JP6774770B2 - Temperature measuring device for rotating body, temperature measuring method for rotating body, turbine and rotating body - Google Patents

Temperature measuring device for rotating body, temperature measuring method for rotating body, turbine and rotating body Download PDF

Info

Publication number
JP6774770B2
JP6774770B2 JP2016066600A JP2016066600A JP6774770B2 JP 6774770 B2 JP6774770 B2 JP 6774770B2 JP 2016066600 A JP2016066600 A JP 2016066600A JP 2016066600 A JP2016066600 A JP 2016066600A JP 6774770 B2 JP6774770 B2 JP 6774770B2
Authority
JP
Japan
Prior art keywords
rotating body
measuring device
temperature
temperature measuring
flange portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016066600A
Other languages
Japanese (ja)
Other versions
JP2017181205A (en
Inventor
克実 ▲高▼木
克実 ▲高▼木
大西 智之
智之 大西
光 黒崎
光 黒崎
友人 永井
友人 永井
裕之 遠藤
裕之 遠藤
朝春 松尾
朝春 松尾
伸晃 吉武
伸晃 吉武
英冶 齊藤
英冶 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Mitsubishi Power Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Mitsubishi Power Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2016066600A priority Critical patent/JP6774770B2/en
Publication of JP2017181205A publication Critical patent/JP2017181205A/en
Application granted granted Critical
Publication of JP6774770B2 publication Critical patent/JP6774770B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、回転体の温度計測装置及びこの温度計測装置を備えた回転体,タービン、並びにこの温度計測装置を用いた回転体の温度計測方法に関するものである。 The present invention relates to a temperature measuring device for a rotating body, a rotating body provided with the temperature measuring device, a turbine, and a method for measuring the temperature of the rotating body using the temperature measuring device.

回転機器のロータ等の回転体の温度状態を計測することが必要な場合がある。例えば、蒸気タービンのロータは高温下に晒されるため、運転時のロータがどのような温度状態にあるかは、ロータの材料選定などロータの開発において重要な情報である。そこで、ロータの温度を計測することが要求される。この場合、ロータの外面のみならずロータ内部の温度情報も要求されることがある。 It may be necessary to measure the temperature state of a rotating body such as a rotor of a rotating device. For example, since the rotor of a steam turbine is exposed to a high temperature, what kind of temperature state the rotor is in during operation is important information in rotor development such as selection of rotor material. Therefore, it is required to measure the temperature of the rotor. In this case, temperature information not only on the outer surface of the rotor but also on the inside of the rotor may be required.

温度を確実に計測するためには、接触式温度センサを用いることが有効である。そこで、ロータ等の回転体の内部、即ち、回転体の中心部分に貫通形成された穴(軸穴)の内面に温度センサの検知部を接触させれば、回転体内部の温度を確実に計測することができる。ただし、回転体の軸穴の所定の軸方向位置に温度センサを配置し、温度センサの検知部を穴内面に接触させた状態に保持する必要がある。 In order to measure the temperature reliably, it is effective to use a contact type temperature sensor. Therefore, if the detection unit of the temperature sensor is brought into contact with the inside of a rotating body such as a rotor, that is, the inner surface of a hole (shaft hole) formed through the central portion of the rotating body, the temperature inside the rotating body can be reliably measured. can do. However, it is necessary to arrange the temperature sensor at a predetermined axial position of the shaft hole of the rotating body and keep the detection unit of the temperature sensor in contact with the inner surface of the hole.

これに関し、特許文献1には、非回転の管又は穴(非回転体の穴)の円壁面温度を測定する装置が開示されている。この装置は、管状の支持筒と、この支持筒を径方向に貫通する穴に摺動可能に装備したピストンと、ピストンの外側端面に取り付けられた温度センサと、支持筒を軸方向に貫通する操作軸と、操作軸の操作でピストンを押圧するバネとを有し、支持筒を非回転体の穴に挿入し、操作軸を操作することで、バネがピストンを押圧して温度センサの検出部を穴の内面に圧着させるようになっている。 In this regard, Patent Document 1 discloses an apparatus for measuring the circular wall temperature of a non-rotating tube or a hole (a hole of a non-rotating body). This device axially penetrates a tubular support cylinder, a piston slidably mounted in a hole that penetrates the support cylinder in the radial direction, a temperature sensor attached to the outer end face of the piston, and the support cylinder. It has an operating shaft and a spring that presses the piston by operating the operating shaft. By inserting the support cylinder into the hole of the non-rotating body and operating the operating shaft, the spring presses the piston and detects the temperature sensor. The part is crimped to the inner surface of the hole.

実公昭58−36990号公報Jikken Sho 58-36990

しかし、特許文献1の装置のように、操作軸を操作することで、バネがピストンを押圧して温度センサの検出部を穴の内面に圧着させるように構成すると、温度センサの検出部を穴の内面に圧着させることはできるものの、温度センサの検出部を支持筒の外周から出没させるために、ピストンやバネを含んだ機構が必要であり、構造が複雑になる。 However, as in the device of Patent Document 1, when the operation shaft is operated so that the spring presses the piston and crimps the detection portion of the temperature sensor to the inner surface of the hole, the detection portion of the temperature sensor is formed into a hole. Although it can be crimped to the inner surface of the temperature sensor, a mechanism including a piston and a spring is required to allow the temperature sensor detection portion to appear and disappear from the outer periphery of the support cylinder, which complicates the structure.

また、穴の内径が小さいほど、操作軸の径も小さくする必要があり、操作軸の剛性確保が困難になる。さらに、穴の奥深くに温度センサを挿入する場合、温度センサを出没操作する際の、操作軸の操作入力箇所と温度センサの出没作動箇所との距離が長くなるので、操作軸の剛性確保が一層困難になる。 Further, the smaller the inner diameter of the hole, the smaller the diameter of the operating shaft needs to be, which makes it difficult to secure the rigidity of the operating shaft. Furthermore, when the temperature sensor is inserted deep into the hole, the distance between the operation input point of the operation shaft and the infestation operation point of the temperature sensor becomes longer when operating the temperature sensor, so that the rigidity of the operation shaft is further ensured. It will be difficult.

さらに、温度センサを挿入するセンサ支持部材(例えば、上記管状の支持筒)を挿入する穴の内周面に例えば溶接段差等の段差がある場合、センサ支持部材を穴内部に差し込もうとすると、センサ支持部材の外周が段差に引っ掛かって、センサを穴の内部の所定位置まで到達させることが困難になる。 Further, if there is a step such as a welding step on the inner peripheral surface of the hole into which the sensor support member for inserting the temperature sensor (for example, the tubular support cylinder) is inserted, the sensor support member is to be inserted into the hole. , The outer circumference of the sensor support member is caught in the step, and it becomes difficult to reach the sensor at a predetermined position inside the hole.

このセンサ保持部材の外周を小さくし、センサ保持部材の外周と穴の内周面とのクリアランスを大きく取れば、センサ保持部材の外周を段差に引っ掛かり難くすることができるが、例えば特許文献1の装置の場合、操作軸の外径がさらに規制されることとなり、操作軸の剛性確保がより一層困難になる。 If the outer circumference of the sensor holding member is made smaller and the clearance between the outer circumference of the sensor holding member and the inner peripheral surface of the hole is increased, the outer circumference of the sensor holding member can be made less likely to be caught in the step. For example, Patent Document 1 In the case of an apparatus, the outer diameter of the operating shaft is further regulated, which makes it even more difficult to secure the rigidity of the operating shaft.

また、特許文献1の装置は、非回転体の穴に温度センサを挿入して温度を計測するものであるが、回転体の軸穴に温度センサを挿入して温度を計測する場合、温度センサや温度センサの検出部を穴の内面に圧着させる機構が回転影響を受けて、望みの圧接状態が得られないおそれがある。 Further, the device of Patent Document 1 measures the temperature by inserting a temperature sensor into the hole of the non-rotating body, but when the temperature sensor is inserted into the shaft hole of the rotating body to measure the temperature, the temperature sensor is used. And the mechanism that crimps the detection part of the temperature sensor to the inner surface of the hole is affected by rotation, and the desired pressure contact state may not be obtained.

本発明は、このような課題に鑑み創案されたもので、タービンのロータ等の回転体の軸穴内の所定位置に温度センサを確実に挿入し設置して、温度センサの検出部を軸穴内面に確実に圧接させて回転体の回転時における内部温度を計測することができるようにした、回転体の温度計測装置及び回転体,タービン、並びに回転体の温度計測方法を提供することを目的としている。 The present invention has been devised in view of such a problem, and the temperature sensor is surely inserted and installed at a predetermined position in the shaft hole of a rotating body such as a rotor of a turbine, and the detection unit of the temperature sensor is mounted on the inner surface of the shaft hole. An object of the present invention is to provide a temperature measuring device for a rotating body, a rotating body, a turbine, and a method for measuring the temperature of the rotating body, which can measure the internal temperature of the rotating body at the time of rotation by surely pressing the rotating body. There is.

(1)上記の目的を達成するために、本発明の回転体の温度計測装置は、回転体の回転中心に沿った軸穴の内面の温度を計測する温度計測装置であって、前記軸穴内に挿入され設置される筒状部材と、前記筒状部材に設置されるフランジ部と、前記筒状部材の内部から前記フランジ部の外周部にわたって配線され、前記配線の先端に前記フランジ部の外周部から周外方向に突出し前記内面に対して接触する検出部を有する温度センサと、を備え、前記フランジ部の最大外径は前記軸穴の内径よりも小さく設定され、前記軸穴内に挿入され設置された状態での装置重心が、前記回転体の回転中心に対して前記検出部が配置される側に偏心していることを特徴としている。
なお、温度センサには、例えば熱電対を適用することができる。
また、前記フランジ部の最大外径は前記軸穴の内径よりも挿入クリアランス分以上小さく設定されることが好ましい。この場合の挿入クリアランスは、フランジ部が軸穴内に支障なく進入していけるように軸穴の内面の状態に応じて設定される。
(1) In order to achieve the above object, the temperature measuring device for a rotating body of the present invention is a temperature measuring device for measuring the temperature of the inner surface of a shaft hole along the center of rotation of the rotating body, and is inside the shaft hole. A tubular member inserted into the tubular member, a flange portion installed on the tubular member, and wiring from the inside of the tubular member to the outer peripheral portion of the flange portion, and the outer periphery of the flange portion at the tip of the wiring. A temperature sensor having a detection portion that protrudes in the circumferential direction from the portion and comes into contact with the inner surface is provided, and the maximum outer diameter of the flange portion is set to be smaller than the inner diameter of the shaft hole and is inserted into the shaft hole. The device center of gravity in the installed state is eccentric to the side where the detection unit is arranged with respect to the rotation center of the rotating body.
A thermocouple can be applied to the temperature sensor, for example.
Further, it is preferable that the maximum outer diameter of the flange portion is set smaller than the inner diameter of the shaft hole by an insertion clearance or more. The insertion clearance in this case is set according to the state of the inner surface of the shaft hole so that the flange portion can enter the shaft hole without any trouble.

