JP6772018B2 - A method for producing ultrafine fibers suitable for ultrafineness, a method for producing ultrafine fibers, ultrafine fibers suitable for ultrafineness, and ultrafine fibers. - Google Patents

A method for producing ultrafine fibers suitable for ultrafineness, a method for producing ultrafine fibers, ultrafine fibers suitable for ultrafineness, and ultrafine fibers. Download PDF

Info

Publication number
JP6772018B2
JP6772018B2 JP2016197247A JP2016197247A JP6772018B2 JP 6772018 B2 JP6772018 B2 JP 6772018B2 JP 2016197247 A JP2016197247 A JP 2016197247A JP 2016197247 A JP2016197247 A JP 2016197247A JP 6772018 B2 JP6772018 B2 JP 6772018B2
Authority
JP
Japan
Prior art keywords
treatment
fibers
fiber
ultrafine
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016197247A
Other languages
Japanese (ja)
Other versions
JP2017179685A (en
Inventor
邦夫 千頭
邦夫 千頭
大介 飯田
大介 飯田
岡田 純
純 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chikami Miltec Inc
Original Assignee
Chikami Miltec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chikami Miltec Inc filed Critical Chikami Miltec Inc
Publication of JP2017179685A publication Critical patent/JP2017179685A/en
Application granted granted Critical
Publication of JP6772018B2 publication Critical patent/JP6772018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paper (AREA)

Description

本発明は、極細化に適した極細化用繊維を製造する方法、その極細化用繊維を用いて極細繊維を製造する方法、極細化に適した極細化用繊維、及び、極細繊維に関する。 The present invention relates to a method for producing an ultrafine fiber suitable for ultrafineness, a method for producing an ultrafine fiber using the ultrafine fiber, an ultrafine fiber suitable for ultrafineness, and an ultrafine fiber.

繊維は様々な用途で使用されている。そして、例えば、浄水器、空気清浄器およびマスク等の各種フィルター、正極材と負極材を分離する電池セパレータ、透過膜および保護膜等のフィルム、皮膚の貼付材料、各種低目付シートの補強材料等の分野に用いる繊維として、その吸着力等の性能を高めるために、繊維に対し叩解処理等の極細化処理を行い、比表面積を高めた極細繊維が用いられている。 Fibers are used in a variety of applications. Then, for example, various filters such as water purifiers, air purifiers and masks, battery separators for separating positive electrode materials and negative electrode materials, films such as permeable membranes and protective membranes, skin sticking materials, reinforcing materials for various low-grade sheets, etc. As the fiber used in the above field, in order to improve the performance such as the adsorption force, the fiber is subjected to an ultrafine treatment such as beating treatment to increase the specific surface area.

さらに、近年では、ナノファイバーと呼ばれる、直径が1〜100nmで長さが直径の100倍以上ある繊維も知られている。ナノファイバーは、ナノサイズの直径により新たな特性を有することがわかっており、これを活かして様々な分野への応用が試みられている。例えば、セルロース系繊維から製造するセルロースナノファイバーは、低密度高強度、より大きい比表面積といった特性から、上記したフィルター、フィルム、電池セパレータ、補強材料等の様々な分野への応用が期待されている。 Further, in recent years, a fiber called nanofiber, which has a diameter of 1 to 100 nm and a length of 100 times or more the diameter, is also known. It is known that nanofibers have new characteristics due to their nano-sized diameter, and applications to various fields are being attempted by taking advantage of this. For example, cellulose nanofibers produced from cellulosic fibers are expected to be applied to various fields such as the above-mentioned filters, films, battery separators, reinforcing materials, etc. due to their characteristics such as low density and high strength and larger specific surface area. ..

例えば、このようなセルロースナノファイバーを得る方法としては、高圧ホモジナイザーにより極細化する方法や、回転する砥石間で繊維を磨砕する方法などの機械的処理により繊維を極細化してセルロースナノファイバーを得る方法が知られている(特開2010−216021号公報(特許文献1))。 For example, as a method for obtaining such cellulose nanofibers, the fibers are micronized by mechanical treatment such as a method of ultrafinening with a high-pressure homogenizer or a method of grinding the fibers between rotating grindstones to obtain cellulose nanofibers. A method is known (Japanese Unexamined Patent Publication No. 2010-216021 (Patent Document 1)).

特開2010−216021号公報Japanese Unexamined Patent Publication No. 2010-216021

しかし、例えば、特許文献1に記載の方法など、繊維を極細化するには、要する加工時間が長く、また大きな労力や機械的エネルギーを必要とすることや、極細化処理を施した繊維の全てが所望の繊維径まで極細化できるわけではなく、極細繊維の生産効率の上昇が望まれているなど、改善の余地がある。 However, for example, as in the method described in Patent Document 1, in order to make the fiber extremely fine, the processing time is long, a large amount of labor and mechanical energy are required, and all the fibers that have undergone the ultrafine treatment are all. However, it is not possible to make the fiber diameter as fine as desired, and there is room for improvement, such as an increase in the production efficiency of the fine fiber.

そこで、ナノファイバーや、ナノファイバーとまではいかずとも極めて繊維径の小さい繊維など極細繊維を製造する上で、繊維の芯の部分を残さない極細繊維を製造するとともに、要する加工時間を短縮することにより、極細繊維を製造するのに要する労力・エネルギーを低減し、極細繊維の生産効率を高める方法の実現が望まれる。 Therefore, in order to produce ultrafine fibers such as nanofibers and fibers with extremely small fiber diameters, if not nanofibers, it is necessary to produce ultrafine fibers that do not leave the core of the fibers and shorten the processing time required. Therefore, it is desired to realize a method of reducing labor and energy required for producing ultrafine fibers and increasing the production efficiency of ultrafine fibers.

本発明に係る極細化に適した極細化用繊維を製造する方法は、
セルロース系繊維に加工処理を施すことにより極細化に適した極細化用繊維を製造する方法であって、
前記加工処理として、前記セルロース系繊維を含水させて大気圧以上の圧力下で加温する加圧加温処理と、
前記加圧加温処理後の前記セルロース系繊維を凍結させた後融解させる凍結融解処理と、を行う。
The method for producing an ultrafine fiber suitable for ultrafine according to the present invention is
It is a method of producing ultrafine fibers suitable for ultrafineness by processing cellulosic fibers.
As the processing treatment, a pressure heating treatment in which the cellulosic fiber is moistened and heated under a pressure of atmospheric pressure or higher, and a pressure heating treatment .
A freeze-thaw treatment is performed in which the cellulosic fibers after the pressure heating treatment are frozen and then thawed .

また、本発明に係る極細化に適した極細化用繊維を製造する方法は、
セルロース系繊維に加工処理を施すことにより極細化に適した極細化用繊維を製造する方法であって、
前記セルロース系繊維を含水させた後凍結させ、その後融解させる凍結融解処理と、
前記凍結融解処理後の前記セルロース系繊維を大気圧以上の圧力下で加温する加圧加温処理と、を行う。
Further, a method for producing an ultrafine fiber suitable for ultrafine according to the present invention is
It is a method of producing ultrafine fibers suitable for ultrafineness by processing cellulosic fibers.
Freezing and thawing treatment in which the cellulosic fibers are moistened, frozen, and then thawed .
A pressure heating treatment is performed in which the cellulosic fibers after the freeze-thaw treatment are heated under a pressure of atmospheric pressure or higher .

発明者は、繊維に極細化処理を施すのに先立って、その繊維に対し、繊維を含水させて大気圧以上の圧力下で加温する加圧加温処理と、含水させた繊維を凍結させた後融解させる凍結融解処理との両方又は一方を施すことで、その後の極細化処理による繊維の解繊性が効果的に高まるとともにフィブリル化が効果的に促進される等、極細化における処理性能が効果的に向上することを見出した。さらに、この加圧加温処理と凍結融解処理とを組み合わせて実行するとその後の極細化処理による繊維の処理性能が一層効果的に高まることも見出した。そこで、これらの構成によれば、繊維の極細化処理に先立って、加工処理として繊維に対して加圧加温処理と凍結融解処理との両方又はいずれか一方を施し、極細化に適した極細化用繊維を製造する。このような処理性能が高められた極細化用繊維を用いて極細化処理を行えば、繊維の太い芯の部分を残さず全体的に極細繊維を製造することができ、また、要する加工時間を短縮することにより、極細繊維を製造するのに要する労力・エネルギーを効果的に低減し、極細繊維の生産効率を効果的に高めることができる。また、この構成によれば、フィルター、フィルム、電池セパレータ、補強材料等に適した極細繊維の製造に適した極細化用繊維を得ることができる。 Prior to applying the ultrafine treatment to the fiber, the inventor performs a pressure heating treatment in which the fiber is impregnated and heated under a pressure of atmospheric pressure or higher, and the impregnated fiber is frozen. By applying both or one of the freeze-thaw treatment to thaw after the fiber, the fibrillation property of the fiber by the subsequent micronization treatment is effectively enhanced and the fibrillation is effectively promoted. Was found to improve effectively. Furthermore, it was also found that when the pressure heating treatment and the freeze-thaw treatment are performed in combination, the processing performance of the fibers by the subsequent ultrafine treatment is further effectively enhanced. Therefore, according to these configurations, prior to the ultrafine processing of the fiber, the fiber is subjected to both or one of the pressure heating treatment and the freeze-thaw treatment as a processing treatment, and the ultrafineness suitable for the ultrafineness is applied. Manufactures chemical fibers. If the ultrafine fiber is used for the ultrafine fiber having improved processing performance, the ultrafine fiber can be produced as a whole without leaving the thick core portion of the fiber, and the processing time required can be reduced. By shortening the length, the labor and energy required to produce the ultrafine fibers can be effectively reduced, and the production efficiency of the ultrafine fibers can be effectively increased. Further, according to this configuration, it is possible to obtain ultrafine fibers suitable for producing ultrafine fibers suitable for filters, films, battery separators, reinforcing materials and the like.

