JP6773949B2 - Bentonite mixed soil measuring method and bentonite mixed soil measuring device - Google Patents

Bentonite mixed soil measuring method and bentonite mixed soil measuring device Download PDF

Info

Publication number
JP6773949B2
JP6773949B2 JP2017022117A JP2017022117A JP6773949B2 JP 6773949 B2 JP6773949 B2 JP 6773949B2 JP 2017022117 A JP2017022117 A JP 2017022117A JP 2017022117 A JP2017022117 A JP 2017022117A JP 6773949 B2 JP6773949 B2 JP 6773949B2
Authority
JP
Japan
Prior art keywords
water content
density
wet
wet density
mixed soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017022117A
Other languages
Japanese (ja)
Other versions
JP2018128372A (en
Inventor
永井 裕之
裕之 永井
正和 千々松
正和 千々松
山田 淳夫
淳夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Ando Corp filed Critical Hazama Ando Corp
Priority to JP2017022117A priority Critical patent/JP6773949B2/en
Publication of JP2018128372A publication Critical patent/JP2018128372A/en
Application granted granted Critical
Publication of JP6773949B2 publication Critical patent/JP6773949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本願発明は、ベントナイト混合土の物性の測定に関する技術であり、より具体的には、RI(Radio Isotope)計器を用いてベントナイト混合土の湿潤密度と含水量を測定する技術に関するものである。 The present invention relates to a technique for measuring the physical properties of a bentonite mixed soil, and more specifically, to a technique for measuring the wet density and water content of a bentonite mixed soil using an RI (Radio Isotope) instrument.

ベントナイト混合土は、低透水性という性能を有することから、埋設物への遮水を目的とした覆土として利用されることが多く、例えば浅地中ピット処分の覆土としても用いられている。浅地中ピット処分は、放射能レベルが比較的低い廃棄物を埋設処分する方法であり、図7に示すように地表面から浅い位置に構築したコンクリートピット内に廃棄物を収納して埋設する方法である。そして、廃棄物を収納したコンクリートピットの周囲には、地下水等の移流速度の低減を目的としてベントナイト混合土が設置されることがある。 Bentonite mixed soil is often used as a soil cover for the purpose of impermeable water to buried objects because of its low water permeability. For example, it is also used as a soil cover for pit disposal in shallow ground. Shallow underground pit disposal is a method of burying waste with a relatively low radioactivity level, and as shown in FIG. 7, a method of storing and burying waste in a concrete pit constructed at a position shallow from the ground surface. Is. Bentonite mixed soil may be installed around the concrete pit that stores the waste for the purpose of reducing the advection speed of groundwater and the like.

覆土として設置されるベントナイト混合土は、その性能として特に低透水性が要求される。透水性を確認するには透水係数を測定するのが直接的であるが、この測定には数十日を要することから、次施工段階に移行する根拠として施工時に測定するのは現実的ではない。そこで通常は、透水性の代替特性である乾燥密度を測定することで、ベントナイト混合土の低透水性を確認している。 Bentonite mixed soil installed as a soil cover is particularly required to have low permeability as its performance. It is direct to measure the hydraulic conductivity to confirm the hydraulic conductivity, but since this measurement takes several tens of days, it is not realistic to measure it at the time of construction as a basis for moving to the next construction stage. .. Therefore, usually, the low permeability of bentonite mixed soil is confirmed by measuring the dry density, which is an alternative property of permeability.

乾燥密度は、盛土の締固めの品質管理を行うためにも用いられ、その測定手法は、原位置の盛土の一部を採取する測定方法(以下、「破壊型測定手法」という。)と、原位置の盛土を乱すことなく測定する方法(以下、「非破壊型測定手法」という。)に大別される。破壊型測定手法には、土を採取した試験孔に砂を充填する砂置換法(JISA1214)や不攪乱のサンプルを採取して直接測定するコアサンプリング法などがあり、一方の非破壊型測定手法としては、RI計器を用いた測定(以下、「RI測定」という。)を挙げることができる。RI計器は、γ線と中性子線を放出するもので、γ線の変化を検知することで密度を測定し、中性子線の変化を検知することで水分量を測定することができる。 The dry density is also used for quality control of embankment compaction, and the measurement method is a measurement method for collecting a part of the embankment in the original position (hereinafter referred to as "destructive measurement method"). It is roughly classified into a method of measuring without disturbing the embankment in the in-situ position (hereinafter referred to as "non-destructive measurement method"). Destructive measurement methods include a sand replacement method (JISA1214) in which sand is filled in a test hole from which soil is collected, and a core sampling method in which an undisturbed sample is collected and directly measured. One of the non-destructive measurement methods is Examples of the measurement using an RI instrument (hereinafter referred to as “RI measurement”) can be mentioned. The RI instrument emits γ-rays and neutron rays, and can measure the density by detecting changes in γ-rays and the water content by detecting changes in neutron rays.

従来、盛土の締固めの品質管理として乾燥密度を測定する場合は、砂置換法やコアサンプリング法といった破壊型測定手法が主流であった。しかしながら破壊型測定手法は、炉乾燥など現地以外での作業が必要であり、この炉乾燥に相当の時間(24時間程度)を要することから現地施工に手戻りが生じることもあった。これに対してRI測定は、現地以外での作業が不要であり、そのため短時間で測定することができ速やかに結果を施工に反映させることができる。また、施工面を乱すことなく密度や含水比を測定することができる点も、RI測定の利点である。 Conventionally, when measuring the dry density as quality control for compaction of embankments, destructive measurement methods such as sand replacement method and core sampling method have been the mainstream. However, the destructive measurement method requires work other than on-site such as furnace drying, and it takes a considerable amount of time (about 24 hours) to dry the furnace, so that on-site construction may be reworked. On the other hand, RI measurement does not require work outside the site, so it can be measured in a short time and the results can be quickly reflected in the construction. Another advantage of RI measurement is that the density and water content can be measured without disturbing the construction surface.

そこで近年では、盛土の締固めの品質管理においても高速道路や一部のダムをはじめとしてRI測定が導入されるようになり、RI測定を用いた締固め管理が標準化されつつある。また特許文献1のように、RI測定と他の測定方法を組み合わせた技術も提案されている。 Therefore, in recent years, RI measurement has been introduced for quality control of embankment compaction, including highways and some dams, and compaction control using RI measurement is being standardized. Further, as in Patent Document 1, a technique combining RI measurement and other measurement methods has also been proposed.

特開平09−138202号公報Japanese Unexamined Patent Publication No. 09-138202

このように盛土の品質管理としてはRI測定が広がりつつあるが、覆土として設置されるベントナイト混合土の品質管理としてはそれほど導入されていない。これは、ベントナイト混合土に対するRI測定の適用性が理由として挙げられる。もちろん原位置のベントナイト混合土をRI計器で測定すれば、密度と水分量が得られ乾燥密度も確認することができるが、砂置換法やコアサンプリング法の測定と照らし合わせると両者の結果はあまり整合しないことが知られている。そのため、ベントナイト混合土の品質管理として乾燥密度を測定する場合は、砂置換法やコアサンプリング法が主流であり、RI測定を採用するケースでも砂置換法等により数多くの試験数で確認測定を行っているのが実情である。 As described above, RI measurement is spreading as the quality control of embankment, but it is not so introduced as the quality control of bentonite mixed soil installed as a covering soil. This is because of the applicability of RI measurement to bentonite mixed soil. Of course, if the bentonite mixed soil in the original position is measured with an RI instrument, the density and water content can be obtained and the dry density can also be confirmed, but when compared with the measurements of the sand replacement method and the core sampling method, the results of both are not so good. It is known to be inconsistent. Therefore, when measuring the dry density as a quality control of bentonite mixed soil, the sand replacement method and core sampling method are the mainstream, and even in the case where RI measurement is adopted, confirmation measurement is performed with a large number of tests by the sand replacement method etc. The reality is that.