(2)前記軸穴内に挿入され設置された状態での前記フランジ部の重心が、前記回転体の回転中心に対して前記検出部が配置される側に偏心していることが好ましい。 (2) It is preferable that the center of gravity of the flange portion in the state of being inserted and installed in the shaft hole is eccentric to the side where the detection portion is arranged with respect to the rotation center of the rotating body.

(3)前記フランジ部の外周部に、前記フランジ部の重心を前記偏心状態にする切欠部が形成されていることが好ましい。 (3) It is preferable that a notch portion that brings the center of gravity of the flange portion into the eccentric state is formed on the outer peripheral portion of the flange portion.

(4)前記フランジ部の前記筒状部材の軸心に対して前記検出部が配置される側の第1半部に、外周が径方向外方に突出した第1突出部が形成されると共に、前記第1半部と反対側の第2半部に、外周が径方向外方に突出した第2突出部が形成され、前記第1突出部と前記第2突出部との間の外周部に前記切欠部が形成され、前記第1突出部は前記第2突出部よりも周方向に広い大きさに形成されていることが好ましい。 (4) A first protruding portion whose outer circumference protrudes outward in the radial direction is formed in the first half portion of the flange portion on the side where the detection portion is arranged with respect to the axial center of the tubular member. A second protruding portion whose outer circumference protrudes outward in the radial direction is formed in the second half portion opposite to the first half portion, and the outer peripheral portion between the first protruding portion and the second protruding portion is formed. It is preferable that the cutout portion is formed in the above portion, and the first protruding portion is formed to have a larger size in the circumferential direction than the second protruding portion.

(5)前記筒状部材の軸心と前記検出部の検出点を含む平面上に前記装置重心が配置されていることが好ましい。 (5) It is preferable that the center of gravity of the device is arranged on a plane including the axis of the tubular member and the detection point of the detection unit.

(6)前記フランジ部の外周は滑らかな曲面状に形成されていることが好ましい。 (6) It is preferable that the outer periphery of the flange portion is formed in a smooth curved surface shape.

(7)前記フランジ部に、前記温度センサを配線する配線用穴部が加工され、前記温度センサと前記配線用穴部との間に断熱材が介装されていることが好ましい。 (7) It is preferable that the flange portion is machined with a wiring hole for wiring the temperature sensor, and a heat insulating material is interposed between the temperature sensor and the wiring hole.

(8)前記検出部は、前記内面に対して線接触可能な線状に形成されていることが好ましい。 (8) It is preferable that the detection unit is formed in a linear shape capable of linear contact with the inner surface.

(9)前記フランジ部の外周部と、前記ロータの軸穴との間に、前記フランジ部の前記ロータの軸穴に対する周方向位置を案内するガイド機構が備えられていることが好ましい。 (9) It is preferable that a guide mechanism for guiding the circumferential position of the flange portion with respect to the shaft hole of the rotor is provided between the outer peripheral portion of the flange portion and the shaft hole of the rotor.

(10)前記内面の温度検出を要する検出対象箇所は、前記回転体の軸方向に分布して複数配置され、前記筒状部材には、前記検出対象箇所に対応した位置に複数の前記フランジ部が固設されていることが好ましい。 (10) A plurality of detection target locations that require temperature detection on the inner surface are distributed in the axial direction of the rotating body, and a plurality of the flange portions are arranged on the tubular member at positions corresponding to the detection target locations. Is preferably fixed.

(11)複数の前記フランジ部の各重心位置は、前記筒状部材の軸心に対して同一方向に偏心していることが好ましい。 (11) It is preferable that the positions of the centers of gravity of the plurality of flange portions are eccentric in the same direction with respect to the axial centers of the tubular members.

(12)前記筒状部材は、一端において前記回転体に接合されていることが好ましい。 (12) It is preferable that the tubular member is joined to the rotating body at one end.

(13)本発明の回転体は、軸穴を有する回転体であって、(1)〜(12)の何れか1項に記載の回転体の温度計測装置を装着されていることを特徴としている。 (13) The rotating body of the present invention is a rotating body having a shaft hole, and is characterized in that the temperature measuring device for the rotating body according to any one of (1) to (12) is attached. There is.

(14)本発明のタービンは、(13)に記載の回転体をロータとして備えていることを特徴としている。 (14) The turbine of the present invention is characterized by including the rotating body according to (13) as a rotor.

(15)本発明の回転体の温度計測方法は、(1)〜(12)の何れか1項に記載の回転体の温度計測装置を用いて、前記回転体の軸穴の内面の温度を計測する回転体の温度計測方法であって、前記軸穴内に前記筒状部材を挿入し、前記温度センサの前記検出部を前記内面の温度検出を要する検出対象箇所に対向するように配置して、前記筒状部材を前記回転体に設置する準備工程と、前記回転体を回転させて前記回転体と一体に前記筒状部材を回転させ、この回転に伴って前記フランジ部に前記偏心する側に向けて発生する遠心力によって、前記検出部を前記内面に当接させて前記内面の温度を計測する計測工程と、を有することを特徴としている。 (15) In the method for measuring the temperature of a rotating body of the present invention, the temperature of the inner surface of the shaft hole of the rotating body is measured by using the temperature measuring device for the rotating body according to any one of (1) to (12). A method for measuring the temperature of a rotating body to be measured, in which the tubular member is inserted into the shaft hole, and the detection unit of the temperature sensor is arranged so as to face a detection target portion of the inner surface that requires temperature detection. In the preparatory step of installing the tubular member on the rotating body, the rotating body is rotated to rotate the tubular member integrally with the rotating body, and the side eccentric to the flange portion with this rotation. It is characterized by having a measuring step of measuring the temperature of the inner surface by bringing the detection unit into contact with the inner surface by the centrifugal force generated toward the inner surface.

本発明によれば、回転体の軸穴内に、筒状部材を挿入しフランジ部に装備された温度センサの検出部を、軸穴の内の所要位置に配置する。この際、フランジ部の最大外径は軸穴の内径よりも小さく設定されているので、筒状部材の軸穴内への挿入を支障なく行うことができる。 According to the present invention, a tubular member is inserted into the shaft hole of the rotating body, and the detection unit of the temperature sensor mounted on the flange portion is arranged at a required position in the shaft hole. At this time, since the maximum outer diameter of the flange portion is set to be smaller than the inner diameter of the shaft hole, the tubular member can be inserted into the shaft hole without any trouble.

そして、回転体を回転させながら、温度センサによって回転体の軸穴の内面の温度を検出する。回転体を回転させると回転体と一体に筒状部材も回転し、この回転に伴って筒状部材にはその偏心する方向に向かって遠心力が発生し、フランジ部が偏心する方向に変位する。偏心する方向の側には検出部が配置されているので、フランジ部の変位に伴って検出部が回転体の軸穴の内面に圧接し、軸穴の内面の温度を確実に測定することができる。 Then, while rotating the rotating body, the temperature of the inner surface of the shaft hole of the rotating body is detected by the temperature sensor. When the rotating body is rotated, the tubular member also rotates integrally with the rotating body, and along with this rotation, centrifugal force is generated in the tubular member in the eccentric direction, and the flange portion is displaced in the eccentric direction. .. Since the detection unit is arranged on the side in the eccentric direction, the detection unit presses against the inner surface of the shaft hole of the rotating body as the flange portion is displaced, and the temperature of the inner surface of the shaft hole can be reliably measured. it can.

本発明の第1実施形態に係る回転体の温度計測装置を示す図であり、(a)はそのフランジ部の正面図、(b)はそのフランジ部の断面図〔図1(a)のA−A矢視断面図〕である。It is a figure which shows the temperature measuring apparatus of the rotating body which concerns on 1st Embodiment of this invention, (a) is the front view of the flange part, (b) is the sectional view of the flange part [A of FIG. 1 (a). -A cross-sectional view taken along the arrow]. 本発明の各実施形態に係る回転体を示す縦断面図である。It is a vertical sectional view which shows the rotating body which concerns on each embodiment of this invention. 本発明の各実施形態に係る回転体の温度計測装置の回転体への取付状態を示す回転体の要部縦断面図である。It is a vertical sectional view of the main part of the rotating body which shows the attached state to the rotating body of the temperature measuring apparatus of the rotating body which concerns on each embodiment of this invention. 本発明の第2実施形態に係る回転体の温度計測装置を示すフランジ部の正面図である。It is a front view of the flange part which shows the temperature measuring apparatus of the rotating body which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る回転体の温度計測装置を示すフランジ部の要部断面図である。It is sectional drawing of the main part of the flange part which shows the temperature measuring apparatus of the rotating body which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る回転体の温度計測装置を示すフランジ部の正面図である。It is a front view of the flange part which shows the temperature measuring apparatus of the rotating body which concerns on 4th Embodiment of this invention. 本発明の変形例に係る回転体の温度計測装置を示すフランジ部の要部正面図である。It is a front view of the main part of the flange part which shows the temperature measuring apparatus of the rotating body which concerns on the modification of this invention.

