JP6772548B2 - Imaging equipment and imaging system - Google Patents

Imaging equipment and imaging system Download PDF

Info

Publication number
JP6772548B2
JP6772548B2 JP2016101799A JP2016101799A JP6772548B2 JP 6772548 B2 JP6772548 B2 JP 6772548B2 JP 2016101799 A JP2016101799 A JP 2016101799A JP 2016101799 A JP2016101799 A JP 2016101799A JP 6772548 B2 JP6772548 B2 JP 6772548B2
Authority
JP
Japan
Prior art keywords
transmission
absorption
light
filter
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016101799A
Other languages
Japanese (ja)
Other versions
JP2017208778A (en
Inventor
大樹 美馬
大樹 美馬
丸山 剛
剛 丸山
渚 石原
渚 石原
佐藤 裕之
裕之 佐藤
祥 永井
祥 永井
正幸 藤島
正幸 藤島
修作 高巣
修作 高巣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2016101799A priority Critical patent/JP6772548B2/en
Publication of JP2017208778A publication Critical patent/JP2017208778A/en
Application granted granted Critical
Publication of JP6772548B2 publication Critical patent/JP6772548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Blocking Light For Cameras (AREA)
  • Color Television Image Signal Generators (AREA)

Description

この発明は、撮像装置および撮像システムに関する。 The present invention relates to an imaging device and an imaging system.

複数個のレンズが配置されたレンズアレイによる「被写体のレンズごとの像」を、複数のレンズに共通の撮像素子の受光面に「複眼像」として結像させ、この複眼像を撮像素子で撮像する撮像装置が種々知られている。
受光面上に結像される複眼像を構成する「1個のレンズによる被写体像」は「個眼像」と呼ばれ、受光面上において個々の個眼像に割り当てられる領域は「個眼領域」と呼ばれる。即ち、受光面における個眼領域ごとに1つの個眼像が結像され、個眼像の集合として複眼像が構成される。
同一の被写体に対して複眼像を撮像すると、複眼像を構成する個眼像は、相互に少しずつ異なり、被写体の単一像を撮像する場合に比して、被写体に関して得られる情報量が大きくなるので、例えば、複眼像を合成して「解像性の高い被写体像」を得ることができ、また、分光フィルタを用いて、互いに色の異なる個眼像を得るようにすると、複眼像をなす個眼像の合成像として「色再現性に優れた被写体像」を得ることができる。
A "image of each lens of a subject" formed by a lens array in which a plurality of lenses are arranged is formed as a "compound eye image" on the light receiving surface of an image sensor common to the plurality of lenses, and the compound eye image is imaged by the image sensor. Various image pickup devices are known.
The "subject image by one lens" that constitutes the compound eye image formed on the light receiving surface is called the "individual eye image", and the area assigned to each individual eye image on the light receiving surface is the "individual eye area". Is called. That is, one individual eye image is formed for each individual eye region on the light receiving surface, and a compound eye image is formed as a set of individual eye images.
When a compound eye image is imaged for the same subject, the individual eye images constituting the compound eye image are slightly different from each other, and the amount of information obtained about the subject is larger than that when a single image of the subject is imaged. Therefore, for example, a compound eye image can be combined to obtain a "subject image with high resolution", and a spectroscopic filter can be used to obtain individual eye images having different colors from each other to obtain a compound eye image. A "subject image with excellent color reproducibility" can be obtained as a composite image of the individual eye image.

複眼像を撮像素子で撮像する撮像装置の例としては、特許文献1、2に記載されたものがある。 Examples of an image pickup apparatus that captures a compound eye image with an image pickup device include those described in Patent Documents 1 and 2.

この発明は、同一の被写体に対する複眼像をなす複数の個眼像に対応した画像信号を取得できる新規な撮像装置の実現を課題とする。 An object of the present invention is the realization of a novel imaging device capable of acquiring image signals corresponding to a plurality of individual eye images forming a compound eye image for the same subject.

この発明の撮像装置は、M(>1)個のレンズが配置されたレンズアレイの前記M個のレンズによる被写体の像を、前記M個のレンズに共通の撮像素子の受光面にM個の個眼像として結像させ、前記M個の個眼像に対応した画像信号を取得する撮像装置であって、前記レンズアレイと前記受光面との間に配置されて、前記M個のレンズから前記受光面へ向かう光を分光する1枚以上の透過型分光フィルタによる透過型分光フィルタ手段と、前記レンズアレイと前記透過型分光フィルタ手段との間に配置された1枚以上の吸収型分光フィルタによる吸収型分光フィルタ手段と、を有し、前記透過型分光フィルタ手段は、前記M個のレンズごとに波長帯域が1種類以上の透過帯域Iの光を透過し、波長帯域が非透過帯域Iの光を非透過とし、前記吸収型分光フィルタ手段は、前記M個のレンズごとに波長帯域が前記透過帯域Iと少なくとも一部が共通する透過帯域IIの光を透過し、波長帯域が前記非透過帯域Iと少なくとも一部が共通する非透過帯域IIの光を吸収するIn the image pickup apparatus of the present invention, the image of the subject by the M lenses of the lens array in which the M (> 1) lenses are arranged is displayed on the light receiving surface of the image pickup element common to the M lenses. An imaging device that forms an image as an individual-eye image and acquires an image signal corresponding to the M individual-eye images, which is arranged between the lens array and the light-receiving surface and is arranged from the M lenses. A transmission spectroscopic filter means having one or more transmission spectroscopic filters that disperse light directed to a light receiving surface, and one or more absorption spectroscopic filters arranged between the lens array and the transmission spectroscopic filter means. The transmissive spectroscopic filter means transmits light having a transmission band I of one or more types for each of the M lenses , and the wavelength band is a non-transmission band I. The absorption type spectroscopic filter means transmits light in a transmission band II whose wavelength band is at least partially shared with the transmission band I for each of the M lenses, and the wavelength band is the non-transmissive light. It absorbs light in the non-transmissive band II, which has at least a part in common with the transmitted band I.

この発明によれば、同一の被写体に対する複眼像をなす複数の個眼像に対応した画像信号を取得できる新規な撮像装置を実現できる。 According to the present invention, it is possible to realize a novel imaging device capable of acquiring image signals corresponding to a plurality of individual eye images forming a compound eye image for the same subject.

撮像装置の撮像状態を説明図として示す図である。It is a figure which shows the imaging state of the imaging apparatus as an explanatory diagram. 迷光の軽減を説明するための図である。It is a figure for demonstrating the reduction of stray light. 撮像装置の実施の1形態を説明する図である。It is a figure explaining one embodiment of the image pickup apparatus. 図3の撮像装置におけるレンズアレイ、吸収型分光フィルタ、透過型分光フィルタ、撮像素子を説明するための図である。It is a figure for demonstrating the lens array, the absorption type spectroscopic filter, the transmission type spectroscopic filter, and the image pickup element in the image pickup apparatus of FIG. 被写体からの光がレンズ、吸収型分光フィルタ、透過型分光フィルタを介して撮像素子の受光面に結像するとき、撮像素子により取得される画像信号を説明するための図である。It is a figure for demonstrating an image signal acquired by an image pickup device when light from a subject is imaged on a light receiving surface of an image pickup device through a lens, an absorption type spectroscopic filter, and a transmission type spectroscopic filter. 具体例1を説明するための図である。It is a figure for demonstrating a specific example 1. 具体例2を説明するための図である。It is a figure for demonstrating the specific example 2. 具体例3を説明するための図である。It is a figure for demonstrating the specific example 3. 撮像装置の実施の別形態を説明するための図である。It is a figure for demonstrating another embodiment of the image pickup apparatus. 撮像装置の実施の他の形態例を示す図である。It is a figure which shows the example of another embodiment of the image pickup apparatus. 撮像装置の実施の別の形態例を示す図である。It is a figure which shows another embodiment of the image pickup apparatus. 撮像システムの実施の1形態を説明するための図である。It is a figure for demonstrating one embodiment of the image pickup system.

以下、発明の実施の形態の説明に先立って用語等を説明する。
この発明の撮像装置には、2種の分光フィルタ手段、即ち、透過型分光フィルタ手段と吸収型分光フィルタ手段が用いられる。透過型分光フィルタ手段は「1枚以上の透過型分光フィルタ」により構成され、吸収型分光フィルタ手段は「1枚以上の吸収型分光フィルタ」により構成される。
透過型分光フィルタは、設計的に設定された「ある波長帯域の波長の光」を透過させ、この波長帯域以外の波長の光を反射させる。光を透過させる波長帯域を「透過帯域」と呼ぶが、透過型分光フィルタの透過帯域であることを明確にするために、この発明においては「透過帯域I」と呼ぶ。また、透過帯域I以外の波長の光は透過型分光フィルタにより反射される。反射率は厳密に100%と言う訳ではないが、透過帯域I以外の波長の光の透過率は「実質的に0」であり、この波長の光は透過型分光フィルタを透過しない。
そこで、透過型分光フィルタにおける透過帯域I以外の波長帯域を「非透過帯域I」と呼ぶ。これら「透過帯域I、非透過帯域I」は、透過型分光フィルタ手段が、複数枚の透過型分光フィルタで構成される場合にも「上と同様」に定義される。
Hereinafter, terms and the like will be described prior to the description of the embodiments of the invention.
In the imaging apparatus of the present invention, two types of spectroscopic filter means, that is, a transmission type spectroscopic filter means and an absorption type spectroscopic filter means are used. The transmissive spectroscopic filter means is composed of "one or more transmissive spectroscopic filters", and the absorption spectroscopic filter means is composed of "one or more absorption spectroscopic filters".
The transmission type spectroscopic filter transmits "light having a wavelength in a certain wavelength band" set by design, and reflects light having a wavelength other than this wavelength band. The wavelength band through which light is transmitted is referred to as a "passband", but in the present invention, it is referred to as a "passband I" in order to clarify that it is a transmission band of a transmission type spectroscopic filter. Further, light having a wavelength other than the transmission band I is reflected by the transmission type spectroscopic filter. Although the reflectance is not exactly 100%, the transmittance of light having a wavelength other than the transmission band I is "substantially 0", and the light having this wavelength does not pass through the transmissive spectroscopic filter.
Therefore, the wavelength band other than the transmission band I in the transmission type spectroscopic filter is called "non-transmission band I". These "transmission band I and non-transmission band I" are defined as "similar to the above" even when the transmission type spectroscopic filter means is composed of a plurality of transmission type spectroscopic filters.

吸収型分光フィルタは、設計的に設定された「ある波長帯域の波長の光」を透過させ、この波長帯域以外の波長の光は吸収する。光を透過させる波長帯域は「透過帯域」であるが、吸収型分光フィルタの透過帯域であることを明確にするために「透過帯域II」と呼ぶ。また、透過帯域II以外の帯域の波長の光は吸収型分光フィルタに吸収され、透過しない。この場合も、透過率は「実質的に0」である。吸収型分光フィルタにおける透過帯域II以外の波長帯域を「非透過帯域II」と呼ぶ。
これら「透過帯域II、非透過帯域II」も、吸収型分光フィルタ手段が、複数枚の吸収型分光フィルタで構成される場合にも「上と同様」に定義される。
The absorption type spectroscopic filter transmits "light having a wavelength in a certain wavelength band" set by design, and absorbs light having a wavelength other than this wavelength band. The wavelength band through which light is transmitted is the "passband", but is referred to as the "passband II" in order to clarify that it is the transmission band of the absorption type spectroscopic filter. Further, light having a wavelength other than the transmission band II is absorbed by the absorption type spectroscopic filter and is not transmitted. In this case as well, the transmittance is "substantially 0". The wavelength band other than the transmission band II in the absorption type spectroscopic filter is called "non-transmission band II".
These "transmission band II and non-transmission band II" are also defined as "similar to the above" when the absorption type spectroscopic filter means is composed of a plurality of absorption type spectroscopic filters.

