JP6773448B2 - Method for producing high-purity 2,5-dichloro-p-xylene - Google Patents

Method for producing high-purity 2,5-dichloro-p-xylene Download PDF

Info

Publication number
JP6773448B2
JP6773448B2 JP2016081191A JP2016081191A JP6773448B2 JP 6773448 B2 JP6773448 B2 JP 6773448B2 JP 2016081191 A JP2016081191 A JP 2016081191A JP 2016081191 A JP2016081191 A JP 2016081191A JP 6773448 B2 JP6773448 B2 JP 6773448B2
Authority
JP
Japan
Prior art keywords
xylene
dichloro
purity
chlorination
25dcpx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016081191A
Other languages
Japanese (ja)
Other versions
JP2017190306A (en
Inventor
具倫 山岡
具倫 山岡
杉山 進
進 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ihara Nikkei Chemical Industry Co Ltd
Original Assignee
Ihara Nikkei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihara Nikkei Chemical Industry Co Ltd filed Critical Ihara Nikkei Chemical Industry Co Ltd
Priority to JP2016081191A priority Critical patent/JP6773448B2/en
Publication of JP2017190306A publication Critical patent/JP2017190306A/en
Application granted granted Critical
Publication of JP6773448B2 publication Critical patent/JP6773448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高純度2,5−ジクロロ−p−キシレンの製造方法に関する。 The present invention relates to a method for producing high-purity 2,5-dichloro-p-xylene.

2,5−ジクロロ−p−キシレン(以下「25DCPX」とも称す。)は、高機能性樹脂のポリフェニレンサルファイドやポリフェニルスルホンの原料であるp−ジクロロベンゼンの代替としての利用が提案されている。25DCPXは、p−キシレンを触媒の存在下、塩素ガスと反応させて合成することができる。この合成方法では、副産物である、25DCPX以外のクロロ化−p−キシレンの生成が不可避であり、特に25DCPXの異性体である2,3−ジクロロ−p−キシレン(以下、23DCPXとも称す。)が多く生成する。 2,5-Dichloro-p-xylene (hereinafter, also referred to as "25DCPX") has been proposed to be used as a substitute for polyphenylene sulfide, which is a highly functional resin, and p-dichlorobenzene, which is a raw material for polyphenylsulfone. 25DCPX can be synthesized by reacting p-xylene with chlorine gas in the presence of a catalyst. In this synthetic method, the production of chloro-p-xylene other than 25DCPX, which is a by-product, is unavoidable, and in particular, 2,3-dichloro-p-xylene (hereinafter, also referred to as 23DCPX), which is an isomer of 25DCPX, is produced. Generate a lot.

上記の合成方法において目的化合物でない23DCPXの生成量を減らす方法が検討され、反応触媒の種類や、また助触媒を共に使用する方法も検討されている。例えば、特許文献1の実施例1には、硫化第一鉄を触媒として用いてp−キシレンを塩素化すると、25DCPXと23DCPXの生成割合が25DCPX:23DCPX=77.1:15.6の反応生成物が得られたこと、この反応生成物に約60℃のイソプロピルアルコールを加え混合し、次いで冷却して結晶化させることにより、純度93.5%の25DCPXを得たことが記載されている。
また特許文献2の実施例2には、三塩化アンチモンを触媒とし、ビス(p−クロロフェニル)スルフィドを助触媒として用いてp−キシレンを塩素化することによって、25DCPXと23DCPXの生成割合が25DCPX:23DCPX=80.9:13.8の反応生成物が得られたこと、この反応生成物をイソプロピルアルコールを用いて結晶化させると25DCPXが90%以上の純度で得られたことが記載されている。
In the above synthesis method, a method of reducing the amount of 23DCPX that is not the target compound is being studied, and a type of reaction catalyst and a method of using a co-catalyst together are also being studied. For example, in Example 1 of Patent Document 1, when p-xylene is chlorinated using ferrous sulfide as a catalyst, a reaction is produced in which the production ratio of 25DCPX and 23DCPX is 25DCPX: 23DCPX = 77.1: 15.6. It is described that a product was obtained, and that the reaction product was mixed with isopropyl alcohol at about 60 ° C., then cooled and crystallized to obtain 25 DCPX having a purity of 93.5%.
Further, in Example 2 of Patent Document 2, the production ratio of 25DCPX and 23DCPX is 25DCPX: by chlorinating p-xylene using antimony trichloride as a catalyst and bis (p-chlorophenyl) sulfide as a co-catalyst. It is described that a reaction product of 23DCPX = 80.9: 13.8 was obtained, and that when this reaction product was crystallized with isopropyl alcohol, 25DCPX was obtained with a purity of 90% or more. ..

特公昭59−53246号公報Special Publication No. 59-53246 特公昭60−26773号公報Special Publication No. 60-26773

近年、合成樹脂の機能を高め、より高性能の樹脂材料を得るために、原料とする25DCPXには99.9%以上の高い純度が求められるようになってきている。しかし、上記特許文献1及び2記載の技術を含む従来の方法では、得られる25DCPXの純度は95%程度に過ぎない。 In recent years, in order to enhance the function of synthetic resin and obtain a resin material having higher performance, 25DCPX used as a raw material is required to have a high purity of 99.9% or more. However, the purity of 25DCPX obtained by the conventional method including the techniques described in Patent Documents 1 and 2 is only about 95%.

p−キシレンの塩素化は、塩素を順次導入する逐次反応であるため、上述の通り、目的物である25DCPXとその異性体(23DCPX)の他、25DCPXとは塩素の数が異なる複数種のクロロ化−p−キシレンとの混合物が生成される。それらのうち、モノクロロ−p−キシレン、トリクロロ−p−キシレン及びテトラクロロ−p−キシレンは、25DCPXとの沸点の差が大きく、蒸留処理で容易に25DCPXと分離できる。しかし、25DCPXの異性体である23DCPXは、25DCPXと沸点が近く、蒸留により23DCPXを分離除去するのは容易ではない。再結晶処理により25DCPXの純度を高めることは可能ではあるが、それでも目的の高純度化を達成するには再結晶処理を繰り返す必要がある。この場合、精製ロスが大きく収率が悪化する。 Since chlorination of p-xylene is a sequential reaction in which chlorine is sequentially introduced, as described above, in addition to the target 25DCPX and its isomer (23DCPX), a plurality of types of chloro having a different number of chlorines from 25DCPX. A mixture with chemical-p-xylene is produced. Among them, monochloro-p-xylene, trichloro-p-xylene and tetrachloro-p-xylene have a large difference in boiling point from 25DCPX and can be easily separated from 25DCPX by distillation treatment. However, 23DCPX, which is an isomer of 25DCPX, has a boiling point close to that of 25DCPX, and it is not easy to separate and remove 23DCPX by distillation. Although it is possible to increase the purity of 25DCPX by the recrystallization treatment, it is still necessary to repeat the recrystallization treatment in order to achieve the desired high purity. In this case, the purification loss is large and the yield deteriorates.

そこで本発明は、純度99.9%以上の高純度2,5−ジクロロ−p−キシレンを高収率で得ることができる高純度2,5−ジクロロ−p−キシレンの製造方法を提供することを課題とする。 Therefore, the present invention provides a method for producing high-purity 2,5-dichloro-p-xylene capable of obtaining high-purity 2,5-dichloro-p-xylene having a purity of 99.9% or more in high yield. Is the subject.