以下、図面を参照して本発明の実施の形態を説明する。
なお、以下に示す各実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。以下の実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができるとともに、必要に応じて取捨選択することができ、あるいは適宜組み合わせることが可能である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
It should be noted that each of the embodiments shown below is merely an example, and there is no intention of excluding the application of various modifications and techniques not specified in the following embodiments. Each configuration of the following embodiments can be variously modified and implemented without departing from the purpose thereof, and can be selected as necessary or combined as appropriate.

〔回転体〕
まず、各実施形態にかかる回転体の温度計測装置(温度計測用治具とも言う)が適用される回転体について説明する。
本実施形態にかかる回転体は、回転機器(例えば蒸気タービン)のロータであって、図2に示すように、このロータ1は、ロータ回転中心に沿った中空の軸穴1aを有し、軸方向に複数(ここでは、3つ)に分割されたローラ部分2,3,4を結合箇所5,6でそれぞれ結合して形成されている。なお、ローラ部分2,3,4は同一材料でもよく異種材料でもよい。
〔Rotating body〕
First, a rotating body to which the temperature measuring device (also referred to as a temperature measuring jig) of the rotating body according to each embodiment is applied will be described.
The rotating body according to the present embodiment is a rotor of a rotating device (for example, a steam turbine), and as shown in FIG. 2, the rotor 1 has a hollow shaft hole 1a along the center of rotation of the rotor and has a shaft. The roller portions 2, 3 and 4 divided in a plurality of directions (here, three) are connected at the joining points 5 and 6, respectively. The roller portions 2, 3 and 4 may be made of the same material or different materials.

また、結合箇所5,6は溶接により結合される。この溶接結合は、ローラ部分2,3,4の外周側から行われるため、各ローラ部分2,3,4の端部の溶接結合部5a,5b,6a,6bは外周側から溶接結合するために、内周側は中空で切り欠かれ外周側だけが当接して溶接対象箇所となるように形成されている。このため、各ローラ部分2,3,4を溶接結合して形成されたロータ1の軸穴1aの内面1fには、溶接結合部5a,5b,6a,6bの内周側の切り欠きによる段差(溶接に起因する溶接段差)7a,7b,7c,7dが形成されている。 Further, the joining points 5 and 6 are joined by welding. Since this welding coupling is performed from the outer peripheral side of the roller portions 2, 3 and 4, the welding coupling portions 5a, 5b, 6a and 6b at the ends of the roller portions 2, 3 and 4 are welded and coupled from the outer peripheral side. In addition, the inner peripheral side is hollow and notched so that only the outer peripheral side is in contact with the welded portion. Therefore, the inner surface 1f of the shaft hole 1a of the rotor 1 formed by welding the roller portions 2, 3 and 4 has a step due to the notch on the inner peripheral side of the welded joint portions 5a, 5b, 6a and 6b. (Welding steps due to welding) 7a, 7b, 7c, 7d are formed.

なお、本実施形態では、ロータ1の軸穴1aは、図2中、右側のみが開口した一端開口穴であり、軸穴1aの内径Dは極めて小さく、この内径Dに比べて軸穴1aの奥行長さLは極めて長く形成されている。本温度計測装置は、ロータ1の内部の温度を、ロータ1の軸穴1aの内面1fに温度センサの検知部を直接接触させて計測する。 In the present embodiment, the shaft hole 1a of the rotor 1 is a one-sided opening hole in which only the right side is opened in FIG. 2, and the inner diameter D of the shaft hole 1a is extremely small, and the shaft hole 1a is larger than the inner diameter D. The depth length L is formed extremely long. This temperature measuring device measures the temperature inside the rotor 1 by directly contacting the detection unit of the temperature sensor with the inner surface 1f of the shaft hole 1a of the rotor 1.

第1実施形態
〔温度計測装置の構成〕
図3に示すように、本温度計測装置10は、軸穴1a内に挿入されて所定位置に設置されるパイプ(筒状部材)20と、このパイプ20に固設されたフランジ部30と、パイプ20の内部21からフランジ部30の外周部31にわたって配線され、配線の先端にフランジ部30の外周部31から周外方向に突出した検出部41を有する熱電対(温度センサ)40と、本温度計測装置10をロータ1に接合するための接合フランジ部50と、を備えている。なお、図3において、筒状部材20,フランジ部30,50の断面ハッチングは省略する。
1st Embodiment [Configuration of temperature measuring device]
As shown in FIG. 3, the temperature measuring device 10 includes a pipe (cylindrical member) 20 inserted into the shaft hole 1a and installed at a predetermined position, a flange portion 30 fixed to the pipe 20, and a flange portion 30. A thermocouple (temperature sensor) 40 which is wired from the inside 21 of the pipe 20 to the outer peripheral portion 31 of the flange portion 30 and has a detecting portion 41 protruding outward from the outer peripheral portion 31 of the flange portion 30 at the tip of the wiring. A joining flange portion 50 for joining the temperature measuring device 10 to the rotor 1 is provided. In FIG. 3, the cross-sectional hatching of the tubular member 20, the flange portions 30, 50 is omitted.

本実施形態では、パイプ20は軸方向に複数に分割されたパイプ材(筒状材)22A〜22E(以下、個々の筒状体を区別しない場合は符号22で示す)がフランジ部30を介して結合されて構成される。 In the present embodiment, the pipe 20 has pipe members (cylindrical members) 22A to 22E (hereinafter, when individual tubular bodies are not distinguished, indicated by reference numeral 22) divided into a plurality of pipes in the axial direction via the flange portion 30. It is composed by being combined.

図1(b)はこのパイプ材22がフランジ部30を介して結合される部分を示す拡大断面図(例えば図3のB部のフランジ部30に関する、図1(a)のA−A矢視断面図)である。図1(b)に示すように、フランジ部30は、2枚のフランジ部材32,33が厚み方向に重合されて構成される。各フランジ部材32,33は、パイプ材22の端部に例えば溶接等によって固着されている。各フランジ部材32,33を重合させてボルト61によって締結することで、各フランジ部材32,33が結合されたフランジ部30が形成されると共に、2つのパイプ材22が直列状に結合される。 FIG. 1B is an enlarged cross-sectional view showing a portion where the pipe member 22 is connected via the flange portion 30 (for example, the arrow AA of FIG. 1A regarding the flange portion 30 of the portion B of FIG. 3). Sectional view). As shown in FIG. 1B, the flange portion 30 is composed of two flange members 32 and 33 polymerized in the thickness direction. The flange members 32 and 33 are fixed to the end of the pipe member 22 by, for example, welding. By polymerizing the flange members 32 and 33 and fastening them with bolts 61, a flange portion 30 to which the flange members 32 and 33 are bonded is formed, and the two pipe members 22 are coupled in series.

このようにして、長手方向の所要個所に複数のフランジ部30が配置され、内径Dが極めて小さく奥行長さLが極めて長い軸穴1aに対応した、細くて長いパイプ20が形成される。なお、先端の筒状体22Aの先端側端部においては、フランジ部材33のみ固着され先端側のフランジ部材32にはパイプ材22は固着されない。また、基端のパイプ材22Eの基端側端部には接合フランジ部50が固着される。 In this way, a plurality of flange portions 30 are arranged at required locations in the longitudinal direction, and a thin and long pipe 20 corresponding to the shaft hole 1a having an extremely small inner diameter D and an extremely long depth length L is formed. At the tip end of the tubular body 22A at the tip, only the flange member 33 is fixed, and the pipe member 22 is not fixed to the flange member 32 on the tip side. Further, the joint flange portion 50 is fixed to the base end side end portion of the base end pipe material 22E.

熱電対40は、このように構成されるパイプ20の内部21に配線され、さらにパイプ20の内部21からフランジ部30の外周部31にわたって配線され、先端の検出部41がフランジ部30の外周部31から周外方向に突出している。このように、筒状部材20の内部21からフランジ部30の外周部31にわたって配線するために、互いに重合するフランジ部材32,33の一方又は両方の重合面に、配線用溝34が形成されている。 The thermocouple 40 is wired to the inside 21 of the pipe 20 configured in this way, and is further wired from the inside 21 of the pipe 20 to the outer peripheral portion 31 of the flange portion 30, and the detection portion 41 at the tip is the outer peripheral portion of the flange portion 30. It protrudes outward from 31. In this way, in order to wire from the inside 21 of the tubular member 20 to the outer peripheral portion 31 of the flange portion 30, a wiring groove 34 is formed on one or both overlapping surfaces of the flange members 32 and 33 that overlap each other. There is.

こうして、熱電対40は各フランジ部30に配線される。特に、各フランジ部30は、いずれも熱電対40の検出部41がフランジ部30の外周部31の同一方向に位置するように配置されている。 In this way, the thermocouple 40 is wired to each flange portion 30. In particular, each of the flange portions 30 is arranged so that the detection portion 41 of the thermocouple 40 is located in the same direction as the outer peripheral portion 31 of the flange portion 30.

ここで、本温度計測装置10に特徴的なフランジ部30の構成について説明する。
図1(a)は本温度計測装置10のフランジ部30の正面図である。図1(a)に示すように、外周部31は、二点鎖線で示す基準円31cに対して切り欠かれた切欠部35a,35b,35cが形成されている。なお、フランジ部30の基準円31cの中心Oはフランジ部30が結合されるパイプ20の軸心(本温度計測装置10の軸心でもある)と一致する。
Here, the configuration of the flange portion 30 characteristic of the temperature measuring device 10 will be described.
FIG. 1A is a front view of the flange portion 30 of the temperature measuring device 10. As shown in FIG. 1A, the outer peripheral portion 31 is formed with cutout portions 35a, 35b, 35c notched with respect to the reference circle 31c indicated by the alternate long and short dash line. The center O 1 of the reference circle 31c of the flange portion 30 coincides with the axis of the pipe 20 to which the flange portion 30 is connected (which is also the axis of the temperature measuring device 10).