本願発明の課題は、従来技術が抱える問題を解決することであり、すなわち、RI測定によってベントナイト混合土の物性を精度よく求めることができる測定方法と測定装置を提供することである。 An object of the present invention is to solve the problems of the prior art, that is, to provide a measuring method and a measuring device capable of accurately obtaining the physical properties of the bentonite mixed soil by RI measurement.

本願発明は、あらかじめRI測定の結果と破壊型測定手法による結果から両者の関係を表す補正式を設定し、実際に得られたRI測定の結果を補正式によって補正することで、より信頼性の高いベントナイト混合土の物性を求める、という点に着目してなされたものであり、これまでにない発想に基づいて行われた発明である。 The present invention is more reliable by setting a correction formula that expresses the relationship between the RI measurement result and the result of the destructive measurement method in advance and correcting the actually obtained RI measurement result by the correction formula. It was made with a focus on the point of seeking the physical properties of high bentonite mixed soil, and it was an invention made based on an unprecedented idea.

本願発明のベントナイト混合土の測定方法は、現位置のベントナイト混合土の物性を測定する方法であり、試験体作成工程と、事前RI測定工程、事前破壊型測定工程、密度補正式設定工程、含水量補正式設定工程、実測定工程を備えた方法である。このうち試験体作成工程では、ベントナイト混合土試料(原位置のベントナイト混合土と同等の比率でベントナイトが混合されたもの)を用意し、さらに乾燥密度及び含水比の組み合わせを変えた複数種類のベントナイト混合土試料を「試験体」として作成する。事前RI測定工程では、RI計器を用いて複数種類の試験体それぞれの湿潤密度及び含水量を「第1湿潤密度」及び「第1含水量」として取得し、事前破壊型測定工程では、破壊型測定手法によって複数種類の試験体それぞれの湿潤密度及び含水量を「第2湿潤密度」及び「第2含水量」として取得する。また密度補正式設定工程では、複数の第1湿潤密度(事前RI測定工程で取得)と複数の第2湿潤密度(事前破壊型測定工程で取得)に基づいて、第1湿潤密度と第2湿潤密度の関係を示す「密度補正式」を設定する。含水量補正式設定工程では、複数の第1含水量(事前RI測定工程で取得)と複数の第2含水量(事前破壊型測定工程で取得)に基づいて、第1含水量と第2含水量の関係を示す「含水量補正式」を設定する。そして実測定工程では、RI計器によって現位置のベントナイト混合土を測定して「測定湿潤密度」及び「測定含水量」を取得するとともに、この測定湿潤密度を密度補正式に基づいて補正して「実湿潤密度」を求め、測定含水量を含水量補正式に基づいて補正して「実含水量」を求める。 The method for measuring bentonite mixed soil of the present invention is a method for measuring the physical properties of bentonite mixed soil at the current position, and includes a test piece preparation step, a pre-RI measurement step, a pre-destructive measurement step, a density correction type setting step, and the like. This method includes a water amount correction type setting process and an actual measurement process. Of these, in the test specimen preparation step, a bentonite mixed soil sample (a mixture of bentonite in the same ratio as the in-situ bentonite mixed soil) was prepared, and a plurality of types of bentonite with different combinations of dry density and water content ratio were prepared. Prepare a mixed soil sample as a "test piece". In the pre-RI measurement step, the wet density and water content of each of the multiple types of test specimens are obtained as "first wet density" and "first water content" using an RI instrument, and in the pre-destructive measurement step, the destructive type The wet density and water content of each of the plurality of types of test specimens are obtained as "second wet density" and "second water content" by the measuring method. In the density correction type setting step, the first wet density and the second wet density are based on a plurality of first wet densities (obtained in the pre-RI measurement step) and a plurality of second wet densities (obtained in the pre-destructive measurement step). Set a "density correction formula" that indicates the relationship between densities. In the water content correction type setting step, the first water content and the second water content are included based on a plurality of first water contents (acquired in the pre-RI measurement step) and a plurality of second water contents (acquired in the pre-destructive measurement step). Set the "water content correction formula" that shows the relationship of water content. Then, in the actual measurement step, the bentonite mixed soil at the current position is measured by the RI instrument to obtain the "measured wet density" and "measured water content", and the measured wet density is corrected based on the density correction formula. The "actual wet density" is obtained, and the measured water content is corrected based on the water content correction formula to obtain the "actual water content".

本願発明のベントナイト混合土の測定方法は、密度補正式設定工程で設定される密度補正式を第1補正係数Aと第2補正係数Bを用いて設定し、含水量補正式設定工程で設定される含水量補正式を第3補正係数Cと第4補正係数Dを用いて設定する方法とすることもできる。この場合、測定湿潤密度をρ1、実湿潤密度をρ2とすると、密度補正式は次式で表される。
ρ2=(ρ1−A)÷B
また、測定含水量をw1、実含水量をw2とすると、含水量補正は次式で表される。
w2=(w1−C)÷D
In the method for measuring bentonite mixed soil of the present invention, the density correction formula set in the density correction formula setting step is set by using the first correction coefficient A and the second correction coefficient B, and is set in the water content correction formula setting step. It is also possible to set the water content correction formula by using the third correction coefficient C and the fourth correction coefficient D. In this case, assuming that the measured wet density is ρ1 and the actual wet density is ρ2, the density correction formula is expressed by the following formula.
ρ2 = (ρ1-A) ÷ B
Further, assuming that the measured water content is w1 and the actual water content is w2, the water content correction is expressed by the following equation.
w2 = (w1-C) ÷ D

本願発明のベントナイト混合土の測定方法は、「境界湿潤密度」を設定したうえで密度補正式を設定する方法とすることもできる。この場合、密度補正式設定工程では、境界湿潤密度を下回る範囲の第1補正係数A及び第2補正係数Bと、境界湿潤密度を上回る範囲の第1補正係数A及び第2補正係数Bをそれぞれ異なる値とし、すなわち境界湿潤密度を下回る範囲と上回る範囲で2種類の密度補正式を設定する。 The method for measuring bentonite mixed soil of the present invention can also be a method of setting a density correction formula after setting a "boundary wet density". In this case, the density correction expression setting step, a first correction coefficient A 1 and the second correction coefficient B 1 range below the boundary wet density, the first correction coefficient A 2 and the second correction coefficient in the range above the boundary wet density B 2 is set to a different value, that is, two types of density correction formulas are set in a range below and above the boundary wet density.

本願発明のベントナイト混合土の測定装置は、現位置のベントナイト混合土の物性を測定する装置であり、RI測定手段と、実湿潤密度算出手段、実含水量算出手段を備えたものである。このうちRI測定手段は、原位置のベントナイト混合土の測定湿潤密度及び測定含水量を取得するものである。また実湿潤密度算出手段は、測定湿潤密度をあらかじめ設定された密度補正式に基づいて補正して実湿潤密度を求めるものであり、実含水量算出手段は、測定含水量をあらかじめ設定された含水量補正式に基づいて補正して実含水量を求めるものである。なお密度補正式は、複数の第1湿潤密度と第2湿潤密度との関係から設定され、含水量補正式は、複数の第1含水量と第2含水量との関係から設定される。 The bentonite mixed soil measuring device of the present invention is a device for measuring the physical properties of the bentonite mixed soil at the current position, and includes an RI measuring means, an actual wet density calculating means, and an actual water content calculating means. Of these, the RI measuring means obtains the measured wet density and the measured water content of the bentonite mixed soil in the in-situ position. Further, the actual wet density calculation means corrects the measured wet density based on a preset density correction formula to obtain the actual wet density, and the actual water content calculation means includes the measured moisture content set in advance. The actual water content is obtained by correcting based on the water content correction formula. The density correction formula is set from the relationship between the plurality of first wet densities and the second wet density, and the water content correction formula is set from the relationship between the plurality of first water contents and the second water content.