以下においては、上記各分光フィルタ手段において、分光フィルタ1枚のみで構成される分光フィルタ手段については、単に、透過型分光フィルタ、吸収型分光フィルタと表記し、複数枚の分光フィルタで構成されるものについて、透過型分光フィルタ手段、吸収型分光フィルタ手段と表記する。 In the following, in each of the above spectroscopic filter means, the spectroscopic filter means composed of only one spectroscopic filter is simply referred to as a transmission type spectroscopic filter and an absorption type spectroscopic filter, and is composed of a plurality of spectroscopic filters. Those are referred to as transmission type spectroscopic filter means and absorption type spectroscopic filter means.

図1を参照する。
図1は、被写体0の像をレンズ1により撮像素子3の受光面に結像させて、被写体0に対応した画像信号IMSを取得する撮像装置の撮像状態を説明図として示している。説明の簡単のために、レンズ1は単一としている。図1において、符号2は透過型分光フィルタ手段を示す。
撮像素子3の透過型分光フィルタ手段2に対向する面が「受光面」である。
被写体0からの物体光はレンズ1を透過すると「結像光」となり、透過型分光フィルタ手段2を透過して撮像素子3の受光面上に被写体像Imを結像する。
透過型分光フィルタ手段2は「1枚の透過型分光フィルタ」で構成されている場合を想定し、以下では単に透過型分光フィルタ2と呼ぶ。
See FIG.
FIG. 1 shows an imaging state of an imaging device that acquires an image signal IMS corresponding to the subject 0 by forming an image of the subject 0 on the light receiving surface of the image sensor 3 with the lens 1. For the sake of simplicity, the lens 1 is single. In FIG. 1, reference numeral 2 indicates a transmission type spectroscopic filter means.
The surface of the image sensor 3 facing the transmissive spectroscopic filter means 2 is the “light receiving surface”.
When the object light from the subject 0 passes through the lens 1, it becomes "imaging light", passes through the transmissive spectroscopic filter means 2, and forms a subject image Im on the light receiving surface of the image sensor 3.
The transmission type spectroscopic filter means 2 is assumed to be composed of "one transmission type spectroscopic filter", and will be simply referred to as a transmission type spectroscopic filter 2 below.

透過型分光フィルタ2は、特定の波長帯域の「透過帯域I」と、透過帯域I以外の波長帯域である「非透過帯域I」を有する。
一般に、透過型分光フィルタにおける「透過帯域I」における透過率は均一ではなく、波長依存性を持つ。即ち、透過帯域I内に波長を持つ光でも、この波長の光に対する透過率が100%でなければ、一部は「反射され」てしまう。
The transmission type spectroscopic filter 2 has a “transmission band I” of a specific wavelength band and a “non-transmission band I” which is a wavelength band other than the transmission band I.
In general, the transmittance in the "transmission band I" of the transmission type spectroscopic filter is not uniform and has wavelength dependence. That is, even light having a wavelength within the transmission band I is partially "reflected" unless the transmittance for the light having this wavelength is 100%.

図1において、符号LR1、LR2は「透過型分光フィルタ2」により反射された光を示している。光LR1、光LR2は、透過型分光フィルタ2の非透過帯域Iに含まれる光とともに、上記の如く「透過帯域I内に波長を持ち、上記の如く透過型分光フィルタ2により反射された光」も存在している。 In FIG. 1, reference numerals LR1 and LR2 indicate light reflected by the “transmissive spectroscopic filter 2”. The light LR1 and the light LR2, together with the light contained in the non-transmissive band I of the transmissive spectroscopic filter 2, "light having a wavelength in the transmissive band I and reflected by the transmissive spectroscopic filter 2 as described above" as described above. Also exists.

光LR1、光LR2は、レンズ1に入射し、一部はレンズ1により反射されて透過型分光フィルタ2に入射する。このようにレンズ1により反射されて透過型分光フィルタ2に入射する光を便宜上「再入射光LR1、LR2」と呼ぶ。なお、「透過型分光フィルタ2により反射されてレンズ1に入射する光」を言うときは上記の如く光LR1、光LR2と称する。 The light LR1 and the light LR2 are incident on the lens 1, and a part of the light is reflected by the lens 1 and is incident on the transmission type spectroscopic filter 2. The light reflected by the lens 1 and incident on the transmissive spectroscopic filter 2 in this way is referred to as "re-incident light LR1 and LR2" for convenience. When referring to "light reflected by the transmissive spectroscopic filter 2 and incident on the lens 1," they are referred to as light LR1 and light LR2 as described above.

再入射光LR1、LR2は、非透過帯域Iの光と透過帯域Iの光の一部を含んでいる。再入射光LR1、LR2のうち透過帯域I内の波長をもつ光は、透過型分光フィルタ2を撮像素子3側へ透過する。透過型分光フィルタ2を透過した再入射光LR1は、受光面上の位置Igに入射する。
また、再入射光LR2は、光学系を保持する筐体4の内壁等で反射されて、受光面上の位置Ifに入射する。再入射光LR1や再入射光LR2が入射する位置Igや位置Ifは本来「光が入射すべきでない位置」であり、このような位置に光が入射すると、被写体像Imに対するノイズとなる。
再入射光LR1のように、透過型分光フィルタ2を介して直接、受光面上の位置Igに入射する光は「ゴースト光」と呼ばれ、再入射光LR2のように、光学系外の筐体4等を介して受光面上の位置Ifに入射する光は「フレア光」と呼ばれ、ゴースト光とフレア光を併せたものは「迷光」と呼ばれる。
The re-incident light LR1 and LR2 include a part of the light of the non-transmissive band I and the light of the transmitted band I. Of the reincident light LR1 and LR2, the light having a wavelength within the transmission band I is transmitted through the transmission type spectroscopic filter 2 to the image sensor 3 side. The reincident light LR1 that has passed through the transmission type spectroscopic filter 2 is incident on the position Ig on the light receiving surface.
Further, the re-incident light LR2 is reflected by the inner wall of the housing 4 that holds the optical system and is incident on the position If on the light receiving surface. The position Ig and the position If where the re-incident light LR1 and the re-incident light LR2 are incident are originally "positions where the light should not be incident", and when the light is incident at such a position, it becomes noise with respect to the subject image Im.
Light that is directly incident on the position Ig on the light receiving surface via the transmissive spectroscopic filter 2 like the reincident light LR1 is called "ghost light", and like the reincident light LR2, a casing outside the optical system. The light incident on the position If on the light receiving surface via the body 4 or the like is called "flare light", and the combination of ghost light and flare light is called "stray light".

迷光は、被写体とは無関係に撮像素子の受光面に到達するため、被写体が持つ真の分光情報に対する誤差(本来取得すべき被写体の分光情報と、実際に取得される被写体の分光情報との差)が大きくなり、再構成された被写体像の像質を劣化させる。
この発明の撮像装置では、このような迷光の影響を有効に軽減することができる。
Since the stray light reaches the light receiving surface of the image sensor regardless of the subject, an error with respect to the true spectral information of the subject (difference between the spectral information of the subject that should be originally acquired and the spectral information of the subject that is actually acquired). ) Increases, and the image quality of the reconstructed subject image deteriorates.
In the image pickup apparatus of the present invention, the influence of such stray light can be effectively reduced.

迷光の影響を軽減させる原理を、図2を参照して簡単に説明する。
図2は、図1に説明図として示した例において「迷光の軽減」を図る場合の説明図であり、混同の恐れが無いと思われるものについては図1におけると同一の符号を付した。
図2において、符号Ltは、レンズ1に入射する光を示す。また、符号2は透過型分光フィルタ、符号5は吸収型分光フィルタを示す。
入射する光Ltの全光量を「L」とし、透過型分光フィルタ2は、入射する光L1を透過率:f(0<f<1)で透過させ、吸収型分光フィルタ5は、入射する光Ltを吸収率「ab(0<ab<1)」で吸収するものとする。
The principle of reducing the influence of stray light will be briefly described with reference to FIG.
FIG. 2 is an explanatory diagram in the case of "reducing stray light" in the example shown as an explanatory diagram in FIG. 1, and those that are not considered to be confused are designated by the same reference numerals as those in FIG.
In FIG. 2, reference numeral Lt indicates light incident on the lens 1. Reference numeral 2 indicates a transmission type spectroscopic filter, and reference numeral 5 indicates an absorption type spectroscopic filter.
The total amount of incident light Lt is set to "L", the transmissive spectroscopic filter 2 transmits the incident light L1 at a transmittance of f (0 <f <1), and the absorption spectroscopic filter 5 transmits the incident light L1. It is assumed that Lt is absorbed at an absorption rate of "ab (0 <ab <1)".

図2(a−1)は、光Ltがレンズ1を透過し、透過型分光フィルタ2に入射し、透過光成分が撮像素子3の受光面に到達する状態を示している。図2(a−1)において、透過型分光フィルタ2に入射した光Ltは一部が反射され、光LRとなってレンズ1に入射する。前述の如く、レンズ1に入射する光LRは「迷光」となる。
透過型分光フィルタ2の透過率はf(0<f<1)であるから、反射光の割合は(1−f)となり、光LRの光量は図2(a−2)に示すように、全光量:Lと(1−f)との積:{L×(1−f)}となる。
FIG. 2A-1 shows a state in which the light Lt passes through the lens 1 and is incident on the transmission type spectroscopic filter 2, and the transmitted light component reaches the light receiving surface of the image pickup device 3. In FIG. 2A-1, a part of the light Lt incident on the transmissive spectroscopic filter 2 is reflected and becomes an optical LR and is incident on the lens 1. As described above, the light LR incident on the lens 1 is "stray light".
Since the transmittance of the transmissive spectroscopic filter 2 is f (0 <f <1), the ratio of reflected light is (1-f), and the amount of light LR is as shown in FIG. 2 (a-2). Total light intensity: Product of L and (1-f): {L × (1-f)}.

図2(b−1)は、この発明の場合の1例であり、レンズ1と透過型分光フィルタ2との間に、吸収型分光フィルタ5が配置されている。
「吸収型分光フィルタ」は、ガラスに吸収体を混ぜた構成のものが知られている。
光Ltがレンズ1を透過して吸収型分光フィルタ5に入射すると、吸収型分光フィルタ5で一部が吸収され、残りは透過型分光フィルタ2に入射される。透過型分光フィルタ2に入射する光は、吸収型分光フィルタ5で一部が吸収されて光量が「L×ab」となっており、従って、透過型分光フィルタ2で反射されると、反射光の光量は「L×ab×(f−1)となる。
FIG. 2B-1 is an example of the case of the present invention, in which the absorption type spectroscopic filter 5 is arranged between the lens 1 and the transmission type spectroscopic filter 2.
An "absorption-type spectroscopic filter" is known to have a structure in which an absorber is mixed with glass.
When the light Lt passes through the lens 1 and is incident on the absorption spectroscopic filter 5, a part of the light Lt is absorbed by the absorption spectroscopic filter 5 and the rest is incident on the transmission spectroscopic filter 2. The light incident on the transmissive spectroscopic filter 2 is partially absorbed by the absorption spectroscopic filter 5 and the amount of light is "L × ab". Therefore, when reflected by the transmissive spectroscopic filter 2, the reflected light is reflected. The amount of light of is "L × ab × (f-1).