切欠部35a,35b,35cは、フランジ部30において熱電対40の検出部41が配置される側とは反対側を主体に形成されている。本実施形態では、切欠部35a,35cの相互間に第1突出部36aが、切欠部35a,35bの相互間に第2突出部36bが、及び切欠部35b,35cの相互間に第2突出部36cが、それぞれ形成されている。各突出部36a,36b,36cの先端部は、基準円状に位置している。 The cutout portions 35a, 35b, 35c are mainly formed on the side of the flange portion 30 opposite to the side on which the detection portion 41 of the thermocouple 40 is arranged. In the present embodiment, the first protrusion 36a is between the notches 35a and 35c, the second protrusion 36b is between the notches 35a and 35b, and the second protrusion is between the notches 35b and 35c. Each of the portions 36c is formed. The tip portions of the protruding portions 36a, 36b, and 36c are located in a reference circle.

このうち、第1突出部36aは、フランジ部30において熱電対40の検出部41が配置される側に配置され、第2突出部36b,36cは、フランジ部30において熱電対40の検出部41が配置される側とは反対側に配置されている。また、第1突出部36aの周方向長さW1は第2突出部36b,36cの周方向長さW2,W3を合わせたものよりも十分に大きく設定されている〔W1≫(W2+W3)〕。 Of these, the first protruding portion 36a is arranged on the flange portion 30 on the side where the thermocouple 40 detection portion 41 is arranged, and the second protruding portions 36b and 36c are arranged on the flange portion 30 on the side where the thermocouple 40 detection portion 41 is arranged. Is placed on the side opposite to the side on which is placed. Further, the circumferential length W1 of the first protruding portion 36a is set sufficiently larger than the sum of the circumferential lengths W2 and W3 of the second protruding portions 36b and 36c [W1 >> (W2 + W3)].

なお、検出部41が配置される側とは、検出部41の配置を中心とする基準円31cの半円部分(半部)である。つまり、基準円31cの中心Oと検出部41の検出点41pとを結ぶ直線と直交する直径線である基準線〔図1(a)において一点鎖線で示す〕BLを基準に、検出部41のある側、即ち、図1(a)において基準線BLよりも右側の半部(第1半部)P1が、検出部41が配置される側である。また、熱電対40の検出部41が配置される側とは反対側とは、図1(a)において基準線BLよりも左側の半部(第2半部)P2である。 The side on which the detection unit 41 is arranged is a semicircular portion (half portion) of the reference circle 31c centered on the arrangement of the detection unit 41. That is, [indicated by a dashed line in FIGS. 1 (a)] reference line is a diameter line orthogonal to the straight line connecting the detection point 41p of the center O 1 and the detector 41 of the reference circle 31c relative to the BL, detector 41 That is, in FIG. 1A, the half portion (first half portion) P1 on the right side of the reference line BL is the side on which the detection unit 41 is arranged. Further, the side opposite to the side on which the detection unit 41 of the thermocouple 40 is arranged is the half portion (second half portion) P2 on the left side of the reference line BL in FIG. 1 (a).

このような形状設定によって、フランジ部30の重心Gは、基準円31cの中心Oに対して、検出部41が配置される側(第1半部)P1に偏心した位置に配置されている。ここでは、フランジ部30の重心Gは、基準円31cの中心Oと検出部41の検出点41pとを結ぶ直線上に位置しており、最も好ましい偏心態様であるが、重心Gは、中心Oと検出点41pとを結ぶ直線上から外れていてもよい。 Such shape setting, the center of gravity G 1 of the flange portion 30, with respect to the center O 1 of the reference circle 31c, is disposed eccentrically on the side of the detector 41 is disposed (the first half) P1 position There is. Here, the center of gravity G 1 of the flange portion 30 is positioned on the straight line connecting the detection point 41p of the center O 1 and the detector 41 of the reference circle 31c, is the most preferred eccentrically, the center of gravity G 1 is , it may deviate from a straight line connecting the center O 1 and the detection point 41p.

これによって、パイプ20及びフランジ部30からなる本温度計測装置10の横断面上の重心(装置重心)Gも、本温度計測装置10の軸心Oに対して、検出部41が配置される側(第1半部)P1に偏心した位置に配置されている。また、重心Gも、基準円31cの中心Oと検出部41の検出点41pとを結ぶ直線上に、即ち、パイプ20の軸心Oと検出部41の検出点41pとを含む平面上に、配置されている。 As a result, the center of gravity (device center of gravity) G 2 on the cross section of the temperature measuring device 10 including the pipe 20 and the flange portion 30 is also arranged with the detection unit 41 with respect to the axial center O 1 of the temperature measuring device 10. It is arranged at a position eccentric to P1 on the side (first half). Further, the center of gravity G 2 is also on a straight line connecting the center O 1 of the reference circle 31c and the detection point 41p of the detection unit 41, that is, a plane including the axis O 1 of the pipe 20 and the detection point 41p of the detection unit 41. It is placed on top.

また、フランジ部30の最大外径(即ち、基準円31cの直径d)は、ロータ1の軸穴1aの内径Dよりも小さく設定されている。この設定は、本温度計測装置10をロータ1の軸穴1a内に挿入させていく際に、フランジ部30の外周部31が軸穴1aの内面1fに引っ掛かることなく進入できるようにする、挿入クリアランスを確保するためである。この挿入クリアランスは、フランジ部30が軸穴1a内に支障なく進入していけるように軸穴1aの内面1fの状態に応じて設定される。 Further, the maximum outer diameter of the flange portion 30 (that is, the diameter d of the reference circle 31c) is set to be smaller than the inner diameter D of the shaft hole 1a of the rotor 1. This setting allows the outer peripheral portion 31 of the flange portion 30 to enter the rotor 1 without being caught in the inner surface 1f of the shaft hole 1a when the temperature measuring device 10 is inserted into the shaft hole 1a of the rotor 1. This is to ensure clearance. This insertion clearance is set according to the state of the inner surface 1f of the shaft hole 1a so that the flange portion 30 can enter the shaft hole 1a without any trouble.

特に、本実施形態に係るロータ1は、ローラ部分2,3,4を溶接結合して形成されており、ロータ1の軸穴1aの内面1fには、段差7a,7b,7c,7dが形成されている。したがって、本実施形態の挿入クリアランスは、段差7a,7b,7c,7dにおいてもフランジ部30が軸穴1a内に支障なく進入していけるように大きめに設定される。
さらに、フランジ部30の外周部31は滑らかな曲面状に形成され、これによって、フランジ部30が軸穴1a内に滑らかに進入できるようになっている。
In particular, the rotor 1 according to the present embodiment is formed by welding the roller portions 2, 3 and 4, and steps 7a, 7b, 7c and 7d are formed on the inner surface 1f of the shaft hole 1a of the rotor 1. Has been done. Therefore, the insertion clearance of the present embodiment is set large so that the flange portion 30 can enter the shaft hole 1a without any trouble even at the steps 7a, 7b, 7c, and 7d.
Further, the outer peripheral portion 31 of the flange portion 30 is formed in a smooth curved surface shape, whereby the flange portion 30 can smoothly enter the shaft hole 1a.

このように、構成された本温度計測装置10は、図3に示すように、パイプ20の基端側端部の接合フランジ部50を、ロータ1の軸穴1aの開口部1b周辺に接合する。ここでは、フランジ部50をボルト62によって締結固定して接合しているが、本温度計測装置10のロータ1の軸穴1aへの接合態様はこれに限らず、少なくとも、温度計測装置10が、ロータ1の軸穴1aに対して、軸方向へのずれや回転方向へのずれを規制できるように、ずれ止めや廻り止めを考慮して本温度計測装置10をロータ1の軸穴1aへ接合すればよい。本温度計測装置10は、図1(a)に示すように、その軸心(フランジ部30の基準円31cの中心であり、パイプ20の軸心でもある)Oをロータ1の回転中心Oと一致或いは略一致させてロータ1に接合される。また、熱電対40は、軸穴1aの開口部1bからロータ1外に取り出されて、例えばスリップリングやテレメータ等を用いるなどして、検出情報が固定側に取り込まれるようになっている。 As shown in FIG. 3, the temperature measuring device 10 configured in this way joins the joining flange portion 50 at the base end side end portion of the pipe 20 to the periphery of the opening 1b of the shaft hole 1a of the rotor 1. .. Here, the flange portion 50 is fastened and fixed by bolts 62, but the joining mode of the rotor 1 of the temperature measuring device 10 to the shaft hole 1a is not limited to this, and at least the temperature measuring device 10 is used. The temperature measuring device 10 is joined to the shaft hole 1a of the rotor 1 in consideration of slip prevention and rotation prevention so that the deviation in the axial direction and the deviation in the rotation direction can be regulated with respect to the shaft hole 1a of the rotor 1. do it. The temperature measuring device 10, as shown in FIG. 1 (a), the axis (a center of the reference circle 31c of the flange portion 30, is also the axis of the pipe 20) the O 1 rotation of the rotor 1 center O It is joined to the rotor 1 with or substantially the same as 0 . Further, the thermocouple 40 is taken out of the rotor 1 from the opening 1b of the shaft hole 1a, and the detection information is taken into the fixed side by using, for example, a slip ring or a telemeter.

ただし、本温度計測装置10は、上記挿入クリアランスの影響を受けて、温度計測装置10の軸心Oがロータ1の回転中心Oからずれを生じうるが、このような軸心Oのロータ1の回転中心Oに対するずれを考慮しても、温度計測装置10の重心Gがロータ1の回転中心Oに対して、検出部41が配置される側(第1半部)P1に偏心した位置となるように偏心量が設定されている。 However, the temperature measuring device 10, under the influence of the insertion clearance, but the axis O 1 of the temperature measuring device 10 can deviated from the rotation center O 0 of the rotor 1, such axis O 1 even considering the deviation of the rotational center O 0 of the rotor 1, the center of gravity G 2 of the temperature measuring device 10 is the rotation center O 0 of the rotor 1, the side where the detection unit 41 is disposed (the first half) P1 The amount of eccentricity is set so that the position is eccentric to.

〔作用及び効果〕
本実施形態に係る回転体の温度計測装置10は、上述のように構成されているので、以下に示すようにして、ロータ1の回転作動中におけるロータ1の内部温度を計測することができる。
[Action and effect]
Since the temperature measuring device 10 for the rotating body according to the present embodiment is configured as described above, the internal temperature of the rotor 1 during the rotational operation of the rotor 1 can be measured as shown below.