1つの態様として、前記加圧加温処理として、前記セルロース系繊維を大気圧以上の圧力下の沸騰水に所定時間浸漬させると好適である。 As one embodiment, it is preferable to immerse the cellulosic fiber in boiling water under atmospheric pressure or higher for a predetermined time as the pressure heating treatment.

この構成によれば、例えば圧力鍋といった容易に入手可能な機器を用いて加圧加温処理を行うことができる。 According to this configuration, the pressure heating treatment can be performed using an easily available device such as a pressure cooker.

1つの態様として、前記沸騰水は酸水溶液を沸騰させたものであると好適である。 As one embodiment, it is preferable that the boiling water is a boiled acid aqueous solution.

発明者は、上記態様において沸騰水を酸水溶液を沸騰させたものとすることにより、繊維の極細化における処理性能が一層効果的に高まることを見出した。そして、この構成によれば、極細化における処理性能が一層効果的に高められた極細化用繊維を得ることができる。 The inventor has found that by using boiling water as boiling water to boil an acid aqueous solution in the above embodiment, the treatment performance in ultrafine fiber thinning is further effectively enhanced. Then, according to this configuration, it is possible to obtain an ultrafine fiber whose processing performance in ultrafineness is more effectively enhanced.

1つの態様として、前記セルロース系繊維には予め亀裂を生じさせておくと好適である。 As one embodiment, it is preferable to generate cracks in the cellulosic fibers in advance.

この構成によれば、繊維の含水率を高めることができ加圧加温処理又は凍結融解処理により極細化における処理性能を一層効果的に高めることができる。 According to this configuration, the water content of the fiber can be increased, and the treatment performance in ultrafineness can be further effectively enhanced by the pressure heating treatment or the freeze-thaw treatment.

本発明に係る極細繊維を製造する方法は、
上記方法により製造した前記極細化用繊維に極細化処理を施して極細繊維を製造する。
The method for producing the ultrafine fiber according to the present invention is
The ultrafine fibers produced by the above method are subjected to an ultrafine treatment to produce ultrafine fibers.

この構成によれば、繊維の太い芯の部分を残さず全体的に極細繊維を製造することができ、また、要する加工時間を短縮することにより、製造に要する労力・エネルギーが効果的に低減され、且つ、極細繊維の生産効率が効果的に高められた極細化用繊維を用いることで、極めて効率的に極細繊維を製造することができる。 According to this configuration, it is possible to manufacture ultrafine fibers as a whole without leaving a thick core portion of the fibers, and by shortening the processing time required, the labor and energy required for manufacturing are effectively reduced. Moreover, by using the ultrafine fibers whose production efficiency of the ultrafine fibers is effectively enhanced, the ultrafine fibers can be produced extremely efficiently.

一つの態様として、得られる前記極細化用繊維の平均繊維径が1〜1000nmであると好適である。 As one embodiment, it is preferable that the average fiber diameter of the obtained ultrafine fibers is 1 to 1000 nm.

この構成によれば、高性能のフィルター、フィルム、電池セパレータ、補強材料等を製造できる極細繊維を得ることができる。 According to this configuration, it is possible to obtain ultrafine fibers capable of producing high-performance filters, films, battery separators, reinforcing materials and the like.

本発明に係る極細化に適した極細化用繊維は、
セルロース系繊維に加工処理を施すことにより製造される極細化に適した極細化用繊維であって、
前記加工処理として、前記セルロース系繊維を含水させて大気圧以上の圧力下で加温する加圧加温処理と、
前記加圧加温処理後の前記セルロース系繊維を凍結させた後融解させる凍結融解処理と、が施された極細化用繊維である。
また、本発明に係る極細化に適した極細化用繊維は、
セルロース系繊維に加工処理を施すことにより製造される極細化に適した極細化用繊維であって、
前記加工処理として、前記セルロース系繊維を含水させた後凍結させ、その後融解させる凍結融解処理と、
前記凍結融解処理後の前記セルロース系繊維を大気圧以上の圧力下で加温する加圧加温処理と、が施された極細化用繊維である。
The ultrafine fiber suitable for ultrafine according to the present invention is
An ultrafine fiber produced by processing a cellulosic fiber and suitable for ultrafineness.
As the processing treatment, a pressure heating treatment in which the cellulosic fiber is moistened and heated under a pressure of atmospheric pressure or higher, and a pressure heating treatment .
This is an ultrafine fiber subjected to a freeze-thaw treatment in which the cellulosic fiber after the pressure heating treatment is frozen and then thawed.
Further, the ultrafine fiber suitable for ultrafine according to the present invention is
An ultrafine fiber produced by processing a cellulosic fiber and suitable for ultrafineness.
As the processing treatment , a freeze-thaw treatment in which the cellulosic fiber is moistened, then frozen, and then thawed , and
The ultrafine fiber is subjected to a pressure heating treatment in which the cellulosic fiber after the freeze-thaw treatment is heated under a pressure of atmospheric pressure or higher .

つまり、これら構成のように、繊維に加圧加温処理及び凍結融解処理を施すことで、極細化に適した極細化用繊維を得ることができる。具体的に説明すると、図15〜17(それぞれ叩解処理後の繊維であって、図15が加工処理として加圧加温処理を行った繊維で、図16が加工処理として加圧加温処理と凍結融解処理とを行った繊維で、図17が加工処理を行っていない繊維)に示すように、図15の加圧加温処理を行った繊維は、図17の加工処理を行っていない繊維に比べ、繊維の断面に多くの亀裂が確認でき、また、繊維の表面からより極細の繊維に分かれている。つまり、繊維内部で生じていた亀裂に沿って繊維が細かく裂けていっていることがわかる。さらに、図16の加圧加温処理と凍結融解処理とを行った繊維では、繊維内部で生じていた亀裂に沿って、図15に比べさらに細かく繊維が裂けていっていることがわかる。このように、本構成に係る加工処理を行うことにより繊維内部に細かな亀裂が生じ、その細かな亀裂に沿って繊維が細かく裂けていっていることがわかる。つまり、上記の加工処理を施した極細化用繊維は、繊維内部に細かな亀裂が生じたものとなっており、これにより、極細繊維の生産効率が高められた繊維となっている。
なお、上記の加工処理を施すことで、繊維内部に細かな亀裂が生じるという新規で且つ特徴的な構造を有する極細化用繊維を得ることができるが、この繊維内部に生じた細かな亀裂の構造等を具体的に特定することは極めて困難であり、そのため、本構成に係る極細化用繊維は、繊維に施した加工処理の内容(加圧加温処理又は凍結融解処理)によって初めて具体的に特定されるものとなっている。
That is, by subjecting the fibers to pressure heating treatment and freeze-thaw treatment as in these configurations, ultrafine fibers suitable for ultrafineness can be obtained. Specifically, FIGS. 15 to 17 (fibers after beating, FIG. 15 shows fibers subjected to pressure heating treatment as processing treatment, and FIG. 16 shows pressure heating treatment as processing treatment. As shown in (Fig. 17 shows fibers that have not been processed), the fibers that have been subjected to freeze-thaw treatment and that have undergone pressure heating treatment in FIG. 15 are fibers that have not been processed in FIG. Many cracks can be confirmed in the cross section of the fiber, and the fiber is divided into finer fibers from the surface of the fiber. That is, it can be seen that the fiber is finely torn along the cracks generated inside the fiber. Further, it can be seen that in the fibers subjected to the pressure heating treatment and the freeze-thaw treatment in FIG. 16, the fibers are torn more finely than in FIG. 15 along the cracks generated inside the fibers. As described above, it can be seen that the processing process according to this configuration causes fine cracks inside the fibers, and the fibers are finely split along the fine cracks. That is, the ultrafine fibers subjected to the above processing treatment have fine cracks inside the fibers, and as a result, the production efficiency of the ultrafine fibers is improved.
By performing the above processing treatment, it is possible to obtain an ultrafine fiber having a novel and characteristic structure in which fine cracks are generated inside the fiber, but the fine cracks generated inside the fiber can be obtained. It is extremely difficult to specifically specify the structure, etc. Therefore, the ultrafine fibers according to this configuration are specified only by the content of the processing treatment (pressurization heating treatment or freeze-thaw treatment) applied to the fibers. It is specified in.