この反射光が吸収型分光フィルタ5を再度透過した光LR0は、吸収型分光フィルタにより一部が再度吸収され、その光量は図2(b−2)に示す如く「L×(ab)×(f−1)」となる。 The light LR0 in which the reflected light has passed through the absorption spectroscopic filter 5 again is partially absorbed again by the absorption spectroscopic filter, and the amount of the light is “L × (ab) 2 ×” as shown in FIG. 2 (b-2). (F-1) ”.

即ち、光LR0の光量は、吸収型分光フィルタ5を用いない場合(図2(a−2))に比して「(ab)」倍だけ小さくなり、迷光としての影響が有効に軽減される。 That is, the amount of light of the light LR0 is reduced by "(ab) 2 " times as much as when the absorption type spectroscopic filter 5 is not used (FIG. 2 (a-2)), and the influence as stray light is effectively reduced. To.

以下、実施の形態を説明する。
図3は、撮像装置の実施の1形態を説明図として示す図である。
図3において、符号01は「被写体」、符号10は「レンズアレイを構成する個々のレンズ」、符号50は「吸収型分光フィルタ」、符号20は「透過型分光フィルタ」、符号30は「受光素子」、符号40は「光学系部分や撮像素子を収納する筐体」をそれぞれ示す。
Hereinafter, embodiments will be described.
FIG. 3 is a diagram showing one embodiment of the imaging device as an explanatory diagram.
In FIG. 3, reference numeral 01 is “subject”, reference numeral 10 is “individual lenses constituting the lens array”, reference numeral 50 is “absorption-type spectral filter”, reference numeral 20 is “transmission-type spectral filter”, and reference numeral 30 is “light receiving”. "Element" and reference numeral 40 indicate "a housing for accommodating an optical system portion and an imaging element", respectively.

レンズアレイは、光学的に等価な複数(M個)のレンズが配置されたものである。
以下の説明においては、レンズアレイを構成するレンズ10の数を4(M=4)として説明するが、レンズアレイを構成するレンズの数は、これに限らない。M=4以外の場合も適宜設定できる。
The lens array is an array in which a plurality of (M) lenses that are optically equivalent are arranged.
In the following description, the number of lenses 10 constituting the lens array will be described as 4 (M = 4), but the number of lenses constituting the lens array is not limited to this. It can be set as appropriate even when M = 4.

M=4以外の具体的な例としては「16個のレンズ(M=16)を4行4列にアレイ配列したもの」などを挙げることができる。レンズの配列は正方行列状に限らず、上の場合に、例えば「2行8列」の配列等、レンズの個数に応じて種々の配列が可能である。 Specific examples other than M = 4 include "an array of 16 lenses (M = 16) in 4 rows and 4 columns". The arrangement of the lenses is not limited to a square matrix, and in the above case, various arrangements such as an arrangement of "2 rows and 8 columns" are possible depending on the number of lenses.

個々のレンズの大きさとしては、レンズ直径にして4mmないし20mm程度のものを好適な例として例示することができるが、勿論、これに限定されるものではない。 As the size of each lens, a lens having a diameter of about 4 mm to 20 mm can be exemplified as a suitable example, but of course, the size is not limited to this.

吸収型分光フィルタ50は、1枚の吸収型分光フィルタで構成された吸収型分光フィルタ手段の1例である。透過型分光フィルタ20も、1枚の透過型分光フィルタで構成された透過型分光フィルタ手段の1例である。 The absorption spectroscopic filter 50 is an example of an absorption spectroscopic filter means composed of one absorption spectroscopic filter. The transmissive spectroscopic filter 20 is also an example of a transmissive spectroscopic filter means composed of one transmissive spectroscopic filter.

撮像素子30は、レンズアレイを構成する複数のレンズ(説明中の例で4個)に共通であり、受光面を透過型分光フィルタ20の側に向けている。
図4は、図3に示す撮像装置におけるレンズアレイ、吸収型分光フィルタ50、透過型分光フィルタ20、撮像素子30を説明するための図で、これらをレンズアレイにおける各レンズの光軸方向から見た状態を示している。
レンズアレイLA、吸収型分光フィルタ50、透過型分光フィルタ20、撮像素子30の受光面は何れも、レンズアレイの各レンズの光軸に直交している。
The image pickup element 30 is common to a plurality of lenses (four in the example in the description) constituting the lens array, and the light receiving surface is directed toward the transmission type spectroscopic filter 20.
FIG. 4 is a diagram for explaining the lens array, the absorption type spectroscopic filter 50, the transmission type spectroscopic filter 20, and the image pickup element 30 in the image pickup apparatus shown in FIG. 3, and these are viewed from the optical axis direction of each lens in the lens array. Shows the state.
The light receiving surfaces of the lens array LA, the absorption spectroscopic filter 50, the transmissive spectroscopic filter 20, and the image sensor 30 are all orthogonal to the optical axis of each lens of the lens array.

図4(a)に示すように、レンズアレイLAは、4個のレンズ10A、10B、10C、10Dを「2行2列に配列して一体化」したものである。
吸収型分光フィルタ50は、レンズアレイLAにおける個々のレンズ10A〜10Dに1対1に対応して、吸収フィルタ領域50A〜50Dを有している。透過型分光フィルタ20も、レンズアレイLAにおける個々のレンズ10A〜10Dに1対1に対応して、透過フィルタ領域20A〜20Dを有している。
撮像素子30は、その受光面が4つの受光領域30A〜30Dを有し、これらの受光領域は、レンズ10A〜10Dの個々に1対1に対応している。
As shown in FIG. 4A, the lens array LA is a lens array LA in which four lenses 10A, 10B, 10C, and 10D are "arranged in two rows and two columns and integrated".
The absorption type spectroscopic filter 50 has absorption filter regions 50A to 50D corresponding to each lens 10A to 10D in the lens array LA on a one-to-one basis. The transmission type spectroscopic filter 20 also has transmission filter regions 20A to 20D corresponding to the individual lenses 10A to 10D in the lens array LA on a one-to-one basis.
The light receiving surface of the image sensor 30 has four light receiving regions 30A to 30D, and these light receiving regions correspond one-to-one with each of the lenses 10A to 10D.

即ち、レンズアレイLAにおけるレンズ10Aには「吸収フィルタ領域50A、透過フィルタ領域20A、受光領域30A」が対応し、レンズ10Bには「吸収フィルタ領域50B、透過フィルタ領域20B、受光領域30B」が対応する。また、レンズアレイLAにおけるレンズ10Cには「吸収フィルタ領域50C、透過フィルタ領域20C、受光領域30C」が対応し、レンズ10Dには「吸収フィルタ領域50D、透過フィルタ領域20D、受光領域30D」が対応する。
從って、被写体01からの物体光は、レンズアレイLAの各レンズに入射すると、これらレンズに1対1に対応する吸収フィルタ領域、透過フィルタ領域を順次透過して、各レンズの結像作用により、対応する受光領域に被写体像として結像する。
図4(d)に示すのは、4つの受光領域30A〜30Dのそれぞれに被写体01の像が倒立像として結像している状態である。これら4つの被写体像は「複眼像」を構成する。
That is, the lens 10A in the lens array LA corresponds to the "absorption filter region 50A, the transmission filter region 20A, and the light receiving region 30A", and the lens 10B corresponds to the "absorption filter region 50B, the transmission filter region 20B, and the light receiving region 30B". To do. Further, the lens 10C in the lens array LA corresponds to the "absorption filter region 50C, the transmission filter region 20C, the light receiving region 30C", and the lens 10D corresponds to the "absorption filter region 50D, the transmission filter region 20D, the light receiving region 30D". To do.
Therefore, when the object light from the subject 01 enters each lens of the lens array LA, it sequentially passes through the absorption filter region and the transmission filter region corresponding to one-to-one with these lenses, and the imaging action of each lens is performed. As a result, an image is formed as a subject image in the corresponding light receiving region.
FIG. 4D shows a state in which the image of the subject 01 is formed as an inverted image in each of the four light receiving regions 30A to 30D. These four subject images constitute a "compound eye image".

前述の如く、受光面上に結像される複眼像を構成する「1個のレンズによる被写体像」は「個眼像」と呼ばれ、受光面上において個々の個眼像に割り当てられる領域は「個眼領域」と呼ばれる。從って、受光領域30A〜30Dの個々は「個眼領域」であり、これら
個眼領域の個々に結像している被写体像の個々が「個眼像」である。
As described above, the "subject image by one lens" that constitutes the compound eye image formed on the light receiving surface is called the "individual eye image", and the area allocated to each individual eye image on the light receiving surface is It is called the "individual eye area". Therefore, each of the light receiving regions 30A to 30D is an "individual eye region", and each of the subject images individually imaged in these individual eye regions is an "individual eye image".

被写体からの光がレンズにより結像光束となり、吸収型分光フィルタ、透過型分光フィルタを介して撮像素子の受光面に結像するとき、撮像素子により取得される画像信号について図5を参照して説明する。図5は、例えば、図4(d)に示す個眼領域30Aに結像する個眼像に関するものである。
このとき、この個眼像の結像には、レンズアレイLAのレンズ10A、吸収フィルタ領域50A、透過フィルタ領域20Aが関与する。説明の簡単のため、レンズ10Aによる光の吸収は無いものとする。
図5の左の図(被写体からの光線)に示されているのは、被写体からの物体光の分光情報であり、横軸に示す波長に対する光量を縦軸に任意単位で示している。
図5における「吸収型分光フィルタ」は、吸収フィルタ領域50Aの分光透過率を示している。この分光透過率(%)を100%から引き去ったものが、吸収型分光フィルタ50Aの「吸収特性」である。
図5における「透過型分光フィルタ」は、透過フィルタ領域20Aの分光透過率、即ち「透過特性」を示している。
図5における「センサ感度」は、撮像素子の分光感度(撮像素子はレンズ10A〜10Dに共通であるので、分光感度は個眼領域30A〜30Dに対して共通である。)を任意単位で示している。
When the light from the subject becomes an imaged luminous flux by the lens and is imaged on the light receiving surface of the image pickup device through the absorption type spectroscopic filter and the transmission type spectroscopic filter, the image signal acquired by the image pickup device is referred to with reference to FIG. explain. FIG. 5 relates to, for example, an individual eye image formed in the individual eye region 30A shown in FIG. 4 (d).
At this time, the lens 10A of the lens array LA, the absorption filter region 50A, and the transmission filter region 20A are involved in the imaging of the individual eye image. For the sake of simplicity, it is assumed that the lens 10A does not absorb light.
The left figure (light rays from the subject) of FIG. 5 shows the spectral information of the object light from the subject, and the amount of light with respect to the wavelength shown on the horizontal axis is shown on the vertical axis in arbitrary units.
The “absorption-type spectroscopic filter” in FIG. 5 shows the spectral transmittance of the absorption filter region 50A. The "absorption characteristic" of the absorption type spectroscopic filter 50A is obtained by subtracting this spectral transmittance (%) from 100%.
The “transmission type spectroscopic filter” in FIG. 5 shows the spectral transmittance of the transmission filter region 20A, that is, the “transmission characteristic”.
The “sensor sensitivity” in FIG. 5 indicates the spectral sensitivity of the image pickup device (since the image pickup device is common to the lenses 10A to 10D, the spectral sensitivity is common to the individual eye regions 30A to 30D) in arbitrary units. ing.