つまり、ロータ1の軸穴1a内に、パイプ20を挿入し,各フランジ部30に装備された熱電対40の検出部41を、軸穴1aの内の所要位置に配置する(準備工程)。この際、フランジ部30の最大外径dは軸穴1aの内径Dよりも小さく設定されているので、第1突出部36a及び第2突出部36b,36cの先端を軸穴1aの内面1fに適宜摺接させながら、パイプ20の挿入を支障なく行うことができる。これにより、本実施形態に係る温度計測装置10を装備したロータ(回転体)1及びこのロータ1を備えたタービンが構成される。 That is, the pipe 20 is inserted into the shaft hole 1a of the rotor 1, and the detection unit 41 of the thermocouple 40 mounted on each flange portion 30 is arranged at a required position in the shaft hole 1a (preparation step). At this time, since the maximum outer diameter d of the flange portion 30 is set to be smaller than the inner diameter D of the shaft hole 1a, the tips of the first protruding portion 36a and the second protruding portions 36b, 36c are set on the inner surface 1f of the shaft hole 1a. The pipe 20 can be inserted without any trouble while being slidably contacted as appropriate. As a result, a rotor (rotating body) 1 equipped with the temperature measuring device 10 according to the present embodiment and a turbine provided with the rotor 1 are configured.

特に、フランジ部30の最大外径dは、軸穴1aの内径Dよりも、段差7a,7b,7c,7dを考慮した挿入クリアランス分以上小さく設定されているので、段差7a,7b,7c,7dにおいてもフランジ部30を支障なく軸穴1a内に進入させることができ、良好な作業性が確保される。 In particular, the maximum outer diameter d of the flange portion 30 is set to be smaller than the inner diameter D of the shaft hole 1a by the insertion clearance or more considering the steps 7a, 7b, 7c, 7d, so that the steps 7a, 7b, 7c, Even in 7d, the flange portion 30 can be inserted into the shaft hole 1a without any trouble, and good workability is ensured.

そして、ロータ1を回転させると、温度計測装置10の重心Gがロータ1の回転中心Oに対して、検出部41が配置される側(第1半部)P1に偏心しているので、温度計測装置10の各部は、この偏心している方向に遠心力を受ける。これによって、図1(a)に二点鎖線で示すように、ロータ1の軸心1a内において、各フランジ部30が遠心力方向(白矢印参照)、即ち、温度計測装置10の重心Gが偏心している検出部41が配置される側(第1半部)P1に変位し、検出部41が軸心1aの内面1fに圧接する。 When rotating the rotor 1, the rotation center O 0 of the center of gravity G 2 is the rotor 1 of the temperature measuring device 10, since the side of detector 41 is disposed eccentric to the (first half) P1, Each part of the temperature measuring device 10 receives a centrifugal force in this eccentric direction. Thereby, as shown by the two-dot chain line in FIG. 1 (a), in the axis 1a of the rotor 1 (see white arrows) each flange portion 30 is the centrifugal force direction, i.e., the center of gravity of the temperature measuring device 10 G 2 Is displaced to the side (first half) P1 where the detection unit 41 is eccentric, and the detection unit 41 is in pressure contact with the inner surface 1f of the center of gravity 1a.

したがって、ロータ1の回転中に、軸心1aの内面1fに圧接した検出部41では、内面1fの温度(ロータ内面メタル温度)に応じた熱起電力が発生し、ロータ1の外部からこの熱電対40の熱起電力が検出信号として取り出されて、内面1fの温度が計測される(計測工程)。 Therefore, during the rotation of the rotor 1, the detection unit 41, which is in pressure contact with the inner surface 1f of the axis 1a, generates a thermoelectromotive force corresponding to the temperature of the inner surface 1f (rotor inner surface metal temperature), and this thermoelectric force is generated from the outside of the rotor 1. The thermoelectromotive force of 40 is taken out as a detection signal, and the temperature of the inner surface 1f is measured (measurement step).

このように、本温度計測装置10によれば、ロータ1の回転に伴って温度計測装置10に発生する遠心力を利用して、各検出部41を軸心1aの内面1fに確実に圧接させて、内面1fの温度(ロータ内面メタル温度)を計測するので、信頼性の高い計測結果を得ることができる。特に、重心Gがパイプ20の軸心Oと検出部41の検出点41pとを含む平面上に配置されているので、遠心力が検出部41の内面1fへの圧接に効率よく作用し、検出部41を内面1fに確実に圧接させて信頼性の高い計測結果を得ることができる。 As described above, according to the temperature measuring device 10, each detection unit 41 is surely pressed against the inner surface 1f of the axis 1a by utilizing the centrifugal force generated in the temperature measuring device 10 as the rotor 1 rotates. Since the temperature of the inner surface 1f (rotor inner surface metal temperature) is measured, a highly reliable measurement result can be obtained. In particular, since the center of gravity G 2 is arranged on a plane including the axis O 1 of the pipe 20 and the detection point 41p of the detection unit 41, the centrifugal force efficiently acts on the pressure contact of the detection unit 41 to the inner surface 1f. , The detection unit 41 can be reliably pressed against the inner surface 1f to obtain a highly reliable measurement result.

例えば、蒸気タービンのロータは高温下に晒されるため、運転時のロータがどのような温度状態にあるかは、ロータの材料選定などロータの開発において重要な情報であるが、本温度計測装置10によれば、このような情報を高精度で取得することができ、ロータの開発に寄与しうるものである。 For example, since the rotor of a steam turbine is exposed to a high temperature, what kind of temperature state the rotor is in during operation is important information in rotor development such as selection of rotor material, but this temperature measuring device 10 According to the report, such information can be obtained with high accuracy, which can contribute to the development of the rotor.

なお、パイプ20の挿入時に、第1突出部36a及び第2突出部36b,36cの先端を軸穴1aの内面1fにより円滑に摺接させるために、図1(b)に二点鎖線で示すように、第1突出部36aの先端(外周側先端)の挿入方向前縁部及び後縁部に、面取り状の切欠き37a,37bを設けてもよい。また、切欠き37a,37bを滑らかな曲面で形成すればさらに摺接を円滑にすることができる。さらに、第2突出部36b,36cの切欠き37bを大きく取れば、重心G,Gをより大きく偏心させることもできる。 When the pipe 20 is inserted, the tips of the first protruding portion 36a and the second protruding portions 36b, 36c are shown by a two-dot chain line in FIG. As described above, chamfer-shaped notches 37a and 37b may be provided at the front edge portion and the trailing edge portion in the insertion direction of the tip end (outer peripheral side tip) of the first protruding portion 36a. Further, if the notches 37a and 37b are formed with a smooth curved surface, the sliding contact can be further smoothed. Further, the second projecting portion 36b, Taking a large notch 37b of 36c, it is also possible to decenter larger centroid G 1, G 2.

第2実施形態
〔温度計測装置の構成〕
本実施形態に係る回転体の温度計測装置10Bは、フランジ部30の形状のみが第1実施形態のものと異なっている。
つまり、図4に示すように、本実施形態のフランジ部30Bは、その外周部31Bに、二点鎖線で示す基準円31cに対して切り欠かれた2つの切欠部35d,35eが形成されている。切欠部35d,35eは、フランジ部30Bにおいて熱電対40の検出部41が配置される側とは反対側を主体に形成されている。そして、切欠部35d,35eの相互間に第1突出部36d及び第2突出部36eが、それぞれ形成されている。各突出部36d,36eの先端部は、基準円状に位置している。
2nd Embodiment [Configuration of temperature measuring device]
The temperature measuring device 10B for a rotating body according to the present embodiment differs from that of the first embodiment only in the shape of the flange portion 30.
That is, as shown in FIG. 4, in the flange portion 30B of the present embodiment, two notched portions 35d and 35e notched with respect to the reference circle 31c indicated by the alternate long and short dash line are formed on the outer peripheral portion 31B. There is. The cutout portions 35d and 35e are mainly formed on the side of the flange portion 30B opposite to the side on which the detection portion 41 of the thermocouple 40 is arranged. A first protruding portion 36d and a second protruding portion 36e are formed between the cutout portions 35d and 35e, respectively. The tip portions of the protruding portions 36d and 36e are located in a reference circle.

このうち、第1突出部36dは、フランジ部30において熱電対40の検出部41が配置される側に配置され、第2突出部36eは、フランジ部30において熱電対40の検出部41が配置される側とは反対側に配置されている。また、第1実施形態と同様に、第1突出部36dの周方向長さW4は第2突出部36eの周方向長さW5よりも十分に大きく設定されている(W4≫W5)。 Of these, the first protrusion 36d is arranged on the flange portion 30 on the side where the thermocouple 40 detection portion 41 is arranged, and the second protrusion 36e is arranged on the flange portion 30 where the thermocouple 40 detection portion 41 is arranged. It is located on the opposite side of the side. Further, similarly to the first embodiment, the circumferential length W4 of the first protruding portion 36d is set to be sufficiently larger than the circumferential length W5 of the second protruding portion 36e (W4 >> W5).

このような形状設定によって、フランジ部30Bの重心G1Bは、基準円31cの中心Oに対して、検出部41が配置される側(第1半部)P1に偏心した位置に配置されている。ここでも、フランジ部30Bの重心G1Bは、基準円31cの中心Oと検出部41の検出点41pとを結ぶ直線上に位置しており、最も好ましい偏心態様であるが、重心G1Bは、中心Oと検出点41pとを結ぶ直線上から外れていてもよい。 Such shape setting, the center of gravity G 1B of the flange portion 30B, to the center O 1 of the reference circle 31c, is disposed eccentrically on the side of the detector 41 is disposed (the first half) P1 position There is. Again, the center of gravity G 1B of the flange portion 30B is located on the straight line connecting the detection point 41p of the center O 1 and the detector 41 of the reference circle 31c, it is the most preferred eccentrically, the center of gravity G 1B is , it may deviate from a straight line connecting the center O 1 and the detection point 41p.