本発明に係る極細繊維は、
上記本発明に係る極細化用繊維に叩解処理を施すことで製造される極細繊維である。
The ultrafine fibers according to the present invention are
It is an ultrafine fiber produced by subjecting the ultrafine fiber according to the present invention to a beating treatment.

上記したように、本発明に係る極細化用繊維は繊維内部に細かな亀裂が生じるという新規で且つ特徴的な構造を有するものであり、このような極細化用繊維によれば、化学的処理で繊維に変性をもたらすことなく、極細繊維を容易に得ることができる。このような極細繊維は、極細化用繊維に叩解処理を施すことで製造されることによって初めて特定されるものであり、上記構成により、製造に要するコストが低減された極細繊維を得ることができる。 As described above, the ultrafine fiber according to the present invention has a novel and characteristic structure in which fine cracks are generated inside the fiber, and according to such an ultrafine fiber, chemical treatment is performed. The ultrafine fibers can be easily obtained without causing modification to the fibers. Such ultrafine fibers are specified for the first time by being produced by subjecting the ultrafine fibers to a beating treatment, and the above-mentioned configuration makes it possible to obtain ultrafine fibers in which the cost required for production is reduced. ..

実施例1における試料の拡大図Enlarged view of the sample in Example 1 実施例2における試料の拡大図Enlarged view of the sample in Example 2 実施例3における試料の拡大図Enlarged view of the sample in Example 3 実施例4における試料の拡大図Enlarged view of the sample in Example 4 比較例1における試料の拡大図Enlarged view of the sample in Comparative Example 1 比較例2における試料の拡大図Enlarged view of the sample in Comparative Example 2 実施例5における試料の拡大図Enlarged view of the sample in Example 5 比較例3における試料の拡大図Enlarged view of the sample in Comparative Example 3 実施例6における試料の拡大図Enlarged view of the sample in Example 6 実施例7における試料の拡大図Enlarged view of the sample in Example 7 比較例4における試料の拡大図Enlarged view of the sample in Comparative Example 4 実施例6における繊維の断面拡大図Enlarged cross-sectional view of the fiber in Example 6 実施例7における繊維の断面拡大図Enlarged cross-sectional view of the fiber in Example 7 比較例4における繊維の断面拡大図Enlarged cross-sectional view of the fiber in Comparative Example 4 実施例6における叩解処理後の繊維の断面拡大図Enlarged cross-sectional view of the fiber after beating in Example 6 実施例7における叩解処理後の繊維の断面拡大図Enlarged cross-sectional view of the fiber after beating in Example 7 比較例4における叩解処理後の繊維の断面拡大図Enlarged cross-sectional view of the fiber after beating in Comparative Example 4 加工処理フローおよび加工処理後の評価フローを示す図The figure which shows the processing flow and the evaluation flow after processing 本実施形態に係る極細繊維の比引張強度を示す図The figure which shows the specific tensile strength of the ultrafine fiber which concerns on this Embodiment

本発明に係る極細化に適した極細化用繊維を製造する方法、極細繊維を製造する方法、極細化に適した極細化用繊維、及び、極細繊維の実施形態について、詳細に説明する。本実施形態に係る方法では、繊維に加工処理を施すことにより極細化に適した極細化用繊維を製造する。より詳しくは、加工処理として、繊維を含水させて大気圧以上の圧力下で加温する加圧加温処理と、繊維を含水させた後凍結させ、その後融解させる凍結融解処理との両方又はいずれか一方を行い、極細化における処理性能(以下、単に処理性能と称する)を向上させた極細化用繊維を製造する。そして、製造した極細化用繊維に極細化処理を施して極細繊維を製造する。以下、この方法についてより詳しく説明する。 A method for producing an ultrafine fiber suitable for ultrafineness, a method for producing an ultrafine fiber, an ultrafine fiber suitable for ultrafineness, and an embodiment of the ultrafine fiber according to the present invention will be described in detail. In the method according to the present embodiment, the fibers are processed to produce ultrafine fibers suitable for ultrafineness. More specifically, as the processing treatment, either a pressure heating treatment in which the fibers are moistened and heated under a pressure of atmospheric pressure or higher, and a freeze-thaw treatment in which the fibers are moistened and then frozen and then thawed are performed. One of these is performed to produce an ultrafine fiber having improved processing performance in ultrafineness (hereinafter, simply referred to as processing performance). Then, the produced ultrafine fibers are subjected to an ultrafine treatment to produce ultrafine fibers. Hereinafter, this method will be described in more detail.

〔繊維〕
本実施形態に用いる繊維としては、セルロース系繊維を用いることができる。セルロース系繊維は特に限定されず、綿、麻、ホヤなどの天然セルロース繊維、クラフトパルプ、サルファイトパルプなどの木材化学処理パルプ、セミケミカルパルプ、古紙またはその再生パルプ等が挙げられる。また、セルロース系繊維以外でも、機械的処理により極細化させる繊維であれば特に限定されない。
〔fiber〕
Cellulose-based fibers can be used as the fibers used in this embodiment. Cellulose-based fibers are not particularly limited, and examples thereof include natural cellulosic fibers such as cotton, hemp, and squirrel, wood chemically treated pulp such as kraft pulp and sulfite pulp, semi-chemical pulp, used paper, and recycled pulp thereof. In addition to the cellulosic fibers, the fibers are not particularly limited as long as they are fibers that are made extremely fine by mechanical treatment.

また、本実施形態に用いる繊維は、元々その繊維表面に傷や縦筋・縦目等が存在し、その傷や縦筋・縦目等に水分を浸透させた状態において加工処理(加圧加温処理や凍結融解処理)をすることにより、処理性能を高めることができるが、この加工処理に先立って、繊維に予め亀裂(ヒビ・割れ・裂け・傷・縦筋等)を生じさせておくと、さらに好適である。これにより、繊維の含水率を高めることができ、加圧加温処理又は凍結融解処理により処理性能を高めることができる。例えば、亀裂を生じさせるのは、公知の叩解処理の手段により行える。具体的には、ビーター、リファイナー、ニーダー、サンドグラインダー、高圧ホモジナイザー、回転型ミル、ジェットミル等、公知の機械的処理設備が利用できる。 Further, the fiber used in the present embodiment is originally processed (pressurized) in a state where scratches, vertical streaks, vertical stitches, etc. are present on the fiber surface and water is permeated into the scratches, vertical streaks, vertical stitches, etc. Treatment performance can be improved by performing warm treatment or freeze-thaw treatment), but prior to this processing treatment, cracks (cracks, cracks, tears, scratches, vertical streaks, etc.) are generated in the fibers in advance. And more suitable. As a result, the water content of the fiber can be increased, and the treatment performance can be improved by the pressure heating treatment or the freeze-thaw treatment. For example, the crack can be generated by a known beating process. Specifically, known mechanical processing equipment such as a beater, a refiner, a kneader, a sand grinder, a high-pressure homogenizer, a rotary mill, and a jet mill can be used.

〔加圧加温処理〕
加圧加温処理では繊維を含水させて大気圧以上の圧力下で加温する。高温高圧で処理することにより、繊維表面や内部に浸透した水分が膨張等することで、繊維の処理性能を向上できる。そして、繊維に予め亀裂を生じさせておくと、水が繊維の内部まで入り込みやすく、繊維の処理性能を一層向上できる。この加圧加温処理は、水を用いた一般的なオートクレーブ処理により行うことができ、例えば、繊維を大気圧以上の圧力下の沸騰水に所定時間浸漬させることにより行うことができる。これは圧力鍋や圧力釜等を用いて行うことができる。また、この他にも、繊維を沸騰水に浸漬させて加温するのではなく、例えば大気圧以上の圧力下で含水させた繊維をヒーターにより加温する等で行ってもよく、加圧加温処理の具体的方法は、繊維を含水させて大気圧以上の圧力下で加温するものであれば特に限定されず、また、その処理時間や処理温度、処理圧力も特に限定されない。加圧加温処理における圧力は、例えば100kPa以上であると好ましい。上限についても特に限定されずどのような圧力であってもよいが、例えば処理の安全性や行い易さなどの観点からは1500kPa以下であれば好適である。また、加圧加温処理の後は、繊維にかける圧力は徐々に減圧させてもよいが、加圧加温処理の後は繊維を高圧下から一気に大気圧下に移すなど、繊維にかかる圧力を瞬時に減圧させると、一層繊維の処理性能を一層向上させることができ、極細化処理を行うことにより、繊維をより分割・解繊させることができる。
[Pressure heating process]
In the pressure heating process, the fibers are moistened and heated under atmospheric pressure or higher. By treating at high temperature and high pressure, the water permeating the fiber surface and the inside expands, and the fiber processing performance can be improved. If the fibers are cracked in advance, water can easily enter the inside of the fibers, and the processing performance of the fibers can be further improved. This pressure heating treatment can be performed by a general autoclave treatment using water, for example, by immersing the fibers in boiling water under atmospheric pressure or higher for a predetermined time. This can be done using a pressure cooker, a pressure cooker, or the like. In addition to this, instead of immersing the fibers in boiling water to heat them, for example, the fibers moistened under atmospheric pressure or higher may be heated by a heater, and the pressure is applied. The specific method of the temperature treatment is not particularly limited as long as the fibers are moistened and heated under a pressure of atmospheric pressure or higher, and the treatment time, treatment temperature, and treatment pressure are not particularly limited. The pressure in the pressure heating treatment is preferably 100 kPa or more, for example. The upper limit is not particularly limited and may be any pressure, but for example, from the viewpoint of processing safety and ease of execution, 1500 kPa or less is preferable. Further, after the pressure heating treatment, the pressure applied to the fibers may be gradually reduced, but after the pressure heating treatment, the pressure applied to the fibers is such that the fibers are moved from under high pressure to atmospheric pressure at once. When the pressure is reduced instantaneously, the processing performance of the fiber can be further improved, and by performing the ultrafine treatment, the fiber can be further divided and defibrated.

繊維を大気圧以上の圧力下の沸騰水に所定時間浸漬させる場合、沸騰水は酸水溶液を沸騰させたものであると好適である。酸により水の繊維への浸透性が上がり、処理性能の向上効果が高まるからと考えられる。用いる酸は特に限定されないが、例えば分子量が小さく特に浸透性に優れるグリコール酸が挙げられる。また、沸騰水を用いない場合でも、繊維を酸水溶液により含水させてもよい。例えば、グリコール酸水溶液を用いる場合、その濃度は特に限定されないが、繊維の解繊性等と、繊維の断裂のし易さを考慮し、1〜20wt%の範囲が望ましく、さらにいえば1〜10wt%がより好適である。グリコール酸水溶液の濃度が高いほど、繊維強度が低下し、加工処理時において繊維自身が横方向(直径方向)に断裂し易くなり、繊維長が短くなってしまうからである。なお、好適な濃度の範囲は加圧加熱処理を行う温度圧力条件等により適宜変化させることができる。 When the fibers are immersed in boiling water under atmospheric pressure or higher for a predetermined time, the boiling water is preferably a boiling acid aqueous solution. It is considered that the acid increases the permeability of water to the fibers and enhances the effect of improving the treatment performance. The acid used is not particularly limited, and examples thereof include glycolic acid having a small molecular weight and particularly excellent permeability. Further, even when boiling water is not used, the fibers may be hydrated with an acid aqueous solution. For example, when an aqueous glycolic acid solution is used, its concentration is not particularly limited, but it is preferably in the range of 1 to 20 wt% in consideration of the defibration property of the fiber and the ease of tearing of the fiber, and further, 1 to 20 wt%. 10 wt% is more preferable. This is because the higher the concentration of the aqueous glycolic acid solution, the lower the fiber strength, the easier it is for the fiber itself to tear in the lateral direction (diameter direction) during the processing, and the shorter the fiber length. The range of suitable concentration can be appropriately changed depending on the temperature and pressure conditions for performing the pressure heat treatment and the like.

〔凍結融解処理〕
凍結融解処理では繊維を含水させた後凍結させ、その後融解させる。含水させた繊維を凍結させることにより、繊維に含まれた水分が凍って膨張し、これにより繊維の処理性能を向上できる。そして、同様に、繊維に予め亀裂を生じさせておくと、水が繊維の内部まで入り込みやすく、繊維の処理性能を一層向上できる。繊維を凍結させる方法としては、例えば、含水させた繊維を断熱容器に入れ、そこに液体窒素を導入する方法が挙げられる。ただし、これに限定されず、含水させた繊維を冷凍庫に入れて凍結させたり、ドライアイスを用いて凍結させる等、含水させた繊維を凍結できる方法であれば限定されず、また、その処理時間も特に限定されない。そして、繊維を凍結させた後は、常温で放置する等通常の方法で繊維を融解させる(解凍する)。なお、融解を早めるために公知の加熱器等により加温しても良い。
[Freeze-thaw treatment]
In the freeze-thaw treatment, the fibers are moistened, frozen, and then thawed. By freezing the water-containing fibers, the water contained in the fibers freezes and expands, which can improve the processing performance of the fibers. Similarly, if the fibers are cracked in advance, water can easily enter the inside of the fibers, and the processing performance of the fibers can be further improved. Examples of the method of freezing the fibers include a method of putting the hydrated fibers in a heat insulating container and introducing liquid nitrogen into the heat insulating container. However, the present invention is not limited to this, and the method is not limited as long as the hydrated fiber can be frozen, such as putting the hydrated fiber in a freezer and freezing it or freezing it with dry ice. Is not particularly limited. Then, after the fibers are frozen, the fibers are thawed (thawed) by a usual method such as leaving at room temperature. In addition, in order to accelerate melting, it may be heated by a known heater or the like.

加工処理として、加圧加温処理及び凍結融解処理の両方を行ってもよいし、何れか一方のみを行ってもよい。また、両方を行う場合、加圧加温処理を行った後、凍結融解処理を行ってもよいし、凍結融解処理を行った後、加圧加温処理を行ってもよい。 As the processing treatment, both the pressure heating treatment and the freeze-thaw treatment may be performed, or only one of them may be performed. Further, when both are performed, the pressure heating treatment may be performed and then the freeze-thaw treatment may be performed, or the freeze-thaw treatment may be performed and then the pressure heating treatment may be performed.

〔極細化処理〕
極細化用繊維を製造した後は、その極細化用繊維に対して極細化処理を施し極細繊維を製造する。どの程度まで繊維を極細にするかは、目的の用途に応じて設定すればよく、特に限定されないが、例えば、得られる極細繊維の平均繊維径が1〜1000nmであると好適である。また、平均繊維径が1〜100nmとなるまで極細化処理を行いナノファイバーを得てもよい。上記の加工処理を経ることにより極細化用繊維は処理性能が極めて高められているので、目的とする繊維径まで繊維を極細化するのに要する時間を短縮でき、また、要する加工時間を短縮することにより、要する労力・エネルギーを低減し、またそのような極細繊維の生産効率が高められている。極細化処理としては公知の方法を用いることができ、特に限定されない。例えば、上記した公知の叩解処理の手段により行えばよい。具体的には、ビーター、リファイナー、ニーダー、サンドグラインダー、高圧ホモジナイザー、回転型ミル、ジェットミル等、公知の機械的処理設備が利用できる。また、本実施形態における極細化用繊維は処理性能が極めて高められているので、ハンマーにより繊維を叩いたり、擦ったりする方法、砥石により繊維を擦る方法等の人力による叩解処理によっても効率的に繊維を極細化できる。
[Extra-fine processing]
After producing the ultrafine fibers, the ultrafine fibers are subjected to an ultrafine treatment to produce the ultrafine fibers. The degree to which the fibers are made ultrafine may be set according to the intended use and is not particularly limited, but for example, it is preferable that the average fiber diameter of the obtained ultrafine fibers is 1 to 1000 nm. Further, nanofibers may be obtained by performing ultrafine treatment until the average fiber diameter becomes 1 to 100 nm. Since the processing performance of the ultrafine fibers is extremely improved by undergoing the above processing treatment, the time required for ultrafinening the fibers to the target fiber diameter can be shortened, and the processing time required can be shortened. As a result, the labor and energy required are reduced, and the production efficiency of such ultrafine fibers is increased. A known method can be used as the ultrafine treatment, and the treatment is not particularly limited. For example, it may be carried out by the above-mentioned known beating processing means. Specifically, known mechanical processing equipment such as a beater, a refiner, a kneader, a sand grinder, a high-pressure homogenizer, a rotary mill, and a jet mill can be used. Further, since the processing performance of the ultrafine fibers in the present embodiment is extremely improved, it can be efficiently beaten by human power such as a method of hitting or rubbing the fibers with a hammer or a method of rubbing the fibers with a grindstone. The fibers can be made very fine.

〔用途〕
上記のようにして製造した極細繊維は、特に限定されることなく、利用可能なあらゆる用途で用いることができる。
[Use]
The ultrafine fibers produced as described above can be used in any available application without particular limitation.

以下、実施例および比較例により本発明をさらに具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples.

[実施例1]
実施例1では、加工処理として加圧加温処理のみを行ったものを示す。具体的には原料としてセルロース原綿を用い、公知の適当な叩解処理により予め繊維に亀裂を生じさせた。加圧加温処理として、圧力鍋を用いて144kPaの圧力下で60分、セルロース原綿を沸騰水に浸漬させた。そして、その後セルロース原綿が含水した状態で、極細化処理として、砥石(粒度#240)を用いて、砥石の間に含水したセルロース原綿を挟み、砥石を両手で押さえつけながら縦横各10往復及び円を描くように時計回りと反時計回りとで各20回ずつ砥石を擦る叩解処理を行った。図1に、極細化処理後、乾燥機により乾燥させた実施例1における試料を1000倍に拡大して撮影した写真を示す。なお、図1及び以下の他の図で示す写真の撮影には電子顕微鏡を用いた。
[Example 1]
In the first embodiment, only the pressure heating treatment is performed as the processing treatment. Specifically, cellulose raw cotton was used as a raw material, and the fibers were cracked in advance by a known appropriate beating treatment. As a pressure heating treatment, the cellulose raw cotton was immersed in boiling water for 60 minutes under a pressure of 144 kPa using a pressure cooker. Then, with the cellulose raw cotton moistened, as an ultrafine treatment, a grindstone (particle size # 240) is used to sandwich the moistened cellulose raw cotton between the grindstones, and while pressing the grindstone with both hands, 10 reciprocations in each of the vertical and horizontal directions and a circle are made. A beating process was performed in which the grindstone was rubbed 20 times each in a clockwise and counterclockwise direction as drawn. FIG. 1 shows a photograph taken by magnifying the sample of Example 1 which was dried by a dryer after the ultrafine treatment at a magnification of 1000 times. An electron microscope was used for taking photographs shown in FIG. 1 and the other figures below.

[比較例1]
比較例1として、加工処理を行わず、実施例1と同様の極細化処理のみを行ったものを示す。図5に、極細化処理後、乾燥機により乾燥させた比較例1における試料を1000倍に拡大して撮影した写真を示す。
[Comparative Example 1]
As Comparative Example 1, a product obtained by performing only the same ultrafine processing as in Example 1 without processing is shown. FIG. 5 shows a photograph taken by magnifying the sample of Comparative Example 1 which was dried by a dryer after the ultrafine treatment at a magnification of 1000 times.

図1と図5とを対比すると、図5では繊維径が10μmを超えるものが解繊されることなくそのまま残っているが、図1では少しの極細化処理により効果的に解繊されていることがわかる(例えば図1中の矢印参照)。このように、加工処理として加圧加温処理を行った後の繊維は処理性能が高められていることがわかる。 Comparing FIGS. 1 and 5, in FIG. 5, those having a fiber diameter of more than 10 μm remain as they are without being defibrated, but in FIG. 1, they are effectively defibrated by a slight ultrafine treatment. It can be seen (see, for example, the arrow in FIG. 1). As described above, it can be seen that the processing performance of the fiber after the pressure heating treatment as the processing treatment is enhanced.

[実施例2]
実施例2では、加工処理として凍結融解処理のみを行ったものを示す。具体的には原料としてセルロース原綿を用いた。凍結融解処理として、デュワーフラスコに液体窒素を導入し、その中に含水させたセルロース原綿を5分間浸漬させた後、常温で自然融解させた。その後セルロース原綿が含水した状態で、実施例1と同様の極細化処理を行った。図2に、極細化処理後、乾燥機により乾燥させた実施例2における試料を1000倍に拡大して撮影した写真を示す。
[Example 2]
In Example 2, only the freeze-thaw treatment is performed as the processing treatment. Specifically, cellulose raw cotton was used as a raw material. As a freeze-thaw treatment, liquid nitrogen was introduced into a Dewar flask, and water-impregnated cellulose raw cotton was immersed therein for 5 minutes and then naturally thawed at room temperature. Then, in a state where the raw cellulose cotton was moistened, the same ultrafine treatment as in Example 1 was performed. FIG. 2 shows a photograph taken by magnifying the sample of Example 2 which was dried by a dryer after the ultrafine treatment at a magnification of 1000 times.

図2と図5(比較例1)とを対比すると、図5では繊維径が10μmを超えるものが解繊されることなくそのまま残っているが、図2では例えば図中の矢印で指す繊維など図5に比べ繊維の解繊度合が高いことがわかる。このように、加工処理として凍結融解処理を行った後の繊維は処理性能が高められていることがわかる。 Comparing FIG. 2 and FIG. 5 (Comparative Example 1), in FIG. 5, fibers having a fiber diameter of more than 10 μm remain as they are without being defibrated, but in FIG. 2, for example, fibers indicated by arrows in the figure are used. It can be seen that the degree of fiber defibration is higher than in FIG. As described above, it can be seen that the processing performance of the fiber after the freeze-thaw treatment as the processing treatment is enhanced.

また、図1と図2とを対比すると、図1の方が繊維の解繊度合が高く、このことから、加圧加温処理と凍結融解処理とでは、それぞれ単独で実行した場合、加圧加温処理の方が繊維の処理性能の向上効果が高いといえる。 Further, when FIG. 1 and FIG. 2 are compared, the degree of fiber defibration is higher in FIG. 1, and from this, when the pressure heating treatment and the freeze-thaw treatment are performed independently, the pressure is increased. It can be said that the heating treatment has a higher effect of improving the processing performance of the fiber.

[実施例3]
実施例3では、加工処理として加圧加温処理と凍結融解処理との両者を行ったものを示す。具体的には上記と同様に原料としてセルロース原綿を用い、公知の適当な叩解処理により予め繊維に亀裂を生じさせた。そして、実施例1と同じ加圧加温処理を行った後、実施例2と同じ凍結融解処理を行った。その後セルロース原綿が含水した状態で、実施例1と同様の極細化処理を行った。図3に、極細化処理後、乾燥機により乾燥させた実施例3における試料を1000倍に拡大して撮影した写真を示す。
[Example 3]
In Example 3, both the pressure heating treatment and the freeze-thaw treatment are performed as the processing treatment. Specifically, cellulose raw cotton was used as a raw material in the same manner as described above, and the fibers were cracked in advance by a known appropriate beating treatment. Then, after performing the same pressure heating treatment as in Example 1, the same freeze-thaw treatment as in Example 2 was performed. Then, in a state where the raw cellulose cotton was moistened, the same ultrafine treatment as in Example 1 was performed. FIG. 3 shows a photograph taken by magnifying the sample of Example 3 which was dried by a dryer after the ultrafine treatment at a magnification of 1000 times.

図3と図5(比較例1)とを対比すると、図3では少しの極細化処理により効果的に解繊されていることがわかる。このように、加工処理として加圧加温処理と凍結融解処理とを行った後の繊維は処理性能が高められていることがわかる。 Comparing FIG. 3 and FIG. 5 (Comparative Example 1), it can be seen that in FIG. 3, the defibration is effectively performed by a slight ultrafine processing. As described above, it can be seen that the processing performance of the fibers after the pressure heating treatment and the freeze-thaw treatment as the processing treatment is enhanced.

また、比較のため、図6に、比較例2として、加工処理を行わずに極細化処理を十分に施した従来技術による試料(いわば比較例1の試料に対しさらに追加的に十分な極細化処理を行った試料)を1000倍に拡大して撮影した写真を示す。図3と図6とを対比すると、図3における方が効果的に解繊されていることがわかり、実施例3における優れた処理性能の向上が確認できる。 Further, for comparison, in FIG. 6, as Comparative Example 2, a sample according to a prior art that has been sufficiently subjected to an ultrafine treatment without processing (so to speak, an additional sufficient ultrafineness with respect to the sample of Comparative Example 1). A photograph of the treated sample) taken at a magnification of 1000 times is shown. Comparing FIGS. 3 and 6, it can be seen that the defibration in FIG. 3 is more effective, and it can be confirmed that the excellent processing performance in Example 3 is improved.

また、図3を、図1及び図2と対比すると、図3が最も繊維の解繊度合が高いことがわかる。このことから、加圧加温処理と凍結融解処理との両者を行うことにより、繊維の処理性能を一層向上させることができるのがわかる。 Further, when FIG. 3 is compared with FIGS. 1 and 2, it can be seen that FIG. 3 has the highest degree of fiber defibration. From this, it can be seen that the fiber treatment performance can be further improved by performing both the pressure heating treatment and the freeze-thaw treatment.

[実施例4]
実施例4では、実施例1と基本的には同じ処理を行ったが、加圧加温処理において、グリコール酸水溶液(濃度10wt%)を沸騰させた沸騰水にセルロース原綿を浸漬させた。図4に、極細化処理後、乾燥機により乾燥させた実施例4における試料を1000倍に拡大して撮影した写真を示す。
[Example 4]
In Example 4, basically the same treatment as in Example 1 was carried out, but in the pressure heating treatment, the cellulose raw cotton was immersed in boiling water in which an aqueous glycolic acid solution (concentration: 10 wt%) was boiled. FIG. 4 shows a photograph taken by magnifying the sample of Example 4 which was dried by a dryer after the ultrafine treatment at a magnification of 1000 times.

図4から明らかなように、少しの極細化処理により効果的に繊維が解繊されていることがわかる。そして、図1(実施例1)と図4とを比較すると、図4に示す繊維の方がより解繊度合が高いといえる。このことから、加圧加温処理において、酸水溶液(グリコール酸水溶液)を沸騰させた沸騰水を用いる方が繊維の処理性能をより高めることができるのがわかる。 As is clear from FIG. 4, it can be seen that the fibers are effectively defibrated by a slight ultrafine treatment. Comparing FIG. 1 (Example 1) with FIG. 4, it can be said that the fiber shown in FIG. 4 has a higher degree of defibration. From this, it can be seen that in the pressure heating treatment, the fiber treatment performance can be further improved by using boiling water obtained by boiling an acid aqueous solution (glycolic acid aqueous solution).

[実施例5]
実施例5では、極細化処理を行う前の試料の状態を示す。具体的には、セルロース原綿に対し叩解処理を行った後、フィブリル化していないいわゆる芯の部分のみを叩解処理後の繊維から分離し、その芯の部分を試料とした。また、この試料には、上記と同様に公知の適当な叩解処理により予め繊維に亀裂を生じさせた。そして、その後、実施例4と同様にして、加圧加温処理において、圧力鍋を用いて144kPaの圧力下で30分、グリコール酸水溶液(濃度5wt%)を沸騰させた沸騰水に試料を浸漬させた。図7に、加圧加温処理後、乾燥機により乾燥させた実施例5における試料を5000倍に拡大して撮影した写真を示す。
[Example 5]
In Example 5, the state of the sample before the ultrafine treatment is shown. Specifically, after the cellulose raw cotton was beaten, only the so-called core portion which was not fibrillated was separated from the fiber after the beating treatment, and the core portion was used as a sample. Further, in this sample, the fibers were preliminarily cracked by a known appropriate beating treatment in the same manner as described above. Then, in the same manner as in Example 4, in the pressure heating treatment, the sample was immersed in boiling water in which an aqueous glycolic acid solution (concentration: 5 wt%) was boiled for 30 minutes under a pressure of 144 kPa using a pressure cooker. I let you. FIG. 7 shows a photograph taken by magnifying the sample of Example 5 which was dried by a dryer after the pressure heating treatment at a magnification of 5000 times.

図7と、実施例5における加圧加温処理前の芯の部分の試料(比較例3)を5000倍に拡大して撮影した写真を示す図8とを比較すると、図8の加圧加温処理前の状態から、図7では繊維の芯の部分が効果的に解繊されていることがわかる。このように、加圧加温処理を行うことにより、繊維の処理性能が高められていることがわかる。 Comparing FIG. 7 with FIG. 8 showing a photograph of the core portion of Example 5 before the pressurization heating treatment (Comparative Example 3) taken at a magnification of 5000 times, the pressurization of FIG. 8 is performed. From the state before the heat treatment, it can be seen in FIG. 7 that the core portion of the fiber is effectively defibrated. As described above, it can be seen that the processing performance of the fiber is enhanced by performing the pressure heating treatment.

[実施例6,7、比較例4]
さらに、繊度1.7dtexのリヨセル繊維に対し、上記の加工処理を行った例について説明する。以下では、このリヨセル繊維について、加工処理として、オートクレーブ装置を用いて、700kPaの圧力下で、165℃まで昇温させた水に一時間含浸させる加圧加温処理を行ったものを実施例6とし、実施例6と同様の加圧加温処理を行った後、実施例2と同様の凍結融解処理を行ったものを実施例7とし、加工処理を行わなかったものを比較例4として説明する。
[Examples 6 and 7, Comparative Example 4]
Further, an example in which the above processing treatment is performed on the lyocell fiber having a fineness of 1.7 dtex will be described. In the following, as a processing treatment, the lyocell fiber is subjected to a pressure heating treatment in which water heated to 165 ° C. is impregnated for 1 hour under a pressure of 700 kPa using an autoclave device. Then, the same pressure heating treatment as in Example 6 and then the same freeze-thaw treatment as in Example 2 was referred to as Example 7, and the one not subjected to the processing treatment was described as Comparative Example 4. To do.

まず、図9〜11を用いて、加工処理後の繊維の状態を示す。図9〜11は1000倍に拡大した各例のリヨセル繊維の写真であり、図9が実施例6、図10が実施例7、図11が比較例4のリヨセル繊維を示す。図9〜11を比較すると、加工処理を行った繊維を示す図9,10では、各繊維の表面に長さ方向に延びる縦筋が生じており、また表面がナノサイズの極細繊維に分かれていっていることがわかる。また、図9と図10とを比較すると、加工処理としてさらに凍結融解処理を行った繊維を示す図10では、より一層極細繊維に分かれていることがわかる。 First, the state of the fiber after the processing is shown with reference to FIGS. 9 to 11. 9 to 11 are photographs of lyocell fibers of each example magnified 1000 times, FIG. 9 shows lyocell fibers of Example 6, FIG. 10 shows Example 7, and FIG. 11 shows lyocell fibers of Comparative Example 4. Comparing FIGS. 9 to 11, in FIGS. 9 and 10 showing the processed fibers, vertical stripes extending in the length direction are formed on the surface of each fiber, and the surface is divided into nano-sized ultrafine fibers. You can see that it is saying. Further, when FIG. 9 and FIG. 10 are compared, it can be seen that in FIG. 10, which shows the fibers further subjected to the freeze-thaw treatment as the processing treatment, the fibers are further divided into ultrafine fibers.

次に、図12〜17を用いて、加工処理が繊維に与える影響について説明する。図12〜14は5000倍に拡大した各例のリヨセル繊維の断面の写真であり、図12が実施例6、図13が実施例7、図14が比較例4のリヨセル繊維の断面を示す。図12〜14を比較すると、加工処理を行った図12,13に示す繊維については断面に細かな穴が生じていることがわかる。この穴は繊維の裂け目に相当するものであり、つまり、加工処理を行った繊維については、繊維内部において繊維の長さ方向に沿った多数の亀裂が生じていることがわかる。 Next, the influence of the processing on the fibers will be described with reference to FIGS. 12 to 17. 12 to 14 are photographs of the cross section of the lyocell fiber of each example magnified 5000 times, FIG. 12 shows the cross section of the lyocell fiber of Example 6, FIG. 13 shows the cross section of Example 7, and FIG. 14 shows the cross section of the lyocell fiber of Comparative Example 4. Comparing FIGS. 12 to 14, it can be seen that the fibers shown in FIGS. 12 and 13 that have been processed have fine holes in the cross section. It can be seen that this hole corresponds to a crevice in the fiber, that is, in the processed fiber, a large number of cracks are generated inside the fiber along the length direction of the fiber.

図15〜17は、さらに繊維に対して叩解処理(ビーターで1時間程度)を行った後の状態を示し、5000倍に拡大した叩解処理後の各例のリヨセル繊維の断面を示す。図15が実施例6、図16が実施例7、図17が比較例4のリヨセル繊維の断面を示す。図15〜17を比較すると、加工処理として加圧加温処理を行った繊維を示す図15では、加工処理を行っていない繊維を示す図17に比べ、繊維の断面に多くの亀裂が確認でき、また、繊維の表面からより極細の繊維に分かれていっていることがわかる。つまり、繊維内部で生じていた亀裂に沿って繊維が細かく裂けていっていることがわかる。さらに、加工処理として加圧加温処理と凍結融解処理とを行った繊維を示す図16では、繊維内部で生じていた亀裂に沿って、図15に比べさらに細かく繊維が裂けていっていることがわかる。このように、本実施形態の加工処理を行うことにより繊維内部に細かな亀裂が生じ、その細かな亀裂に沿って繊維が細かく裂けていっていることがわかる。つまり、繊維内部に細かな亀裂が生じることにより、加工処理を行うことによって極細繊維の生産効率が高められていることがわかる。 FIGS. 15 to 17 show a state after further beating the fibers (about 1 hour with a beater), and show a cross section of the lyocell fibers of each example after the beating treatment magnified 5000 times. FIG. 15 shows a cross section of a lyocell fiber of Example 6, FIG. 16 shows a cross section of Example 7, and FIG. 17 shows a cross section of a lyocell fiber of Comparative Example 4. Comparing FIGS. 15 to 17, in FIG. 15, which shows the fibers subjected to the pressure heating treatment as the processing treatment, more cracks can be confirmed in the cross section of the fibers as compared with FIG. 17 showing the fibers not subjected to the processing treatment. Also, it can be seen that the surface of the fiber is divided into finer fibers. That is, it can be seen that the fiber is finely torn along the cracks generated inside the fiber. Further, in FIG. 16 showing the fibers subjected to the pressure heating treatment and the freeze-thaw treatment as the processing treatment, the fibers are torn more finely than in FIG. 15 along the cracks generated inside the fibers. Recognize. As described above, it can be seen that the processing of the present embodiment causes fine cracks inside the fibers, and the fibers are finely split along the fine cracks. That is, it can be seen that the production efficiency of the ultrafine fibers is enhanced by performing the processing treatment due to the occurrence of fine cracks inside the fibers.

次に、表1を用いて、加工処理を行った繊維から生成した極細繊維の強度について説明する。表1は、実施例6,7及び比較例4の繊維について、極細化処理としてそれぞれビーターにより2kg荷重で6時間叩解処理を行った各極細繊維をシート状に成形した後の各シートについての坪量(単位面積当たりの重さ)、厚さ、密度、及び、引張試験を行うことにより得た引張強度と比引張強さのデータを示す。 Next, using Table 1, the strength of the ultrafine fibers produced from the processed fibers will be described. Table 1 shows the area of each sheet after each of the fibers of Examples 6 and 7 and Comparative Example 4 was beaten with a beater at a load of 2 kg for 6 hours as an ultrafine treatment. The data of quantity (weight per unit area), thickness, density, and tensile strength and specific tensile strength obtained by performing a tensile test are shown.

表1から明らかなように、加工処理を行わなかった比較例4の繊維に比べ、加工処理を行った実施例6,7の繊維では比引張強さが高くなっている。特に、加工処理として加圧加温処理に加えて凍結融解処理を行った実施例7の繊維では、比較例4の繊維に比べて、比引張強さが2倍以上に高められている。一本一本の繊維が極めて細い状態となると、単位体積当たりの繊維の構成本数が増加することにより強度が高まることがわかっており、実施例6,7の繊維は、比較例4の繊維に比べ、極細化が進展していることがわかる。このように加工処理を施した極細化用繊維を用いて極細繊維を製造することにより、極めて効率的に極細繊維を製造することができ、また、その結果、製造された極細繊維の強度を高めることも可能となる。 As is clear from Table 1, the fibers of Examples 6 and 7 that have been processed have a higher specific tensile strength than the fibers of Comparative Example 4 that have not been processed. In particular, the fibers of Example 7 which were subjected to freeze-thaw treatment in addition to pressure heating treatment as processing treatment had the specific tensile strength more than twice as high as that of the fibers of Comparative Example 4. It has been found that when each fiber becomes extremely thin, the strength is increased by increasing the number of constituent fibers per unit volume, and the fibers of Examples 6 and 7 are replaced with the fibers of Comparative Example 4. In comparison, it can be seen that ultrafine fiber is progressing. By producing the ultrafine fibers using the ultrafine fibers processed in this way, the ultrafine fibers can be produced extremely efficiently, and as a result, the strength of the produced ultrafine fibers is increased. It is also possible.

さらに、加圧加温処理や凍結融解処理等の加工処理を施した極細化用繊維に対して叩解処理を行って得られた極細繊維を用いて抄紙したシートの比引張強さの試験結果を図18,19を用いて示す。図18は、加工処理の効果を確認するために行った実験試料作製方法と評価フローを示し、図18(及び図19)において「G」とあるのは何の前処理も行わなかったリヨセル繊維であり、図18に示すように、リヨセル繊維に対してそのまま後述の叩解処理が行われている。「G−A」は加圧加温処理を行って叩解処理を行ったリヨセル繊維であり、具体的には加圧加温処理(高温・高圧処理)としてオートクレーブ(容量120リッター、蒸気加熱式)を用いて0.6MPaの圧力下で沸騰水に1時間浸漬させた後のリヨセル繊維である。「G−A−N1」及び「G−A−N2」は、加圧加温処理と凍結融解処理とを行って叩解処理を行ったリヨセル繊維であり、具体的には「G−A」と同様の加圧加温処理を行った後に、「G−A−N1」では凍結融解処理(凍結処理)として液体窒素を用いて−196℃の温度下で10分間放置した後融解させる処理を行い、「G−A−N2」では凍結融解処理として家庭用冷凍庫を用いて−15℃の温度下で1時間放置した後融解させる処理を行った。そして、各リヨセル繊維についてビーターによる叩解処理を所定時間(1時間、2時間、及び、4時間)行い、各繊維について処理時間ごと(1時間、2時間、及び、4時間)に熊谷理機工業(株)製の角形シートマシンを用いて250mm×250mm、坪量20g/mのシートを作製して、各シートの物性値を測定した。表2〜5に各シートの物性値を示す。 Furthermore, the test results of the specific tensile strength of the sheet made from paper using the ultrafine fibers obtained by beating the ultrafine fibers that have been subjected to processing such as pressure heating treatment and freeze-thaw treatment are shown. It is shown with reference to FIGS. FIG. 18 shows an experimental sample preparation method and an evaluation flow performed to confirm the effect of the processing, and in FIG. 18 (and FIG. 19), “G” indicates a lyocell fiber in which no pretreatment was performed. As shown in FIG. 18, the lyocell fiber is directly subjected to the beating process described later. "GA" is a lyocell fiber that has been subjected to pressure heating treatment and beating treatment. Specifically, it is an autoclave (capacity 120 liters, steam heating type) as pressure heating treatment (high temperature / high pressure treatment). It is a lyocell fiber after being immersed in boiling water for 1 hour under a pressure of 0.6 MPa. "GA-N1" and "GA-N2" are lyocell fibers that have been beaten by performing a pressure heating treatment and a freeze-thaw treatment, and are specifically referred to as "GA". After performing the same pressure heating treatment, in "GAN1", as a freeze-thaw treatment (freezing treatment), liquid nitrogen is used and left at a temperature of -196 ° C. for 10 minutes and then thawed. , "GA-N2" was subjected to a freeze-thaw treatment using a domestic freezer and left at a temperature of −15 ° C. for 1 hour before thawing. Then, beating treatment with a beater is performed for each lyocell fiber for a predetermined time (1 hour, 2 hours, and 4 hours), and for each treatment time (1 hour, 2 hours, and 4 hours), Kumagai Riki Kogyo Using a square sheet machine manufactured by Co., Ltd., sheets having a size of 250 mm × 250 mm and a basis weight of 20 g / m 2 were prepared, and the physical properties of each sheet were measured. Tables 2 to 5 show the physical property values of each sheet.

図19は、各シートに対して行った引張試験の結果であり、処理時間と比引張強さ(N/m・g)との関係を示す。なお、極細化が進むと、上記のように比引張強さも高くなるという関係にあり、即ち、比引張強さはシートの繊維径と相関があり、極細化がどの程度進んでいるのかの指標となる値である。 FIG. 19 shows the results of tensile tests performed on each sheet, and shows the relationship between the processing time and the specific tensile strength (N / m · g). In addition, as the ultrafineness progresses, the specific tensile strength also increases as described above, that is, the specific tensile strength has a correlation with the fiber diameter of the sheet, and is an index of how much the ultrafineness has progressed. Is the value.

図19から明らかなように、加圧加温処理や凍結融解処理の加工処理を行っている繊維(「G−A」、「G−A−N1」、「G−A−N2」)は、加工処理を行っていない繊維(「G」)に比べ、明らかに比引張強さが高くなっている。つまり、加工処理を行っている繊維(「G−A」、「G−A−N1」、「G−A−N2」)の方がより極細化が進んでいることを示す。また、加圧加温処理のみを行っている繊維(「G−A」)と、加圧加温処理に加え凍結融解処理を行っている繊維(「G−A−N1」、「G−A−N2」)と、を比較すると、叩解処理を2時間行った時点の比引張強さが加圧加温処理に加え凍結融解処理を行っている繊維の方が明らかに高くなっており、凍結融解処理も併せて行うことにより、より極細化が進んでいることがわかる。なお、4時間行った時点で「G−A−N1」、「G−A−N2」の比引張強さが低下しているが、これは叩解処理を行い過ぎたことにより繊維が長さ方向に千切れて短繊維化が起きていることによるものと考えられる。ただし、この短繊維化は、4時間の叩解処理を終えるまでに十分に繊維が極細化したことで、繊維を極細にするために加えられていた力が、繊維を千切れさせるように働くことになったことによるものであるといえ、「G−A−N1」、「G−A−N2」による極細繊維の生産効率の高さを反映したものといえる。 As is clear from FIG. 19, the fibers (“GA”, “GA-N1”, “GA-N2”) that have been processed by pressure heating treatment or freeze-thaw treatment are The specific tensile strength is clearly higher than that of the unprocessed fiber (“G”). That is, it is shown that the fibers (“GA”, “GA-N1”, “GA-N2”) that have been processed are more ultrafine. In addition, fibers that are only subjected to pressure heating treatment (“GA”) and fibers that are subjected to freeze-thaw treatment in addition to pressure heating treatment (“GAN1”, “GA”). -N2 "), the specific tensile strength at the time of the beating treatment for 2 hours was clearly higher in the fibers subjected to the freeze-thaw treatment in addition to the pressure heating treatment, and the fibers were frozen. It can be seen that the ultrafineness is progressing by also performing the melting treatment. The specific tensile strength of "GA-N1" and "GA-N2" decreased after 4 hours, but this was due to excessive beating treatment and the fibers in the length direction. It is considered that this is due to the fact that the fibers have been shortened due to tearing. However, this shortening of the fibers means that the fibers have become extremely fine by the time the 4-hour beating process is completed, and the force applied to make the fibers extremely fine works to tear the fibers. It can be said that this is due to the fact that it reflects the high production efficiency of ultrafine fibers produced by "GA-N1" and "GA-N2".

本評価実験で用いたビーターは熊谷理機工業(株)製のナイアガラビータ(TAPPI標準型)を用いたが、本評価におけるビーターによる叩解は叩解方法の一例であって、叩解処理に用いる装置はビーターに限られない。また、本評価実験の目的は、あくまでも、加工処理なしの試料と比較することにより本発明の加工処理方法が叩解特性の向上と極細化繊維を得るのに格段に優れる効果を有することを示すことにある。したがって、叩解処理に用いる装置と叩解条件はその用途に応じて適宜選択される。 The beater used in this evaluation experiment was Niagara Falls (TAPPI standard type) manufactured by Kumagai Riki Kogyo Co., Ltd., but the beating by the beater in this evaluation is an example of the beating method, and the device used for the beating process is Not limited to beaters. Moreover, the purpose of this evaluation experiment is to show that the processing method of the present invention has a remarkably excellent effect in improving beating characteristics and obtaining ultrafine fibers by comparing with a sample without processing. It is in. Therefore, the apparatus used for the beating process and the beating conditions are appropriately selected according to the intended use.