被写体から「被写体からの光線」に示す分光情報を持った光が、吸収フィルタ領域50A、透過フィルタ領域20Aを経て、受光領域30Aに被写体像を結像するとき、受光領域30Aから出力される「センサ応答値」は、図5の「被写体からの光線」、「吸収型分光フィルタ」、「透過型分光フィルタ」、「センサ感度」の積を「波長帯域について積分した積分値」で与えられる。
他の受光領域30B、30C、30Dに結像する個眼像についても同様である。
図5の「吸収型分光フィルタ」において透過率:0%の波長帯域は「非透過帯域II」
であり、非透過帯域II以外の波長帯域は「透過帯域II」である。
「透過型分光フィルタ」において、透過率が0%である波長帯域が「非透過帯域I」であり、透過率が0%でない波長帯域が「透過帯域I」である。
なお、上の説明において「透過率が0%である」とは、透過率が厳密に0%である場合のみならず、実質的に0%である場合も含む。
When light having spectral information shown in "light rays from the subject" from the subject forms a subject image in the light receiving area 30A through the absorption filter area 50A and the transmission filter area 20A, it is output from the light receiving area 30A. sensor response value "," light from the object "in FIG. 5," absorption spectral filter ", given by" transmission spectral filter "," integration value obtained by integrating the "wavelength band product of sensor sensitivity". "
The same applies to the individual eye images formed in the other light receiving regions 30B, 30C, and 30D.
In the "absorption-type spectroscopic filter" shown in FIG. 5, the wavelength band having a transmittance of 0% is the "non-transmissive band II".
The wavelength band other than the non-transmissive band II is the “transmissive band II”.
In the "transmission type spectroscopic filter", the wavelength band having a transmittance of 0% is the "non-transmission band I", and the wavelength band having a transmittance of not 0% is the "transmission band I".
In the above description, "the transmittance is 0%" includes not only the case where the transmittance is strictly 0% but also the case where the transmittance is substantially 0%.

図5に示す吸収型分光フィルタにおける透過帯域IIは「透過型分光フィルタにおける透過帯域I」を含んでいる。從って、被写体からの物体光のうち、吸収型分光フィルタを透過した光は透過型分光フィルタを透過して受光面に結像することができる。
透過型分光フィルタにおける透過帯域Iは、必ずしも上の例のように「吸収型分光フィルタにおける透過帯域IIに含まれる」必要はないが、吸収型分光フィルタと透過型分光フィルタを透過した光が受光面上に被写体像を結像できるためには、吸収型分光フィルタの透過帯域IIと透過型分光フィルタの透過帯域Iとが「互いに共通する波長帯域」を有する必要があることは言うまでもない。
The transmission band II in the absorption type spectroscopic filter shown in FIG. 5 includes the “transmission band I in the transmission type spectroscopic filter”. Therefore, among the object light from the subject, the light transmitted through the absorption type spectroscopic filter can be transmitted through the transmission type spectroscopic filter and imaged on the light receiving surface.
The transmission band I in the transmission type spectroscopic filter does not necessarily have to be “included in the transmission band II in the absorption type spectroscopy filter” as in the above example, but the light transmitted through the absorption type spectroscopy filter and the transmission type spectroscopy filter is received. Needless to say, in order to be able to form a subject image on a surface, the transmission band II of the absorption type spectroscopic filter and the transmission band I of the transmission type spectroscopic filter must have " wavelength bands common to each other".

即ち、吸収型分光フィルタは「透過型分光フィルタの透過帯域I内の光」を透過させるのである。透過型分光フィルタの透過帯域Iの全域が「吸収型分光フィルタの透過帯域II」に含まれない場合には、前記透過帯域I内の「吸収型分光フィルタの透過帯域IIと共通する波長帯域」の光が受光面に到達する。 That is, the absorption type spectroscopic filter transmits "light in the transmission band I of the transmission type spectroscopic filter". When the entire transmission band I of the transmission type spectroscopic filter is not included in the "transmission band II of the absorption type spectral filter", the " wavelength band common to the transmission band II of the absorption type spectral filter" in the transmission band I ". Light reaches the light receiving surface.

即ち、吸収型分光フィルタは、透過型分光フィルタの透過帯域Iの波長帯域と共通する透過帯域IIを有し、透過型分光フィルタ手段の非透過帯域Iと共通する非透過帯域IIを有する。
透過型分光フィルタの透過帯域Iと吸収型分光フィルタの透過帯域IIが「共通する」とは、透過帯域I(または透過帯域II)が透過帯域II(または透過帯域I)と互いに重なり合う波長帯域を持つ場合や、一方の波長帯域が他方の波長帯域に包含される場合がある。非透過帯域Iと非透過帯域IIが共通する場合も、上記と同様である。
That is, the absorption type spectroscopic filter has a transmission band II common to the wavelength band of the transmission band I of the transmission type spectroscopic filter, and has a non-transmission band II common to the non-transmission band I of the transmission type spectroscopic filter means.
Transmission band II absorptive spectral filter and the transmission band I of the transmissive spectral filter is a "common", the transmission band I (or transmission band II) is a wavelength band overlaps with a transmission band II (or transmission band I) In some cases, one wavelength band may be included in the other wavelength band. The same applies when the non-transmissive band I and the non-transmissive band II are common.

説明中の例では、レンズアレイLAが4個のレンズを有し、これら4個のレンズのそれぞれに対して、吸収フィルタ領域、透過フィルタ領域、受光領域(個眼領域)が1対1に対応しているが、吸収フィルタ領域、透過フィルタ領域における分光特性(分光透過率特性)としては、種々の組み合わせが可能である。 In the example in the explanation, the lens array LA has four lenses, and the absorption filter region, the transmission filter region, and the light receiving region (individual eye region) correspond one-to-one with each of the four lenses. However, various combinations are possible as the spectral characteristics (spectral transmittance characteristics) in the absorption filter region and the transmission filter region.

例えば、吸収フィルタ領域50A〜50Dが互いに「同一の分光透過率特性」を有し、透過フィルタ領域20A〜20Dも互いに「同一の分光透過率特性」を持つことも可能であるが、吸収フィルタ領域50A〜50Dの分光透過率特性は互いに同一でなくともよく、透過フィルタ領域20A〜20Dの分光透過率特性も互いに同一でなくともよい。 For example, the absorption filter regions 50A to 50D may have "same spectral transmittance characteristics" with each other, and the transmission filter regions 20A to 20D may also have "same spectral transmittance characteristics" with each other. The spectral transmittance characteristics of 50A to 50D do not have to be the same as each other, and the spectral transmittance characteristics of the transmission filter regions 20A to 20D do not have to be the same as each other.

例えば、吸収フィルタ領域50Aと50Dが対となって同じ分光透過率特性を持ち、吸収フィルタ領域50Bと50Cが対となって同じ分光透過率特性(吸収フィルタ領域10A、10Dの分光透過率特性とは異なる)を有してもよい。あるいは、吸収フィルタ領域50A〜50Dが互いに異なる分光透過率特性を持ち、透過フィルタ領域20A〜20Dも互いに異なる分光透過率特性を有してもよい。
このように、吸収型分光フィルタや、透過型分光フィルタの有する複数のフィルタ領域が同一の分光透過率特性を持たない場合には、個々の分光透過率特性を持つフィルタ領域を個別に作成して、これらを接合一体化することにより各分光フィルタを構成することができる。
For example, the absorption filter regions 50A and 50D are paired to have the same spectral transmittance characteristics, and the absorption filter regions 50B and 50C are paired to have the same spectral transmittance characteristics (the spectral transmittance characteristics of the absorption filter regions 10A and 10D). May have different). Alternatively, the absorption filter regions 50A to 50D may have different spectral transmittance characteristics from each other, and the transmission filter regions 20A to 20D may also have different spectral transmittance characteristics from each other.
In this way, when the absorption type spectroscopic filter and the plurality of filter regions of the transmission type spectroscopic filter do not have the same spectral transmittance characteristics, the filter regions having individual spectral transmittance characteristics are individually created. , Each spectroscopic filter can be configured by joining and integrating these.

以下、具体的な例を説明する。
「具体例1」
具体例1として、吸収フィルタ領域50A〜50Dが同一の分光透過率特性(同一の透過帯域I、同一の非透過帯域I)を持ち、透過フィルタ領域20A〜20Dも同一の分光透過率特性(同一の透過帯域II、同一の非透過帯域II)を持つ場合を説明する。
図6を参照する。
吸収フィルタ領域50A〜50Dの「同一の分光透過率特性」が図の「#2」の如くであり、透過フィルタ領域20A〜20Dの「同一の分光透過率特性」が図の「#1」の如くであるとする。この場合「吸収型分光フィルタと透過型分光フィルタとを合わせた分光透過率特性」は、図6の「#3」の如くになる。
即ち、吸収型分光フィルタ50の透過帯域II(「#2」)と透過型分光フィルタ20の透過帯域I(「#1」)との「共通の波長帯域」に波長を持つ光(#3)が受光面の各個眼領域に到達して個眼像を結像する。
A specific example will be described below.
"Specific example 1"
As a specific example 1, the absorption filter regions 50A to 50D have the same spectral transmittance characteristics (same transmission band I, the same non-transmission band I), and the transmission filter regions 20A to 20D also have the same spectral transmittance characteristics (same transmission band I). The case of having the same transmission band II and the same non-transmission band II) will be described.
See FIG.
The "same spectral transmittance characteristics" of the absorption filter regions 50A to 50D are as shown in "# 2" in the figure, and the "same spectral transmittance characteristics" of the transmission filter regions 20A to 20D are as shown in "# 1" in the figure. It is assumed that it is like. In this case, the "spectral transmittance characteristic of the absorption type spectroscopic filter and the transmission type spectroscopic filter combined" is as shown in "# 3" of FIG.
That is, light (# 3) having a wavelength in the "common wavelength band" of the transmission band II ("# 2") of the absorption type spectroscopic filter 50 and the transmission band I ("# 1") of the transmission type spectroscopic filter 20. Reaches each individual eye region on the light receiving surface to form an individual eye image.

透過型分光フィルタ20の非透過帯域Iでかつ、吸収型分光フィルタ50の透過帯域II内の光は、透過型分光フィルタ20で反射されると吸収型分光フィルタ50を透過するので「迷光」となる。 Light in the non-transmissive band I of the transmissive spectroscopic filter 20 and in the transmissive band II of the absorption spectroscopic filter 50 is transmitted through the absorption spectroscopic filter 50 when reflected by the transmissive spectroscopic filter 20, and is therefore referred to as "stray light". Become.

透過型分光フィルタ20の非透過帯域Iでかつ、吸収型分光フィルタ50の非透過帯域II内の光は、透過型分光フィルタ20で反射されるが、吸収型分光フィルタ50で吸収されるので迷光とはならない。
即ち、透過型分光フィルタ20の非透過帯域Iのうちで「吸収型分光フィルタ50の非透過帯域II」にある光は、吸収型分光フィルタ50で「吸収される」ため、透過型分光フィルタ20のみを用いる場合と比べて迷光が抑制され、迷光の影響が軽減される。
Light in the non-transmissive band I of the transmissive spectroscopic filter 20 and in the non-transmissive band II of the absorption spectroscopic filter 50 is reflected by the transmissive spectroscopic filter 20, but is absorbed by the absorption spectroscopic filter 50. It does not become.
That is, the light in the “non-transmissive band II of the absorption type spectroscopic filter 50” in the non-transmissive band I of the transmission type spectroscopic filter 20 is “absorbed” by the absorption type spectroscopic filter 50, so that the transmission type spectral filter 20 Stray light is suppressed and the influence of stray light is reduced as compared with the case of using only.

例えば、透過型分光フィルタと吸収型分光フィルタの分光透過率が、図6の分光透過率:#1、#2の如きものである場合、波長:400nmの光は、透過帯域I、透過帯域IIに含まれるので、透過型分光フィルタと吸収型分光フィルタをともに透過して撮像素子に到達する(#3)。
波長:500nmの光は、非透過帯域Iに含まれ、透過帯域IIに含まれるので透過型分光フィルタで反射され、吸収型分光フィルタを透過して迷光となるが、波長:600nm、700nmの光は共に、非透過帯域I、非透過帯域IIに含まれるので、透過型分光フィルタで反射されるが、吸収型分光フィルタで吸収され、迷光とはならない。
For example, when the spectral transmittances of the transmissive spectroscopic filter and the absorption spectroscopic filter are as shown in FIG. 6 spectral transmittances: # 1 and # 2, light having a wavelength of 400 nm has transmission band I and transmission band II. Since it is contained in, it passes through both the transmission type spectroscopic filter and the absorption type spectroscopic filter and reaches the image pickup element (# 3).
Light having a wavelength of 500 nm is included in the non-transmissive band I and is included in the transmission band II, so that it is reflected by the transmission spectroscopic filter and passes through the absorption spectroscopic filter to become stray light. Are both included in the non-transmissive band I and the non-transmissive band II, so that they are reflected by the transmissive spectroscopic filter, but are absorbed by the absorption spectroscopic filter and do not become stray light.

この例では、吸収型分光フィルタ50を配置することにより、透過型フィルタ20のみを用いる場合には迷光となる波長:600nm、700nmの光を、吸収型分光フィルタで吸収でき、迷光を抑えることができる。 In this example, by arranging the absorption type spectroscopic filter 50, light having wavelengths of 600 nm and 700 nm, which becomes stray light when only the transmission type filter 20 is used, can be absorbed by the absorption type spectroscopic filter, and the stray light can be suppressed. it can.

因みに、図6の「#1、#2」の分光透過率特性を持つ透過型分光フィルタ、吸収型分光フィルタを用いる場合「撮像素子により取得される分光情報」は、図6の特性:#1と#2の積であり、図6の#3の如き分光透過率特性で形成される被写体像の情報である。 Incidentally, when a transmission type spectroscopic filter and an absorption type spectroscopic filter having the spectral transmittance characteristics of “# 1 and # 2” in FIG. 6 are used, the “spectral information acquired by the image sensor” is the characteristic of FIG. It is the product of # 2 and # 2, and is information on the subject image formed by the spectral transmittance characteristic as shown in # 3 of FIG.

「具体例2」
図7は、上に説明した具体例1の変形例である具体例2の場合であり、分光透過率特性:#1、#2はそれぞれ、透過型分光フィルタ、吸収型分光フィルタの分光透過率特性を示す。この場合、透過型分光フィルタの透過帯域I(#1)は、吸収型分光フィルタの透過帯域II(#2)に「完全には含まれていない」が、これら透過帯域I、透過帯域IIは「互いに重複する共通の波長帯域」を有し、これらの積である分光透過率特性:#3を持つ光が撮像素子に到達して被写体像を結像する。
たとえば、波長:400nmの光は、透過型分光フィルタの非透過帯域I(#1)にあるため透過型分光フィルタで反射されるが、吸収型分光フィルタの非透過帯域II(#2)にあるため、吸収型分光フィルタにより吸収され、迷光とはならない。
"Specific example 2"
FIG. 7 shows the case of the specific example 2 which is a modification of the specific example 1 described above, and the spectral transmittance characteristics: # 1 and # 2 are the spectral transmittances of the transmission type spectral filter and the absorption type spectral filter, respectively. Shows the characteristics. In this case, the transmission band I (# 1) of the transmission type spectroscopic filter is "not completely included" in the transmission band II (# 2) of the absorption type spectroscopy filter, but these transmission band I and transmission band II are Light having a "common wavelength band overlapping each other" and having a spectral transmittance characteristic: # 3 which is a product of these reaches the image pickup element and forms a subject image.
For example, light having a wavelength of 400 nm is reflected by the transmissive spectroscopic filter because it is in the non-transmissive band I (# 1) of the transmissive spectroscopic filter, but is in the non-transmissive band II (# 2) of the absorption spectroscopic filter. Therefore, it is absorbed by the absorption type spectroscopic filter and does not become stray light.

一方、例えば、波長:550nmの光は、透過型分光フィルタにとっては非透過帯域I内の光(#1)であるため、透過型分光フィルタにより反射されるが、吸収型分光フィルタの透過帯域II内の光(#2)であるため吸収型分光フィルタを透過して迷光となる。 On the other hand, for example, light having a wavelength of 550 nm is reflected by the transmissive spectroscopic filter because it is light (# 1) in the non-transmissive band I for the transmissive spectroscopic filter, but is reflected by the transmissive spectroscopic filter. Since it is the light inside (# 2), it passes through the absorption type spectroscopic filter and becomes stray light.

即ち、分光透過率I:#1における非透過帯域Iで、分光透過率:#2における透過帯域IIに含まれる光は迷光となるが、分光透過率:#1における非透過帯域Iで、分光透過率:#2の非透過帯域IIに含まれる光は迷光とはならない。 That is, the light contained in the transmission band II at the spectral transmittance: # 1 is stray light in the non-transmissive band I at the spectral transmittance I: # 1, but the light is spectroscopic at the non-transmissive band I at the spectral transmittance: # 1. Transmittance: Light contained in the non-transmissive band II of # 2 does not become stray light.

上記具体例1、具体例2のように、図6、図7の如き分光透過率を持つ透過型分光フィルタや吸収型分光フィルタを用いると、迷光の発生を「完全に防止」することはできなくとも、迷光の発生を有効に軽減することができる。 By using a transmission type spectroscopic filter or an absorption type spectroscopic filter having spectral transmittance as shown in FIGS. 6 and 7 as in Specific Examples 1 and 2, it is possible to "completely prevent" the generation of stray light. Even if it is not present, the generation of stray light can be effectively reduced.

図6、図7の例で、迷光の発生をより効果的に軽減する方法としては、吸収型分光フィルタの分光透過率(#2)における透過帯域IIの上限波長を、透過型分光フィルタの分光透過率(#1)における上限波長に近づけることが考えられる。 In the examples of FIGS. 6 and 7, as a method of more effectively reducing the generation of stray light, the upper limit wavelength of the transmission band II in the spectral transmittance (# 2) of the absorption type spectroscopic filter is set to the spectroscopy of the transmission type spectroscopic filter. It is conceivable to approach the upper limit wavelength in the transmittance (# 1).

なお、図6、図7に示した分光透過率:#1、#2は1例であり「透過型分光フィルタの透過帯域と吸収型分光フィルタの透過帯域の重複部」で所望の分光透過率を実現できればよく、図6、図7に限定されない。 The spectral transmittances shown in FIGS. 6 and 7: # 1 and # 2 are examples, and the desired spectral transmittance in the “overlapping portion of the transmission band of the transmission type spectral filter and the transmission band of the absorption type spectral filter”. It is only necessary to realize the above, and the present invention is not limited to FIGS. 6 and 7.

上には、吸収型分光フィルタ50の吸収フィルタ領域50A〜50Dが「同一の分光透過率特性(同一の非透過帯域II、同一の透過帯域II)」を持ち、透過型分光フィルタ20の透過フィルタ領域20A〜20Dも「同一の分光透過率特性(同一の透過帯域I、同一の非透過帯域I)」を持つ場合を説明した。
以下には、吸収型分光フィルタ50の吸収フィルタ領域50A〜50Dが互いに異なる分光透過率特性を持ち、透過型分光フィルタ20の透過フィルタ領域20A〜20Dも互いに異なる分光透過率特性を持つ場合を説明する。
「具体例3」
図8は、これら吸収フィルタ領域、透過フィルタ領域の分光特性の1例を示している。
Above, the absorption filter regions 50A to 50D of the absorption type spectroscopic filter 50 have "same spectral transmittance characteristics (same non-transmissive band II, same transmission band II)", and the transmission filter of the transmission type spectral filter 20. The case where the regions 20A to 20D also have "same spectral transmittance characteristics (same transmission band I, same non-transmission band I)" has been described.
The case where the absorption filter regions 50A to 50D of the absorption type spectroscopic filter 50 have different spectral transmittance characteristics and the transmission filter regions 20A to 20D of the transmission type spectral filter 20 also have different spectral transmittance characteristics will be described below. To do.
"Specific example 3"
FIG. 8 shows an example of the spectral characteristics of the absorption filter region and the transmission filter region.

図8において、透過フィルタ領域20Aの分光透過率特性を「A2」、吸収フィルタ領域50Aの分光透過率特性を「A3」として示す。同様に、透過フィルタ領域20Bの分光透過率特性を「B2」、吸収フィルタ領域50Bの分光透過率特性を「B3」として示し、透過フィルタ領域20Cの分光透過率特性を「C2」、吸収フィルタ領域50Cの分光透過率特性を「C3」として示す。さらに、透過フィルタ領域20Dの分光透過率特性を「D2」、吸収フィルタ領域50Dの分光透過率特性を「D3」として示す。
図8の分光透過率特性:A2は「主として青色光」を透過させる分光透過率特性であり、分光透過率特性:B2は「主として緑色光」を透過させる分光透過率特性である。同様に、分光透過率特性:C2は「主として赤色光」を透過させる分光透過率特性であり、分光透過率特性:D2は「主として近赤外領域の光」を透過させる分光透過率特性である。
In FIG. 8, the spectral transmittance characteristic of the transmission filter region 20A is shown as “A2”, and the spectral transmittance characteristic of the absorption filter region 50A is shown as “A3”. Similarly, the spectral transmittance characteristic of the transmission filter region 20B is shown as "B2", the spectral transmittance characteristic of the absorption filter region 50B is shown as "B3", the spectral transmittance characteristic of the transmission filter region 20C is "C2", and the absorption filter region. The spectral transmittance characteristic of 50C is shown as "C3". Further, the spectral transmittance characteristic of the transmission filter region 20D is shown as "D2", and the spectral transmittance characteristic of the absorption filter region 50D is shown as "D3".
The spectral transmittance characteristic of FIG. 8: A2 is a spectral transmittance characteristic that transmits “mainly blue light”, and the spectral transmittance characteristic: B2 is a spectral transmittance characteristic that transmits “mainly green light”. Similarly, the spectral transmittance characteristic: C2 is a spectral transmittance characteristic that transmits "mainly red light", and the spectral transmittance characteristic: D2 is a spectral transmittance characteristic that transmits "mainly light in the near infrared region". ..

このような分光透過率特性を持つ透過型分光フィルタおよび吸収型分光フィルタを用いると、個眼領域(受光領域)30A〜30Dに結像する個眼像である被写体像の色が互いに異なるものとなり、所謂「マルチバンドの分光情報」を取得することができ、色違いの個眼像の合成像として「色再現性に優れた被写体像」を得ることができる。 When a transmission type spectroscopic filter and an absorption type spectroscopic filter having such spectral transmittance characteristics are used, the colors of the subject images, which are individual eye images formed in the individual eye regions (light receiving regions) 30A to 30D, are different from each other. The so-called "multi-band spectral information" can be acquired, and a "subject image having excellent color reproducibility" can be obtained as a composite image of individual eye images of different colors.

先に説明した例と同様、各個眼領域に結像する被写体光ごとに「透過フィルタ領域における非透過帯域I内の光で、対応する吸収フィルタ領域の非透過帯域IIの光」を、吸収フィルタ領域で吸収することにより迷光を軽減できる。
図8に示した分光透過率:A2、B2、C2、D2、A3、B3、C3、D3も1例であり、この特性に限定されない。
Similar to the example described above, for each subject light imaged in each individual eye region, "light in the non-transmissive band I in the transmissive filter region and light in the non-transmissive band II in the corresponding absorption filter region" is selected as an absorption filter. Stray light can be reduced by absorbing in the area.
The spectral transmittances shown in FIG. 8: A2, B2, C2, D2, A3, B3, C3, and D3 are also examples, and are not limited to this characteristic.

図9は、別の実施の形態例を示す。
図9において、符号1A、1Bはレンズアレイにおいて互いに隣接する2つのレンズを示している。レンズ1Aには吸収型分光フィルタの吸収フィルタ領域5A、透過型分光フィルタの透過フィルタ領域2A、撮像素子30における受光領域である個眼領域DMAが対応する。同様に、レンズ1Bには吸収型分光フィルタの吸収フィルタ領域5B、透過型分光フィルタの透過フィルタ領域2B、撮像素子30における受光領域である個眼領域DMBが対応する。
図の如く、光L10が、レンズ1Aに入射した場合を考える。
このとき、光L10の波長が、吸収フィルタ領域5Aの透過帯域IIに含まれ、且つ、透過フィルタ領域2Aの非透過帯域Iに含まれる場合がある。このような場合、レンズ1Aと吸収フィルタ領域5Aを透過した光L10は、透過フィルタ領域2Aにより反射されて反射光L11となるが、反射光L11が吸収フィルタ領域5Aを透過して、レンズ1Aに隣接するレンズ1Bに入射することもあり得る。
すると、反射光L11はレンズ1Bに反射され反射光L12となって、吸収フィルタ領域5Bに入射する。このとき、吸収フィルタ領域5Bの透過帯域IIが反射光L12の波長を波長帯域に含んでいると、反射光L12は吸収フィルタ領域5Bを透過して、透過フィルタ領域2Bに入射する。透過フィルタ領域2Bの透過帯域Iが、反射光L12の波長を含んでいると、反射光L12は透過フィルタ領域2Bを透過し、ゴースト光として個眼領域DMBに達する。反射光L11やL12はまた、筐体40の内壁等で反射してフレア光となって、個眼領域DMAや個眼領域DMBに入射することもある。このようにレンズ1Aに入射した光L10が、個眼領域をまたいで「レンズ1Bに対応する個眼領域DMB」に迷光として作用することがある。
FIG. 9 shows another embodiment example.
In FIG. 9, reference numerals 1A and 1B indicate two lenses adjacent to each other in the lens array. The lens 1A corresponds to the absorption filter region 5A of the absorption spectroscopic filter, the transmission filter region 2A of the transmission spectroscopic filter, and the individual eye region DMA which is the light receiving region in the image sensor 30. Similarly, the lens 1B corresponds to the absorption filter region 5B of the absorption spectroscopic filter, the transmission filter region 2B of the transmission spectroscopic filter, and the individual eye region DMB which is the light receiving region in the image sensor 30.
As shown in the figure, consider the case where the light L10 is incident on the lens 1A.
At this time, the wavelength of the light L10 may be included in the transmission band II of the absorption filter region 5A and may be included in the non-transmission band I of the transmission filter region 2A. In such a case, the light L10 transmitted through the lens 1A and the absorption filter region 5A is reflected by the transmission filter region 2A to become the reflected light L11, but the reflected light L11 is transmitted through the absorption filter region 5A to the lens 1A. It may be incident on the adjacent lens 1B.
Then, the reflected light L11 is reflected by the lens 1B to become the reflected light L12, and is incident on the absorption filter region 5B. At this time, if the transmission band II of the absorption filter region 5B includes the wavelength of the reflected light L12 in the wavelength band, the reflected light L12 passes through the absorption filter region 5B and is incident on the transmission filter region 2B. When the transmission band I of the transmission filter region 2B includes the wavelength of the reflected light L12, the reflected light L12 passes through the transmission filter region 2B and reaches the individual eye region DMB as ghost light. The reflected light L11 or L12 may also be reflected by the inner wall of the housing 40 or the like to become flare light, and may be incident on the individual eye region DMA or the individual eye region DMB. The light L10 incident on the lens 1A in this way may act as stray light on the “individual eye region DMB corresponding to the lens 1B” across the individual eye region.

この場合、光L10の波長が、吸収フィルタ領域5Bの非透過帯域IIに含まれていれば、反射光L11は、吸収フィルタ領域B5により吸収され、個眼領域DMBに対する迷光とはならない。
即ち、個眼領域DMAに対応する透過フィルタ領域2Aの非透過帯域Iが、個眼領域DMBに対応する吸収フィルタ領域5Bの非透過帯域IIとなっていれば、透過フィルタ領域2Aで反射され、吸収フィルタ領域5Aで吸収されなかった迷光を、個眼領域DMBに対応する吸収フィルタ領域5Bで吸収でき「個眼領域をまたぐ迷光」を抑制できる。
In this case, if the wavelength of the light L10 is included in the non-transmissive band II of the absorption filter region 5B, the reflected light L11 is absorbed by the absorption filter region B5 and does not become stray light for the individual eye region DMB.
That is, if the non-transmissive band I of the transmission filter region 2A corresponding to the individual eye region DMA is the non-transmissive band II of the absorption filter region 5B corresponding to the individual eye region DMB, it is reflected by the transmission filter region 2A. Stray light that was not absorbed in the absorption filter region 5A can be absorbed in the absorption filter region 5B corresponding to the individual eye region DMB, and "stray light that straddles the individual eye region" can be suppressed.

例えば、吸収フィルタ領域5A、透過フィルタ領域2Aの分光透過率特性が、それぞれ図8の「A3」、「A2」で、吸収フィルタ領域5B、透過フィルタ領域2Bの分光透過率特性がそれぞれ図8の「D3」、「D2」であるとした場合を考えてみる。
レンズ1Aに入射する光L10の波長が400nmであれば、この光は吸収フィルタ領域5A、透過フィルタ領域2Aを透過して個眼領域DMAに達する。
しかし、光L10の波長が500nmであると、この光は吸収フィルタ領域5Aを透過し、透過フィルタ領域2Aにより反射されて迷光となる。このような迷光が「個眼領域をまたい」で、吸収フィルタ領域B5に達すると、500nmの光は吸収フィルタ領域5Bの非透過帯域IIに含まれているため吸収され、個眼領域DMBに対する迷光とはならない。
For example, the spectral transmittance characteristics of the absorption filter region 5A and the transmission filter region 2A are "A3" and "A2" in FIG. 8, respectively, and the spectral transmittance characteristics of the absorption filter region 5B and the transmission filter region 2B are shown in FIG. 8, respectively. Consider the case where it is "D3" and "D2".
If the wavelength of the light L10 incident on the lens 1A is 400 nm, this light passes through the absorption filter region 5A and the transmission filter region 2A and reaches the individual eye region DMA.
However, when the wavelength of the light L10 is 500 nm, this light passes through the absorption filter region 5A and is reflected by the transmission filter region 2A to become stray light. When such stray light "crosses the individual eye region" and reaches the absorption filter region B5, the light of 500 nm is absorbed because it is contained in the non-transmissive band II of the absorption filter region 5B, and the stray light with respect to the individual eye region DMB. It does not become.

また、光L10の波長が、600nm、700nmである場合、これらの波長は、吸収フィルタ領域5Bの透過帯域IIに含まれてはいるが、吸収フィルタ領域5Aの非透過帯域Iに含まれているので、吸収フィルタ領域5Aにより吸収されるため、個眼領域DMAに対しても個眼領域DMBに対しても迷光とはならない。
このようにして「個眼領域をまたぐ迷光」が抑制される。
When the wavelengths of the light L10 are 600 nm and 700 nm, these wavelengths are included in the transmission band II of the absorption filter region 5B, but are included in the non-transmission band I of the absorption filter region 5A. Therefore, since it is absorbed by the absorption filter region 5A, it does not become stray light for both the individual eye region DMA and the individual eye region DMB.
In this way, "stray light that straddles the individual eye region" is suppressed.

図10には、撮像装置の実施の他の形態例を示す。
図3におけると同じく、符号10はレンズアレイを構成する個々のレンズを示し、符号30は撮像素子、符号40は筐体を示す。
図10に示す撮像装置では、吸収型分光フィルタ手段を「n枚の吸収型分光フィルタ50−1、・・50−n」で構成し、透過型分光フィルタ手段を「m枚の透過型分光フィルタ20−1・・20−m」で構成している。
FIG. 10 shows an example of another embodiment of the imaging device.
As in FIG. 3, reference numeral 10 indicates an individual lens constituting the lens array, reference numeral 30 indicates an image sensor, and reference numeral 40 indicates a housing.
In the imaging apparatus shown in FIG. 10, the absorption type spectroscopic filter means is composed of "n absorption type spectroscopic filters 50-1, ... 50-n", and the transmission type spectroscopic filter means is "m pieces of transmission type spectroscopic filter". It is composed of "20-1 ... 20-m".

上に説明した例では、透過フィルタ領域の非透過帯域I、吸収フィルタ領域の非透過帯域IIを、ともに「透過率が0」であるとして説明したが、実際の分光フィルタにおいては、非透過帯域と雖も「有限の透過率」を有する場合が多い。
このような場合、1枚の吸収型分光フィルタを用いるのみでは、透過型分光フィルタ手段により反射された光が、吸収型分光フィルタを透過して「迷光」となりやすい。
In the example described above, the non-transmissive band I in the transmission filter region and the non-transmissive band II in the absorption filter region are both described as having "transmittance 0", but in an actual spectroscopic filter, the non-transmissive band And 雖 often have a "finite transmittance".
In such a case, if only one absorption type spectroscopic filter is used, the light reflected by the transmission type spectroscopic filter means tends to pass through the absorption type spectroscopic filter and become "stray light".

そこで、図10の例のように、複数(n)枚の吸収型分光フィルタ50−1・・50−nを用いれば、透過型分光フィルタ手段で反射されて吸収型分光フィルタ手段に入射する光を十分に吸収でき、迷光の発生を有効に低減できる。吸収型分光フィルタ手段をn枚の吸収型分光フィルタで構成すると、吸収型分光フィルタが1枚の場合と比較して、迷光が2n倍抑制される。 Therefore, as in the example of FIG. 10, if a plurality of (n) absorption type spectroscopic filters 50-1 ... 50-n are used, the light reflected by the transmission type spectroscopic filter means and incident on the absorption type spectroscopic filter means. Can be sufficiently absorbed, and the generation of stray light can be effectively reduced. When the absorption type spectroscopic filter means is composed of n absorption type spectroscopic filters, stray light is suppressed by 2n times as compared with the case where there is only one absorption type spectroscopic filter.

また、1枚の透過型分光フィルタの非透過帯域Iおいて有限の透過率があったとしても、図10のように、透過型分光フィルタ手段をm(≧2)枚の透過型分光フィルタで構成することにより、本来「非透過帯域Iで反射されるべき光」が、撮像素子30側へ透過するのを有効に低減させることができ、撮像素子30の受光面に到達して被写体像を結像する光の波長帯域を透過帯域Iに有効に近づけることができる。 Further, even if there is a finite transmittance in the non-transmissive band I of one transmissive spectroscopic filter, as shown in FIG. 10, the transmissive spectroscopic filter means is used with m (≧ 2) transmissive spectroscopic filters. By configuring the structure, it is possible to effectively reduce the transmission of "light that should be reflected in the non-transmissive band I" to the image pickup element 30 side, and the subject image reaches the light receiving surface of the image pickup element 30. The wavelength band of the light to be imaged can be effectively brought close to the transmission band I.

換言すれば、1枚の透過型分光フィルタや1枚の吸収型分光フィルタでは、非透過帯域が「有限の透過率」を有する場合でも、これらを複数枚重ねた透過型分光透過フィルタ手段や吸収型分光フィルタ手段としては、その非透過帯域I、非透過帯域IIの透過率を実質的に0とすることができる。 In other words, in one transmission type spectroscopic filter or one absorption type spectroscopic filter, even if the non-transmission band has "finite transmittance", the transmission type spectroscopic transmission filter means or absorption in which a plurality of these are laminated. As the type spectroscopic filter means, the transmittance of the non-transmissive band I and the non-transmissive band II can be made substantially zero.

図11には、吸収型分光フィルタを構成する2枚の吸収型分光フィルタ50−A、50−Bのうち、吸収型分光フィルタ50−Aを、レンズアレイの光軸(レンズアレイをなす各レンズ10の光軸)に対して傾けて配置した形態例を示す。 In FIG. 11, of the two absorption spectroscopic filters 50-A and 50-B constituting the absorption spectroscopic filter, the absorption spectroscopic filter 50-A is used for the optical axis of the lens array (each lens forming the lens array). An example of the form in which the lens is arranged at an angle with respect to the 10 optical axes) is shown.

吸収型分光フィルタ50−Aをレンズアレイの光軸に対して傾けた場合、迷光の反射方向が変化し、撮像素子30に到達する迷光の量が変化するので、レンズ10の形状や筐体40の形状に応じて、吸収型分光フィルタの「光軸に対する傾き角」を調整することで、迷光を抑制できる。 When the absorption spectroscopic filter 50-A is tilted with respect to the optical axis of the lens array, the reflection direction of stray light changes and the amount of stray light reaching the image sensor 30 changes. Therefore, the shape of the lens 10 and the housing 40 Stray light can be suppressed by adjusting the "tilt angle with respect to the optical axis" of the absorption type spectroscopic filter according to the shape of.

図12には、この発明の撮像装置を用いる「撮像システム」の実施の1形態を説明図として示す。
撮像システムは、撮像装置100と画像処理手段200とを有している。
画像処理手段200はコンピュータ等として構成される制御部210と画像処理部220とを有する。撮像装置100は、この発明のものであって、上に説明した実施の形態例の如きものを適宜用いることができる。
制御部210は、撮像装置100と画像処理部220を制御する。即ち、制御部210は、撮像装置100を制御して「撮像素子の受光面に被写体の個眼像の集合として結像した複眼像」に対応した画像信号IMSを出力させる。画像信号IMSは画像処理部220に入力し、制御部210の制御を受ける画像処理部220により「合成像の形成等の画像処理」を行って出力情報OPIとして出力する。
FIG. 12 shows an embodiment of an “imaging system” using the imaging device of the present invention as an explanatory diagram.
The image pickup system includes an image pickup device 100 and an image processing means 200.
The image processing means 200 has a control unit 210 configured as a computer or the like and an image processing unit 220. As the image pickup apparatus 100, the one of the present invention, such as the embodiment of the above-described embodiment, can be appropriately used.
The control unit 210 controls the image pickup device 100 and the image processing unit 220. That is, the control unit 210 controls the image pickup device 100 to output an image signal IMS corresponding to "a compound eye image formed as a set of individual eye images of the subject on the light receiving surface of the image pickup element". The image signal IMS is input to the image processing unit 220, and the image processing unit 220 under the control of the control unit 210 performs "image processing such as formation of a composite image" and outputs it as output information OPI.

以上のように、この発明によれば、以下の如き新規な撮像装置と撮像システムを実現できる。
[1]
M(>1)個のレンズ(10)が配置されたレンズアレイ(LA)の前記M個のレンズによる被写体(01)の像を、前記M個のレンズに共通の撮像素子(30)の受光面にM個の個眼像として結像させ、前記M個の個眼像に対応した画像信号(IMS)を取得する撮像装置であって、前記レンズアレイと前記受光面との間に配置されて、前記M個のレンズから前記受光面へ向かう光を分光する1枚以上の透過型分光フィルタによる透過型分光フィルタ手段(20)と、前記レンズアレイと前記透過型分光フィルタ手段との間に配置された1枚以上の吸収型分光フィルタによる吸収型分光フィルタ手段(50)と、を有し、前記透過型分光フィルタ手段(20)は、前記M個のレンズごとに波長帯域が1種類以上の透過帯域Iの光を透過し、波長帯域が非透過帯域Iの光を非透過とし、前記吸収型分光フィルタ手段(50)は、前記M個のレンズごとに波長帯域が前記透過帯域Iと少なくとも一部が共通する透過帯域IIの光を透過し、波長帯域が前記非透過帯域Iと少なくとも一部が共通する非透過帯域IIの光を吸収する撮像装置(図3、図9、図10、図11)。
As described above, according to the present invention, the following novel imaging apparatus and imaging system can be realized.
[1]
The image of the subject (01) by the M lenses of the lens array (LA) in which the M (> 1) lenses (10) are arranged is received by the imaging element (30) common to the M lenses. An imaging device that forms an image on a surface as M individual eye images and acquires an image signal (IMS) corresponding to the M individual eye images, and is arranged between the lens array and the light receiving surface. Then, between the transmission type spectroscopic filter means (20) by one or more transmission type spectroscopic filters that disperse the light from the M lenses toward the light receiving surface, and the lens array and the transmission type spectroscopic filter means. It has an absorption type spectroscopic filter means (50) by one or more arranged absorption type spectroscopic filters, and the transmission type spectroscopic filter means (20) has one or more kinds of wavelength bands for each of the M lenses. The light of the transmission band I is transmitted, the light of the non-transmission band I is made non-transmissive, and the absorption type spectroscopic filter means (50) has the wavelength band of the transmission band I for each of the M lenses. An imaging device that transmits light in a transmission band II that is at least partly common and absorbs light in a non-transmission band II whose wavelength band is at least partly common to the non-transmission band I (FIGS. 3, 9, and 10). , FIG. 11).

[2]
[1]記載の撮像装置であって、前記透過型分光フィルタ手段が前記M個のレンズに対して共通の透過帯域Iを有し、前記吸収型分光フィルタ手段が前記M個のレンズに対して共通の非透過帯域IIを有する撮像装置(図6、図7)
[2]
In the imaging apparatus according to [1], the transmission type spectroscopic filter means has a common transmission band I for the M lenses, and the absorption type spectroscopic filter means has the same transmission band I for the M lenses. An imaging device having a common non-transmissive band II (FIGS. 6 and 7) .

[3]
[1]記載の撮像装置であって、前記M個のレンズに対応するM個の個眼領域(30A〜30D)が、互いに異なるN(M≧N≧2)種の波長帯域の光で個別に露光されるように、前記透過型分光フィルタ手段と前記吸収型分光フィルタ手段の分光透過率特性が定められている撮像装置(図3、図8)
[3]
In the imaging apparatus according to [1], the M individual eye regions (30A to 30D) corresponding to the M lenses are individually separated by light having different wavelength bands of N (M ≧ N ≧ 2). An imaging device (FIGS. 3 and 8) in which the spectral transmittance characteristics of the transmissive spectroscopic filter means and the absorption spectroscopic filter means are defined so as to be exposed to .

[4]
[3]記載の撮像装置であって、前記透過型分光フィルタ手段の異なる個眼領域に対する領域の個々を透過フィルタ領域、前記吸収型分光フィルタ手段の前記異なる個眼領域に対する領域の個々を吸収フィルタ領域とするとき、異なる個眼領域において、一方の前記透過フィルタ領域の非透過帯域Iが他方の吸収フィルタ領域の非透過帯域IIとなるように、前記前記吸収型分光フィルタ手段の吸収フィルタ領域の分光透過率特性が定められている撮像装置(図9)
[4]
[3] In the imaging apparatus according to the above, the transmission filter region is an individual region of the transmission type spectroscopic filter means for different individual eye regions, and the absorption filter is an individual region of the absorption type spectroscopic filter means for different individual eye regions. When it is a region, the absorption filter region of the absorption type spectroscopic filter means is set so that the non-transmission band I of one of the transmission filter regions becomes the non-transmission band II of the other absorption filter region in different individual eye regions. An image pickup device having defined spectral transmittance characteristics (Fig. 9) .

[5]
[1]ないし[4]の何れか1に記載の撮像装置において、前記透過型分光フィルタ手段が、2枚以上の透過型分光フィルタ(50−1、・・50−n)により構成されている撮像装置(図10)
[5]
In the imaging apparatus according to any one of [1] to [4], the transmission spectroscopic filter means is composed of two or more transmission spectroscopic filters (50-1, ... 50-n). Imaging device (Fig. 10) .

[6]
[1]ないし[5]の何れか1に記載の撮像装置において、前記吸収型分光フィルタ手段が、2枚以上の吸収型分光フィルタにより構成されている撮像装置(図10)。
[6]
The imaging apparatus according to any one of [1] to [5], wherein the absorption spectral filter means, an imaging apparatus that is more configured two or more absorption spectral filter (Figure 10).

[7]
[1]ないし[6]の何れか1に記載の撮像装置において、1枚以上の吸収型分光フィルタが、レンズアレイの光軸に対して傾いて配置されている撮像素子(図11)
[7]
In the image pickup apparatus according to any one of [1] to [6], an image pickup device in which one or more absorption spectroscopic filters are arranged at an angle with respect to the optical axis of the lens array (FIG. 11) .