本願発明のベントナイト混合土の測定方法、及びベントナイト混合土の測定装置には、次のような効果がある。
(1)これまでベントナイト混合土への適用が困難とされてきたRI測定が可能となることから、測定にかかる労力と時間が砂置換法やコアサンプリング法といった破壊型測定手法に比べ飛躍的に低減される。
(2)測定にかかる労力と時間が低減される結果、比較的容易に広い範囲を測定することができ、すなわち原位置のベントナイト混合土を面的に品質管理することが可能となる。
(3)RI測定結果の信頼性が向上することからRI測定による測点数を大幅に増加することができ、これにより砂置換法やコアサンプリング法による試験数を著しく削減することができる。
The method for measuring bentonite mixed soil and the measuring device for bentonite mixed soil of the present invention have the following effects.
(1) Since RI measurement, which has been difficult to apply to bentonite mixed soil, is possible, the labor and time required for measurement is dramatically higher than that of destructive measurement methods such as sand replacement method and core sampling method. It will be reduced.
(2) As a result of reducing the labor and time required for measurement, it is possible to measure a wide range relatively easily, that is, it is possible to control the quality of the bentonite mixed soil in the in-situ area.
(3) Since the reliability of the RI measurement result is improved, the number of stations measured by the RI measurement can be significantly increased, and thereby the number of tests by the sand substitution method or the core sampling method can be significantly reduced.

本願発明のベントナイト混合土の測定方法の主な工程の流れを示すフロー図。The flow chart which shows the flow of the main process of the measuring method of the bentonite mixed soil of this invention. 11種類の試験体における乾燥密度と含水比の組み合わせを示す説明図。Explanatory drawing which shows the combination of the dry density and the water content ratio in 11 kinds of test specimens. (a)は第1湿潤密度と第2湿潤密度の関係を示すグラフ図、(b)は第1含水比と第2含水比の関係を示すグラフ図。(A) is a graph showing the relationship between the first wet density and the second wet density, and (b) is a graph showing the relationship between the first water content ratio and the second water content ratio. 密度補正式と含水量補正式に適用される定数を示す説明図。Explanatory drawing which shows the constant applied to the density correction formula and the water content correction formula. (a)は第1湿潤密度の補正値と第2湿潤密度の関係を示すグラフ図、(b)は第1含水比の補正値と第2含水比の関係を示すグラフ図。(A) is a graph showing the relationship between the correction value of the first wet density and the second wet density, and (b) is a graph showing the relationship between the correction value of the first water content ratio and the second water content ratio. 本願発明のベントナイト混合土の測定装置の主な構成を示すブロック図。The block diagram which shows the main structure of the measuring apparatus of bentonite mixed soil of this invention. 浅地中ピット処分を説明する断面図。Sectional drawing explaining pit disposal in shallow ground.

本願発明のベントナイト混合土の測定方法、及びベントナイト混合土の測定装置の一例を、図に基づいて説明する。 An example of the method for measuring bentonite mixed soil and the measuring device for bentonite mixed soil of the present invention will be described with reference to the drawings.

1.ベントナイト混合土の測定方法
はじめに本願発明のベントナイト混合土の測定方法について図1を参照しながら説明する。図1は、本願発明のベントナイト混合土の測定方法の主な工程の流れを示すフロー図であり、中央の列に実施する行為を示し、左列にはその行為に必要なものを、右列にはその行為から生ずるものを示している。
1. 1. Method for Measuring Bentonite Mixed Soil First, the method for measuring bentonite mixed soil of the present invention will be described with reference to FIG. FIG. 1 is a flow chart showing the flow of the main steps of the method for measuring bentonite mixed soil of the present invention. The central column shows the actions to be performed, the left column shows what is necessary for the action, and the right column shows the actions required for the actions. Shows what results from that act.

本願発明は、現位置のベントナイト混合土をRI測定するにあたって、あらかじめ測定値を補正するための補正式を設定することを1つの特徴としている。この補正式を設定するためには、ベントナイト混合土の試料(サンプル)に対してRI測定と破壊型測定(砂置換法やコアサンプリング法など)を行う。そのため、まずは原位置のベントナイト混合土と同条件のベントナイト混合土の試料(以下、「ベントナイト混合土試料」という。)を用意する。具合的には、原位置のベントナイト混合土と同等の比率でベントナイトが混合されたものをベントナイト混合土試料とする。例えば、原位置のベントナイト混合土のベントナイト混合率が30%であれば、30%のベントナイトと70%の砂(例えばコンクリート骨材用の山砂)を混合したものをベントナイト混合土試料とするとよい。また、現位置で使用されるベントナイトの種類も(Na型のクニゲルV1やCa型のクニボンドなど)同一にすることが望ましい。なお、補正式の設定までの工程(図1のStep10〜Step50)は、現場(原位置周辺)で行うこともできるし、現場とは異なる実験室等で行うこともできる。 One of the features of the present invention is to set a correction formula for correcting the measured value in advance when performing RI measurement of the bentonite mixed soil at the current position. In order to set this correction formula, RI measurement and fracture type measurement (sand replacement method, core sampling method, etc.) are performed on a sample of bentonite mixed soil. Therefore, first, a sample of bentonite mixed soil under the same conditions as the in-situ bentonite mixed soil (hereinafter referred to as "bentonite mixed soil sample") is prepared. Specifically, a bentonite mixed soil sample in which bentonite is mixed in the same ratio as the in-situ bentonite mixed soil is used as a bentonite mixed soil sample. For example, if the bentonite mixing ratio of the in-situ bentonite mixed soil is 30%, a mixture of 30% bentonite and 70% sand (for example, mountain sand for concrete aggregate) may be used as a bentonite mixed soil sample. .. It is also desirable that the types of bentonite used at the current position are the same (Na-type Kunigel V1 and Ca-type Kunibond, etc.). The steps up to the setting of the correction formula (Steps 10 to 50 in FIG. 1) can be performed at the site (around the in-situ position) or in a laboratory or the like different from the site.

ベントナイト混合土試料が用意できると、試験体を作成する(Step10)。ここで試験体とは、RI測定と破壊型測定を行う対象物であり、ベントナイト混合土試料を用いて作成される。このとき、同じベントナイト混合土試料を使用し、乾燥密度と含水比の組み合わせが異なる複数種類(図1ではN種類)の試験体が作成される。例えば図2では、同じベントナイト混合土試料から11種類(ケース)の試験体を作成した例を示している。 When the bentonite mixed soil sample is prepared, a test piece is prepared (Step 10). Here, the test piece is an object for RI measurement and fracture type measurement, and is prepared using a bentonite mixed soil sample. At this time, using the same bentonite mixed soil sample, a plurality of types of specimens (N types in FIG. 1) having different combinations of dry density and water content are prepared. For example, FIG. 2 shows an example in which 11 types (cases) of test specimens were prepared from the same bentonite mixed soil sample.

