JP6771931B2 - 医用画像処理装置およびプログラム - Google Patents
医用画像処理装置およびプログラム Download PDFInfo
- Publication number
- JP6771931B2 JP6771931B2 JP2016075328A JP2016075328A JP6771931B2 JP 6771931 B2 JP6771931 B2 JP 6771931B2 JP 2016075328 A JP2016075328 A JP 2016075328A JP 2016075328 A JP2016075328 A JP 2016075328A JP 6771931 B2 JP6771931 B2 JP 6771931B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- medical image
- seed
- vesicle
- image processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012545 processing Methods 0.000 title claims description 119
- 238000009826 distribution Methods 0.000 claims description 40
- 210000003484 anatomy Anatomy 0.000 claims description 24
- 238000007781 pre-processing Methods 0.000 claims description 16
- 238000002603 single-photon emission computed tomography Methods 0.000 claims description 5
- 238000012423 maintenance Methods 0.000 claims 1
- 210000001519 tissue Anatomy 0.000 description 79
- 238000000034 method Methods 0.000 description 44
- 238000005259 measurement Methods 0.000 description 24
- 239000000523 sample Substances 0.000 description 21
- 238000002604 ultrasonography Methods 0.000 description 18
- 238000009877 rendering Methods 0.000 description 13
- 210000001672 ovary Anatomy 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000001914 filtration Methods 0.000 description 10
- 230000000877 morphologic effect Effects 0.000 description 7
- 230000011218 segmentation Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 5
- 238000009499 grossing Methods 0.000 description 5
- 238000012549 training Methods 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 4
- 210000001015 abdomen Anatomy 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 206010027476 Metastases Diseases 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 210000005242 cardiac chamber Anatomy 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000002059 diagnostic imaging Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 208000026292 Cystic Kidney disease Diseases 0.000 description 1
- 206010014561 Emphysema Diseases 0.000 description 1
- 208000000913 Kidney Calculi Diseases 0.000 description 1
- 206010029148 Nephrolithiasis Diseases 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 201000001883 cholelithiasis Diseases 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 208000031513 cyst Diseases 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 230000003325 follicular Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 208000001130 gallstones Diseases 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012285 ultrasound imaging Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
- A61B8/0833—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
- A61B8/085—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5207—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5215—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
- A61B8/5223—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10132—Ultrasound image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
- G06T2207/20156—Automatic seed setting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30024—Cell structures in vitro; Tissue sections in vitro
