JP6775049B2 - Water-absorbent resin particles - Google Patents

Water-absorbent resin particles Download PDF

Info

Publication number
JP6775049B2
JP6775049B2 JP2019055267A JP2019055267A JP6775049B2 JP 6775049 B2 JP6775049 B2 JP 6775049B2 JP 2019055267 A JP2019055267 A JP 2019055267A JP 2019055267 A JP2019055267 A JP 2019055267A JP 6775049 B2 JP6775049 B2 JP 6775049B2
Authority
JP
Japan
Prior art keywords
water
absorbent resin
resin particles
mass
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019055267A
Other languages
Japanese (ja)
Other versions
JP2020093065A (en
Inventor
崇志 居藤
崇志 居藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=71085742&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6775049(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to KR1020217019044A priority Critical patent/KR20210101245A/en
Priority to CN201980081679.2A priority patent/CN113166436B/en
Priority to PCT/JP2019/048817 priority patent/WO2020122214A1/en
Priority to EP19895810.0A priority patent/EP3896119A4/en
Priority to US17/311,598 priority patent/US20220015958A1/en
Publication of JP2020093065A publication Critical patent/JP2020093065A/en
Application granted granted Critical
Publication of JP6775049B2 publication Critical patent/JP6775049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、吸水性樹脂粒子に関する。 The present invention relates to water-absorbent resin particles.

従来、尿等の水を主成分とする液体を吸収するための吸収性物品には、吸水性樹脂粒子を含有する吸収体が用いられている。例えば下記特許文献1には、おしめなどの吸収性物品に好適に用いられる粒子径を有する吸水性樹脂粒子の製造方法が、また特許文献2には、尿の様な体液を収容するのに効果的な吸収性部材として、特定の食塩水流れ誘導性、圧力下性能等を有するヒドロゲル吸収性重合体を使用する方法が開示されている。 Conventionally, an absorber containing water-absorbent resin particles has been used as an absorbent article for absorbing a liquid containing water as a main component such as urine. For example, Patent Document 1 below is a method for producing water-absorbent resin particles having a particle size preferably used for absorbent articles such as diapers, and Patent Document 2 is effective for containing body fluids such as urine. A method of using a hydrogel-absorbing polymer having specific salt water flow inducibility, performance under pressure, etc. as a specific absorbent member is disclosed.

特開平6−345819号公報Japanese Unexamined Patent Publication No. 6-345819 特表平09−510889号公報Special Table No. 09-510889

通常、吸収性物品に用いられる吸収体に対しては、金属イオンを含む種々の液(尿、汗等)を吸収することが求められている。ここで、吸収体に供された液が、吸収体に十分浸透しなければ、余剰の液はその表面を流れるなどして、吸収体の外に漏れるといった不具合が生じ得る。そのため、金属イオンを含む液が吸収体に十分な速さで浸透する必要があり、液の種類に依存することなく好適な浸透速度が安定的に得られることが求められる。 Usually, an absorber used for an absorbent article is required to absorb various liquids (urine, sweat, etc.) containing metal ions. Here, if the liquid provided to the absorber does not sufficiently permeate the absorber, the excess liquid may flow on the surface thereof and leak to the outside of the absorber. Therefore, it is necessary for the liquid containing metal ions to permeate the absorber at a sufficient speed, and it is required that a suitable permeation rate can be stably obtained regardless of the type of the liquid.

従来の吸収体を用いた吸収性物品では、吸液対象の液が吸収体に十分吸収されずに、余剰の液が吸収体表面を流れる現象(液走り)が起こりやすく、結果として液が吸収性物品の外に漏れるという漏れ性の点で改善の余地があった。 In an absorbent article using a conventional absorber, the liquid to be absorbed is not sufficiently absorbed by the absorber, and a phenomenon (liquid running) in which excess liquid flows on the surface of the absorber is likely to occur, and as a result, the liquid is absorbed. There was room for improvement in terms of leakability, which leaks out of the sex article.

本発明は、液体漏れを抑制可能な吸水性樹脂粒子を提供することを目的とする。 An object of the present invention is to provide water-absorbent resin particles capable of suppressing liquid leakage.

本発明の一側面は、無加圧DWの30秒値が、1.0mL/g以上であり、以下のi)及びii)の順で行われる試験で測定される接触角が90度以下である、吸水性樹脂粒子を提供する。
i)25℃において、吸水性樹脂粒子からなる層の表面上に、25質量%食塩水の直径3.0±0.1mmに相当する球状液滴を滴下して、吸水性樹脂粒子と液滴とを接触させる。
ii)液滴が表面に接触してから、30秒後の時点の液滴の接触角を測定する。
One aspect of the present invention is that the 30-second value of unpressurized DW is 1.0 mL / g or more, and the contact angle measured in the tests performed in the order of i) and ii) below is 90 degrees or less. Provide some water-absorbent resin particles.
i) At 25 ° C., spherical droplets corresponding to a diameter of 3.0 ± 0.1 mm of 25% by mass saline solution are dropped onto the surface of the layer made of water-absorbent resin particles, and the water-absorbent resin particles and the droplets are dropped. To make contact with.
ii) The contact angle of the droplet is measured 30 seconds after the droplet comes into contact with the surface.

上記吸水性樹脂粒子は、無加圧DWの30秒値及び上記接触角が所定の範囲内にあるため、液体漏れを抑制可能である。すなわち、上記吸水性樹脂粒子は、吸収性物品からの液体漏れの発生を抑制することに効果的に寄与できる。ここで、無加圧DWは、吸水性樹脂粒子が、無加圧下で、生理食塩水(濃度0.9質量%の食塩水)と接触してから所定の時間経過するまでに生理食塩水を吸収した量で表される吸水速度である。無加圧DWは、生理食塩水の吸収前の吸水性樹脂粒子1g当たりの吸収量(mL)で表される。無加圧DWの30秒値は、吸水性樹脂粒子が生理食塩水と接触してから30秒後の吸収量を意味する。 Since the water-absorbent resin particles have a 30-second value of non-pressurized DW and the contact angle within a predetermined range, liquid leakage can be suppressed. That is, the water-absorbent resin particles can effectively contribute to suppressing the occurrence of liquid leakage from the absorbent article. Here, the non-pressurized DW uses the physiological saline solution until a predetermined time elapses after the water-absorbent resin particles come into contact with the physiological saline solution (saline solution having a concentration of 0.9% by mass) under no pressure. It is the water absorption rate expressed by the amount absorbed. The non-pressurized DW is represented by the amount of absorption (mL) per 1 g of water-absorbent resin particles before absorption of physiological saline. The 30-second value of the non-pressurized DW means the amount of absorption 30 seconds after the water-absorbent resin particles come into contact with the physiological saline.

上記吸水性樹脂粒子において、上記接触角は70度以下であってよい。 In the water-absorbent resin particles, the contact angle may be 70 degrees or less.

上記吸水性樹脂粒子において、生理食塩水の保水量は20〜60g/gであってよい。 In the water-absorbent resin particles, the water retention amount of the physiological saline may be 20 to 60 g / g.

本発明によれば、液体漏れを抑制可能な吸水性樹脂粒子を提供することができる。 According to the present invention, it is possible to provide water-absorbent resin particles capable of suppressing liquid leakage.

無加圧DWの30秒値の測定装置を示す概略図である。It is the schematic which shows the measuring apparatus of the 30-second value of unpressurized DW. 吸収性物品の一例を示す断面図である。It is sectional drawing which shows an example of an absorbent article. 吸水性樹脂粒子の荷重下の吸水量の測定装置を示す概略図である。It is the schematic which shows the measuring apparatus of the water absorption amount under the load of the water-absorbing resin particle.

以下、本発明の実施形態について詳細に説明する。但し、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.

本明細書において、「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。「アクリレート」及び「メタクリレート」も同様に「(メタ)アクリレート」と表記する。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。「水溶性」とは、25℃において水に5質量%以上の溶解性を示すことをいう。本明細書に例示する材料は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 In the present specification, "acrylic" and "methacryl" are collectively referred to as "(meth) acrylic". Similarly, "acrylate" and "methacrylate" are also referred to as "(meth) acrylate". In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. “A or B” may include either A or B, or both. "Water-soluble" means that it exhibits a solubility in water of 5% by mass or more at 25 ° C. The materials exemplified in the present specification may be used alone or in combination of two or more. The content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.

本実施形態に係る吸水性樹脂粒子の無加圧DWの30秒値が、1.0mL/g以上である。無加圧DWの30秒値は、液体漏れがより一層抑制可能となる観点から、2.0mL/g以上、3.0mL/g以上、4.0mL/g以上、5.0mL/g以上、6.0mL/g以上、7.0mL/g以上、8.0mL/g以上、9.0mL/g以上、又は9.5mL/g以上であってよく、15mL/g以下、12mL/g以下、又は10mL/g以下であってよい。無加圧DWの30秒値は、後述する実施例に記載されている測定方法により測定される値である。 The 30-second value of the non-pressurized DW of the water-absorbent resin particles according to the present embodiment is 1.0 mL / g or more. The 30-second value of non-pressurized DW is 2.0 mL / g or more, 3.0 mL / g or more, 4.0 mL / g or more, 5.0 mL / g or more, from the viewpoint of further suppressing liquid leakage. It may be 6.0 mL / g or more, 7.0 mL / g or more, 8.0 mL / g or more, 9.0 mL / g or more, or 9.5 mL / g or more, 15 mL / g or less, 12 mL / g or less, Alternatively, it may be 10 mL / g or less. The 30-second value of the non-pressurized DW is a value measured by the measuring method described in Examples described later.

本実施形態に係る吸水性樹脂粒子の以下のi)及びii)の順で行われる試験で測定される接触角は、90度以下である。
i)25℃において、吸水性樹脂粒子からなる層の表面上に、25質量%食塩水の直径3.0±0.1mmに相当する球状液滴を滴下して、吸水性樹脂粒子と液滴とを接触させる。
ii)液滴が表面に接触してから、30秒後の時点の液滴の接触角を測定する。
The contact angle of the water-absorbent resin particles according to the present embodiment measured in the following tests i) and ii) is 90 degrees or less.
i) At 25 ° C., spherical droplets having a diameter of 3.0 ± 0.1 mm of 25% by mass saline solution are dropped onto the surface of the layer made of water-absorbent resin particles, and the water-absorbent resin particles and the droplets are dropped. To make contact with.
ii) The contact angle of the droplet is measured 30 seconds after the droplet comes into contact with the surface.

接触角は、液体漏れがより一層抑制可能となる観点から、80度以下、70度以下、60度以下、50度以下、又は40度以下であってよい。また、接触角は、0度以上であっても、0度を超えてもよく、10度以上、又は20度以上であってよい。 The contact angle may be 80 degrees or less, 70 degrees or less, 60 degrees or less, 50 degrees or less, or 40 degrees or less from the viewpoint of further suppressing liquid leakage. Further, the contact angle may be 0 degrees or more, may exceed 0 degrees, or may be 10 degrees or more, or 20 degrees or more.

接触角は、JIS R 3257(1999)「基盤ガラス表面のぬれ性試験方法」に準じて測定される値であり、具体的には、後述する実施例に記載の方法により測定される。 The contact angle is a value measured according to JIS R 3257 (1999) "Wetting property test method for the surface of the base glass", and specifically, it is measured by the method described in Examples described later.

本実施形態に係る吸水性樹脂粒子は、生理食塩水に対する高い吸水能を有することができる。本実施形態に係る吸水性樹脂粒子の生理食塩水の保水量は、例えば、20〜60g/g、25〜55g/g、30〜50g/g、又は32〜42g/gであってよい。生理食塩水の保水量は、後述する実施例に記載の方法によって測定される。 The water-absorbent resin particles according to the present embodiment can have a high water-absorbing ability with respect to physiological saline. The water-retaining amount of the physiological saline of the water-absorbent resin particles according to the present embodiment may be, for example, 20 to 60 g / g, 25 to 55 g / g, 30 to 50 g / g, or 32 to 42 g / g. The amount of physiological saline retained is measured by the method described in Examples described later.

本実施形態に係る吸水性樹脂粒子の荷重下における生理食塩水の吸水量は、例えば10〜40mL/g、15〜35mL/g、20〜30mL/g、又は22〜28mL/gであってよい。荷重下における生理食塩水の吸水量としては、荷重4.14kPaにおける吸水量(25℃)を用いることができる。吸水量は、後述する実施例に記載の方法によって測定できる。 The water absorption amount of the physiological saline under the load of the water-absorbent resin particles according to the present embodiment may be, for example, 10 to 40 mL / g, 15 to 35 mL / g, 20 to 30 mL / g, or 22 to 28 mL / g. .. As the water absorption amount of the physiological saline under the load, the water absorption amount (25 ° C.) at the load of 4.14 kPa can be used. The amount of water absorption can be measured by the method described in Examples described later.

本実施形態に係る吸水性樹脂粒子の形状としては、略球状、破砕状、顆粒状等が挙げられる。本実施形態に係る吸水性樹脂粒子の中位粒子径は、250〜850μm、300〜700μm、又は、300〜600μmであってよい。本実施形態に係る吸水性樹脂粒子は、後述する製造方法により得られた時点で所望の粒度分布を有していてよいが、篩による分級を用いた粒度調整等の操作を行うことにより粒度分布を調整してもよい。 Examples of the shape of the water-absorbent resin particles according to the present embodiment include substantially spherical, crushed, and granular shapes. The medium particle size of the water-absorbent resin particles according to the present embodiment may be 250 to 850 μm, 300 to 700 μm, or 300 to 600 μm. The water-absorbent resin particles according to the present embodiment may have a desired particle size distribution at the time of being obtained by the production method described later, but the particle size distribution can be obtained by performing an operation such as particle size adjustment using classification with a sieve. May be adjusted.

本実施形態に係る吸水性樹脂粒子は、例えば、エチレン性不飽和単量体を含む単量体の重合により形成された架橋重合体を含むことができる。架橋重合体は、エチレン性不飽和単量体に由来する単量体単位を有する。 The water-absorbent resin particles according to the present embodiment can include, for example, a crosslinked polymer formed by polymerizing a monomer containing an ethylenically unsaturated monomer. The crosslinked polymer has a monomer unit derived from an ethylenically unsaturated monomer.

吸水性樹脂粒子は、エチレン性不飽和単量体を含む単量体を重合させる工程を含む方法により、製造することができる。重合方法としては、逆相懸濁重合法、水溶液重合法、バルク重合法、沈殿重合法等が挙げられる。これらの中では、得られる吸水性樹脂粒子の良好な吸水特性の確保、及び、重合反応の制御が容易である観点から、逆相懸濁重合法又は水溶液重合法が好ましい。以下においては、エチレン性不飽和単量体を重合させる方法として、逆相懸濁重合法を例にとって説明する。 The water-absorbent resin particles can be produced by a method including a step of polymerizing a monomer containing an ethylenically unsaturated monomer. Examples of the polymerization method include a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, and a precipitation polymerization method. Among these, the reverse phase suspension polymerization method or the aqueous solution polymerization method is preferable from the viewpoint of ensuring good water absorption characteristics of the obtained water-absorbent resin particles and facilitating control of the polymerization reaction. In the following, a reverse phase suspension polymerization method will be described as an example as a method for polymerizing an ethylenically unsaturated monomer.