試験体は、試験用土槽(例えば鋼製土槽)を用いて作成することができる。図2に示すように11種類の試験体を作成する場合は、11の試験用土槽を用意し、それぞれベントナイト混合土試料を詰めていく。そして、11の試験用土槽のベントナイト混合土試料に対して、それぞれ締固めの度合いを変えることによって、11種類の乾燥密度と含水比の組み合わせをもつ試験体を作成するわけである。なお試験体は、試験用土槽を用いるもののほか、実験フィールドに構築する試験盛土体とすることもできる。後に説明する事前破壊型測定として、コアサンプリング法を採用する場合は試験用土槽を用いた試験体で測定できるが、砂置換法を採用する場合は試験盛土体の試験体とするとよい。 The test piece can be prepared using a test soil tank (for example, a steel soil tank). When 11 kinds of test specimens are prepared as shown in FIG. 2, 11 test soil tanks are prepared, and bentonite mixed soil samples are filled in each. Then, by changing the degree of compaction of the bentonite mixed soil samples in the 11 test soil tanks, test specimens having 11 kinds of combinations of dry density and water content are prepared. The test body can be a test embankment to be constructed in the experimental field, in addition to using a test soil tank. As a pre-fracture type measurement to be described later, when the core sampling method is adopted, it can be measured with a test body using a test soil tank, but when the sand replacement method is adopted, it is preferable to use a test body of a test embankment.

複数種類の試験体を作成すると、事前RI測定(Step20)と事前破壊型測定(Step30)を行う。事前RI測定は、それぞれの試験体に対してRI測定を行う工程である。既述のとおりRI計器は、γ線の変化を検知することで密度を測定し、中性子線の変化を検知することで水分量を測定することができる。ここで用いるRI計器は、透過型、散乱型のどちらを採用してもよいが、比較的設置が容易である散乱型のRI計器を採用する方が望ましい。なおここでは便宜上、事前破壊型測定の結果と区別するため、事前RI測定で得られる湿潤密度を「第1湿潤密度」と、含水量を「第1含水量」ということとする。 When a plurality of types of test specimens are prepared, pre-RI measurement (Step 20) and pre-destructive measurement (Step 30) are performed. Preliminary RI measurement is a step of performing RI measurement on each test piece. As described above, the RI instrument can measure the density by detecting the change in γ-rays and the water content by detecting the change in neutron rays. The RI instrument used here may be either a transmission type or a scattering type, but it is preferable to adopt a scattering type RI instrument that is relatively easy to install. Here, for convenience, in order to distinguish it from the result of the pre-destructive measurement, the wet density obtained by the pre-RI measurement is referred to as "first wet density" and the water content is referred to as "first water content".

一方の事前破壊型測定は、それぞれの試験体に対して破壊型測定を行う工程であり、試験体の形態に応じて砂置換法やコアサンプリング法を適宜採用することができる。ここでは便宜上、事前破壊型測定で得られる湿潤密度を「第2湿潤密度」と、含水量を「第2含水量」ということとする。なお、事前RI測定(Step20)と事前破壊型測定(Step30)はどちらから行ってもよいし、試験体が大きい場合は同時に行ってもよい。ただし、事前破壊型測定を先に行うと表面の平坦性がやや悪くなるため事前RI測定が難しくなることもあり、特に(試験用土槽など)試験体が小さい場合は事前RI測定から先に行うのが望ましい。 On the other hand, the pre-fracture type measurement is a step of performing a fracture type measurement on each test piece, and a sand substitution method or a core sampling method can be appropriately adopted depending on the form of the test piece. Here, for convenience, the wet density obtained by the pre-fracture type measurement is referred to as "second wet density", and the water content is referred to as "second water content". The pre-RI measurement (Step 20) and the pre-destructive measurement (Step 30) may be performed from either of them, or at the same time when the test piece is large. However, if the pre-destructive measurement is performed first, the flatness of the surface will be slightly deteriorated, which may make it difficult to perform the pre-RI measurement. Is desirable.

11種類の試験体それぞれに対して事前RI測定と事前破壊型測定を行い、11ケースの第1湿潤密度と第1含水量、11ケースの第2湿潤密度と第2含水量が得られると、密度補正式を設定(Step40)し、含水量補正式を設定(Step50)する。 Pre-RI measurement and pre-destructive measurement were performed on each of the 11 types of specimens, and when the first wet density and the first moisture content of 11 cases and the second wet density and the second moisture content of 11 cases were obtained, The density correction formula is set (Step 40), and the water content correction formula is set (Step 50).

図3は事前RI測定と事前破壊型測定の結果の関係を示すグラフ図であり、(a)は第1湿潤密度と第2湿潤密度の関係を示すものであって、第2湿潤密度(事前破壊型測定)を横軸にとり、第1湿潤密度(事前RI測定)を縦軸にとった座標系に、同一種類の試験体を測定した第1湿潤密度と第2湿潤密度を座標としてプロットしたものである。したがって、同一種類の試験体を測定した第1湿潤密度と第2湿潤密度の値が近似していれば、図3(a)に示す破線付近にプロットされる。 FIG. 3 is a graph showing the relationship between the results of the pre-RI measurement and the pre-destructive measurement, and FIG. 3A shows the relationship between the first wet density and the second wet density, and the second wet density (pre-wet density). The first wet density (preliminary RI measurement) was plotted on the horizontal axis, and the first wet density and the second wet density measured on the same type of specimen were plotted as coordinates on the coordinate system with the first wet density (pre-RI measurement) on the vertical axis. It is a thing. Therefore, if the values of the first wet density and the second wet density of the same type of test specimen are similar, they are plotted near the broken line shown in FIG. 3 (a).

一方、図3(b)は第1含水量と第2含水量の関係を示すものであるが、含水量の代わりに含水比を用いて表している。なおここでは便宜上、事前RI測定で得られる含水量に基づいて求められる含水比を「第1含水比」と、事前破壊型測定で得られる含水量に基づいて求められる含水比を「第2含水比」ということとする。すなわち図3(b)は、第2含水比(事前破壊型測定)を横軸にとり、第1含水比(事前RI測定)を縦軸にとった座標系に、同一種類の試験体を測定した第1含水比と第2含水比を座標としてプロットしたものである。したがって、同一種類の試験体を測定した第1含水比と第2含水比の値が近似していれば、図3(b)に示す破線付近にプロットされる。 On the other hand, FIG. 3B shows the relationship between the first water content and the second water content, but the water content ratio is used instead of the water content. Here, for convenience, the water content ratio obtained based on the water content obtained by the pre-RI measurement is the "first water content ratio", and the water content ratio obtained based on the water content obtained by the pre-destructive measurement is "the second water content". "Ratio". That is, in FIG. 3B, the same type of test piece was measured in a coordinate system with the second water content ratio (pre-destructive measurement) on the horizontal axis and the first water content ratio (pre-RI measurement) on the vertical axis. The first water content ratio and the second water content ratio are plotted as coordinates. Therefore, if the values of the first water content ratio and the second water content ratio measured for the same type of test piece are similar, they are plotted near the broken line shown in FIG. 3 (b).

密度補正式は、RI測定で得られた現位置のベントナイト混合土の湿潤密度(以下、「測定湿潤密度」という。)から実際の湿潤密度(以下、「実湿潤密度」)を求めるための補正式であって、図3(a)のグラフに基づいて求められる回帰直線(あるいは回帰曲線)によって設定される。例えば、測定湿潤密度をρ1、実湿潤密度をρ2、第1補正係数をA、第2補正係数をBとしたとき、密度補正式は次式とすることができる。
ρ2=(ρ1−A)÷B ・・・(式1)
The density correction formula is a correction for obtaining the actual wet density (hereinafter, "actual wet density") from the wet density (hereinafter, "measured wet density") of the bentonite mixed soil at the current position obtained by RI measurement. It is an equation and is set by a regression line (or regression curve) obtained based on the graph of FIG. 3 (a). For example, when the measured wet density is ρ1, the actual wet density is ρ2, the first correction coefficient is A, and the second correction coefficient is B, the density correction formula can be as follows.
ρ2 = (ρ1-A) ÷ B ... (Equation 1)