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30242—Counting objects in image
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Vascular Medicine (AREA)
- Physiology (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Data Mining & Analysis (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
- Quality & Reliability (AREA)
Description
Claims (20)
- 医用画像データにおける所望の解剖学的構造を有する標的領域に複数のシードが配置される密度で前記シードを配置する配置部と、
前記複数のシードの中から少なくとも一つのシードを選択し、当該選択された一つのシードを成長させ、当該シードを成長させた結果得られる少なくとも一つの候補領域から、閾値以下のサイズの候補領域を除外して少なくとも一つの候補領域を取得する処理部と、
前記処理部により取得された前記少なくとも一つの候補領域に基づいて前記標的領域を特定する領域特定部と、
を具備する、医用画像処理装置。 - 前記候補領域および前記標的領域は、標的クラスに属する組織を含み、
前記処理部は、前記複数のシードのうち前記標的クラスに属するシードを選択する、請求項1に記載の医用画像処理装置。 - 前記標的領域は卵胞を含み、
前記標的クラスは小胞組織を含む、請求項2に記載の医用画像処理装置。 - 前記領域特定部は、前記標的領域を自動的に測定することで前記所望の解剖学的構造のサイズを取得する、請求項1に記載の医用画像処理装置。
- 前記領域特定部は、前記標的領域を自動的に数えることで前記所望の解剖学的構造を数える、請求項1に記載の医用画像処理装置。
- 前記領域特定部は、前記標的領域の位置を自動的に決定する、請求項1に記載の医用画像処理装置。
- 前記配置部は、前記複数のシードを規則的または不規則に分布させる、請求項1に記載の医用画像処理装置。
- 前記処理部は、前記標的クラスと他の少なくとも一つのクラスとの間の境界に達するまで前記シードを成長させる、請求項2に記載の医用画像処理装置。
- 前記処理部は、レベルセットアルゴリズムおよび領域成長アルゴリズムの少なくともいずれか一方を用いて前記シードを成長させる、請求項2に記載の医用画像処理装置。
- 前記処理部は、前記標的クラスと他の少なくとも一つのクラスとを画素値の大きさに基づいて区別する、請求項9に記載の医用画像処理装置。
- 前記領域特定部は、隣接する、または重なり合う複数の候補領域を組み合わせて単一の候補領域を形成する、請求項1に記載の医用画像処理装置。
- 前記領域特定部は、一つの候補領域を複数の候補領域に分割する、請求項1に記載の医用画像処理装置。
- 前記領域特定部は、サイズまたは形に基づいて前記少なくとも一つの候補領域を選択する、請求項1に記載の医用画像処理装置。
- 前記処理部は、前記標的クラスのピクセルまたはボクセルの画素値の大きさの第一の統計的分布と、他の少なくとも一つのクラスのピクセルまたはボクセルの画素値の大きさの他の少なくとも一つの統計的分布とを前記医用画像データの少なくとも一部から見積もることで、前記標的クラスと他の少なくとも一つのクラスとの境界を区別する、請求項2に記載の医用画像処理装置。
- 前記第一の統計的分布、および前記他の少なくとも一つの統計的分布は、強度、勾配、領域成長の形状、局所勾配、テクスチャアピアランスインジケータ、または高次導関数のうち少なくとも一つの分布を含む、請求項14に記載の医用画像処理装置。
- 前記標的クラスは小胞組織を含み、
前記処理部は、前記小胞組織、小胞の間の組織、および小胞の外側の組織を区別する、請求項2に記載の医用画像処理装置。 - さらに、前記医用画像データ中の関心領域を特定し、ノイズ低減フィルタ、境界維持フィルタ、メジアンフィルタ、異方性フィルタの少なくとも一つを用いて前記医用画像データの一部分をフィルタする前処理部をさらに具備する、請求項1に記載の医用画像処理装置。
- 前記シードは、ポイント、ピクセル、ボクセル、関心領域の二次元シード領域、および前記関心領域の三次元シード領域の少なくとも一つを含む、請求項1に記載の医用画像処理装置。
- 前記医用画像データは、超音波データ、CTデータ、コーンビームCTデータ、MRデータ、X線データ、PETデータ、およびSPECTデータ、の少なくとも一つを含む、請求項1に記載の医用画像処理装置。
- コンピュータにより実行されるプログラムであって、前記コンピュータに、
医用画像データにおける所望の解剖学的構造を有する標的領域に複数のシードが配置される密度で前記シードを配置させ、
前記複数のシードの中から少なくとも一つのシードを選択させ、当該選択された一つのシードを成長させ、当該シードを成長させた結果得られる少なくとも一つの候補領域から、閾値以下のサイズの候補領域を除外して少なくとも一つの候補領域を取得させ、
前記取得された前記少なくとも一つの候補領域に基づいて前記標的領域を特定させる、
プログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/677,007 US9773325B2 (en) | 2015-04-02 | 2015-04-02 | Medical imaging data processing apparatus and method |
US14/677,007 | 2015-04-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016195764A JP2016195764A (ja) | 2016-11-24 |
JP6771931B2 true JP6771931B2 (ja) | 2020-10-21 |
Family
ID=57017346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016075328A Active JP6771931B2 (ja) | 2015-04-02 | 2016-04-04 | 医用画像処理装置およびプログラム |
Country Status (2)
Country | Link |
---|---|
US (1) | US9773325B2 (ja) |
JP (1) | JP6771931B2 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10672122B2 (en) * | 2015-11-19 | 2020-06-02 | Koninklijke Philips N.V. | Optimizing user interactions in segmentation |
JP6792340B2 (ja) * | 2016-03-29 | 2020-11-25 | ザイオソフト株式会社 | 医用画像処理装置、医用画像処理方法、及び医用画像処理プログラム |