本発明者らは上記課題に鑑み、2,5−ジクロロ−p−キシレンを製造するに当たり、p−キシレンの塩素化反応における塩素化度、触媒、助触媒の組み合わせについて検討を重ねた。その結果、塩素化反応に使用する触媒と助触媒に特定の組み合わせを採用し、さらに塩素化反応における塩素化度(p−キシレン1モルに置換した塩素のモル数)を特定の範囲にまで高めた場合に、生成する23DCPXを25DCPXよりも優先的にトリクロロ体へと変化させることができることを見い出した。すなわち本発明者らは、特定の触媒と助触媒の存在下、塩素化度を特定のレベルまで高めてp−キシレンの塩素化反応を行うことにより、生成するジクロロ−p−キシレン異性体において、23DCPXを優先的に塩素化してトリクロロ体とすることができ、結果、25DCPXの絶対量を十分に確保しながら、ジクロロ−p−キシレンの異性体比率における23DCPXの割合を効果的に低減できることを見い出した。トリクロロ−p−キシレンはジクロロ−p−キシレンと沸点の差が大きく、両者は蒸留によって容易に分離することができる。それ故、目的の高純度25DCPXを少ない分離処理工程で得ることが可能となり、高純度25DCPXの収率を大きく高めることができる。
本発明はこれらの知見に基づき完成されるに至ったものである。
In view of the above problems, the present inventors have repeatedly studied the degree of chlorination in the chlorination reaction of p-xylene and the combination of the catalyst and the co-catalyst in producing 2,5-dichloro-p-xylene. As a result, a specific combination was adopted for the catalyst and co-catalyst used in the chlorination reaction, and the degree of chlorination in the chlorination reaction (the number of moles of chlorine replaced with 1 mol of p-xylene) was increased to a specific range. In this case, it was found that the produced 23DCPX can be changed to a trichloro compound preferentially over 25DCPX. That is, in the presence of a specific catalyst and a co-catalyst, the present inventors raise the degree of chlorination to a specific level and carry out a chlorination reaction of p-xylene to produce a dichloro-p-xylene isomer. It has been found that 23DCPX can be preferentially chlorinated to a trichloro form, and as a result, the proportion of 23DCPX in the isomer ratio of dichloro-p-xylene can be effectively reduced while ensuring a sufficient absolute amount of 25DCPX. It was. Trichloro-p-xylene has a large difference in boiling point from dichloromethane, and both can be easily separated by distillation. Therefore, the desired high-purity 25DCPX can be obtained in a small number of separation treatment steps, and the yield of the high-purity 25DCPX can be greatly increased.
The present invention has been completed based on these findings.

すなわち、上記の課題は以下の手段により解決された。
[1]
塩化第二鉄及び/又は三塩化アンチモンからなる触媒とジアリールスルフィドからなる助触媒の存在下、p−キシレンと塩素とを反応させ該p−キシレンを塩素化度2.2〜2.6に塩素化し、得られた反応生成物を、(I)蒸留処理、又は(II)蒸留処理と再結晶処理との組み合わせに付して、純度99.9%以上の2,5−ジクロロ−p−キシレンを得ることを特徴とする、高純度2,5−ジクロロ−p−キシレンの製造方法。
[2]
前記ジアリールスルフィドがジフェニルスルフィドであることを特徴とする[1]に記載の高純度2,5−ジクロロ−p−キシレンの製造方法。
[3]
前記塩素化度を2.4〜2.6とする塩素化によって得られた反応生成物を、前記(I)の蒸留処理に付すことを特徴とする[1]又は[2]に記載の高純度2,5−ジクロロ−p−キシレンの製造方法。
[4]
前記塩素化度を2.2〜2.3とする塩素化によって得られた反応生成物を、下記工程(a)及び(b)に付すことを特徴とする[1]又は[2]に記載の高純度2,5−ジクロロ−p−キシレンの製造方法。
工程(a)
蒸留処理により、前記反応生成物から2,5−ジクロロ−p−キシレン及び2,3−ジクロロ−p−キシレンを含有するジクロロパラキシレン混合物を分離する工程、及び
工程(b)
再結晶処理により、前記ジクロロパラキシレン混合物から純度99.9%以上の2,5−ジクロロ−p−キシレンを得る工程。
[5]
前記高純度2,5−ジクロロ−p−キシレンの製造方法において、純度99.9%以上の高純度2,5−ジクロロ−p−キシレンの収率が、原料として用いたp−キシレンに対して30%以上である、[1]〜[4]のいずれかに記載の高純度2,5−ジクロロ−p−キシレンの製造方法。
[6]
下記(i)又は(ii)のクロロ化−p−キシレン混合物の製造方法により得られたクロロ化−p−キシレン混合物から純度99.9%以上の2,5−ジクロロ−p−キシレンを得ることを特徴とする、高純度2,5−ジクロロ−p−キシレンの製造方法。
(i)
塩化第二鉄及び/又は三塩化アンチモンからなる触媒とジアリールスルフィドからなる助触媒の存在下、p−キシレンと塩素とを反応させ該p−キシレンを塩素化度2.4〜2.6に塩素化し、ガスクロマトグラフのピーク面積比で、全クロロ化−p−キシレン中に占める2,5−ジクロロ−p−キシレンの割合が40%以上、2,3−ジクロロ−p−キシレンの割合が0.3%以下であるクロロ化−p−キシレン混合物を得ることを特徴とする、クロロ化−p−キシレン混合物の製造方法。
(ii)
塩化第二鉄及び/又は三塩化アンチモンからなる触媒とジアリールスルフィドからなる助触媒の存在下、p−キシレンと塩素とを反応させ該p−キシレンを塩素化度2.2〜2.3に塩素化し、ガスクロマトグラフのピーク面積比で、全クロロ化−p−キシレン中に占める2,5−ジクロロ−p−キシレンの割合が65%以上、2,3−ジクロロ−p−キシレンの割合が10%以下のクロロ化−p−キシレン混合物を得ることを特徴とする、クロロ化−p−キシレン混合物の製造方法。
That is, the above problem was solved by the following means.
[1]
In the presence of a catalyst composed of ferric chloride and / or antimony trichloride and a co-catalyst composed of diarylsulfide, p-xylene is reacted with chlorine to bring the p-xylene to a degree of chlorination of 2.2 to 2.6. The resulting reaction product is subjected to (I) distillation treatment or (II) combination of distillation treatment and recrystallization treatment to achieve 2,5-dichloro-p-xylene having a purity of 99.9% or more. A method for producing high-purity 2,5-dichloro-p-xylene, which comprises obtaining.
[2]
The method for producing high-purity 2,5-dichloro-p-xylene according to [1], wherein the diaryl sulfide is diphenyl sulfide.
[3]
The high according to [1] or [2], wherein the reaction product obtained by chlorination having a degree of chlorination of 2.4 to 2.6 is subjected to the distillation treatment of (I). A method for producing pure 2,5-dichloro-p-xylene.
[4]
[1] or [2], wherein the reaction product obtained by chlorination having a degree of chlorination of 2.2 to 2.3 is subjected to the following steps (a) and (b). A method for producing high-purity 2,5-dichloro-p-xylene.
Step (a)
A step of separating a dichloroparaxylene mixture containing 2,5-dichloro-p-xylene and 2,3-dichloro-p-xylene from the reaction product by a distillation treatment, and a step (b).
A step of obtaining 2,5-dichloro-p-xylene having a purity of 99.9% or more from the dichloroparaxylene mixture by recrystallization treatment.
[5]
In the method for producing high-purity 2,5-dichloro-p-xylene, the yield of high-purity 2,5-dichloro-p-xylene having a purity of 99.9% or more is higher than that of p-xylene used as a raw material. The method for producing high-purity 2,5-dichloro-p-xylene according to any one of [1] to [4], which is 30% or more.
[6]
Obtaining 2,5-dichloro-p-xylene having a purity of 99.9% or more from the chloro-p-xylene mixture obtained by the method for producing the chloro-p-xylene mixture according to (i) or (ii) below. A method for producing high-purity 2,5-dichloro-p-xylene, which comprises the above.
(I)
In the presence of a catalyst composed of ferric chloride and / or antimony trichloride and a co-catalyst composed of diarylsulfide, p-xylene is reacted with chlorine to bring the p-xylene to a degree of chlorination of 2.4 to 2.6. In the peak area ratio of the gas chromatograph, the ratio of 2,5-dichloro-p-xylene in the total chloro-p-xylene is 40% or more, and the ratio of 2,3-dichloro-p-xylene is 0. A method for producing a chloro-p-xylene mixture, which comprises obtaining a chloro-p-xylene mixture having a content of 3% or less.
(Ii)
In the presence of a catalyst composed of ferric chloride and / or antimony trichloride and an auxiliary catalyst composed of diarylsulfide, p-xylene is reacted with chlorine to bring the p-xylene to a degree of chlorination of 2.2 to 2.3. In the peak area ratio of the gas chromatograph, the ratio of 2,5-dichloro-p-xylene in the total chloro-p-xylene is 65% or more, and the ratio of 2,3-dichloro-p-xylene is 10%. characterized in that to obtain the following chlorination -p- xylene mixtures, prepared how the chlorination -p- xylene mixtures.

本明細書において、組成、純度、使用量、収率を表す「%」、「部」は、特段の断りのない限りモル基準である。 In the present specification, "%" and "part" representing the composition, purity, amount used, and yield are based on moles unless otherwise specified.

本発明の高純度25DCPXの製造方法によれば、純度99.9%以上の高純度2,5−ジクロロ−p−キシレンを、好収率で、操作上効率良く得ることができる。 According to the method for producing high-purity 25DCPX of the present invention, high-purity 2,5-dichloro-p-xylene having a purity of 99.9% or more can be obtained in good yield and operationally efficiently.

本発明の好ましい実施態様について以下に説明する。
<高純度2,5−ジクロロ−p−キシレンの製造方法>
上述のように、触媒(及び助触媒)の存在下、p−キシレンと塩素とを反応させるp−キシレンの塩素化反応により、目的物である25DCPXと、その異性体である23DCPXと、塩素の置換数が異なるクロロ化−p−キシレン(モノクロロ−p−キシレン、トリクロロ−p−キシレン及びテトラクロロ−p−キシレン)との混合物(以下、クロロ化−p−キシレン混合物と称す。)が生成される。
本発明の高純度25DCPXの製造方法では、触媒として塩化第二鉄及び/又は三塩化アンチモンを用い、さらに助触媒としてジアリールスルフィドを用いる。これらの触媒及び助触媒の存在下、塩素化度2.0〜2.8の塩素化条件で、p−キシレンと塩素とを反応させることにより、25DCPXを十分量生成させることができ、同時に25DCPXの異性体である23DCPXを優先的にトリクロロ体へと変化させることができる。この結果、分離しやすい塩素化反応生成物(p−キシレンのジクロロ化物とトリクロロ化物の混合物)を蒸留処理するだけで、あるいは蒸留処理に加え再結晶処理を例えば1度実施するだけで、純度99.9%以上の25DCPXを得ることができる。すなわち、目的の極めて高純度の25DCPXを高い収率で得ることができる。
Preferred embodiments of the present invention will be described below.
<Method for producing high-purity 2,5-dichloro-p-xylene>
As described above, by the chlorination reaction of p-xylene that reacts p-xylene with chlorine in the presence of a catalyst (and co-catalyst), the target 25DCPX, its isomer 23DCPX, and chlorine A mixture with chloro-p-xylene (monochromo-p-xylene, trichloro-p-xylene and tetrachloro-p-xylene) having different numbers of substitutions (hereinafter referred to as chloro-p-xylene mixture) is produced. To.
In the method for producing high-purity 25DCPX of the present invention, ferric chloride and / or antimony trichloride is used as a catalyst, and diarylsulfide is used as a co-catalyst. By reacting p-xylene with chlorine in the presence of these catalysts and co-catalysts under chlorination conditions of 2.0 to 2.8 degree of chlorination, a sufficient amount of 25DCPX can be produced, and at the same time, 25DCPX. 23DCPX, which is an isomer of the above, can be preferentially converted into a trichloroform. As a result, the purity of the chlorination reaction product (mixture of p-xylene dichlorooxide and trichlorooxide), which is easily separated, is 99 by simply distilling the product, or by performing the recrystallization treatment in addition to the distillation treatment, for example, once. It is possible to obtain 25 DCPX of 9.9% or more. That is, the desired extremely high-purity 25DCPX can be obtained in a high yield.

−触媒−
本発明における塩素化反応では、触媒として塩化第二鉄及び/又は三塩化アンチモンを用いる。すなわち、触媒として塩化第二鉄を用いてもよいし、三塩化アンチモンを用いてもよいし、塩化第二鉄と三塩化アンチモンを併用してもよい。
本発明において、基質であるp−キシレン100部に対する触媒の使用量は、0.01〜10.0部が好ましく、0.01〜1部がより好ましい。
本発明では、触媒である塩化第二鉄及び/又は三塩化アンチモンと、後述する、助触媒であるジアリールスルフィドとを組み合わせた触媒システムを採用する。
-Catalyst-
In the chlorination reaction in the present invention, ferric chloride and / or antimony trichloride is used as a catalyst. That is, ferric chloride may be used as a catalyst, antimony trichloride may be used, or ferric chloride and antimony trichloride may be used in combination.
In the present invention, the amount of the catalyst used with respect to 100 parts of p-xylene as a substrate is preferably 0.01 to 10.0 parts, more preferably 0.01 to 1 part.
The present invention employs a catalytic system that combines ferric chloride and / or antimony trichloride, which is a catalyst, with diarylsulfide, which is a co-catalyst, which will be described later.

−助触媒−
助触媒として用いるジアリールスルフィドにおけるアリール基は、フェニル基、置換フェニル基が好ましい。かかる置換フェニル基における置換基としてはハロゲン原子(フッ素、塩素、臭素、ヨウ素)又は炭素数1〜4の低級アルキル基が好ましい。本発明では塩素化反応中に、助触媒自身も塩素化されるので、安価で入手容易なジフェニルスルフィドを用いることができる。なお、本明細書において単に「ジフェニルスルフィド」という場合、無置換のジフェニルスルフィドを意味する。
本発明における塩素化反応において、触媒の使用量と助触媒の使用量の比は、モル比で、触媒:助触媒=1:10〜10:1が好ましく、1:5〜5:1がより好ましく、1:2〜2:1がさらに好ましい。
-Cocatalyst-
The aryl group in the diarylsulfide used as a co-catalyst is preferably a phenyl group or a substituted phenyl group. As the substituent in such a substituted phenyl group, a halogen atom (fluorine, chlorine, bromine, iodine) or a lower alkyl group having 1 to 4 carbon atoms is preferable. In the present invention, since the co-catalyst itself is chlorinated during the chlorination reaction, inexpensive and easily available diphenyl sulfide can be used. In addition, when it is simply referred to as "diphenyl sulfide" in this specification, it means an unsubstituted diphenyl sulfide.
In the chlorination reaction in the present invention, the ratio of the amount of the catalyst used and the amount of the co-catalyst used is preferably a molar ratio of catalyst: co-catalyst = 1:10 to 10: 1, more preferably 1: 5 to 5: 1. Preferably, 1: 2 to 2: 1 is even more preferable.

−反応条件−
p−キシレンを塩素と反応させる塩素化反応における反応温度は、通常15〜100℃であり、15〜60℃がより好ましい。塩素は気体状又は液体状の塩素を用いて行うことができる。
塩素化反応における反応時間は、反応スケールと塩素の吹き込み設備の能力により変化するが、通常は2〜40時間である。
本発明において、塩素化反応は溶媒の非存在下で行うことも、必要に応じて本発明の反応条件下で安定な溶媒を使用する事もできる。使用可能な溶媒としては、例えば、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、1,2−ジクロロプロパン等のハロゲン化炭化水素、トリフルオロメチルベンゼン、p−クロロトリフルオロメチルベンゼン、o−クロロトリフルオロメチルベンゼン等のフッ素系芳香族炭化水素を挙げることができる。これらは1種を単独で用いることも、2種以上を混合して用いることもできる。溶媒を使用する場合、p−キシレン1モル当たり使用する溶媒の使用量は、好ましくは100ml以上、より好ましくは200〜2000mlである。
-Reaction conditions-
The reaction temperature in the chlorination reaction in which p-xylene is reacted with chlorine is usually 15 to 100 ° C, more preferably 15 to 60 ° C. Chlorine can be carried out using gaseous or liquid chlorine.
The reaction time in the chlorination reaction varies depending on the reaction scale and the capacity of the chlorine blowing facility, but is usually 2 to 40 hours.
In the present invention, the chlorination reaction can be carried out in the absence of a solvent, or if necessary, a stable solvent can be used under the reaction conditions of the present invention. Examples of the solvent that can be used include halogenated hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane, and 1,2-dichloropropane, trifluoromethylbenzene, p-chlorotrifluoromethylbenzene, and o-chlorotrifluoro. Fluorine-based aromatic hydrocarbons such as methylbenzene can be mentioned. These can be used alone or in combination of two or more. When a solvent is used, the amount of the solvent used per mole of p-xylene is preferably 100 ml or more, more preferably 200 to 2000 ml.

本発明の塩素化反応において、塩素化度(基質であるp−キシレン1モルに置換した塩素のモル数)は、2.0〜2.8とする。この塩素化度は好ましくは2.1〜2.7、より好ましくは2.2〜2.6である。
また、この塩素化度は、25DCPXを純度99.9%以上に高純度化するための分離処理方法に応じて上記範囲内で適宜に調節することができる。例えば、蒸留処理のみにより純度99.9%以上の25DCPXを得たい場合には、塩素化度を2.4〜2.8(好ましくは2.4〜2.7、より好ましくは2.4〜2.6)にすることが好ましい。こうすることで、塩素化反応により得られるクロロ化−p−キシレン混合物中の25DCPXの含有量(すなわち全クロロ化−p−キシレン中に占める25DCPXの割合)を40%以上(好ましくは45%以上、さらに好ましくは48%以上)とし、且つ、23DCPXの含有量については0.3%以下(好ましくは0.2%以下、より好ましくは0.1%以下)にまで高度に低減することができる。それ故、蒸留処理のみで、純度99.9%以上の25DCPXを優れた収率で得ることが可能になる。
また、蒸留処理と再結晶処理とを組み合わせて25DCPXを分離する場合には、塩素化度を2.0〜2.3とすることが好ましい。この塩素化度の範囲内で塩素化反応することにより、得られるクロロ化−p−キシレン混合物中の25DCPXの含有量を65%以上(好ましくは70%以上)にまで高め、且つ、23DCPXの含有量は10%以下(好ましくは8.5%以下、より好ましくは7.0%以下、さらに好ましくは6.0%以下)にまで低減することができる。結果、蒸留処理と再結晶処理とを組み合わせた分離処理により、純度99.9%以上の25DCPXを高い収率で得ることが可能になる。上記の蒸留処理と再結晶処理とを組み合わせた25DCPXの分離処理は、下記工程(a)及び(b)からなることが好ましい。
In the chlorination reaction of the present invention, the degree of chlorination (the number of moles of chlorine substituted with 1 mol of p-xylene as a substrate) is 2.0 to 2.8. The degree of chlorination is preferably 2.1 to 2.7, more preferably 2.2 to 2.6.
Further, the degree of chlorination can be appropriately adjusted within the above range according to the separation treatment method for purifying 25DCPX to a purity of 99.9% or more. For example, when it is desired to obtain 25DCPX having a purity of 99.9% or more only by distillation treatment, the degree of chlorination is 2.4 to 2.8 (preferably 2.4 to 2.7, more preferably 2.4 to 2.4). 2.6) is preferable. By doing so, the content of 25DCPX in the chlorination-p-xylene mixture obtained by the chlorination reaction (that is, the ratio of 25DCPX to the total chloro-p-xylene) is 40% or more (preferably 45% or more). , More preferably 48% or more), and the content of 23DCPX can be highly reduced to 0.3% or less (preferably 0.2% or less, more preferably 0.1% or less). .. Therefore, it is possible to obtain 25 DCPX having a purity of 99.9% or more in an excellent yield only by the distillation treatment.
Further, when the 25DCPX is separated by combining the distillation treatment and the recrystallization treatment, the degree of chlorination is preferably 2.0 to 2.3. By chlorinating within the range of this degree of chlorination, the content of 25DCPX in the obtained chlorophyll-p-xylene mixture is increased to 65% or more (preferably 70% or more), and the content of 23DCPX is increased. The amount can be reduced to 10% or less (preferably 8.5% or less, more preferably 7.0% or less, still more preferably 6.0% or less). As a result, 25 DCPX having a purity of 99.9% or more can be obtained in a high yield by a separation treatment that combines a distillation treatment and a recrystallization treatment. The separation treatment of 25DCPX, which is a combination of the above distillation treatment and recrystallization treatment, preferably comprises the following steps (a) and (b).

工程(a)
蒸留処理により、クロロ化−p−キシレン混合物から25DCPX及び23DCPXを含有するジクロロパラキシレン混合物を分離する工程、及び
工程(b)
再結晶処理により、前記ジクロロパラキシレン混合物から2,5−ジクロロ−p−キシレンを分離する工程。
Step (a)
A step of separating the dichloroparaxylene mixture containing 25DCPX and 23DCPX from the chlorochlorinated-p-xylene mixture by a distillation treatment, and step (b).
A step of separating 2,5-dichloro-p-xylene from the dichloroparaxylene mixture by a recrystallization treatment.

塩素化反応により得られる反応生成物(クロロ化−p−キシレン混合物)から25DCPXを分離する方法(蒸留処理、再結晶処理)について説明する。
(蒸留処理)
蒸留処理の方法に特に制限はなく、通常の方法を採用することができる。例えば、精留塔を備えた設備で減圧下蒸留を行い塔頂より留出させる。留出液は塔頂温度で管理を行いモノクロロ体と分離することにより25DCPXを分離することができる。
A method (distillation treatment, recrystallization treatment) for separating 25DCPX from the reaction product (chloroidation-p-xylene mixture) obtained by the chlorination reaction will be described.
(Distillation)
The method of distillation treatment is not particularly limited, and a normal method can be adopted. For example, distillation is performed under reduced pressure in a facility equipped with a rectification column to distill from the top of the column. 25DCPX can be separated by controlling the distillate at the temperature at the top of the column and separating it from the monochloroform.