[8]
[1]ないし[7]の何れか1に記載の撮像素子(100)と、前記撮像素子により取得される前記M個の個眼像に対応した画像信号に対して、画像処理を行う画像処理手段(200)を有する撮像システム(図12)
[8]
Image processing that performs image processing on the image sensor (100) according to any one of [1] to [7] and the image signal corresponding to the M individual eye images acquired by the image sensor. An image pickup system (FIG. 12) having means (200) .

以上、発明の好ましい実施の形態について説明したが、この発明は上述した特定の実施形態に限定されるものではなく、上述の説明で特に限定していない限り、特許請求の範囲に記載された発明の趣旨の範囲内において、種々の変形・変更が可能である。
たとえば、吸収型分光フィルタ手段は、透過型分光フィルタ手段と受光面の間に配置してもよい。このようにしても、撮像素子に向かう迷光を有効に吸収して、迷光の影響を抑制できる。
Although the preferred embodiment of the invention has been described above, the present invention is not limited to the specific embodiment described above, and the invention described in the claims unless otherwise limited in the above description. Various modifications and changes are possible within the scope of the above.
For example, the absorption spectroscopic filter means may be arranged between the transmission spectroscopic filter means and the light receiving surface. Even in this way, the stray light directed toward the image sensor can be effectively absorbed and the influence of the stray light can be suppressed.

この発明の実施の形態に記載された効果は、発明から生じる好適な効果を列挙したに過ぎず、発明による効果は「実施の形態に記載されたもの」に限定されるものではない。 The effects described in the embodiments of the present invention merely list suitable effects arising from the invention, and the effects according to the invention are not limited to "the ones described in the embodiments".

01 被写体
10 レンズアレイを構成する個々のレンズ
20 透過型分光フィルタ(透過型分光フィルタ手段)
50 吸収型分光フィルタ(吸収型分光フィルタ手段)
LA レンズアレイ
10A〜10D レンズアレイを構成するレンズ
20A〜20D レンズ10A〜10Dに対応する透過フィルタ領域
50A〜50D レンズ10A〜10Dに対応する吸収フィルタ領域
30A〜30D レンズ10A〜10Dに対応する受光領域(個眼領域)
01 Subject
10 Individual lenses that make up the lens array
20 Transmission type spectroscopic filter (transmission type spectroscopic filter means)
50 Absorption-type spectroscopic filter (absorption-type spectroscopic filter means)
LA lens array
Lenses that make up a 10A-10D lens array
Transmission filter area corresponding to 20A to 20D lenses 10A to 10D
Absorption filter area corresponding to 50A to 50D lenses 10A to 10D
30A to 30D Light receiving area (individual eye area) corresponding to lenses 10A to 10D

特開2011−182237号公報Japanese Unexamined Patent Publication No. 2011-182237 特開2007−304525号公報JP-A-2007-304525

Claims (8)

M(>1)個のレンズが配置されたレンズアレイの前記M個のレンズによる被写体の像を、前記M個のレンズに共通の撮像素子の受光面にM個の個眼像として結像させ、前記M個の個眼像に対応した画像信号を取得する撮像装置であって、
前記レンズアレイと前記受光面との間に配置されて、前記M個のレンズから前記受光面へ向かう光を分光する1枚以上の透過型分光フィルタによる透過型分光フィルタ手段と、
前記レンズアレイと前記透過型分光フィルタ手段との間に配置された1枚以上の吸収型分光フィルタによる吸収型分光フィルタ手段と、を有し、
前記透過型分光フィルタ手段は、前記M個のレンズごとに波長帯域が1種類以上の透過帯域Iの光を透過し、波長帯域が非透過帯域Iの光を非透過とし、
前記吸収型分光フィルタ手段は、前記M個のレンズごとに波長帯域が前記透過帯域Iと少なくとも一部が共通する透過帯域IIの光を透過し、波長帯域が前記非透過帯域Iと少なくとも一部が共通する非透過帯域IIの光を吸収する撮像装置。
The image of the subject by the M lenses in the lens array in which M (> 1) lenses are arranged is formed as M individual eye images on the light receiving surface of the image sensor common to the M lenses. An image sensor that acquires image signals corresponding to the M individual eye images.
Transmission spectroscopic filter means by one or more transmissive spectroscopic filters arranged between the lens array and the light receiving surface to disperse light from the M lenses toward the light receiving surface.
It has an absorption type spectroscopic filter means by one or more absorption type spectroscopic filters arranged between the lens array and the transmission type spectroscopic filter means .
The transmissive spectroscopic filter means transmits light having a transmission band I having one or more kinds of wavelength bands for each of the M lenses , and makes light having a non-transmissive band I non-transmitting.
The absorption spectroscopic filter means transmits light in a transmission band II whose wavelength band is at least partially shared with the transmission band I for each of the M lenses, and has a wavelength band at least a part of the non-transmission band I. An imaging device that absorbs light in the non-transmissive band II that is common to all .
請求項1記載の撮像装置であって、
前記透過型分光フィルタ手段が前記M個のレンズに対して共通の透過帯域Iを有し、前記吸収型分光フィルタ手段が前記M個のレンズに対して共通の非透過帯域IIを有する撮像装置。
The imaging device according to claim 1.
An imaging device in which the transmission type spectroscopic filter means has a common transmission band I for the M lenses, and the absorption type spectral filter means has a non-transmission band II common to the M lenses .
請求項1記載の撮像装置であって、
前記M個のレンズに対応するM個の個眼領域が、互いに異なるN(M≧N≧2)種の波長帯域の光で個別に露光されるように、前記透過型分光フィルタ手段と前記吸収型分光フィルタ手段の分光透過率特性が定められている撮像装置。
The imaging device according to claim 1 .
The transmissive spectroscopic filter means and the absorption so that the M individual eye regions corresponding to the M lenses are individually exposed to light in different wavelength bands of N (M ≧ N ≧ 2). An imaging device in which the spectral transmittance characteristics of the type spectroscopic filter means are defined .
請求項3記載の撮像装置であって、
前記透過型分光フィルタ手段の異なる個眼領域に対する領域の個々を透過フィルタ領域、前記吸収型分光フィルタ手段の前記異なる個眼領域に対する領域の個々を吸収フィルタ領域とするとき、異なる個眼領域において、一方の前記透過フィルタ領域の非透過帯域Iが他方の吸収フィルタ領域の非透過帯域IIとなるように、前記前記吸収型分光フィルタ手段の吸収フィルタ領域の分光透過率特性が定められている撮像装置。
The imaging device according to claim 3 .
When each of the regions for different individual eye regions of the transmission type spectroscopic filter means is a transmission filter region and each of the regions of the absorption type spectroscopic filter means for different individual eye regions is an absorption filter region, in different individual eye regions, An imaging device in which the spectral transmittance characteristics of the absorption filter region of the absorption type spectroscopic filter means are defined so that the non-transmissive band I of one of the transmission filter regions becomes the non-transmission band II of the other absorption filter region. ..
請求項1ないし4の何れか1項に記載の撮像装置において、
前記透過型分光フィルタ手段が、2枚以上の透過型分光フィルタにより構成されている撮像装置。
In the imaging device according to any one of claims 1 to 4.
An imaging device in which the transmission spectroscopic filter means is composed of two or more transmission spectroscopic filters .
請求項1ないし5の何れか1項に記載の撮像装置において、
前記吸収型分光フィルタ手段が、2枚以上の吸収型分光フィルタにより構成されている撮像装置。
In the imaging device according to any one of claims 1 to 5,
An imaging device in which the absorption spectroscopic filter means is composed of two or more absorption spectroscopic filters .
請求項1ないし6の何れか1項に記載の撮像装置において、
1枚以上の吸収型分光フィルタが、レンズアレイの光軸に対して傾いて配置されている撮像装置。
In the imaging device according to any one of claims 1 to 6.
An imaging device in which one or more absorption spectroscopic filters are arranged at an angle with respect to the optical axis of the lens array .
請求項1ないし7の何れか1項に記載の撮像装置と、The imaging device according to any one of claims 1 to 7.
前記撮像装置により取得される前記M個の個眼像に対応した画像信号に対して、画像処理を行う画像処理手段を有する撮像システム。An imaging system having an image processing means for performing image processing on image signals corresponding to the M individual eye images acquired by the imaging device.
JP2016101799A 2016-05-20 2016-05-20 Imaging equipment and imaging system Active JP6772548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016101799A JP6772548B2 (en) 2016-05-20 2016-05-20 Imaging equipment and imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016101799A JP6772548B2 (en) 2016-05-20 2016-05-20 Imaging equipment and imaging system

Publications (2)

Publication Number Publication Date
JP2017208778A JP2017208778A (en) 2017-11-24
JP6772548B2 true JP6772548B2 (en) 2020-10-21

Family

ID=60415690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016101799A Active JP6772548B2 (en) 2016-05-20 2016-05-20 Imaging equipment and imaging system

Country Status (1)

Country Link
JP (1) JP6772548B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022016851A (en) 2020-07-13 2022-01-25 キヤノン株式会社 Imaging apparatus and imaging system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125417U (en) * 1988-02-16 1989-08-28
JP6226606B2 (en) * 2013-07-23 2017-11-08 キヤノン株式会社 Color filter array, solid-state imaging device, imaging device
JP2015169688A (en) * 2014-03-05 2015-09-28 コニカミノルタ株式会社 Compound-eye imaging optical system and imaging apparatus
JP6536877B2 (en) * 2014-07-31 2019-07-03 パナソニックIpマネジメント株式会社 Imaging device and imaging system

Also Published As

Publication number Publication date
JP2017208778A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
US5982497A (en) Multi-spectral two-dimensional imaging spectrometer
JP2016036127A (en) Imaging device and imaging system
JP5842146B2 (en) Solid-state imaging device, imaging device, and spectroscopic element
JP2005284285A (en) Optical device for camera capable of restraining reflected wave generated by incident wave
US11895400B2 (en) Imaging device with an improved autofocusing performance
JP2016133700A (en) Head-up display
WO2017183249A1 (en) Projection display device
JP2018049261A (en) Multi spectrum diaphragm device
WO2020031655A1 (en) Imaging device and imaging system
JP2014185917A (en) Imaging device
JP6123213B2 (en) Multiband camera
JP6772548B2 (en) Imaging equipment and imaging system
JP2008158182A (en) Image projection device and image projection system
TWI440958B (en) Light source system for stereoscopic projection
EP4049175A1 (en) Biometric imaging device and electronic device
JP7292848B2 (en) OPTICAL DEVICE AND IMAGING SYSTEM INCLUDING THE SAME
JP2020071327A (en) Optical system, accessory device having the same, and image capturing device
US3751133A (en) Color separation optical system
Morrison et al. An alternative approach to infrared optics
EP3623856A1 (en) Narrow bandpass imaging lens
US20030052973A1 (en) Color imaging unit, optical filter of color imaging unit, and interchangeable lens of color imaging unit
JP4493119B2 (en) UV microscope
TWI772871B (en) Optical lens, imaging module and electronic device
WO2022041990A1 (en) Camera module and electronic device
Davenport et al. Simulation-based computation of the glare spread function in camera systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R151 Written notification of patent or utility model registration

Ref document number: 6772548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151