エチレン性不飽和単量体は水溶性であることが好ましく、例えば、(メタ)アクリル酸及びその塩、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸及びその塩、(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、N−メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等が挙げられる。エチレン性不飽和単量体がアミノ基を有する場合、当該アミノ基は4級化されていてもよい。エチレン性不飽和単量体は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。上述の単量体のカルボキシル基、アミノ基等の官能基は、後述する表面架橋工程において架橋が可能な官能基として機能し得る。 The ethylenically unsaturated monomer is preferably water-soluble, for example, (meth) acrylic acid and a salt thereof, 2- (meth) acrylamide-2-methylpropanesulfonic acid and a salt thereof, (meth) acrylamide, N. , N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-diethylamino Examples thereof include propyl (meth) acrylate and diethylaminopropyl (meth) acrylamide. When the ethylenically unsaturated monomer has an amino group, the amino group may be quaternized. The ethylenically unsaturated monomer may be used alone or in combination of two or more. Functional groups such as the carboxyl group and amino group of the above-mentioned monomers can function as functional groups capable of cross-linking in the surface cross-linking step described later.

これらの中でも、工業的に入手が容易である観点から、エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩、アクリルアミド、メタクリルアミド、並びに、N,N−ジメチルアクリルアミドからなる群より選ばれる少なくとも1種の化合物を含むことが好ましく、(メタ)アクリル酸及びその塩、並びに、アクリルアミドからなる群より選ばれる少なくとも1種の化合物を含むことがより好ましい。吸水特性を更に高める観点から、エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも1種の化合物を含むことが更に好ましい。 Among these, from the viewpoint of industrial availability, the ethylenically unsaturated monomer is selected from the group consisting of (meth) acrylic acid and its salts, acrylamide, methacrylamide, and N, N-dimethylacrylamide. It is preferable to contain at least one compound selected, and more preferably to contain at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof, and acrylamide. From the viewpoint of further enhancing the water absorption property, the ethylenically unsaturated monomer further preferably contains at least one compound selected from the group consisting of (meth) acrylic acid and salts thereof.

エチレン性不飽和単量体は、通常、水溶液として用いることが好適である。エチレン性不飽和単量体を含む水溶液(以下、単に「単量体水溶液」という)におけるエチレン性不飽和単量体の濃度は、20質量%以上飽和濃度以下が好ましく、25〜70質量%がより好ましく、30〜55質量%が更に好ましい。水溶液において使用される水としては、水道水、蒸留水、イオン交換水等が挙げられる。 The ethylenically unsaturated monomer is usually preferably used as an aqueous solution. The concentration of the ethylenically unsaturated monomer in the aqueous solution containing the ethylenically unsaturated monomer (hereinafter, simply referred to as “monomer aqueous solution”) is preferably 20% by mass or more and preferably 25 to 70% by mass. More preferably, 30 to 55% by mass is further preferable. Examples of the water used in the aqueous solution include tap water, distilled water, ion-exchanged water and the like.

吸水性樹脂粒子を得るための単量体としては、上述のエチレン性不飽和単量体以外の単量体が使用されてもよい。このような単量体は、例えば、上述のエチレン性不飽和単量体を含む水溶液に混合して用いることができる。エチレン性不飽和単量体の使用量は、単量体全量に対して70〜100モル%であることが好ましい。中でも、(メタ)アクリル酸及びその塩の割合が単量体全量に対して70〜100モル%であることがより好ましい。 As the monomer for obtaining the water-absorbent resin particles, a monomer other than the above-mentioned ethylenically unsaturated monomer may be used. Such a monomer can be used, for example, by being mixed with an aqueous solution containing the above-mentioned ethylenically unsaturated monomer. The amount of the ethylenically unsaturated monomer used is preferably 70 to 100 mol% with respect to the total amount of the monomers. Above all, the ratio of (meth) acrylic acid and a salt thereof is more preferably 70 to 100 mol% with respect to the total amount of the monomers.

単量体水溶液は、エチレン性不飽和単量体が酸基を有する場合、その酸基をアルカリ性中和剤によって中和して用いてもよい。エチレン性不飽和単量体における、アルカリ性中和剤による中和度は、得られる吸水性樹脂粒子の浸透圧を高くし、吸水特性(保水量等)を更に高める観点から、エチレン性不飽和単量体中の酸性基の10〜100モル%であることが好ましく、50〜90モル%であることがより好ましく、60〜80モル%であることが更に好ましい。アルカリ性中和剤としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;アンモニアなどが挙げられる。アルカリ性中和剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。アルカリ性中和剤は、中和操作を簡便にするために水溶液の状態で用いられてもよい。エチレン性不飽和単量体の酸基の中和は、例えば、水酸化ナトリウム、水酸化カリウム等の水溶液を上述の単量体水溶液に滴下して混合することにより行うことができる。 When the ethylenically unsaturated monomer has an acid group, the monomer aqueous solution may be used by neutralizing the acid group with an alkaline neutralizer. The degree of neutralization of the ethylenically unsaturated monomer by the alkaline neutralizing agent increases the osmotic pressure of the obtained water-absorbent resin particles and further enhances the water absorption characteristics (water retention amount, etc.). It is preferably 10 to 100 mol%, more preferably 50 to 90 mol%, and even more preferably 60 to 80 mol% of the acidic group in the weight. Examples of the alkaline neutralizing agent include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium hydroxide and potassium carbonate; ammonia and the like. The alkaline neutralizer may be used alone or in combination of two or more. The alkaline neutralizer may be used in the form of an aqueous solution to simplify the neutralization operation. Neutralization of the acid group of the ethylenically unsaturated monomer can be performed, for example, by adding an aqueous solution of sodium hydroxide, potassium hydroxide or the like to the above-mentioned monomer aqueous solution and mixing them.

逆相懸濁重合法においては、界面活性剤の存在下、炭化水素分散媒中で単量体水溶液を分散し、ラジカル重合開始剤等を用いてエチレン性不飽和単量体の重合を行うことができる。ラジカル重合開始剤としては、水溶性ラジカル重合開始剤を用いることができる。 In the reverse phase suspension polymerization method, the monomer aqueous solution is dispersed in a hydrocarbon dispersion medium in the presence of a surfactant, and the ethylenically unsaturated monomer is polymerized using a radical polymerization initiator or the like. Can be done. As the radical polymerization initiator, a water-soluble radical polymerization initiator can be used.

界面活性剤としては、ノニオン系界面活性剤、アニオン系界面活性剤等が挙げられる。ノニオン系界面活性剤としては、ソルビタン脂肪酸エステル、(ポリ)グリセリン脂肪酸エステル(「(ポリ)」とは、「ポリ」の接頭語がある場合及びない場合の双方を意味するものとする。以下同じ。)、ショ糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル等が挙げられる。アニオン系界面活性剤としては、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルメチルタウリン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテルスルホン酸塩、ポリオキシエチレンアルキルエーテルのリン酸エステル、及びポリオキシエチレンアルキルアリルエーテルのリン酸エステル等が挙げられる。界面活性剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。 Examples of the surfactant include nonionic surfactants and anionic surfactants. As the nonionic surfactant, sorbitan fatty acid ester and (poly) glycerin fatty acid ester (“(poly)” means both with and without the prefix of “poly”. The same shall apply hereinafter. ), Sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene himashi Examples thereof include oil, polyoxyethylene cured castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropyl alkyl ether, polyethylene glycol fatty acid ester and the like. Anionic surfactants include fatty acid salts, alkylbenzene sulfonates, alkylmethyl taurates, polyoxyethylene alkylphenyl ether sulfates, polyoxyethylene alkyl ether sulfonates, and polyoxyethylene alkyl ether phosphates. , And the phosphate ester of polyoxyethylene alkyl allyl ether and the like. The surfactant may be used alone or in combination of two or more.

W/O型逆相懸濁の状態が良好であり、好適な粒子径を有する吸水性樹脂粒子が得られやすく、工業的に入手が容易である観点から、界面活性剤は、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル及びショ糖脂肪酸エステルからなる群より選ばれる少なくとも1種の化合物を含むことが好ましい。得られる吸水性樹脂粒子の吸水特性が向上しやすい観点から、界面活性剤は、ショ糖脂肪酸エステルを含むことが好ましく、ショ糖ステアリン酸エステルがより好ましい。 From the viewpoint that the W / O type reverse phase suspension is in a good state, water-absorbent resin particles having a suitable particle size can be easily obtained, and industrially available, the surfactant is a sorbitan fatty acid ester. It is preferable to contain at least one compound selected from the group consisting of polyglycerin fatty acid ester and sucrose fatty acid ester. From the viewpoint of easily improving the water absorption characteristics of the obtained water-absorbent resin particles, the surfactant preferably contains a sucrose fatty acid ester, and more preferably a sucrose stearic acid ester.

界面活性剤の使用量は、使用量に対する効果が充分に得られる観点、及び、経済的である観点から、単量体水溶液100質量部に対して、0.05〜10質量部が好ましく、0.08〜5質量部がより好ましく、0.1〜3質量部が更に好ましい。 The amount of the surfactant used is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the aqueous monomer solution from the viewpoint of obtaining a sufficient effect on the amount used and from the viewpoint of economic efficiency. .08 to 5 parts by mass is more preferable, and 0.1 to 3 parts by mass is further preferable.

逆相懸濁重合では、上述の界面活性剤と共に高分子系分散剤を併せて用いてもよい。高分子系分散剤としては、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性EPDM(エチレン・プロピレン・ジエン・ターポリマー)、無水マレイン酸変性ポリブタジエン、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、無水マレイン酸・ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース等が挙げられる。高分子系分散剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。高分子系分散剤としては、単量体の分散安定性に優れる観点から、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、及び、酸化型エチレン・プロピレン共重合体からなる群より選ばれる少なくとも一種が好ましい。 In the reverse phase suspension polymerization, a polymer-based dispersant may be used in combination with the above-mentioned surfactant. Examples of the polymer dispersant include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified EPDM (ethylene / propylene / diene / terpolymer), and maleic anhydride. Modified polybutadiene, maleic anhydride / ethylene copolymer, maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, maleic anhydride / butadiene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer Examples thereof include coalescence, oxidized polyethylene, oxidized polypropylene, oxidized ethylene / propylene copolymer, ethylene / acrylic acid copolymer, ethyl cellulose, ethyl hydroxyethyl cellulose and the like. The polymer-based dispersant may be used alone or in combination of two or more. As the polymer-based dispersant, from the viewpoint of excellent dispersion stability of the monomer, maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, and maleic anhydride / ethylene copolymer weight. Combined, maleic anhydride / propylene copolymer, maleic anhydride / ethylene / propylene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, and oxidized ethylene / propylene copolymer At least one selected from the group consisting of coalescing is preferable.

高分子系分散剤の使用量は、使用量に対する効果が充分に得られる観点、及び、経済的である観点から、単量体水溶液100質量部に対して、0.05〜10質量部が好ましく、0.08〜5質量部がより好ましく、0.1〜3質量部が更に好ましい。 The amount of the polymer-based dispersant used is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the monomer aqueous solution from the viewpoint of obtaining a sufficient effect on the amount used and from the viewpoint of economic efficiency. , 0.08 to 5 parts by mass, more preferably 0.1 to 3 parts by mass.

炭化水素分散媒は、炭素数6〜8の鎖状脂肪族炭化水素、及び、炭素数6〜8の脂環式炭化水素からなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。炭化水素分散媒としては、n−ヘキサン、n−ヘプタン、2−メチルヘキサン、3−メチルヘキサン、2,3−ジメチルペンタン、3−エチルペンタン、n−オクタン等の鎖状脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans−1,2−ジメチルシクロペンタン、cis−1,3−ジメチルシクロペンタン、trans−1,3−ジメチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素などが挙げられる。炭化水素分散媒は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。 The hydrocarbon dispersion medium may contain at least one compound selected from the group consisting of chain aliphatic hydrocarbons having 6 to 8 carbon atoms and alicyclic hydrocarbons having 6 to 8 carbon atoms. As the hydrocarbon dispersion medium, a chain aliphatic hydrocarbon such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, n-octane; cyclohexane , Methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, trans-1,3-dimethylcyclopentane and other alicyclic hydrocarbons; benzene, Examples include aromatic hydrocarbons such as toluene and xylene. The hydrocarbon dispersion medium may be used alone or in combination of two or more.

工業的に入手が容易であり、かつ、品質が安定している観点から、炭化水素分散媒は、n−ヘプタン及びシクロヘキサンからなる群より選ばれる少なくとも一種を含んでいてもよい。また、同様の観点から、上述の炭化水素分散媒の混合物としては、例えば、市販されているエクソールヘプタン(エクソンモービル社製:n−ヘプタン及び異性体の炭化水素75〜85%含有)を用いてもよい。 From the viewpoint of industrial availability and stable quality, the hydrocarbon dispersion medium may contain at least one selected from the group consisting of n-heptane and cyclohexane. From the same viewpoint, as the mixture of the above-mentioned hydrocarbon dispersion medium, for example, commercially available ExxonHeptane (manufactured by ExxonMobil: containing 75 to 85% of n-heptane and isomeric hydrocarbons) is used. You may.

炭化水素分散媒の使用量は、重合熱を適度に除去し、重合温度を制御しやすい観点から、単量体水溶液100質量部に対して、30〜1000質量部が好ましく、40〜500質量部がより好ましく、50〜300質量部が更に好ましい。炭化水素分散媒の使用量が30質量部以上であることにより、重合温度の制御が容易である傾向がある。炭化水素分散媒の使用量が1000質量部以下であることにより、重合の生産性が向上する傾向があり、経済的である。 The amount of the hydrocarbon dispersion medium used is preferably 30 to 1000 parts by mass and 40 to 500 parts by mass with respect to 100 parts by mass of the monomer aqueous solution from the viewpoint of appropriately removing the heat of polymerization and easily controlling the polymerization temperature. Is more preferable, and 50 to 300 parts by mass is further preferable. When the amount of the hydrocarbon dispersion medium used is 30 parts by mass or more, the polymerization temperature tends to be easily controlled. When the amount of the hydrocarbon dispersion medium used is 1000 parts by mass or less, the productivity of polymerization tends to be improved, which is economical.