これによって、パイプ20及びフランジ部30Bからなる本温度計測装置10の横断面上の重心G2Bも、本温度計測装置10の軸心Oに対して、検出部41が配置される側(第1半部)P1に偏心した位置に配置されている。 Thus, the center of gravity G 2B on the cross section of the temperature measuring device 10 consisting of pipes 20 and the flange portion 30B also, with respect to the axis O 1 of the temperature measuring device 10, the side where the detection unit 41 is disposed (the 1 half) It is arranged at a position eccentric to P1.

また、本実施形態でも、第1実施形態と同様、挿入クリアランスを確保するために、フランジ部30Bの最大外径である基準円31cの直径dは、ロータ1の軸穴1aの内径Dよりも小さく設定されている。特に、挿入クリアランスは、段差7a,7b,7c,7dにおいてもフランジ部30が軸穴1a内に支障なく進入できるように大きめに設定される。
これらの構成を除いて、本温度計測装置10Bは、第1実施形態と同様に構成される。
Further, also in the present embodiment, as in the first embodiment, in order to secure the insertion clearance, the diameter d of the reference circle 31c, which is the maximum outer diameter of the flange portion 30B, is larger than the inner diameter D of the shaft hole 1a of the rotor 1. It is set small. In particular, the insertion clearance is set large so that the flange portion 30 can enter the shaft hole 1a without any trouble even at the steps 7a, 7b, 7c, and 7d.
Except for these configurations, the temperature measuring device 10B is configured in the same manner as in the first embodiment.

〔作用及び効果〕
本実施形態に係る回転体の温度計測装置10Bは、上述のように構成されているので、第1実施形態と同様の作用及び効果を得ることができる。
つまり、フランジ部30Bの最大外径dは軸穴1aの内径Dよりも十分に小さく設定されているので、パイプ20の挿入を支障なく行うことができる。
また、ロータ1の回転に伴って温度計測装置10Bに発生する遠心力を利用して、各検出部41を軸心1aの内面1fに確実に圧接させて、内面1fの温度を計測するので、信頼性の高い計測結果を得ることができる。
[Action and effect]
Since the temperature measuring device 10B for the rotating body according to the present embodiment is configured as described above, the same operations and effects as those of the first embodiment can be obtained.
That is, since the maximum outer diameter d of the flange portion 30B is set sufficiently smaller than the inner diameter D of the shaft hole 1a, the pipe 20 can be inserted without any trouble.
Further, by utilizing the centrifugal force generated in the temperature measuring device 10B as the rotor 1 rotates, each detection unit 41 is surely pressed against the inner surface 1f of the axial center 1a to measure the temperature of the inner surface 1f. Highly reliable measurement results can be obtained.

第3実施形態
〔温度計測装置の構成〕
本実施形態に係る回転体の温度計測装置10Cは、熱電対40Cの検出部41Cの構成のみが第1実施形態のものと異なっている。
つまり、図5に示すように、熱電対40Cの検出部41Cは、ロータ1の軸心1aの内面1fに線接触(或いは、面接触)するように、熱電対40Cの先端が屈曲形成されて構成される。本実施形態では、熱電対40Cの先端がロータ1の軸心1aの内面1fの軸方向に向かうように屈曲形成されているが、軸心1aの内面1fの周方向に向かうように屈曲形成されてもよい。
Third Embodiment [Configuration of temperature measuring device]
The temperature measuring device 10C for the rotating body according to the present embodiment differs from that of the first embodiment only in the configuration of the detection unit 41C of the thermocouple 40C.
That is, as shown in FIG. 5, in the detection unit 41C of the thermocouple 40C, the tip of the thermocouple 40C is bent and formed so as to make line contact (or surface contact) with the inner surface 1f of the axial center 1a of the rotor 1. It is composed. In the present embodiment, the tip of the thermocouple 40C is bent so as to be oriented in the axial direction of the inner surface 1f of the axial center 1a of the rotor 1, but is bent so as to be oriented in the circumferential direction of the inner surface 1f of the axial center 1a. You may.

また、配線用溝34Cも、フランジ部30Cの外周部31Cまで延びて形成され、外周部31Cの配線用溝34C内に沿って検出部41Cが配線されている。
さらに、配線用溝34Cと熱電対40C(検出部41Cを含む)との間には、断熱材70が介装されている。
このほかは、第1実施形態と同様に構成される。
Further, the wiring groove 34C is also formed so as to extend to the outer peripheral portion 31C of the flange portion 30C, and the detection portion 41C is wired along the wiring groove 34C of the outer peripheral portion 31C.
Further, a heat insulating material 70 is interposed between the wiring groove 34C and the thermocouple 40C (including the detection unit 41C).
Other than this, it is configured in the same manner as in the first embodiment.

〔作用及び効果〕
本実施形態に係る回転体の温度計測装置10Cは、上述のように構成されているので、1実施形態と同様の作用及び効果を得ることができる上に、検出部41Cがロータ1の軸心1aの内面1fに線接触(或いは、面接触)するので、安定して精度よく内面1fの温度を計測することができる。
[Action and effect]
Since the temperature measuring device 10C of the rotating body according to the present embodiment is configured as described above, the same operations and effects as those of the first embodiment can be obtained, and the detection unit 41C is the axis of the rotor 1. Since the line contact (or surface contact) is made with the inner surface 1f of 1a, the temperature of the inner surface 1f can be measured stably and accurately.

また、配線用溝34Cと熱電対40C(検出部41Cを含む)との間には、断熱材70が介装されているので、熱電対40Cはフランジ部30Cの温度影響を抑制され、より精度よく内面1fの温度を計測することができる。 Further, since the heat insulating material 70 is interposed between the wiring groove 34C and the thermocouple 40C (including the detection unit 41C), the thermocouple 40C is more accurate because the temperature influence of the flange portion 30C is suppressed. The temperature of the inner surface 1f can be measured well.

なお、本実施形態では、検出部41Cが内面1fへ線接触(或いは、面接触)する構成、及び、配線用溝34Cと熱電対40Cとの間に、断熱材70が介装される構成を共にそなえているが、これらの一方のみを備えてもよい。 In this embodiment, the detection unit 41C is in line contact (or surface contact) with the inner surface 1f, and the heat insulating material 70 is interposed between the wiring groove 34C and the thermocouple 40C. Both are provided, but only one of these may be provided.

第4実施形態
〔温度計測装置の構成〕
本実施形態に係る回転体の温度計測装置10Dのフランジ部30Dは、第1実施形態のフランジ部30に対して、フランジ部30Dが、軸心1aの内面1fに対して所定の回転方向(周方向)の位置(位相)となるように案内するガイド機構80が追加されている。これ以外は、第1実施形態のもの同様に構成されている。
Fourth Embodiment [Configuration of temperature measuring device]
In the flange portion 30D of the temperature measuring device 10D of the rotating body according to the present embodiment, the flange portion 30D has a predetermined rotation direction (circumference) with respect to the inner surface 1f of the axis 1a with respect to the flange portion 30 of the first embodiment. A guide mechanism 80 is added to guide the position (phase) of the direction). Other than this, it is configured in the same manner as that of the first embodiment.

つまり、図6に示すように、ガイド機構80は、軸心1aの内面1fに基部81aを埋設させて、軸方向に延在するガイドレール81と、フランジ部30Dの外周部31Dに形成されガイド溝82とを備えて構成される。ガイドレール81は先端縁81bが軸心1aの内部空間に突出している。ガイドレール81の先端縁81bに向かう両面81c,81dは、互いに平行なガイド面として構成される。 That is, as shown in FIG. 6, the guide mechanism 80 is formed by embedding the base portion 81a in the inner surface 1f of the axial center 1a, extending in the axial direction, and the outer peripheral portion 31D of the flange portion 30D. It is configured to include a groove 82. The tip edge 81b of the guide rail 81 projects into the internal space of the axis 1a. Both sides 81c and 81d of the guide rail 81 toward the tip edge 81b are configured as guide surfaces parallel to each other.

フランジ部30Dのガイド溝82は、両ガイド面81c,81dに対向する摺接面81a,81bを備え、温度計測装置10Dのパイプ20を軸心1aに挿入させる際には、フランジ部30Dのガイド溝82の摺接面81a,81bをガイドレール81のガイド面81c,81dに摺接させながら行なう。これによって、各フランジ部30Dは、軸心1aの内面1fに対して所定の回転方向(周方向)の位置(位相)となる。 The guide groove 82 of the flange portion 30D includes sliding contact surfaces 81a and 81b facing both guide surfaces 81c and 81d, and guides of the flange portion 30D when the pipe 20 of the temperature measuring device 10D is inserted into the axial center 1a. The sliding contact surfaces 81a and 81b of the groove 82 are brought into sliding contact with the guide surfaces 81c and 81d of the guide rail 81. As a result, each flange portion 30D becomes a position (phase) in a predetermined rotation direction (circumferential direction) with respect to the inner surface 1f of the axial center 1a.

なお、ここでは、両ガイド面81c,81dは、温度計測装置10Dが遠心力を受ける方向と平行に位置しており、温度計測装置10Dが遠心力を受けて移動する際に、摺接面81a,81bとガイド面81c,81dとの摺接部がこの移動の抵抗にならないように設定されている。
このほかは、第1実施形態と同様に構成され、フランジ部30Dの重心G1Dは同様に偏心し、温度計測装置10Dの重心G2Dも同様に偏心している。
Here, both guide surfaces 81c and 81d are located parallel to the direction in which the temperature measuring device 10D receives the centrifugal force, and when the temperature measuring device 10D moves by receiving the centrifugal force, the sliding contact surface 81a , 81b and the sliding contact portions between the guide surfaces 81c and 81d are set so as not to become resistance to this movement.
Other than this, it is configured in the same manner as in the first embodiment, the center of gravity G 1D of the flange portion 30D is similarly eccentric, and the center of gravity G 2D of the temperature measuring device 10D is also eccentric.