(再結晶処理)
25DCPXを再結晶により分離する方法も特に制限はなく、通常の方法を採用することができる。再結晶溶剤は、例えばアルコールが好ましく、炭素数5以下の低級アルコールがより好ましく、メタノール、エタノール、1−プロパノール、2−プロパノール及び各種異性体ブタノールから選択されるいずれかがさらに好ましく、2−プロパノールが特に好ましい。再結晶溶剤の量は25DCPXの粗体1g当たり0.25〜10.0gが好ましく、0.5〜5.0gがより好ましい。
(Recrystallization treatment)
The method for separating 25DCPX by recrystallization is also not particularly limited, and a usual method can be adopted. As the recrystallizing solvent, for example, an alcohol is preferable, a lower alcohol having 5 or less carbon atoms is more preferable, and any one selected from methanol, ethanol, 1-propanol, 2-propanol and various isomers butanol is more preferable, and 2-propanol is more preferable. Is particularly preferable. The amount of the recrystallization solvent is preferably 0.25 to 10.0 g, more preferably 0.5 to 5.0 g per 1 g of the crude product of 25 DCPX.

本発明の高純度25DCPXの製造方法により得られる、純度99.9%以上の25DCPXの収率は、原料として用いたp−キシレンに対して(p−キシレンのモル数を100%とした場合)30%以上が好ましく、35%以上がより好ましく、40%以上がさらに好ましい。
上記収率は、下記式により算出される値である。
収率(%)=100×(純度99.9%の25DCPXのモル数)/(原料として用いたp−キシレンのモル数)
The yield of 25DCPX having a purity of 99.9% or more obtained by the method for producing high-purity 25DCPX of the present invention is based on p-xylene used as a raw material (when the number of moles of p-xylene is 100%). 30% or more is preferable, 35% or more is more preferable, and 40% or more is further preferable.
The above yield is a value calculated by the following formula.
Yield (%) = 100 x (number of moles of 25DCPX with 99.9% purity) / (number of moles of p-xylene used as a raw material)

以下に、本発明について実施例に基づきさらに詳細に説明するが、本発明がこれに限定して解釈されるものではない。
なお、測定は、以下に示す方法に従って行った。
− 純度及び粗生成物の組成比の測定 −
下記の測定装置及び測定条件により、純度及び組成比を測定した。
・測定装置:ガスクロマトグラフィー(検出器:FID)
・純度(%):(25DCPXのピーク面積/全ピークの総面積)×100
・組成比(%):(各クロロ化−p−キシレンのピーク面積/全ピークの総面積)×100
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not construed as being limited thereto.
The measurement was performed according to the method shown below.
-Measurement of purity and composition ratio of crude product-
The purity and composition ratio were measured by the following measuring device and measuring conditions.
・ Measuring device: Gas chromatography (detector: FID)
Purity (%): (peak area of 25DCPX / total area of all peaks) × 100
-Composition ratio (%): (peak area of each chloro-p-xylene / total area of all peaks) x 100

実施例1
5000mlの丸底フラスコ中のp−キシレン3900g(36.7モル)に、撹拌下で、塩化第二鉄5.96g(0.036モル)及びジフェニルスルフィド6.84g(0.036モル)を加えた。ついで、撹拌している混合物の温度を30℃に上げ、同温度で、気体状の塩素6772gを35時間かけて吹き込んだ。反応混合物の凝固温度を基準に徐々に温度を約60℃まで上昇させた。その間の塩素化度と25DCPXと23DCPXの比率を測定した値は以下の表1の通りである。反応終了後の反応混合物(以下、粗生成物と称す。)をガスクロマトグラフ法で分析した結果、次の組成を有することがわかった。
(粗生成物の組成比)
塩素化度(p−キシレン 1モルに置換した塩素のモル数) 2.58
25DCPX 50.0 %
23DCPX 0.02%
トリクロロ−p−キシレン 42.7 %
テトラクロロ−p−キシレン 7.4 %
この粗生成物に窒素パージを行い塩化水素、残留塩素を除去し、次いで蒸留処理した。蒸留処理は20段の精留塔を用いて行い、減圧下、塔頂より25DCPXを留出させた。留出液を塔頂温度で管理し、純度99.97%の25DCPXを2611g(p−キシレンに対する収率40.6%)得た。
Example 1
To 3900 g (36.7 mol) of p-xylene in a 5000 ml round bottom flask, 5.96 g (0.036 mol) of ferric chloride and 6.84 g (0.036 mol) of diphenylsulfide were added under stirring. It was. Then, the temperature of the stirring mixture was raised to 30 ° C., and at the same temperature, 6772 g of gaseous chlorine was blown over for 35 hours. The temperature was gradually raised to about 60 ° C. based on the solidification temperature of the reaction mixture. Table 1 below shows the measured values of the degree of chlorination and the ratio of 25DCPX and 23DCPX during that period. As a result of analyzing the reaction mixture (hereinafter referred to as crude product) after completion of the reaction by gas chromatography, it was found to have the following composition.
(Composition ratio of crude product)
Degree of chlorination (number of moles of chlorine replaced with 1 mole of p-xylene) 2.58
25DCPX 50.0%
23DCPX 0.02%
Trichloro-p-xylene 42.7%
Tetrachloro-p-xylene 7.4%
The crude product was purged with nitrogen to remove hydrogen chloride and residual chlorine, and then distilled. The distillation treatment was carried out using a 20-stage rectification column, and 25 DCPX was distilled off from the top of the column under reduced pressure. The distillate was controlled at the column top temperature to obtain 2611 g (yield 40.6% with respect to p-xylene) of 25 DCPX having a purity of 99.97%.

Figure 0006773448
Figure 0006773448

実施例2
500mlの丸底フラスコ中のp−キシレン330g(3.1モル)に、撹拌下で、塩化第二鉄0.50g(0.003モル)及びジフェニルスルフィド0.58g(0.003モル)を加えた。ついで、撹拌している混合物の温度を30℃に上げ、同温度で、気体状の塩素521gを8時間かけて吹き込んだ。反応混合物の凝固温度を基準に徐々に温度を約60℃まで上昇させた。塩素化反応のあと、粗生成物をガスクロマトグラフ法で分析した結果、次の組成を有することがわかった。
(粗生成物の組成比)
塩素化度(p−キシレン 1モルに置換した塩素のモル数) 2.21
25DCPX 74.5 %
23DCPX 5.1 %
トリクロロ−p−キシレン 19.9 %
テトラクロロ−p−キシレン 0.5 %
この粗生成物に対し、実施例1と同様に窒素パージと蒸留処理を行い、純度93.9%の粗25DCPX255.6gを得た。これにイソプロピルアルコール281.8gを加え60℃に加熱し結晶を溶解させた後、19℃まで冷却して結晶化させることで、純度99.9%の25DCPXを187g(収率53.4%)得た。
Example 2
To 330 g (3.1 mol) of p-xylene in a 500 ml round bottom flask, 0.50 g (0.003 mol) of ferric chloride and 0.58 g (0.003 mol) of diphenylsulfide were added under stirring. It was. Then, the temperature of the stirring mixture was raised to 30 ° C., and 521 g of gaseous chlorine was blown at the same temperature over 8 hours. The temperature was gradually raised to about 60 ° C. based on the solidification temperature of the reaction mixture. After the chlorination reaction, the crude product was analyzed by gas chromatography and found to have the following composition.
(Composition ratio of crude product)
Degree of chlorination (number of moles of chlorine replaced with 1 mole of p-xylene) 2.21
25DCPX 74.5%
23DCPX 5.1%
Trichloro-p-xylene 19.9%
Tetrachloro-p-xylene 0.5%
The crude product was subjected to nitrogen purging and distillation treatment in the same manner as in Example 1 to obtain 255.6 g of crude 25DCPX having a purity of 93.9%. To this, 281.8 g of isopropyl alcohol was added and heated to 60 ° C. to dissolve the crystals, and then cooled to 19 ° C. for crystallization to produce 187 g (yield 53.4%) of 25DCPX having a purity of 99.9%. Obtained.

