JP6772720B2 - Leakage detector - Google Patents

Leakage detector Download PDF

Info

Publication number
JP6772720B2
JP6772720B2 JP2016185595A JP2016185595A JP6772720B2 JP 6772720 B2 JP6772720 B2 JP 6772720B2 JP 2016185595 A JP2016185595 A JP 2016185595A JP 2016185595 A JP2016185595 A JP 2016185595A JP 6772720 B2 JP6772720 B2 JP 6772720B2
Authority
JP
Japan
Prior art keywords
leakage
potential difference
battery
power supply
measuring means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016185595A
Other languages
Japanese (ja)
Other versions
JP2018048957A (en
Inventor
裕樹 河村
裕樹 河村
明俊 中根
明俊 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2016185595A priority Critical patent/JP6772720B2/en
Publication of JP2018048957A publication Critical patent/JP2018048957A/en
Application granted granted Critical
Publication of JP6772720B2 publication Critical patent/JP6772720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、モータ駆動用のバッテリ電源を備えた車両の漏電検出装置に関する。 The present invention relates to an earth leakage detection device for a vehicle provided with a battery power source for driving a motor.

モータを動力源として備える車両たとえば電気自動車やハイブリッド自動車は、モータ駆動用のバッテリ電源(電池パックともいう)を搭載し、そのバッテリ電源の出力をモータ駆動部に供給する。バッテリ電源およびその周辺部を含むバッテリ部はいわゆる高電圧回路であり、この高電圧回路は感電防止のために車体のアースから絶縁される。 Vehicles equipped with a motor as a power source For example, an electric vehicle or a hybrid vehicle is equipped with a battery power source (also referred to as a battery pack) for driving the motor, and supplies the output of the battery power source to the motor drive unit. The battery unit including the battery power supply and its peripheral portion is a so-called high-voltage circuit, and this high-voltage circuit is insulated from the ground of the vehicle body to prevent electric shock.

高電圧回路に関しては、水や塵埃の浸入などを原因とする漏電(絶縁の失陥ともいう)に対しても、十分な対策が必要である。 For high-voltage circuits, sufficient measures are required against electric leakage (also called insulation failure) caused by the ingress of water or dust.

対策として、高電圧回路の漏電を検出する漏電検出装置が車両に搭載される。この漏電検出装置は、高電圧回路と車体のアースとの間の絶縁抵抗の抵抗値を検出し、その絶縁抵抗の抵抗値が予め定めた設定値未満に低下している場合に、高電圧回路に漏電が生じていると判定する。 As a countermeasure, an earth leakage detection device for detecting an earth leakage of a high voltage circuit is installed in the vehicle. This earth leakage detection device detects the resistance value of the insulation resistance between the high voltage circuit and the ground of the vehicle body, and when the resistance value of the insulation resistance drops below a predetermined set value, the high voltage circuit It is determined that there is an electric leakage in.

特許第5382813号公報Japanese Patent No. 5382813 特開2014−202696号公報Japanese Unexamined Patent Publication No. 2014-202696

上記漏電検出装置は、漏電の有無を検出するだけで、漏電の部位がどこであるかについては検出できない。漏電部位については、車両が持込まれる販売店やサービス工場において、作業員の手作業により検出される。この作業には多くの手間と時間がかかる。 The earth leakage detection device only detects the presence or absence of an electric leakage, and cannot detect where the electric leakage site is. Leakage sites are manually detected by workers at dealers and service factories where vehicles are brought in. This work takes a lot of time and effort.

本発明の目的は、バッテリ電源およびその周辺部を含むバッテリ部における漏電の有無を検出できるとともに、漏電ありの場合はその漏電部位がどこであるかについても的確かつ迅速に検出できる漏電検出装置を提供することである。 An object of the present invention is to provide an electric leakage detection device capable of detecting the presence or absence of an electric leakage in a battery unit including a battery power supply and its peripheral portion, and if there is an electric leakage, it can accurately and quickly detect the location of the electric leakage part. It is to be.

本願の請求項1に係る発明の漏電検出装置は、直列接続された複数の電池セルで構成されたバッテリ電源を備えた車両の漏電検出装置であって、絶縁抵抗検出手段、漏電判定手段、バッテリ電圧測定手段、電位差測定手段、漏電部位判別手段を備える。絶縁抵抗検出手段は、前記バッテリ電源およびその周辺部を含むバッテリ部と前記車両のアースとの間の絶縁抵抗の抵抗値を検出する。漏電判定手段は、前記バッテリ部における漏電の有無を前記絶縁抵抗検出手段の検出結果に応じて判定する。バッテリ電圧測定手段は、前記複数の電池セルの合計値であるバッテリ電圧を測定する。電位差測定手段は、前記漏電判定手段の判定結果が漏電ありの場合に、前記バッテリ部と前記アースとの間の電位差を測定する。漏電部位判別手段は、前記電位差測定手段が前記電位差を測定したときの前記バッテリ電圧測定手段の測定結果と前記電位差測定手段が測定した電位差に基づき漏電部位を判別する。さらに、前記電位差測定手段は、前記バッテリ部と前記アースとの間の前記電位差を測定する電圧計を含んで構成され、前記漏電部位判別手段は、前記絶縁抵抗検出手段の検出結果と、前記電圧計の内部抵抗の抵抗値に基づく演算により前記電位差測定手段の測定結果を補正し、前記補正した電位差測定手段の測定結果により、前記漏電部位が前記バッテリ電源内の前記各電池セルのいずれであるかを判別する。 The earth leakage detecting device of the invention according to claim 1 of the present application is an earth leakage detecting device of a vehicle provided with a battery power source composed of a plurality of battery cells connected in series, and is an insulation resistance detecting means, an earth leakage determining means, and a battery. It is provided with a voltage measuring means, a potential difference measuring means, and an electric leakage site discriminating means. The insulation resistance detecting means detects the resistance value of the insulation resistance between the battery unit including the battery power supply and its peripheral portion and the ground of the vehicle. The electric leakage determining means determines the presence or absence of electric leakage in the battery unit according to the detection result of the insulating resistance detecting means. The battery voltage measuring means measures the battery voltage, which is the total value of the plurality of battery cells. The potential difference measuring means measures the potential difference between the battery unit and the ground when the determination result of the leakage determining means is that there is an electric leakage. The earth leakage site determination means determines an earth leakage site based on the measurement result of the battery voltage measuring means when the potential difference measuring means measures the potential difference and the potential difference measured by the potential difference measuring means. Further, the potential difference measuring means includes a voltmeter for measuring the potential difference between the battery unit and the ground, and the leakage site determining means includes a detection result of the insulating resistance detecting means and the voltage. The measurement result of the potential difference measuring means is corrected by the calculation based on the resistance value of the internal resistance of the meter, and the leakage portion is any of the battery cells in the battery power supply according to the measured result of the corrected potential difference measuring means. To determine.

本願の請求項2に係る発明の漏電検出装置は、請求項1に係る発明の前記バッテリ電圧測定手段および前記漏電部位判別手段について限定している。前記バッテリ電圧測定手段は、前記複数の電池セルの個々のセル電圧を測定するとともに、前記複数のセル電圧の平均値を算出する。前記漏電部位判別手段は、前記複数のセル電圧の平均値で前記電位差測定手段の測定結果を除算することにより、前記漏電部位が前記バッテリ電源内の前記各電池セルのいずれであるかを判別する。 The earth leakage detection device of the invention according to claim 2 of the present application is limited to the earth voltage measuring means and the earth leakage part determination means of the invention according to claim 1. The battery voltage measuring means measures individual cell voltages of the plurality of battery cells and calculates an average value of the plurality of cell voltages. The earth leakage part determination means determines which of the battery cells in the battery power source the earth leakage part is by dividing the measurement result of the potential difference measuring means by the average value of the plurality of cell voltages. ..

本願の請求項3に係る発明の漏電検出装置は、請求項1に係る発明の前記漏電部位判別手段について限定している。前記漏電部位判別手段は、前記電位差測定手段が前記電位差を測定したときの前記バッテリ電圧測定手段の測定結果で前記電位差測定手段の測定結果を除算することで前記バッテリ電圧に対する前記バッテリ部と前記アースとの間の電位差の割合を算出し、前記割合に前記バッテリ電源を構成する全セル数を積算することにより、前記漏電部位が前記バッテリ電源内の前記各電池セルのいずれであるかを判別する。 The earth leakage detection device of the invention according to claim 3 of the present application is limited to the earth leakage part determination means of the invention according to claim 1. The leakage site determining means divides the measurement result of the potential difference measuring means by the measurement result of the battery voltage measuring means when the potential difference measuring means measures the potential difference, thereby dividing the measurement result of the potential difference measuring means with respect to the battery voltage, thereby causing the battery unit and the ground. By calculating the ratio of the potential difference between the two and the above ratio and integrating the total number of cells constituting the battery power supply into the ratio, it is determined which of the battery cells in the battery power supply the leakage portion is. ..