US11389133B2 (en) * | 2016-10-28 | 2022-07-19 | Samsung Electronics Co., Ltd. | Method and apparatus for follicular quantification in 3D ultrasound images |
US10127664B2 (en) * | 2016-11-21 | 2018-11-13 | International Business Machines Corporation | Ovarian image processing for diagnosis of a subject |
EP3363368A1 (en) * | 2017-02-20 | 2018-08-22 | Koninklijke Philips N.V. | Ovarian follicle count and size determination |
WO2019072827A1 (en) * | 2017-10-11 | 2019-04-18 | Koninklijke Philips N.V. | INTELLIGENT MONITORING OF ULTRASONIC FERTILITY |
JP7143118B2 (ja) * | 2018-05-23 | 2022-09-28 | 浜松ホトニクス株式会社 | 大腰筋領域画定装置および大腰筋領域画定方法 |
CN109035261B (zh) * | 2018-08-09 | 2023-01-10 | 北京市商汤科技开发有限公司 | 医疗影像处理方法及装置、电子设备及存储介质 |
US10426442B1 (en) | 2019-06-14 | 2019-10-01 | Cycle Clarity, LLC | Adaptive image processing in assisted reproductive imaging modalities |
US10646156B1 (en) | 2019-06-14 | 2020-05-12 | Cycle Clarity, LLC | Adaptive image processing in assisted reproductive imaging modalities |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6385332B1 (en) * | 1999-02-19 | 2002-05-07 | The John P. Roberts Research Institute | Automated segmentation method for 3-dimensional ultrasound |
US6973212B2 (en) * | 2000-09-01 | 2005-12-06 | Siemens Corporate Research, Inc. | Graph cuts for binary segmentation of n-dimensional images from object and background seeds |
GB0115615D0 (en) * | 2001-06-27 | 2001-08-15 | Univ Coventry | Image segmentation |
GB0205000D0 (en) * | 2002-03-04 | 2002-04-17 | Isis Innovation | Unsupervised data segmentation |
US20040008886A1 (en) * | 2002-07-02 | 2004-01-15 | Yuri Boykov | Using graph cuts for editing photographs |
US7620501B2 (en) * | 2004-05-06 | 2009-11-17 | Siemens Medical Solutions Usa, Inc. | Artery-vein separation and vessel modeling |
EP1881453A3 (en) * | 2006-07-18 | 2009-07-22 | Kabushiki Kaisha Toshiba | A medical image-processing apparatus and a method for processing medical images |
US8050498B2 (en) * | 2006-07-21 | 2011-11-01 | Adobe Systems Incorporated | Live coherent image selection to differentiate foreground and background pixels |
US8532358B2 (en) * | 2007-06-14 | 2013-09-10 | Siemens Aktiengesellschaft | System and method for segmentation of MR flow data using fluid dynamics and tracking |
US8023734B2 (en) * | 2007-10-10 | 2011-09-20 | Siemens Aktiengesellschaft | 3D general lesion segmentation in CT |
US8144964B1 (en) * | 2008-05-30 | 2012-03-27 | Ellis Amalgamated LLC | Image feature analysis |
US8515171B2 (en) * | 2009-01-09 | 2013-08-20 | Rochester Institute Of Technology | Methods for adaptive and progressive gradient-based multi-resolution color image segmentation and systems thereof |
US8538117B2 (en) * | 2009-04-07 | 2013-09-17 | Virginia Commonwealth University | Accurate pelvic fracture detection for X-ray and CT images |
US9679389B2 (en) * | 2009-05-19 | 2017-06-13 | Algotec Systems Ltd. | Method and system for blood vessel segmentation and classification |
JP2011224143A (ja) * | 2010-04-20 | 2011-11-10 | Hitachi Aloka Medical Ltd | 超音波データ処理装置 |
JP5550507B2 (ja) * | 2010-09-27 | 2014-07-16 | 日立アロカメディカル株式会社 | 超音波診断装置 |
US8358823B2 (en) * | 2011-03-30 | 2013-01-22 | Mitsubishi Electric Research Laboratories, Inc. | Method for tracking tumors in bi-plane images |