ラジカル重合開始剤は水溶性であることが好ましく、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩;メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ−t−ブチルパーオキシド、t−ブチルクミルパーオキシド、t−ブチルパーオキシアセテート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシピバレート、過酸化水素等の過酸化物;2,2’−アゾビス(2−アミジノプロパン)2塩酸塩、2,2’−アゾビス[2−(N−フェニルアミジノ)プロパン]2塩酸塩、2,2’−アゾビス[2−(N−アリルアミジノ)プロパン]2塩酸塩、2,2'−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]2塩酸塩、2,2’−アゾビス{2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン}2塩酸塩、2,2’−アゾビス{2−メチル−N−[1,1−ビス(ヒドロキシメチル)−2−ヒドロキシエチル]プロピオンアミド}、2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)−プロピオンアミド]、4,4’−アゾビス(4−シアノ吉草酸)等のアゾ化合物などが挙げられる。ラジカル重合開始剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。ラジカル重合開始剤としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、2,2’−アゾビス(2−アミジノプロパン)2塩酸塩、2,2'−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]2塩酸塩、及び、2,2’−アゾビス{2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン}2塩酸塩からなる群より選ばれる少なくとも一種が好ましい。 The radical polymerization initiator is preferably water-soluble, for example, persulfates such as potassium persulfate, ammonium persulfate, sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t. Peroxides such as -butylcumylperoxide, t-butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate, hydrogen peroxide; 2,2'-azobis (2-amidinopropane) ) 2 hydrochloride, 2,2'-azobis [2- (N-phenylamidino) propane] 2 hydrochloride, 2,2'-azobis [2- (N-allylamidino) propane] 2 hydrochloride, 2,2 '-Azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} Dihydrochloride, 2,2'-azobis {2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide}, 2,2'-azobis [2-methyl-N- (2-Hydroxyethyl) -propionamide], azo compounds such as 4,4'-azobis (4-cyanovaleric acid) and the like can be mentioned. The radical polymerization initiator may be used alone or in combination of two or more. Examples of the radical polymerization initiator include potassium persulfate, ammonium persulfate, sodium persulfate, 2,2'-azobis (2-amidinopropane) dihydrochloride, and 2,2'-azobis [2- (2-imidazolin-2-). Il) Propane] dihydrochloride and at least one selected from the group consisting of 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propan} 2 hydrochloride. Is preferable.

ラジカル重合開始剤の使用量は、エチレン性不飽和単量体1モルに対して0.00005〜0.01モルであってよい。ラジカル重合開始剤の使用量が0.00005モル以上であると、重合反応に長時間を要さず、効率的である。ラジカル重合開始剤の使用量が0.01モル以下であると、急激な重合反応が起こることを抑制しやすい。 The amount of the radical polymerization initiator used may be 0.00005 to 0.01 mol per 1 mol of the ethylenically unsaturated monomer. When the amount of the radical polymerization initiator used is 0.00005 mol or more, the polymerization reaction does not require a long time and is efficient. When the amount of the radical polymerization initiator used is 0.01 mol or less, it is easy to suppress the occurrence of a rapid polymerization reaction.

上述のラジカル重合開始剤は、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、L−アスコルビン酸等の還元剤と併用して、レドックス重合開始剤として用いることもできる。 The above-mentioned radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.

重合反応の際、重合に用いる単量体水溶液は、連鎖移動剤を含んでいてもよい。連鎖移動剤としては、次亜リン酸塩類、チオール類、チオール酸類、第2級アルコール類、アミン類等が挙げられる。 At the time of the polymerization reaction, the aqueous monomer solution used for the polymerization may contain a chain transfer agent. Examples of the chain transfer agent include hypophosphates, thiols, thiolic acids, secondary alcohols, amines and the like.

吸水性樹脂粒子の粒子径を制御するために、重合に用いる単量体水溶液は、増粘剤を含んでいてもよい。増粘剤としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、カルボキシメチルセルロース、ポリエチレングリコール、ポリアクリルアミド、ポリエチレンイミン、デキストリン、アルギン酸ナトリウム、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド等が挙げられる。なお、重合時の撹拌速度が同じであれば、単量体水溶液の粘度が高いほど、得られる粒子の中位粒子径は大きくなる傾向にある。 In order to control the particle size of the water-absorbent resin particles, the monomer aqueous solution used for the polymerization may contain a thickener. Examples of the thickener include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide and the like. If the stirring speed at the time of polymerization is the same, the higher the viscosity of the aqueous monomer solution, the larger the medium particle size of the obtained particles tends to be.

重合の際に自己架橋による架橋が生じるが、更に内部架橋剤を用いることで架橋を施してもよい。内部架橋剤を用いると、吸水性樹脂粒子の吸水特性を制御しやすい。内部架橋剤は、通常、重合反応の際に反応液に添加される。内部架橋剤としては、例えば、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類のジ又はトリ(メタ)アクリル酸エステル類;上述のポリオール類と不飽和酸(マレイン酸、フマール酸等)とを反応させて得られる不飽和ポリエステル類;N,N’−メチレンビス(メタ)アクリルアミド等のビス(メタ)アクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ又はトリ(メタ)アクリル酸エステル類;ポリイソシアネート(トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)と(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉、アリル化セルロース、ジアリルフタレート、N,N’,N”−トリアリルイソシアヌレート、ジビニルベンゼン等の,重合性不飽和基を2個以上有する化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロロヒドリン、エピブロムヒドリン、α−メチルエピクロロヒドリン等のハロエポキシ化合物;イソシアネート化合物(2,4−トリレンジイソシアネート、ヘキサメチレンジイソシアネート等)などの、反応性官能基を2個以上有する化合物などが挙げられる。内部架橋剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。内部架橋剤としては、ポリグリシジル化合物が好ましく、ジグリシジルエーテル化合物がより好ましく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び、(ポリ)グリセリンジグリシジルエーテルからなる群より選ばれる少なくとも一種が更に好ましい。 Cross-linking occurs by self-cross-linking during polymerization, but cross-linking may be further performed by using an internal cross-linking agent. When an internal cross-linking agent is used, it is easy to control the water absorption characteristics of the water-absorbent resin particles. The internal cross-linking agent is usually added to the reaction solution during the polymerization reaction. Examples of the internal cross-linking agent include di or tri (meth) acrylic acid esters of polyols such as ethylene glycol, propylene glycol, trimethylpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; Unsaturated polyesters obtained by reacting polyols with unsaturated acids (maleic acid, fumaric acid, etc.); bis (meth) acrylamides such as N, N'-methylenebis (meth) acrylamide; polyepoxides and (meth) Di or tri (meth) acrylic acid esters obtained by reacting with acrylic acid; di (meth) obtained by reacting polyisocyanate (tolylene diisocyanate, hexamethylene diisocyanate, etc.) with hydroxyethyl (meth) acrylate. ) Acrylic acid carbamil esters; compounds having two or more polymerizable unsaturated groups such as allylated starch, allylated cellulose, diallyl phthalate, N, N', N "-triallyl isocyanurate, divinylbenzene; Poly such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, polyglycerol polyglycidyl ether, etc. Glycidyl compound; haloepoxy compound such as epichlorohydrin, epibromhydrin, α-methylepichlorohydrin; 2 reactive functional groups such as isocyanate compound (2,4-tolylene diisocyanate, hexamethylene diisocyanate, etc.) Examples thereof include compounds having more than one. The internal cross-linking agent may be used alone or in combination of two or more. As the internal cross-linking agent, a polyglycidyl compound is preferable, and a diglycidyl ether compound is used. Is more preferable, and at least one selected from the group consisting of (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether is further preferable.

内部架橋剤の使用量は、得られる重合体が適度に架橋されることにより水溶性の性質が抑制され、充分な吸水量が得られやすい観点から、エチレン性不飽和単量体1モル当たり、0ミリモル以上、0.02ミリモル以上、0.03ミリモル以上、0.04ミリモル以上、又は0.05ミリモル以上であってもよく、0.1モル以下であってもよい。特に、多段の逆相懸濁重合の重合、1段目の重合において、内部架橋剤の量がエチレン性不飽和単量体1モル当たり0.03ミリモル以上であると、保水量と無加圧DWが好適な吸水性樹脂粒子が得られ易い。 The amount of the internal cross-linking agent used is 1 mol of ethylenically unsaturated monomer from the viewpoint that the water-soluble property is suppressed by appropriately cross-linking the obtained polymer and a sufficient amount of water absorption can be easily obtained. It may be 0 mmol or more, 0.02 mmol or more, 0.03 mmol or more, 0.04 mmol or more, 0.05 mmol or more, or 0.1 mol or less. In particular, in the polymerization of multi-stage reverse phase suspension polymerization, when the amount of the internal cross-linking agent is 0.03 mmol or more per mol of the ethylenically unsaturated monomer, the amount of water retention and no pressurization It is easy to obtain water-absorbent resin particles suitable for DW.

エチレン性不飽和単量体、ラジカル重合開始剤、必要に応じて内部架橋剤等を含む水相と、炭化水素系分散剤と必要に応じて界面活性剤、高分子系分散剤等を含む油相を混合した状態において撹拌下で加熱し、油中水系において逆相懸濁重合を行うことができる。 An aqueous phase containing an ethylenically unsaturated monomer, a radical polymerization initiator, an internal cross-linking agent, etc., if necessary, and an oil containing a hydrocarbon-based dispersant, a surfactant, a polymer-based dispersant, etc., if necessary. Reversed phase suspension polymerization can be carried out in an aqueous system in oil by heating with stirring in a state where the phases are mixed.

逆相懸濁重合を行う際には、界面活性剤(必要に応じて更に、高分子系分散剤)の存在下で、エチレン性不飽和単量体を含む単量体水溶液を炭化水素分散媒に分散させる。このとき、重合反応を開始する前であれば、界面活性剤、高分子系分散剤等の添加時期は、単量体水溶液の添加の前後どちらであってもよい。 When performing reverse phase suspension polymerization, a monomer aqueous solution containing an ethylenically unsaturated monomer is used as a hydrocarbon dispersion medium in the presence of a surfactant (and, if necessary, a polymer-based dispersant). Disperse in. At this time, before the start of the polymerization reaction, the timing of adding the surfactant, the polymer-based dispersant, etc. may be either before or after the addition of the monomer aqueous solution.

その中でも、得られる吸水性樹脂に残存する炭化水素分散媒の量を低減しやすい観点から、高分子系分散剤を分散させた炭化水素分散媒に単量体水溶液を分散させた後に界面活性剤を更に分散させてから重合を行うことが好ましい。 Among them, from the viewpoint of easily reducing the amount of the hydrocarbon dispersion medium remaining in the obtained water-absorbent resin, the surfactant is prepared after the monomer aqueous solution is dispersed in the hydrocarbon dispersion medium in which the polymer-based dispersant is dispersed. It is preferable to carry out the polymerization after further dispersing the above.

逆相懸濁重合は、1段、又は、2段以上の多段で行うことができる。逆相懸濁重合は、生産性を高める観点から、2〜3段で行うことが好ましい。 Reverse-phase suspension polymerization can be carried out in one stage or in multiple stages of two or more stages. Reverse phase suspension polymerization is preferably carried out in 2 to 3 steps from the viewpoint of increasing productivity.

2段以上の多段で逆相懸濁重合を行う場合には、1段目の逆相懸濁重合を行った後、1段目の重合反応で得られた反応混合物にエチレン性不飽和単量体を添加して混合し、1段目と同様の方法で2段目以降の逆相懸濁重合を行えばよい。2段目以降の各段における逆相懸濁重合では、エチレン性不飽和単量体の他に、上述のラジカル重合開始剤及び/又は内部架橋剤を、2段目以降の各段における逆相懸濁重合の際に添加するエチレン性不飽和単量体の量を基準として、上述のエチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行うことが好ましい。なお、2段目以降の各段における逆相懸濁重合では、必要に応じて内部架橋剤を用いてもよい。内部架橋剤を用いる場合は、各段に供するエチレン性不飽和単量体の量を基準として、上述のエチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行うことが好ましい。 When reverse phase suspension polymerization is carried out in two or more stages, the reaction mixture obtained in the first step polymerization reaction after the first step reverse phase suspension polymerization is subjected to an ethylenically unsaturated single amount. The body may be added and mixed, and the reverse phase suspension polymerization of the second and subsequent steps may be carried out in the same manner as in the first step. In the reverse phase suspension polymerization in each stage of the second and subsequent stages, in addition to the ethylenically unsaturated monomer, the above-mentioned radical polymerization initiator and / or internal cross-linking agent is used in the reverse phase of each stage of the second and subsequent stages. Based on the amount of ethylenically unsaturated monomer added during suspension polymerization, reverse phase suspension polymerization is carried out by adding within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer. Is preferable. An internal cross-linking agent may be used in the reverse phase suspension polymerization in each of the second and subsequent stages, if necessary. When an internal cross-linking agent is used, it is added within the range of the molar ratio of each component to the above-mentioned ethylenically unsaturated monomer based on the amount of the ethylenically unsaturated monomer provided in each stage, and the suspension is reversed. It is preferable to carry out turbid polymerization.

重合反応の温度は、使用するラジカル重合開始剤によって異なるが、重合を迅速に進行させ、重合時間を短くすることにより、経済性を高めると共に、容易に重合熱を除去して円滑に反応を行う観点から、20〜150℃が好ましく、40〜120℃がより好ましい。反応時間は、通常、0.5〜4時間である。重合反応の終了は、例えば、反応系内の温度上昇の停止により確認することができる。これにより、エチレン性不飽和単量体の重合体は、通常、含水ゲル状重合体の状態で得られる。 The temperature of the polymerization reaction varies depending on the radical polymerization initiator used, but by advancing the polymerization rapidly and shortening the polymerization time, the efficiency is improved and the heat of polymerization is easily removed to carry out the reaction smoothly. From the viewpoint, 20 to 150 ° C. is preferable, and 40 to 120 ° C. is more preferable. The reaction time is usually 0.5-4 hours. The completion of the polymerization reaction can be confirmed, for example, by stopping the temperature rise in the reaction system. As a result, the polymer of the ethylenically unsaturated monomer is usually obtained in the state of a hydrogel-like polymer.

重合後、得られた含水ゲル状重合体に架橋剤を添加して加熱することで、重合後架橋を施してもよい。重合後架橋を行なうことで含水ゲル状重合体の架橋度を高め、それにより吸水性樹脂粒子の吸水特性を更に向上させることができる。 After the polymerization, a cross-linking agent may be added to the obtained hydrogel polymer and heated to carry out the cross-linking after the polymerization. By performing cross-linking after polymerization, the degree of cross-linking of the hydrogel polymer can be increased, whereby the water-absorbing characteristics of the water-absorbent resin particles can be further improved.

重合後架橋を行うための架橋剤としては、例えば、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、及び(ポリ)グリセリンジグリシジルエーテル等の2個以上のエポキシ基を有する化合物;エピクロルヒドリン、エピブロムヒドリン、及びα−メチルエピクロルヒドリン等のハロエポキシ化合物;2,4−トリレンジイソシアネート、及びヘキサメチレンジイソシアネート等の2個以上のイソシアネート基を有する化合物;1,2−エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N−ジ(β−ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物等が挙げられる。これらの中でも、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル等のポリグリシジル化合物が好ましい。これらの架橋剤は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。 Examples of the cross-linking agent for performing post-polymerization cross-linking include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; Compounds having two or more epoxy groups such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether; epichlorohydrin, epibromhydrin, α-methylepicrolhydrin, etc. Haloepoxy compounds; compounds having two or more isocyanate groups such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; oxazoline compounds such as 1,2-ethylenebisoxazoline; carbonate compounds such as ethylenecarbonate; bis [N , N-di (β-hydroxyethyl)] hydroxyalkylamide compounds such as adipamide can be mentioned. Among these, polyglycidyl compounds such as (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and polyglycerol polyglycidyl ether are preferable. .. These cross-linking agents may be used alone or in combination of two or more.