含水量補正式は、RI測定で得られた現位置のベントナイト混合土の含水量(以下、「測定含水量」という。)から実際の含水量(以下、「実含水量」)を求めるための補正式であって、図3(b)のグラフを基礎として設定される。なお図3(b)のグラフは第1含水比と第2含水比の関係を示すものであるが、試験体の乾燥密度は既知であり、ここまでで第1湿潤密度と第2湿潤密度が得られていることから、第1含水比を第1含水量に、第2含水比を第2含水量に換算する(含水量は、含水比と、乾燥密度、湿潤密度から求められる)ことで第1含水量と第2含水量の関係を示すグラフを作成することができ、このグラフに基づいて求められる回帰直線(あるいは回帰曲線)によって含水量補正式を設定するわけである。例えば、測定含水量をw1、実含水量をw2、第3補正係数をC、第4補正係数をDとしたとき、含水量補正式は次式とすることができる。
w2=(w1−C)÷D ・・・(式2)
The water content correction formula is for obtaining the actual water content (hereinafter, "actual water content") from the water content of the bentonite mixed soil at the current position (hereinafter referred to as "measured water content") obtained by RI measurement. It is a correction formula and is set based on the graph of FIG. 3 (b). The graph of FIG. 3B shows the relationship between the first water content ratio and the second water content ratio, but the dry density of the test piece is known, and the first wet density and the second wet density have been obtained so far. Since it has been obtained, the first water content is converted to the first water content and the second water content is converted to the second water content (the water content can be obtained from the water content, the dry density, and the wet density). A graph showing the relationship between the first water content and the second water content can be created, and the water content correction formula is set by the regression line (or regression curve) obtained based on this graph. For example, when the measured water content is w1, the actual water content is w2, the third correction coefficient is C, and the fourth correction coefficient is D, the water content correction formula can be as follows.
w2 = (w1-C) ÷ D ... (Equation 2)

ところで図3(a)を見ると、湿潤密度が小さい試験体を測定した結果ほど第1湿潤密度と第2湿潤密度の値が近似し、湿潤密度が大きい試験体を測定した結果ほど第1湿潤密度と第2湿潤密度の値が相違していることが分かる。そして、第1湿潤密度と第2湿潤密度の近似(相違)の程度は、湿潤密度の大小に応じて漸次的に変化するのではなく、ある湿潤密度を境界として段階的に変化している。例えば図3(a)では、湿潤密度2.10g/cmを下回る範囲では第1湿潤密度と第2湿潤密度の値が比較的近似しているのに対して、湿潤密度2.10g/cmを上回る範囲では第1湿潤密度と第2湿潤密度の値が極端に相違している。 By the way, looking at FIG. 3A, the results of measuring the test piece having a low wet density are closer to the values of the first wet density and the second wet density, and the result of measuring the test body having a high wet density is the first wet. It can be seen that the values of the density and the second wet density are different. The degree of approximation (difference) between the first wet density and the second wet density does not change gradually according to the magnitude of the wet density, but changes stepwise with a certain wet density as a boundary. For example, in FIG. 3A, the values of the first wet density and the second wet density are relatively close in the range below 2.10 g / cm 3 , while the wet density is 2.10 g / cm. In the range exceeding 3 , the values of the first wet density and the second wet density are extremely different.

そこで密度補正式は、湿潤密度に応じて2種類設定するとよい。具体的には密度補正式の種類を分ける境界となる湿潤密度(以下、「境界湿潤密度」という。)を設定するとともに、この境界湿潤密度を下回る範囲(以下、「小密度範囲」という。)に適用する密度補正式を設定し、境界湿潤密度を上回る範囲(以下、「大密度範囲」という。)に適用する密度補正式を設定するわけである。 Therefore, two types of density correction formulas may be set according to the wet density. Specifically, a wet density (hereinafter referred to as "boundary wet density"), which is a boundary for dividing the types of the density correction formula, is set, and a range lower than this boundary wet density (hereinafter referred to as "small density range") is set. The density correction formula applied to is set, and the density correction formula applied to the range exceeding the boundary wet density (hereinafter referred to as "large density range") is set.

小密度範囲と大密度範囲で異なる密度補正式を設定する場合、密度補正式に用いる定数を変えることで2種類の密度補正式を設定することができる。例えば、式1を密度補正式とするときは、小密度範囲と大密度範囲で異なる第1補正係数Aと第2補正係数Bを採用するわけである。図3(a)のケースを参照してさらに具体的に説明すると、境界湿潤密度が2.10g/cmで設定され、図4に示すように小密度範囲(2.10g/cm未満)に適用する第1補正係数A(0.506)と、大密度範囲(2.10g/cm以上)に適用する第1補正係数A(0.147)とは異なる値が採用され、小密度範囲に適用する第2補正係数B(0.755)と、大密度範囲に適用する第2補正係数B(1.000)とは異なる値が採用される。 When different density correction formulas are set for the small density range and the large density range, two types of density correction formulas can be set by changing the constants used in the density correction formulas. For example, when the equation 1 is a density correction equation, the first correction coefficient A and the second correction coefficient B, which are different in the small density range and the large density range, are adopted. More specifically, with reference to the case of FIG. 3A, the boundary wet density is set at 2.10 g / cm 3 , and as shown in FIG. 4, the small density range (less than 2.10 g / cm 3 ). The first correction coefficient A 1 (0.506) applied to the above and the first correction coefficient A 2 (0.147) applied to the large density range (2.10 g / cm 3 or more) are adopted. A value different from the second correction coefficient B 1 (0.755) applied to the low density range and the second correction coefficient B 2 (1.000) applied to the high density range is adopted.

なおここまで説明したように密度補正式は、湿潤密度に応じて2種類のものを設定することもできるし、3種類以上の密度補正式を設定することもできる。あるいは、湿潤密度にかかわらず1種類の密度補正式を設定してもよい。また含水量補正式に関しても、含水量にかかわらず1種類の含水量補正式を設定することもできるし、含水量に応じて2種類以上の含水量補正式を設定してもよい。 As described above, two types of density correction formulas can be set according to the wet density, and three or more types of density correction formulas can be set. Alternatively, one kind of density correction formula may be set regardless of the wet density. As for the water content correction formula, one type of water content correction formula may be set regardless of the water content, or two or more types of water content correction formulas may be set according to the water content.

図5は、事前RI測定による値を補正式で補正した値(以下、単に「補正値」という。)と、事前破壊型測定の結果の関係を示すグラフ図であり、(a)は第1湿潤密度の補正値と第2湿潤密度の関係を示すものであって、第2湿潤密度を横軸にとり、第1湿潤密度の補正値を縦軸にとった座標系に、同一種類の試験体を測定した第1湿潤密度の補正値と第2湿潤密度を座標としてプロットしたものである。一方、図5(b)は第1含水比の補正値(第1含水量の補正値によって求められた値)と第2含水量の関係を示すものであり、第2含水比を横軸にとり、第1含水比の補正値を縦軸にとった座標系に、同一種類の試験体を測定した第1含水比の補正値と第2含水比を座標としてプロットしたものである。図5を見ると、密度補正式によって補正された第1湿潤密度の補正値は第2湿潤密度と極めて近似しており、含水量補正式によって補正された第1含水比の補正値は第2湿含水比と極めて近似している。すなわち、密度補正式と含水量補正式を利用すれば破壊型測定をRI測定で代替することができることが分かる。特に図3と図5を比較すると、密度補正式と含水量補正式を利用した効果が明確に理解できる。 FIG. 5 is a graph showing the relationship between the value obtained by correcting the value obtained by the pre-RI measurement by the correction formula (hereinafter, simply referred to as “correction value”) and the result of the pre-destructive measurement, and FIG. 5A is the first graph. It shows the relationship between the correction value of the wet density and the second wet density, and has the same type of test specimen in the coordinate system with the second wet density on the horizontal axis and the correction value of the first wet density on the vertical axis. The correction value of the first wet density and the second wet density measured in the above are plotted as coordinates. On the other hand, FIG. 5B shows the relationship between the correction value of the first water content (value obtained by the correction value of the first water content) and the second water content, and the second water content is taken on the horizontal axis. , The correction value of the first water content ratio and the second water content ratio measured by measuring the same type of test piece are plotted as coordinates in a coordinate system in which the correction value of the first water content ratio is taken on the vertical axis. Looking at FIG. 5, the correction value of the first wet density corrected by the density correction formula is very close to the second wet density, and the correction value of the first water content ratio corrected by the water content correction formula is the second. It is very close to the wet water content ratio. That is, it can be seen that the fracture type measurement can be replaced by the RI measurement by using the density correction formula and the water content correction formula. In particular, when FIG. 3 and FIG. 5 are compared, the effect of using the density correction formula and the water content correction formula can be clearly understood.