実施例3
100mlの丸底フラスコ中のp−キシレン40g(0.38モル)に、撹拌下で、三塩化アンチモン0.09g(0.0004モル)及びジフェニルスルフィド0.07g(0.0004モル)を加えた。ついで、撹拌している混合物の温度を30℃に上げ、同温度で、気体状の塩素を7時間かけて吹き込んだ。反応混合物の凝固温度を基準に徐々に温度を約60℃まで上昇させた。塩素化反応のあと、粗生成物をガスクロマトグラフ法で分析した結果、次の組成を有することがわかった。
(粗生成物の組成比)
塩素化度(p−キシレン 1モルに置換した塩素のモル数) 2.48
25DCPX 54.0 %
23DCPX 0.01%
トリクロロ−p−キシレン 39.2 %
テトラクロロ−p−キシレン 6.8 %
Example 3
To 40 g (0.38 mol) of p-xylene in a 100 ml round bottom flask, 0.09 g (0.0004 mol) of antimony trichloride and 0.07 g (0.0004 mol) of diphenylsulfide were added under stirring. .. Then, the temperature of the stirring mixture was raised to 30 ° C., and at the same temperature, gaseous chlorine was blown over for 7 hours. The temperature was gradually raised to about 60 ° C. based on the solidification temperature of the reaction mixture. After the chlorination reaction, the crude product was analyzed by gas chromatography and found to have the following composition.
(Composition ratio of crude product)
Degree of chlorination (number of moles of chlorine replaced with 1 mole of p-xylene) 2.48
25DCPX 54.0%
23DCPX 0.01%
Trichloro-p-xylene 39.2%
Tetrachloro-p-xylene 6.8%

比較例1
実施例3において、三塩化アンチモンの代わりに塩化第二鉄0.065g(0.0004モル)、ジフェニルスルフィドに代わりにジオクチルスルフィド0.10g(0.0004モル)を使用し、塩素の吹き込み時間を7時間から5時間に変更した以外は実施例3と同様にして反応させた。塩素化度は2.06であり、25DCPXと23DCPXの比率は25DCPX:23DCPX=79.8:20.4であった。さらに同様の方法で2時間塩素を吹き込み、塩素化度2.75とした時の粗生成物をガスクロマトグラフ法で分析した結果、次の組成を有することがわかった。
(塩素化度2.75とした粗生成物の組成比)
25DCPX 31.71%
23DCPX 1.83%
トリクロロ−p−キシレン 56.50%
テトラクロロ−p−キシレン 9.70%
粗生成物中には、23DCPXが1.83%も残っていた。これでは蒸留によって純度99.9%以上の25DCPXを得ることはできない。しかも目的の25DCPXの含有量が実施例1及び2に比較して非常に少ない。再結晶を行うと純度は高められるが、収率が非常に低くなることは明白であり、これ以上の分離は行わなかった。
Comparative Example 1
In Example 3, 0.065 g (0.0004 mol) of ferric chloride was used instead of antimony trichloride, and 0.10 g (0.0004 mol) of dioctyl sulfide was used instead of diphenyl sulfide, and the chlorine blowing time was set. The reaction was carried out in the same manner as in Example 3 except that the change was made from 7 hours to 5 hours. The degree of chlorination was 2.06, and the ratio of 25DCPX to 23DCPX was 25DCPX: 23DCPX = 79.8: 20.4. Further, as a result of analyzing the crude product when chlorine was blown for 2 hours by the same method and the degree of chlorination was 2.75 by gas chromatography, it was found to have the following composition.
(Composition ratio of crude product with chlorination degree 2.75)
25DCPX 31.71%
23DCPX 1.83%
Trichloro-p-xylene 56.50%
Tetrachloro-p-xylene 9.70%
As much as 1.83% of 23DCPX remained in the crude product. With this, it is not possible to obtain 25 DCPX having a purity of 99.9% or more by distillation. Moreover, the content of the target 25DCPX is very small as compared with Examples 1 and 2. Recrystallization increased the purity, but it was clear that the yield was very low, and no further separation was performed.

比較例2
実施例3において、三塩化アンチモン及びジフェニルスルフィドの代わりに塩化第二鉄と硫黄粉末をそれぞれ0.0004モル使用した以外は実施例3と同様にして塩素化を行った。2時間で塩素化度は1.28であり、25DCPXと23DCPXの比率は25DCPX:23DCPX=84.0:16.0であった。さらに同様の方法で6時間塩素を吹き込み、塩素化度2.82とした時の粗生成物をガスクロマトグラフ法で分析した結果、次の組成を有することがわかった。
(塩素化度2.82とした粗生成物の組成比)
25DCPX 28.30%
23DCPX 0.05%
トリクロロ−p−キシレン 56.27%
テトラクロロ−p−キシレン 14.12%
この粗生成物を蒸留により純度99.9%以上の25DCPXにすることはできる。しかし収率が非常に低くなることは明白であり、これ以上の分離は行わなかった。
Comparative Example 2
In Example 3, chlorination was carried out in the same manner as in Example 3 except that 0.0004 mol of ferric chloride and sulfur powder were used instead of antimony trichloride and diphenyl sulfide. The degree of chlorination was 1.28 in 2 hours, and the ratio of 25DCPX to 23DCPX was 25DCPX: 23DCPX = 84.0: 16.0. Further, as a result of analyzing the crude product when chlorine was blown for 6 hours by the same method and the degree of chlorination was 2.82 by a gas chromatograph method, it was found to have the following composition.
(Composition ratio of crude product with chlorination degree 2.82)
25DCPX 28.30%
23DCPX 0.05%
Trichloro-p-xylene 56.27%
Tetrachloro-p-xylene 14.12%
This crude product can be distilled to 25DCPX having a purity of 99.9% or higher. However, it was clear that the yield was very low and no further separation was performed.