本明細書において開示された実施形態は全ての点で例示であって、本発明の範囲はそれらによって限定されることはないと理解されるべきである。当業者であれば、本発明の趣旨を逸脱しない範囲で、適宜改変が可能であることを容易に理解できるであろう。従って、本発明の趣旨を逸脱しない範囲で改変された別の実施形態も、当然、本発明の範囲に含まれる。 It should be understood that the embodiments disclosed herein are exemplary in all respects and the scope of the invention is not limited thereto. Those skilled in the art will be able to easily understand that modifications can be made as appropriate without departing from the spirit of the present invention. Therefore, another embodiment modified without departing from the spirit of the present invention is naturally included in the scope of the present invention.

本発明は、例えば繊維を極細化するのに利用することができる。 The present invention can be used, for example, to micronize fibers.

Claims (9)

セルロース系繊維に加工処理を施すことにより極細化に適した極細化用繊維を製造する方法であって、
前記加工処理として、前記セルロース系繊維を含水させて大気圧以上の圧力下で加温する加圧加温処理と、
前記加圧加温処理後の前記セルロース系繊維を凍結させた後融解させる凍結融解処理と、を行う方法。
It is a method of producing ultrafine fibers suitable for ultrafineness by processing cellulosic fibers.
As the processing treatment, a pressure heating treatment in which the cellulosic fiber is moistened and heated under a pressure of atmospheric pressure or higher, and a pressure heating treatment.
A method of performing a freeze-thaw treatment in which the cellulosic fibers after the pressure heating treatment are frozen and then thawed.
セルロース系繊維に加工処理を施すことにより極細化に適した極細化用繊維を製造する方法であって、
前記セルロース系繊維を含水させた後凍結させ、その後融解させる凍結融解処理と、
前記凍結融解処理後の前記セルロース系繊維を大気圧以上の圧力下で加温する加圧加温処理と、を行う方法。
It is a method of producing ultrafine fibers suitable for ultrafineness by processing cellulosic fibers.
Freezing and thawing treatment in which the cellulosic fibers are moistened, frozen, and then thawed.
A method of performing a pressure heating treatment in which the cellulosic fibers after the freeze-thaw treatment are heated under a pressure of atmospheric pressure or higher.
前記加圧加温処理として、前記セルロース系繊維を大気圧以上の圧力下の沸騰水に所定時間浸漬させる請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein as the pressure heating treatment, the cellulosic fibers are immersed in boiling water under atmospheric pressure or higher for a predetermined time. 前記沸騰水は酸水溶液を沸騰させたものである請求項3に記載の方法。 The method according to claim 3, wherein the boiling water is a boiling acid aqueous solution. 前記セルロース系繊維には予め亀裂を生じさせておく請求項1〜4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the cellulosic fiber is cracked in advance. 請求項1〜5のいずれか一項に記載の方法により製造した極細化用繊維に極細化処理を施して極細繊維を製造する方法。 A method for producing ultrafine fibers by subjecting the ultrafine fibers produced by the method according to any one of claims 1 to 5 to an ultrafine treatment. 得られる前記極細繊維の平均繊維径が1〜1000nmである請求項6に記載の方法。 The method according to claim 6, wherein the average fiber diameter of the obtained ultrafine fibers is 1 to 1000 nm. セルロース系繊維に加工処理を施すことにより製造される極細化に適した極細化用繊維であって、
前記加工処理として、前記セルロース系繊維を含水させて大気圧以上の圧力下で加温する加圧加温処理と、
前記加圧加温処理後の前記セルロース系繊維を凍結させた後融解させる凍結融解処理と、が施された極細化用繊維。
An ultrafine fiber produced by processing a cellulosic fiber and suitable for ultrafineness.
As the processing treatment, a pressure heating treatment in which the cellulosic fiber is moistened and heated under a pressure of atmospheric pressure or higher, and a pressure heating treatment.
An ultrafine fiber subjected to a freeze-thaw treatment in which the cellulosic fiber after the pressure heating treatment is frozen and then thawed.
セルロース系繊維に加工処理を施すことにより製造される極細化に適した極細化用繊維であって、
前記加工処理として、前記セルロース系繊維を含水させた後凍結させ、その後融解させる凍結融解処理と、
前記凍結融解処理後の前記セルロース系繊維を大気圧以上の圧力下で加温する加圧加温処理と、が施された極細化用繊維。
An ultrafine fiber produced by processing a cellulosic fiber and suitable for ultrafineness.
As the processing treatment, a freeze-thaw treatment in which the cellulosic fiber is moistened, then frozen, and then thawed, and
An ultrafine fiber subjected to a pressure heating treatment in which the cellulosic fiber after the freeze-thaw treatment is heated under a pressure of atmospheric pressure or higher.
JP2016197247A 2015-10-06 2016-10-05 A method for producing ultrafine fibers suitable for ultrafineness, a method for producing ultrafine fibers, ultrafine fibers suitable for ultrafineness, and ultrafine fibers. Active JP6772018B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015198625 2015-10-06
JP2015198625 2015-10-06
JP2016065612 2016-03-29
JP2016065612 2016-03-29

Publications (2)

Publication Number Publication Date
JP2017179685A JP2017179685A (en) 2017-10-05
JP6772018B2 true JP6772018B2 (en) 2020-10-21

Family

ID=60006630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016197247A Active JP6772018B2 (en) 2015-10-06 2016-10-05 A method for producing ultrafine fibers suitable for ultrafineness, a method for producing ultrafine fibers, ultrafine fibers suitable for ultrafineness, and ultrafine fibers.

Country Status (1)

Country Link
JP (1) JP6772018B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075214A (en) * 2006-09-21 2008-04-03 Kimura Chem Plants Co Ltd Method for producing nanofiber and nanofiber
JP4981735B2 (en) * 2008-03-31 2012-07-25 日本製紙株式会社 Method for producing cellulose nanofiber
JP2012000550A (en) * 2010-06-15 2012-01-05 Asahi Kasei Fibers Corp Filter medium composed of cellulose fiber
JP5887857B2 (en) * 2011-11-17 2016-03-16 王子ホールディングス株式会社 Method for producing fine fibrous cellulose
CN103726378B (en) * 2013-12-26 2016-06-29 湖北葛店人福药用辅料有限责任公司 The method preparing microcrystalline Cellulose under low temperature
FI129421B (en) * 2014-03-12 2022-02-15 Maelkki Yrjoe Production and use of nanocellulose and its precursors
JP5948544B2 (en) * 2014-07-22 2016-07-06 旭化成株式会社 Production method of composite sheet material

Also Published As

Publication number Publication date
JP2017179685A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP5612922B2 (en) Microfiber, method for producing the same, and non-woven fabric
AU2014353890B2 (en) Nanocellulose
KR102444057B1 (en) Fast-fibrillating lyocell fibers and use thereof
JP7021893B2 (en) Cellulose nanofiber molded body
JP5857881B2 (en) Fine fibrous cellulose and method for producing the same, non-woven fabric
JP2008169497A (en) Method for producing nanofiber, and nanofiber
JP2016503465A (en) Dry cellulose filament and method for making the same
JP6783078B2 (en) Cellulose nanofiber manufacturing method and cellulose nanofiber manufacturing equipment
JP6990133B2 (en) Cellulose nanofiber molded body
CN110656529B (en) Fine fiber, preparation method and application thereof, and preparation method of diaphragm for electrical equipment
CA2873418A1 (en) High strength macroalgae pulps
EP3845706A1 (en) Molded body of cellulose fiber and method of manufacturing same
BRPI0712387A2 (en) ligno-cellulosic fibrous material made from wood
JP2013206591A (en) Separator for power storage element and manufacturing method thereof
JP6772018B2 (en) A method for producing ultrafine fibers suitable for ultrafineness, a method for producing ultrafine fibers, ultrafine fibers suitable for ultrafineness, and ultrafine fibers.
Leitner et al. Modifications in the bulk and the surface of unbleached lignocellulosic fibers induced by a heat treatment without water removal: Effects on fibre relaxation of PFI-beaten kraft fibers
Hai et al. Effect of PFI mill and Valley beater refining on cellulose degree of polymerization, alpha cellulose contents, and crystallinity of wood and cotton fibers
JP6670059B2 (en) Method for producing cellulose nanofiber
JP7194503B2 (en) Method for producing cellulose nanofiber
JP7079563B2 (en) Method for manufacturing cellulose nanofiber molded product
JP7365796B2 (en) Molded cellulose fiber and method for producing the same
JP7388824B2 (en) Molded cellulose fiber and method for producing the same
JP2022070291A (en) Carbon fiber-containing wet type unwoven fabric
JP6243991B1 (en) Pulp fiber pretreatment device, cellulose nanofiber production device, and cellulose nanofiber production method
JP2019157294A (en) Method for producing cellulose nanofiber molded body

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200930

R150 Certificate of patent or registration of utility model

Ref document number: 6772018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250