密度補正式と含水量補正式が設定できると、現場試験を行う(Step60)。実際に、現位置のベントナイト混合土に対してRI測定と破壊型測定を行い、密度補正式と含水量補正式を用いてRI測定結果を補正した補正値と、破壊型測定の結果を照らし合わせる。このとき、密度補正式と含水量補正式により得られた補正値が破壊型測定の結果に近い値であれば次の工程(Step70)に進み、両者の結果が大きく相違する場合は、試験体の種類を変えて密度補正式と含水量補正式を再度設定するとよい。なお、現場試験(Step60)は状況に応じて省略することもできる。 If the density correction formula and the water content correction formula can be set, a field test is performed (Step 60). Actually, RI measurement and fracture type measurement are performed on the bentonite mixed soil at the current position, and the correction value obtained by correcting the RI measurement result using the density correction formula and the water content correction formula is compared with the result of the fracture type measurement. .. At this time, if the correction values obtained by the density correction formula and the water content correction formula are close to the result of the fracture type measurement, the process proceeds to the next step (Step 70), and if the two results are significantly different, the test piece It is advisable to change the type of and set the density correction formula and the water content correction formula again. The field test (Step 60) may be omitted depending on the situation.

現場試験を経て(あるいは現場試験を行うことなく)密度補正式と含水量補正式が確定すると、現位置のベントナイト混合土に対してRI測定を行う(Step70)。そして、現位置RI測定で得られた「測定湿潤密度」を入力値とし、密度補正式を利用して「実湿潤密度」を求め(Step80)、同様に現位置RI測定で得られた「測定含水量」を入力値とし、含水量補正式を利用して「実含水量」を求める(Step90)。実湿潤密度と実含水量が得られると、これらに基づいて乾燥密度を算出し(Step100)、現位置のベントナイト混合土の透水性を確認する。 After the density correction formula and the water content correction formula are confirmed through the field test (or without performing the field test), RI measurement is performed on the bentonite mixed soil at the current position (Step 70). Then, the "measured wet density" obtained by the current position RI measurement is used as an input value, the "actual wet density" is obtained using the density correction formula (Step 80), and the "measurement" obtained by the current position RI measurement is also obtained. Using the "water content" as an input value, the "actual water content" is obtained using the water content correction formula (Step 90). Once the actual wet density and the actual water content are obtained, the dry density is calculated based on these (Step 100), and the permeability of the bentonite mixed soil at the current position is confirmed.

2.ベントナイト混合土の測定装置
次に本願発明のベントナイト混合土の測定装置について図6を参照しながら説明する。図6は、本願発明のベントナイト混合土の測定装置100の主な構成を示すブロック図である。なお、本願発明のベントナイト混合土の測定装置100は、ここまで説明したベントナイト混合土の測定方法に使用する装置であり、したがってベントナイト混合土の測定方法で説明した内容と重複する説明は避け、ベントナイト混合土の測定装置100に特有の内容のみ説明することとする。すなわち、ここに記載されていない内容は、ベントナイト混合土の測定方法で説明したものと同様である。
2. Bentonite mixed soil measuring device Next, the bentonite mixed soil measuring device of the present invention will be described with reference to FIG. FIG. 6 is a block diagram showing a main configuration of the bentonite mixed soil measuring device 100 of the present invention. The bentonite mixed soil measuring device 100 of the present invention is a device used in the bentonite mixed soil measuring method described so far. Therefore, avoiding explanations that overlap with the contents described in the bentonite mixed soil measuring method, bentonite mixed soil measuring device 100 is avoided. Only the contents peculiar to the mixed soil measuring device 100 will be described. That is, the contents not described here are the same as those described in the method for measuring bentonite mixed soil.

図6に示すようにベントナイト混合土の測定装置100は、RI測定手段130と、実湿潤密度算出手段113、実含水量算出手段123を含んで構成され、その他、密度補正式設定手段111、密度補正式記憶手段112、含水量補正式設定手段121、含水量補正式記憶手段122、出力手段140を含んで構成することもできる。 As shown in FIG. 6, the bentonite mixed soil measuring device 100 includes an RI measuring means 130, an actual wet density calculating means 113, and an actual water content calculating means 123, and also includes a density correction type setting means 111 and a density. It may also include the correction type storage means 112, the water content correction type setting means 121, the water content correction type storage means 122, and the output means 140.

密度補正式設定手段111や、湿潤密度算出手段113、含水量補正式設定手段121、実含水量算出手段123は、専用のものとして製造することもできるし、汎用的なコンピュータ装置を利用することもできる。このコンピュータ装置は、パーソナルコンピュータ(PC)や、iPad(登録商標)といったタブレット型端末やスマートフォン、あるいはPDA(Personal Data Assistance)などによって構成することができる。コンピュータ装置は、CPU等のプロセッサ、ROMやRAMといったメモリを具備しており、さらにマウスやキーボード等の入力手段やディスプレイ(表示手段)を含むものもある。なお、一般的なPCであればマウスやキーボード等のデバイスから入力するが、タブレット型端末やスマートフォンではタッチパネルを用いた操作(タップ、ピンチイン/アウト、スライド等)で入力することが多い。 The density correction type setting means 111, the wet density calculation means 113, the water content correction type setting means 121, and the actual water content calculation means 123 can be manufactured as dedicated ones, or a general-purpose computer device can be used. You can also. This computer device can be configured by a personal computer (PC), a tablet terminal such as an iPad (registered trademark), a smartphone, a PDA (Personal Data Assistance), or the like. The computer device includes a processor such as a CPU and a memory such as a ROM and a RAM, and some computer devices further include an input means such as a mouse and a keyboard and a display (display means). In a general PC, input is performed from a device such as a mouse or keyboard, but in a tablet terminal or smartphone, input is often performed by an operation using a touch panel (tap, pinch in / out, slide, etc.).

密度補正式設定手段111は、事前RI測定により得られた第1湿潤密度と、事前破壊型測定により得られた第2湿潤密度に基づいて密度補正式を設定する手段であり、ここで設定された密度補正式は密度補正式記憶手段112に記憶される。この密度補正式記憶手段112は、ベントナイト混合土の測定装置100内に構築してもよいし、インターネット経由で保存するクラウドサーバとして構築することもできる。 The density correction type setting means 111 is a means for setting the density correction type based on the first wet density obtained by the pre-RI measurement and the second wet density obtained by the pre-destructive measurement, and is set here. The density correction formula is stored in the density correction formula storage means 112. The density correction type storage means 112 may be constructed in the bentonite mixed soil measuring device 100, or may be constructed as a cloud server for storing via the Internet.