上記のように、助触媒としてジオクチルスルフィドを用いた比較例1では、塩素化度を2.75にまで高めても23DCPXが粗生成物中に1.83%も含有され、蒸留により純度99.9%以上の25DCPXを得ることができない。また25DCPXの生成量も少ないため、再結晶を行って25DCPXの純度を高めた場合、25DCPXの収率が低く製造効率に劣るものとなる。
また、助触媒として硫黄粉末を用いた比較例2では、蒸留により純度99.9%以上の25DCPXを得ることは可能である。しかしこの場合も、収率が低く製造効率に劣るものとなる。
これに対し実施例1は、本発明で規定する触媒及び助触媒の存在下、塩素化度2.58の塩素化条件でp−キシレンの塩素化反応を行い、次いで25DCPXを分離したものである。表1に示すように、塩素化度が2以上となると急激に、異性体である23DCPXが消失し、25DCPXの選択率が向上することがわかった。また、塩素化度2.58では25DCPXと23DCPXの粗生成物中での組成が50.0%と0.02%になり、単純な蒸留処理のみにより純度99.97%の25DCPXを高い収率で得ることができた。
また実施例2は、本発明で規定する触媒と助触媒の存在下、塩素化度2.21の塩素化条件でp−キシレンの塩素化反応を行い、次いで25DCPXを分離したものである。この場合、粗生成物中の25DCPXの生成量が高い状態(74.5%)で、23DCPXの生成量については5.1%にまで低減でき、蒸留処理によりトリクロロ体及びテトラクロロ体を取り除いた後、再結晶処理に付すことで、純度99.9%の25DCPXを高い収率で得ることができた。
実施例3は、本発明で規定する触媒と助触媒の存在下、塩素化度2.48の塩素化条件でp−キシレンの塩素化反応を行い、25DCPXを合成したものである。得られた粗生成物中の23DCPXの含有量を0.01%、25DCPXの含有量を54.0%とすることができた。そのため、実施例1同様、単純な蒸留処理のみにより、純度99.9%以上の25DCPXを高い収率で得ることができる。
As described above, in Comparative Example 1 in which dioctyl sulfide was used as a co-catalyst, 23 DCPX was contained in the crude product as much as 1.83% even if the degree of chlorination was increased to 2.75, and the purity was 99. It is not possible to obtain 25 DCPX of 9% or more. Further, since the amount of 25DCPX produced is small, when the purity of 25DCPX is increased by recrystallization, the yield of 25DCPX is low and the production efficiency is inferior.
Further, in Comparative Example 2 using sulfur powder as a co-catalyst, it is possible to obtain 25 DCPX having a purity of 99.9% or more by distillation. However, in this case as well, the yield is low and the production efficiency is inferior.
On the other hand, in Example 1, in the presence of the catalyst and co-catalyst specified in the present invention, the chlorination reaction of p-xylene was carried out under the chlorination condition of 2.58 degree of chlorination, and then 25DCPX was separated. .. As shown in Table 1, it was found that when the degree of chlorination was 2 or more, the isomer 23DCPX disappeared rapidly and the selectivity of 25DCPX improved. Further, at a chlorination degree of 2.58, the compositions of 25DCPX and 23DCPX in the crude product became 50.0% and 0.02%, and a high yield of 25DCPX having a purity of 99.97% was obtained only by a simple distillation treatment. I was able to get it at.
Further, in Example 2, in the presence of the catalyst and the co-catalyst specified in the present invention, the chlorination reaction of p-xylene was carried out under the chlorination condition of 2.21 degree of chlorination, and then 25DCPX was separated. In this case, when the amount of 25DCPX produced in the crude product was high (74.5%), the amount of 23DCPX produced could be reduced to 5.1%, and the trichloro and tetrachloro compounds were removed by distillation. After that, by subjecting it to a recrystallization treatment, 25 DCPX having a purity of 99.9% could be obtained in a high yield.
In Example 3, 25 DCPX was synthesized by performing a chlorination reaction of p-xylene under chlorination conditions of a chlorination degree of 2.48 in the presence of the catalyst and co-catalyst specified in the present invention. The content of 23DCPX in the obtained crude product could be 0.01%, and the content of 25DCPX could be 54.0%. Therefore, as in Example 1, 25 DCPX having a purity of 99.9% or more can be obtained in a high yield only by a simple distillation treatment.

参考例1及び比較例3〜5
その他のルイス酸(触媒)、助触媒の有効性を確かめた結果を下記表2にまとめて示す。ここで、参考例1は実施例1の途中分析結果である。
Reference Example 1 and Comparative Examples 3 to 5
The results of confirming the effectiveness of other Lewis acids (catalysts) and cocatalysts are summarized in Table 2 below. Here, Reference Example 1 is an intermediate analysis result of Example 1.

Figure 0006773448
Figure 0006773448

触媒として三塩化アルミニウムを用いた比較例3は、塩素化反応によって25DCPXと23DCPXの選択率が参考例1の塩化鉄を触媒に用いた時より悪く、25DCPXの絶対得量が劣ることは明白である。
また、触媒として塩化第一銅、塩化亜鉛を用いた比較例4及び5は、p−キシレンの塩素化反応によるジクロロ化が非常に遅く、製造効率に劣るものであった。
以上の通り、本発明で規定する特定の触媒及び助触媒を組み合わせて用いて、本発明で規定する範囲の塩素化度でp−キシレンを塩素化することにより、純度99.9%以上の25DCPXを収率よく得ることが可能となる。
In Comparative Example 3 in which aluminum trichloride was used as the catalyst, the selectivity of 25DCPX and 23DCPX was worse than that in the case of using iron chloride in Reference Example 1 due to the chlorination reaction, and it is clear that the absolute yield of 25DCPX was inferior. is there.
Further, in Comparative Examples 4 and 5 in which cuprous chloride and zinc chloride were used as catalysts, dichloroization due to the chlorination reaction of p-xylene was very slow, and the production efficiency was inferior.
As described above, 25DCPX having a purity of 99.9% or more is obtained by chlorinating p-xylene at a degree of chlorination within the range specified in the present invention by using a combination of a specific catalyst and a co-catalyst specified in the present invention. Can be obtained in good yield.

Claims (6)

塩化第二鉄及び/又は三塩化アンチモンからなる触媒とジアリールスルフィドからなる助触媒の存在下、p−キシレンと塩素とを反応させ該p−キシレンを塩素化度2.2〜2.6に塩素化し、得られた反応生成物を、(I)蒸留処理、又は(II)蒸留処理と再結晶処理との組み合わせに付して、純度99.9%以上の2,5−ジクロロ−p−キシレンを得ることを特徴とする、高純度2,5−ジクロロ−p−キシレンの製造方法。 In the presence of a catalyst composed of ferric chloride and / or antimony trichloride and a co-catalyst composed of diarylsulfide, p-xylene is reacted with chlorine to bring the p-xylene to a degree of chlorination of 2.2 to 2.6. The resulting reaction product is subjected to (I) distillation treatment or (II) combination of distillation treatment and recrystallization treatment to achieve 2,5-dichloro-p-xylene having a purity of 99.9% or more. A method for producing high-purity 2,5-dichloro-p-xylene, which comprises obtaining. 前記ジアリールスルフィドがジフェニルスルフィドであることを特徴とする請求項1に記載の高純度2,5−ジクロロ−p−キシレンの製造方法。 The method for producing high-purity 2,5-dichloro-p-xylene according to claim 1, wherein the diaryl sulfide is diphenyl sulfide. 前記塩素化度を2.4〜2.6とする塩素化によって得られた反応生成物を、前記(I)の蒸留処理に付すことを特徴とする請求項1又は2に記載の高純度2,5−ジクロロ−p−キシレンの製造方法。 The high purity 2 according to claim 1 or 2, wherein the reaction product obtained by chlorination having a degree of chlorination of 2.4 to 2.6 is subjected to the distillation treatment of (I). , 5-Dichloro-p-xylene production method. 前記塩素化度を2.2〜2.3とする塩素化によって得られた反応生成物を、下記工程(a)及び(b)に付すことを特徴とする請求項1又は2に記載の高純度2,5−ジクロロ−p−キシレンの製造方法。
工程(a)
蒸留処理により、前記反応生成物から2,5−ジクロロ−p−キシレン及び2,3−ジクロロ−p−キシレンを含有するジクロロパラキシレン混合物を分離する工程、及び
工程(b)
再結晶処理により、前記ジクロロパラキシレン混合物から純度99.9%以上の2,5−ジクロロ−p−キシレンを得る工程。
The high amount according to claim 1 or 2, wherein the reaction product obtained by chlorination having a degree of chlorination of 2.2 to 2.3 is subjected to the following steps (a) and (b). A method for producing a purity of 2,5-dichloro-p-xylene.
Step (a)
A step of separating a dichloroparaxylene mixture containing 2,5-dichloro-p-xylene and 2,3-dichloro-p-xylene from the reaction product by a distillation treatment, and a step (b).
A step of obtaining 2,5-dichloro-p-xylene having a purity of 99.9% or more from the dichloroparaxylene mixture by recrystallization treatment.
前記高純度2,5−ジクロロ−p−キシレンの製造方法において、純度99.9%以上の高純度2,5−ジクロロ−p−キシレンの収率が、原料として用いたp−キシレンに対して30%以上である、請求項1〜4のいずれかに記載の高純度2,5−ジクロロ−p−キシレンの製造方法。 In the method for producing high-purity 2,5-dichloro-p-xylene, the yield of high-purity 2,5-dichloro-p-xylene having a purity of 99.9% or more is higher than that of p-xylene used as a raw material. The method for producing high-purity 2,5-dichloro-p-xylene according to any one of claims 1 to 4, which is 30% or more. 下記(i)又は(ii)のクロロ化−p−キシレン混合物の製造方法により得られたクロロ化−p−キシレン混合物から純度99.9%以上の2,5−ジクロロ−p−キシレンを得ることを特徴とする、高純度2,5−ジクロロ−p−キシレンの製造方法。
(i)
塩化第二鉄及び/又は三塩化アンチモンからなる触媒とジアリールスルフィドからなる助触媒の存在下、p−キシレンと塩素とを反応させ該p−キシレンを塩素化度2.4〜2.6に塩素化し、ガスクロマトグラフのピーク面積比で、全クロロ化−p−キシレン中に占める2,5−ジクロロ−p−キシレンの割合が40%以上、2,3−ジクロロ−p−キシレンの割合が0.3%以下であるクロロ化−p−キシレン混合物を得ることを特徴とする、クロロ化−p−キシレン混合物の製造方法。
(ii)
塩化第二鉄及び/又は三塩化アンチモンからなる触媒とジアリールスルフィドからなる助触媒の存在下、p−キシレンと塩素とを反応させ該p−キシレンを塩素化度2.2〜2.3に塩素化し、ガスクロマトグラフのピーク面積比で、全クロロ化−p−キシレン中に占める2,5−ジクロロ−p−キシレンの割合が65%以上、2,3−ジクロロ−p−キシレンの割合が10%以下のクロロ化−p−キシレン混合物を得ることを特徴とする、クロロ化−p−キシレン混合物の製造方法。

Obtaining 2,5-dichloro-p-xylene having a purity of 99.9% or more from the chloro-p-xylene mixture obtained by the method for producing the chloro-p-xylene mixture according to (i) or (ii) below. A method for producing high-purity 2,5-dichloro-p-xylene, which comprises the above.
(I)
In the presence of a catalyst composed of ferric chloride and / or antimony trichloride and a co-catalyst composed of diarylsulfide, p-xylene is reacted with chlorine to bring the p-xylene to a degree of chlorination of 2.4 to 2.6. In the peak area ratio of the gas chromatograph, the ratio of 2,5-dichloro-p-xylene in the total chloro-p-xylene is 40% or more, and the ratio of 2,3-dichloro-p-xylene is 0. A method for producing a chloro-p-xylene mixture, which comprises obtaining a chloro-p-xylene mixture having a content of 3% or less.
(Ii)
In the presence of a catalyst composed of ferric chloride and / or antimony trichloride and an auxiliary catalyst composed of diarylsulfide, p-xylene is reacted with chlorine to bring the p-xylene to a degree of chlorination of 2.2 to 2.3. In the peak area ratio of the gas chromatograph, the ratio of 2,5-dichloro-p-xylene in the total chloro-p-xylene is 65% or more, and the ratio of 2,3-dichloro-p-xylene is 10%. A method for producing a chloro-p-xylene mixture, which comprises obtaining the following chloro-p-xylene mixture.

JP2016081191A 2016-04-14 2016-04-14 Method for producing high-purity 2,5-dichloro-p-xylene Active JP6773448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016081191A JP6773448B2 (en) 2016-04-14 2016-04-14 Method for producing high-purity 2,5-dichloro-p-xylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016081191A JP6773448B2 (en) 2016-04-14 2016-04-14 Method for producing high-purity 2,5-dichloro-p-xylene

Publications (2)

Publication Number Publication Date
JP2017190306A JP2017190306A (en) 2017-10-19
JP6773448B2 true JP6773448B2 (en) 2020-10-21

Family

ID=60084437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016081191A Active JP6773448B2 (en) 2016-04-14 2016-04-14 Method for producing high-purity 2,5-dichloro-p-xylene

Country Status (1)

Country Link
JP (1) JP6773448B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108046977B (en) * 2018-01-02 2020-12-18 江苏扬农化工集团有限公司 Method for selectively producing dichloro-p-xylene

Also Published As

Publication number Publication date
JP2017190306A (en) 2017-10-19

Similar Documents

Publication Publication Date Title
US7799959B2 (en) Process for producing 1,2,3,4-tetrachlorohexafluorobutane
FR2529883A1 (en) PROCESS FOR THE PRODUCTION OF VINYL CHLORIDE
JP2020040967A (en) Method for making 1,1,3,3-tetrachloropropene
US8889927B2 (en) Method to reduce the formation of high boiling compounds during the dehydrochlorination of 1,1,1,3-tetrachloropropane
US20170313731A1 (en) Process for producing methyldichlorophosphane
JP4554211B2 (en) Method for preparing n-propyl bromide
JP6773448B2 (en) Method for producing high-purity 2,5-dichloro-p-xylene
JP4520712B2 (en) Method for producing fluorohalogen ethers
KR20080066746A (en) Process for production of biphenyl derivatives
JP4641839B2 (en) Process for producing 4-methyl-3-trifluoromethylbenzoic acid
JP5610917B2 (en) Method for producing chloropropane
KR101222780B1 (en) Manufacturing Process for iodinated aromatic compounds
JP5853772B2 (en) Method for producing α, α-difluoroaromatic compound
Nikul’shin et al. Synthesis of chloro-and ortho-dichloropolyfluoroarenes by pyrolysis of polyfluoroarenes in the presence of chlorine
CN107074699B (en) Process for the preparation of 5-bromo-1, 2, 3-trichlorobenzene
EP0903334B1 (en) Halogenated aromatic derivatives and process for the preparation thereof
JP2001240568A (en) Preparation method of 1-chloroheptafluorocyclopentene
JPH04305544A (en) Method of preparing paradichlorobenzene
JPH06206835A (en) Preparation of halogenated aromatic compound
JP4029447B2 (en) Method for producing 2-chloro-1,4-bistrichloromethylbenzene
EP3330242A1 (en) Method for producing higher-order chloroalkane
EP0870747B1 (en) Method of making m-chlorobenzotrifluoride
JP3480806B2 (en) Method for producing chlorinated acetone
JP3298346B2 (en) Method for producing high-purity 2-chloroterephthalic acid chloride
JPS63198640A (en) 2-bromo-1&#39;,2&#39;-dichloroperfluorodiethyl ether and manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201001

R150 Certificate of patent or registration of utility model

Ref document number: 6773448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250