JP5701138B2 (ja) | 2011-04-19 | 2015-04-15 | 富士フイルム株式会社 | 医用画像処理装置および方法、並びにプログラム |
US8781187B2 (en) * | 2011-07-13 | 2014-07-15 | Mckesson Financial Holdings | Methods, apparatuses, and computer program products for identifying a region of interest within a mammogram image |
WO2013184070A1 (en) * | 2012-06-05 | 2013-12-12 | Agency For Science, Technology And Research | A drusen lesion image detection system |
US9025825B2 (en) * | 2013-05-10 | 2015-05-05 | Palo Alto Research Center Incorporated | System and method for visual motion based object segmentation and tracking |
US9526412B2 (en) * | 2014-01-21 | 2016-12-27 | Kabushiki Kaisha Topcon | Geographic atrophy identification and measurement |
-
2015
- 2015-04-02 US US14/677,007 patent/US9773325B2/en active Active
-
2016
- 2016-04-04 JP JP2016075328A patent/JP6771931B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
US9773325B2 (en) | 2017-09-26 |
JP2016195764A (ja) | 2016-11-24 |
US20160292848A1 (en) | 2016-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6771931B2 (ja) | 医用画像処理装置およびプログラム | |
US10127654B2 (en) | Medical image processing apparatus and method | |
CN110338844B (zh) | 三维成像数据的显示处理方法和三维超声成像方法及系统 | |
US8634616B2 (en) | Method, apparatus, and computer program product for acquiring medical image data | |
CN104622495A (zh) | 医用图像处理装置以及医用图像处理方法 | |
EP2120208A1 (en) | Method and system for lesion segmentation | |
CN109493325A (zh) | 基于ct影像的肿瘤异质性分析系统 | |
CN107103605B (zh) | 一种乳房组织的分割方法 | |
CN111281430B (zh) | 超声成像方法、设备及可读存储介质 | |
CN111374712B (zh) | 一种超声成像方法及超声成像设备 | |
CN107292889A (zh) | 一种肿瘤分割的方法、系统和可读介质 | |
CN109949288A (zh) | 肿瘤类型确定系统、方法及存储介质 | |
US9466145B2 (en) | Identification of vascular territories | |
CN114332132A (zh) | 图像分割方法、装置和计算机设备 | |
Jayanthi et al. | Extracting the liver and tumor from abdominal CT images | |
US8724878B2 (en) | Ultrasound image segmentation | |
EP4451225A2 (en) | Method for visualizing at least a zone of an object in at least one interface | |
Myint et al. | Effective kidney segmentation using gradient based approach in abdominal CT images | |
Lee et al. | Breast ultrasound automated ROI segmentation with region growing | |
CN111383323B (zh) | 一种超声成像方法和系统以及超声图像处理方法和系统 | |
Yao et al. | Uterine fibroid segmentation and volume measurement on MRI | |
US20220240898A1 (en) | Ultrasound diagnostic apparatus, medical image processing apparatus, and medical image processing method | |
Shaharuddin et al. | An overview in development of computer aided diagnosis (CAD) for ultrasound kidney images | |
WO2020186514A1 (en) | Organ segmentation method and system | |
Sustersic et al. | Development of a user-friendly application for DICOM image segmentation and 3D visualization of a brain tumor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190305 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200526 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20200527 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200901 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200930 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6771931 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |