JP6773249B1 - Laminates with a polyolefin resin layer and packaging products with them - Google Patents

Laminates with a polyolefin resin layer and packaging products with them Download PDF

Info

Publication number
JP6773249B1
JP6773249B1 JP2020125595A JP2020125595A JP6773249B1 JP 6773249 B1 JP6773249 B1 JP 6773249B1 JP 2020125595 A JP2020125595 A JP 2020125595A JP 2020125595 A JP2020125595 A JP 2020125595A JP 6773249 B1 JP6773249 B1 JP 6773249B1
Authority
JP
Japan
Prior art keywords
resin layer
biomass
layer
polyolefin
derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020125595A
Other languages
Japanese (ja)
Other versions
JP2020175960A (en
Inventor
淳彦 武田
淳彦 武田
勝啓 外園
勝啓 外園
剛也 野澤
剛也 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=72829264&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6773249(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2020125595A priority Critical patent/JP6773249B1/en
Application granted granted Critical
Publication of JP6773249B1 publication Critical patent/JP6773249B1/en
Publication of JP2020175960A publication Critical patent/JP2020175960A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】従来の化石燃料由来のポリオレフィンからなるポリオレフィン樹脂層を備える積層体と機械的特性等の物性面で遜色ないバイオマスポリオレフィンを含むポリオレフィン樹脂層を備える積層体の提供。【解決手段】本発明による積層体は、少なくとも、紙基材層と、ポリオレフィン樹脂層とを備え、前記ポリオレフィン樹脂層が、バイオマス由来のエチレンを含むモノマーの重合体であるバイオマスポリオレフィンを含み、前記ポリオレフィン樹脂層中のバイオマス度が5%以上であり、前記バイオマスポリオレフィンが、0.91g/cm3以上0.93g/cm3以下の密度を有するものである。【選択図】図1PROBLEM TO BE SOLVED: To provide a laminate having a polyolefin resin layer made of a conventional fossil fuel-derived polyolefin and a laminate having a polyolefin resin layer containing biomass polyolefin which is comparable in physical properties such as mechanical properties. SOLUTION: The laminate according to the present invention includes at least a paper base material layer and a polyolefin resin layer, and the polyolefin resin layer contains biomass polyolefin which is a polymer of a monomer containing ethylene derived from biomass. The degree of biomass in the polyolefin resin layer is 5% or more, and the biomass polyolefin has a density of 0.91 g / cm3 or more and 0.93 g / cm3 or less. [Selection diagram] Fig. 1

Description

本発明は、バイオマスポリオレフィンを含むポリオレフィン樹脂層を備えた積層体に関し、より詳細には、少なくとも、紙基材層と、バイオマス由来のエチレンを含むモノマーの重合体であるバイオマスポリオレフィンを含むポリオレフィン樹脂層とを備える積層体に関する。さらには、該積層体を備える包装製品および紙コップに関する。 The present invention relates to a laminate having a polyolefin resin layer containing biomass polyolefin, and more specifically, at least a paper base material layer and a polyolefin resin layer containing biomass polyolefin, which is a polymer of a monomer containing ethylene derived from biomass. With respect to a laminate comprising. Furthermore, the present invention relates to a packaging product and a paper cup provided with the laminate.

近年、循環型社会の構築を求める声の高まりとともに、材料分野においてもエネルギーと同様に化石燃料からの脱却が望まれており、バイオマスの利用が注目されている。バイオマスは、二酸化炭素と水から光合成された有機化合物であり、それを利用することにより、再度二酸化炭素と水になる、いわゆるカーボンニュートラルな再生可能エネルギーである。昨今、これらバイオマスを原料としたバイオマスプラスチックの実用化が急速に進んでおり、各種の樹脂をバイオマス原料から製造する試みも行われている。 In recent years, with the growing demand for the construction of a recycling-oriented society, there is a desire to break away from fossil fuels in the material field as well as energy, and the use of biomass is drawing attention. Biomass is an organic compound photosynthesized from carbon dioxide and water, and by using it, it becomes carbon dioxide and water again, so-called carbon-neutral renewable energy. In recent years, the practical use of biomass plastics made from these biomass raw materials is rapidly progressing, and attempts are being made to produce various resins from the biomass raw materials.

バイオマス由来の樹脂としては、乳酸発酵を経由して製造されるポリ乳酸(PLA)が先行して商業生産が始まったが、生分解性であることをはじめ、プラスチックとしての性能が現在の汎用プラスチックとは大きく異なるため、製品用途や製品製造方法に限界があり広く普及するには至っていない。また、PLAに対しては、ライフサイクルアセスメント(LCA)評価が行われており、PLA製造時の消費エネルギーおよび汎用プラスチック代替時の等価性等について議論がなされている。 As a resin derived from biomass, polylactic acid (PLA), which is produced via lactic acid fermentation, started commercial production in advance, but its biodegradable performance and the current performance as a plastic are general-purpose plastics. Because it is very different from the above, there are limits to the product applications and product manufacturing methods, and it has not been widely used. In addition, a life cycle assessment (LCA) evaluation is being conducted for PLA, and discussions are being held on energy consumption during PLA manufacturing and equivalence when replacing general-purpose plastics.

ここで、汎用プラスチックとしては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン等、様々な種類が用いられている。特に、ポリエチレンは、フィルム、シート、ボトル等に成形され、包装材等の種々の用途に供されており、世界中での使用量が多い。そのため、従来の化石燃料由来のポリエチレンを用いることは環境負荷が大きい。 Here, as the general-purpose plastic, various types such as polyethylene, polypropylene, polyvinyl chloride, and polystyrene are used. In particular, polyethylene is molded into films, sheets, bottles and the like, and is used for various purposes such as packaging materials, and is widely used all over the world. Therefore, the use of conventional fossil fuel-derived polyethylene has a large environmental load.

そのため、ポリエチレンの製造にバイオマス由来の原料を用いて、化石燃料の使用量を削減することが望まれている。例えば、現在までに、ポリオレフィン樹脂の原料となるエチレンやブチレンを、再生可能な天然原料から製造することが研究されてきた(例えば、特許文献1を参照)。 Therefore, it is desired to reduce the amount of fossil fuel used by using a raw material derived from biomass in the production of polyethylene. For example, to date, research has been conducted on producing ethylene and butylene, which are raw materials for polyolefin resins, from renewable natural raw materials (see, for example, Patent Document 1).

特表2011−506628号公報Japanese Patent Publication No. 2011-506628

本発明者らは、ポリオレフィン樹脂の原料であるエチレンに着目し、従来の化石燃料から得られるエチレンに代えて、バイオマス由来のエチレンをその原料としたバイオマスポリオレフィン(以下、単に「バイオマスポリオレフィン」ということがある)を含むポリオレフィン樹脂層を備える積層体は、従来の化石燃料から得られるエチレンを用いて製造されたポリオレフィン(以下、単に「化石燃料由来のポリオレフィン」ということがある)からなるポリオレフィン樹脂層を備える積層体と、機械的特性等の物性面で遜色ないものが得られるとの知見を得た。本発明はかかる知見によるものである。 The present inventors have focused on ethylene, which is a raw material for polyolefin resins, and instead of ethylene obtained from conventional fossil fuels, biomass polyolefins using ethylene derived from biomass as a raw material (hereinafter, simply referred to as "biomass polyolefin"). The laminate including the polyolefin resin layer containing (there is) is a polyolefin resin layer made of a polyolefin produced using ethylene obtained from a conventional fossil fuel (hereinafter, may be simply referred to as “polyolefin derived from fossil fuel”). It was found that a laminate having the above-mentioned material can be obtained in terms of physical properties such as mechanical properties. The present invention is based on such findings.

したがって、本発明の目的は、従来の化石燃料由来のポリオレフィンからなるポリオレフィン樹脂層を備える紙カップ用積層体と機械的特性等の物性面で遜色ない、バイオマスポリオレフィンを含むポリオレフィン樹脂層を備える紙カップ用積層体を提供することである。 Therefore, an object of the present invention is a laminate for a paper cup having a polyolefin resin layer made of a polyolefin derived from a conventional fossil fuel, and a laminate for a paper cup having a polyolefin resin layer containing a biomass polyolefin, which is comparable in physical properties such as mechanical properties. To provide the body.

本発明の態様においては、
少なくとも、熱可塑性樹脂層と、紙基材層と、ポリオレフィン樹脂層とをこの順に備える紙カップ用積層体であって、
紙カップの胴部として用いられ、前記熱可塑性樹脂層と、前記ポリオレフィン樹脂層とを接着することにより胴部シール部が形成されるように用いられる紙カップ用積層体において、
前記ポリオレフィン樹脂層が、バイオマス由来のエチレンを含むモノマーの重合体であるバイオマス由来の低密度ポリエチレンを含み、
前記ポリオレフィン樹脂層中のバイオマス度が5%以上であり、
前記熱可塑性樹脂層が化石燃料由来の低密度ポリエチレンであり、
前記紙カップ用積層体の最内層が前記ポリオレフィン樹脂層である、紙カップ用積層体が提供される。
本発明の態様においては、前記紙カップ用積層体がさらにバリア層を有することが好ましい。
本発明の態様においては、前記紙カップ用積層体がさらに印刷層を有することが好ましい。
本発明の別の態様においては、
胴部と、底部と、を備える紙カップであって、
胴部を構成する積層体が、少なくとも、熱可塑性樹脂層と、紙基材層と、ポリオレフィン樹脂層と、をこの順に備え、
前記ポリオレフィン樹脂層が、バイオマス由来のエチレンを含むモノマーの重合体であるバイオマス由来の低密度ポリエチレンを含み、
前記ポリオレフィン樹脂層中のバイオマス度が5%以上であり、
前記熱可塑性樹脂層が化石燃料由来の低密度ポリエチレンであり、
前記紙カップ用積層体の最内層が前記ポリオレフィン樹脂層であり、
前記紙カップの胴シール部が、前記熱可塑性樹脂層と、前記ポリオレフィン樹脂層とを接着することにより形成されている、紙カップが提供される。
本発明の別の態様においては、前記胴部を構成する積層体が、さらにバリア層を有することが好ましい。
本発明の別の態様においては、前記胴部を構成する積層体が、さらに印刷層を有することが好ましい。
In aspects of the invention
A laminate for a paper cup including at least a thermoplastic resin layer, a paper base material layer, and a polyolefin resin layer in this order.
In a laminated body for a paper cup, which is used as a body portion of a paper cup and is used so that a body portion seal portion is formed by adhering the thermoplastic resin layer and the polyolefin resin layer.
The polyolefin resin layer contains low-density polyethylene derived from biomass, which is a polymer of a monomer containing ethylene derived from biomass.
The degree of biomass in the polyolefin resin layer is 5% or more,
The thermoplastic resin layer is low-density polyethylene derived from fossil fuel.
Provided is a laminate for paper cups, wherein the innermost layer of the laminate for paper cups is the polyolefin resin layer.
In the aspect of the present invention, it is preferable that the laminate for paper cups further has a barrier layer.
In the aspect of the present invention, it is preferable that the laminate for paper cups further has a printing layer.
In another aspect of the invention
A paper cup with a torso and a bottom
The laminate constituting the body includes at least a thermoplastic resin layer, a paper base material layer, and a polyolefin resin layer in this order.
The polyolefin resin layer contains low-density polyethylene derived from biomass, which is a polymer of a monomer containing ethylene derived from biomass.
The degree of biomass in the polyolefin resin layer is 5% or more,
The thermoplastic resin layer is low-density polyethylene derived from fossil fuel.
The innermost layer of the laminate for paper cups is the polyolefin resin layer.
A paper cup is provided in which a body seal portion of the paper cup is formed by adhering the thermoplastic resin layer and the polyolefin resin layer.
In another aspect of the present invention, it is preferable that the laminate constituting the body portion further has a barrier layer.
In another aspect of the present invention, it is preferable that the laminate constituting the body portion further has a printing layer.

本発明による紙カップ用積層体は、少なくとも、熱可塑性樹脂層と、紙基材層と、バイオマスポリオレフィンを含むポリオレフィン樹脂層とを備えることで、従来に比べて化石燃料の使用量を削減することができ、環境負荷を減らすことができる。また、本発明による紙カップ用積層体は、従来の化石燃料由来のポリオレフィン樹脂の紙カップ用積層体と比べて機械的特性等の物性面で遜色がないため、従来の化石燃料由来のポリオレフィン樹脂の紙カップ用積層体を代替することができる。 By providing at least a thermoplastic resin layer, a paper base material layer, and a polyolefin resin layer containing biomass polyolefin, the laminate for a paper cup according to the present invention can reduce the amount of fossil fuel used as compared with the conventional one. It can reduce the environmental load. Further, since the laminate for paper cups according to the present invention is comparable in physical properties such as mechanical properties to the laminate for paper cups of polyolefin resin derived from conventional fossil fuels, the paper cups made of polyolefin resin derived from conventional fossil fuels. Can replace the laminated body.

本発明による積層体の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the laminated body by this invention. 本発明による積層体の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the laminated body by this invention. 本発明による積層体の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the laminated body by this invention. 紙カップの一部を切除した斜視図。A perspective view of a part of a paper cup cut off. 紙カップの別の実施形態を示す一部を破断した正面図。A partially cutaway front view showing another embodiment of a paper cup.

本発明において、「バイオマスポリオレフィン」および「バイオマスポリオレフィンを含むポリオレフィン樹脂層」とは、原料として少なくとも一部にバイオマス由来の原料を用いたものであって、原料の全てがバイオマス由来のものであることを意味するものではない。 In the present invention, the "biomass polyolefin" and the "polyolefin resin layer containing biomass polyolefin" are those using at least a part of the raw material derived from biomass as the raw material, and all of the raw materials are derived from biomass. Does not mean.

<積層体>
本発明による積層体は、紙基材層と、バイオマスポリオレフィンを含むポリオレフィン樹脂層とを備えるものである。ポリオレフィン樹脂層は、積層体を用いて包装容器を形成したときに、最内層となる層である。積層体は、バイオマスポリオレフィンを含むポリオレフィン樹脂層を備えることで、従来に比べて化石燃料の使用量を削減することができ、環境負荷を減らすことができる。また、本発明による積層体は、従来の化石燃料から得られる原料から製造されたポリオレフィン樹脂の積層体と比べて、機械的特性等の物性面で遜色がないため、従来のポリオレフィン樹脂の積層体を代替することができる。
<Laminated body>
The laminate according to the present invention includes a paper base material layer and a polyolefin resin layer containing biomass polyolefin. The polyolefin resin layer is a layer that becomes the innermost layer when a packaging container is formed by using a laminated body. By providing the polyolefin resin layer containing biomass polyolefin, the laminate can reduce the amount of fossil fuel used as compared with the conventional one, and can reduce the environmental load. Further, the laminate according to the present invention is not inferior to the laminate of polyolefin resin produced from the raw material obtained from the conventional fossil fuel in terms of physical properties such as mechanical properties, and therefore the laminate of conventional polyolefin resin. Can be substituted.

本発明による該積層体は、上記の層以外に、熱可塑性樹脂層、印刷層、バリア層、プラスチックフィルム、接着層等の他の層を少なくとも1層さらに有してもよい。その他の層を2層以上有する場合、それぞれが、同一の組成であってもよいし、異なる組成であってもよい。 In addition to the above layers, the laminate according to the present invention may further have at least one other layer such as a thermoplastic resin layer, a printing layer, a barrier layer, a plastic film, and an adhesive layer. When two or more other layers are provided, they may have the same composition or different compositions.

本発明による積層体について、図面を参照しながら説明する。本発明による積層体の模式断面図の例を図1〜3に示す。
図1に示される積層体10は、紙基材層11と、紙基材層11上に形成されたポリオレフィン樹脂層12とを備えるものである。積層体10を備える紙カップの場合、ポリオレフィン樹脂層12が紙カップの内側に位置する。ここで、ポリオレフィン樹脂層12は、バイオマスポリオレフィンを含むポリオレフィン樹脂層である。
図2に示される積層体20は、紙基材層11と、紙基材層11の一方の面上に、接着層13と、バリア層14と、ポリオレフィン樹脂層12とをこの順に備えるものである。積層体20を備える紙カップの場合、ポリオレフィン樹脂層12が紙カップの内側に位置する。
図3に示される積層体30は紙基材層11と、紙基材層11の一方の面上に、接着層13と、プラスチックフィルム15と、接着層13と、ポリオレフィン樹脂層12とをこの順に備えるものである。積層体30を備える紙カップの場合、ポリオレフィン樹脂層12が紙カップの内側に位置する。
なお、いずれの積層体においても、紙基材層11の他方の面上に、印刷層または熱可塑性樹脂層を積層してもよい。印刷層および熱可塑性樹脂層を積層する場合、熱可塑性樹脂層が最外面になるように積層してもよい。
以下、積層体を構成する各層について説明する。
The laminate according to the present invention will be described with reference to the drawings. Examples of schematic cross-sectional views of the laminated body according to the present invention are shown in FIGS.
The laminate 10 shown in FIG. 1 includes a paper base material layer 11 and a polyolefin resin layer 12 formed on the paper base material layer 11. In the case of a paper cup including the laminate 10, the polyolefin resin layer 12 is located inside the paper cup. Here, the polyolefin resin layer 12 is a polyolefin resin layer containing biomass polyolefin.
The laminate 20 shown in FIG. 2 includes an adhesive layer 13, a barrier layer 14, and a polyolefin resin layer 12 in this order on one surface of the paper base layer 11 and the paper base layer 11. is there. In the case of a paper cup including the laminate 20, the polyolefin resin layer 12 is located inside the paper cup.
The laminate 30 shown in FIG. 3 has an adhesive layer 13, a plastic film 15, an adhesive layer 13, and a polyolefin resin layer 12 on one surface of the paper base layer 11 and the paper base layer 11. It prepares in order. In the case of a paper cup including the laminate 30, the polyolefin resin layer 12 is located inside the paper cup.
In any of the laminated bodies, a printing layer or a thermoplastic resin layer may be laminated on the other surface of the paper base material layer 11. When laminating the printing layer and the thermoplastic resin layer, the thermoplastic resin layer may be laminated so as to be the outermost surface.
Hereinafter, each layer constituting the laminated body will be described.

(紙基材層)
本発明において、紙基材層は、ポリオレフィン樹脂層を保持する基材層としての機能を果たすものであり、積層体に包装製品としての強度を付与できるものが好ましい。紙基材層として用いる紙は、100g/m以上700g/m以下、好ましくは150g/m以上600g/m以下、より好ましくは200g/m以上500g/m以下の坪量を有するものである。紙基材層としては、白板紙全般を対象とするが、特に安全性の観点から天然パルプを用いたアイボリー紙、ミルクカートン原紙、カップ原紙等の使用が好ましい。
(Paper substrate layer)
In the present invention, the paper base material layer functions as a base material layer for holding the polyolefin resin layer, and it is preferable that the laminate can be imparted with strength as a packaged product. The paper used as the paper substrate layer has a basis weight of 100 g / m 2 or more and 700 g / m 2 or less, preferably 150 g / m 2 or more and 600 g / m 2 or less, and more preferably 200 g / m 2 or more and 500 g / m 2 or less. To have. As the paper base material layer, white paperboard in general is targeted, but from the viewpoint of safety, it is particularly preferable to use ivory paper, milk carton base paper, cup base paper, etc. using natural pulp.

また、本発明で使用する板紙は、サイズ剤として、中性ロジンやアルキルケテンダイマー、アルケニル無水コハク酸を使用してもよく、定着剤としてカチオン性のポリアクリルアミドやカチオン性デンプン等を使用してもよい。また、硫酸バンドを使用してpH6以上pH9以下の中性領域で抄紙することも可能である。その他、必要に応じて上記のサイズ剤のほか、定着剤の他、製紙用各種填料、歩留向上剤、乾燥紙力増強剤、湿潤紙力増強剤、結合剤、分散剤、凝集剤、可塑剤、接着剤を適宜含有していてもよい。 Further, in the paperboard used in the present invention, neutral rosin, alkyl ketene dimer, alkenyl succinic anhydride may be used as the sizing agent, and cationic polyacrylamide, cationic starch or the like is used as the fixing agent. May be good. It is also possible to use a sulfuric acid band to make paper in a neutral region of pH 6 or more and pH 9 or less. In addition to the above sizing agents, if necessary, in addition to fixing agents, various paper-making fillers, yield improvers, dry paper strength enhancers, wet paper strength enhancers, binders, dispersants, flocculants, and plasticizers. An agent and an adhesive may be appropriately contained.

(ポリオレフィン樹脂層)
本発明において、ポリオレフィン樹脂層は、バイオマス由来のエチレンを含むモノマーの重合体であるバイオマスポリオレフィンを含むものであり、化石燃料由来のポリオレフィンをさらに含んでもよい。ポリオレフィン樹脂層は、ポリオレフィン樹脂層全体に対して、5質量%以上100質量%以下のバイオマスポリオレフィンと0質量%以上95質量%以下の化石燃料由来のポリオレフィンとを含んでもよく、5質量%以上100質量%未満のバイオマスポリオレフィンと0質量%超過95質量%以下の化石燃料由来のポリオレフィンとを含んでもよく、25質量%以上75質量%質量%以下のバイオマスポリオレフィンと25質量%以上75質量%質量%以下の化石燃料由来のポリオレフィンとを含んでもよい。ポリオレフィン樹脂層全体として、下記のバイオマス度を実現できればよい。本発明においては、ポリオレフィン樹脂層がバイオマスポリオレフィンを含むことで、従来に比べて化石燃料由来のポリオレフィンの量を削減し環境負荷を減らすことができる。
(Polyolefin resin layer)
In the present invention, the polyolefin resin layer contains biomass polyolefin, which is a polymer of a monomer containing ethylene derived from biomass, and may further contain polyolefin derived from fossil fuel. The polyolefin resin layer may contain 5% by mass or more and 100% by mass or less of biomass polyolefin and 0% by mass or more and 95% by mass or less of fossil fuel-derived polyolefin with respect to the entire polyolefin resin layer. It may contain less than mass% of biomass polyolefin and less than 0% by mass of 95% by mass or less of fossil fuel-derived polyolefin, 25% by mass or more and 75% by mass or less of biomass polyolefin and 25% by mass or more and 75% by mass% by mass. The following fossil fuel-derived polyolefins may be included. It suffices if the following biomass degree can be realized as the entire polyolefin resin layer. In the present invention, since the polyolefin resin layer contains biomass polyolefin, the amount of fossil fuel-derived polyolefin can be reduced and the environmental load can be reduced as compared with the conventional case.

本発明において、ポリオレフィン樹脂層中の「バイオマス度」(バイオマスポリオレフィン中のバイオマス由来の炭素濃度)は、放射性炭素(C14)測定によるバイオマス由来の炭素の含有量を測定した値である。大気中の二酸化炭素には、C14が一定割合(105.5pMC)で含まれているため、大気中の二酸化炭素を取り入れて成長する植物、例えばトウモロコシ中のC14含有量も105.5pMC程度であることが知られている。また、化石燃料中にはC14が殆ど含まれていないことも知られている。したがって、ポリオレフィン中の全炭素原子中に含まれるC14の割合を測定することにより、バイオマス由来の炭素の割合を算出することができる。本発明においては、ポリオレフィン中のC14の含有量をPC14とした場合の、バイオマス由来の炭素の含有量Pbioは、以下のようにして求めることができる。
bio(%)=PC14/105.5×100
In the present invention, the "biomass degree" (biomass-derived carbon concentration in the biomass polyolefin) in the polyolefin resin layer is a value obtained by measuring the content of biomass-derived carbon by radiocarbon (C14) measurement. Since carbon dioxide in the atmosphere contains C14 at a fixed ratio (105.5 pMC), the C14 content in plants that grow by taking in carbon dioxide in the atmosphere, such as corn, is also about 105.5 pMC. It is known. It is also known that fossil fuels contain almost no C14. Therefore, the proportion of biomass-derived carbon can be calculated by measuring the proportion of C14 contained in all carbon atoms in polyolefin. In the present invention, in the case where the content of C14 in the polyolefin was P C14, the content P bio Bio carbon from biomass, can be obtained as follows.
P bio (%) = P C14 /105.5×100

本発明においては、理論上、ポリオレフィンの原料として、全てバイオマス由来のエチレンを用いれば、バイオマス度は100%であり、バイオマス由来のポリオレフィンのバイオマス度は100%となる。また、化石燃料由来の原料のみで製造された化石燃料由来のポリオレフィン中のバイオマス由来の炭素濃度は0%であり、化石燃料由来のポリオレフィンのバイオマス度は0%となる。 In the present invention, theoretically, if all biomass-derived ethylene is used as the raw material for the polyolefin, the biomass degree is 100%, and the biomass degree of the biomass-derived polyolefin is 100%. Further, the carbon concentration derived from biomass in the polyolefin derived from fossil fuel produced only from the raw material derived from fossil fuel is 0%, and the biomass degree of the polyolefin derived from fossil fuel is 0%.

本発明において、ポリオレフィン樹脂層中のバイオマス度は、5%以上であり、好ましくは10%以上であり、より好ましくは15%以上であり、さらに好ましくは20%以上である。なお、ポリオレフィン樹脂層中のバイオマス度は100%である必要はない。積層体の一部にでもバイオマス由来の原料が用いられていれば、従来に比べて化石燃料の使用量を削減するという本発明の趣旨に沿うからである。ポリオレフィン樹脂層中のバイオマス度が5%以上であれば、従来に比べて化石燃料由来のポリオレフィンの量を削減し環境負荷を減らすことができる。 In the present invention, the biomass degree in the polyolefin resin layer is 5% or more, preferably 10% or more, more preferably 15% or more, still more preferably 20% or more. The degree of biomass in the polyolefin resin layer does not have to be 100%. This is because if a raw material derived from biomass is used even in a part of the laminate, the purpose of the present invention is to reduce the amount of fossil fuel used as compared with the conventional case. When the biomass content in the polyolefin resin layer is 5% or more, the amount of fossil fuel-derived polyolefin can be reduced and the environmental load can be reduced as compared with the conventional case.

ポリオレフィン樹脂層は、好ましくは0.91g/cm以上0.93g/cm以下、より好ましくは0.911g/cm以上0.928g/cm以下、さらに好ましくは0.915g/cm以上0.925g/cm以下の密度を有するものである。ポリオレフィン樹脂層の密度は、JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980のうち、A法に規定された方法に従って測定される値である。ポリオレフィン樹脂層の密度が0.91g/cm以上0.93g/cm以下であれば、加工や成形を容易にすることができる。 Polyolefin resin layer is preferably from 0.91 g / cm 3 or more 0.93 g / cm 3 or less, more preferably 0.911 g / cm 3 or more 0.928 g / cm 3 or less, more preferably 0.915 g / cm 3 or more It has a density of 0.925 g / cm 3 or less. The density of the polyolefin resin layer is a value measured according to the method specified in the method A of JIS K7112-1980 after performing the annealing described in JIS K6760-1980. If the density of the polyolefin resin layer is 0.91 g / cm 3 or more 0.93 g / cm 3 or less, it is possible to facilitate processing and molding.

ポリオレフィン樹脂層は、5μm以上100μm以下、好ましくは10μm以上60μm以下、より好ましくは15μm以上40μm以下の厚さを有するものである。ポリオレフィン樹脂層の厚さが上記範囲程度であれば、包装容器のシール層としての機能を十分に果たすことができる。 The polyolefin resin layer has a thickness of 5 μm or more and 100 μm or less, preferably 10 μm or more and 60 μm or less, and more preferably 15 μm or more and 40 μm or less. When the thickness of the polyolefin resin layer is about the above range, the function as a sealing layer of the packaging container can be sufficiently fulfilled.

(バイオマスポリオレフィン)
本発明において、バイオマスポリオレフィンは、バイオマス由来のエチレンを含むモノマーの重合体である。バイオマス由来のエチレンには、後述の製造方法により得られたものを用いることが好ましい。原料であるモノマーとしてバイオマス由来のエチレンを用いているため、重合されてなるポリオレフィンはバイオマス由来となる。なお、ポリオレフィンの原料モノマーは、バイオマス由来のエチレンを100質量%含むものでなくてもよい。
(Biomass polyolefin)
In the present invention, the biomass polyolefin is a polymer of a monomer containing ethylene derived from biomass. As the biomass-derived ethylene, it is preferable to use the ethylene obtained by the production method described later. Since ethylene derived from biomass is used as the monomer as a raw material, the polymerized polyolefin is derived from biomass. The raw material monomer of polyolefin does not have to contain 100% by mass of ethylene derived from biomass.

バイオマスポリオレフィンの原料であるモノマーは、化石燃料由来のエチレンのモノマーおよび/または化石燃料由来のα−オレフィンのモノマーをさらに含んでもよいし、バイオマス由来のα−オレフィンのモノマーをさらに含んでもよい。 The monomer that is the raw material of the biomass polyolefin may further contain a fossil fuel-derived ethylene monomer and / or a fossil fuel-derived α-olefin monomer, or may further contain a biomass-derived α-olefin monomer.

上記のα−オレフィンは、炭素数は特に限定されないが、通常、炭素数3〜20のものを用いることができ、ブチレン、ヘキセン、またはオクテンであることが好ましい。ブチレン、ヘキセン、またはオクテンであれば、バイオマス由来の原料であるエチレンの重合により製造することが可能となるからである。また、このようなα−オレフィンを含むことで、重合されてなるバイオマスポリオレフィンはアルキル基を分岐構造として有するため、単純な直鎖状のものよりも柔軟性に富むものとすることができる。 The above-mentioned α-olefin has no particular limitation on the number of carbon atoms, but usually one having 3 to 20 carbon atoms can be used, and it is preferably butylene, hexene, or octene. This is because butylene, hexene, or octene can be produced by polymerization of ethylene, which is a raw material derived from biomass. Further, by including such an α-olefin, the polymerized biomass polyolefin has an alkyl group as a branched structure, so that it can be made more flexible than a simple linear one.

バイオマスポリオレフィンとしては、ポリエチレンや、エチレンとα−オレフィンの共重合体を単独で用いてもよいし、二種以上混合して用いてもよい。特に、バイオマスポリオレフィンはポリエチレンであることが好ましい。バイオマス由来の原料であるエチレンを用いることで、理論上100%バイオマス由来の成分により製造することが可能となるからである。 As the biomass polyolefin, polyethylene or a copolymer of ethylene and α-olefin may be used alone, or two or more kinds thereof may be mixed and used. In particular, the biomass polyolefin is preferably polyethylene. This is because by using ethylene, which is a raw material derived from biomass, it is theoretically possible to produce with 100% biomass-derived components.

バイオマスポリオレフィンは、異なるバイオマス度のバイオマスポリオレフィンを2種以上含むものであってもよく、ポリオレフィン樹脂層全体として、バイオマス度が、上記範囲内であればよい。 The biomass polyolefin may contain two or more kinds of biomass polyolefins having different biomass degrees, and the biomass degree of the entire polyolefin resin layer may be within the above range.

バイオマスポリオレフィンは、好ましくは0.91g/cm以上0.93g/cm以下、より好ましくは0.912g/cm以上0.928g/cm以下、さらに好ましくは0.915g/cm以上0.925g/cm以下の密度を有するものである。
バイオマスポリオレフィンの密度は、JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980のうち、A法に規定された方法に従って測定される値である。バイオマスポリオレフィンの密度が0.91g/cm以上であれば、バイオマスポリオレフィンを含むポリオレフィン樹脂層の剛性を高めることができ、包装製品の内層として好適に用いることができる。また、バイオマスポリオレフィンの密度が0.93g/cm以下であれば、バイオマスポリオレフィンを含むポリオレフィン樹脂層の透明性や機械的強度を高めることができ、包装製品の内層として好適に用いることができる。
Biomass polyolefin, preferably 0.91 g / cm 3 or more 0.93 g / cm 3 or less, more preferably 0.912 g / cm 3 or more 0.928 g / cm 3 or less, more preferably 0.915 g / cm 3 or more 0 It has a density of .925 g / cm 3 or less.
The density of the biomass polyolefin is a value measured according to the method specified in the method A of JIS K7112-1980 after performing the annealing described in JIS K6760-1980. When the density of the biomass polyolefin is 0.91 g / cm 3 or more, the rigidity of the polyolefin resin layer containing the biomass polyolefin can be increased, and it can be suitably used as the inner layer of the packaged product. Further, when the density of the biomass polyolefin is 0.93 g / cm 3 or less, the transparency and mechanical strength of the polyolefin resin layer containing the biomass polyolefin can be enhanced, and it can be suitably used as the inner layer of the packaged product.

バイオマスポリオレフィンは、0.1g/10分以上10g/10分以下、好ましくは0.2g/10分以上9g/10分以下、より好ましくは1g/10分以上8.5g/10分以下のメルトフローレート(MFR)を有するものである。メルトフローレートとは、JIS K7210−1995に規定された方法において、温度190℃、荷重21.18Nの条件で、A法により測定される値である。バイオマスポリオレフィンのMFRが0.1g/10分以上であれば、成形加工時の押出負荷を低減することができる。また、バイオマスポリオレフィンのMFRが10g/10分以下であれば、バイオマスポリオレフィンを含むポリオレフィン樹脂層の機械的強度を高めることができる。 The biomass polyolefin has a melt flow of 0.1 g / 10 minutes or more and 10 g / 10 minutes or less, preferably 0.2 g / 10 minutes or more and 9 g / 10 minutes or less, and more preferably 1 g / 10 minutes or more and 8.5 g / 10 minutes or less. It has a rate (MFR). The melt flow rate is a value measured by the method A under the conditions of a temperature of 190 ° C. and a load of 21.18 N in the method specified in JIS K7210-1995. When the MFR of the biomass polyolefin is 0.1 g / 10 minutes or more, the extrusion load during the molding process can be reduced. Further, when the MFR of the biomass polyolefin is 10 g / 10 minutes or less, the mechanical strength of the polyolefin resin layer containing the biomass polyolefin can be increased.

本発明において、好適に使用されるバイオマスポリオレフィンとしては、Braskem社製のバイオマス由来の低密度ポリエチレン(商品名:SBC818、密度:0.918g/cm、MFR:8.1g/10分、バイオマス度95%)、Braskem社製のバイオマス由来の低密度ポリエチレン(商品名:SPB681、密度:0.922g/cm、MFR:3.8g/10分、バイオマス度95%)等が挙げられる。 As the biomass polyolefin preferably used in the present invention, low-density polyethylene derived from biomass manufactured by Braskem (trade name: SBC818, density: 0.918 g / cm 3 , MFR: 8.1 g / 10 minutes, biomass degree. 95%), low-density polyethylene derived from biomass manufactured by Braskem (trade name: SPB681, density: 0.922 g / cm 3 , MFR: 3.8 g / 10 minutes, biomass degree 95%) and the like.

(バイオマス由来のエチレンの製造方法)
本発明において、バイオマスポリオレフィンの原料となるバイオマス由来のエチレンの製造方法は、特に限定されず、従来公知の方法により得ることができる。以下、バイオマス由来のエチレンの製造方法の一例を説明する。
(Biomass-derived ethylene production method)
In the present invention, the method for producing biomass-derived ethylene, which is a raw material for biomass polyolefin, is not particularly limited and can be obtained by a conventionally known method. Hereinafter, an example of a method for producing ethylene-derived ethylene will be described.

バイオマス由来のエチレンは、バイオマス由来のエタノールを原料として製造することができる。特に、植物原料から得られるバイオマス由来の発酵エタノールを用いることが好ましい。植物原料は、特に限定されず、従来公知の植物を用いることができる。例えば、トウモロコシ、サトウキビ、ビート、およびマニオクを挙げることができる。 Biomass-derived ethylene can be produced using biomass-derived ethanol as a raw material. In particular, it is preferable to use fermented ethanol derived from biomass obtained from plant raw materials. The plant material is not particularly limited, and conventionally known plants can be used. For example, corn, sugar cane, beets, and manioc can be mentioned.

本発明において、バイオマス由来の発酵エタノールとは、植物原料より得られる炭素源を含む培養液にエタノールを生産する微生物またはその破砕物由来産物を接触させ、生産した後、精製されたエタノールを指す。培養液からのエタノールの精製は、蒸留、膜分離、および抽出等の従来公知の方法が適用可能である。例えば、ベンゼン、シクロヘキサン等を添加し、共沸させるか、または膜分離等により水分を除去する等の方法が挙げられる。 In the present invention, the fermented ethanol derived from biomass refers to ethanol purified by contacting a culture solution containing a carbon source obtained from a plant raw material with a microorganism that produces ethanol or a product derived from a crushed product thereof. Conventionally known methods such as distillation, membrane separation, and extraction can be applied to the purification of ethanol from the culture broth. For example, a method of adding benzene, cyclohexane or the like and azeotropically boiling the mixture, or removing water by membrane separation or the like can be mentioned.

本発明のエチレンを得るために、この段階で、エタノール中の不純物総量が1ppm以下にする等の高度な精製をさらに行ってもよい。 In order to obtain the ethylene of the present invention, advanced purification such as reducing the total amount of impurities in ethanol to 1 ppm or less may be further performed at this stage.

エタノールの脱水反応によりエチレンを得る際には通常触媒が用いられるが、この触媒は、特に限定されず、従来公知の触媒を用いることができる。プロセス上有利なのは、触媒と生成物の分離が容易な固定床流通反応であり、例えば、γ―アルミナ等が好ましい。 A catalyst is usually used when ethylene is obtained by a dehydration reaction of ethanol, but the catalyst is not particularly limited, and a conventionally known catalyst can be used. Advantageous in the process is a fixed bed flow reaction in which the catalyst and the product can be easily separated, and for example, γ-alumina is preferable.

この脱水反応は吸熱反応であるため、通常加熱条件で行う。商業的に有用な反応速度で反応が進行すれば、加熱温度は限定されないが、好ましくは100℃以上、より好ましくは250℃以上、さらに好ましくは300℃以上の温度が適当である。上限も特に限定されないが、エネルギー収支および設備の観点から、好ましくは500℃以下、より好ましくは400℃以下である。 Since this dehydration reaction is an endothermic reaction, it is usually carried out under heating conditions. As long as the reaction proceeds at a commercially useful reaction rate, the heating temperature is not limited, but a temperature of 100 ° C. or higher, more preferably 250 ° C. or higher, still more preferably 300 ° C. or higher is suitable. The upper limit is not particularly limited, but is preferably 500 ° C. or lower, more preferably 400 ° C. or lower, from the viewpoint of energy balance and equipment.

反応圧力も特に限定されないが、後続の気液分離を容易にするため常圧以上の圧力が好ましい。工業的には触媒の分離の容易な固定床流通反応が好適であるが、液相懸濁床、流動床等でもよい。 The reaction pressure is also not particularly limited, but a pressure higher than normal pressure is preferable in order to facilitate subsequent gas-liquid separation. Industrially, a fixed bed flow reaction in which the catalyst can be easily separated is preferable, but a liquid phase suspension bed, a fluidized bed, or the like may also be used.

エタノールの脱水反応においては、原料として供給するエタノール中に含まれる水分量によって反応の収率が左右される。一般的に、脱水反応を行う場合には、水の除去効率を考えると水が無いほうが好ましい。しかしながら、固体触媒を用いたエタノールの脱水反応の場合、水が存在しないと他のオレフィン、特にブテンの生成量が増加する傾向にあることが判明した。恐らく、少量の水が存在しないと脱水後のエチレン二量化を押さえることができないためと推察している。許容される水の含有量の下限は、0.1%以上、好ましくは0.5%以上必要である。上限は特に限定されないが、物質収支上および熱収支の観点から、好ましくは50質量%以下、より好ましくは30%以下、さらに好ましくは20%以下である。 In the dehydration reaction of ethanol, the yield of the reaction depends on the amount of water contained in the ethanol supplied as a raw material. Generally, when a dehydration reaction is carried out, it is preferable that there is no water in consideration of the efficiency of removing water. However, in the case of the dehydration reaction of ethanol using a solid catalyst, it was found that the amount of other olefins, especially butene, tends to increase in the absence of water. It is presumed that it is not possible to suppress ethylene dimerization after dehydration without the presence of a small amount of water. The lower limit of the allowable water content needs to be 0.1% or more, preferably 0.5% or more. The upper limit is not particularly limited, but from the viewpoint of mass balance and heat balance, it is preferably 50% by mass or less, more preferably 30% or less, still more preferably 20% or less.

このようにしてエタノールの脱水反応を行うことによりエチレン、水および少量の未反応エタノールの混合部が得られるが、常温において約5MPa以下ではエチレンは気体であるため、これら混合部から気液分離により水やエタノールを除きエチレンを得ることができる。この方法は公知の方法で行えばよい。 By performing the ethanol dehydration reaction in this way, a mixed portion of ethylene, water and a small amount of unreacted ethanol can be obtained, but since ethylene is a gas at about 5 MPa or less at room temperature, it is separated from these mixed portions by gas-liquid separation. Ethylene can be obtained except for water and ethanol. This method may be performed by a known method.

気液分離により得られたエチレンはさらに蒸留され、このときの操作圧力が常圧以上であること以外は、蒸留方法、操作温度、および滞留時間等は特に制約されない。 Ethylene obtained by gas-liquid separation is further distilled, and the distillation method, operating temperature, residence time, and the like are not particularly limited except that the operating pressure at this time is normal pressure or higher.

原料がバイオマス由来のエタノールの場合、得られたエチレンには、エタノール発酵工程で混入した不純物であるケトン、アルデヒド、およびエステル等のカルボニル化合物ならびにその分解物である炭酸ガスや、酵素の分解物・夾雑物であるアミンおよびアミノ酸等の含窒素化合物ならびにその分解物であるアンモニア等が極微量含まれる。エチレンの用途によっては、これら極微量の不純物が問題となるおそれがあるので、精製により除去しても良い。精製方法は、特に限定されず、従来公知の方法により行うことができる。好適な精製操作としては、例えば、吸着精製法をあげることができる。用いる吸着剤は特に限定されず、従来公知の吸着剤を用いることができる。例えば、高表面積の材料が好ましく、吸着剤の種類としては、バイオマス由来のエタノールの脱水反応により得られるエチレン中の不純物の種類・量に応じて選択される。 When the raw material is ethanol derived from ammonia, the obtained ethylene contains carbonyl compounds such as ketones, aldehydes, and esters, which are impurities mixed in the ethanol fermentation process, carbon dioxide gas, which is a decomposition product thereof, and decomposition products of enzymes. It contains a very small amount of nitrogen-containing compounds such as amines and amino acids, which are impurities, and ammonia, which is a decomposition product thereof. Depending on the use of ethylene, these trace amounts of impurities may cause a problem, and may be removed by purification. The purification method is not particularly limited, and can be performed by a conventionally known method. As a suitable purification operation, for example, an adsorption purification method can be mentioned. The adsorbent used is not particularly limited, and conventionally known adsorbents can be used. For example, a material having a high surface area is preferable, and the type of adsorbent is selected according to the type and amount of impurities in ethylene obtained by the dehydration reaction of ethanol derived from biomass.

なお、エチレン中の不純物の精製方法として苛性水処理を併用してもよい。苛性水処理をする場合は、吸着精製前に行うことが望ましい。その場合、苛性処理後、吸着精製前に水分除去処理を施す必要がある。 In addition, caustic water treatment may be used in combination as a method for purifying impurities in ethylene. When caustic water treatment is performed, it is desirable to perform it before adsorption purification. In that case, it is necessary to perform a water removal treatment after the caustic treatment and before the adsorption purification.

(バイオマスポリオレフィンの製造方法)
本発明において、バイオマス由来のエチレンを含むモノマーの重合方法は、特に限定されず、従来公知の方法により行うことができる。重合温度や重合圧力は、重合方法や重合装置に応じて、適宜調節するのがよい。重合装置についても特に限定されず、従来公知の装置を用いることができる。以下、エチレンを含むモノマーの重合方法の一例を説明する。
(Manufacturing method of biomass polyolefin)
In the present invention, the method for polymerizing a monomer containing ethylene derived from biomass is not particularly limited, and a conventionally known method can be used. The polymerization temperature and the polymerization pressure may be appropriately adjusted according to the polymerization method and the polymerization apparatus. The polymerization apparatus is not particularly limited, and conventionally known apparatus can be used. Hereinafter, an example of a method for polymerizing a monomer containing ethylene will be described.

ポリオレフィン、特に、エチレン重合体やエチレンとα−オレフィンの共重合体の重合方法は、目的とするポリエチレンの種類、例えば、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、および直鎖状低密度ポリエチレン(LLDPE)等の密度や分岐の違いにより、適宜選択することができる。例えば、重合触媒として、チーグラー・ナッタ触媒等のマルチサイト触媒や、メタロセン系触媒等のシングルサイト触媒を用いて、気相重合、スラリー重合、溶液重合、および高圧イオン重合のいずれかの方法により、1段または2段以上の多段で行うことが好ましい。 The method for polymerizing a polyolefin, particularly an ethylene polymer or a copolymer of ethylene and α-olefin, is a method of polymerizing a target type of polyethylene, for example, high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE). ), And linear low-density polyethylene (LLDPE) or the like, which can be appropriately selected depending on the difference in density and branching. For example, a multisite catalyst such as a Ziegler-Natta catalyst or a single site catalyst such as a metallocene catalyst is used as a polymerization catalyst by any of gas phase polymerization, slurry polymerization, solution polymerization, and high pressure ion polymerization. It is preferable to carry out in one stage or in multiple stages of two or more stages.

上記のシングルサイト触媒とは、均一な活性種を形成しうる触媒であり、通常、メタロセン系遷移金属化合物や非メタロセン系遷移金属化合物と活性化用助触媒とを接触させることにより、調整される。シングルサイト触媒は、マルチサイト触媒に比べて、活性点構造が均一であるため、高分子量かつ均一度の高い構造の重合体を重合することができるため好ましい。シングルサイト触媒としては、特に、メタロセン系触媒を用いることが好ましい。メタロセン系触媒は、シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物と、助触媒と、必要により有機金属化合物と、担体の各触媒成分とを含む触媒である。 The above-mentioned single-site catalyst is a catalyst capable of forming a uniform active species, and is usually prepared by contacting a metallocene-based transition metal compound or a non-metallocene-based transition metal compound with an activation co-catalyst. .. Compared with the multisite catalyst, the single-site catalyst is preferable because it has a uniform active site structure and can polymerize a polymer having a high molecular weight and a high uniformity structure. As the single-site catalyst, it is particularly preferable to use a metallocene-based catalyst. The metallocene-based catalyst is a catalyst containing a transition metal compound of Group IV of the Periodic Table, which contains a ligand having a cyclopentadienyl skeleton, a cocatalyst, an organometallic compound if necessary, and each catalyst component of the carrier. is there.

上記のシクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物において、そのシクロペンタジエニル骨格とは、シクロペンタジエニル基、置換シクロペンタジエニル基等である。置換シクロペンタジエニル基としては、炭素数1〜30の炭化水素基、シリル基、シリル置換アルキル基、シリル置換アリール基、シアノ基、シアノアルキル基、シアノアリール基、ハロゲン基、ハロアルキル基、ハロシリル基等から選ばれた少なくとも一種の置換基を有するものである。その置換シクロペンタジエニル基の置換基は2個以上有していてもよく、また置換基同士が互いに結合して環を形成し、インデニル環、フルオレニル環、アズレニル環、その水添体等を形成してもよい。置換基同士が互いに結合し形成された環がさらに互いに置換基を有していてもよい。 In the transition metal compound of Group IV of the Periodic Table containing the ligand having the cyclopentadienyl skeleton, the cyclopentadienyl skeleton is a cyclopentadienyl group, a substituted cyclopentadienyl group or the like. .. The substituted cyclopentadienyl group includes a hydrocarbon group having 1 to 30 carbon atoms, a silyl group, a silyl substituted alkyl group, a silyl substituted aryl group, a cyano group, a cyanoalkyl group, a cyanoaryl group, a halogen group, a haloalkyl group, and a halosilyl. It has at least one substituent selected from the groups and the like. The substituted cyclopentadienyl group may have two or more substituents, and the substituents are bonded to each other to form a ring to form an indenyl ring, a fluorenyl ring, an azulenyl ring, a hydrogenated product thereof, or the like. It may be formed. Rings formed by bonding substituents to each other may further have substituents to each other.

シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物において、その遷移金属としては、ジルコニウム、チタン、ハフニウム等が挙げられ、特にジルコニウム、ハフニウムが好ましい。該遷移金属化合物は、シクロペンタジエニル骨格を有する配位子としては通常2個を有し、各々のシクロペンタジエニル骨格を有する配位子は架橋基により互いに結合しているものが好ましい。なお、架橋基としては炭素数1〜4のアルキレン基、シリレン基、ジアルキルシリレン基、ジアリールシリレン基等の置換シリレン基、ジアルキルゲルミレン基、ジアリールゲルミレン基等の置換ゲルミレン基等が挙げられる。好ましくは、置換シリレン基である。 In the transition metal compound of Group IV of the Periodic Table containing a ligand having a cyclopentadienyl skeleton, examples of the transition metal include zirconium, titanium and hafnium, and zirconium and hafnium are particularly preferable. The transition metal compound usually has two ligands having a cyclopentadienyl skeleton, and the ligands having each cyclopentadienyl skeleton are preferably bonded to each other by a cross-linking group. Examples of the cross-linking group include a substituted silylene group such as an alkylene group having 1 to 4 carbon atoms, a silylene group, a dialkyl silylene group and a diaryl silylene group, and a substituted gel millene group such as a dialkyl gel millene group and a diaryl gel millene group. It is preferably a substituted silylene group.

周期律表第IV族の遷移金属化合物において、シクロペンタジエニル骨格を有する配位子以外の配位子としては、代表的なものとして、水素、炭素数1〜20の炭化水素基(アルキル基、アルケニル基、アリール基、アルキルアリール基、アラルキル基、ポリエニル基等)、ハロゲン、メタアルキル基、メタアリール基等が挙げられる。 In the transition metal compound of Group IV of the periodic table, typical ligands other than the ligand having a cyclopentadienyl skeleton are hydrogen and a hydrocarbon group having 1 to 20 carbon atoms (alkyl group). , Alkenyl group, aryl group, alkylaryl group, aralkyl group, polyenyl group, etc.), halogen, metaalkyl group, metaaryl group and the like.

上記のシクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物は、一種または二種以上の混合物を触媒成分とすることができる。 The above-mentioned transition metal compound of Group IV of the Periodic Table containing a ligand having a cyclopentadienyl skeleton can have one or a mixture of two or more as a catalyst component.

助触媒としては、上記の周期律表第IV族の遷移金属化合物を重合触媒として有効になしうる、または触媒的に活性化された状態のイオン性電荷を均衝させうるものをいう。助触媒としては、有機アルミニウムオキシ化合物のベンゼン可溶のアルミノキサンやベンゼン不溶の有機アルミニウムオキシ化合物、イオン交換性層状珪酸塩、ホウ素化合物、活性水素基含有あるいは非含有のカチオンと非配位性アニオンからなるイオン性化合物、酸化ランタン等のランタノイド塩、酸化スズ、フルオロ基を含有するフェノキシ化合物等が挙げられる。 The co-catalyst is one in which the transition metal compound of Group IV of the periodic table can be effectively used as a polymerization catalyst, or the ionic charge in a catalytically activated state can be equalized. As co-catalysts, benzene-soluble organoxane of organoaluminum oxy compounds, benzene-insoluble organoaluminum oxy compounds, ion-exchange layered silicates, boron compounds, cations containing or not containing active hydrogen groups and non-coordinating anions are used. Examples thereof include ionic compounds, lanthanoid salts such as lanthanum oxide, tin oxide, and phenoxy compounds containing a fluoro group.

シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物は、無機または有機化合物の担体に担持して使用されてもよい。該担体としては無機または有機化合物の多孔質酸化物が好ましく、具体的には、モンモリロナイト等のイオン交換性層状珪酸塩、SiO、Al、MgO、ZrO、TiO、B、CaO、ZnO、BaO、ThO等またはこれらの混合物が挙げられる。 The transition metal compound of Group IV of the Periodic Table, which contains a ligand having a cyclopentadienyl skeleton, may be used by supporting it on a carrier of an inorganic or organic compound. The carrier is preferably an inorganic or organic compound porous oxide, and specifically, an ion-exchangeable layered silicate such as montmorillonite, SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O. 3 , CaO, ZnO, BaO, ThO 2, etc. or a mixture thereof can be mentioned.

また更に必要により使用される有機金属化合物としては、有機アルミニウム化合物、有機マグネシウム化合物、有機亜鉛化合物等が例示される。このうち有機アルミニウムが好適に使用される。 Further, examples of the organometallic compound used as necessary include organoaluminum compounds, organomagnesium compounds, and organozinc compounds. Of these, organoaluminum is preferably used.

バイオマスポリオレフィンには、その特性が損なわれない範囲において、主成分であるポリオレフィン以外に、各種の添加剤を添加してもよい。添加剤としては、例えば、可塑剤、紫外線安定化剤、着色防止剤、艶消し剤、消臭剤、難燃剤、耐候剤、帯電防止剤、糸摩擦低減剤、スリップ剤、離型剤、抗酸化剤、イオン交換剤、および着色顔料等を添加することができる。これら添加剤は、バイオマスポリオレフィン全体に対して、好ましくは1質量%以上20質量%以下、好ましくは1質量%以上10質量%以下の範囲で添加される。 In addition to the polyolefin as the main component, various additives may be added to the biomass polyolefin as long as its properties are not impaired. Additives include, for example, plasticizers, UV stabilizers, color inhibitors, matting agents, deodorants, flame retardants, weatherproofing agents, antistatic agents, thread friction reducing agents, slip agents, mold release agents, anti-flammable agents. Excipients, ion exchangers, coloring pigments and the like can be added. These additives are preferably added in the range of 1% by mass or more and 20% by mass or less, preferably 1% by mass or more and 10% by mass or less, based on the total biomass polyolefin.

(熱可塑性樹脂層)
熱可塑性樹脂層は、従来公知の熱可塑性樹脂を用いて形成することができる。積層体が、熱可塑性樹脂層をさらに備えることで、従来の積層体と同様の耐熱性、耐圧性、耐水性、ヒートシール性、耐ピンホール性、耐突き刺し性、およびその他の物性を付与させることができる。
(Thermoplastic resin layer)
The thermoplastic resin layer can be formed by using a conventionally known thermoplastic resin. By further providing the laminate with a thermoplastic resin layer, the same heat resistance, pressure resistance, water resistance, heat sealability, pinhole resistance, puncture resistance, and other physical properties as those of the conventional laminate are imparted. be able to.

熱可塑性樹脂としては、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、プロピレン−エチレン共重合体、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、エチレン−メチルメタクリレート共重合体、アイオノマー樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、ナイロン等を挙げることができ、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、およびエチレン−メタクリル酸共重合体が好ましい。 Examples of the thermoplastic resin include low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, polypropylene, propylene-ethylene copolymer, ethylene-vinyl acetate copolymer, and ethylene-acrylic acid copolymer. Combined, ethylene-methacrylic acid copolymer, ethylene-methylacrylate copolymer, ethylene-ethylacrylate copolymer, ethylene-methylmethacrylate copolymer, ionomer resin, polyester resin, polyvinyl chloride resin, polystyrene resin, nylon, etc. Examples thereof include low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, and ethylene-methacrylic acid copolymers.

熱可塑性樹脂層は、バイオマス由来の材料を含んでいてもよいし、化石燃料由来の材料を含んでいてもよい。熱可塑性樹脂層がバイオマス由来の材料を含む場合、ポリオレフィン樹脂層と同様に、バイオマス由来のエチレンを含むモノマーの重合体であるバイオマスポリオレフィンを含んでいてもよい。 The thermoplastic resin layer may contain a material derived from biomass or may contain a material derived from fossil fuel. When the thermoplastic resin layer contains a material derived from biomass, it may contain biomass polyolefin, which is a polymer of a monomer containing ethylene derived from biomass, similarly to the polyolefin resin layer.

(印刷層)
印刷層は、装飾、内容物の表示、賞味期間の表示、製造者、販売者などの表示、その他などの表示や美感の付与のために、文字、数字、絵柄、図形、記号、模様などの所望の任意の印刷模様を形成する層である。印刷層は、必要に応じて設けることができ、例えば、紙基材層のポリオレフィン樹脂層とは反対側の面に設けることができる。印刷層は、紙基材層の全面に設けてもよく、あるいは一部に設けてもよい。印刷層は、従来公知の顔料や染料を用いて形成することができ、その形成方法は特に限定されない。
(Print layer)
The printing layer is used for decoration, display of contents, display of expiration date, display of manufacturers, sellers, etc., and for display of other things and giving aesthetics, such as letters, numbers, patterns, figures, symbols, patterns, etc. A layer that forms any desired print pattern. The printing layer can be provided as needed, and can be provided, for example, on the surface of the paper substrate layer opposite to the polyolefin resin layer. The printing layer may be provided on the entire surface or a part of the paper base material layer. The printed layer can be formed by using a conventionally known pigment or dye, and the forming method thereof is not particularly limited.

(バリア層)
バリア層は、無機物および/または無機酸化物からなるものであり、無機物もしくは無機酸化物の蒸着膜または金属箔からなるものが好ましい。蒸着膜は、従来公知の無機物または無機酸化物を用いて、従来公知の方法により形成することができ、その組成および形成方法は特に限定されない。積層体が、バリア層をさらに有することで、酸素ガスおよび水蒸気等の透過を阻止するガスバリア性や、可視光および紫外線等の透過を阻止する遮光性を、付与ないし向上させることができる。なお、積層体は、バリア層を2層以上有してもよい。バリア層を2層以上有する場合、それぞれが、同一の組成であってもよいし、異なる組成であってもよい。
(Barrier layer)
The barrier layer is made of an inorganic substance and / or an inorganic oxide, and is preferably made of an inorganic substance or a vapor-deposited film of an inorganic oxide or a metal foil. The vapor-deposited film can be formed by a conventionally known method using a conventionally known inorganic substance or an inorganic oxide, and the composition and the forming method thereof are not particularly limited. When the laminate further has a barrier layer, it is possible to impart or improve a gas barrier property that blocks the permeation of oxygen gas, water vapor, etc., and a light-shielding property that blocks the permeation of visible light, ultraviolet rays, and the like. The laminated body may have two or more barrier layers. When two or more barrier layers are provided, they may have the same composition or different compositions.

蒸着膜としては、例えば、ケイ素(Si)、アルミニウム(Al)、マグネシウム(Mg)、カルシウム(Ca)、カリウム(K)、スズ(Sn)、ナトリウム(Na)、ホウ素(B)、チタン(Ti)、鉛(Pb)、ジルコニウム(Zr)、イットリウム(Y)等の無機物または無機酸化物の蒸着膜を使用することができる。特に、包装用材料(袋)等に適するものとしては、アルミニウム金属の蒸着膜、あるいは、ケイ素酸化物またはアルミニウム金属もしくはアルミニウム酸化物の蒸着膜を用いるのがよい。 Examples of the vapor deposition film include silicon (Si), aluminum (Al), magnesium (Mg), calcium (Ca), potassium (K), tin (Sn), sodium (Na), boron (B), and titanium (Ti). ), Lead (Pb), zirconium (Zr), yttrium (Y) and other inorganic substances or inorganic oxide vapor deposition films can be used. In particular, as a material (bag) for packaging or the like, it is preferable to use an aluminum metal vapor deposition film or a silicon oxide or aluminum metal or aluminum oxide vapor deposition film.

無機酸化物の表記は、例えば、SiO、AlO等のようにMO(ただし、式中、Mは、無機元素を表し、Xの値は、無機元素によってそれぞれ範囲がことなる。)で表される。Xの値の範囲としては、ケイ素(Si)は、0〜2、アルミニウム(Al)は、0〜1.5、マグネシウム(Mg)は、0〜1、カルシウム(Ca)は、0〜1、カリウム(K)は、0〜0.5、スズ(Sn)は、0〜2、ナトリウム(Na)は、0〜0.5、ホウ素(B)は、0〜1、5、チタン(Ti)は、0〜2、鉛(Pb)は、0〜1、ジルコニウム(Zr)は0〜2、イットリウム(Y)は、0〜1.5の範囲の値をとることができる。上記において、X=0の場合、完全な無機単体(純物質)であり、透明ではなく、また、Xの範囲の上限は、完全に酸化した値である。包装用材料には、ケイ素(Si)、アルミニウム(Al)が好適に使用され、ケイ素(Si)は、1.0〜2.0、アルミニウム(Al)は、0.5〜1.5の範囲の値のものを使用することができる。 Representation of the inorganic oxide, for example, SiO X, as such AlO X MO X (In the formula, M represents an inorganic element, the value of X, varies each of an inorganic element range.) In expressed. The range of X values is 0 to 2 for silicon (Si), 0 to 1.5 for aluminum (Al), 0 to 1 for magnesium (Mg), and 0 to 1 for calcium (Ca). Potassium (K) is 0 to 0.5, tin (Sn) is 0 to 2, sodium (Na) is 0 to 0.5, boron (B) is 0 to 1, 5, and titanium (Ti). Can take a value in the range of 0 to 2, lead (Pb) of 0 to 1, zirconium (Zr) of 0 to 2, and yttrium (Y) of 0 to 1.5. In the above, when X = 0, it is a completely inorganic simple substance (pure substance) and is not transparent, and the upper limit of the range of X is a completely oxidized value. Silicon (Si) and aluminum (Al) are preferably used as the packaging material, with silicon (Si) in the range of 1.0 to 2.0 and aluminum (Al) in the range of 0.5 to 1.5. The value of can be used.

本発明において、上記のような無機物または無機酸化物の蒸着膜の膜厚としては、使用する無機物または無機酸化物の種類等によって異なるが、例えば、50Å以上2000Å以下、好ましくは、100Å以上1000Å以下の範囲内で任意に選択して形成することが望ましい。更に具体的に説明すると、アルミニウムの蒸着膜の場合には、膜厚50Å以上600Å以下、更に、好ましくは、100Å以上450Å以下が望ましく、また、酸化アルミニウムあるいは酸化珪素の蒸着膜の場合には、膜厚50〜500Å位、更に、好ましくは、100〜300Å位が望ましいものである。 In the present invention, the thickness of the thin-film film of the inorganic substance or the inorganic oxide as described above varies depending on the type of the inorganic substance or the inorganic oxide used, and is, for example, 50 Å or more and 2000 Å or less, preferably 100 Å or more and 1000 Å or less. It is desirable to arbitrarily select and form within the range of. More specifically, in the case of a thin-film aluminum film, a film thickness of 50 Å or more and 600 Å or less, more preferably 100 Å or more and 450 Å or less is desirable, and in the case of an aluminum oxide or silicon oxide film. The film thickness is preferably about 50 to 500 Å, more preferably about 100 to 300 Å.

蒸着膜は、ポリエチレンテレフタレートやナイロンなどのプラスチックフィルムに以下の形成方法を用いて形成することができる。蒸着膜の形成方法としては、例えば、真空蒸着法、スパッタリング法、およびイオンプレ−ティング法等の物理気相成長法(Physical Vapor Deposition法、PVD法)、あるいは、プラズマ化学気相成長法、熱化学気相成長法、および光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法、CVD法)等を挙げることができる。 The vapor-deposited film can be formed on a plastic film such as polyethylene terephthalate or nylon by the following forming method. Examples of the method for forming the vapor-deposited film include a physical vapor deposition method (PVD method) such as a vacuum vapor deposition method, a sputtering method, and an ion plating method, or a plasma chemical vapor deposition method and thermochemistry. Examples thereof include a chemical vapor deposition method (Chemical Vapor Deposition method, CVD method) such as a vapor phase growth method and a photochemical vapor deposition method.

また、他の態様によれば、バリア層は、金属を圧延して得られた金属箔であってもよい。金属箔としては、従来公知の金属箔を用いることができる。酸素ガスおよび水蒸気等の透過を阻止するガスバリア性や、可視光および紫外線等の透過を阻止する遮光性の点からは、アルミニウム箔が好ましい。 Further, according to another aspect, the barrier layer may be a metal foil obtained by rolling a metal. As the metal foil, a conventionally known metal foil can be used. Aluminum foil is preferable from the viewpoint of gas barrier property that blocks the transmission of oxygen gas and water vapor, and light-shielding property that blocks the transmission of visible light and ultraviolet rays.

(プラスチックフィルム)
本発明においては、他の層として各種プラスチックフィルムを用いてもよい。例えば、延伸ポリエチレンテレフタレートフィルム、延伸ナイロンフィルム、延伸ポリプロピレンフィルム、ナイロン6/メタキシリレンジアミンナイロン6共押共延伸フィルムまたはポリプロピレン/ エチレン−ビニルアルコール共重合体共押共延伸フィルム等のいずれか、またはこれらの2以上のフィルムを積層した複合フィルムであってもよい。なお、プラスチックフィルムには、ポリビニルアルコールなどがコーティングされていてもよい。
(Plastic film)
In the present invention, various plastic films may be used as other layers. For example, either a stretched polyethylene terephthalate film, a stretched nylon film, a stretched polypropylene film, a nylon 6 / metaxylylene diamine nylon 6 co-pressed co-stretched film or a polypropylene / ethylene-vinyl alcohol copolymer co-pressed co-stretched film, or It may be a composite film in which two or more of these films are laminated. The plastic film may be coated with polyvinyl alcohol or the like.

(接着層)
接着層は、ドライラミネート法により2層を接着する場合に、積層しようとする層の表面に、接着剤を塗布して乾燥させることにより形成される接着剤層とすることができる。
接着剤としては、例えば、1液型あるいは2液型の硬化ないし非硬化タイプのビニル系、(メタ)アクリル系、ポリアミド系、ポリエステル系、ポリエーテル系、ポリウレタン系、エポキシ系、ゴム系、その他などの溶剤型、水性型、あるいは、エマルジョン型などの接着剤を用いることができる。上記のラミネート用接着剤のコーティング方法としては、例えば、ダイレクトグラビアロールコート法、グラビアロールコート法、キスコート法、リバースロールコート法、フォンテン法、トランスファーロールコート法、その他の方法で積層体を構成する層の塗布面に塗布することができる。塗布量としては、0.1g/m以上10g/m以下(乾燥状態)が好ましく、1g/m以上5g/m以下(乾燥状態)がより好ましい。
(Adhesive layer)
The adhesive layer can be an adhesive layer formed by applying an adhesive to the surface of the layer to be laminated and drying it when the two layers are bonded by the dry laminating method.
Examples of the adhesive include one-component or two-component curable or non-curable vinyl type, (meth) acrylic type, polyamide type, polyester type, polyether type, polyurethane type, epoxy type, rubber type, and others. Such solvent type, water-based type, or emulsion type adhesives can be used. As a coating method of the above-mentioned adhesive for laminating, for example, a direct gravure roll coating method, a gravure roll coating method, a kiss coating method, a reverse roll coating method, a fonten method, a transfer roll coating method, or other methods are used to form a laminate. It can be applied to the coated surface of the layer. The coating amount is preferably 0.1 g / m 2 or more and 10 g / m 2 or less (dry state), and more preferably 1 g / m 2 or more and 5 g / m 2 or less (dry state).

また、接着層は、溶融押出しラミネート法によりポリオレフィン樹脂層や熱可塑性樹脂層などを積層する場合に、積層しようとする層の表面に、アンカーコート剤を塗布して乾燥させることにより形成されるアンカーコート層であってもよい。アンカーコート剤としては、耐熱温度が135℃以上である任意の樹脂、例えばビニル変性樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステル樹脂等からなるアンカーコート剤が挙げられるが、特に、構造中に2以上のヒドロキシル基を有するポリアクリル系又はポリメタクリル系樹脂と、硬化剤としてのイソシアネート化合物とからなるアンカーコート剤を、好ましく使用することができる。また、これに添加剤としてシランカップリング剤を併用してもよく、また、硝化綿を、耐熱性を高めるために併用してもよい。 Further, the adhesive layer is formed by applying an anchor coating agent to the surface of the layer to be laminated and drying it when laminating a polyolefin resin layer, a thermoplastic resin layer, or the like by a melt extrusion laminating method. It may be a coat layer. Examples of the anchor coating agent include an anchor coating agent made of any resin having a heat resistant temperature of 135 ° C. or higher, for example, a vinyl-modified resin, an epoxy resin, a urethane resin, a polyester resin, or the like, and in particular, two or more in the structure. An anchor coating agent composed of a polyacrylic or polymethacrylic resin having a hydroxyl group and an isocyanate compound as a curing agent can be preferably used. Further, a silane coupling agent may be used in combination with this as an additive, or nitric acid cotton may be used in combination to increase heat resistance.

また、接着層は、サンドラミネート法により2層を接着する場合や溶融押出しラミネート法に使用される接着樹脂層であってもよい。接着樹脂層に使用できる熱可塑性樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、または環状ポリオレフィン系樹脂、またはこれら樹脂を主成分とする共重合樹脂、変性樹脂、または、混合体(アロイでを含む)を用いることができる。ポリオレフィン系樹脂としては、例えば、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、直鎖状(線状)低密度ポリエチレン(LLDPE)、ポリプロピレン(PP)、メタロセン触媒を利用して重合したエチレン−α・オレフィン共重合体、エチレン・ポリプロピレンのランダムもしくはブロック共重合体、エチレン−酢酸ビニル共重合体(EVA)、エチレン−アクリル酸共重合体(EAA)、エチレン・アクリル酸エチル共重合体(EEA)、エチレン−メタクリル酸共重合体(EMAA)、エチレン−メタクリル酸メチル共重合体(EMMA)、エチレン・マレイン酸共重合体、アイオノマー樹脂、また、層間の密着性を向上させるために、上記したポリオレフィン系樹脂を、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸などの不飽和カルボン酸で変性した酸変性ポリオレフィン系樹脂などを用いることができる。また、ポリオレフィン樹脂に、不飽和カルボン酸、不飽和カルボン酸無水物、エステル単量体をグラフト重合、または、共重合した樹脂などを用いることができる。これらの材料は、一種単独または二種以上を組み合わせて使用することができる。環状ポリオレフィン系樹脂としては、例えば、エチレン−プロピレン共重合体、ポリメチルペンテン、ポリブテン、ポリノルボネンなどの環状ポリオレフィンなどを用いることができる。これらの樹脂は、単独または複数を組み合せて使用できる。なお、上記したポリエチレン系樹脂としては、上記したバイオマス由来のエチレンをモノマー単位として用いたものを使用できることは言うまでもない。 Further, the adhesive layer may be an adhesive resin layer used when two layers are bonded by a sand laminating method or a melt extrusion laminating method. Examples of the thermoplastic resin that can be used for the adhesive resin layer include polyethylene-based resin, polypropylene-based resin, or cyclic polyolefin-based resin, or a copolymer resin containing these resins as a main component, a modified resin, or a mixture (including an alloy). ) Can be used. Examples of the polyolefin resin include low-density polyethylene (LDPE), medium-density polyethylene (MDPE), high-density polyethylene (HDPE), linear (linear) low-density polyethylene (LLDPE), polypropylene (PP), and metallocene catalyst. Ethylene-α / olefin copolymers polymerized using, random or block copolymers of ethylene / polypropylene, ethylene-vinyl acetate copolymers (EVA), ethylene-acrylic acid copolymers (EAA), ethylene / Ethyl acrylate copolymer (EEA), ethylene-methacrylic acid copolymer (EMAA), ethylene-methyl methacrylate copolymer (EMMA), ethylene-maleic acid copolymer, ionomer resin, and adhesion between layers. In order to improve the above-mentioned polyolefin resin, it is possible to use an acid-modified polyolefin resin obtained by modifying the above-mentioned polyolefin resin with an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, and itaconic acid. it can. Further, as the polyolefin resin, an unsaturated carboxylic acid, an unsaturated carboxylic acid anhydride, a resin obtained by graft-polymerizing or copolymerizing an ester monomer and the like can be used. These materials can be used alone or in combination of two or more. As the cyclic polyolefin resin, for example, cyclic polyolefins such as ethylene-propylene copolymer, polymethylpentene, polybutene, and polynorbonene can be used. These resins can be used alone or in combination of two or more. Needless to say, as the above-mentioned polyethylene-based resin, one using the above-mentioned biomass-derived ethylene as a monomer unit can be used.

接着樹脂層は、バイオマス由来の材料を含んでいてもよいし、化石燃料由来の材料を含んでいてもよい。接着樹脂層がバイオマス由来の材料を含む場合、ポリオレフィン樹脂層と同様に、バイオマス由来のエチレンを含むモノマーの重合体であるバイオマスポリオレフィンを含んでいてもよい。 The adhesive resin layer may contain a material derived from biomass or may contain a material derived from fossil fuel. When the adhesive resin layer contains a biomass-derived material, it may contain biomass polyolefin, which is a polymer of a monomer containing biomass-derived ethylene, similarly to the polyolefin resin layer.

(積層体の製造方法)
本発明による積層体の製造方法は特に限定されず、ドライラミネート法、溶融押出しラミネート法、サンドラミネート法等の従来公知の方法を用いて製造することができる。本発明においては、溶融押出しラミネート法を用いて、積層しようとする層の表面にポリオレフィン樹脂層を形成することが好ましい。また、ポリオレフィン樹脂層と、他の層とを、共押し出し法により積層してもよい。
(Manufacturing method of laminated body)
The method for producing the laminate according to the present invention is not particularly limited, and the laminate can be produced by using conventionally known methods such as a dry laminating method, a melt extrusion laminating method, and a sand laminating method. In the present invention, it is preferable to form a polyolefin resin layer on the surface of the layer to be laminated by using the melt extrusion laminating method. Further, the polyolefin resin layer and another layer may be laminated by a coextrusion method.

例えば、以下の方法によりポリオレフィン樹脂層を形成するための樹脂組成物の融点Tm以上の温度〜Tm+70℃の温度に加熱された溶融押出機に供給して、ポリオレフィン樹脂層を形成するための樹脂組成物を溶融し、積層しようとする層の表面に例えばTダイ等のダイよりシート状に押出し、押出されたシート状物を回転している冷却ドラム等で急冷固化することによりポリオレフィン樹脂層を積層することができる。溶融押出機としては、一軸押出機、二軸押出機、ベント押出機、タンデム押出機等を目的に応じて使用することができる。 For example, the resin composition for forming the polyolefin resin layer by supplying it to a melt extruder heated to a temperature of Tm or higher and Tm + 70 ° C. of the resin composition for forming the polyolefin resin layer by the following method. The polyolefin resin layer is laminated by melting the material, extruding it into a sheet from a die such as a T die, and quenching and solidifying the extruded sheet with a rotating cooling drum or the like on the surface of the layer to be laminated. can do. As the melt extruder, a single-screw extruder, a twin-screw extruder, a vent extruder, a tandem extruder and the like can be used depending on the purpose.

上記のようにして得られる積層体の厚さは、その用途に応じて任意であるが、通常、5μm以上500μm以下、好ましくは20μm以上300μm以下である。 The thickness of the laminate obtained as described above is arbitrary depending on the intended use, but is usually 5 μm or more and 500 μm or less, preferably 20 μm or more and 300 μm or less.

本発明による積層体には、化学的機能、電気的機能、磁気的機能、力学的機能、摩擦/磨耗/潤滑機能、光学的機能、熱的機能、生体適合性等の表面機能等の付与を目的として、二次加工を施すことも可能である。二次加工の例としては、エンボス加工、塗装、接着、印刷、メタライジング(めっき等)、機械加工、表面処理(帯電防止処理、コロナ放電処理、プラズマ処理、フォトクロミズム処理、物理蒸着、化学蒸着、コーティング、等)等が挙げられる。また、本発明による積層体に、ラミネート加工(ドライラミネートや押し出しラミネート)、製袋加工、およびその他の後処理加工を施して、成型品を製造することもできる。 The laminate according to the present invention is provided with chemical functions, electrical functions, magnetic functions, mechanical functions, friction / wear / lubrication functions, optical functions, thermal functions, surface functions such as biocompatibility, and the like. It is also possible to perform secondary processing for the purpose. Examples of secondary processing include embossing, painting, adhesion, printing, metallizing (plating, etc.), machining, surface treatment (antistatic treatment, corona discharge treatment, plasma treatment, photochromism treatment, physical vapor deposition, chemical vapor deposition, etc.) Coating, etc.) and the like. Further, the laminated body according to the present invention may be subjected to laminating processing (dry laminating or extruded laminating), bag making processing, and other post-treatment processing to produce a molded product.

(用途)
本発明による積層体は、紙カップ、液体紙容器、ラベル材料、蓋材等の包装製品に使用することができる。
(Use)
The laminate according to the present invention can be used for packaging products such as paper cups, liquid paper containers, label materials, and lid materials.

(紙カップ)
本発明による積層体は、特に紙コップに好適に使用できる。本発明による積層体を用いて紙カップを形成した場合について説明する。図4は、紙カップの一部を切除した斜視図である。図4に示すように、紙カップ40は、上部にフランジ部41を有し、かつ直径が開口部へ向かって徐々に広がる円筒状の胴部42と、胴部42の下端(一端)に設けられた底部43とを備えている。胴部42は、その上端が外側に丸められたフランジ部41が設けられている。なお、紙カップ40は、内容物を収納した後に、胴部42のフランジ部41に沿って蓋材(図示せず)が貼着されることにより密封されていてもよい。蓋材はガスバリア性を有していることが好ましい。
(Paper cup)
The laminate according to the present invention can be particularly preferably used for paper cups. A case where a paper cup is formed by using the laminate according to the present invention will be described. FIG. 4 is a perspective view in which a part of the paper cup is cut off. As shown in FIG. 4, the paper cup 40 is provided at a cylindrical body portion 42 having a flange portion 41 at the upper portion and gradually expanding in diameter toward the opening, and a lower end (one end) of the body portion 42. It also has a bottom 43. The body portion 42 is provided with a flange portion 41 whose upper end is rounded outward. The paper cup 40 may be sealed by attaching a lid material (not shown) along the flange portion 41 of the body portion 42 after storing the contents. The lid material preferably has a gas barrier property.

また、紙カップ40は、図5に示すように、胴部42の外周に外装体44を備えていてもよい。外装体44としては、例えば、紙を用いることができる。そして、胴部42には凸部45が形成されている。凸部45は、胴部42と外装体44との間に空気層の間隙46を設けるために形成される。凸部45は水平方向に一本以上設けられ、例えば、図5に示すように二本設けることができる。 Further, as shown in FIG. 5, the paper cup 40 may be provided with an exterior body 44 on the outer periphery of the body portion 42. As the exterior body 44, for example, paper can be used. A convex portion 45 is formed on the body portion 42. The convex portion 45 is formed to provide a gap 46 in the air layer between the body portion 42 and the exterior body 44. One or more convex portions 45 are provided in the horizontal direction, and for example, two convex portions 45 can be provided as shown in FIG.

(別の態様)
本発明の別の目的は、従来の化石燃料由来のポリオレフィンからなるポリオレフィン樹脂層を備える積層体と機械的特性等の物性面で遜色ない、バイオマスポリオレフィンを含むポリオレフィン樹脂層を備える積層体を提供することである。
本発明の別の態様においては、
少なくとも、紙基材層と、ポリオレフィン樹脂層とを備える積層体であって、
前記ポリオレフィン樹脂層が、バイオマス由来のエチレンを含むモノマーの重合体であるバイオマスポリオレフィンを含み、
前記ポリオレフィン樹脂層中のバイオマス度が5%以上であり、
前記バイオマスポリオレフィンが、0.91g/cm以上0.93g/cm以下の密度を有する、積層体が提供される。
本発明の態様においては、前記ポリオレフィン樹脂層が、化石燃料由来のポリオレフィンをさらに含むことが好ましい。
本発明の態様においては、前記ポリオレフィン樹脂層が、前記バイオマスポリオレフィンを5質量%以上100質量%以下、および前記化石燃料由来のポリオレフィンを0質量%以上95質量%以下含むことが好ましい。
本発明の態様においては、前記ポリオレフィン樹脂層が、ポリエチレンを含むことが好ましい。
本発明の別の態様においては、前記積層体を備える包装製品が提供される。
本発明の別の態様においては、前記積層体を備える紙カップであって、
前記紙カップの最内層が前記ポリオレフィン樹脂層である、紙カップが提供される。
本発明の別の態様による積層体は、少なくとも、紙基材層と、バイオマスポリオレフィンを含むポリオレフィン樹脂層とを備えることで、従来に比べて化石燃料の使用量を削減することができ、環境負荷を減らすことができる。また、本発明の別の態様による積層体は、従来の化石燃料由来のポリオレフィン樹脂の積層体と比べて機械的特性等の物性面で遜色がないため、従来の化石燃料由来のポリオレフィン樹脂の積層体を代替することができる。
(Another aspect)
Another object of the present invention is to provide a laminate having a polyolefin resin layer made of a conventional fossil fuel-derived polyolefin and a laminate having a polyolefin resin layer containing a biomass polyolefin, which is comparable in physical properties such as mechanical properties. That is.
In another aspect of the invention
A laminate including at least a paper base material layer and a polyolefin resin layer.
The polyolefin resin layer contains biomass polyolefin, which is a polymer of a monomer containing ethylene derived from biomass.
The degree of biomass in the polyolefin resin layer is 5% or more,
The biomass polyolefin has a density of 0.91 g / cm 3 or more 0.93 g / cm 3 or less, laminate is provided.
In the aspect of the present invention, it is preferable that the polyolefin resin layer further contains a fossil fuel-derived polyolefin.
In the aspect of the present invention, it is preferable that the polyolefin resin layer contains 5% by mass or more and 100% by mass or less of the biomass polyolefin and 0% by mass or more and 95% by mass or less of the polyolefin derived from the fossil fuel.
In the aspect of the present invention, it is preferable that the polyolefin resin layer contains polyethylene.
In another aspect of the present invention, a packaged product comprising the laminate is provided.
In another aspect of the present invention, the paper cup provided with the laminate
A paper cup is provided in which the innermost layer of the paper cup is the polyolefin resin layer.
By providing at least a paper base material layer and a polyolefin resin layer containing biomass polyolefin, the laminate according to another aspect of the present invention can reduce the amount of fossil fuel used as compared with the conventional one, and has an environmental load. Can be reduced. Further, since the laminate according to another aspect of the present invention is not inferior to the conventional fossil fuel-derived polyolefin resin laminate in terms of physical properties such as mechanical properties, the conventional fossil fuel-derived polyolefin resin laminate Can replace the body.

以下に、実施例と比較例を挙げて本発明をさらに具体的に説明するが、本発明は以下の実施例に限定解釈されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

<測定・条件>
下記の参考例、参考比較例、実施例、および比較例において、バイオマス度とは、放射性炭素(C14)測定によるバイオマス由来の炭素濃度の値である。
<Measurement / conditions>
In the following Reference Examples, Reference Comparative Examples, Examples, and Comparative Examples, the biomass degree is a value of carbon concentration derived from biomass as measured by radiocarbon (C14).

下記で用いた押出製膜機の条件は、以下のとおりであった。
スクリュー径:90mm
スクリュー型式:フルフライト
L/D:28
Tダイ:11S型ストレートマニホールド
Tダイ有効開口長:560mm
The conditions of the extrusion film forming machine used below were as follows.
Screw diameter: 90 mm
Screw model: Full flight L / D: 28
T-die: 11S type straight manifold T-die effective opening length: 560mm

[実施例1]
<積層体1の作製>
紙基材層として耐酸コートカップ(中越パルプ工業株式会社製、坪量270g/m)を用意し、一方の面にコロナ処理を施した後、そのコロナ処理面にバイオマス由来の低密度ポリエチレン(Braskem社製、SBC818、密度:0.918g/cm、MFR:8.1g/10分、バイオマス度:95%)を320℃の樹脂温度、ライン速度100m/分で溶融押出しラミネートして、ポリオレフィン樹脂層(バイオマス度:95%、厚さ40μm)を形成して、紙基材層、ポリオレフィン樹脂層が順に積層された積層体1を得た。
[Example 1]
<Preparation of laminate 1>
An acid-resistant coated cup (manufactured by Chuetsu Pulp Industry Co., Ltd., basis weight 270 g / m 2 ) is prepared as a paper substrate layer, one surface is corona-treated, and then the corona-treated surface is made of low-density polyethylene derived from biomass ( Braskem, SBC818, density: 0.918 g / cm 3 , MFR: 8.1 g / 10 minutes, biomass degree: 95%) is melt-extruded and laminated at a resin temperature of 320 ° C. and a line speed of 100 m / min to form a polyolefin. A resin layer (biomass degree: 95%, thickness 40 μm) was formed to obtain a laminate 1 in which a paper base material layer and a polyolefin resin layer were laminated in this order.

[実施例2]
<積層体2の作製>
紙基材層として耐酸コートカップ(中越パルプ工業株式会社製、坪量270g/m)を用意し、一方の面にコロナ処理を施した後、そのコロナ処理面に、バイオマス由来の低密度ポリエチレン(Braskem社製、SBC818、密度:0.918g/cm、MFR:8.1g/10分、バイオマス度:95%)70質量部と化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm、MFR:3.6g/10分、バイオマス度:0%)30質量部とをドライブレンドした混合樹脂を、320℃の樹脂温度、ライン速度100m/分で溶融押出しラミネートして、ポリオレフィン樹脂層(バイオマス度:67%、厚さ40μm)を形成して、紙基材層、ポリオレフィン樹脂層が順に積層された積層体2を得た。
[Example 2]
<Preparation of laminated body 2>
An acid-resistant coated cup (manufactured by Chuetsu Pulp Industry Co., Ltd., basis weight 270 g / m 2 ) is prepared as a paper substrate layer, one surface is corona-treated, and then the corona-treated surface is made of low-density polyethylene derived from biomass. (Brackem, SBC818, density: 0.918 g / cm 3 , MFR: 8.1 g / 10 minutes, biomass degree: 95%) 70 parts by mass and low-density polyethylene derived from fossil fuel (manufactured by Nippon Polyethylene, LC520, Density: 0.923 g / cm 3 , MFR: 3.6 g / 10 min, Biomass degree: 0%) A mixed resin dry-blended with 30 parts by mass is melt-extruded at a resin temperature of 320 ° C. and a line speed of 100 m / min. By laminating, a polyolefin resin layer (biomass degree: 67%, thickness 40 μm) was formed, and a laminated body 2 in which a paper base material layer and a polyolefin resin layer were laminated in this order was obtained.

[比較例1]
<積層体3の作製>
紙基材層として耐酸コートカップ(中越パルプ工業株式会社製、坪量270g/m)を用意し、一方の面にコロナ処理を施した後、そのコロナ処理面に化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm、MFR:3.6g/10分、バイオマス度:0%)を320℃の樹脂温度、ライン速度100m/分で溶融押出しラミネートして、樹脂層(バイオマス度:0%、厚さ40μm)を形成して、紙基材層、樹脂層が順に積層された積層体3を得た。
[Comparative Example 1]
<Preparation of laminated body 3>
An acid-resistant coated cup (manufactured by Chuetsu Pulp Industry Co., Ltd., basis weight 270 g / m 2 ) is prepared as a paper base material layer, and one surface is corona-treated, and then the corona-treated surface is fossil fuel-derived low-density polyethylene. (Manufactured by Japan Polyethylene Corporation, LC520, density: 0.923 g / cm 3 , MFR: 3.6 g / 10 minutes, biomass degree: 0%) is melt-extruded and laminated at a resin temperature of 320 ° C. and a line speed of 100 m / min. , A resin layer (biomass degree: 0%, thickness 40 μm) was formed, and a laminated body 3 in which a paper base material layer and a resin layer were laminated in this order was obtained.

[実施例3]
<積層体4の作製>
紙基材層として耐酸コートカップ(中越パルプ工業株式会社製、坪量270g/m)を用意し、一方の面にコロナ処理を施した後、そのコロナ処理面に化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm、MFR:3.6g/10分、バイオマス度:0%)を320℃の樹脂温度、ライン速度100m/分で溶融押出しラミネートして、熱可塑性樹脂層(バイオマス度:0%、厚さ20μm)を形成した。次に、紙基材層の熱可塑性樹脂層と反対側の面にコロナ処理を施した後、そのコロナ処理面にバイオマス由来の低密度ポリエチレン(Braskem社製、SBC818、密度:0.918g/cm、MFR:8.1g/10分、バイオマス度:95%)70質量部と化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm、MFR:3.6g/10分、バイオマス度:0%)30質量部とをドライブレンドした混合樹脂を320℃の樹脂温度、ライン速度100m/分で溶融押出しラミネートして、ポリオレフィン樹脂層(バイオマス度:67%、厚さ40μm)を形成して、熱可塑性樹脂層、紙基材層、ポリオレフィン樹脂層が順に積層された積層体4を得た。
[Example 3]
<Preparation of laminated body 4>
An acid-resistant coated cup (manufactured by Chuetsu Pulp Industry Co., Ltd., basis weight 270 g / m 2 ) is prepared as a paper substrate layer, one surface is corona-treated, and then the corona-treated surface is fossil fuel-derived low-density polyethylene. (Manufactured by Japan Polyethylene Corporation, LC520, density: 0.923 g / cm 3 , MFR: 3.6 g / 10 minutes, biomass degree: 0%) is melt-extruded and laminated at a resin temperature of 320 ° C. and a line speed of 100 m / min. , A thermoplastic resin layer (biomass degree: 0%, thickness 20 μm) was formed. Next, the surface of the paper substrate layer opposite to the thermoplastic resin layer is subjected to corona treatment, and then the corona-treated surface is subjected to low-density polyethylene derived from biomass (Brackem, SBC818, density: 0.918 g / cm. 3 , MFR: 8.1 g / 10 minutes, biomass degree: 95%) 70 parts by mass and low density polyethylene derived from fossil fuel (manufactured by Nippon Polyethylene, LC520, density: 0.923 g / cm 3 , MFR: 3.6 g A mixed resin dry-blended with 30 parts by mass (10 minutes, biomass degree: 0%) is melt-extruded and laminated at a resin temperature of 320 ° C. and a line speed of 100 m / min, and a polyolefin resin layer (biomass degree: 67%, thickness) is laminated. 40 μm) was formed to obtain a laminate 4 in which a thermoplastic resin layer, a paper base material layer, and a polyolefin resin layer were laminated in this order.

[実施例4]
<積層体5の作製>
紙基材層として耐酸コートカップ(中越パルプ工業株式会社製、坪量270g/m2)を用意し、一方の面にコロナ処理を施した後、そのコロナ処理面にバイオマス由来の低密度ポリエチレン(Braskem社製、SBC818、密度:0.918g/cm、MFR:8.1g/10分、バイオマス度:95%)を320℃の樹脂温度、ライン速度100m/分で溶融押出しラミネートして、熱可塑性樹脂層(バイオマス度:95%、厚さ20μm)を形成した。次に、紙基材層の熱可塑性樹脂層と反対側の面にコロナ処理を施した後、そのコロナ処理面にバイオマス由来の低密度ポリエチレン(Braskem社製、SBC818、密度:0.918g/cm、MFR:8.1g/10分、バイオマス度:95%)を320℃の樹脂温度、ライン速度100m/分で溶融押出しラミネートして、ポリオレフィン樹脂層(バイオマス度:95%、厚さ40μm)を形成して、熱可塑性樹脂層、紙基材層、ポリオレフィン樹脂層が順に積層された積層体5を得た。
[Example 4]
<Preparation of laminated body 5>
An acid-resistant coated cup (manufactured by Chuetsu Pulp Industry Co., Ltd., basis weight 270 g / m2) is prepared as a paper base material layer, and after corona treatment is applied to one surface, a biomass-derived low-density polyethylene (Braskem) is applied to the corona-treated surface. SBC818, density: 0.918 g / cm 3 , MFR: 8.1 g / 10 minutes, biomass degree: 95%) is melt-extruded and laminated at a resin temperature of 320 ° C. and a line speed of 100 m / min, and is thermoplastic. A resin layer (biomass degree: 95%, thickness 20 μm) was formed. Next, the surface of the paper substrate layer opposite to the thermoplastic resin layer is subjected to corona treatment, and then the corona-treated surface is subjected to low-density polyethylene derived from biomass (Brackem, SBC818, density: 0.918 g / cm. 3. MFR: 8.1 g / 10 min, biomass degree: 95%) is melt-extruded and laminated at a resin temperature of 320 ° C. and a line speed of 100 m / min to form a polyolefin resin layer (biomass degree: 95%, thickness 40 μm). Was formed to obtain a laminate 5 in which a thermoplastic resin layer, a paper base material layer, and a polyolefin resin layer were laminated in this order.

[比較例2]
<積層体6の作製>
紙基材層として耐酸コートカップ(中越パルプ工業株式会社製、坪量270g/m2)を用意し、一方の面にコロナ処理を施した後、そのコロナ処理面に化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm、MFR:3.6g/10分、バイオマス度:0%)を320℃の樹脂温度、ライン速度100m/分で溶融押出しラミネートして、熱可塑性樹脂層(バイオマス度:0%、厚さ20μm)を形成した。次に、紙基材層の熱可塑性樹脂層と反対側の面にコロナ処理を施した後、そのコロナ処理面に化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm、MFR:3.6g/10分、バイオマス度:0%)を320℃の樹脂温度、ライン速度100m/分で押出成形して、樹脂層(バイオマス度:0%、厚さ40μm)を形成して、熱可塑性樹脂層、紙基材層、樹脂層が順に積層された積層体6を得た。
[Comparative Example 2]
<Preparation of laminated body 6>
An acid-resistant coated cup (manufactured by Chuetsu Pulp Industry Co., Ltd., basis weight 270 g / m2) is prepared as a paper substrate layer, and one surface is subjected to corona treatment, and then the corona-treated surface is subjected to fossil fuel-derived low-density polyethylene ( Made by Japan Polyethylene Corporation, LC520, density: 0.923 g / cm 3 , MFR: 3.6 g / 10 minutes, biomass degree: 0%) is melt-extruded and laminated at a resin temperature of 320 ° C. and a line speed of 100 m / min. A thermoplastic resin layer (biomass degree: 0%, thickness 20 μm) was formed. Next, the surface of the paper substrate layer opposite to the thermoplastic resin layer is subjected to corona treatment, and then the corona-treated surface is made of low-density polyethylene derived from fossil fuel (manufactured by Nippon Polyethylene Co., Ltd., LC520, density: 0.923 g). / Cm 3 , MFR: 3.6 g / 10 min, biomass degree: 0%) is extruded at a resin temperature of 320 ° C. and a line speed of 100 m / min to form a resin layer (biomass degree: 0%, thickness 40 μm). Was formed to obtain a laminate 6 in which a thermoplastic resin layer, a paper base material layer, and a resin layer were laminated in this order.

[実施例5]
<積層体7の作製>
紙基材層として耐酸コートカップ(中越パルプ工業株式会社製、坪量270g/m)を用意し、一方の面にコロナ処理を施した後、そのコロナ処理面にアンカーコート剤(マツモトファインケミカル社製、WS−700)を塗布乾燥し、アンカーコート層を形成した。続いて、アンカーコート層上にバイオマス由来の低密度ポリエチレン(Braskem社製、SBC818、密度:0.918g/cm、MFR:8.1g/10分、バイオマス度:95%)70質量部と化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm、MFR:3.6g/10分、バイオマス度:0%)30質量部とをドライブレンドした混合樹脂を、320℃の樹脂温度、ライン速度100m/分で溶融押出しラミネートして、熱可塑性樹脂層(バイオマス度:67%、厚さ20μm)を形成した。次に、紙基材層の熱可塑性樹脂層と反対側の面にコロナ処理を施した後、そのコロナ処理面に、サンドラミネート法を用いて、化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm、MFR:3.6g/10分、バイオマス度:0%)を押出しながら、この接着樹脂層(バイオマス度:0%、厚さ15μm)を介して、コロナ処理を施した化石燃料由来のポリエチレンテレフタレートフィルム(東洋紡社製、T4100、厚さ12μm)のコロナ処理面を貼り合わせた。続いて、該ポリエチレンテレフタレートフィルム上にアンカーコート剤(東洋モートン社製、EL540/CAT−RT32)を塗布乾燥し、アンカーコート層を形成した。その後、アンカーコート層上にバイオマス由来の低密度ポリエチレン(Braskem社製、SBC818、密度:0.918g/cm、MFR:8.1g/10分、バイオマス度:95%)70質量部と化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm、MFR:3.6g/10分、バイオマス度:0%)30質量部とをドライブレンドした混合樹脂を320℃の樹脂温度、ライン速度100m/分で溶融押出しラミネートして、ポリオレフィン樹脂層(バイオマス度:67%、厚さ40μm)を形成して、熱可塑性樹脂層、アンカーコート層、紙基材層、接着樹脂層、プラスチックフィルム、アンカーコート層、ポリオレフィン樹脂層が順に積層された積層体7を得た。
[Example 5]
<Preparation of laminated body 7>
An acid-resistant coated cup (manufactured by Chuetsu Pulp & Paper Co., Ltd., basis weight 270 g / m 2 ) is prepared as a paper substrate layer, and after corona treatment is applied to one surface, an anchor coating agent (Matsumoto Fine Chemical Co., Ltd.) is applied to the corona treated surface. WS-700) was applied and dried to form an anchor coat layer. Subsequently, 70 parts by mass of biomass-derived low-density polyethylene (manufactured by Braskem, SBC818, density: 0.918 g / cm 3 , MFR: 8.1 g / 10 minutes, biomass degree: 95%) and fossils were placed on the anchor coat layer. A mixed resin obtained by dry blending 30 parts by mass of fuel-derived low-density polyethylene (manufactured by Nippon Polyethylene Co., Ltd., LC520, density: 0.923 g / cm 3 , MFR: 3.6 g / 10 minutes, biomass degree: 0%). A thermoplastic resin layer (biomass degree: 67%, thickness 20 μm) was formed by melt-extruding and laminating at a resin temperature of 320 ° C. and a line speed of 100 m / min. Next, the surface of the paper substrate layer opposite to the thermoplastic resin layer is subjected to corona treatment, and then the corona-treated surface is subjected to a fossil fuel-derived low-density polyethylene (manufactured by Nippon Polyethylene Co., Ltd.) using a sand lamination method. , LC520, density: 0.923 g / cm 3 , MFR: 3.6 g / 10 minutes, biomass degree: 0%) while extruding through this adhesive resin layer (biomass degree: 0%, thickness 15 μm). A corona-treated surface of a fossil fuel-derived polyethylene terephthalate film (manufactured by Toyo Boseki Co., Ltd., T4100, thickness 12 μm) that had been subjected to corona treatment was bonded. Subsequently, an anchor coating agent (EL540 / CAT-RT32 manufactured by Toyo Morton Co., Ltd.) was applied and dried on the polyethylene terephthalate film to form an anchor coating layer. After that, 70 parts by mass of low-density polyethylene derived from biomass (manufactured by Braskem, SBC818, density: 0.918 g / cm 3 , MFR: 8.1 g / 10 minutes, biomass degree: 95%) and fossil fuel were placed on the anchor coat layer. A mixed resin obtained by dry blending 30 parts by mass of a low-density polyethylene derived from (manufactured by Nippon Polyethylene Co., Ltd., LC520, density: 0.923 g / cm 3 , MFR: 3.6 g / 10 minutes, biomass degree: 0%) at 320 ° C. Polyolefin resin layer (biomass degree: 67%, thickness 40 μm) is formed by melt-extruding and laminating at the resin temperature and line speed of 100 m / min, and the thermoplastic resin layer, anchor coat layer, paper base material layer, and adhesion are formed. A laminated body 7 in which a resin layer, a plastic film, an anchor coat layer, and a polyolefin resin layer were laminated in this order was obtained.

[比較例3]
<積層体8の作製>
紙基材層として耐酸コートカップ(中越パルプ工業株式会社製、坪量270g/m)を用意し、一方の面にコロナ処理を施した後、そのコロナ処理面にアンカーコート剤(マツモトファインケミカル社製、WS−700)を塗布乾燥し、アンカーコート層を形成した。続いて、アンカーコート層上に化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm、MFR:3.6g/10分、バイオマス度:0%)を320℃の樹脂温度、ライン速度100m/分で溶融押出しラミネートして、熱可塑性樹脂層(バイオマス度:0%、厚さ20μm)を形成した。次に、紙基材層の熱可塑性樹脂層と反対側の面にコロナ処理を施した後、そのコロナ処理面に、サンドラミネート法を用いて、化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm、MFR:3.6g/10分、バイオマス度:0%)を押出しながら、この接着樹脂層(バイオマス度:0%、厚さ15μm)を介して、コロナ処理を施した化石燃料由来のポリエチレンテレフタレートフィルム(東洋紡社製、T4100、厚さ12μm)のコロナ処理面を貼り合わせた。続いて、該ポリエチレンテレフタレートフィルム上にアンカーコート剤(東洋モートン社製、EL540/CAT−RT32)を塗布乾燥し、アンカーコート層を形成した。その後、アンカーコート層上に化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm、MFR:3.6g/10分、バイオマス度:0%)を320℃の樹脂温度、ライン速度100m/分で溶融押出しラミネートして、樹脂層(バイオマス度:0%、厚さ40μm)を形成して、熱可塑性樹脂層、アンカーコート層、紙基材層、接着樹脂層、プラスチックフィルム、アンカーコート層、樹脂層が順に積層された積層体8を得た。
[Comparative Example 3]
<Preparation of laminated body 8>
An acid-resistant coated cup (manufactured by Chuetsu Pulp & Paper Co., Ltd., basis weight 270 g / m 2 ) is prepared as a paper substrate layer, and after corona treatment is applied to one surface, an anchor coating agent (Matsumoto Fine Chemical Co., Ltd.) is applied to the corona treated surface. WS-700) was applied and dried to form an anchor coat layer. Subsequently, low-density polyethylene derived from fossil fuel (manufactured by Japan Polyethylene Corporation, LC520, density: 0.923 g / cm 3 , MFR: 3.6 g / 10 minutes, biomass degree: 0%) was placed on the anchor coat layer at 320 ° C. A thermoplastic resin layer (biomass degree: 0%, thickness 20 μm) was formed by melt-extruding and laminating at a resin temperature of 100 m / min and a line speed of 100 m / min. Next, the surface of the paper substrate layer opposite to the thermoplastic resin layer is subjected to corona treatment, and then the corona-treated surface is subjected to a fossil fuel-derived low-density polyethylene (manufactured by Nippon Polyethylene Co., Ltd.) using a sand lamination method. , LC520, density: 0.923 g / cm 3 , MFR: 3.6 g / 10 minutes, biomass degree: 0%) while extruding through this adhesive resin layer (biomass degree: 0%, thickness 15 μm). A corona-treated surface of a fossil fuel-derived polyethylene terephthalate film (manufactured by Toyo Boseki Co., Ltd., T4100, thickness 12 μm) that had been subjected to corona treatment was bonded. Subsequently, an anchor coating agent (EL540 / CAT-RT32 manufactured by Toyo Morton Co., Ltd.) was applied and dried on the polyethylene terephthalate film to form an anchor coating layer. After that, a low-density polyethylene derived from fossil fuel (manufactured by Nippon Polyethylene Co., Ltd., LC520, density: 0.923 g / cm 3 , MFR: 3.6 g / 10 minutes, biomass degree: 0%) was placed on the anchor coat layer at 320 ° C. A resin layer (biomass degree: 0%, thickness 40 μm) is formed by melt-extruding and laminating at a resin temperature and a line speed of 100 m / min to form a thermoplastic resin layer, an anchor coat layer, a paper base material layer, and an adhesive resin layer. , A laminated body 8 in which a plastic film, an anchor coat layer, and a resin layer were laminated in this order was obtained.

[実施例6]
<積層体9の作製>
紙基材層としてコップ原紙(日本製紙社製、坪量280g/m)を用意し、一方の面にコロナ処理を施した後、そのコロナ処理面に、サンドラミネート法を用いて、化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC600A、密度:0.919g/cm、MFR:7.0g/10分、バイオマス度:0%)を押出しながら、この接着樹脂層(バイオマス度:0%、厚さ15μm)を介して、コロナ処理を施した化石燃料由来のポリエチレンテレフタレートフィルム(東洋紡社製、T4100、厚さ12μm)のコロナ処理面を貼り合わせた。続いて、該ポリエチレンテレフタレートフィルム上にアンカーコート剤(東洋モートン社製、EL540/CAT−RT32)を塗布乾燥し、アンカーコート層を形成した。その後、アンカーコート層上にバイオマス由来の低密度ポリエチレン(Braskem社製、SBC818、密度:0.918g/cm、MFR:8.1g/10分、バイオマス度:95%)を320℃の樹脂温度、ライン速度100m/分で溶融押出しラミネートして、ポリオレフィン樹脂層(バイオマス度:95%、厚さ40μm)を形成して、紙基材層、接着樹脂層、プラスチックフィルム、アンカーコート層、ポリオレフィン樹脂層が順に積層された積層体9を得た。
[Example 6]
<Preparation of laminated body 9>
A cup base paper (manufactured by Nippon Paper Co., Ltd., with a basis weight of 280 g / m 2 ) is prepared as a paper substrate layer, one surface is corona-treated, and then the corona-treated surface is subjected to a fossil fuel by a sand laminate method. While extruding the derived low-density polyethylene (manufactured by Nippon Polyethylene, LC600A, density: 0.919 g / cm 3 , MFR: 7.0 g / 10 minutes, biomass degree: 0%), this adhesive resin layer (biomass degree: 0). %, Thickness 15 μm), and the corona-treated surface of a fossil fuel-derived polyethylene terephthalate film (manufactured by Toyo Boseki Co., Ltd., T4100, thickness 12 μm) subjected to corona treatment was bonded. Subsequently, an anchor coating agent (EL540 / CAT-RT32 manufactured by Toyo Morton Co., Ltd.) was applied and dried on the polyethylene terephthalate film to form an anchor coating layer. Then, low-density polyethylene derived from biomass (manufactured by Braskem, SBC818, density: 0.918 g / cm 3 , MFR: 8.1 g / 10 minutes, degree of biomass: 95%) was placed on the anchor coat layer at a resin temperature of 320 ° C. , Polyolefin resin layer (biomass degree: 95%, thickness 40 μm) is formed by melt extrusion laminating at a line speed of 100 m / min, and a paper base material layer, an adhesive resin layer, a plastic film, an anchor coat layer, and a polyolefin resin. A laminated body 9 in which the layers were laminated in order was obtained.

[比較例4]
<積層体10の作製>
紙基材層としてコップ原紙(日本製紙社製、坪量280g/m)を用意し、一方の面にコロナ処理を施した後、そのコロナ処理面に、サンドラミネート法を用いて、化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC600A、密度:0.919g/cm、MFR:7.0g/10分、バイオマス度:0%)を押出しながら、この接着樹脂層(バイオマス度:0%、厚さ15μm)を介して、コロナ処理を施した化石燃料由来のポリエチレンテレフタレートフィルム(東洋紡社製、T4100、厚さ12μm)のコロナ処理面を貼り合わせた。続いて、該ポリエチレンテレフタレートフィルム上にアンカーコート剤(東洋モートン社製、EL540/CAT−RT32)を塗布乾燥し、アンカーコート層を形成した。その後、アンカーコート層上に上記と同様の化石燃料由来の低密度ポリエチレンを320℃の樹脂温度、ライン速度100m/分で溶融押出しラミネートして、樹脂層(バイオマス度:0%、厚さ40μm)を形成して、紙基材層、接着樹脂層、プラスチックフィルム、アンカーコート層、樹脂層が順に積層された積層体10を得た。
[Comparative Example 4]
<Preparation of laminated body 10>
A cup base paper (manufactured by Nippon Paper Co., Ltd., with a basis weight of 280 g / m 2 ) is prepared as a paper substrate layer, one surface is corona-treated, and then the corona-treated surface is subjected to a fossil fuel by a sand laminating method. While extruding the derived low-density polyethylene (manufactured by Nippon Polyethylene, LC600A, density: 0.919 g / cm 3 , MFR: 7.0 g / 10 minutes, biomass degree: 0%), this adhesive resin layer (biomass degree: 0). %, Thickness 15 μm), and the corona-treated surface of a fossil fuel-derived polyethylene terephthalate film (manufactured by Toyo Boseki Co., Ltd., T4100, thickness 12 μm) subjected to corona treatment was bonded. Subsequently, an anchor coating agent (EL540 / CAT-RT32 manufactured by Toyo Morton Co., Ltd.) was applied and dried on the polyethylene terephthalate film to form an anchor coating layer. Then, low-density polyethylene derived from fossil fuel similar to the above is melt-extruded and laminated on the anchor coat layer at a resin temperature of 320 ° C. and a line speed of 100 m / min to form a resin layer (biomass degree: 0%, thickness 40 μm). Was formed to obtain a laminate 10 in which a paper base material layer, an adhesive resin layer, a plastic film, an anchor coat layer, and a resin layer were laminated in this order.

[実施例7]
<積層体11の作製>
化石燃料由来のポリエチレンテレフタレートフィルム(東洋紡社製、T4100、厚さ12μm)を使用し、これをプラズマ化学気相成長装置の送り出しロールに装着し、次いで、下記に示す条件で、上記のポリエチレンテレフタレートフィルムのコロナ処理面に、厚さ200Åの酸化珪素の蒸着膜を形成して、酸化珪素蒸着ポリエチレンテレフタレートフィルム1を得た。
(蒸着条件)
蒸着面;コロナ処理面
導入ガス量;ヘキサメチルジシロキサン:酸素ガス:ヘリウム=1:3:3(単位:slm)
真空チャンバー内の真空度;2〜6×10−6mBar
蒸着チャンバー内の真空度;2〜5×10−3mBar
冷却・電極ドラム供給電力;10kW
ライン速度;100m/分
[Example 7]
<Preparation of laminated body 11>
A polyethylene terephthalate film derived from fossil fuel (manufactured by Toyobo Co., Ltd., T4100, thickness 12 μm) was used, and this was attached to a delivery roll of a plasma chemical vapor deposition apparatus. A 200 Å thick thin-film silicon oxide film was formed on the corona-treated surface to obtain a silicon oxide-deposited polyethylene terephthalate film 1.
(Evaporation conditions)
Deposited surface; Corona treated surface Introduced gas amount; Hexamethyldisiloxane: Oxygen gas: Helium = 1: 3: 3 (Unit: slm)
Degree of vacuum in the vacuum chamber; 2-6 x 10-6 mBar
Vacuum degree in vapor deposition chamber; 2-5 x 10 -3 mBar
Cooling / electrode drum supply power; 10 kW
Line speed: 100m / min

紙基材層としてコップ原紙(日本製紙社製、坪量260g/m)を用意し、一方の面にコロナ処理を施した後、そのコロナ処理面に、サンドラミネート法を用いて、化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm、MFR:3.6g/10分、バイオマス度:0%)を押出しながら、この接着樹脂層(バイオマス度:0%、厚さ15μm)を介して、上記の酸化珪素蒸着ポリエチレンテレフタレートフィルム1の蒸着面を貼り合わせた。続いて、該ポリエチレンテレフタレートフィルム上にアンカーコート剤(東洋モートン社製、EL540/CAT−RT32)を塗布乾燥し、アンカーコート層を形成した。その後、アンカーコート層上にバイオマス由来の低密度ポリエチレン(Braskem社製、SBC818、密度:0.918g/cm3、MFR:8.1g/10分、バイオマス度:95%)70質量部と化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm3、MFR:3.6g/10分、バイオマス度:0%)30質量部とをドライブレンドした混合樹脂を320℃の樹脂温度、ライン速度100m/分で溶融押出しラミネートして、ポリオレフィン樹脂層(バイオマス度:67%、厚さ25μm)を形成して、紙基材層、接着樹脂層、バリア層、プラスチックフィルム、アンカーコート層、ポリオレフィン樹脂層が順に積層された積層体11を得た。 A cup base paper (manufactured by Nippon Paper Co., Ltd., with a basis weight of 260 g / m 2 ) is prepared as a paper substrate layer, one surface is corona-treated, and then the corona-treated surface is subjected to a fossil fuel by a sand laminating method. While extruding the derived low-density polyethylene (manufactured by Nippon Polyethylene, LC520, density: 0.923 g / cm 3 , MFR: 3.6 g / 10 minutes, biomass degree: 0%), this adhesive resin layer (biomass degree: 0). %, Thickness 15 μm), and the vapor-deposited surfaces of the above-mentioned silicon oxide-deposited polyethylene terephthalate film 1 were bonded together. Subsequently, an anchor coating agent (EL540 / CAT-RT32 manufactured by Toyo Morton Co., Ltd.) was applied and dried on the polyethylene terephthalate film to form an anchor coating layer. Then, on the anchor coat layer, 70 parts by mass of low-density polyethylene derived from biomass (manufactured by Braskem, SBC818, density: 0.918 g / cm3, MFR: 8.1 g / 10 minutes, degree of biomass: 95%) and derived from fossil fuel. Low-density polyethylene (manufactured by Nippon Polyethylene Co., Ltd., LC520, density: 0.923 g / cm3, MFR: 3.6 g / 10 minutes, biomass degree: 0%) 30 parts by mass of a mixed resin dry-blended with a resin at 320 ° C. A polyolefin resin layer (biomass degree: 67%, thickness 25 μm) is formed by melt-extruding and laminating at a temperature and a line speed of 100 m / min, and a paper base material layer, an adhesive resin layer, a barrier layer, a plastic film, and an anchor coat are formed. A laminated body 11 in which a layer and a polyolefin resin layer were laminated in this order was obtained.

[比較例5]
<積層体12の作製>
紙基材層としてコップ原紙(日本製紙社製、坪量260g/m)を用意し、一方の面にコロナ処理を施した後、そのコロナ処理面に、サンドラミネート法を用いて、化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm、MFR:3.6g/10分、バイオマス度:0%)を押出しながら、この接着樹脂層(バイオマス度:0%、厚さ15μm)を介して、上記の酸化珪素蒸着ポリエチレンテレフタレートフィルム1の蒸着面を貼り合わせた。続いて、該ポリエチレンテレフタレートフィルム上にアンカーコート剤(東洋モートン社製、EL540/CAT−RT32)を塗布乾燥し、アンカーコート層を形成した。その後、アンカーコート層上に化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm、MFR:3.6g/10分、バイオマス度:0%)を320℃の樹脂温度、ライン速度100m/分で溶融押出しラミネートして、樹脂層(バイオマス度:0%、厚さ25μm)を形成して、紙基材層、接着樹脂層、バリア層、プラスチックフィルム、アンカーコート層、樹脂層が順に積層された積層体12を得た。
[Comparative Example 5]
<Preparation of laminated body 12>
A cup base paper (manufactured by Nippon Paper Co., Ltd., with a basis weight of 260 g / m 2 ) is prepared as a paper substrate layer, one surface is corona-treated, and then the corona-treated surface is subjected to a fossil fuel by a sand laminating method. While extruding the derived low-density polyethylene (manufactured by Nippon Polyethylene, LC520, density: 0.923 g / cm 3 , MFR: 3.6 g / 10 minutes, biomass degree: 0%), this adhesive resin layer (biomass degree: 0). %, Thickness 15 μm), and the vapor-deposited surfaces of the above-mentioned silicon oxide-deposited polyethylene terephthalate film 1 were bonded together. Subsequently, an anchor coating agent (EL540 / CAT-RT32 manufactured by Toyo Morton Co., Ltd.) was applied and dried on the polyethylene terephthalate film to form an anchor coating layer. After that, low-density polyethylene derived from fossil fuel (manufactured by Japan Polyethylene Corporation, LC520, density: 0.923 g / cm 3 , MFR: 3.6 g / 10 minutes, biomass degree: 0%) was placed on the anchor coat layer at 320 ° C. A resin layer (biomass degree: 0%, thickness 25 μm) is formed by melt-extruding and laminating at a resin temperature and a line speed of 100 m / min to form a paper base material layer, an adhesive resin layer, a barrier layer, a plastic film, and an anchor coat. A laminated body 12 in which a layer and a resin layer were laminated in this order was obtained.

[実施例8]
<積層体13の作製>
紙基材層として片面コート紙(三菱製紙株式会社製、DMSC、坪量260g/m)を用意し、一方の面にコロナ処理を施した後、そのコロナ処理面に、サンドラミネート法を用いて、化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm、MFR:3.6g/10分、バイオマス度:0%)を押出しながら、この接着樹脂層(バイオマス度:95%、厚さ15μm)を介して、アルミニウム箔(厚さ7μm)を貼り合わせた。続いて、該アルミニウム箔上に、化石燃料由来のエチレン−メタクリル酸共重合体(三井デュポンポリケミカル社製、ニュクレルN0908C)を溶融押出しラミネートして、樹脂層(厚さ12μm)を形成した。さらに、この樹脂層上にバイオマス由来の低密度ポリエチレン(Braskem社製、SBC818、密度:0.918g/cm3、MFR:8.1g/10分、バイオマス度:95%)70質量部と化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm3、MFR:3.6g/10分、バイオマス度:0%)30質量部とをドライブレンドした混合樹脂を320℃の樹脂温度、ライン速度100m/分で溶融押出しラミネートして、ポリオレフィン樹脂層(バイオマス度:95%、厚さ28μm)を形成して、紙基材層、接着樹脂層、バリア層、樹脂層、ポリオレフィン樹脂層が順に積層された積層体13を得た。
[Example 8]
<Preparation of laminated body 13>
Single-sided coated paper (manufactured by Mitsubishi Paper Co., Ltd., DMSC, biomass 260 g / m 2 ) is prepared as the paper substrate layer, one surface is corona-treated, and then the sand-laminated method is used on the corona-treated surface. Then, while extruding low-density polyethylene derived from fossil fuel (manufactured by Nippon Polyethylene, LC520, density: 0.923 g / cm 3 , MFR: 3.6 g / 10 minutes, biomass degree: 0%), this adhesive resin layer ( An aluminum foil (thickness 7 μm) was laminated via a biomass degree (95%, thickness 15 μm). Subsequently, a fossil fuel-derived ethylene-methacrylic acid copolymer (Nucrel N0908C, manufactured by Mitsui DuPont Polychemical Co., Ltd.) was melt-extruded and laminated on the aluminum foil to form a resin layer (thickness 12 μm). Further, on this resin layer, 70 parts by mass of low density polyethylene derived from polyolefin (manufactured by Braskem, SBC818, density: 0.918 g / cm3, MFR: 8.1 g / 10 minutes, degree of biomass: 95%) and derived from fossil fuel. Low-density polyethylene (manufactured by Nippon Polyethylene Co., Ltd., LC520, density: 0.923 g / cm3, MFR: 3.6 g / 10 minutes, biomass degree: 0%) 30 parts by mass of a mixed resin dry-blended with a resin at 320 ° C. A polyolefin resin layer (biomass degree: 95%, thickness 28 μm) is formed by melt-extruding and laminating at a temperature and a line speed of 100 m / min to form a paper base material layer, an adhesive resin layer, a barrier layer, a resin layer, and a polyolefin resin. A laminated body 13 in which the layers were laminated in order was obtained.

[比較例6]
<積層体14の作製>
紙基材層として片面コート紙(三菱製紙株式会社製、DMSC、坪量260g/m)を用意し、一方の面にコロナ処理を施した後、そのコロナ処理面に、サンドラミネート法を用いて、化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm、MFR:3.6g/10分、バイオマス度:0%)を押出しながら、この接着樹脂層(バイオマス度:0%、厚さ15μm)を介して、アルミニウム箔(厚さ7μm)を貼り合わせた。続いて、該アルミニウム箔上に、化石燃料由来のエチレン−メタクリル酸共重合体(三井デュポンポリケミカル社製、ニュクレルN0908C)を溶融押出しラミネートして、樹脂層(厚さ12μm)を形成した。さらに、この樹脂層上に化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、LC520、密度:0.923g/cm、MFR:3.6g/10分、バイオマス度:0%)を320℃の樹脂温度、ライン速度100m/分で溶融押出しラミネートして、樹脂層(バイオマス度:0%、厚さ28μm)を形成して、紙基材層、接着樹脂層、バリア層、樹脂層、樹脂層が順に積層された積層体14を得た。
[Comparative Example 6]
<Preparation of laminated body 14>
Single-sided coated paper (manufactured by Mitsubishi Paper Co., Ltd., DMSC, biomass 260 g / m 2 ) is prepared as the paper substrate layer, one surface is corona-treated, and then the sand-laminated method is used on the corona-treated surface. Then, while extruding low-density polyethylene derived from fossil fuel (manufactured by Nippon Polyethylene, LC520, density: 0.923 g / cm 3 , MFR: 3.6 g / 10 minutes, biomass degree: 0%), this adhesive resin layer ( An aluminum foil (thickness 7 μm) was laminated via a biomass degree: 0%, thickness 15 μm). Subsequently, a fossil fuel-derived ethylene-methacrylic acid copolymer (Nucrel N0908C, manufactured by Mitsui DuPont Polychemical Co., Ltd.) was melt-extruded and laminated on the aluminum foil to form a resin layer (thickness 12 μm). Further, low density polyethylene derived from fossil fuel (manufactured by Japan Polyethylene Corporation, LC520, density: 0.923 g / cm 3 , MFR: 3.6 g / 10 minutes, biomass degree: 0%) is placed on this resin layer at 320 ° C. A resin layer (biomass degree: 0%, thickness 28 μm) is formed by melt-extruding and laminating at a resin temperature and a line speed of 100 m / min to form a paper base material layer, an adhesive resin layer, a barrier layer, a resin layer, and a resin layer. Was obtained in order to obtain a laminated body 14.

[製造例1〜14]
<紙カップの作製>
下記表1に記載の胴部材用積層体と底部材用積層体を組み合わせて、以下の工程にて紙カップを製造した。まず、胴部材用積層体から紙カップの胴部を作る円錐台形のブランク板を打ち抜き加工した。次に、上記のブランク板を筒状に巻いて、その両端部を部分的に重ね合わせ、その重合部分にホットエアー処理を行い、上記の重合部分に存在する低密度ポリエチレン樹脂層を加熱溶融した。続いて、熱板等によって押圧して胴貼りを行って胴シール部を形成して、紙カップを構成する筒状のカップ胴部を製造した。
[Manufacturing Examples 1 to 14]
<Making a paper cup>
A paper cup was manufactured by the following steps by combining the laminate for the body member and the laminate for the bottom member shown in Table 1 below. First, a conical trapezoidal blank plate for forming the body of a paper cup from the body member laminate was punched out. Next, the above blank plate was wound into a tubular shape, both ends thereof were partially overlapped, and the polymerized portion was subjected to hot air treatment to heat and melt the low density polyethylene resin layer existing in the polymerized portion. .. Subsequently, the body was pasted by pressing with a hot plate or the like to form a body seal portion, and a tubular cup body portion constituting a paper cup was manufactured.

他方、底部材用積層体を円形状に打ち抜き加工して、底部を構成する円板を製造し、次いで、当該円板の外周部を筒状に起立成形して、起立成形部を有する底部を製造した。次いで、上記で製造した筒状のカップ胴部に、同じく上部で製造した底紙を挿入した後、その筒状のカップ胴部と底紙とを、その接合部分に熱風等を吹きつけてその接合部分に存在する樹脂層を加熱溶融した。続いて、カール用型により筒状のカップ胴部の先端部を内方に折り曲げて、上記の底部を構成する起立成形部にかぶせて、上記の筒状のカップ胴部の先端部と底部の起立成形部との重合部分を内径側からローレットによりローレットがけすることにより、上記の筒状のカップ胴部と底部とを密接着させて接合部を形成して、上記の筒状のカップ胴部と底部とからなる紙カップ底部を形成した。 On the other hand, the laminate for the bottom member is punched into a circular shape to manufacture a disk constituting the bottom, and then the outer peripheral portion of the disk is vertically formed into a tubular shape to form a bottom having the upright formed portion. Manufactured. Next, after inserting the bottom paper also manufactured in the upper part into the tubular cup body manufactured above, the tubular cup body and the bottom paper are blown with hot air or the like at the joint portion thereof. The resin layer existing at the joint was heated and melted. Subsequently, the tip of the tubular cup body is bent inward by the curl mold and covered with the upright molding portion constituting the bottom, and the tip and bottom of the tubular cup body are covered. By knurling the overlapping portion with the upright molded portion from the inner diameter side with a knurl, the tubular cup body and the bottom are closely adhered to form a joint, and the tubular cup body is formed. And the bottom of the paper cup.

その後、上記の筒状のカップ胴部の底部を密接着させて接合部を形成した側と反対側の先端短部を、上記と同様にカール用型により外方に折り曲げながらカールさせて、上端外向きカール部を形成して、満杯容量382ccの紙カップを製造した。 After that, the short tip on the opposite side to the side where the joint is formed by tightly adhering the bottom of the tubular cup body is curled while being bent outward by a curl mold in the same manner as above, and the upper end is curled. An outward curl portion was formed to produce a paper cup having a full capacity of 382 cc.

<性能評価試験>
製造した紙カップについて以下の性能評価試験を行った。
<Performance evaluation test>
The following performance evaluation test was conducted on the manufactured paper cup.

(破壊検査試験)
製造した紙カップを破壊検査し、接着状態を下記の評価基準にて目視で評価した。評価結果を表1に示した。
(評価基準)
○:紙剥けの現象が確認されるかあるいは材料が破壊され、接着状態は問題無かった。
×:シール異常が有り、接着状態は不良であった。
(Destructive inspection test)
The manufactured paper cup was destructively inspected, and the adhesive state was visually evaluated according to the following evaluation criteria. The evaluation results are shown in Table 1.
(Evaluation criteria)
◯: The phenomenon of paper peeling was confirmed or the material was destroyed, and there was no problem with the adhesive state.
X: There was a seal abnormality, and the adhesive state was poor.

(液漏れ試験)
製造した紙カップを各40個用意し、各紙カップに中性洗剤(0.3%溶液)を添加し、10分間静置した後、下記の評価基準にて目視で評価した。評価結果を表1に示した。
(評価基準)
○:液漏れが無く、紙カップとしての性能が良好であった。
×:液漏れが有り、紙カップとしての性能が不良であった。
(Liquid leak test)
Forty 40 paper cups were prepared, a neutral detergent (0.3% solution) was added to each paper cup, and the mixture was allowed to stand for 10 minutes, and then visually evaluated according to the following evaluation criteria. The evaluation results are shown in Table 1.
(Evaluation criteria)
◯: There was no liquid leakage, and the performance as a paper cup was good.
X: There was liquid leakage, and the performance as a paper cup was poor.

Figure 0006773249
Figure 0006773249

10、20、30 積層体
11 紙基材層
12 ポリオレフィン樹脂層
13 接着層
14 バリア層
15 プラスチックフィルム
40 紙カップ
41 フランジ部
42 胴部
43 底部
44 外装体
45 凸部
46 間隙
10, 20, 30 Laminated body 11 Paper base material layer 12 Polyolefin resin layer 13 Adhesive layer 14 Barrier layer 15 Plastic film 40 Paper cup 41 Flange part 42 Body part 43 Bottom part 44 Exterior body 45 Convex part 46 Gap

Claims (6)

少なくとも、熱可塑性樹脂層と、紙基材層と、ポリオレフィン樹脂層とをこの順に備える紙カップ用積層体であって、
紙カップの胴部として用いられ、前記熱可塑性樹脂層と、前記ポリオレフィン樹脂層とを接着することにより胴部シール部が形成されるように用いられる紙カップ用積層体において、
前記ポリオレフィン樹脂層が、バイオマス由来のエチレンを含むモノマーの重合体であるバイオマス由来の低密度ポリエチレンを含み、
前記ポリオレフィン樹脂層中のバイオマス度が5%以上であり、
前記熱可塑性樹脂層が化石燃料由来の低密度ポリエチレンであり、
前記紙カップ用積層体の最内層が前記ポリオレフィン樹脂層である、紙カップ用積層体。
A laminate for a paper cup including at least a thermoplastic resin layer, a paper base material layer, and a polyolefin resin layer in this order.
In a laminate for a paper cup, which is used as a body of a paper cup and is used so that a body seal portion is formed by adhering the thermoplastic resin layer and the polyolefin resin layer.
The polyolefin resin layer contains low-density polyethylene derived from biomass, which is a polymer of a monomer containing ethylene derived from biomass.
The degree of biomass in the polyolefin resin layer is 5% or more,
The thermoplastic resin layer is low-density polyethylene derived from fossil fuel.
A laminate for paper cups, wherein the innermost layer of the laminate for paper cups is the polyolefin resin layer.
前記紙カップ用積層体がさらにバリア層を有する、請求項1に記載の紙カップ用積層体。 The laminate for paper cups according to claim 1, wherein the laminate for paper cups further has a barrier layer. 前記紙カップ用積層体がさらに印刷層を有する、請求項1または2に記載の紙カップ用積層体。 The laminate for paper cups according to claim 1 or 2, wherein the laminate for paper cups further has a printing layer. 胴部と、底部と、を備える紙カップであって、
胴部を構成する積層体が、少なくとも、熱可塑性樹脂層と、紙基材層と、ポリオレフィン樹脂層と、をこの順に備え、
前記ポリオレフィン樹脂層が、バイオマス由来のエチレンを含むモノマーの重合体であるバイオマス由来の低密度ポリエチレンを含み、
前記ポリオレフィン樹脂層中のバイオマス度が5%以上であり、
前記熱可塑性樹脂層が化石燃料由来の低密度ポリエチレンであり、
前記紙カップ用積層体の最内層が前記ポリオレフィン樹脂層であり、
前記紙カップの胴シール部が、前記熱可塑性樹脂層と、前記ポリオレフィン樹脂層とを接着することにより形成されている、紙カップ。
A paper cup with a torso and a bottom
The laminate constituting the body includes at least a thermoplastic resin layer, a paper base material layer, and a polyolefin resin layer in this order.
The polyolefin resin layer contains low-density polyethylene derived from biomass, which is a polymer of a monomer containing ethylene derived from biomass.
The degree of biomass in the polyolefin resin layer is 5% or more,
The thermoplastic resin layer is low-density polyethylene derived from fossil fuel.
The innermost layer of the laminate for paper cups is the polyolefin resin layer.
A paper cup in which a body seal portion of the paper cup is formed by adhering the thermoplastic resin layer and the polyolefin resin layer.
前記胴部を構成する積層体が、さらにバリア層を有する、請求項4に記載の紙カップ。 The paper cup according to claim 4, wherein the laminate constituting the body portion further has a barrier layer. 前記胴部を構成する積層体が、さらに印刷層を有する、請求項4または5に記載の紙カップ。 The paper cup according to claim 4 or 5, wherein the laminate constituting the body portion further has a printing layer.
JP2020125595A 2020-07-22 2020-07-22 Laminates with a polyolefin resin layer and packaging products with them Active JP6773249B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020125595A JP6773249B1 (en) 2020-07-22 2020-07-22 Laminates with a polyolefin resin layer and packaging products with them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020125595A JP6773249B1 (en) 2020-07-22 2020-07-22 Laminates with a polyolefin resin layer and packaging products with them

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020041305A Division JP6743990B2 (en) 2020-03-10 2020-03-10 Laminated body including polyolefin resin layer and packaged product including the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020159989A Division JP2021008120A (en) 2020-09-24 2020-09-24 Laminate including polyolefin resin layer, and packaging product including the same

Publications (2)

Publication Number Publication Date
JP6773249B1 true JP6773249B1 (en) 2020-10-21
JP2020175960A JP2020175960A (en) 2020-10-29

Family

ID=72829264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020125595A Active JP6773249B1 (en) 2020-07-22 2020-07-22 Laminates with a polyolefin resin layer and packaging products with them

Country Status (1)

Country Link
JP (1) JP6773249B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5938944B2 (en) * 2012-02-29 2016-06-22 大日本印刷株式会社 Lid material
JP5925632B2 (en) * 2012-08-02 2016-05-25 株式会社クレハ Resin laminate containing plant-derived polyethylene and resin multilayer container
JP6136272B2 (en) * 2013-01-09 2017-05-31 大日本印刷株式会社 Laminate with a resin layer derived from biomass
JP6379479B2 (en) * 2013-12-05 2018-08-29 大日本印刷株式会社 Polyester film
JP2015214365A (en) * 2014-05-13 2015-12-03 凸版印刷株式会社 Paper cup
JP2015231870A (en) * 2014-05-13 2015-12-24 凸版印刷株式会社 Lid material and packaging container using the same

Also Published As

Publication number Publication date
JP2020175960A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
JP6136272B2 (en) Laminate with a resin layer derived from biomass
JP7454139B2 (en) Laminated body comprising a polyolefin resin layer and packaging product comprising the same
JP6635355B2 (en) Laminate for packaging products with biomass-derived resin layer
JP6818245B2 (en) Laminates with a polyolefin resin layer and packaging products with them
JP6443768B2 (en) Packaging product comprising a laminate having a biomass-derived resin layer
JP6909419B2 (en) Laminates with a polyolefin resin layer and packaging products with them
JP2019043145A (en) Laminate for packaging product having biomass-derived resin layer
JP7261397B2 (en) Laminate provided with polyolefin resin layer and packaging product provided with the same
JP7015460B2 (en) Laminates with a polyolefin resin layer and packaging products with them
JP6770700B2 (en) Laminates with a polyolefin resin layer and packaging products with them
JP2023090733A (en) Paper container for liquid
JP2023075226A (en) Packaging product with laminate having biomass-derived resin layer
JP6948603B2 (en) Liquid paper container
JP6773249B1 (en) Laminates with a polyolefin resin layer and packaging products with them
JP2021062632A (en) Laminate equipped with polyolefin resin layer and packing product equipped with the same
JP6743990B2 (en) Laminated body including polyolefin resin layer and packaged product including the same
JP7373137B2 (en) Laminated body comprising a polyolefin resin layer and packaging product comprising the same
JP2021008120A (en) Laminate including polyolefin resin layer, and packaging product including the same
JP7037774B2 (en) Laminates with a polyolefin resin layer and packaging products with them
JP2018165056A (en) Laminate having polyolefin resin layer and method of manufacturing the same, and packaging product having the laminate
JP2020175673A (en) Packaging product equipped with laminate having resin layer derived from biomass
JP2019043146A (en) Laminate for packaging product having biomass-derived resin layer
JP2022008820A (en) Laminate having polyolefin resin layer and packaging product having the same
JP2024102163A (en) Laminate with polyolefin resin layer and packaging product comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200722

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200727

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6773249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157