含水量補正式設定手段121は、事前RI測定により得られた第1含水量と、事前破壊型測定により得られた第2含水量に基づいて含水量補正式を設定する手段であり、ここで設定された含水量補正式は含水量補正式記憶手段122に記憶される。この含水量補正式記憶手段122も密度補正式記憶手段112と同様、ベントナイト混合土の測定装置100内に構築してもよいし、インターネット経由で保存するクラウドサーバとして構築することもできる。 The water content correction formula setting means 121 is a means for setting the water content correction formula based on the first water content obtained by the pre-RI measurement and the second water content obtained by the pre-destructive measurement. The set water content correction formula is stored in the water content correction formula storage means 122. Like the density correction type storage means 112, the water content correction type storage means 122 may be constructed in the bentonite mixed soil measuring device 100, or may be constructed as a cloud server for storing via the Internet.

RI計器を利用したRI測定手段130は、γ線と中性子線を放出するもので、γ線の変化を検知することで密度を測定し、中性子線の変化を検知することで水分量を測定することができるものである。RI計器は透過型のものと散乱型のものがあり、ここではどちらを採用してもよいが、比較的設置が容易である散乱型のRI計器を採用する方が望ましい。 The RI measuring means 130 using an RI instrument emits γ-rays and neutron rays, measures the density by detecting changes in γ-rays, and measures the amount of water by detecting changes in neutron rays. It is something that can be done. There are two types of RI instruments, a transmission type and a scattering type. Either of them may be adopted here, but it is preferable to adopt a scattering type RI instrument which is relatively easy to install.

実湿潤密度算出手段113は、RI測定手段130で得られた測定湿潤密度と、密度補正式記憶手段112から読み出した密度補正式によって、実湿潤密度を算出する手段であり、実含水量算出手段123は、RI測定手段130で得られた測定含水量と、含水量補正式記憶手段122から読み出した含水量補正式によって、実含水量を算出する手段である。そして、実湿潤密度算出手段113と実含水量算出手段123で算出された実湿潤密度と実含水量は、ディスプレイやプリンタといった出力手段140で出力される。 The actual wet density calculation means 113 is a means for calculating the actual wet density by the measured wet density obtained by the RI measuring means 130 and the density correction formula read from the density correction type storage means 112, and is a means for calculating the actual water content. Reference numeral 123 denotes a means for calculating the actual water content by the measured water content obtained by the RI measuring means 130 and the water content correction formula read from the water content correction type storage means 122. Then, the actual wet density and the actual water content calculated by the actual wet density calculation means 113 and the actual water content calculation means 123 are output by the output means 140 such as a display or a printer.

本願発明のベントナイト混合土の測定方法、及びベントナイト混合土の測定装置は、浅地中ピット処分の覆土として利用できるほか、埋設処分された廃棄物の覆土として広く利用することができる。本願発明は、いままさに喫緊の課題となっている放射性廃棄物の処理に対して好適な解決策を提供することを考えれば、産業上利用できるばかりでなく社会的にも大きな貢献を期待し得る発明である。 The method for measuring bentonite mixed soil and the measuring device for bentonite mixed soil of the present invention can be used as soil covering for pit disposal in shallow ground, and can also be widely used as soil covering for buried waste. Considering that the invention of the present application provides a suitable solution for the treatment of radioactive waste, which is an urgent issue, not only industrial applicability but also great social contribution can be expected. It is an invention.

100 ベントナイト混合土の測定装置
111 密度補正式設定手段
112 密度補正式記憶手段
113 実湿潤密度算出手段
121 含水量補正式設定手段
122 含水量補正式記憶手段
123 実含水量算出手段
130 RI測定手段
140 出力手段
100 Bentonite mixed soil measuring device 111 Density correction type setting means 112 Density correction type storage means 113 Actual wet density calculation means 121 Moisture content correction type setting means 122 Moisture content correction type storage means 123 Actual water content calculation means 130 RI measurement means 140 Output means

Claims (4)

原位置のベントナイト混合土の物性を測定する方法において、
原位置のベントナイト混合土と同等の比率でベントナイトが混合されたベントナイト混合土試料を用意し、さらに乾燥密度及び含水比の組み合わせを変えた複数種類の該ベントナイト混合土試料を試験体として作成する試験体作成工程と、
RI計器を用いて、複数種類の前記試験体それぞれの湿潤密度及び含水量を、第1湿潤密度及び第1含水量として取得する事前RI測定工程と、
破壊型測定手法によって、複数種類の前記試験体それぞれの湿潤密度及び含水量を、第2湿潤密度及び第2含水量として取得する事前破壊型測定工程と、
前記事前RI測定工程で取得された複数の前記第1湿潤密度と、前記事前破壊型測定工程で取得された複数の前記第2湿潤密度と、に基づいて、該第1湿潤密度と該第2湿潤密度の関係を示す密度補正式を設定する密度補正式設定工程と、
前記事前RI測定工程で取得された複数の前記第1含水量と、前記事前破壊型測定工程で取得された複数の前記第2含水量と、に基づいて、該第1含水量と該第2含水量の関係を示す含水量補正式を設定する含水量補正式設定工程と、
原位置のベントナイト混合土をRI計器によって測定することで、測定湿潤密度及び測定含水量を取得するとともに、該測定湿潤密度を前記密度補正式に基づいて補正して実湿潤密度を求め、該測定含水量を前記含水量補正式に基づいて補正して実含水量を求める、実測定工程と、
を備えたことを特徴とするベントナイト混合土の測定方法。
In the method of measuring the physical properties of in-situ bentonite mixed soil,
A test in which a bentonite mixed soil sample in which bentonite is mixed at the same ratio as the in-situ bentonite mixed soil is prepared, and a plurality of types of bentonite mixed soil samples with different combinations of dry density and water content are prepared as test specimens. Body creation process and
A pre-RI measurement step of acquiring the wet density and water content of each of the plurality of types of test specimens as the first wet density and the first water content using an RI instrument.
A pre-destructive measurement step of acquiring the wet density and water content of each of the plurality of types of test specimens as the second wet density and the second water content by the destructive measurement method.
Based on the plurality of the first wet densities obtained in the pre-RI measurement step and the plurality of the second wet densities obtained in the pre-destructive measurement step, the first wet density and the said. A density correction formula setting step for setting a density correction formula indicating the relationship between the second wet density and
Based on the plurality of the first water contents acquired in the pre-RI measurement step and the plurality of the second water contents acquired in the pre-destructive measurement step, the first water content and the said A water content correction formula setting step for setting a water content correction formula showing the relationship between the second water content and
By measuring the bentonite mixed soil in the in-situ position with an RI instrument, the measured wet density and the measured water content are obtained, and the measured wet density is corrected based on the density correction formula to obtain the actual wet density, and the measurement is performed. An actual measurement step in which the water content is corrected based on the water content correction formula to obtain the actual water content, and
A method for measuring bentonite mixed soil, which is characterized by being provided with.
前記測定湿潤密度をρ1、前記実湿潤密度をρ2、第1補正係数をA、第2補正係数をBとしたとき、前記密度補正式設定工程で設定される前記密度補正式が次式であり、
ρ2=(ρ1−A)÷B
前記測定含水量をw1、前記実含水量をw2、第3補正係数をC、第4補正係数をDとしたとき、前記含水量補正式設定工程で設定される前記含水量補正式が次式である、
w2=(w1−C)÷D
ことを特徴とする請求項1記載のベントナイト混合土の測定方法。
When the measured wet density is ρ1, the actual wet density is ρ2, the first correction coefficient is A, and the second correction coefficient is B, the density correction formula set in the density correction formula setting step is the following formula. ,
ρ2 = (ρ1-A) ÷ B
When the measured water content is w1, the actual water content is w2, the third correction coefficient is C, and the fourth correction coefficient is D, the water content correction formula set in the water content correction formula setting step is the following formula. Is,
w2 = (w1-C) ÷ D
The method for measuring bentonite mixed soil according to claim 1.
前記密度補正式設定工程では、境界湿潤密度を設定するとともに、該境界湿潤密度を下回る範囲の前記第1補正係数及び前記第2補正係数と、該境界湿潤密度を上回る範囲の前記第1補正係数及び前記第2補正係数と、を異なる値とすることで、該境界湿潤密度を下回る範囲と該境界湿潤密度を上回る範囲で2種類の前記密度補正式を設定する、
ことを特徴とする請求項2記載のベントナイト混合土の測定方法。
In the density correction formula setting step, the boundary wet density is set, the first correction coefficient and the second correction coefficient in the range below the boundary wet density, and the first correction coefficient in the range above the boundary wet density. And the second correction coefficient are set to different values, so that two types of the density correction formulas are set in a range below the boundary wet density and in a range above the boundary wet density.
The method for measuring bentonite mixed soil according to claim 2.
原位置のベントナイト混合土の物性を測定する装置において、
原位置のベントナイト混合土の湿潤密度と含水量を、測定湿潤密度及び測定含水量として取得するRI測定手段と、
前記RI測定手段で取得した前記測定湿潤密度を、あらかじめ設定された密度補正式に基づいて補正して実湿潤密度を求める湿潤密度算出手段と、
前記RI測定手段で取得した前記測定含水量を、あらかじめ設定された含水量補正式に基づいて補正して実含水量を求める実含水量算出手段と、を備え、
前記密度補正式は、複数の第1湿潤密度と複数の第2湿潤密度との関係から設定され、
前記含水量補正式は、複数の第1含水量と複数の第2含水量との関係から設定され、
前記第1湿潤密度及び前記第1含水量は、複数種類の試験体に対してRI測定を行って得られた湿潤密度及び含水量であり、
前記第2湿潤密度及び前記第2含水量は、複数種類の前記試験体に対して破壊型測定を行って得られた湿潤密度及び含水量であり、
前記試験体は、原位置のベントナイト混合土と同等の比率でベントナイトが混合されたベントナイト混合土試料を用意し、さらに乾燥密度及び含水比の組み合わせを変えて得られたものである、
ことを特徴とするベントナイト混合土の測定装置。
In a device that measures the physical properties of in-situ bentonite mixed soil
RI measuring means for acquiring the wet density and water content of the in-situ bentonite mixed soil as the measured wet density and the measured water content,
A wet density calculation means for obtaining the actual wet density by correcting the measured wet density obtained by the RI measuring means based on a preset density correction formula.
It is provided with an actual water content calculation means for obtaining the actual water content by correcting the measured water content acquired by the RI measuring means based on a preset water content correction formula.
The density correction formula is set from the relationship between the plurality of first wet densities and the plurality of second wet densities.
The water content correction formula is set from the relationship between the plurality of first water contents and the plurality of second water contents.
The first wet density and the first water content are the wet density and the water content obtained by performing RI measurement on a plurality of types of test specimens.
The second wet density and the second water content are the wet density and the water content obtained by performing destructive measurement on a plurality of types of the test specimens.
The test piece was obtained by preparing a bentonite mixed soil sample in which bentonite was mixed at the same ratio as the bentonite mixed soil in the original position, and further changing the combination of the dry density and the water content ratio.
A measuring device for bentonite mixed soil.
JP2017022117A 2017-02-09 2017-02-09 Bentonite mixed soil measuring method and bentonite mixed soil measuring device Active JP6773949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017022117A JP6773949B2 (en) 2017-02-09 2017-02-09 Bentonite mixed soil measuring method and bentonite mixed soil measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017022117A JP6773949B2 (en) 2017-02-09 2017-02-09 Bentonite mixed soil measuring method and bentonite mixed soil measuring device