本願の請求項に係る発明の漏電検出装置は、請求項1からのいずれか1項に係る発明の前記電位差測定手段について限定している。前記電位差測定手段は、前記電圧計が前記バッテリ電源から導出されている正側電源ラインおよび負側電源ラインのいずれか一方と前記アースとの間にスイッチを介して接続されることにより構成され、前記スイッチは前記漏電判定手段の判定結果が漏電なしの場合にオフし漏電ありの場合にオンされ、前記スイッチのオン時、前記正側電源ラインおよび前記負側電源ラインのいずれか一方と前記アースとの間の電位差を前記漏電部位の判別要素として前記電圧計により測定する。 The earth leakage detection device of the invention according to claim 4 of the present application is limited to the potentiometric titration measuring means of the invention according to any one of claims 1 to 3 . The potential difference measuring means is configured by connecting the voltmeter between either one of the positive power supply line and the negative power supply line derived from the battery power supply and the ground via a switch. The switch is turned off when the determination result of the leakage determination means is no leakage and turned on when there is leakage, and when the switch is turned on, either one of the positive power supply line and the negative power supply line and the ground are connected. The potential difference between the two is measured by the voltmeter as a discriminating factor for the leakage portion.

本願の請求項に係る発明の漏電検出装置は、請求項1かのいずれか1項に係る発明の前記電位差測定手段について限定している。前記電位差測定手段は、前記漏電判定手段の判定結果が漏電ありで且つ前記車両の走行が停止したときに前記電位差の測定を行う。 The earth leakage detection device of the invention according to claim 5 of the present application is limited to the potentiometric titration measuring means of the invention according to any one of claims 1 or 4 . The potentiometric titration measuring means measures the potentiometric titration when the determination result of the electric leakage determining means is an electric leakage and the vehicle stops traveling.

本発明の漏電検出装置によれば、バッテリ電源およびその周辺部を含むバッテリ部における漏電の有無を検出できるとともに、漏電ありの場合はその漏電部位がどこであるかについても的確かつ迅速に検出できる。 According to the electric leakage detection device of the present invention, it is possible to detect the presence or absence of electric leakage in the battery part including the battery power supply and its peripheral part, and if there is an electric leakage, it is possible to accurately and quickly detect where the electric leakage part is.

本発明の第1および第2実施形態の構成を示すブロック図。The block diagram which shows the structure of 1st and 2nd Embodiment of this invention. 本発明の第1実施形態の制御を示すフローチャート。The flowchart which shows the control of 1st Embodiment of this invention. 本発明の第2実施形態の制御を示すフローチャート。The flowchart which shows the control of the 2nd Embodiment of this invention.

[1]第1実施形態
本発明の第1実施形態を図面を参照しながら説明する。
モータ駆動用のバッテリ電源を備えた車両たとえば電気自動車やハイブリッド自動車の要部を図1に示す。
バッテリ電源(電池パックともいう)1は、互いに直列接続された複数の組電池(電池モジュールともいう)2a〜2n、これら組電池2a〜2nの直列回路の正側端子と負側端子からそれぞれ導出された正側電源ラインPおよび負側電源ラインN、これら正側電源ラインPおよび負側電源ラインNにそれぞれ挿入接続された正側接点(リレー接点)5および負側接点(リレー接点)6を含み、絶縁性のケースにより周囲が被覆されている。
[1] First Embodiment
The first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a main part of a vehicle equipped with a battery power source for driving a motor, for example, an electric vehicle or a hybrid vehicle.
The battery power supply (also referred to as a battery pack) 1 is derived from a plurality of assembled batteries (also referred to as battery modules) 2a to 2n connected in series with each other, and from the positive side terminal and the negative side terminal of the series circuit of these assembled batteries 2a to 2n, respectively. The positive side power supply line P and the negative side power supply line N, and the positive side contact (relay contact) 5 and the negative side contact (relay contact) 6 inserted and connected to the positive side power supply line P and the negative side power supply line N, respectively. The perimeter is covered with an insulating case.

組電池2a〜2nは、複数の電池セル3a〜3nを互いに直列接続したもので、それぞれ電圧測定部(バッテリ電圧測定手段)4を含む。電圧測定部4は、電池セル3a〜3nの個々の電圧(セル電圧という)Vcell、およびその各セル電圧Vcellの合計値である組電池電圧(バッテリ電圧ともいう)Vmを測定するとともに、測定したセル電圧Vcellの平均値を算出する。各電圧測定部4で測定される組電池電圧Vmの合計値がバッテリ電源1の電圧Vbに相当する。 The assembled batteries 2a to 2n are formed by connecting a plurality of battery cells 3a to 3n in series to each other, and each includes a voltage measuring unit (battery voltage measuring means) 4. The voltage measuring unit 4 measures and measures the individual voltage (called cell voltage) Vcell of the battery cells 3a to 3n and the assembled battery voltage (also referred to as battery voltage) Vm which is the total value of each cell voltage Vcell. The average value of the cell voltage Vcell is calculated. The total value of the assembled battery voltage Vm measured by each voltage measuring unit 4 corresponds to the voltage Vb of the battery power supply 1.

バッテリ電源1の個数は、車両の走行性能や大きさなどに応じて適宜に選定される。また、バッテリ電源1内の組電池2a〜2nの相互間には、過電流保護用のヒューズやメンテナンス機器接続用のサービスプラグなどが配置される。 The number of battery power sources 1 is appropriately selected according to the traveling performance and size of the vehicle. Further, a fuse for overcurrent protection, a service plug for connecting maintenance equipment, and the like are arranged between the assembled batteries 2a to 2n in the battery power supply 1.

バッテリ電源1から導出された正側電源ラインPおよび負側電源ラインNに、高電圧機器であるモータ駆動部10が接続されている。モータ駆動部10は、バッテリ電源1の電圧Vbを後述の車両制御部60からの指令に応じた周波数の交流電圧に変換するインバータを含み、そのインバータで変換した交流電圧をモータ11への駆動電力として出力する。この出力によりモータ11が動作し、その動力が車両の駆動軸に伝わる。 The motor drive unit 10 which is a high voltage device is connected to the positive power supply line P and the negative power supply line N derived from the battery power supply 1. The motor drive unit 10 includes an inverter that converts the voltage Vb of the battery power supply 1 into an AC voltage having a frequency according to a command from the vehicle control unit 60, which will be described later, and the AC voltage converted by the inverter is used as driving power for the motor 11. Output as. This output causes the motor 11 to operate, and its power is transmitted to the drive shaft of the vehicle.

また、バッテリ電源1から導出された正側電源ラインPおよび負側電源ラインNに、高電圧機器であるDC/DCコンバータ12および同じく高電圧機器である充電器13が接続されている。DC/DCコンバータ12は、バッテリ電源1の電圧Vbを車両の各種電気機器の動作に必要なレベルの直流電圧に変換し出力する。充電器13は、車両の駆動軸の回転を受けて発電動作するジェネレータを含み、そのジェネレータの出力電圧(交流電圧)を所定レベルの直流電圧に変換し、それを回生エネルギとしてバッテリ電源1に充電する。また、充電器13は、後述の車両制御部60が漏電状態用の制御を実行する際に、その車両制御部60からの指令に応じて充電動作を停止する。 Further, a DC / DC converter 12 which is a high voltage device and a charger 13 which is also a high voltage device are connected to the positive power supply line P and the negative power supply line N derived from the battery power supply 1. The DC / DC converter 12 converts the voltage Vb of the battery power supply 1 into a DC voltage at a level necessary for the operation of various electric devices of the vehicle and outputs the DC / DC converter 12. The charger 13 includes a generator that generates electricity in response to the rotation of the drive shaft of the vehicle, converts the output voltage (AC voltage) of the generator into a DC voltage of a predetermined level, and charges the battery power supply 1 as regenerative energy. To do. Further, when the vehicle control unit 60, which will be described later, executes control for an electric leakage state, the charger 13 stops the charging operation in response to a command from the vehicle control unit 60.

バッテリ電源1およびその周辺部の正側電源ラインPと負側電源ラインNを含むバッテリ部、モータ駆動部10、DC/DCコンバータ12、充電器13などにより、いわゆる高電圧回路が形成されている。この高電圧回路は、感電防止のため、車体のアース(シャシー)Gから離間して保持されることにより、あるいは絶縁物を介して保持されることにより、アースGから絶縁されている。この絶縁により、高電圧回路とアースGとの間に絶縁抵抗が存在し、その絶縁抵抗の抵抗値Rは通常は無限大の値となる。 A so-called high voltage circuit is formed by a battery unit including a positive power supply line P and a negative power supply line N of the battery power supply 1 and its peripheral portion, a motor drive unit 10, a DC / DC converter 12, a charger 13, and the like. .. This high-voltage circuit is insulated from the ground G by being held away from the ground (chassis) G of the vehicle body or by being held via an insulator in order to prevent electric shock. Due to this insulation, an insulating resistor exists between the high voltage circuit and the ground G, and the resistance value R of the insulating resistor is usually an infinite value.

高電圧回路に対しては、このような絶縁処置に加え、水や塵埃の浸入などを原因とする漏電(絶縁の失陥ともいう)の可能性についても十分に配慮する必要がある。仮に、高電圧回路に漏電が生じた場合には、高電圧回路とアースGとの間の絶縁抵抗の抵抗値Rが低下する。例えば、負側電源ラインNに漏電が生じた場合、図1に破線で示すように、負側電源ラインNとアースGとの間の絶縁抵抗100の抵抗値Rが低下する。 For high-voltage circuits, in addition to such insulation measures, it is necessary to give due consideration to the possibility of electric leakage (also called insulation failure) caused by the ingress of water or dust. If an electric leakage occurs in the high-voltage circuit, the resistance value R of the insulation resistance between the high-voltage circuit and the ground G decreases. For example, when an electric leakage occurs in the negative power supply line N, the resistance value R of the insulation resistance 100 between the negative power supply line N and the ground G decreases as shown by the broken line in FIG.