〔作用及び効果〕
本実施形態に係る回転体の温度計測装置10Dは、上述のように構成されているので、1実施形態と同様の作用及び効果を得ることができる上に、各フランジ部30Dは、軸心1aの内面1fに対して所定の回転方向の位置となるため、検出部41Eを軸心1aの内面1fの所定の回転方向の位置に圧接させて、内面1fの必要個所の温度を確実に計測することができる効果がある。
[Action and effect]
Since the temperature measuring device 10D of the rotating body according to the present embodiment is configured as described above, the same operations and effects as those of the one embodiment can be obtained, and each flange portion 30D has an axial center 1a. Since the position is in the predetermined rotation direction with respect to the inner surface 1f of the above, the detection unit 41E is pressed against the position of the inner surface 1f of the axis 1a in the predetermined rotation direction to reliably measure the temperature of the required portion of the inner surface 1f. There is an effect that can be done.

〔その他〕
以上、本発明に係る実施形態を説明したが、本発明は上記の実施形態を適宜変更して実施することができる。
例えば、上記各実施形態では、2枚のフランジ部材32,33又は32C,33Cを厚み方向に重合されてフランジ部30,30B〜30Dを構成し、2枚のフランジ部材32,33又は32C,33Cの間に配線用溝34,34Cを形成し、熱電対40,40Cを配線したが、フランジ部は1枚のフランジ部材のみから構成してもよい。
[Other]
Although the embodiments according to the present invention have been described above, the present invention can be implemented by appropriately modifying the above embodiments.
For example, in each of the above embodiments, the two flange members 32, 33 or 32C, 33C are polymerized in the thickness direction to form the flange portions 30, 30B to 30D, and the two flange members 32, 33 or 32C, 33C are formed. The wiring grooves 34 and 34C were formed between the two, and the thermocouples 40 and 40C were wired, but the flange portion may be composed of only one flange member.

この場合、図7に示す温度計測装置10Eのように、フランジ部30Eに配線用穴34Eをパイプ20寄りから外周部31Eまで貫通するように加工して、配線用穴34E内に熱電対40Eを配線してもよい。この場合も、第1実施形態と同様に、フランジ部30Eの重心G1Eは偏心し、温度計測装置10Eの重心G2Eも偏心している。 In this case, as in the temperature measuring device 10E shown in FIG. 7, the wiring hole 34E is processed in the flange portion 30E so as to penetrate from the pipe 20 side to the outer peripheral portion 31E, and the thermocouple 40E is inserted in the wiring hole 34E. You may wire it. In this case as well, the center of gravity G 1E of the flange portion 30E is eccentric, and the center of gravity G 2E of the temperature measuring device 10E is also eccentric as in the first embodiment.

また、上記各実施形態及び変形例(図7)では、フランジ部30,30B〜30Eの重心G,G1Bを温度計測装置10の軸心Oに対して偏心させることにより、温度計測装置10のの重心G,G2Bを軸心Oに対して偏心させているが、パイプ20の重心を温度計測装置10の軸心Oに対して偏心させることにより、温度計測装置10のの重心Gを軸心Oに対して偏心させてもよく、さらに、これらを組み合わせてもよい。 Further, the in each of the embodiments and the modified example (FIG. 7), by decentering the center of gravity G 1, G 1B of the flange portion 30,30B~30E respect to the axis O 1 of the temperature measuring device 10, the temperature measuring device Although the center of gravity G 2, G 2B of the 10 that is eccentric to the axis O 1, by decentering the center of gravity of the pipe 20 with respect to the axis O 1 of the temperature measuring device 10, the temperature measuring device 10 The center of gravity G 2 of the above may be eccentric with respect to the axial center O 1 , and these may be combined.

また、上記の各実施形態のフランジ部30,30B〜30Eにおいて、切欠部35a,35b,35c,35d,35e並びに第1突出部36a,36d、第2突出部36b,36c,36eの正面視形状は、何れも一例であり、種々の形状を採用しうる。重心位置の偏心設定の観点からは、フランジ部の正面視形状だけでなく、フランジ部の厚みに着目して、重心位置を偏心させる側を厚く、その反対側を薄く設定することも有効である。 Further, in the flange portions 30, 30B to 30E of each of the above embodiments, the front view shapes of the cutout portions 35a, 35b, 35c, 35d, 35e, the first protruding portions 36a, 36d, and the second protruding portions 36b, 36c, 36e. Is an example, and various shapes can be adopted. From the viewpoint of setting the eccentricity of the center of gravity position, it is effective to pay attention not only to the front view shape of the flange portion but also to the thickness of the flange portion and set the side where the center of gravity position is eccentric to be thick and the opposite side to be thin. ..

さらに、上記各実施形態及び変形例では、熱電対を温度センサに適用したが、適用する温度センサはこれに限らず、接触式の温度センサであれば広く適用できる。
また、上記各実施形態及び変形例では、回転体の温度計測装置が適用される回転体を、回転機器(例えば蒸気タービン)のロータとしたが、本装置は種々のロータに適用でき、また、ロータでなくとも回転機械の回転体で軸穴を有するものであれば広く適用することができる。
Further, in each of the above embodiments and modifications, the thermocouple is applied to the temperature sensor, but the temperature sensor to be applied is not limited to this, and any contact type temperature sensor can be widely applied.
Further, in each of the above embodiments and modifications, the rotating body to which the temperature measuring device for the rotating body is applied is a rotor of a rotating device (for example, a steam turbine), but this device can be applied to various rotors, and also. Even if it is not a rotor, it can be widely applied as long as it is a rotating body of a rotating machine and has a shaft hole.

1 回転体としてのロータ
1a ロータ1の軸穴
1f 軸穴1aの内面
2,3,4 ローラ部分
5,6 結合箇所
5a,5b,6a,6b 溶接結合部
7a,7b,7c,7d 段差(溶接段差)
10,10B〜10E 温度計測装置
20 パイプ(筒状部材)
21 パイプ20の内部
22,22A〜22E パイプ材(筒状材)
30,30B〜30E フランジ部
31,31C,31D,31E フランジ部30,30B〜30Eの外周部
31c 基準円
32,33 フランジ部材
34,34C 配線用溝
34E 配線用穴
35a,35b,35c,35d,35e 切欠部
36a,36d 第1突出部
36b,36c,36e 第2突出部
40,40C,40E 熱電対(温度センサ)
41,41C,41E 検出部
41p 検出点
50 接合フランジ部
61 ボルト
70 断熱材
80 ガイド機構
81 ガイドレール
82 ガイド溝
,G1B,G1D,G1E フランジ部30,30B,30D,30Eの重心
,G2B,G2D,G2E 温度計測装置10,10B,10D,10Eの重心(装置重心)
基準円31cの中心,パイプ20の軸心,温度計測装置の軸心
ロータ1の回転中心
BL 基準線
P1 第1半部
P2 第2半部
W1 第1突出部36aの周方向長さ
W2,W3 第2突出部36b,36cの周方向長さ
W4 第1突出部36dの周方向長さ
W5 第2突出部36eの周方向長さ
1 Rotor as a rotating body 1a Shaft hole 1f of rotor 1 Inner surface of shaft hole 1a 2,3,4 Roller part 5,6 Coupling points 5a, 5b, 6a, 6b Welded joints 7a, 7b, 7c, 7d Steps (welding) Step)
10,10B-10E Temperature measuring device 20 Pipe (cylindrical member)
21 Inside of pipe 20 22, 22A to 22E Pipe material (cylindrical material)
30,30B to 30E Flange part 31,31C, 31D, 31E Outer circumference part of flange part 30, 30B to 30E 31c Reference circle 32,33 Flange member 34,34C Wiring groove 34E Wiring hole 35a, 35b, 35c, 35d, 35e Notch 36a, 36d First protrusion 36b, 36c, 36e Second protrusion 40, 40C, 40E Thermocouple (temperature sensor)
41, 41C, 41E Detection part 41p Detection point 50 Joint flange part 61 Bolt 70 Insulation material 80 Guide mechanism 81 Guide rail 82 Guide groove G 1 , G 1B , G 1D , G 1E Center of gravity of flange part 30, 30B, 30D, 30E Center of gravity of G 2 , G 2B , G 2D , G 2E temperature measuring device 10, 10B, 10D, 10E (center of gravity of device)
O 1 Center of reference circle 31c, axis of pipe 20, axis of temperature measuring device O 0 Center of rotation of rotor 1 BL reference line P1 1st half P2 2nd half W1 Circumferential length of 1st protrusion 36a W2, W3 Circumferential length of the second protrusions 36b, 36c W4 Circumferential length of the first protrusion 36d W5 Circumferential length of the second protrusion 36e

Claims (15)