重合後架橋に用いられる架橋剤の量は、得られる含水ゲル状重合体が適度に架橋されることにより好適な吸水特性を示すようにする観点から、エチレン性不飽和単量体1モル当たり、0〜0.03モルであることが好ましく、0〜0.01モルであることがより好ましく、0.00001〜0.005モルであることが更に好ましい。前記架橋剤の添加量が上述の範囲内であることによって、無加圧DWや接触角が好適な吸水性樹脂粒子が得られ易い。 The amount of the cross-linking agent used for the post-polymerization cross-linking is such that the obtained hydrogel-like polymer is appropriately cross-linked to exhibit suitable water absorption characteristics, and the amount is determined per mole of the ethylenically unsaturated monomer. It is preferably 0 to 0.03 mol, more preferably 0 to 0.01 mol, and even more preferably 0.00001 to 0.005 mol. When the amount of the cross-linking agent added is within the above range, it is easy to obtain water-absorbent resin particles having a suitable non-pressurized DW and contact angle.

重合後架橋の添加時期としては、重合に用いられるエチレン性不飽和単量体の重合後であればよく、多段重合の場合は、多段重合後に添加されることが好ましい。なお、重合時および重合後の発熱、工程遅延による滞留、架橋剤添加時の系の開放、及び架橋剤添加に伴う水の添加等による水分の変動を考慮して、重合後架橋の架橋剤は、含水率(後述)の観点から、[重合直後の含水率±3質量%]の領域で添加することが好ましい。 The timing of adding the cross-linking after the polymerization may be after the polymerization of the ethylenically unsaturated monomer used for the polymerization, and in the case of the multi-stage polymerization, it is preferably added after the multi-stage polymerization. In consideration of heat generation during and after polymerization, retention due to process delay, system opening when a cross-linking agent is added, and fluctuation of water content due to addition of water due to addition of a cross-linking agent, the cross-linking agent for post-polymerization cross-linking From the viewpoint of water content (described later), it is preferable to add in the region of [water content ± 3% by mass immediately after polymerization].

引き続き、得られた含水ゲル状重合体から水分を除去するために乾燥を行う。乾燥により、エチレン性不飽和単量体の重合体を含む重合体粒子が得られる。乾燥方法としては、例えば、(a)含水ゲル状重合体が炭化水素分散媒に分散した状態で、外部から加熱することにより共沸蒸留を行い、炭化水素分散媒を還流させて水分を除去する方法、(b)デカンテーションにより含水ゲル状重合体を取り出し、減圧乾燥する方法、(c)フィルターにより含水ゲル状重合体をろ別し、減圧乾燥する方法等が挙げられる。中でも、製造工程における簡便さから、(a)の方法を用いることが好ましい。 Subsequently, drying is performed to remove water from the obtained hydrogel polymer. Drying gives polymer particles containing a polymer of ethylenically unsaturated monomers. As a drying method, for example, (a) a hydrogel-like polymer is dispersed in a hydrocarbon dispersion medium, and co-boiling distillation is performed by heating from the outside, and the hydrocarbon dispersion medium is refluxed to remove water. Examples thereof include (b) a method of taking out the hydrogel polymer by decantation and drying under reduced pressure, and (c) a method of filtering the hydrogel polymer with a filter and drying under reduced pressure. Above all, it is preferable to use the method (a) because of the simplicity in the manufacturing process.

重合反応時の撹拌機の回転数を調整することによって、あるいは、重合反応後又は乾燥の初期において凝集剤を系内に添加することによって吸水性樹脂粒子の粒子径を調整することができる。凝集剤を添加することにより、得られる吸水性樹脂粒子の粒子径を大きくすることができる。凝集剤としては、無機凝集剤を用いることができる。無機凝集剤(例えば粉末状無機凝集剤)としては、シリカ、ゼオライト、ベントナイト、酸化アルミニウム、タルク、二酸化チタン、カオリン、クレイ、ハイドロタルサイト等が挙げられる。凝集効果に優れる観点から、凝集剤としては、シリカ、酸化アルミニウム、タルク及びカオリンからなる群より選ばれる少なくとも一種が好ましい。 The particle size of the water-absorbent resin particles can be adjusted by adjusting the rotation speed of the stirrer during the polymerization reaction, or by adding a flocculant into the system after the polymerization reaction or in the early stage of drying. By adding a flocculant, the particle size of the obtained water-absorbent resin particles can be increased. As the flocculant, an inorganic flocculant can be used. Examples of the inorganic flocculant (for example, powdered inorganic flocculant) include silica, zeolite, bentonite, aluminum oxide, talc, titanium dioxide, kaolin, clay, hydrotalcite and the like. From the viewpoint of excellent aggregating effect, the aggregating agent is preferably at least one selected from the group consisting of silica, aluminum oxide, talc and kaolin.

逆相懸濁重合において、凝集剤を添加する方法としては、重合で用いられるものと同種の炭化水素分散媒又は水に凝集剤を予め分散させてから、撹拌下で、含水ゲル状重合体を含む炭化水素分散媒中に混合する方法が好ましい。 In the reverse phase suspension polymerization, as a method of adding the flocculant, the flocculant is previously dispersed in a hydrocarbon dispersion medium or water of the same type as that used in the polymerization, and then the hydrogel polymer is mixed under stirring. A method of mixing in a hydrocarbon dispersion medium containing the mixture is preferable.

凝集剤の添加量は、重合に使用するエチレン性不飽和単量体100質量部に対して、0.001〜1質量部であることが好ましく、0.005〜0.5質量部であることがより好ましく、0.01〜0.2質量部であることが更に好ましい。凝集剤の添加量が上述の範囲内であることによって、目的とする粒度分布を有する吸水性樹脂粒子が得られやすい。 The amount of the flocculant added is preferably 0.001 to 1 part by mass and 0.005 to 0.5 part by mass with respect to 100 parts by mass of the ethylenically unsaturated monomer used for the polymerization. Is more preferable, and 0.01 to 0.2 parts by mass is further preferable. When the amount of the flocculant added is within the above range, water-absorbent resin particles having the desired particle size distribution can be easily obtained.

吸水性樹脂粒子の製造においては、乾燥工程又はそれ以降のいずれかの工程において、架橋剤を用いて含水ゲル状重合体の表面部分の架橋(表面架橋)が行われることが好ましい。表面架橋を行うことで、吸水性樹脂粒子の吸水特性を制御しやすい。表面架橋は、含水ゲル状重合体が特定の含水率であるタイミングで行われることが好ましい。表面架橋の時期は、含水ゲル状重合体の含水率が5〜50質量%である時点が好ましく、10〜40質量%である時点がより好ましく、15〜35質量%である時点が更に好ましい。なお、含水ゲル状重合体の含水率(質量%)は、次の式で算出される。
含水率=[Ww/(Ww+Ws)]×100
Ww:全重合工程の重合前の単量体水溶液に含まれる水分量から、乾燥工程により系外部に排出された水分量を差し引いた量に、凝集剤、表面架橋剤等を混合する際に必要に応じて用いられる水分量を加えた含水ゲル状重合体の水分量。
Ws:含水ゲル状重合体を構成するエチレン性不飽和単量体、架橋剤、開始剤等の材料の仕込量から算出される固形分量。
In the production of the water-absorbent resin particles, it is preferable that the surface portion of the hydrogel polymer is crosslinked (surface crosslinked) using a crosslinking agent in the drying step or any subsequent step. By performing surface cross-linking, it is easy to control the water absorption characteristics of the water-absorbent resin particles. The surface cross-linking is preferably performed at a timing when the hydrogel polymer has a specific water content. The time of surface cross-linking is preferably when the water content of the hydrogel polymer is 5 to 50% by mass, more preferably 10 to 40% by mass, and even more preferably 15 to 35% by mass. The water content (mass%) of the hydrogel polymer is calculated by the following formula.
Moisture content = [Ww / (Ww + Ws)] x 100
Ww: Necessary when mixing a flocculant, a surface cross-linking agent, etc. to the amount obtained by subtracting the amount of water discharged to the outside of the system by the drying step from the amount of water contained in the monomer aqueous solution before polymerization in the entire polymerization step The amount of water in the hydrogel polymer to which the amount of water used is added.
Ws: A solid content calculated from the amount of materials such as an ethylenically unsaturated monomer, a cross-linking agent, and an initiator that constitute a hydrogel polymer.

表面架橋を行うための架橋剤(表面架橋剤)としては、例えば、反応性官能基を2個以上有する化合物を挙げることができる。架橋剤としては、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロロヒドリン、エピブロムヒドリン、α−メチルエピクロロヒドリン等のハロエポキシ化合物;2,4−トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物;3−メチル−3−オキセタンメタノール、3−エチル−3−オキセタンメタノール、3−ブチル−3−オキセタンメタノール、3−メチル−3−オキセタンエタノール、3−エチル−3−オキセタンエタノール、3−ブチル−3−オキセタンエタノール等のオキセタン化合物;1,2−エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート等のカーボネート化合物;ビス[N,N−ジ(β−ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物などが挙げられる。架橋剤は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。架橋剤としては、ポリグリシジル化合物が好ましく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、及び、ポリグリセロールポリグリシジルエーテルからなる群より選ばれる少なくとも一種がより好ましい。 Examples of the cross-linking agent (surface cross-linking agent) for performing surface cross-linking include compounds having two or more reactive functional groups. Examples of the cross-linking agent include polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) ethylene glycol diglycidyl ether, Polyglycidyl compounds such as (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, trimethylpropan triglycidyl ether (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether; epichlorohydrin, epi Haloepoxy compounds such as bromhydrin and α-methylepichlorohydrin; isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl-3-oxetane methanol, 3-ethyl-3-oxetane methanol, Oxetane compounds such as 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, 3-butyl-3-oxetane ethanol; oxazoline such as 1,2-ethylenebisoxazoline Compounds: Carbonate compounds such as ethylene carbonate; Hydroxyalkylamide compounds such as bis [N, N-di (β-hydroxyethyl)] adipamide may be mentioned. The cross-linking agent may be used alone or in combination of two or more. As the cross-linking agent, a polyglycidyl compound is preferable, and (poly) ethylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, and polyglycerol poly At least one selected from the group consisting of glycidyl ether is more preferable.

表面架橋剤の使用量は、得られる含水ゲル状重合体が適度に架橋されることにより好適な吸水特性を示すようにする観点から、通常、重合に使用するエチレン性不飽和単量体1モルに対して、0.00001〜0.02モルが好ましく、0.00005〜0.01モルがより好ましく、0.0001〜0.005モルが更に好ましい。表面架橋剤の添加量が上述の範囲内であることによって、無加圧DWや接触角が好適な吸水性樹脂粒子が得られ易い。 The amount of the surface cross-linking agent used is usually 1 mol of ethylenically unsaturated monomer used for polymerization from the viewpoint of appropriately cross-linking the obtained hydrogel polymer to exhibit suitable water absorption characteristics. On the other hand, 0.00001 to 0.02 mol is preferable, 0.00005 to 0.01 mol is more preferable, and 0.0001 to 0.005 mol is further preferable. When the amount of the surface cross-linking agent added is within the above range, it is easy to obtain water-absorbent resin particles having a suitable non-pressurized DW and contact angle.

表面架橋後において、公知の方法で水及び炭化水素分散媒を留去することにより、表面架橋された乾燥品である重合体粒子を得ることができる。 After surface cross-linking, water and a hydrocarbon dispersion medium are distilled off by a known method to obtain polymer particles which are surface-cross-linked dried products.

本実施形態に係る吸水性樹脂粒子は、重合体粒子のみから構成されていてもよいが、例えば、ゲル安定剤、金属キレート剤(エチレンジアミン4酢酸及びその塩、ジエチレントリアミン5酢酸及びその塩、例えばジエチレントリアミン5酢酸5ナトリウム等)、及び流動性向上剤(滑剤)等から選ばれる各種の追加の成分を更に含むことができる。追加の成分は、重合体粒子の内部、重合体粒子の表面上、又はそれらの両方に配置され得る。追加の成分としては、流動性向上剤(滑剤)が好ましく、そのなかでも無機粒子がより好ましい。無機粒子としては、例えば、非晶質シリカ等のシリカ粒子が挙げられる。 The water-absorbent resin particles according to the present embodiment may be composed of only polymer particles, and for example, a gel stabilizer and a metal chelating agent (ethylenediaminetetraacetic acid and a salt thereof, diethylenetriamine-5 acetic acid and a salt thereof, for example, diethylenetriamine). 5 Sodium acetate, etc.), and various additional components selected from fluidity improvers (lubricants) and the like can be further included. Additional components may be placed inside the polymer particles, on the surface of the polymer particles, or both. As the additional component, a fluidity improver (lubricant) is preferable, and inorganic particles are more preferable. Examples of the inorganic particles include silica particles such as amorphous silica.

吸水性樹脂粒子は、重合体粒子の表面上に配置された複数の無機粒子を含んでいてもよい。例えば、重合体粒子と無機粒子とを混合することにより、重合体粒子の表面上に無機粒子を配置することができる。この無機粒子は、非晶質シリカ等のシリカ粒子であってもよい。吸水性樹脂粒子が重合体粒子の表面上に配置された無機粒子を含む場合、重合体粒子の質量に対する無機粒子の割合は、0.2質量%以上、0.5質量%以上、1.0質量%以上、又は1.5質量%以上であってもよく、5.0質量%以下、又は3.5質量%以下であってもよい。ここでの無機粒子は、通常、重合体粒子の大きさと比較して微小な大きさを有する。例えば、無機粒子の平均粒子径が、0.1〜50μm、0.5〜30μm、又は1〜20μmであってもよい。ここでの平均粒子径は、動的光散乱法、又はレーザー回折・散乱法によって測定される値であることができる。無機粒子の添加量が上述の範囲内であることによって、吸水性樹脂粒子の吸水特性、なかでも無加圧DWや接触角が好適な吸水性樹脂粒子が得られ易い。 The water-absorbent resin particles may contain a plurality of inorganic particles arranged on the surface of the polymer particles. For example, by mixing the polymer particles and the inorganic particles, the inorganic particles can be arranged on the surface of the polymer particles. The inorganic particles may be silica particles such as amorphous silica. When the water-absorbent resin particles include inorganic particles arranged on the surface of the polymer particles, the ratio of the inorganic particles to the mass of the polymer particles is 0.2% by mass or more, 0.5% by mass or more, 1.0. It may be 5% by mass or more, 1.5% by mass or more, 5.0% by mass or less, or 3.5% by mass or less. The inorganic particles here usually have a minute size as compared with the size of the polymer particles. For example, the average particle size of the inorganic particles may be 0.1 to 50 μm, 0.5 to 30 μm, or 1 to 20 μm. The average particle size here can be a value measured by a dynamic light scattering method or a laser diffraction / scattering method. When the amount of the inorganic particles added is within the above range, it is easy to obtain water-absorbent resin particles having suitable water-absorbing characteristics, particularly non-pressurized DW and contact angle.

吸水性樹脂粒子を製造する方法の一実施形態は、得られた吸水性樹脂粒子の漏れ性を、上述の実施形態に係る方法により評価する工程を更に含んでもよい。例えば、拡散距離Dの測定値が、基準値(例えば14cm)よりも小さい吸水性樹脂粒子を選別してもよい。これにより、吸収性物品の液体漏れを抑制できる吸水性樹脂粒子をより安定して製造することができる。 One embodiment of the method for producing the water-absorbent resin particles may further include a step of evaluating the leakability of the obtained water-absorbent resin particles by the method according to the above-described embodiment. For example, the water-absorbent resin particles whose diffusion distance D measured value is smaller than the reference value (for example, 14 cm) may be selected. Thereby, the water-absorbent resin particles capable of suppressing the liquid leakage of the absorbent article can be produced more stably.

一実施形態に係る吸収体は、本実施形態に係る吸水性樹脂粒子を含有する。本実施形態に係る吸収体は、繊維状物を含有することが可能であり、例えば、吸水性樹脂粒子及び繊維状物を含む混合物である。吸収体の構成としては、例えば、吸水性樹脂粒子及び繊維状物が均一混合された構成であってよく、シート状又は層状に形成された繊維状物の間に吸水性樹脂粒子が挟まれた構成であってもよく、その他の構成であってもよい。 The absorber according to one embodiment contains the water-absorbent resin particles according to this embodiment. The absorber according to the present embodiment can contain a fibrous substance, for example, a mixture containing water-absorbent resin particles and the fibrous substance. The structure of the absorber may be, for example, a structure in which the water-absorbent resin particles and the fibrous material are uniformly mixed, and the water-absorbent resin particles are sandwiched between the fibrous material formed in a sheet or layer. It may be a configuration or another configuration.

繊維状物としては、微粉砕された木材パルプ;コットン;コットンリンター;レーヨン;セルロースアセテート等のセルロース系繊維;ポリアミド、ポリエステル、ポリオレフィン等の合成繊維;これらの繊維の混合物などが挙げられる。繊維状物は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。繊維状物としては、親水性繊維を用いることができる。 Examples of the fibrous material include finely pulverized wood pulp; cotton; cotton linter; rayon; cellulosic fibers such as cellulose acetate; synthetic fibers such as polyamide, polyester and polyolefin; and a mixture of these fibers. The fibrous material may be used alone or in combination of two or more. As the fibrous material, hydrophilic fibers can be used.

吸収体における吸水性樹脂粒子の質量割合は、吸水性樹脂粒子及び繊維状物の合計に対して、2〜100質量%、10〜80質量%又は20〜60質量%であってよい。 The mass ratio of the water-absorbent resin particles in the absorber may be 2 to 100% by mass, 10 to 80% by mass, or 20 to 60% by mass with respect to the total of the water-absorbent resin particles and the fibrous material.

吸収体の使用前及び使用中における形態保持性を高めるために、繊維状物に接着性バインダーを添加することによって繊維同士を接着させてもよい。接着性バインダーとしては、熱融着性合成繊維、ホットメルト接着剤、接着性エマルジョン等が挙げられる。接着性バインダーは、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。 In order to improve the shape retention before and during use of the absorber, the fibers may be adhered to each other by adding an adhesive binder to the fibrous material. Examples of the adhesive binder include heat-sealing synthetic fibers, hot melt adhesives, and adhesive emulsions. The adhesive binder may be used alone or in combination of two or more.

熱融着性合成繊維としては、例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体等の全融型バインダー;ポリプロピレンとポリエチレンとのサイドバイサイドや芯鞘構造からなる非全融型バインダーなどが挙げられる。上述の非全融型バインダーにおいては、ポリエチレン部分のみ熱融着することができる。 Examples of the heat-bondable synthetic fiber include a total fusion type binder such as polyethylene, polypropylene, and an ethylene-propylene copolymer; and a non-total fusion type binder having a side-by-side structure of polypropylene and polyethylene or a core-sheath structure. In the above-mentioned non-total fusion type binder, only the polyethylene portion can be heat-sealed.

ホットメルト接着剤としては、例えば、エチレン−酢酸ビニルコポリマー、スチレン−イソプレン−スチレンブロックコポリマー、スチレン−ブタジエン−スチレンブロックコポリマー、スチレン−エチレン−ブチレン−スチレンブロックコポリマー、スチレン−エチレン−プロピレン−スチレンブロックコポリマー、アモルファスポリプロピレン等のベースポリマーと、粘着付与剤、可塑剤、酸化防止剤等との混合物が挙げられる。 Examples of the hot melt adhesive include ethylene-vinyl acetate copolymer, styrene-isoprene-styrene block copolymer, styrene-butadiene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, and styrene-ethylene-propylene-styrene block copolymer. , A mixture of a base polymer such as amorphous polypropylene and a tackifier, a plasticizer, an antioxidant and the like.

接着性エマルジョンとしては、例えば、メチルメタクリレート、スチレン、アクリロニトリル、2ーエチルヘキシルアクリレート、ブチルアクリレート、ブタジエン、エチレン、及び、酢酸ビニルからなる群より選ばれる少なくとも一種の単量体の重合物が挙げられる。 Adhesive emulsions include, for example, polymers of at least one monomer selected from the group consisting of methyl methacrylate, styrene, acrylonitrile, 2-ethylhexyl acrylate, butyl acrylate, butadiene, ethylene, and vinyl acetate.

本実施形態に係る吸収体は、無機粉末(例えば非晶質シリカ)、消臭剤、抗菌剤、香料等を含有してもよい。吸水性樹脂粒子が無機粒子を含む場合、吸収体は吸水性樹脂粒子中の無機粒子とは別に無機粉末を含んでいてもよい。 The absorber according to the present embodiment may contain an inorganic powder (for example, amorphous silica), a deodorant, an antibacterial agent, a fragrance and the like. When the water-absorbent resin particles contain inorganic particles, the absorber may contain inorganic powder in addition to the inorganic particles in the water-absorbent resin particles.

本実施形態に係る吸収体の形状は、特に限定されず、例えばシート状であってよい。吸収体の厚さ(例えば、シート状の吸収体の厚さ)は、例えば0.1〜20mm、0.3〜15mmであってよい。 The shape of the absorber according to the present embodiment is not particularly limited, and may be, for example, a sheet shape. The thickness of the absorber (for example, the thickness of the sheet-shaped absorber) may be, for example, 0.1 to 20 mm or 0.3 to 15 mm.

本実施形態に係る吸収性物品は、本実施形態に係る吸収体を備える。本実施形態に係る吸収性物品は、吸収体を保形するコアラップ;吸液対象の液が浸入する側の最外部に配置される液体透過性シート;吸液対象の液が浸入する側とは反対側の最外部に配置される液体不透過性シート等が挙げられる。吸収性物品としては、おむつ(例えば紙おむつ)、トイレトレーニングパンツ、失禁パッド、衛生材料(生理用ナプキン、タンポン等)、汗取りパッド、ペットシート、簡易トイレ用部材、動物排泄物処理材などが挙げられる。 The absorbent article according to the present embodiment includes an absorbent body according to the present embodiment. The absorbent article according to the present embodiment is a core wrap that retains the shape of the absorber; a liquid permeable sheet that is arranged on the outermost side of the side where the liquid to be absorbed enters; and the side where the liquid to be absorbed enters. Examples thereof include a liquid permeable sheet arranged on the outermost side on the opposite side. Absorbent articles include diapers (for example, paper diapers), toilet training pants, incontinence pads, sanitary materials (sanitary napkins, tampons, etc.), sweat pads, pet sheets, simple toilet materials, animal excrement treatment materials, and the like. ..

図2は、吸収性物品の一例を示す断面図である。図2に示す吸収性物品100は、吸収体10と、コアラップ20a,20bと、液体透過性シート30と、液体不透過性シート40と、を備える。吸収性物品100において、液体不透過性シート40、コアラップ20b、吸収体10、コアラップ20a、及び、液体透過性シート30がこの順に積層している。図2において、部材間に間隙があるように図示されている部分があるが、当該間隙が存在することなく部材間が密着していてよい。 FIG. 2 is a cross-sectional view showing an example of an absorbent article. The absorbent article 100 shown in FIG. 2 includes an absorbent body 10, core wraps 20a and 20b, a liquid permeable sheet 30, and a liquid permeable sheet 40. In the absorbent article 100, the liquid permeable sheet 40, the core wrap 20b, the absorbent body 10, the core wrap 20a, and the liquid permeable sheet 30 are laminated in this order. In FIG. 2, there is a portion shown so that there is a gap between the members, but the members may be in close contact with each other without the gap.

吸収体10は、本実施形態に係る吸水性樹脂粒子10aと、繊維状物を含む繊維層10bと、を有する。吸水性樹脂粒子10aは、繊維層10b内に分散している。 The absorber 10 has a water-absorbent resin particle 10a according to the present embodiment and a fiber layer 10b containing a fibrous material. The water-absorbent resin particles 10a are dispersed in the fiber layer 10b.

コアラップ20aは、吸収体10に接した状態で吸収体10の一方面側(図2中、吸収体10の上側)に配置されている。コアラップ20bは、吸収体10に接した状態で吸収体10の他方面側(図2中、吸収体10の下側)に配置されている。吸収体10は、コアラップ20aとコアラップ20bとの間に配置されている。コアラップ20a,20bとしては、ティッシュ、不織布等が挙げられる。コアラップ20a及びコアラップ20bは、例えば、吸収体10と同等の大きさの主面を有している。 The core wrap 20a is arranged on one side of the absorber 10 (upper side of the absorber 10 in FIG. 2) in contact with the absorber 10. The core wrap 20b is arranged on the other side of the absorber 10 (lower side of the absorber 10 in FIG. 2) in contact with the absorber 10. The absorber 10 is arranged between the core wrap 20a and the core wrap 20b. Examples of the core wraps 20a and 20b include tissues, non-woven fabrics and the like. The core wrap 20a and the core wrap 20b have, for example, a main surface having the same size as the absorber 10.

液体透過性シート30は、吸収対象の液が浸入する側の最外部に配置されている。液体透過性シート30は、コアラップ20aに接した状態でコアラップ20a上に配置されている。液体透過性シート30としては、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド等の合成樹脂からなる不織布、多孔質シートなどが挙げられる。液体不透過性シート40は、吸収性物品100において液体透過性シート30とは反対側の最外部に配置されている。液体不透過性シート40は、コアラップ20bに接した状態でコアラップ20bの下側に配置されている。液体不透過性シート40としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の合成樹脂からなるシート、これらの合成樹脂と不織布との複合材料からなるシートなどが挙げられる。液体透過性シート30及び液体不透過性シート40は、例えば、吸収体10の主面よりも広い主面を有しており、液体透過性シート30及び液体不透過性シート40の外縁部は、吸収体10及びコアラップ20a,20bの周囲に延在している。 The liquid permeable sheet 30 is arranged on the outermost side on the side where the liquid to be absorbed enters. The liquid permeable sheet 30 is arranged on the core wrap 20a in contact with the core wrap 20a. Examples of the liquid permeable sheet 30 include non-woven fabrics made of synthetic resins such as polyethylene, polypropylene, polyester and polyamide, and porous sheets. The liquid permeable sheet 40 is arranged on the outermost side of the absorbent article 100 on the opposite side of the liquid permeable sheet 30. The liquid permeable sheet 40 is arranged under the core wrap 20b in contact with the core wrap 20b. Examples of the liquid impermeable sheet 40 include a sheet made of a synthetic resin such as polyethylene, polypropylene, and polyvinyl chloride, and a sheet made of a composite material of these synthetic resins and a non-woven fabric. The liquid permeable sheet 30 and the liquid permeable sheet 40 have, for example, a main surface wider than the main surface of the absorber 10, and the outer edges of the liquid permeable sheet 30 and the liquid permeable sheet 40 are It extends around the absorber 10 and the core wraps 20a, 20b.

吸収体10、コアラップ20a,20b、液体透過性シート30、及び、液体不透過性シート40の大小関係は、特に限定されず、吸収性物品の用途等に応じて適宜調整される。また、コアラップ20a,20bを用いて吸収体10を保形する方法は、特に限定されず、図2に示すように複数のコアラップにより吸収体を包んでよく、1枚のコアラップにより吸収体を包んでもよい。 The magnitude relationship between the absorbent body 10, the core wraps 20a and 20b, the liquid permeable sheet 30, and the liquid permeable sheet 40 is not particularly limited, and is appropriately adjusted according to the use of the absorbent article and the like. Further, the method of retaining the shape of the absorber 10 by using the core wraps 20a and 20b is not particularly limited, and as shown in FIG. 2, the absorber may be wrapped by a plurality of core wraps, and the absorber is wrapped by one core wrap. It may be.

本実施形態によれば、本実施形態に係る吸水性樹脂粒子、吸収体又は吸収性物品を用いた吸液方法を提供することができる。本実施形態に係る吸液方法は、本実施形態に係る吸水性樹脂粒子、吸収体又は吸収性物品に吸液対象の液を接触させる工程を備える。 According to the present embodiment, it is possible to provide a liquid absorbing method using the water-absorbent resin particles, the absorbent body or the absorbent article according to the present embodiment. The liquid absorbing method according to the present embodiment includes a step of bringing the liquid to be absorbed into contact with the water-absorbent resin particles, the absorber or the absorbent article according to the present embodiment.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

<吸水性樹脂粒子の製造>
[実施例1]
還流冷却器、滴下ロート、窒素ガス導入管、並びに、攪拌機として、翼径5cmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径11cm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn−ヘプタン293gをとり、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.736gを添加し、攪拌しつつ80℃まで昇温して分散剤を溶解した後、50℃まで冷却した。
<Manufacturing of water-absorbent resin particles>
[Example 1]
A round-bottomed cylindrical separable flask with an inner diameter of 11 cm and a volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade having four inclined paddle blades with a blade diameter of 5 cm in two stages as a stirrer. Got ready. To this flask, take 293 g of n-heptane as a hydrocarbon dispersion medium, add 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (Mitsui Chemicals Co., Ltd., High Wax 1105A) as a polymer-based dispersant, and stir. The temperature was raised to 80 ° C. to dissolve the dispersant, and then cooled to 50 ° C.

一方、内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(1.03モル)をとり、外部より冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gを滴下して75モル%の中和を行った後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HECAW−15F)、水溶性ラジカル重合開始剤として2,2’−アゾビス(2−アミジノプロパン)2塩酸塩0.092g(0.339ミリモル)、および過硫酸カリウム0.018g(0.068ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)を加えて溶解し、第1段目の水性液を調製した。 On the other hand, 92.0 g (1.03 mol) of an 80.5 mass% aqueous acrylic acid solution as a water-soluble ethylenically unsaturated monomer was placed in a beaker having an internal volume of 300 mL, and cooled from the outside by 20.9 mass. After 147.7 g of a% sodium hydroxide aqueous solution was added dropwise to neutralize 75 mol%, 0.092 g of hydroxylethyl cellulose (Sumitomo Seika Co., Ltd., HECAW-15F) was used as a thickener, and water-soluble radical polymerization was started. 0.092 g (0.339 mmol) of 2,2'-azobis (2-amidinopropane) dihydrochloride as an agent, 0.018 g (0.068 mmol) of potassium persulfate, and ethylene glycol diglycidyl ether as an internal cross-linking agent. 0.010 g (0.057 mmol) was added and dissolved to prepare a first-stage aqueous solution.

そして、上記にて調製した水性液をセパラブルフラスコに添加して、10分間攪拌した後、n−ヘプタン6.62gに界面活性剤としてHLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS−370)0.736gを加熱溶解した界面活性剤溶液を、さらに添加して、撹拌機の回転数を550rpmとして攪拌しながら系内を窒素で十分に置換した後、フラスコを70℃の水浴に浸漬して昇温し、重合を60分間行うことにより、第1段目の重合スラリー液を得た。 Then, the aqueous solution prepared above was added to the separable flask, and after stirring for 10 minutes, sucrose stearic acid ester of HLB3 as a surfactant in 6.62 g of n-heptane (Mitsubishi Chemical Foods Co., Ltd., Ryo). A surfactant solution in which 0.736 g of Tosugar ester S-370) was heated and dissolved was further added, and the inside of the system was sufficiently replaced with nitrogen while stirring at a stirring speed of 550 rpm. The first-stage polymerized slurry solution was obtained by immersing in a water bath at ° C. to raise the temperature and performing polymerization for 60 minutes.

一方、別の内容積500mLのビーカーに水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液128.8g(1.43モル)をとり、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して75モル%の中和を行った後、水溶性ラジカル重合開始剤として2,2’−アゾビス(2−アミジノプロパン)2塩酸塩0.129g(0.475ミリモル)、および過硫酸カリウム0.026g(0.095ミリモル)を加えて溶解し、第2段目の水性液を調製した。 On the other hand, 128.8 g (1.43 mol) of an 80.5 mass% aqueous acrylic acid solution was taken as a water-soluble ethylenically unsaturated monomer in another beaker having an internal volume of 500 mL, and 27 mass% was cooled from the outside. After 159.0 g of an aqueous sodium hydroxide solution was added dropwise to neutralize 75 mol%, 0.129 g (0) of 2,2'-azobis (2-amidinopropane) dihydrochloride salt as a water-soluble radical polymerization initiator. .475 mmol) and 0.026 g (0.095 mmol) of potassium persulfate were added and dissolved to prepare a second-stage aqueous solution.

撹拌機の回転数を1000rpmとして撹拌しながら、上記のセパラブルフラスコ系内を25℃に冷却した後、上記第2段目の水性液の全量を、第1段目の重合スラリー液に添加して、系内を窒素で30分間置換した後、再度、フラスコを70℃の水浴に浸漬して昇温し、重合反応を60分間行った。その後、重合後架橋のための架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液0.580g(0.067ミリモル)を添加し、含水ゲル状重合体を得た。 After cooling the inside of the separable flask system to 25 ° C. while stirring at a stirring speed of 1000 rpm, the entire amount of the aqueous solution of the second stage is added to the polymerized slurry solution of the first stage. After replacing the inside of the system with nitrogen for 30 minutes, the flask was again immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization reaction was carried out for 60 minutes. Then, 0.580 g (0.067 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added as a cross-linking agent for post-polymerization cross-linking to obtain a hydrogel polymer.

第2段目の重合後の含水ゲル状重合体に、45質量%のジエチレントリアミン5酢酸5ナトリウム水溶液0.265gを攪拌下で添加した。その後、125℃に設定した油浴にフラスコを浸漬し、n−ヘプタンと水との共沸蒸留により、n−ヘプタンを還流しながら、238.5gの水を系外へ抜き出した。その後、フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(0.507ミリモル)を添加し、83℃で2時間保持した。 To the hydrogel polymer after the second stage polymerization, 0.265 g of a 45% by mass diethylenetriamine-5 sodium acetate aqueous solution was added with stirring. Then, the flask was immersed in an oil bath set at 125 ° C., and 238.5 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.42 g (0.507 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the flask was kept at 83 ° C. for 2 hours.

その後、n−ヘプタンを125℃にて蒸発させて乾燥させることによって、重合体粒子(乾燥品)を得た。この重合体粒子を目開き850μmの篩に通過させ、重合体粒子の質量に対して0.2質量%の非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP−S)を重合体粒子と混合し、非晶質シリカを含む吸水性樹脂粒子を232.1g得た。該吸水性樹脂粒子の中位粒子径は396μmであった。 Then, n-heptane was evaporated at 125 ° C. and dried to obtain polymer particles (dried product). The polymer particles are passed through a sieve having an opening of 850 μm, and 0.2% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) with respect to the mass of the polymer particles is mixed with the polymer particles. , 232.1 g of water-absorbent resin particles containing amorphous silica were obtained. The medium particle size of the water-absorbent resin particles was 396 μm.

[実施例2]
重合体粒子(乾燥品)に対して、2.0質量%の非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP−S)を混合したこと以外は、実施例1と同様にして、吸水性樹脂粒子236.3gを得た。該吸水性樹脂粒子の中位粒子径は393μmであった。
[Example 2]
A water-absorbent resin in the same manner as in Example 1 except that 2.0% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) was mixed with the polymer particles (dried product). 236.3 g of particles were obtained. The medium particle size of the water-absorbent resin particles was 393 μm.

[実施例3]
第1段目の水性液の調製において、水溶性ラジカル重合剤として、2,2’−アゾビス(2−アミジノプロパン)2塩酸塩を用いずに、過硫酸カリウム0.0736g(0.272ミリモル)を用いたこと、第2段目の水性液の調製において、水溶性ラジカル重合剤として、2,2’−アゾビス(2−アミジノプロパン)2塩酸塩を用いずに、過硫酸カリウム0.090g(0.334ミリモル)を用いたこと、第2段目の重合後の含水ゲル状重合体において、共沸蒸留により247.9gの水を系外へ抜き出したこと、及び重合体粒子の質量に対して0.5質量%の非晶質シリカを重合体粒子と混合したこと以外は、実施例1と同様にして、吸水性樹脂粒子231.0gを得た。該吸水性樹脂粒子の中位粒子径は355μmであった。
[Example 3]
In the preparation of the first-stage aqueous solution, 0.0736 g (0.272 mmol) of potassium persulfate was used without using 2,2'-azobis (2-amidinopropane) dihydrochloride as the water-soluble radical polymerizer. 0.090 g of potassium persulfate (2) potassium persulfate (2) without using 2,2'-azobis (2-amidinopropane) dihydrochloride as the water-soluble radical polymerizer in the preparation of the aqueous solution in the second stage. 0.334 mmol) was used, 247.9 g of water was extracted from the system by co-boiling distillation in the hydrogel polymer after the second stage polymerization, and the mass of the polymer particles was increased. 231.0 g of water-absorbent resin particles were obtained in the same manner as in Example 1 except that 0.5% by mass of amorphous silica was mixed with the polymer particles. The medium particle size of the water-absorbent resin particles was 355 μm.

[実施例4]
第1段目の水性液の調製において、水溶性ラジカル重合剤として、2,2’−アゾビス(2−アミジノプロパン)2塩酸塩を用いずに、過硫酸カリウム0.0736g(0.272ミリモル)を用いたこと、第2段目の水性液の調製において、水溶性ラジカル重合剤として、2,2’−アゾビス(2−アミジノプロパン)2塩酸塩を用いずに、過硫酸カリウム0.090g(0.334ミリモル)を用いたこと、第2段目の重合後の含水ゲル状重合体において、共沸蒸留により239.7gの水を系外へ抜き出したこと、及び、重合体粒子に対して、0.5質量%の非晶質シリカを混合したこと以外は、実施例1と同様にして、吸水性樹脂粒子229.2gを得た。該吸水性樹脂粒子の中位粒子径は377μmであった。
[Example 4]
In the preparation of the aqueous solution in the first stage, 0.0736 g (0.272 mmol) of potassium persulfate was used without using 2,2'-azobis (2-amidinopropane) dihydrochloride as the water-soluble radical polymerizer. 0.090 g of potassium persulfate (2) potassium persulfate (2) without using 2,2'-azobis (2-amidinopropane) dihydrochloride as the water-soluble radical polymerizer in the preparation of the aqueous solution in the second stage. 0.334 mmol) was used, and 239.7 g of water was extracted from the system by co-boiling distillation in the hydrogel polymer after the second stage polymerization, and with respect to the polymer particles. , 229.2 g of water-absorbent resin particles were obtained in the same manner as in Example 1 except that 0.5% by mass of amorphous silica was mixed. The medium particle size of the water-absorbent resin particles was 377 μm.

[比較例1]
第1段目の水性液の調製において、水溶性ラジカル重合剤として、2,2’−アゾビス(2−アミジノプロパン)2塩酸塩を用いずに、過硫酸カリウム0.0736g(0.272ミリモル)を用いたこと、第2段目の水性液の調製において、水溶性ラジカル重合剤として、2,2’−アゾビス(2−アミジノプロパン)2塩酸塩を用いずに、過硫酸カリウム0.090g(0.334ミリモル)を用いたこと、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.067ミリモル)を用いたこと、重合後架橋のための架橋剤を添加しなかったこと、第2段目の重合後の含水ゲル状重合体において、共沸蒸留により256.1gの水を系外へ抜き出したこと、重合体粒子の質量に対して0.1質量%の非晶質シリカを重合体粒子と混合したこと以外は、実施例1と同様にして、吸水性樹脂粒子230.8gを得た。該吸水性樹脂粒子の中位粒子径は349μmであった。
[Comparative Example 1]
In the preparation of the aqueous solution in the first stage, 0.0736 g (0.272 mmol) of potassium persulfate was used without using 2,2'-azobis (2-amidinopropane) dihydrochloride as the water-soluble radical polymerizer. In the preparation of the aqueous solution in the second stage, 0.090 g of potassium persulfate (2,2'-azobis (2-amidinopropane) dihydrochloride was not used as the water-soluble radical polymerization agent. 0.334 mmol) was used, 0.0116 g (0.067 mmol) of ethylene glycol diglycidyl ether was used as the internal cross-linking agent, and no cross-linking agent for post-polymerization cross-linking was added. In the hydrogel polymer after the stage polymerization, 256.1 g of water was extracted out of the system by co-boiling distillation, and 0.1% by mass of amorphous silica was weighted with respect to the mass of the polymer particles. 230.8 g of water-absorbent resin particles were obtained in the same manner as in Example 1 except that they were mixed with the coalesced particles. The medium particle size of the water-absorbent resin particles was 349 μm.

[比較例2]
第1段目の水性液の調製において、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0046g(0.026ミリモル)用いたこと、第2段目の水性液の調製において、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.067ミリモル)を用いたこと、重合後架橋剤を添加しなかったこと、第2段目の重合後の含水ゲル状重合体において、共沸蒸留により219.2gの水を系外へ抜き出したこと、表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液6.62g(0.761ミリモル)を用いたこと以外は、実施例1と同様にして、吸水性樹脂粒子を229.6g得た。該吸水性樹脂粒子の中位粒子径は356μmであった。
[Comparative Example 2]
In the preparation of the first-stage aqueous solution, 0.0046 g (0.026 mmol) of ethylene glycol diglycidyl ether was used as the internal cross-linking agent, and in the preparation of the second-stage aqueous solution, ethylene glycol was used as the internal cross-linking agent. Using 0.0116 g (0.067 mmol) of diglycidyl ether, no cross-linking agent was added after polymerization, and 219.2 g by co-boiling distillation in the hydrogel polymer after polymerization in the second stage. Water absorption in the same manner as in Example 1 except that the water was extracted from the system and 6.62 g (0.761 mmol) of a 2 mass% ethylene glycol diglycidyl ether aqueous solution was used as the surface cross-linking agent. 229.6 g of resin particles were obtained. The medium particle size of the water-absorbent resin particles was 356 μm.

[比較例3]
第1段目の水性液の調製において、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0046g(0.026ミリモル)用いたこと、第2段目の水性液の調製において、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.067ミリモル)、重合後架橋剤を添加しなかったこと、及び第2段目の重合後の含水ゲル状重合体において、共沸蒸留により234.2gの水を系外へ抜き出したこと以外は、実施例1と同様にして、吸水性樹脂粒子229.6gを得た。該吸水性樹脂粒子の中位粒子径は355μmであった。
[Comparative Example 3]
Ethylene glycol diglycidyl ether 0.0046 g (0.026 mmol) was used as the internal cross-linking agent in the preparation of the first-stage aqueous liquid, and ethylene glycol was used as the internal cross-linking agent in the preparation of the second-stage aqueous liquid. 0.0116 g (0.067 mmol) of diglycidyl ether, no cross-linking agent added after polymerization, and 234.2 g of water by co-boiling distillation in the hydrogel polymer after the second stage polymerization. 229.6 g of water-absorbent resin particles were obtained in the same manner as in Example 1 except that the particles were extracted from the system. The medium particle size of the water-absorbent resin particles was 355 μm.

<生理食塩水保水量の測定>
吸水性樹脂粒子2.0gを量り取った綿袋(メンブロード60番、横100mm×縦200mm)を500mL容のビーカー内に設置した。吸水性樹脂粒子の入った綿袋中に0.9質量%塩化ナトリウム水溶液(生理食塩水)500gをママコができないように一度に注ぎ込み、綿袋の上部を輪ゴムで縛り、30分静置させることで吸水性樹脂粒子を膨潤させた。30分経過後の綿袋を、遠心力が167Gとなるよう設定した脱水機(株式会社コクサン製、品番:H−122)を用いて1分間脱水し、脱水後の膨潤ゲルを含んだ綿袋の質量Wa(g)を測定した。吸水性樹脂粒子を添加せずに同様の操作を行い、綿袋の湿潤時の空質量Wb(g)を測定し、以下の式から生理食塩水保水量を算出した。
生理食塩水保水量(g/g)=[Wa−Wb]/2.0
<Measurement of saline retention>
A cotton bag (Membroad No. 60, width 100 mm x length 200 mm) weighing 2.0 g of water-absorbent resin particles was placed in a 500 mL beaker. Pour 500 g of 0.9 mass% sodium chloride aqueous solution (physiological saline) into a cotton bag containing water-absorbent resin particles at a time so that mamaco cannot be formed, tie the upper part of the cotton bag with a rubber ring, and let it stand for 30 minutes. The water-absorbent resin particles were swollen with. After 30 minutes, the cotton bag is dehydrated for 1 minute using a dehydrator (manufactured by Kokusan Co., Ltd., product number: H-122) set to have a centrifugal force of 167 G, and the cotton bag containing the swelling gel after dehydration. The mass Wa (g) of was measured. The same operation was performed without adding the water-absorbent resin particles, the empty mass Wb (g) of the cotton bag when wet was measured, and the amount of physiological saline water retained was calculated from the following formula.
Saline water retention (g / g) = [Wa-Wb] /2.0

<吸水性樹脂粒子の荷重下の吸水量>
吸水性樹脂粒子の荷重下(加圧下)の生理食塩水の吸水量(室温、25℃±2℃)を、図3に示す測定装置Yを用いて測定した。測定装置Yは、ビュレット部61、導管62、測定台63、及び、測定台63上に置かれた測定部64から構成される。ビュレット部61は、鉛直方向に伸びるビュレット61aと、ビュレット61aの上端に配置されたゴム栓61bと、ビュレット61aの下端に配置されたコック61cと、コック61cの近傍において一端がビュレット61a内に伸びる空気導入管61dと、空気導入管61dの他端側に配置されたコック61eとを有している。導管62は、ビュレット部61と測定台63との間に取り付けられている。導管62の内径は6mmである。測定台63の中央部には、直径2mmの穴があいており、導管62が連結されている。測定部64は、円筒64a(アクリル樹脂(プレキシグラス)製)と、円筒64aの底部に接着されたナイロンメッシュ64bと、重り64cとを有している。円筒64aの内径は20mmである。ナイロンメッシュ64bの目開きは75μm(200メッシュ)である。そして、測定時にはナイロンメッシュ64b上に測定対象の吸水性樹脂粒子65が均一に撒布される。重り64cの直径は19mmであり、重り64cの質量は120gである。重り64cは、吸水性樹脂粒子65上に置かれ、吸水性樹脂粒子65に対して4.14kPaの荷重を加えることができる。
<Amount of water absorption under load of water-absorbent resin particles>
The water absorption amount (room temperature, 25 ° C. ± 2 ° C.) of the physiological saline under the load (pressurization) of the water-absorbent resin particles was measured using the measuring device Y shown in FIG. The measuring device Y is composed of a burette unit 61, a conduit 62, a measuring table 63, and a measuring unit 64 placed on the measuring table 63. The burette portion 61 has a burette 61a extending in the vertical direction, a rubber stopper 61b arranged at the upper end of the burette 61a, a cock 61c arranged at the lower end of the burette 61a, and one end extending into the burette 61a in the vicinity of the cock 61c. It has an air introduction pipe 61d and a cock 61e arranged on the other end side of the air introduction pipe 61d. The conduit 62 is attached between the burette portion 61 and the measuring table 63. The inner diameter of the conduit 62 is 6 mm. A hole having a diameter of 2 mm is formed in the central portion of the measuring table 63, and the conduit 62 is connected to the hole. The measuring unit 64 has a cylinder 64a (made of acrylic resin (plexiglass)), a nylon mesh 64b adhered to the bottom of the cylinder 64a, and a weight 64c. The inner diameter of the cylinder 64a is 20 mm. The opening of the nylon mesh 64b is 75 μm (200 mesh). Then, at the time of measurement, the water-absorbent resin particles 65 to be measured are uniformly sprinkled on the nylon mesh 64b. The diameter of the weight 64c is 19 mm, and the mass of the weight 64c is 120 g. The weight 64c is placed on the water-absorbent resin particles 65, and a load of 4.14 kPa can be applied to the water-absorbent resin particles 65.

測定装置Yの円筒64aの中に0.100gの吸水性樹脂粒子65を入れた後、重り64cを載せて測定を開始した。吸水性樹脂粒子65が吸水した生理食塩水と同容積の空気が、空気導入管より、速やかにかつスムーズにビュレット61aの内部に供給されるため、ビュレット61aの内部の生理食塩水の水位の減量が、吸水性樹脂粒子65が吸水した生理食塩水量となる。ビュレット61aの目盛は、上から下方向に0mLから0.5mL刻みで刻印されており、生理食塩水の水位として、吸水開始前のビュレット61aの目盛りVaと、吸水開始から60分後のビュレット61aの目盛りVbとを読み取り、下記式より荷重下の吸水量を算出した。結果を表1に示す。
荷重下吸水量[mL/g]=(Vb−Va)/0.1
After 0.100 g of the water-absorbent resin particles 65 were placed in the cylinder 64a of the measuring device Y, the weight 64c was placed and the measurement was started. Since the same volume of air as the physiological saline absorbed by the water-absorbent resin particles 65 is quickly and smoothly supplied to the inside of the burette 61a from the air introduction pipe, the water level of the physiological saline inside the burette 61a is reduced. However, the amount of physiological saline absorbed by the water-absorbent resin particles 65 is obtained. The scale of the burette 61a is engraved from the top to the bottom in increments of 0 mL to 0.5 mL, and the scale Va of the burette 61a before the start of water absorption and the burette 61a 60 minutes after the start of water absorption are used as the water level of the physiological saline. The scale Vb of the above was read, and the amount of water absorption under load was calculated from the following formula. The results are shown in Table 1.
Water absorption under load [mL / g] = (Vb-Va) /0.1

<中位粒子径>
吸水性樹脂粒子50gを中位粒子径測定用に用いた。
<Medium particle size>
50 g of water-absorbent resin particles were used for measuring the medium particle size.

JIS標準篩を上から、目開き850μmの篩、目開き500μmの篩、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、及び受け皿の順に組み合わせた。 From the top, JIS standard sieves have a mesh size of 850 μm, a mesh size of 500 μm, a mesh size of 425 μm, a mesh size of 300 μm, a mesh size of 250 μm, a mesh size of 180 μm, a mesh size of 150 μm, and a sieve. Combined in the order of the saucer.

組み合わせた最上の篩に、吸水性樹脂粒子を入れ、ロータップ式振とう器を用いて20分間振とうさせて分級した。分級後、各篩上に残った吸水性樹脂粒子の質量を全量に対する質量百分率として算出し粒度分布を求めた。この粒度分布に関して粒子径の大きい方から順に篩上を積算することにより、篩の目開きと篩上に残った吸水性樹脂粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径とした。 The water-absorbent resin particles were placed in the best combined sieve and shaken for 20 minutes using a low-tap shaker to classify. After classification, the mass of the water-absorbent resin particles remaining on each sieve was calculated as a mass percentage with respect to the total amount, and the particle size distribution was obtained. The relationship between the mesh size of the sieve and the integrated value of the mass percentage of the water-absorbent resin particles remaining on the sieve was plotted on a logarithmic probability paper by integrating the particle size distribution on the sieve in order from the one having the largest particle size. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass was defined as the medium particle size.

<無加圧DW(DemandWettability)の30秒値の測定>
吸水性樹脂の粒子の無加圧DWは、図1に示す測定装置を用いて測定した。測定は1種類の吸水性樹脂粒子に関して5回実施し、最低値と最高値とを除いた3点の測定値の平均値を求めた。
当該測定装置は、ビュレット部1、導管5、測定台13、ナイロンメッシュシート15、架台11、及びクランプ3を有する。ビュレット部1は、目盛が記載されたビュレット管21と、ビュレット管21の上部の開口を密栓するゴム栓23と、ビュレット管21の下部の先端に連結されたコック22と、ビュレット管21の下部に連結された空気導入管25及びコック24とを有する。ビュレット部1はクランプ3で固定されている。平板状の測定台13は、その中央部に形成された直径2mmの貫通孔13aを有しており、高さが可変の架台11によって支持されている。測定台13の貫通孔13aとビュレット部1のコック22とが導管5によって連結されている。導管5の内径は6mmである。
<Measurement of 30-second value of unpressurized DW (DemandWetability)>
The non-pressurized DW of the water-absorbent resin particles was measured using the measuring device shown in FIG. The measurement was carried out 5 times for one type of water-absorbent resin particles, and the average value of the measured values at three points excluding the minimum value and the maximum value was obtained.
The measuring device has a burette portion 1, a conduit 5, a measuring table 13, a nylon mesh sheet 15, a frame 11, and a clamp 3. The burette portion 1 includes a burette tube 21 on which a scale is described, a rubber stopper 23 for sealing the upper opening of the burette tube 21, a cock 22 connected to the tip of the lower portion of the burette tube 21, and a lower portion of the burette tube 21. It has an air introduction pipe 25 and a cock 24 connected to the burette. The burette portion 1 is fixed by a clamp 3. The flat plate-shaped measuring table 13 has a through hole 13a having a diameter of 2 mm formed in the central portion thereof, and is supported by a frame 11 having a variable height. The through hole 13a of the measuring table 13 and the cock 22 of the burette portion 1 are connected by a conduit 5. The inner diameter of the conduit 5 is 6 mm.

測定は温度25℃、湿度60±10%の環境下で行なわれた。まずビュレット部1のコック22とコック24を閉め、25℃に調節された0.9質量%食塩水50をビュレット管21上部の開口からビュレット管21に入れた。食塩水の濃度0.9質量%は、食塩水の質量を基準とする濃度である。ゴム栓23でビュレット管21の開口の密栓した後、コック22及びコック24を開けた。気泡が入らないよう導管5内部を0.9質量%食塩水50で満たした。貫通孔13a内に到達した0.9質量%食塩水の水面の高さが、測定台13の上面の高さと同じになるように、測定台13の高さを調整した。調整後、ビュレット管21内の0.9質量%食塩水50の水面の高さをビュレット管21の目盛で読み取り、その位置をゼロ点(0秒時点の読み値)とした。 The measurement was performed in an environment of a temperature of 25 ° C. and a humidity of 60 ± 10%. First, the cock 22 and the cock 24 of the burette portion 1 were closed, and 0.9 mass% saline solution 50 adjusted to 25 ° C. was put into the burette tube 21 through the opening at the upper part of the burette tube 21. The concentration of 0.9% by mass of the saline solution is a concentration based on the mass of the saline solution. After sealing the opening of the burette tube 21 with the rubber stopper 23, the cock 22 and the cock 24 were opened. The inside of the conduit 5 was filled with 0.9% by mass saline solution 50 to prevent bubbles from entering. The height of the measuring table 13 was adjusted so that the height of the water surface of the 0.9 mass% saline solution that reached the inside of the through hole 13a was the same as the height of the upper surface of the measuring table 13. After the adjustment, the height of the water surface of the 0.9 mass% saline solution 50 in the burette tube 21 was read by the scale of the burette tube 21, and the position was set as the zero point (reading value at 0 seconds).

測定台13上の貫通孔13の近傍にて、ナイロンメッシュシート15(100mm×100mm、250メッシュ、厚さ約50μm)を敷き、その中央部に、内径30mm、高さ20mmのシリンダーを置いた。このシリンダーに、1.00gの吸水性樹脂粒子10aを均一に散布した。その後、シリンダーを注意深く取り除き、ナイロンメッシュシート15の中央部に吸水性樹脂粒子10aが円状に分散されたサンプルを得た。次いで、吸水性樹脂粒子10aが載置されたナイロンメッシュシート15を、その中心が貫通孔13aの位置になるように、吸水性樹脂粒子10aが散逸しない程度にすばやく移動させて、測定を開始した。空気導入管25からビュレット管21内に気泡が最初に導入された時点を吸水開始(0秒)とした。 A nylon mesh sheet 15 (100 mm × 100 mm, 250 mesh, thickness about 50 μm) was laid in the vicinity of the through hole 13 on the measuring table 13, and a cylinder having an inner diameter of 30 mm and a height of 20 mm was placed in the center thereof. 1.00 g of water-absorbent resin particles 10a were uniformly sprayed on this cylinder. Then, the cylinder was carefully removed to obtain a sample in which the water-absorbent resin particles 10a were dispersed in a circle in the central portion of the nylon mesh sheet 15. Next, the nylon mesh sheet 15 on which the water-absorbent resin particles 10a were placed was quickly moved so that the center thereof was at the position of the through hole 13a so that the water-absorbent resin particles 10a did not dissipate, and the measurement was started. .. The time when the air bubbles were first introduced from the air introduction pipe 25 into the burette pipe 21 was defined as the start of water absorption (0 seconds).

ビュレット管21内の0.9質量%食塩水50の減少量(すなわち、吸水性樹脂粒子10aが吸水した0.9質量%食塩水の量)を0.1mL単位で順次読み取り、吸水性樹脂粒子10aの吸水開始から起算して30秒後の0.9質量%食塩水50の減量分Wc(g)を読み取った。Wcから、下記式により無加圧DWの30秒値を求めた。無加圧DWは、吸水性樹脂粒子10aの1.00g当たりの吸水量である。
無加圧DWの30秒値(mL/g)=Wc/1.00
The amount of decrease in the 0.9% by mass saline solution 50 in the bullet tube 21 (that is, the amount of the 0.9% by mass saline solution absorbed by the water-absorbent resin particles 10a) is sequentially read in units of 0.1 mL, and the water-absorbent resin particles are read. The weight loss Wc (g) of 0.9 mass% saline solution 50 was read 30 seconds after the start of water absorption of 10a. From Wc, the 30-second value of non-pressurized DW was calculated by the following formula. The non-pressurized DW is the amount of water absorbed per 1.00 g of the water-absorbent resin particles 10a.
30-second value of non-pressurized DW (mL / g) = Wc / 1.00

<接触角の測定>
接触角の測定は温度25℃、湿度60±10%の環境下で行なった。ガラス製プレパラート(25mm×75mm)に両面テープ(ニチバン製内スタック:10mm×75mm)を添付し、粘着面が露出したものを用意した。まず、前記プレパラートに添付された両面テープ上に吸水性樹脂粒子2.0gを均一に散布した。その後、プレパラートを垂直に立てて、余剰の吸水性樹脂粒子を除き、測定用サンプルを調製した。
<Measurement of contact angle>
The contact angle was measured in an environment with a temperature of 25 ° C. and a humidity of 60 ± 10%. A double-sided tape (Nichiban inner stack: 10 mm x 75 mm) was attached to a glass preparation (25 mm x 75 mm), and a tape with an exposed adhesive surface was prepared. First, 2.0 g of water-absorbent resin particles were uniformly sprayed on the double-sided tape attached to the preparation. Then, the preparation was erected vertically to remove excess water-absorbent resin particles, and a sample for measurement was prepared.

接触角計(協和界面科学製:Face s−150)は、上下方向に可動な試料載置用ステージと、その上部に設置されたシリンジ部と、ステージを水平に観察できるスコープ部からなっている。接触角の測定は、このような接触角計を用いて以下の手順で行った。
まず、前記シリンジ(容量1ml)の鉛直下のステージ部に測定用サンプルを載置した。接触角計のスコープを用いて、25質量%食塩水の直径3mmの球状液滴をシリンジ先端部に調製した。当該球状液滴の直径は±0.1mmまで許容した。ステージを上方に動かし、調製した液滴をサンプルの表面が平滑な場所に、接触させた(その時点をt=0(秒)とする)。t=30(秒)の時点での前記食塩水液滴と両面テープ表面との接触面における左右端点と頂点を結ぶ直線の両面テープ表面に対する角度を、接触角計のレンズで読み取り、その角度をθ/2とした。これを2倍することによって接触角θを求めた。測定は5回繰り返し、平均した値を、その吸水性樹脂粒子の接触角とした。なお、角度の読み取り方法は、JIS R 3257(1999)「基盤ガラス表面のぬれ性試験方法」に準拠している。
The contact angle meter (Kyowa Interface Science Co., Ltd .: Face s-150) consists of a sample mounting stage that can move up and down, a syringe section installed above it, and a scope section that allows horizontal observation of the stage. .. The contact angle was measured by the following procedure using such a contact angle meter.
First, a measurement sample was placed on the stage portion vertically below the syringe (capacity: 1 ml). Using the scope of the contact angle meter, a spherical droplet having a diameter of 3 mm in 25 mass% saline was prepared at the tip of the syringe. The diameter of the spherical droplet was allowed up to ± 0.1 mm. The stage was moved upwards and the prepared droplets were brought into contact with a place where the surface of the sample was smooth (at that point, t = 0 (seconds)). The angle of the straight line connecting the left and right end points and the apex of the contact surface between the saline solution droplet and the double-sided tape surface at t = 30 (seconds) with respect to the double-sided tape surface is read by a contact angle meter lens, and the angle is measured. It was set to θ / 2. The contact angle θ was obtained by doubling this. The measurement was repeated 5 times, and the average value was taken as the contact angle of the water-absorbent resin particles. The angle reading method conforms to JIS R 3257 (1999) "Wetting property test method for the surface of the base glass".

<傾斜漏れ試験>
(人工尿の調製)
イオン交換水に、下記の通りに無機塩が存在するように配合して溶解させたものに、さらに少量の青色1号を配合して人工尿(試験液)を調製した。下記の濃度は、人工尿の全質量を基準とする濃度である。
人工尿組成
NaCl:0.780質量%
CaCl:0.022質量%
MgSO:0.038質量%
青色一号:0.002質量%
<Inclination leak test>
(Preparation of artificial urine)
An artificial urine (test solution) was prepared by adding a small amount of Blue No. 1 to a solution prepared by mixing and dissolving the inorganic salt in ion-exchanged water so as to be present as described below. The following concentrations are based on the total mass of artificial urine.
Artificial urine composition NaCl: 0.780% by mass
CaCl 2 : 0.022% by mass
0054 4 : 0.038% by mass
Blue No. 1: 0.002% by mass

(漏れ性の評価)
以下のi)、ii)、iii)、iv)及びv)の手順により、吸水性樹脂粒子の漏れ性を評価した。
i)長さ15cm、幅5cmの短冊状の粘着テープ(ダイヤテックス株式会社製、パイオランテープ)を粘着面が上になるよう実験台上に置き、その粘着面上に、吸水性樹脂粒子3.0gを均一に散布した。散布された吸水性樹脂粒子の上部に、ステンレス製ローラー(質量4.0kg、径10.5cm、幅6.0cm)を載せ、ローラーを、粘着テープの長手方向における両端の間で3回往復させた。これにより、吸水性樹脂粒子からなる吸水層を粘着テープの粘着面上に形成した。
ii)粘着テープを垂直に立てて、余剰の吸水性樹脂粒子を吸水層から除いた。再度、吸水層に前記ローラーを載せ、粘着テープの長手方向における両端の間で3回往復させた。
iii)温度25±2℃の室内において、長さ30cm、幅55cmの長方形の平坦な主面を有するアクリル樹脂板を、その幅方向が水平面に平行で、その主面と水平面とが30度をなすように固定した。固定されたアクリル板の主面に、吸水層が形成された粘着テープを、吸水層が露出し、その長手方向がアクリル樹脂板の幅方向に対して垂直になる向きで貼り付けた。
iV)吸水層の上端から約1cmの位置で表面から約1cmの高さから、液温25℃の試験液0.25mLを、マイクロピペット(エムエス機器社製ピペットマン・ネオP1000N)を用いて、1秒以内に全て注入した。
v)試験液の注入開始から30秒後に、吸水層に注入された試験液の移動距離の最大値を読み取り、拡散距離Dとして記録した。なお、拡散距離Dは、主面上において、滴下点(注入点)と最長到達点とを、アクリル樹脂板の短辺水平面に対して垂直方向の直線で結んだ距離である。なお、拡散距離Dが14cm以上の場合は液体漏れが発生していた。
(Evaluation of leakability)
The leakability of the water-absorbent resin particles was evaluated by the following procedures i), ii), iii), iv) and v).
i) A strip-shaped adhesive tape (manufactured by Diatex Co., Ltd., Piolan tape) having a length of 15 cm and a width of 5 cm is placed on a laboratory table with the adhesive side facing up, and the water-absorbent resin particles 3 are placed on the adhesive side. .0 g was evenly sprayed. A stainless steel roller (mass 4.0 kg, diameter 10.5 cm, width 6.0 cm) is placed on top of the sprayed water-absorbent resin particles, and the roller is reciprocated three times between both ends in the longitudinal direction of the adhesive tape. It was. As a result, a water-absorbing layer made of water-absorbent resin particles was formed on the adhesive surface of the adhesive tape.
ii) The adhesive tape was erected vertically to remove excess water-absorbent resin particles from the water-absorbent layer. The roller was placed on the water absorption layer again, and the adhesive tape was reciprocated three times between both ends in the longitudinal direction.
iii) In a room with a temperature of 25 ± 2 ° C., an acrylic resin plate having a rectangular flat main surface with a length of 30 cm and a width of 55 cm is arranged in a width direction parallel to a horizontal plane, and the main surface and the horizontal plane are 30 degrees. I fixed it to make it. An adhesive tape having a water absorbing layer formed on the main surface of the fixed acrylic plate was attached in a direction in which the water absorbing layer was exposed and the longitudinal direction thereof was perpendicular to the width direction of the acrylic resin plate.
iV) 0.25 mL of the test solution at a liquid temperature of 25 ° C. using a micropipette (Pipetteman Neo P1000N manufactured by MS Equipment Co., Ltd.) from a height of about 1 cm from the surface at a position about 1 cm from the upper end of the water absorption layer, 1 All were injected within seconds.
v) Thirty seconds after the start of injection of the test solution, the maximum value of the moving distance of the test solution injected into the water absorption layer was read and recorded as the diffusion distance D. The diffusion distance D is a distance on the main surface connecting the dropping point (injection point) and the longest reaching point with a straight line in the direction perpendicular to the short side horizontal plane of the acrylic resin plate. When the diffusion distance D was 14 cm or more, liquid leakage occurred.

Figure 0006775049
Figure 0006775049

表1の結果から、実施例にて得られた吸水性樹脂粒子によれば、比較例にて得られた吸水性樹脂粒子に比べ、液体漏れの抑制が可能となることが示された。 From the results in Table 1, it was shown that the water-absorbent resin particles obtained in the examples can suppress liquid leakage as compared with the water-absorbent resin particles obtained in the comparative example.

1…ビュレット部、3…クランプ、5…導管、10…吸収体、10a,65…吸水性樹脂粒子、10b…繊維層、11…架台、13…測定台、13a…貫通孔、15…ナイロンメッシュシート、20a,20b…コアラップ、21…ビュレット管、22…コック、23…ゴム栓、24…コック、25…空気導入管、30…液体透過性シート、40…液体不透過性シート、50…0.9質量%食塩水、61…ビュレット部、61a…ビュレット、61b…ゴム栓、61c…コック、61d…空気導入管、61e…コック、62…導管、63…測定台、64…測定部、64a…円筒、64b…ナイロンメッシュ、64c…重り、100…吸収性物品。

1 ... Burette, 3 ... Clamp, 5 ... Conduit, 10 ... Absorber, 10a, 65 ... Water-absorbent resin particles, 10b ... Fiber layer, 11 ... Mount, 13 ... Measuring table, 13a ... Through hole, 15 ... Nylon mesh Sheet, 20a, 20b ... Core wrap, 21 ... Burette tube, 22 ... Cock, 23 ... Rubber stopper, 24 ... Cock, 25 ... Air introduction tube, 30 ... Liquid permeable sheet, 40 ... Liquid permeable sheet, 50 ... 0 .9 mass% saline, 61 ... burette, 61a ... burette, 61b ... rubber stopper, 61c ... cock, 61d ... air introduction pipe, 61e ... cock, 62 ... conduit, 63 ... measuring table, 64 ... measuring unit, 64a ... Cylindrical, 64b ... Nylon mesh, 64c ... Weight, 100 ... Absorbent article.

Claims (3)

(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも1種の化合物を含むエチレン性不飽和単量体に由来する単量体単位を有する架橋重合体を含む重合体粒子と、該重合体粒子の表面上に配置されたシリカ粒子とを含み、
(メタ)アクリル酸及びその塩の割合が前記架橋重合体中の単量体単位全量に対して70〜100モル%である、吸水性樹脂粒子であって、
無加圧DWの30秒値が、1.0mL/g以上であり、
以下のi)及びii)の順で行われる試験で測定される接触角が20度以上80度以下であり、
生理食塩水の保水量が35〜60g/gである、吸水性樹脂粒子。
i)25℃において、吸水性樹脂粒子からなる層の表面上に、25質量%食塩水の直径3.0±0.1mmに相当する球状液滴を滴下して、当該吸水性樹脂粒子と前記液滴とを接触させる。
ii)前記液滴が前記表面に接触してから、30秒後の時点の前記液滴の接触角を測定する。
Polymer particles containing a crosslinked polymer having a monomer unit derived from an ethylenically unsaturated monomer containing at least one compound selected from the group consisting of (meth) acrylic acid and a salt thereof, and the polymer. Including silica particles placed on the surface of the particles ,
The water-absorbent resin particles in which the ratio of (meth) acrylic acid and a salt thereof is 70 to 100 mol% with respect to the total amount of the monomer units in the crosslinked polymer.
The 30-second value of unpressurized DW is 1.0 mL / g or more.
The contact angle measured in the tests conducted in the order of i) and ii) below is 20 degrees or more and 80 degrees or less.
Water-absorbent resin particles having a water retention capacity of 35 to 60 g / g.
i) At 25 ° C., spherical droplets corresponding to a diameter of 3.0 ± 0.1 mm of 25% by mass saline solution are dropped onto the surface of the layer composed of the water-absorbent resin particles, and the water-absorbent resin particles and the above. Contact with droplets.
ii) The contact angle of the droplet is measured 30 seconds after the droplet comes into contact with the surface.
前記接触角が、20度以上70度以下である、請求項1に記載の吸水性樹脂粒子。 The water-absorbent resin particle according to claim 1, wherein the contact angle is 20 degrees or more and 70 degrees or less. 前記無加圧DWの30秒値が、3.0mL/g以上である、請求項1又は2に記載の吸水性樹脂粒子。The water-absorbent resin particle according to claim 1 or 2, wherein the 30-second value of the non-pressurized DW is 3.0 mL / g or more.
JP2019055267A 2018-12-12 2019-03-22 Water-absorbent resin particles Active JP6775049B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217019044A KR20210101245A (en) 2018-12-12 2019-12-12 Absorbent resin particles and absorbent articles
CN201980081679.2A CN113166436B (en) 2018-12-12 2019-12-12 Water-absorbent resin particles and absorbent article
PCT/JP2019/048817 WO2020122214A1 (en) 2018-12-12 2019-12-12 Water absorbent resin particles and absorbent article
EP19895810.0A EP3896119A4 (en) 2018-12-12 2019-12-12 Water absorbent resin particles and absorbent article
US17/311,598 US20220015958A1 (en) 2018-12-12 2019-12-12 Water absorbent resin particles and absorbent article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018232850 2018-12-12
JP2018232850 2018-12-12

Publications (2)

Publication Number Publication Date
JP2020093065A JP2020093065A (en) 2020-06-18
JP6775049B2 true JP6775049B2 (en) 2020-10-28

Family

ID=71085742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019055267A Active JP6775049B2 (en) 2018-12-12 2019-03-22 Water-absorbent resin particles

Country Status (1)

Country Link
JP (1) JP6775049B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1691895A (en) * 1994-02-17 1995-09-04 Procter & Gamble Company, The Porous absorbent materials having modified surface characteristics and methods for making the same
AU1691795A (en) * 1994-02-17 1995-09-04 Procter & Gamble Company, The Absorbent materials having modified surface characteristics and methods for making the same
JP4880144B2 (en) * 2001-09-19 2012-02-22 住友精化株式会社 Absorber and absorbent article using the same
DE602004005830T2 (en) * 2003-02-10 2008-01-10 Nippon Shokubai Co. Ltd. Particulate water-absorbing material
JP4422509B2 (en) * 2003-03-10 2010-02-24 株式会社日本触媒 Water-absorbent resin composition, use thereof and production method thereof
CN101448896A (en) * 2006-08-31 2009-06-03 株式会社日本触媒 Water absorbing agent and production method thereof
WO2018062539A1 (en) * 2016-09-30 2018-04-05 株式会社日本触媒 Water-absorbing resin composition
JP2018127508A (en) * 2017-02-06 2018-08-16 Sdpグローバル株式会社 Absorptive resin particle and method for producing the same
JPWO2018147317A1 (en) * 2017-02-10 2019-12-26 Sdpグローバル株式会社 Water-absorbing resin particles and absorber and absorbent article using the same
WO2018181565A1 (en) * 2017-03-31 2018-10-04 住友精化株式会社 Water-absorbent resin particle

Also Published As

Publication number Publication date
JP2020093065A (en) 2020-06-18

Similar Documents

Publication Publication Date Title
CN111902117B (en) Absorbent article
JP6681493B1 (en) Method for evaluating liquid leakage of water absorbent resin particles, and water absorbent resin particles
WO2020122209A1 (en) Water absorbent resin particles
EP3896097A1 (en) Water-absorptive resin particle, absorption body, and absorptive article
EP3896120B1 (en) Water-absorbing resin particles, absorbent, and absorbent article
JP2021058771A (en) Water absorptive resin particles, absorbent article, method for manufacturing water absorptive resin particles, and method for increasing absorption amount of absorber under pressurization
WO2020184387A1 (en) Water absorbing resin particles and method for producing same, absorbent body, and absorbent article
WO2020184395A1 (en) Water absorbing resin particles and method for producing same, absorbent body. absorbent article, and method for adjusting permeation speed
WO2020184398A1 (en) Water absorbing resin particles and method for producing same, absorbent body, and absorbent article
EP3896095A1 (en) Water-absorbent resin particles, absorbent body, and absorbent article
JP2020121089A (en) Water absorption resin particle
WO2020218168A1 (en) Water-absorbent resin particles, absorbent body, and absorbent article
WO2020218160A1 (en) Water-absorbing resin particles, absorbent, and absorbent article
WO2020184393A1 (en) Water absorbent resin particles, absorber and absorbent article
WO2021049450A1 (en) Water absorbent resin particles
WO2020184391A1 (en) Absorbent body, absorbent article and method for adjusting permeation speed
WO2020184392A1 (en) Water-absorbing resin particles and method for producing same
JP6775049B2 (en) Water-absorbent resin particles
JP6780047B2 (en) Water-absorbent resin particles, absorbers and absorbent articles
WO2020122214A1 (en) Water absorbent resin particles and absorbent article
WO2020122215A1 (en) Water-absorbent resin particles, water-absorbent article, and method for manufacturing same
JP6752319B2 (en) Water-absorbent resin particles
JP6710302B2 (en) Water absorbent resin particles
JP6775048B2 (en) Method for evaluating liquid leakage of water-absorbent resin particles and water-absorbent resin particles, and method for producing water-absorbent resin particles
JP6775051B2 (en) Absorbent article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201005

R150 Certificate of patent or registration of utility model

Ref document number: 6775049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250