一方、バッテリ電源1の近傍に、バッテリ管理ユニットいわゆるBMU(Battery Management Unit)20が配置されている。BMU20は、主制御部21、絶縁抵抗検出部(絶縁抵抗検出手段)30、電位差測定部(電位差測定手段)40、漏電判定部50、メモリ51を含む。 On the other hand, a battery management unit, so-called BMU (Battery Management Unit) 20, is arranged in the vicinity of the battery power supply 1. The BMU 20 includes a main control unit 21, an insulation resistance detection unit (insulation resistance detection means) 30, a potential difference measurement unit (potentiometric titration measurement means) 40, an earth leakage determination unit 50, and a memory 51.

主制御部21は、車両の走行を制御する車両制御部60からの指令に応じてバッテリ電源1内の正側接点5および負側接点6を開閉制御するとともに、組電池2a〜2n内のそれぞれ電圧測定部4で測定される各セル電圧Vcellおよび各組電池電圧Vmを監視し、さらに組電池2a〜2nの温度を温度センサで監視し、これら監視結果が異常の場合にバッテリ電源1内の正側接点5および負側接点6を車両制御部60からの指令にかかわらず強制的に開く保護制御を実行する。また、主制御部21は、漏電判定部50の判定結果を車両制御部60に通知する。 The main control unit 21 controls the opening and closing of the positive contact 5 and the negative contact 6 in the battery power supply 1 in response to a command from the vehicle control unit 60 that controls the running of the vehicle, and controls the opening and closing of the positive contact 5 and the negative contact 6 in the assembled batteries 2a to 2n, respectively. Each cell voltage Vcell and each assembled battery voltage Vm measured by the voltage measuring unit 4 are monitored, and the temperatures of the assembled batteries 2a to 2n are monitored by a temperature sensor. If these monitoring results are abnormal, the battery power supply 1 is used. The protection control for forcibly opening the positive contact 5 and the negative contact 6 regardless of the command from the vehicle control unit 60 is executed. Further, the main control unit 21 notifies the vehicle control unit 60 of the determination result of the leakage determination unit 50.

絶縁抵抗検出部30は、一定周期の交流電圧Vcを出力する交流電源31、この交流電源31の一端と負側電源ラインNとの間に配線接続された抵抗器32および絶縁用カップリングコンデンサ33の直列回路、この抵抗器32および絶縁用カップリングコンデンサ33の相互接続点とアースGとの間に生じる電圧V1を検出する電圧検出部34、この電圧検出部の検出電圧V1に基づいて高圧回路とアースGとの間の絶縁抵抗の抵抗値Rを算出する演算部35を含む。交流電源31の他端はアースGに接続されている。演算部35は、算出した抵抗値Rを当該絶縁抵抗検出部30の検出結果として漏電判定部50に通知する。 The insulation resistance detection unit 30 includes an AC power supply 31 that outputs an AC voltage Vc at a fixed cycle, a resistor 32 that is wired and connected between one end of the AC power supply 31 and the negative power supply line N, and an insulating coupling capacitor 33. , A voltage detection unit 34 that detects the voltage V1 generated between the interconnection point of the resistor 32 and the insulating coupling capacitor 33 and the ground G, and a high voltage circuit based on the detection voltage V1 of this voltage detection unit. A calculation unit 35 for calculating the resistance value R of the insulation resistance between the ground G and the ground G is included. The other end of the AC power supply 31 is connected to ground G. The calculation unit 35 notifies the leakage determination unit 50 of the calculated resistance value R as the detection result of the insulation resistance detection unit 30.

電圧検出部34で検出される電圧V1は、交流電圧Vc、抵抗器32の抵抗値Ra、絶縁抵抗の抵抗値Rを用いて下式で表わされる。
V1=Vc×R/(Ra+R)
高電圧回路に漏電がない場合、高電圧回路とアースGとの間の絶縁抵抗の抵抗値Rは無限大の状態にあって抵抗器32の抵抗値Raに比べはるかに大きい。このときに電圧検出部34で検出される電圧V1は、交流電源31の電圧Vcと同じ値になる(V1=Vc)。
The voltage V1 detected by the voltage detection unit 34 is represented by the following equation using the AC voltage Vc, the resistance value Ra of the resistor 32, and the resistance value R of the insulation resistance.
V1 = Vc × R / (Ra + R)
When there is no electric leakage in the high-voltage circuit, the resistance value R of the insulation resistance between the high-voltage circuit and the ground G is in an infinite state and is much larger than the resistance value Ra of the resistor 32. At this time, the voltage V1 detected by the voltage detection unit 34 becomes the same value as the voltage Vc of the AC power supply 31 (V1 = Vc).

高電圧回路に水や塵埃などが浸入し、その影響で高電圧回路に漏電が生じた場合には、その漏電部位とアースGとの間の絶縁抵抗の抵抗値Rが低下する。このときに電圧検出部34で検出される電圧V1は、抵抗器32による電圧降下分だけ交流電源31の電圧Vcより低い値となる(V1<Vc)。 When water, dust, or the like infiltrates the high-voltage circuit and an electric leakage occurs in the high-voltage circuit due to the infiltration, the resistance value R of the insulation resistance between the leakage portion and the ground G decreases. At this time, the voltage V1 detected by the voltage detection unit 34 becomes a value lower than the voltage Vc of the AC power supply 31 by the amount of the voltage drop due to the resistor 32 (V1 <Vc).

演算部35は、交流電源31の電圧Vcおよび抵抗器32の抵抗値Raを既知のデータとして内部メモリに保持しており、これら既知のデータ(Vc,Ra)および電圧検出部34の検出電圧V1を上式に当てはめることにより、漏電部位とアースGとの間の絶縁抵抗の抵抗値Rを逆算して求める。 The calculation unit 35 holds the voltage Vc of the AC power supply 31 and the resistance value Ra of the resistor 32 as known data in the internal memory, and these known data (Vc, Ra) and the detection voltage V1 of the voltage detection unit 34. Is calculated by back-calculating the resistance value R of the insulation resistance between the leakage site and the ground G by applying the above equation.

電位差測定部40は、負側電源ラインNに一端が配線接続されたスイッチ(リレー接点)41、およびこのスイッチ41の他端とアースGとの間に接続された電圧計42を含み、スイッチ41のオンにより、バッテリ部である負側電源ラインNの電位とアースGの電位との差V2を、漏電部位を判別するための判別要素として電圧計42で測定する。スイッチ41は、後述の漏電判定部50からの指令に応じて作動するもので、漏電判定部50の判定結果が漏電なしの場合にオフし、漏電判定部50の判定結果が漏電ありで且つ前記車両の走行が停止したときにオンする。 The potential difference measuring unit 40 includes a switch (relay contact) 41 having one end connected to the negative power supply line N by wiring, and a voltmeter 42 connected between the other end of the switch 41 and the ground G, and the switch 41. When is turned on, the difference V2 between the potential of the negative power supply line N, which is the battery unit, and the potential of the ground G is measured by the voltmeter 42 as a discriminating element for discriminating the leakage portion. The switch 41 operates in response to a command from the leakage determination unit 50, which will be described later, and is turned off when the determination result of the leakage determination unit 50 is no leakage, and the determination result of the leakage determination unit 50 is leakage and the above. Turns on when the vehicle stops running.

漏電判定部50は、次の漏電判定手段、漏電部位判別手段、および記憶手段を含む。
漏電判定手段は、高電圧回路(バッテリ部)における漏電の有無を絶縁抵抗検出部30で検出される抵抗値Rに応じて判定する。具体的には、漏電判定手段は、抵抗値Rと予め定めた設定値Rxとを比較し、抵抗値Rが設定値Rx以上の場合は高電圧回路に漏電なしと判定し、抵抗値Rが設定値Rx未満の場合に高電圧回路に漏電ありと判定し、これら判定結果を主制御部21に通知する。
The earth leakage determination unit 50 includes the following earth leakage determination means, an earth leakage site determination means, and a storage means.
The electric leakage determining means determines the presence or absence of electric leakage in the high voltage circuit (battery unit) according to the resistance value R detected by the insulating resistance detecting unit 30. Specifically, the leakage determination means compares the resistance value R with the predetermined set value Rx, and if the resistance value R is equal to or greater than the set value Rx, determines that there is no leakage in the high voltage circuit, and the resistance value R is If it is less than the set value Rx, it is determined that there is an electric leakage in the high voltage circuit, and these determination results are notified to the main control unit 21.

上記漏電部位判別手段は、電位差測定部40が電位差V2を測定したときの各電圧測定部4の測定結果と電位差測定部40が測定した電位差V2に基づき漏電部位を判別する。具体的には、漏電部位判別手段は、バッテリ電源1内の各電圧測定部4でそれぞれ算出される平均値からバッテリ電源1内の全てのセル電圧Vcellの平均値Vcell´を求め、この平均値Vcell´で電位差測定部40で測定される電位差V2を除算し、その除算結果(=V2/Vcell´)を漏電部位が組電池3a〜3n内の各電池セルのいずれであるかの判別要素とする。 The earth leakage part determination means discriminates an earth leakage part based on the measurement result of each voltage measurement unit 4 when the potential difference measurement unit 40 measures the potential difference V2 and the potential difference V2 measured by the potential difference measurement unit 40. Specifically, the leakage site determining means obtains the average value Vcell'of all the cell voltages Vcell in the battery power supply 1 from the average value calculated by each voltage measuring unit 4 in the battery power supply 1, and this average value. The potential difference V2 measured by the potential difference measuring unit 40 is divided by Vcell', and the division result (= V2 / Vcell') is used as an element for determining which of the battery cells in the assembled batteries 3a to 3n is the leakage site. To do.

上記記憶手段は、電位差測定部40で測定される電位差V2を、漏電部位が正側電源ラインPであるか、負側電源ラインNであるか、組電池2a〜2nであるかの判別要素としてメモリ51に記憶する。さらに、上記記憶手段は、上記漏電部位判別手段の除算結果(=V2/Vcell´)を、漏電部位が組電池2a〜2n内の全ての電池セル3a〜3n,3a〜3n,…のうち何番目の電池セルであるかの判別要素としてメモリ51に記憶する。メモリ51は、後述のイグニッションスイッチ61のオフによる運転停止にかかわらず、記憶内容を保持する。 The storage means uses the potential difference V2 measured by the potential difference measuring unit 40 as a discriminating element as to whether the leakage portion is the positive power supply line P, the negative power supply line N, or the assembled batteries 2a to 2n. It is stored in the memory 51. Further, the storage means obtains the division result (= V2 / Vcell') of the leakage portion determination means among all the battery cells 3a to 3n, 3a to 3n, ... The leakage portion is in the assembled batteries 2a to 2n. It is stored in the memory 51 as a discriminating element as to whether it is the third battery cell. The memory 51 retains the stored contents regardless of the operation stop due to the ignition switch 61 being turned off, which will be described later.

車両制御部60には、車両の運転開始と運転停止を運転者が指示するためのイグニッションスイッチ61、運転者によるアクセル操作の操作量をアクセル開度として検知するアクセル開度センサ62、車両の走行速度を検知する車速センサ63、高電圧回路の漏電等の異常を報知するための警告ランプ(発光ダイオード)64が接続されている。 The vehicle control unit 60 includes an ignition switch 61 for instructing the driver to start and stop driving the vehicle, an accelerator opening sensor 62 for detecting the amount of operation of the accelerator operation by the driver as the accelerator opening, and a vehicle running. A vehicle speed sensor 63 for detecting the speed and a warning lamp (light emitting diode) 64 for notifying an abnormality such as leakage of a high voltage circuit are connected.

車両制御部60は、主要な機能として次の第1制御手段および第2制御手段を含む。
第1制御手段は、イグニッションスイッチ61の操作、アクセル開度センサ62の検知開度、車速センサ63の検知車速などに応じて、バッテリ電源1における正側接点5および負側接点6の開閉をBMU20の主制御部21を介して制御するとともに、モータ駆動部10の出力および充電器13の動作を制御する。
The vehicle control unit 60 includes the following first control means and second control means as main functions.
The first control means opens and closes the positive contact 5 and the negative contact 6 in the battery power supply 1 according to the operation of the ignition switch 61, the detection opening of the accelerator opening sensor 62, the detected vehicle speed of the vehicle speed sensor 63, and the like. It controls via the main control unit 21 of the above, and also controls the output of the motor drive unit 10 and the operation of the charger 13.

第2制御手段は、主制御部21から漏電ありの通知を受けた場合に、漏電ありの旨を警告ランプ64の点灯(オン)により報知するとともに、漏電状態用の制御として例えば車両の走行能力を制限する。走行能力の制限とは、モータ駆動部10の出力を制限して、車両の走行速度を一定以下に抑える制御のことである。この警告ランプ64の点灯および走行能力の制限により、車両の運転者は、運転中の車両に何らかの異常が生じていることを視覚と運転感覚の両方で察知する。 When the main control unit 21 notifies that there is an electric leakage, the second control means notifies that there is an electric leakage by turning on the warning lamp 64, and as a control for the electric leakage state, for example, the traveling ability of the vehicle. To limit. The limitation of the traveling ability is a control that limits the output of the motor drive unit 10 to keep the traveling speed of the vehicle below a certain level. Due to the lighting of the warning lamp 64 and the limitation of the driving ability, the driver of the vehicle can visually and drivingly detect that some abnormality has occurred in the driving vehicle.

上記絶縁抵抗検出部30、電位差測定部40、漏電判定部50、主制御部21、および車両制御部60の第2制御手段などにより、本実施形態の漏電検出装置が構成されている。 The leakage detection device of the present embodiment is configured by the insulation resistance detection unit 30, the potential difference measurement unit 40, the leakage determination unit 50, the main control unit 21, the second control means of the vehicle control unit 60, and the like.

つぎに、漏電判定部50が実行する制御を図2のフローチャートを参照しながら説明する。
漏電判定部50は、絶縁抵抗検出部30で検出される抵抗値Rと設定値Rxとを比較する(ステップS1)。抵抗値Rが設定値Rx以上の場合(ステップS1のNO)、漏電判定部50は、漏電なしと判定し(ステップS2)、最初のステップS1に戻る。
Next, the control executed by the leakage determination unit 50 will be described with reference to the flowchart of FIG.
The leakage determination unit 50 compares the resistance value R detected by the insulation resistance detection unit 30 with the set value Rx (step S1). When the resistance value R is equal to or greater than the set value Rx (NO in step S1), the leakage determination unit 50 determines that there is no leakage (step S2), and returns to the first step S1.

抵抗値Rが設定値Rx未満の場合(ステップS1のYES)、漏電判定部50は、漏電ありと判定する(ステップS3)。この判定に伴い、漏電判定部50は、警告ランプ64を点灯(オン)するとともに(ステップS4)、漏電状態用の制御として、主制御部21および車両制御部60を介して車両の走行能力を制限するとともに充電器13の充電を禁止する(ステップS5)。そして、漏電判定部50は、車両の走行停止(停車)を車両制御部60を介して監視する(ステップS6)。 When the resistance value R is less than the set value Rx (YES in step S1), the electric leakage determination unit 50 determines that there is an electric leakage (step S3). Along with this determination, the earth leakage determination unit 50 lights (turns on) the warning lamp 64 (step S4), and controls the running ability of the vehicle via the main control unit 21 and the vehicle control unit 60 as control for the earth leakage state. It limits and prohibits charging of the charger 13 (step S5). Then, the electric leakage determination unit 50 monitors the running stop (stop) of the vehicle via the vehicle control unit 60 (step S6).

車両の運転者は、警告ランプ64が点灯したことで、異常の発生を視覚的に察知するとともに、走行能力が制限されたことで、車両に異常が生じていることを運転感覚的にも察知する。この察知に伴い、運転者は、車両を近くの路肩や駐車場等の安全な場所に移動して停止(停車)する。 The driver of the vehicle visually detects the occurrence of an abnormality by turning on the warning lamp 64, and also senses that an abnormality has occurred in the vehicle due to the limitation of the driving ability. To do. With this detection, the driver moves the vehicle to a nearby safe place such as a shoulder or a parking lot and stops (stops).

車両が停止したとき(ステップS6のYES)、漏電判定部50は、電位差測定部40のスイッチ41をオンする(ステップS7)。電位差測定部40は、スイッチ41のオンにより動作し、負側電源ラインNの電位とアースGの電位との差V2を測定する。 When the vehicle stops (YES in step S6), the earth leakage determination unit 50 turns on the switch 41 of the potentiometric titration unit 40 (step S7). The potential difference measuring unit 40 operates by turning on the switch 41, and measures the difference V2 between the potential of the negative power supply line N and the potential of the earth G.

続いて、漏電判定部50は、バッテリ電源1内の各電圧測定部4でそれぞれ算出される平均値から全てのセル電圧Vcellの平均値Vcell´を求め、電位差測定部40で測定される電位差V2を上記求めた平均値Vcell´で除算する(ステップS8)。 Subsequently, the leakage determination unit 50 obtains the average value Vcell'of all the cell voltage Vcells from the average value calculated by each voltage measuring unit 4 in the battery power supply 1, and the potential difference V2 measured by the potential difference measuring unit 40. Is divided by the above-obtained average value Vcell'(step S8).

そして、漏電判定部50は、電位差測定部40で測定される電位差V2を、漏電部位(抵抗値Rが低下した部位)が正側電源ラインPであるか、負側電源ラインNであるか、組電池2a〜2nであるかの判別要素としてメモリ51に記憶するとともに、上記除算結果(=V2/Vcell´)を、漏電部位が組電池2a〜2n内の全ての電池セル3a〜3n,3a〜3n,…のうち何番目の電池セルであるかの判別要素としてメモリ51に記憶する(ステップS9)。 Then, the leakage determination unit 50 determines whether the leakage portion (the portion where the resistance value R is lowered) is the positive power supply line P or the negative power supply line N for the potential difference V2 measured by the potential difference measurement unit 40. The memory 51 is stored as a discriminating factor as to whether or not the assembled batteries are 2a to 2n, and the above division result (= V2 / Vcell') is stored in all the battery cells 3a to 3n, 3a whose leakage sites are in the assembled batteries 2a to 2n. The battery cell is stored in the memory 51 as a discriminating factor as to which battery cell is of ~ 3n, ... (Step S9).

仮に、漏電部位が正側電源ラインPである場合、正側電源ラインPの電位と負側電源ラインNの電位との差分(=Vb)が絶縁抵抗を介して電位差測定部40の電圧計42に加わる。この場合、電位差測定部40で測定される電位差V2は、バッテリ電源1の電圧Vbと同じ値となる(V2=Vb)。 If the leakage site is the positive power supply line P, the difference (= Vb) between the potential of the positive power supply line P and the potential of the negative power supply line N is the voltmeter 42 of the potential difference measuring unit 40 via the insulation resistor. Join in. In this case, the potential difference V2 measured by the potential difference measuring unit 40 has the same value as the voltage Vb of the battery power supply 1 (V2 = Vb).

漏電部位が負側電源ラインNである場合、負側電源ラインNの電位と同じ負側電源ラインNの電位との差分(=零)が絶縁抵抗(絶縁抵抗100)を介して電位差測定部40の電圧計42に加わる。この場合、電位差測定部40で測定される電位差V2は、当然ながら零となる(V2=零)。 When the leakage site is the negative power supply line N, the difference (= zero) between the potential of the negative power supply line N and the potential of the same negative power supply line N is the potential difference measuring unit 40 via the insulation resistance (insulation resistance 100). Joins the voltmeter 42 of. In this case, the potential difference V2 measured by the potential difference measuring unit 40 naturally becomes zero (V2 = zero).

漏電部位が組電池2a〜2n内のいずれか1つの電池セルである場合、その電池セルの位置の電位と負側電源ラインNの電位との差分が絶縁抵抗を介して電位差測定部40の電圧計42に加わる。この場合、電位差測定部40で測定される電位差V2は、バッテリ電源1の電圧Vbより低くて零より高い値となる(Vb>V2>零)。具体的には、漏電部位が組電池2a〜2n内の全ての電池セル3a〜3n,3a〜3n,…のうち真ん中位置の1つの電池セルであれば、その真ん中位置の電池セルの位置の電位と負側電源ラインNの電位との差分が絶縁抵抗を介して電位差測定部40の電圧計42に加わる。この場合、電位差測定部40で測定される電位差V2は、バッテリ電源1の電圧Vbの半分の値となる(V2=Vb/2)。 When the leakage site is any one of the battery cells in the assembled batteries 2a to 2n, the difference between the potential at the position of the battery cell and the potential of the negative power supply line N is the voltage of the potential difference measuring unit 40 via the insulation resistance. Join a total of 42. In this case, the potential difference V2 measured by the potential difference measuring unit 40 is lower than the voltage Vb of the battery power supply 1 and higher than zero (Vb> V2> zero). Specifically, if the leakage site is one battery cell in the middle position of all the battery cells 3a to 3n, 3a to 3n, ... In the assembled batteries 2a to 2n, the position of the battery cell in the middle position is The difference between the potential and the potential of the negative power supply line N is applied to the voltmeter 42 of the potential difference measuring unit 40 via the insulation resistor. In this case, the potential difference V2 measured by the potential difference measuring unit 40 is half the value of the voltage Vb of the battery power supply 1 (V2 = Vb / 2).

上記ステップ9の記憶処理に続き、漏電判定部50は、電位差測定部40のスイッチ41をオフする(ステップS10)。このスイッチ41のオフにより、電位差測定部40の動作が停止する。これで判定処理の終了となる。 Following the storage process in step 9, the earth leakage determination unit 50 turns off the switch 41 of the potential difference measurement unit 40 (step S10). When the switch 41 is turned off, the operation of the potentiometric titration unit 40 is stopped. This is the end of the determination process.

電位差測定部40および漏電判定部50は、車両の走行が停止した時点で直ちに動作および処理を開始し、イグニッションスイッチ61が運転者によりオフ操作されるまでの時間が短くても、その時間内に十分に動作および処理を完了する能力を持つ。 The potentiometric titration unit 40 and the earth leakage determination unit 50 start operation and processing immediately when the vehicle stops running, and even if the time until the ignition switch 61 is turned off by the driver is short, within that time. Has sufficient ability to complete operation and processing.

その後、車両が販売店やサービス工場等に持ち込まれた段階で、作業員は、パーソナルコンピュータ等の端末をBMU20の主制御部21または車両制御部60に接続し、メモリ51に記憶されている判別要素(電位差V2および除算結果(=V2/Vcell´))を同端末に読込む。端末に読込まれた判別要素は同端末のディスプレイ上に表示される。 After that, when the vehicle is brought to a store, a service factory, or the like, the worker connects a terminal such as a personal computer to the main control unit 21 or the vehicle control unit 60 of the BMU 20, and determines that it is stored in the memory 51. The element (potential difference V2 and division result (= V2 / Vcell')) is read into the terminal. The discriminant element read into the terminal is displayed on the display of the terminal.

作業員は、端末のディスプレイに表示される電位差V2の大きさにより、漏電部位が正側電源ラインPであるか、負側電源ラインNであるか、組電池2a〜2nであるかを判別する。また、端末のディスプレイに表示される除算結果(=V2/Vcell´)の大きさに応じて、漏電部位が組電池2a〜2n内の全ての電池セル3a〜3n,3a〜3n,…のうち何番目の電池セルであるかを判別する。漏電部位が何番目の電池セルであるかは、負側電源ラインNから数えた位置となる。 The worker determines whether the leakage portion is the positive power supply line P, the negative power supply line N, or the assembled batteries 2a to 2n based on the magnitude of the potential difference V2 displayed on the display of the terminal. .. Further, depending on the size of the division result (= V2 / Vcell') displayed on the display of the terminal, the leakage site is among all the battery cells 3a to 3n, 3a to 3n, ... In the assembled batteries 2a to 2n. Determine which battery cell it is. The number of the battery cell where the leakage portion is located is the position counted from the negative power supply line N.

したがって、作業員は、手間と時間のかかる作業を要することなく、高電圧回路の漏電の有無を認識できるとともに、漏電ありの場合はその漏電部位がどこであるかについても的確かつ迅速に認識することができる。 Therefore, the worker can recognize the presence or absence of an electric leakage in the high-voltage circuit without requiring labor and time-consuming work, and if there is an electric leakage, accurately and quickly recognize the location of the electric leakage site. Can be done.

[2]第2実施形態
絶縁抵抗の抵抗値Rと電圧計42の内部抵抗の抵抗値rとの分圧比によっては、抵抗値Rでの電圧降下の影響を無視できない場合がある。
[2] Second Embodiment
Depending on the voltage division ratio between the resistance value R of the insulation resistance and the resistance value r of the internal resistance of the voltmeter 42, the effect of the voltage drop at the resistance value R may not be negligible.

例えば、漏電部位が正側電源ラインPである場合、正側電源ラインPの電位と負側電源ラインNの電位との差分(=Vb)が漏電部位の絶縁抵抗を介して電位差測定部40の電圧計42に加わった状態となる。このとき、絶縁抵抗の抵抗値Rが電圧計42の内部抵抗の抵抗値rに対して無視できない大きさであれば、電位差測定部40で測定される電位差V2は下式で示すように抵抗値Rでの電圧降下分だけ本来知りたい値から乖離する。つまり、電位差V2がバッテリ電源1の電圧Vbと同じ値とならない。
V2=Vb×r/(R+r)≠Vb
漏電部位が正側電源ラインPである場合には、正側電源ラインPの電位と負側電源ラインNの電位との差分(=Vb)が漏電部位の絶縁抵抗(絶縁抵抗100)を介して電位差測定部40の電圧計42に加わる。このとき、絶縁抵抗の抵抗値Rが電圧計42の内部抵抗の抵抗値rに対して無視できない大きさであれば、測定電位差V2は抵抗値Rでの電圧降下分だけ本来知りたい値から乖離する。つまり、電位差V2がVbとならない(V2≠Vb)。
For example, when the leakage portion is the positive power supply line P, the difference (= Vb) between the potential of the positive power supply line P and the potential of the negative power supply line N is the potential difference measuring unit 40 via the insulation resistance of the leakage portion. It is in a state of being added to the voltmeter 42. At this time, if the resistance value R of the insulation resistance is not negligible with respect to the resistance value r of the internal resistance of the voltmeter 42, the potential difference V2 measured by the potential difference measuring unit 40 is the resistance value as shown in the following equation. The voltage drop at R deviates from the originally desired value. That is, the potential difference V2 does not become the same value as the voltage Vb of the battery power supply 1.
V2 = Vb × r / (R + r) ≠ Vb
When the leakage portion is the positive power supply line P, the difference (= Vb) between the potential of the positive power supply line P and the potential of the negative power supply line N passes through the insulation resistance (insulation resistance 100) of the leakage portion. It participates in the voltmeter 42 of the potential difference measuring unit 40. At this time, if the resistance value R of the insulation resistance is a size that cannot be ignored with respect to the resistance value r of the internal resistance of the voltmeter 42, the measured potential difference V2 deviates from the originally desired value by the voltage drop at the resistance value R. To do. That is, the potential difference V2 does not become Vb (V2 ≠ Vb).

漏電部位が組電池2a〜2n内の全ての電池セル3a〜3n,3a〜3n,…のうち真ん中位置の1つの電池セルである場合には、その電池セルの位置の電位と負側電源ラインNの電位との差分が漏電部位の絶縁抵抗を介して電位差測定部40の電圧計42に加わる。このとき、絶縁抵抗の抵抗値Rが電圧計42の内部抵抗の抵抗値rに対して無視できない大きさであれば、電位差測定部40で測定される電位差V2は抵抗値Rでの電圧降下分だけ本来知りたい値から乖離する。つまり、電位差V2がバッテリ電源1の電圧Vbの半分の値とならない(V2≠Vb/2)。 If the leakage site is one of all the battery cells 3a to 3n, 3a to 3n, ... In the assembled batteries 2a to 2n, the potential of the battery cell position and the negative power supply line. The difference from the potential of N is applied to the voltmeter 42 of the potential difference measuring unit 40 via the insulation resistance of the leakage portion. At this time, if the resistance value R of the insulation resistance is not negligible with respect to the resistance value r of the internal resistance of the voltmeter 42, the potential difference V2 measured by the potential difference measuring unit 40 is the voltage drop at the resistance value R. Only deviates from the value you originally wanted to know. That is, the potential difference V2 is not half the value of the voltage Vb of the battery power supply 1 (V2 ≠ Vb / 2).

なお、電池セル3a〜3nの内部抵抗や正側電源ラインP,負側電源ラインN等の配線抵抗については、それぞれmΩオーダの抵抗値なので無視できる。 The internal resistance of the battery cells 3a to 3n and the wiring resistance of the positive power supply line P, the negative power supply line N, and the like are negligible because they are resistance values on the order of mΩ.

漏電部位が負側電源ラインNである場合、抵抗値Rの大きさによらず電位差V2は常に零となるので漏電部位の判別に影響はない。ただし、漏電部位が正側電源ラインPや組電池2a〜2n内のいずれかの1つの電池セルである場合(V2≠零となる場合)、抵抗値Rでの電圧降下分のずれが電位差V2に含まれていると、漏電部位が何番目の電池セルであるかを正確に判別できなくなる可能性がある。 When the leakage portion is the negative power supply line N, the potential difference V2 is always zero regardless of the magnitude of the resistance value R, so that the determination of the leakage portion is not affected. However, when the leakage site is the positive power supply line P or any one battery cell in the assembled batteries 2a to 2n (when V2 ≠ zero), the deviation of the voltage drop at the resistance value R is the potential difference V2. If it is included in, it may not be possible to accurately determine which battery cell the leakage site is.

そこで、本発明の第2実施形態では、絶縁抵抗の抵抗値Rが絶縁抵抗検出部30で検出される点、および電圧計25の内部抵抗の抵抗値rが予め把握可能である点に着目し、漏電判定部50において、電位差測定部40で測定される電位差V2、絶縁抵抗検出部30で検出される抵抗値R、予め記憶している抵抗値rを用いる演算により、電位差測定部40により測定された電位差V2を補正することで漏電部位とアースGとの間の実際の電位差V2xを算出し、算出した電位差V2xを漏電部位の判別要素としてメモリ51に記憶するとともに、同算出した電位差V2xをセル電圧Vcellの平均値Vcell´で除算し、その除算結果(=V2x/Vcell´)を漏電部位が何番目の電池セルであるかの判別要素としてメモリ51に記憶する。
すなわち、漏電判定部50の漏電部位判別手段は、バッテリ電源1内の各電圧測定部4で測定される全てのセル電圧Vcellの平均値Vcell´を算出し、かつ電位差測定部40で測定される電位差V2、絶縁抵抗検出部30で検出される抵抗値R、予め記憶している抵抗値rに基づく演算により、漏電部位とアースGとの間の実際の電位差V2xを算出し、この電位差V2xを上記算出した平均値Vcell´で除算することにより、漏電部位が組電池2a〜2n内の各電池セルのいずれであるかの判別要素を求める、
漏電判定部50の記憶手段は、漏電部位判別手段で算出した電位差V2xを、漏電部位が正側電源ラインPであるか、負側電源ラインNであるか、組電池2a〜2nであるかの判別要素としてメモリ51に記憶する。さらに、漏電判定部50の記憶手段は、上記漏電部位判別手段の除算結果(=V2x/Vcell´)を、漏電部位が組電池2a〜2n内の全ての電池セル3a〜3n,3a〜3n,…のうち何番目の電池セルであるかの判別要素としてメモリ51に記憶する。
他の構成は第1実施形態と同じである。
Therefore, in the second embodiment of the present invention, attention is paid to the point that the resistance value R of the insulation resistance is detected by the insulation resistance detection unit 30 and the point that the resistance value r of the internal resistance of the voltmeter 25 can be grasped in advance. , The leakage determination unit 50 measures the potential difference V2 measured by the potential difference measuring unit 40, the resistance value R detected by the insulating resistance detecting unit 30, and the resistance value r stored in advance by the potential difference measuring unit 40. By correcting the generated potential difference V2, the actual potential difference V2x between the leakage portion and the earth G is calculated, and the calculated potential difference V2x is stored in the memory 51 as a discriminating element of the leakage portion, and the calculated potential difference V2x is stored. Divide by the average value Vcell'of the cell voltage Vcell, and store the division result (= V2x / Vcell') in the memory 51 as a discriminating factor as to which battery cell the leakage site is.
That is, the earth leakage part determination means of the earth leakage determination unit 50 calculates the average value Vcell'of all the cell voltage Vcells measured by each voltage measurement unit 4 in the battery power supply 1, and is measured by the potential difference measurement unit 40. The actual potential difference V2x between the leakage site and the earth G is calculated by the calculation based on the potential difference V2, the resistance value R detected by the insulation resistance detection unit 30, and the resistance value r stored in advance, and this potential difference V2x is calculated. By dividing by the average value Vcell'calculated above, a discriminating factor as to which of the battery cells in the assembled batteries 2a to 2n is the leakage site is obtained.
The storage means of the earth leakage determination unit 50 determines whether the electric leakage portion is the positive power supply line P, the negative power supply line N, or the assembled batteries 2a to 2n in the potential difference V2x calculated by the earth leakage portion determination means. It is stored in the memory 51 as a discriminating element. Further, the storage means of the earth leakage determination unit 50 outputs the division result (= V2x / Vcell') of the earth leakage part determination means to all the battery cells 3a to 3n, 3a to 3n in which the earth leakage part is in the assembled batteries 2a to 2n. The battery cell is stored in the memory 51 as a discriminating element as to which battery cell it is.
Other configurations are the same as in the first embodiment.

漏電判定部50が実行する制御を図3のフローチャートに示す。ステップS1〜S7の処理は第1実施形態の制御と同じなので、その説明は省略する。 The control executed by the leakage determination unit 50 is shown in the flowchart of FIG. Since the processing of steps S1 to S7 is the same as the control of the first embodiment, the description thereof will be omitted.

電位差測定部40で測定される電位差V2と、漏電部位とアースGとの間の実際の電位差V2xとの間には、下式の関係がある。
V2=V2x×r/(R+r)
漏電判定部50は、ステップS7でスイッチをオンした後、電位差測定部40で測定される電位差V2、絶縁抵抗検出部30で検出された抵抗値R、および既知のデータである抵抗値に基づく下式の演算により、漏電部位とアースGとの間の実際の電位差V2xを算出する(ステップS7a)。
V2x=V2×(R+r)/r
続いて、漏電判定部50は、バッテリ電源1内の各電圧測定部4で測定される全てのセル電圧Vcellの平均値Vcell´を算出し、上記算出した電位差V2xをその平均値Vcell´で除算する(ステップS8)。
There is the following relationship between the potential difference V2 measured by the potential difference measuring unit 40 and the actual potential difference V2x between the leakage site and the earth G.
V2 = V2xxr / (R + r)
After turning on the switch in step S7, the earth leakage determination unit 50 is based on the potential difference V2 measured by the potential difference measurement unit 40, the resistance value R detected by the insulation resistance detection unit 30, and the resistance value which is known data. The actual potential difference V2x between the leakage site and the earth G is calculated by the calculation of the equation (step S7a).
V2x = V2x (R + r) / r
Subsequently, the leakage determination unit 50 calculates the average value Vcell'of all the cell voltage Vcells measured by each voltage measurement unit 4 in the battery power supply 1, and divides the calculated potential difference V2x by the average value Vcell'. (Step S8).

そして、漏電判定部50は、上記算出した電位差V2xを、漏電部位(抵抗値Rが低下した部位)が正側電源ラインPであるか、負側電源ラインNであるか、組電池2a〜2nであるかの判別要素としてメモリ51に記憶するとともに、上記除算結果(=V2x/Vcell´)を、漏電部位が組電池2a〜2n内の全ての電池セル3a〜3n,3a〜3n,…のうち何番目の電池セルであるかの判別要素としてメモリ51に記憶する(ステップS9)。 Then, the leakage determination unit 50 determines whether the leakage portion (the portion where the resistance value R is lowered) is the positive power supply line P or the negative power supply line N, or the assembled batteries 2a to 2n, based on the calculated potential difference V2x. The above division result (= V2x / Vcell') is stored in the memory 51 as a discriminating factor as to whether or not the leakage is true, and the leakage portion of all the battery cells 3a to 3n, 3a to 3n, ... It is stored in the memory 51 as an element for determining which battery cell it is (step S9).

この記憶に続き、漏電判定部50は、電位差測定部40のスイッチ41をオフする(ステップS10)。このスイッチ41のオフにより、電位差測定部40の動作が停止する。判定処理の終了となる。 Following this memory, the earth leakage determination unit 50 turns off the switch 41 of the potential difference measurement unit 40 (step S10). When the switch 41 is turned off, the operation of the potentiometric titration unit 40 is stopped. The judgment process ends.

以上のように、絶縁抵抗による電圧降下の影響を含まない実際の電位差V2xを算出し、算出した電位差V2xおよび除算結果(=V2x/Vcell´)を漏電部位の判別要素として記憶することにより、抵抗値Rでの電圧降下があっても、それに影響を受けることなく、漏電部位が何番目の電池セルであるかをより正確に判別することができる。 As described above, the resistance is obtained by calculating the actual potential difference V2x that does not include the influence of the voltage drop due to the insulation resistance, and storing the calculated potential difference V2x and the division result (= V2x / Vcell') as the discrimination element of the leakage portion. Even if there is a voltage drop at the value R, it is possible to more accurately determine which battery cell the leakage site is, without being affected by it.

[3]変形例
(1)上記各実施形態では、電位差測定部40のスイッチ41の一端を負側電源ラインNに接続した場合を例に説明したが、電位差測定部40のスイッチ41の一端を正側電源ラインPに接続した場合でも、漏電の有無および漏電部位がどこであるかを的確に検出することができる。
[3] Modification example
(1) In each of the above embodiments, the case where one end of the switch 41 of the potential difference measuring unit 40 is connected to the negative power supply line N has been described as an example, but one end of the switch 41 of the potential difference measuring unit 40 is connected to the positive power supply line P. Even when connected to, it is possible to accurately detect the presence or absence of an electric leakage and where the electric leakage site is.

この場合、漏電部位が正側電源ラインPであれば、電位差測定部40で測定される電位差V2が零となる(V2=零)。漏電部位が負側電源ラインNであれば、電位差測定部40で測定される電位差V2がバッテリ電源1の電圧Vbと同じ値となる(V2=Vb)。漏電部位が組電池2a〜2nのいずれかの電池セルであれば、電位差測定部40で測定される測定電位差V2がバッテリ電源1の電圧Vbより低くて零より高い値となる(Vb>V2>零)。漏電部位が何番目の電池セルであるかは、正側電源ラインPから数えた位置となる。 In this case, if the leakage portion is the positive power supply line P, the potential difference V2 measured by the potential difference measuring unit 40 becomes zero (V2 = zero). If the leakage portion is the negative power supply line N, the potential difference V2 measured by the potential difference measuring unit 40 becomes the same value as the voltage Vb of the battery power supply 1 (V2 = Vb). If the leakage site is a battery cell of any of the assembled batteries 2a to 2n, the measured potential difference V2 measured by the potential difference measuring unit 40 is lower than the voltage Vb of the battery power supply 1 and higher than zero (Vb> V2>. zero). The number of the battery cell where the leakage portion is located is the position counted from the positive power supply line P.

(2)上記各実施形態では、漏電ありおよび車両の走行停止を条件に(ステップS6のYES)、電位差測定部40のスイッチ41をオン(電位差測定部40の動作を開始)する構成としたが、漏電あり、車両の走行停止、イグニッションスイッチ61のオフ操作の3つを条件に(ステップS6のYES)、電位差測定部40のスイッチ41をオンする構成としてもよい。 (2) In each of the above embodiments, the switch 41 of the potential difference measuring unit 40 is turned on (the operation of the potential difference measuring unit 40 is started) on the condition that there is an electric leakage and the vehicle is stopped (YES in step S6). The switch 41 of the potential difference measuring unit 40 may be turned on under the three conditions of leakage, stopping the running of the vehicle, and turning off the ignition switch 61 (YES in step S6).

イグニッションスイッチ61がオフ操作された時点でバッテリ電源1内の正側接点5および負側接点6が車両制御部60により開放されるので、バッテリ電源1の出力が遮断された状態で電位差測定部40の動作が始まる。 When the ignition switch 61 is turned off, the positive contact 5 and the negative contact 6 in the battery power supply 1 are opened by the vehicle control unit 60, so that the potential difference measuring unit 40 is in a state where the output of the battery power supply 1 is cut off. Starts working.

車両が停止しても、イグニッションスイッチ61がオンしている間は、バッテリ電源1からDC/DCコンバータ12を介して負荷への電力供給が続くので、バッテリ電源1の電圧Vbに変動が生じる可能性があるが、イグニッションスイッチ61のオフ操作が条件として加わることにより、バッテリ電源1の電圧Vbが安定した状態で電位差V2を測定することができる。これにより、漏電部位をより的確に検出することができる。 Even if the vehicle is stopped, as long as the ignition switch 61 is on, the power supply from the battery power supply 1 to the load continues via the DC / DC converter 12, so that the voltage Vb of the battery power supply 1 may fluctuate. However, by adding the off operation of the ignition switch 61 as a condition, the potential difference V2 can be measured in a state where the voltage Vb of the battery power supply 1 is stable. As a result, the leakage site can be detected more accurately.

(3)上記各実施形態では、電位差V2と除算結果(=V2/Vcell´)あるいは電位差V2xと除算結果(=V2x/Vcell´)を漏電部位の判別要素として記憶し、実際の判別を作業員の判断に委ねる構成としたが、判別要素に基づく漏電部位の判別を漏電判定部50で自動的に行い、その判別結果をメモリ51に記憶する構成としてもよい。 (3) In each of the above embodiments, the potential difference V2 and the division result (= V2 / Vcell') or the potential difference V2x and the division result (= V2x / Vcell') are stored as a discrimination element of the leakage portion, and the actual discrimination is performed by the worker. Although the configuration is left to the determination of the above, the leakage determination unit 50 may automatically determine the leakage portion based on the discrimination element, and the determination result may be stored in the memory 51.

作業員は、メモリ51に記憶されている判別結果を読出すだけで、漏電部位を直接的に容易に認識することができる。考える必要がない。経験の浅い作業員であっても、漏電部位を的確に知ることができる。 The worker can directly and easily recognize the leakage portion only by reading the determination result stored in the memory 51. You don't have to think about it. Even an inexperienced worker can accurately know the leakage site.

(4)上記各実施形態では、漏電部位の判別要素(V2/Vcell´あるいはV2x/Vcell´)として、電位差V2あるいはV2xを全てのセル電圧Vcellの平均値Vcell´で除算した結果を使用したが、バッテリ電源1の電圧Vbで電位差V2あるいはV2xを除算することでバッテリ電源1の電圧Vbに対する電位差V2あるいはV2xの割合を算出し(=V2/VbあるいはV2x/Vb)、この割合にバッテリ電源を構成する全セル数を積算することによっても漏電部位の判別要素を得ることができる。これにより、電池セル3a〜3nの個々の電圧Vcellを測定していないような車両に対しても、漏電部位の特定を行うことができる。 (4) In each of the above embodiments, the result of dividing the potential difference V2 or V2x by the average value Vcell'of all cell voltages Vcell is used as the discriminant element (V2 / Vcell'or V2x / Vcell') of the leakage site. , The ratio of the potential difference V2 or V2x to the voltage Vb of the battery power supply 1 is calculated by dividing the potential difference V2 or V2x by the voltage Vb of the battery power supply 1 (= V2 / Vb or V2x / Vb), and the battery power supply is divided into this ratio. By integrating the total number of constituent cells, it is possible to obtain a discriminating element of the leakage site. As a result, the leakage portion can be specified even for a vehicle in which the individual voltage V cells of the battery cells 3a to 3n are not measured.

(5)その他、上記実施形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 (5) In addition, the above-described embodiments and modifications are presented as examples, and are not intended to limit the scope of the invention. This novel embodiment and modification can be implemented in various other forms, and various omissions, rewrites, and changes can be made without departing from the gist of the invention. These embodiments and modifications are included in the gist of the invention as well as in the scope of the invention described in the claims and the equivalent scope thereof.

1…バッテリ電源(電池パック)、2a〜2n…組電池、3a〜3n…電池セル、P…正側電源ライン、N…負側電源ライン、5…正側接点、6…負側接点、10…モータ駆動部、11…モータ、12…DC/DCコンバータ、13…充電器、20…バッテリ管理ユニット(BMU),21…主制御部、30…絶縁抵抗検出部(検出手段)、31…交流電源、34…電圧検出部、40…電位差測定部(測定手段)、41…スイッチ、42…電圧計、50…漏電判定部、51…メモリ、60…車両制御部、61…イグニッションスイッチ 1 ... Battery power supply (battery pack), 2a to 2n ... Batteries, 3a to 3n ... Battery cell, P ... Positive power supply line, N ... Negative power supply line, 5 ... Positive side contact, 6 ... Negative side contact, 10 ... Motor drive unit, 11 ... Motor, 12 ... DC / DC converter, 13 ... Charger, 20 ... Battery management unit (BMU), 21 ... Main control unit, 30 ... Insulation resistance detection unit (detection means), 31 ... AC Power supply, 34 ... Voltage detection unit, 40 ... Potential difference measurement unit (measurement means), 41 ... Switch, 42 ... Voltage meter, 50 ... Leakage determination unit, 51 ... Memory, 60 ... Vehicle control unit, 61 ... Ignition switch

Claims (5)

直列接続された複数の電池セルで構成されたバッテリ電源を備えた車両の漏電検出装置であって、
前記バッテリ電源およびその周辺部を含むバッテリ部と前記車両のアースとの間の絶縁抵抗の抵抗値を検出する絶縁抵抗検出手段と、
前記バッテリ部における漏電の有無を前記絶縁抵抗検出手段の検出結果に応じて判定する漏電判定手段と、
前記複数の電池セルの合計値であるバッテリ電圧を測定するバッテリ電圧測定手段と、 前記漏電判定手段の判定結果が漏電ありの場合に、前記バッテリ部と前記アースとの間の電位差を測定する電位差測定手段と、
前記電位差測定手段が前記電位差を測定したときの前記バッテリ電圧測定手段の測定結果と前記電位差測定手段が測定した電位差に基づき漏電部位を判別する漏電部位判別手段と
を備え、
前記電位差測定手段は、前記バッテリ部と前記アースとの間の前記電位差を測定する電圧計を含んで構成され、
前記漏電部位判別手段は、前記絶縁抵抗検出手段の検出結果と、前記電圧計の内部抵抗の抵抗値に基づく演算により前記電位差測定手段の測定結果を補正し、前記補正した電位差測定手段の測定結果により、前記漏電部位が前記バッテリ電源内の前記各電池セルのいずれであるかを判別する、
ことを特徴とする漏電検出装置。
An earth leakage detection device for vehicles equipped with a battery power supply composed of a plurality of battery cells connected in series.
An insulation resistance detecting means for detecting the resistance value of the insulation resistance between the battery unit including the battery power supply and its peripheral portion and the ground of the vehicle, and
An electric leakage determining means for determining the presence or absence of electric leakage in the battery unit according to the detection result of the insulating resistance detecting means,
A potential difference between a battery voltage measuring means for measuring a battery voltage which is a total value of a plurality of battery cells and a potential difference for measuring a potential difference between the battery unit and the ground when the judgment result of the leakage determining means is leakage. Measuring means and
It is provided with a leakage site determining means for determining a leakage site based on the measurement result of the battery voltage measuring means when the potential difference measuring means measures the potential difference and the potential difference measured by the potential difference measuring means.
The potentiometric titration means includes a voltmeter for measuring the potentiometric titration between the battery unit and the ground.
The earth leakage portion determining means corrects the measurement result of the potential difference measuring means by calculation based on the detection result of the insulating resistance detecting means and the resistance value of the internal resistance of the voltmeter, and the measured result of the corrected potential difference measuring means. To determine which of the battery cells in the battery power source the leakage site is.
An earth leakage detection device characterized by this.
前記バッテリ電圧測定手段は、前記複数の電池セルの個々のセル電圧を測定するとともに、前記複数のセル電圧の平均値を算出し、
前記漏電部位判別手段は、前記複数のセル電圧の平均値で前記電位差測定手段の測定結果を除算することにより、前記漏電部位が前記バッテリ電源内の前記各電池セルのいずれであるかを判別する
ことを特徴とする請求項1に記載の漏電検出装置。
The battery voltage measuring means measures individual cell voltages of the plurality of battery cells and calculates an average value of the plurality of cell voltages.
The earth leakage part determination means determines which of the battery cells in the battery power source the earth leakage part is by dividing the measurement result of the potential difference measuring means by the average value of the plurality of cell voltages. The leakage detection device according to claim 1.
前記漏電部位判別手段は、前記電位差測定手段が前記電位差を測定したときの前記バッテリ電圧測定手段の測定結果で前記電位差測定手段の測定結果を除算することで前記バッテリ電圧に対する前記バッテリ部と前記アースとの間の電位差の割合を算出し、前記割合に前記バッテリ電源を構成する全セル数を積算することにより、前記漏電部位が前記バッテリ電源内の前記各電池セルのいずれであるかを判別する
ことを特徴とする請求項1に記載の漏電検出装置。
The leakage site determining means divides the measurement result of the potential difference measuring means by the measurement result of the battery voltage measuring means when the potential difference measuring means measures the potential difference, thereby dividing the measurement result of the potential difference measuring means with respect to the battery voltage, thereby causing the battery unit and the ground. By calculating the ratio of the potential difference between the two and the above ratio and integrating the total number of cells constituting the battery power supply into the ratio, it is determined which of the battery cells in the battery power supply the leakage portion is. The electric leakage detection device according to claim 1, wherein the leakage detection device is characterized.
前記電位差測定手段は、前記電圧計が前記バッテリ電源から導出されている正側電源ラインおよび負側電源ラインのいずれか一方と前記アースとの間にスイッチを介して接続されることにより構成され、前記スイッチは前記漏電判定手段の判定結果が漏電なしの場合にオフし漏電ありの場合にオンされ、前記スイッチのオン時、前記正側電源ラインおよび前記負側電源ラインのいずれか一方と前記アースとの間の電位差を前記漏電部位の判別要素として前記電圧計により測定する
ことを特徴とする請求項1からのいずれか1項に記載の漏電検出装置。
The potential difference measuring means is configured by connecting the voltmeter to the ground between either one of the positive power supply line and the negative power supply line derived from the battery power supply via a switch. The switch is turned off when the determination result of the leakage determination means is no leakage and turned on when there is leakage, and when the switch is turned on, either one of the positive power supply line and the negative power supply line and the ground are connected. The leakage detection device according to any one of claims 1 to 3 , wherein the potential difference between the two and the leakage portion is measured by the voltmeter as a discriminating element for the leakage portion.
前記電位差測定手段は、前記漏電判定手段の判定結果が漏電ありで且つ前記車両の走行が停止したときに前記電位差の測定を行う
ことを特徴とする請求項1からのいずれか1項に記載の漏電検出装置。
The potential difference measuring means according to any one of claims 1 to 4 , wherein the potential difference measuring means measures the potential difference when the determination result of the leakage determining means is leakage and the vehicle stops traveling. Leakage detector.
JP2016185595A 2016-09-23 2016-09-23 Leakage detector Active JP6772720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016185595A JP6772720B2 (en) 2016-09-23 2016-09-23 Leakage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016185595A JP6772720B2 (en) 2016-09-23 2016-09-23 Leakage detector

Publications (2)

Publication Number Publication Date
JP2018048957A JP2018048957A (en) 2018-03-29
JP6772720B2 true JP6772720B2 (en) 2020-10-21

Family

ID=61766096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016185595A Active JP6772720B2 (en) 2016-09-23 2016-09-23 Leakage detector

Country Status (1)

Country Link
JP (1) JP6772720B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4242672A1 (en) * 2022-03-07 2023-09-13 Volvo Car Corporation Isolation resistance monitoring for high voltage systems

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI661204B (en) * 2018-07-16 2019-06-01 昆山富士錦電子有限公司 Insulation resistance measuring device
KR20210029598A (en) * 2019-09-06 2021-03-16 주식회사 엘지화학 Apparatus and method for diagnosing isolation resistance measurement circuit
EP3988372A4 (en) 2019-10-29 2022-10-05 LG Energy Solution, Ltd. Leakage current detecting device, leakage current detecting method, and electric vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4242672A1 (en) * 2022-03-07 2023-09-13 Volvo Car Corporation Isolation resistance monitoring for high voltage systems

Also Published As

Publication number Publication date
JP2018048957A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6772720B2 (en) Leakage detector
EP2360485B1 (en) Battery management system and driving method thereof
JP5117537B2 (en) Battery management system and driving method thereof
JP5972972B2 (en) DC power supply equipment
US9762054B2 (en) Electric storage apparatus and power path switch apparatus
US20150219720A1 (en) Relay Control System and Method for Controlling Same
CN105128688B (en) A kind of electric automobile starts control method and control system
JP6394631B2 (en) Power supply
KR20180023140A (en) Power Relay Assembly fault controlling system and the method thereof
JP6503893B2 (en) Vehicle charge control device
KR20140072522A (en) System and method for managing battery and vehicle equipped with the same system
KR20150026764A (en) Current measurement relay apparatus
CN105620304A (en) Battery pack thermal buckling monitoring device and electric vehicle
KR101487577B1 (en) Method and apparatus for detecting default of battery pack, and power relay assembly thereof
KR20110077387A (en) Fuse breaking monitoring circuit and method of high voltage battery system
US20150180091A1 (en) Accumulator battery protected against external short-circuits
KR20210002971A (en) Device for ground fault detection of electric car charger and method for the same
US10840562B2 (en) Energy storage system, monitoring unit for energy storage device, and method of monitoring energy storage device
JP2021173551A (en) Assembled battery state determination device and state determination method
US20150326043A1 (en) Battery System and Motor Vehicle with Battery System
CN107656205B (en) Estimation of cell voltage offset in the presence of battery pack sensing faults
US20130201587A1 (en) Method and apparatus for detecting a fault of a battery pack and a power relay assembly
EP4116724A1 (en) Ground impedance and fault detection system and method
JP5978143B2 (en) Battery system
KR102314351B1 (en) System and method for managing life of battery management system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R151 Written notification of patent or utility model registration

Ref document number: 6772720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151