Publications (2)

Publication Number Publication Date
JP2018128372A JP2018128372A (en) 2018-08-16
JP6773949B2 true JP6773949B2 (en) 2020-10-21

Family

ID=63172563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017022117A Active JP6773949B2 (en) 2017-02-09 2017-02-09 Bentonite mixed soil measuring method and bentonite mixed soil measuring device

Country Status (1)

Country Link
JP (1) JP6773949B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112394142B (en) * 2020-11-19 2023-06-20 南京林业大学 Method for determining water absorption phenomenon and duty ratio of plant leaves

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393094A (en) * 1977-01-26 1978-08-15 Hitachi Ltd Correction system of neutron moisture meter
US4439675A (en) * 1981-09-21 1984-03-27 Campbell Patrick J Moisture and density gauge
JPS59154347A (en) * 1983-02-23 1984-09-03 Soiru & Lock Eng Kk Measuring method of water content
JP2751839B2 (en) * 1994-09-08 1998-05-18 鹿島建設株式会社 Ground surface measurement system
JP3108754B2 (en) * 1995-11-16 2000-11-13 鹿島建設株式会社 Construction management method of embankment material
JP2004093385A (en) * 2002-08-30 2004-03-25 Sanyo Electric Co Ltd Moisture content measuring device
JP5035917B2 (en) * 2008-12-09 2012-09-26 株式会社間組 Method for measuring water content of bentonite and measuring apparatus using the same
JP6270769B2 (en) * 2015-03-31 2018-01-31 公益財団法人鉄道総合技術研究所 Measuring method of moisture content and moisture content of soil

Also Published As

Publication number Publication date
JP2018128372A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
Likos et al. Hysteresis and uncertainty in soil water-retention curve parameters
Chen et al. Biopolymer stabilization of mine tailings
Chen et al. A statistical model for the unconfined compressive strength of deep-mixed columns
Moradllo et al. Using X-ray imaging to investigate in-situ ion diffusion in cementitious materials
Muszynski et al. Particle shape estimates of uniform sands: visual and automated methods comparison
Gamez et al. Fully softened shear strength at low stresses for levee and embankment design
Andreini et al. Probabilistic models for erosion parameters and reliability analysis of earth dams and levees
Eid et al. Fully softened shear strength for soil slope stability analyses
Vipulanandan et al. Behavior of piezoresistive smart cement contaminated with oil based drilling mud
Oliveira et al. Numerical prediction of the creep behaviour of an embankment built on soft soils subjected to preloading
Sakai Relationship between water permeability and pore structure of cementitious materials
Taboada et al. Predictive equations of shear wave velocity for Bay of Campeche clay
JP6773949B2 (en) Bentonite mixed soil measuring method and bentonite mixed soil measuring device
Huang et al. A novel method for correcting scanline-observational bias of discontinuity orientation
Bol The influence of pore pressure gradients in soil classification during piezocone penetration test
Al-Mahbashi et al. Shear strength prediction for an unsaturated Sand Clay Liner
Isik et al. Comparison of undrained shear strength by pressuremeter and other tests, and numerical assessment of the effect of finite probe length in pressuremeter tests
Ranjkesh Adarmanabadi et al. Long-term effects of Cement Kiln Dust (CKD) on erosion control of a soil slope
Jia et al. Study of the sedimentation and self-weight consolidation behavior of seafloor sediments using a radioisotope densitometer
Zuo et al. Quality assessment and quality control of deep soil mixing columns based on a cement-content controlled method
Mazari et al. Impact of modulus based device variability on quality control of compacted geomaterials using measurement system analysis
Perez Leon et al. Stiffness and strength parameters for the hardening soil model of a reconstituted diatomaceous soil
Ayala et al. Example application of the rescaling equation for CPT inferred state parameters in loose mine tailings
Niu et al. Assessing the strength evolution of cement-stabilized clay using small-strain shear modulus: a modified Gompertz model conversion approach
Salari et al. Presentation of empirical equations for estimating internal friction angle of GW and GC soils in Mashhad, Iran using standard penetration and direct shear tests and comparison with previous equations

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200908

R150 Certificate of patent or registration of utility model

Ref document number: 6773949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250