回転体の回転中心に沿った軸穴の内面の温度を計測する温度計測装置であって、
前記軸穴内に挿入され設置される筒状部材と、
前記筒状部材に設置されるフランジ部と、
前記筒状部材の内部から前記フランジ部の外周部にわたって配線され、前記配線の先端に前記フランジ部の外周部から周外方向に突出し前記内面に対して接触する検出部を有する温度センサと、を備え、
前記フランジ部の最大外径は前記軸穴の内径よりも小さく設定され、
前記軸穴内に挿入され設置された状態での装置重心が、前記回転体の回転中心に対して前記検出部が配置される側に偏心している
ことを特徴とする、回転体の温度計測装置。
A temperature measuring device that measures the temperature of the inner surface of a shaft hole along the center of rotation of a rotating body.
A tubular member inserted and installed in the shaft hole,
The flange portion installed on the tubular member and
A temperature sensor that is wired from the inside of the tubular member to the outer peripheral portion of the flange portion and has a detection portion at the tip of the wiring that projects outward from the outer peripheral portion of the flange portion and comes into contact with the inner surface. Prepare,
The maximum outer diameter of the flange portion is set smaller than the inner diameter of the shaft hole.
A temperature measuring device for a rotating body, characterized in that the center of gravity of the device when inserted and installed in the shaft hole is eccentric to the side where the detection unit is arranged with respect to the center of rotation of the rotating body.
前記軸穴内に挿入され設置された状態での前記フランジ部の重心が、前記回転体の回転中心に対して前記検出部が配置される側に偏心している
ことを特徴とする、請求項1に記載の回転体の温度計測装置。
The first aspect of the present invention is characterized in that the center of gravity of the flange portion in a state of being inserted and installed in the shaft hole is eccentric to the side where the detection portion is arranged with respect to the rotation center of the rotating body. The temperature measuring device for the rotating body described.
前記フランジ部の外周部に、前記フランジ部の重心を前記偏心状態にする切欠部が形成されている
ことを特徴とする、請求項2に記載の回転体の温度計測装置。
The temperature measuring device for a rotating body according to claim 2, wherein a notch portion is formed on the outer peripheral portion of the flange portion to bring the center of gravity of the flange portion into the eccentric state.
前記フランジ部の前記筒状部材の軸心に対して前記検出部が配置される側の第1半部に、外周が径方向外方に突出した第1突出部が形成されると共に、前記第1半部と反対側の第2半部に、外周が径方向外方に突出した第2突出部が形成され、
前記第1突出部と前記第2突出部との間の外周部に前記切欠部が形成され、
前記第1突出部は前記第2突出部よりも周方向に広い大きさに形成されている
ことを特徴とする、請求項3に記載の回転体の温度計測装置。
A first protruding portion whose outer circumference protrudes outward in the radial direction is formed in the first half portion of the flange portion on the side where the detection portion is arranged with respect to the axial center of the tubular member, and the first A second protruding portion whose outer circumference protrudes outward in the radial direction is formed in the second half portion opposite to the first half portion.
The notch is formed on the outer peripheral portion between the first protruding portion and the second protruding portion.
The temperature measuring device for a rotating body according to claim 3, wherein the first protruding portion is formed in a size wider in the circumferential direction than the second protruding portion.
前記筒状部材の軸心と前記検出部の検出点を含む平面上に前記装置重心が配置されている
ことを特徴とする、請求項1〜4の何れか1項に記載の回転体の温度計測装置。
The temperature of the rotating body according to any one of claims 1 to 4, wherein the center of gravity of the device is arranged on a plane including the axis of the tubular member and the detection point of the detection unit. Measuring device.
前記フランジ部の外周は滑らかな曲面状に形成されている
ことを特徴とする、請求項1〜5の何れか1項に記載の回転体の温度計測装置。
The temperature measuring device for a rotating body according to any one of claims 1 to 5, wherein the outer periphery of the flange portion is formed in a smooth curved surface shape.
前記フランジ部に、前記温度センサを配線する配線用穴部が加工され、
前記温度センサと前記配線用穴部との間に断熱材が介装されている
ことを特徴とする、請求項1〜6の何れか1項に記載の回転体の温度計測装置。
A wiring hole for wiring the temperature sensor is machined in the flange.
The temperature measuring device for a rotating body according to any one of claims 1 to 6, wherein a heat insulating material is interposed between the temperature sensor and the wiring hole.
前記検出部は、前記内面に対して線接触可能な線状に形成されている
ことを特徴とする、請求項1〜7の何れか1項に記載の回転体の温度計測装置。
The temperature measuring device for a rotating body according to any one of claims 1 to 7, wherein the detection unit is formed in a linear shape capable of linear contact with the inner surface.
前記フランジ部の外周部と、前記ロータの軸穴との間に、前記フランジ部の前記ロータの軸穴に対する周方向位置を案内するガイド機構が備えられている
ことを特徴とする、請求項1〜8の何れか1項に記載の回転体の温度計測装置。
Claim 1 is characterized in that a guide mechanism for guiding the circumferential position of the flange portion with respect to the shaft hole of the rotor is provided between the outer peripheral portion of the flange portion and the shaft hole of the rotor. The temperature measuring device for a rotating body according to any one of 8 to 8.
前記内面の温度検出を要する検出対象箇所は、前記回転体の軸方向に分布して複数配置され、
前記筒状部材には、前記検出対象箇所に対応した位置に複数の前記フランジ部が固設されている
ことを特徴とする、請求項1〜9の何れか1項に記載の回転体の温度計測装置。
A plurality of detection target locations that require temperature detection on the inner surface are distributed in the axial direction of the rotating body and are arranged.
The temperature of the rotating body according to any one of claims 1 to 9, wherein a plurality of the flange portions are fixedly provided to the tubular member at positions corresponding to the detection target portions. Measuring device.
複数の前記フランジ部の各重心位置は、前記筒状部材の軸心に対して同一方向に偏心している
ことを特徴とする、請求項10に記載の回転体の温度計測装置。
The temperature measuring device for a rotating body according to claim 10, wherein the positions of the centers of gravity of the plurality of flange portions are eccentric in the same direction with respect to the axial center of the tubular member.
前記筒状部材は、一端において前記回転体に接合されている
ことを特徴とする、請求項1〜11の何れか1項に記載の回転体の温度計測装置。
The temperature measuring device for a rotating body according to any one of claims 1 to 11 , wherein the tubular member is joined to the rotating body at one end.
軸穴を有する回転体であって、
請求項1〜12の何れか1項に記載の回転体の温度計測装置を装着されている
ことを特徴とする、回転体。
A rotating body with a shaft hole
A rotating body, characterized in that the temperature measuring device for the rotating body according to any one of claims 1 to 12 is mounted.
請求項13に記載の回転体をロータとして備えている
ことを特徴とする、タービン。
A turbine according to claim 13, wherein the rotating body is provided as a rotor.
請求項1〜12の何れか1項に記載の回転体の温度計測装置を用いて、前記回転体の軸穴の内面の温度を計測する回転体の温度計測方法であって、
前記軸穴内に前記筒状部材を挿入し、前記温度センサの前記検出部を前記内面の温度検出を要する検出対象箇所に対向するように配置して、前記筒状部材を前記回転体に設置する準備工程と、
前記回転体を回転させて前記回転体と一体に前記筒状部材を回転させ、この回転に伴って前記フランジ部に前記偏心する側に向けて発生する遠心力によって、前記検出部を前記内面に当接させて前記内面の温度を計測する計測工程と、を有する
ことを特徴とする、回転体の温度計測方法。
A method for measuring the temperature of a rotating body, which measures the temperature of the inner surface of the shaft hole of the rotating body by using the temperature measuring device for the rotating body according to any one of claims 1 to 12.
The tubular member is inserted into the shaft hole, the detection portion of the temperature sensor is arranged so as to face a detection target portion of the inner surface that requires temperature detection, and the tubular member is installed on the rotating body. Preparation process and
The rotating body is rotated to rotate the tubular member integrally with the rotating body, and the centrifugal force generated toward the eccentric side of the flange portion due to this rotation causes the detection portion to move to the inner surface. A method for measuring the temperature of a rotating body, which comprises a measuring step of abutting and measuring the temperature of the inner surface.
JP2016066600A 2016-03-29 2016-03-29 Temperature measuring device for rotating body, temperature measuring method for rotating body, turbine and rotating body Expired - Fee Related JP6774770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016066600A JP6774770B2 (en) 2016-03-29 2016-03-29 Temperature measuring device for rotating body, temperature measuring method for rotating body, turbine and rotating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016066600A JP6774770B2 (en) 2016-03-29 2016-03-29 Temperature measuring device for rotating body, temperature measuring method for rotating body, turbine and rotating body

Publications (2)

Publication Number Publication Date
JP2017181205A JP2017181205A (en) 2017-10-05
JP6774770B2 true JP6774770B2 (en) 2020-10-28

Family

ID=60005373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016066600A Expired - Fee Related JP6774770B2 (en) 2016-03-29 2016-03-29 Temperature measuring device for rotating body, temperature measuring method for rotating body, turbine and rotating body

Country Status (1)

Country Link
JP (1) JP6774770B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1509774A (en) * 1975-05-12 1978-05-04 Loewy Robertson Eng Co Ltd Detection of the temperature of sheet or strip material
US4135401A (en) * 1977-11-23 1979-01-23 Westinghouse Electric Corp. Temperature measurement system for hollow shaft interiors
JPS60179941U (en) * 1984-05-10 1985-11-29 三菱重工業株式会社 temperature measuring device
KR100717041B1 (en) * 2005-10-15 2007-05-14 삼성전자주식회사 Fusing device of electro-photographic image forming apparatus having temperature sensor protecting structure

Also Published As

Publication number Publication date
JP2017181205A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP4356818B2 (en) Fixing jig for annular seal and inspection method
US20190091811A1 (en) Method and apparatus for measuring a pipe weld joint
JP6186177B2 (en) Rotational clearance measurement system and operation method
US9702776B2 (en) Sensor device for a motor vehicle, motor vehicle and method for producing a sensor device
JP2010101689A (en) Apparatus and method for measuring inside diameter of circular hole
JP5009854B2 (en) Knitting tools for knitting machines
WO2014174870A1 (en) Magnetic encoder
JP6774770B2 (en) Temperature measuring device for rotating body, temperature measuring method for rotating body, turbine and rotating body
JPH09504364A (en) Eccentric rotation probe for inspecting pipes etc.
JPS5846640B2 (en) Oil well casing position marking equipment
JP6162471B2 (en) Flange coupling structure and flange coupling method
WO2014104077A1 (en) Heat flux sensor and method for manu facturing same
CN107063079A (en) Measure the relative Concentricity tolerance in the restricted clearance between two ring elements
JP6205508B2 (en) Sliding bearing and manufacturing method of sliding bearing
JP2015075460A (en) Detection device and detection method of state quantity
JP6604857B2 (en) Torque sensor, torque sensor unit and penetration tester
EP3193142A2 (en) Fixing structure of resolver rotor and fixing structure of rotation body for motor
KR101437058B1 (en) Apparatus for the concentricity adjustment and method for concentricity adjustment using the same
WO2022190887A1 (en) Clearance sensor
JPWO2017146245A1 (en) Fatigue testing equipment
WO2021059955A1 (en) Bearing device
CN103017885B (en) System and method for condition shape identification
US20240192068A1 (en) Torque measurement device and system
JP2017116428A (en) Fixing structure for resolver rotor and rotor fixing structure for motor
JP2020106114A (en) Bearing with measuring function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201005

R150 Certificate of patent or registration of utility model

Ref document number: 6774770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees