate 36. The curved surface portion 102 is provided over the entire circumference of the peripheral surface FPs. Thus, the depth d of the fuel passage FP is the sum of the depth d1 of the upright surface portion 101 and the depth d2 of the curved surface portion 102. In the present embodiment, a slight radius is provided between the bottom surface FPb of the fuel passage FP and the upright surface portion 101, but this radius is omitted so that the upright surface portion 101 stands up steeply (at right angles) from the bottom surface FPb. You may.

起立面部101は、本実施形態では、起立面部101と直交する横断面(例えば図2、図4(B)を参照)で見て、インジェクタプレート36の板面に沿う方向(例えば図4で左右方向)で隆起部41の平坦な頂面41fにおけるテーパ面41tの起点となる外周端41feよりも内方側(例えば図4(B)で燃料通路FPの中心部側に)にオフセットした位置に配置される。尚、図示はしないが、本実施形態の変形例として、起立面部101を、前記横断面で見て前記板面に沿う方向で隆起部41の頂面41fの外周端41feと略同じ位置に配置してもよい。この場合、「略同じ位置」には、厳密な意味での同じ位置が含まれることは元より、同じ位置より僅かにずれた位置も含まれる。 In the present embodiment, the upright surface portion 101 is viewed in a cross section orthogonal to the upright surface portion 101 (see, for example, FIGS. 2 and 4 (B)), and the direction along the plate surface of the injector plate 36 (for example, left and right in FIG. 4). In the direction), at a position offset to the inward side (for example, toward the center of the fuel passage FP in FIG. 4B) from the outer peripheral end 41fe which is the starting point of the tapered surface 41t on the flat top surface 41f of the raised portion 41. Be placed. Although not shown, as a modification of the present embodiment, the upright surface portion 101 is arranged at substantially the same position as the outer peripheral end 41fe of the top surface 41f of the raised portion 41 in the direction along the plate surface when viewed in the cross section. You may. In this case, the "substantially the same position" includes not only the same position in the strict sense but also a position slightly deviated from the same position.

曲面部102は、前記横断面で見て、燃料通路FP側に凸の湾曲面であって、インジェクタプレート36の上面36iに近づくにつれて起立面部101から、前記板面に沿う方向で外方側(例えば図4(B)で燃料通路FPの中心部とは反対側に)に徐々に遠ざかるように形成されている。しかも曲面部102の外周端102e(即ち曲面部102の、インジェクタプレート36の上面36iへの開口端)は、前記横断面で見て前記板面に沿う方向で隆起部41よりも外方側に位置している。 The curved surface portion 102 is a curved surface that is convex toward the fuel passage FP side when viewed in the cross section, and is outward from the upright surface portion 101 in the direction along the plate surface as it approaches the upper surface 36i of the injector plate 36. For example, in FIG. 4B, the fuel passage FP is formed so as to gradually move away from the center of the fuel passage FP). Moreover, the outer peripheral end 102e of the curved surface portion 102 (that is, the opening end of the curved surface portion 102 to the upper surface 36i of the injector plate 36) is on the outer side of the raised portion 41 in the direction along the plate surface when viewed in the cross section. positioned.

また、曲面部102は、起立面部101の深さd1以上の深さd2に設定される。しかも前記横断面で見て前記板面に沿う方向での曲面部102の幅wは、インジェクタプレート36の最小肉厚tMIN 以上の長さに設定される。尚、本実施形態では、図2に例示したように、インジェクタプレート36における隆起部41外面の根元部分と燃料通路FPの底面FPbの外周縁部とに挟まれたプレート部分の肉厚が、インジェクタプレート36の最小肉厚tMIN となっている。 Further, the curved surface portion 102 is set to a depth d2 equal to or greater than the depth d1 of the upright surface portion 101. Moreover, the width w of the curved surface portion 102 in the direction along the plate surface when viewed in the cross section is set to a length equal to or greater than the minimum wall thickness t MIN of the injector plate 36. In the present embodiment, as illustrated in FIG. 2, the wall thickness of the plate portion sandwiched between the root portion of the outer surface of the raised portion 41 of the injector plate 36 and the outer peripheral edge portion of the bottom surface FPb of the fuel passage FP is the injector. The minimum wall thickness of the plate 36 is t MIN .

次に、前記実施形態の作用について説明する。コイル30を消磁した状態では、弁ばね22の付勢力で可動コア12及び弁体16が前方に押圧され、弁座8に着座させている。したがって、燃料フィルタ27及び入口筒25を通して弁ハウジング2内に供給された高圧燃料は、弁ハウジング2内に待機させられる。 Next, the operation of the embodiment will be described. In the degaussed state of the coil 30, the movable core 12 and the valve body 16 are pressed forward by the urging force of the valve spring 22, and are seated on the valve seat 8. Therefore, the high-pressure fuel supplied into the valve housing 2 through the fuel filter 27 and the inlet cylinder 25 is made to stand by in the valve housing 2.

コイル30を通電により励磁すると、それにより生ずる磁束が固定コア5、コイルハウジング31、弁ハウジング2及び可動コア12を順次走り、その磁力により可動コア12が弁体16と共に固定コア5に吸引され、弁体16が弁座8から離座するので、弁ハウジング2内の高圧燃料は、弁体16の平坦面17,17…、弁座8及び弁孔10を順次通過して燃料通路FPに移り、その燃料通路FPの中央油室37から複数の案内通路38に分岐し、放射状に拡散しながら複数の旋回室39に達する。 When the coil 30 is excited by energization, the magnetic flux generated by the energization runs through the fixed core 5, the coil housing 31, the valve housing 2, and the movable core 12 in that order, and the movable core 12 is attracted to the fixed core 5 together with the valve body 16 by the magnetic force. Since the valve body 16 is separated from the valve seat 8, the high-pressure fuel in the valve housing 2 sequentially passes through the flat surfaces 17, 17 ... Of the valve body 16, the valve seat 8 and the valve hole 10, and moves to the fuel passage FP. , The central oil chamber 37 of the fuel passage FP branches into a plurality of guide passages 38, and reaches the plurality of swivel chambers 39 while diffusing radially.

このとき、高圧燃料が各案内通路38から対応する旋回室39へ高速で接線方向に流入するため、流入燃料は旋回室39を高速で旋回することでスワールを付与され、しかも案内通路38を経て旋回室39に到達するまでの燃料流に急激な屈曲がなく、その流れがスムーズとなるから、燃料の速度損失も少ない。その結果、各旋回室39の燃料噴孔43からエンジンの被噴射部位(例えば吸気ポート)に向けて噴射される噴射燃料の微粒化促進が達成されて、良好な噴霧フォームが得られ、しかも燃料噴射の応答性が良好である。これにより、燃焼室内での燃料の燃焼性が高められ、また燃焼制御が精度よく行われる。 At this time, since the high-pressure fuel flows from each guide passage 38 into the corresponding turning chamber 39 in the tangential direction at high speed, the inflow fuel is given a swirl by turning the turning chamber 39 at high speed, and also passes through the guide passage 38. Since there is no sudden bending in the fuel flow until it reaches the swivel chamber 39 and the flow becomes smooth, the speed loss of the fuel is small. As a result, promotion of atomization of the injected fuel injected from the fuel injection hole 43 of each swivel chamber 39 toward the injected portion (for example, the intake port) of the engine is achieved, a good spray foam is obtained, and the fuel The responsiveness of injection is good. As a result, the combustibility of the fuel in the combustion chamber is enhanced, and the combustion control is performed with high accuracy.

そして、燃料通路FPは、上記のように各複数の案内通路38及び旋回室39を有することで、複雑な通路形態となるが、これをインジェクタプレート36にプレス成形で容易に且つ精度よく形成可能である。 The fuel passage FP has a plurality of guide passages 38 and swivel chambers 39 as described above, so that the fuel passage FP has a complicated passage form, which can be easily and accurately formed on the injector plate 36 by press molding. Is.

次に図4を参照してインジェクタプレート36のプレス成形工程の一例を示す。 Next, an example of the press forming process of the injector plate 36 is shown with reference to FIG.

インジェクタプレート36の最終製品と同形の円板状に予め加工された金属板よりなるワーク036は、図4(A)に示すように、先ずダイ50上に載置されると共に、パンチガイド52により外周部を抑えられる。次いで、ワーク036は、図4(B)に示すように、ダイ50と、パンチガイド52に沿って下降するパンチ51との間で加圧される。その加圧により、燃料通路FP(即ち中央油室37、案内通路38及び旋回室39)となる凹みがワーク036の上面36iにプレス成形される。 As shown in FIG. 4A, the work 036 made of a metal plate pre-processed into a disk shape having the same shape as the final product of the injector plate 36 is first placed on the die 50 and then by the punch guide 52. The outer circumference can be suppressed. The work 036 is then pressurized between the die 50 and the punch 51 descending along the punch guide 52, as shown in FIG. 4B. By the pressurization, a recess serving as a fuel passage FP (that is, a central oil chamber 37, a guide passage 38, and a swivel chamber 39) is press-formed on the upper surface 36i of the work 036.

この場合、パンチ51及びパンチガイド52のガイド孔52aは、何れも燃料通路FPの周面FPs、特に起立面部101と同じ横断面形状に形成されており、パンチ51は、ガイド孔52aに上下摺動可能に嵌合、支持されると共に、図示しない昇降駆動手段に連動連結される。そして、パンチ51は、燃料通路FPの起立面部101及び底面FPbを成形するための起立面・底面成形部を先部51aに有しており、先部51aの先端面51aeは、燃料通路FPの底面FPbに対応して平坦面に形成される。 In this case, the guide holes 52a of the punch 51 and the punch guide 52 are both formed in the same cross-sectional shape as the peripheral surface FPs of the fuel passage FP, particularly the upright surface portion 101, and the punch 51 is vertically slid into the guide hole 52a. It is movably fitted and supported, and is interlocked with an elevating drive means (not shown). The punch 51 has an upright surface / bottom surface forming portion for forming the upright surface portion 101 and the bottom surface FPb of the fuel passage FP at the front portion 51a, and the tip surface 51ae of the front end portion 51a is the fuel passage FP. It is formed on a flat surface corresponding to the bottom surface FPb.

またダイ50には、パンチ51の先部51aに対向し且つ燃料通路FPの起立面部101よりも若干大きめの成形用凹部50aが形成される。成形用凹部50aは、その底面が平坦面に、また内周面がテーパ面50atに形成される。成形用凹部50aを横切る方向(図4で左右方向)で、パンチ51の先部51a周面は、成形用凹部50aのテーパ面50atの小径端(図4で下端)と略同じ位置、又は前記小径端よりも内方側(即ち成形用凹部50aの中心部側)にオフセットした位置に配置される。 Further, the die 50 is formed with a molding recess 50a facing the tip portion 51a of the punch 51 and slightly larger than the upright surface portion 101 of the fuel passage FP. The bottom surface of the molding recess 50a is formed on a flat surface, and the inner peripheral surface is formed on a tapered surface 50at. In the direction across the molding recess 50a (horizontal direction in FIG. 4), the peripheral surface of the tip portion 51a of the punch 51 is at substantially the same position as the small diameter end (lower end in FIG. 4) of the tapered surface 50at of the molding recess 50a, or the above. It is arranged at a position offset to the inward side (that is, the central portion side of the molding recess 50a) from the small diameter end.

而して、上記したプレス成形工程によれば、パンチ51の先部51aによりワーク036の対応部位が剪断成形され、その結果、プレス成形後のワーク036の上面36iには、燃料通路FPとなる凹み、特に底面FPb、及び底面FPbから略垂直に起立する起立面部101がパンチ51の先部51aの形状に倣うように形成されると共に、起立面部101の上端に連なる曲面部102(ダレ部分)がパンチ51の先部51a周囲に形成され、一方、ワーク036の下面36oには、燃料通路FPに対応した隆起部41がダイ50の成形用凹部50aに倣うように形成される。それと共に、隆起部41の外周面は、成形用凹部50aのテーパ面50atに倣ってテーパ面41tに形成される。 Therefore, according to the above-mentioned press forming step, the corresponding portion of the work 036 is shear-formed by the tip portion 51a of the punch 51, and as a result, the fuel passage FP is formed on the upper surface 36i of the work 036 after the press forming. The dent, particularly the bottom surface FPb and the upright surface portion 101 that rises substantially perpendicularly from the bottom surface FPb are formed so as to follow the shape of the tip portion 51a of the punch 51, and the curved surface portion 102 (sag portion) that is connected to the upper end of the upright surface portion 101. Is formed around the tip portion 51a of the punch 51, while the raised portion 41 corresponding to the fuel passage FP is formed on the lower surface 36o of the work 036 so as to follow the molding recess 50a of the die 50. At the same time, the outer peripheral surface of the raised portion 41 is formed in a tapered surface 41t following the tapered surface 50at of the forming recess 50a.

このように本実施形態において、燃料通路FPの周面FPsは、平坦な底面FPbから真っ直ぐに略垂直に立ち上がる起立面部101と、起立面部101の上端に連なり且つインジェクタプレート36の上面36iまで延びる、起立面部101よりも深い曲面部102とを有しており、起立面部101は、これと直交する横断面(例えば図4)で見て、インジェクタプレート36の板面に沿う方向で隆起部41の頂面41fにおけるテーパ面41tの起点となる外周端41feと略同じ位置、又はその外周端41feよりも内方側の位置に配置され、一方、曲面部102は、前記横断面で見て、インジェクタプレート36の上面36iに近づくにつれて起立面部101から外方側に徐々に離れるように形成されている。 As described above, in the present embodiment, the peripheral surface FPs of the fuel passage FP are connected to the upright surface portion 101 that rises straight and substantially vertically from the flat bottom surface FPb, is connected to the upper end of the upright surface portion 101, and extends to the upper surface 36i of the injector plate 36. It has a curved surface portion 102 deeper than the upright surface portion 101, and the upright surface portion 101 has a raised portion 41 in a direction along the plate surface of the injector plate 36 when viewed in a cross section (for example, FIG. 4) orthogonal to the curved surface portion 101. The top surface 41f is arranged at substantially the same position as the outer peripheral end 41fe which is the starting point of the tapered surface 41t, or at a position inward from the outer peripheral end 41fe, while the curved surface portion 102 is an injector when viewed in the cross section. It is formed so as to gradually move outward from the upright surface portion 101 as it approaches the upper surface 36i of the plate 36.

即ち、本実施形態では、燃料通路FPの起立面部101に対し隆起部41の頂部が比較的外方寄りとなり且つ起立面部101に連ねて比較的深い曲面部102(ダレ部分)が形成される成形態様で、燃料通路FPがプレス成形されることから、プレス成形時には、金属材料の流動量を極力抑えながら燃料通路FPの周面FPsを比較的小さなプレス荷重で精度よく形成可能となる。その結果、プレス成形時の絞り深さdが深い場合でも、燃料通路FPの形成負荷を軽減可能となるから、インジェクタプレート36の燃料通路FP周辺部でのクラックや破断の発生を効果的に防止することができ、成形不良品の発生頻度が低減する。 That is, in the present embodiment, the top of the raised portion 41 is relatively outward with respect to the upright surface portion 101 of the fuel passage FP, and a relatively deep curved surface portion 102 (sagging portion) is formed in connection with the upright surface portion 101. In the embodiment, since the fuel passage FP is press-molded, it is possible to accurately form the peripheral surface FPs of the fuel passage FP with a relatively small press load while suppressing the flow amount of the metal material as much as possible at the time of press molding. As a result, even when the drawing depth d during press molding is deep, the load of forming the fuel passage FP can be reduced, so that cracks and breaks in the vicinity of the fuel passage FP of the injector plate 36 can be effectively prevented. This can reduce the frequency of defective molding products.

尚、インジェクタプレート36の必要な肉厚・強度を確保しつつ上記成形態様でのプレス成形を行うためには、少なくとも、成形用凹部50aを横切る方向でパンチ51の先部51a周面を成形用凹部50aのテーパ面50atの小径端(図4で下端)と略同じ位置、又は前記小径端よりも内方側(即ち成形用凹部50aの中心部側)にオフセットした位置に配置する必要があり、またインジェクタプレート36の板厚・材質等も踏まえパンチ51の押込ストローク(即ち燃料通路FPの絞り深さd)や押込荷重等にも配慮する必要がある。 In order to perform press molding in the above molding mode while ensuring the required wall thickness and strength of the injector plate 36, at least the peripheral surface of the tip portion 51a of the punch 51 is formed in a direction crossing the molding recess 50a. It is necessary to arrange the recess 50a at substantially the same position as the small diameter end (lower end in FIG. 4) of the tapered surface 50at, or at a position offset to the inward side (that is, the central portion side of the molding recess 50a) from the small diameter end. In addition, it is necessary to consider the pushing stroke of the punch 51 (that is, the drawing depth d of the fuel passage FP), the pushing load, and the like in consideration of the thickness and material of the injector plate 36.

かくして、燃料通路FPはその通路形態が複雑であっても成形精度を高めることができ、燃料通路FP内での燃料の円滑な流れ確保や噴射燃料の微粒化促進を図る上で有利となる。その上、成形態様によっては、燃料通路FPの深さdを、例えばインジェクタプレート36の板厚t以上に深くするようなことも可能となるため、それだけ設計自由度が高められる。また、燃料通路FPの周面FPsのうち底面FPb寄りの起立面部101は、平坦な底面FPbより略垂直に真っ直ぐ立ち上がるため、燃料通路FP内を流動して燃料噴孔43に向かう燃料の流れを安定させることができる。 Thus, the fuel passage FP can improve the molding accuracy even if the passage form is complicated, which is advantageous in ensuring a smooth flow of fuel in the fuel passage FP and promoting atomization of the injected fuel. Further, depending on the molding mode, the depth d of the fuel passage FP can be made deeper than, for example, the plate thickness t of the injector plate 36, so that the degree of freedom in design is increased accordingly. Further, since the upright surface portion 101 of the peripheral surface FPs of the fuel passage FP near the bottom surface FPb rises substantially vertically and straight from the flat bottom surface FPb, the fuel flows in the fuel passage FP and flows toward the fuel injection hole 43. It can be stabilized.

また本実施形態では、起立面部101と直交する方向での、曲面部102の幅wが、インジェクタプレート36の最小肉厚tMIN 以上の長さに設定されるような成形態様が選定される。これにより、曲面部102が十分に拡幅され、燃料通路FPの形成負荷の更なる軽減が図られる。 Further, in the present embodiment, a molding mode is selected such that the width w of the curved surface portion 102 in the direction orthogonal to the upright surface portion 101 is set to a length equal to or greater than the minimum wall thickness t MIN of the injector plate 36. As a result, the curved surface portion 102 is sufficiently widened, and the load for forming the fuel passage FP can be further reduced.

その上、本実施形態では、曲面部102の外周端102eが、燃料通路FPに対応してインジェクタプレート36の外表面36oに膨出形成された隆起部41よりも、起立面部101と直交する方向で外方側に位置するような成形態様が選定される。これにより、インジェクタプレート36の部分的な肉厚低下を極力抑えながら、曲面部102を燃料通路FPの外方側に十分に拡幅可能となり、燃料通路FPの形成負荷の更なる軽減が図られる。 Moreover, in the present embodiment, the outer peripheral end 102e of the curved surface portion 102 is in a direction orthogonal to the upright surface portion 101 with respect to the raised portion 41 bulging formed on the outer surface 36o of the injector plate 36 corresponding to the fuel passage FP. The molding mode is selected so that it is located on the outer side. As a result, the curved surface portion 102 can be sufficiently widened to the outer side of the fuel passage FP while suppressing a partial decrease in the wall thickness of the injector plate 36 as much as possible, and the load for forming the fuel passage FP can be further reduced.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲に記載された本発明を逸脱することなく種々の設計変更を行うことが可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various design changes can be made without departing from the present invention described in the claims. Is.

例えば、燃料通路FPにおける案内通路38及び旋回室39の数や配列は、要求される燃料噴霧フォームの本数や形状に応じて適宜選定することができる。例えば、前記実施形態では、燃料通路FPの中央油室37(弁孔10との連通部)から案内通路38を放射状且つ直線状に延ばしたものを例示したが、本発明では、案内通路38を放射方向から周方向に多少傾斜して径方向外方側に延ばしたもの、或いは、案内通路38を多少カーブさせて曲線状に延ばしたものに適用してもよい。また案内通路38及び旋回室39の組の数は、実施形態では6組であるが、それ以外の任意の数、例えば4組でもよい。 For example, the number and arrangement of the guide passages 38 and the swivel chambers 39 in the fuel passage FP can be appropriately selected according to the required number and shape of the fuel spray foams. For example, in the above-described embodiment, the guide passage 38 is radially and linearly extended from the central oil chamber 37 (communication portion with the valve hole 10) of the fuel passage FP, but in the present invention, the guide passage 38 is provided. It may be applied to the one which is slightly inclined in the circumferential direction from the radial direction and extends outward in the radial direction, or the guide passage 38 which is slightly curved and extended in a curved shape. The number of sets of the guide passage 38 and the swivel chamber 39 is 6 in the embodiment, but any other number, for example, 4 sets may be used.

また前記実施形態では、噴射燃料の微粒化を特に促進するために、燃料通路FPを複数の案内通路38と、各々の案内通路38の下流端が接線方向に開口する複数の旋回室39とを組み合わせた通路構成としているが、本発明の燃料通路の通路構成は前記実施形態に限定されず、少なくとも弁孔10から燃料噴孔43に向けてスムーズに燃料を案内し得る通路構成であればよい。例えば、前記特許文献1に示されるように、旋回室を省略して複数の案内通路の下流端部底面に燃料噴孔を開口させるような燃料通路においても本発明を適用可能である。 Further, in the above embodiment, in order to particularly promote atomization of the injected fuel, the fuel passage FP is provided with a plurality of guide passages 38 and a plurality of swivel chambers 39 in which the downstream ends of the guide passages 38 are opened in the tangential direction. Although the passage configuration is combined, the passage configuration of the fuel passage of the present invention is not limited to the above embodiment, and any passage configuration that can smoothly guide the fuel from the valve hole 10 to the fuel injection hole 43 may be used. .. For example, as shown in Patent Document 1, the present invention can be applied to a fuel passage in which a swivel chamber is omitted and a fuel injection hole is opened on the bottom surface of a plurality of guide passages at the downstream end.

また前記実施形態では、インジェクタプレート36と弁座部材3との結合手段として、レーザビームによる全周溶接wが例示されたが、その結合手段は、溶接手段に限定されない。即ち、インジェクタプレート36と弁座部材3との間を全周に亘り液密に結合し得る結合手段であれば、種々の結合手段を採用可能である。 Further, in the above embodiment, as a means for connecting the injector plate 36 and the valve seat member 3, all-around welding w by a laser beam is exemplified, but the means for connecting the injector plate 36 and the valve seat member 3 is not limited to the welding means. That is, various coupling means can be adopted as long as it is a coupling means capable of liquid-tightly coupling between the injector plate 36 and the valve seat member 3 over the entire circumference.

また前記実施形態では、インジェクタプレート36は、その板厚が例えば0.1mm前後の薄肉の板状であるものを例示したが、本発明は、実施形態よりも厚肉又は更に薄肉の(但しプレス成形で燃料通路FP(案内通路38及び旋回室39)を精度よく成形可能な程度の肉厚の)インジェクタプレートにも実施可能である。 Further, in the above-described embodiment, the injector plate 36 has an example of a thin-walled plate having a plate thickness of, for example, about 0.1 mm, but the present invention is thicker or thinner than the embodiment (provided that the press is pressed). It can also be applied to an injector plate (thick enough to accurately mold the fuel passage FP (guide passage 38 and swivel chamber 39)) by molding.

d1・・・・・起立面部の深さ
d2・・・・・曲面部の深さ
FP・・・・・燃料通路
FPb・・・・燃料通路の底面
FPs・・・・燃料通路の周面
I・・・・・・燃料噴射弁
MIN ・・・・インジェクタプレートの最小肉厚
w・・・・・・曲面部の幅
3・・・・・・弁座部材
8・・・・・・弁座
10・・・・・弁孔
16・・・・・弁体
36・・・・・インジェクタプレート
36i・・・・上面(弁座部材との対向面)
36o・・・・下面(弁座部材とは反対側の外表面)
37・・・・・中央油室(連通部)
38・・・・・案内通路
39・・・・・旋回室
41・・・・・隆起部
41f・・・・頂面
41fe・・・頂面の外周端
41t・・・・テーパ面(外周面
43・・・・・燃料噴孔
101・・・・起立面部
102・・・・曲面部
102e・・・曲面部の外周端
d1 ・ ・ ・ ・ ・ Depth of upright surface d2 ・ ・ ・ ・ ・ Depth of curved surface FP ・ ・ ・ ・ ・ Fuel passage FPb ・ ・ ・ ・ ・ ・ Bottom surface FPs of fuel passage ・ ・ ・ ・ Circumferential surface I of fuel passage・ ・ ・ ・ ・ ・ Fuel injection valve t MIN・ ・ ・ ・ Minimum thickness of injector plate w ・ ・ ・ ・ ・ ・ Width of curved surface 3 ・ ・ ・ ・ ・ ・ Valve seat member 8 ・ ・ ・ ・ ・ ・ Valve Seat 10 ... Valve hole 16 ... Valve body 36 ... Injector plate 36i ... Top surface (opposing surface to valve seat member)
36o ... Lower surface (outer surface on the opposite side of the valve seat member)
37 ... Central oil chamber (communication section)
38 ・ ・ ・ ・ ・ Guide passage 39 ・ ・ ・ ・ ・ Swivel chamber 41 ・ ・ ・ ・ ・ Raised part 41f ・ ・ ・ ・ Top surface 41fe ・ ・ ・ Outer peripheral end 41t of the top surface ・ ・ ・ ・Tapered surface ( outer peripheral surface) )
43 ... Fuel injection hole 101 ... Standing surface portion 102 ... Curved surface portion 102e ... Outer peripheral edge of curved surface portion

Claims (4)

弁座(8)、及び該弁座(8)の中心部を貫通する弁孔(10)を有する弁座部材(3)と、前記弁座(8)と協働して前記弁孔(10)を開閉する弁体(16)と、燃料噴孔(43)を有して前記弁座部材(3)の外端面に結合されるインジェクタプレート(36)とを備え、前記インジェクタプレート(36)が、プレス成形された金属板で構成される電磁式燃料噴射弁において、
前記インジェクタプレート(36)の、前記弁座部材(3)との対向面(36i)には、前記弁孔(10)から前記燃料噴孔(43)に向けて燃料を案内する燃料通路(FP)が凹設されると共に、その燃料通路(FP)の、前記弁座部材(3)側の開放面が該弁座部材(3)で塞がれており、
前記インジェクタプレート(36)の、前記弁座部材(3)とは反対側の外表面(36o)には、前記プレス成形により前記燃料通路(FP)に対応した隆起部(41)が形成されており、
前記隆起部(41)の外周面(41t)は、前記隆起部(41)の各部を横切る方向の横断面で見て、前記隆起部(41)の根元部分から頂面(41f)に向かって前記隆起部(41)の中央寄りに傾斜したテーパ面(41t)を備え、
前記燃料通路(FP)の周面(FPs)は、該燃料通路(FP)の底面(FPb)から真っ直ぐに立ち上がる起立面部(101)と、その起立面部(101)の上端に連なり前記対向面(36i)まで延びる、該起立面部(101)よりも深い曲面部(102)とを有し、
前記起立面部(101)は、該起立面部(101)と直交する横断面で見て、前記インジェクタプレート(36)の板面に沿う方向で前記隆起部(41)の頂面(41f)における前記テーパ面(41t)の起点となる外周端(41fe)と略同じ位置、又は前記外周端(41fe)よりも内方側の位置に配置されており、
前記曲面部(102)は、前記起立面部(101)と直交する横断面で見て前記燃料通路(FP)側に凸に湾曲していて、前記対向面(36i)に近づくにつれて前記起立面部(101)から前記板面に沿う方向で外方側に徐々に離れるように形成されていることを特徴とする、電磁式燃料噴射弁。
A valve seat member (3) having a valve seat (8) and a valve hole (10) penetrating the central portion of the valve seat (8), and the valve hole (10) in cooperation with the valve seat (8). ), An injector plate (36) having a fuel injection hole (43) and being coupled to the outer end surface of the valve seat member (3), and the injector plate (36). However, in an electromagnetic fuel injection valve composed of a press-molded metal plate,
A fuel passage (FP) that guides fuel from the valve hole (10) toward the fuel injection hole (43) on the surface (36i) of the injector plate (36) facing the valve seat member (3). ) Is recessed, and the open surface of the fuel passage (FP) on the valve seat member (3) side is closed by the valve seat member (3).
On the outer surface (36o) of the injector plate (36) opposite to the valve seat member (3), a raised portion (41) corresponding to the fuel passage (FP) is formed by the press molding. Ori,
The outer peripheral surface (41t) of the raised portion (41) is viewed from the root portion of the raised portion (41) toward the top surface (41f) when viewed in a cross section in a direction crossing each portion of the raised portion (41). A tapered surface (41t) inclined toward the center of the raised portion (41) is provided.
The peripheral surfaces (FPs) of the fuel passages (FP) are connected to an upright surface portion (101) that rises straight from the bottom surface (FPb) of the fuel passage (FP) and the upper end of the upright surface portion (101), and the facing surfaces (FPs). It has a curved surface portion (102) deeper than the upright surface portion (101) extending to 36i).
The upright surface portion (101) is seen on a cross section orthogonal to the upright surface portion (101), and is the above-mentioned on the top surface (41f) of the uplift portion (41) in a direction along the plate surface of the injector plate (36). It is arranged at substantially the same position as the outer peripheral end (41fe) which is the starting point of the tapered surface (41t), or at a position on the inner side of the outer peripheral end (41fe).
The curved surface portion (102) is curved convexly toward the fuel passage (FP) side when viewed in a cross section orthogonal to the upright surface portion (101), and the upright surface portion (36i) approaches the facing surface portion (36i). An electromagnetic fuel injection valve characterized in that it is formed so as to gradually move outward from 101) in a direction along the plate surface.
前記起立面部(101)と直交する横断面で見て、前記板面に沿う方向での前記曲面部(102)の幅(w)が、前記インジェクタプレート(36)の最小肉厚(tMIN )以上の長さに設定されることを特徴とする、請求項1に記載の電磁式燃料噴射弁。 The width (w) of the curved surface portion (102) in the direction along the plate surface when viewed in a cross section orthogonal to the upright surface portion (101) is the minimum wall thickness (t MIN ) of the injector plate (36). The electromagnetic fuel injection valve according to claim 1, wherein the length is set to the above. 前記曲面部(102)の外周端(102e)は、前記起立面部(101)と直交する横断面で見て、前記板面に沿う方向で前記隆起部(41)よりも外方側に位置していることを特徴とする、請求項1又は2に記載の電磁式燃料噴射弁。 The outer peripheral end (102e) of the curved surface portion (102) is located on the outer side of the raised portion (41) in the direction along the plate surface when viewed in a cross section orthogonal to the upright surface portion (101). The electromagnetic fuel injection valve according to claim 1 or 2, wherein the fuel injection valve is characterized by the above. 前記燃料通路(FP)は、前記弁孔(10)との連通部(37)から所定方向に延びる案内通路(38)と、前記案内通路(38)の下流端に接続されて前記弁孔(10)から該案内通路(38)を経て流入した燃料を旋回させ且つ底部に前記燃料噴孔(43)の上流端を開口させた旋回室(39)とを少なくとも有していることを特徴とする、請求項1〜3の何れか1項に記載の電磁式燃料噴射弁。 The fuel passage (FP) is connected to a guide passage (38) extending in a predetermined direction from a communication portion (37) with the valve hole (10) and a downstream end of the guide passage (38). It is characterized by having at least a swivel chamber (39) in which the fuel flowing in from the guide passage (38) is swirled and the upstream end of the fuel injection hole (43) is opened at the bottom. The electromagnetic fuel injection valve according to any one of claims 1 to 3.
JP2016249470A 2016-12-22 2016-12-22 Electromagnetic fuel injection valve Active JP6775219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016249470A JP6775219B2 (en) 2016-12-22 2016-12-22 Electromagnetic fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016249470A JP6775219B2 (en) 2016-12-22 2016-12-22 Electromagnetic fuel injection valve

Publications (2)

Publication Number Publication Date
JP2018105141A JP2018105141A (en) 2018-07-05
JP6775219B2 true JP6775219B2 (en) 2020-10-28

Family

ID=62787378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016249470A Active JP6775219B2 (en) 2016-12-22 2016-12-22 Electromagnetic fuel injection valve

Country Status (1)

Country Link
JP (1) JP6775219B2 (en)

Also Published As

Publication number Publication date
JP2018105141A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP4790441B2 (en) Electromagnetic fuel injection valve and method of assembling the same
KR100573190B1 (en) Fuel injection valve
US6145761A (en) Fuel injection valve
WO2015015797A1 (en) Fuel injection valve
US6168098B1 (en) Fuel injector with tubular lower needle guide
US7341204B2 (en) Fuel injection valve
EP2416000A1 (en) Fuel injection valve
JP5063789B2 (en) Electromagnetic fuel injection valve and method of assembling the same
US20130256428A1 (en) Fuel Injection Valve
US9394868B2 (en) Valve assembly and injection valve
US6938840B1 (en) Fuel injection valve
JP2014173477A (en) Fuel injection valve
JP6775219B2 (en) Electromagnetic fuel injection valve
JPH08296531A (en) Fuel injection valve
JP2018105137A (en) Electromagnetic fuel injection valve
US11493009B2 (en) Fuel injection valve and fuel injection system
JP3987039B2 (en) Fuel injection valve
US7464884B2 (en) Fuel injection valve
JP6803586B2 (en) Electromagnetic fuel injection valve
US11300088B2 (en) Fuel injection valve
JP6716063B2 (en) Electromagnetic fuel injection valve
CN101835970B (en) Electromagnetically activated valve
JP4138778B2 (en) Fuel injection valve
JP2018105138A (en) Electromagnetic fuel injection valve
JP3944497B2 (en) Fuel injection valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200924

R150 Certificate of patent or registration of utility model

Ref document number: 6775219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350