JP6770897B2 - Insulated container for transportation - Google Patents

Insulated container for transportation Download PDF

Info

Publication number
JP6770897B2
JP6770897B2 JP2017000257A JP2017000257A JP6770897B2 JP 6770897 B2 JP6770897 B2 JP 6770897B2 JP 2017000257 A JP2017000257 A JP 2017000257A JP 2017000257 A JP2017000257 A JP 2017000257A JP 6770897 B2 JP6770897 B2 JP 6770897B2
Authority
JP
Japan
Prior art keywords
heat insulating
wall portion
container
insulating material
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017000257A
Other languages
Japanese (ja)
Other versions
JP2018108851A (en
Inventor
田中 幹彦
幹彦 田中
翔太 大野
翔太 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2017000257A priority Critical patent/JP6770897B2/en
Publication of JP2018108851A publication Critical patent/JP2018108851A/en
Application granted granted Critical
Publication of JP6770897B2 publication Critical patent/JP6770897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Packages (AREA)

Description

本発明は、断熱容器に関する。 The present invention relates to a heat insulating container.

従来から断熱性の容器本体と、この容器本体の上端開口部を開閉する断熱性の開閉蓋部とを備えた断熱容器が知られている(下記特許文献1を参照)。特許文献1に記載された断熱容器において、容器本体は、略四角形断面に形成された筒状胴部の下端が底蓋部で閉塞され、上端開口部によって上端が開口されている。また、開閉蓋部は、この容器本体の上端部に起伏自在に取付けて設けられている。 Conventionally, a heat insulating container including a heat insulating container body and a heat insulating opening / closing lid portion for opening / closing the upper end opening of the container body has been known (see Patent Document 1 below). In the heat insulating container described in Patent Document 1, the lower end of the tubular body portion formed in a substantially quadrangular cross section of the container body is closed by the bottom lid portion, and the upper end is opened by the upper end opening. Further, the opening / closing lid portion is provided so as to be undulatingly attached to the upper end portion of the container body.

上記容器本体の筒状胴部は、前後に対向する前壁部と後壁部、および左右に対向する左右の側壁部とを備えている。この容器本体の前壁部、後壁部、左右の側壁部、底蓋部、および開閉蓋部は、三重断熱層を備えている。この三重断熱層は、平板状の真空断熱材で形成した中央断熱層と、この中央断熱層の両面に重合して設けられた平板状の断熱ボードで形成された内側断熱層および外側断熱層とで構成されている。そして、上記底蓋部の内側断熱層は、上記筒状胴部の下端部に適合して嵌入するように構成され、上記開閉蓋部の内側断熱層は、閉蓋時に容器本体の上端開口部に適合して嵌入するように構成されている。 The tubular body portion of the container body includes a front wall portion and a rear wall portion facing the front and rear, and left and right side wall portions facing the left and right. The front wall portion, the rear wall portion, the left and right side wall portions, the bottom lid portion, and the opening / closing lid portion of the container body are provided with a triple heat insulating layer. This triple heat insulating layer includes a central heat insulating layer formed of a flat plate vacuum heat insulating material, and an inner heat insulating layer and an outer heat insulating layer formed of flat plate heat insulating boards polymerized on both sides of the central heat insulating layer. It is composed of. The inner heat insulating layer of the bottom lid is configured to fit into the lower end of the tubular body, and the inner heat insulating layer of the opening / closing lid is the upper end opening of the container body when the lid is closed. It is configured to fit and fit into.

この構成により、真空断熱材の機能と断熱ボードの機能との相乗作用によって優れた断熱効果を発揮すること、真空断熱材の両面に重合した断熱ボードによって真空断熱材が保護されること、および、真空断熱材が損傷すると断熱作用は略ゼロないしゼロに近くなることなどが、特許文献1に記載されている(たとえば同文献、第0011段落から第0016段落等を参照)。 With this configuration, the excellent heat insulating effect is exhibited by the synergistic action of the function of the vacuum heat insulating material and the function of the heat insulating board, the vacuum heat insulating material is protected by the heat insulating board laminated on both sides of the vacuum heat insulating material, and It is described in Patent Document 1 that when the vacuum heat insulating material is damaged, the heat insulating action becomes substantially zero or close to zero (see, for example, paragraphs 0011 to 0016 of the same document).

特開2013−10524号公報Japanese Unexamined Patent Publication No. 2013-10524

前記特許文献1は、容器本体が三層構成の断熱層の胴部および底蓋部で構成された断熱容器体を収容するバッグを備える構成を開示している。このバッグは、たとえば繊維製シートの一方の面にアルミを蒸着したアルミ蒸着シートによって作製されるため、柔軟で可撓性を有し、十分な剛性を有しない。また、バッグに収容される断熱容器体の三層構成の断熱層において、内側および外側断熱層を構成する断熱ボードとして、発泡樹脂材などの比較的強度が低い素材が用いられることが、同文献に記載されている。 Patent Document 1 discloses a configuration in which a container body includes a bag for accommodating a heat insulating container body composed of a body portion and a bottom lid portion of a heat insulating layer having a three-layer structure. Since this bag is made of, for example, an aluminum-deposited sheet in which aluminum is vapor-deposited on one surface of a fiber sheet, it is flexible and flexible, and does not have sufficient rigidity. Further, in the heat insulating layer having a three-layer structure of a heat insulating container housed in a bag, a material having a relatively low strength such as a foamed resin material is used as a heat insulating board forming the inner and outer heat insulating layers. It is described in.

したがって、上記従来の断熱容器では、外部からの衝撃によって断熱ボードとともに真空断熱材が損傷して断熱作用が消滅するおそれがある。また、外部の衝撃から真空断熱材を保護するために外側断熱層を構成する断熱ボードを厚くすると、断熱容器の外表面の面積に対する真空断熱材の設置面積が減少し、断熱容器に外部から熱が伝達されやすくなり、断熱容器の断熱性が低下するおそれがある。 Therefore, in the conventional heat insulating container, the vacuum heat insulating material may be damaged together with the heat insulating board by an external impact, and the heat insulating action may be extinguished. Further, if the heat insulating board constituting the outer heat insulating layer is thickened to protect the vacuum heat insulating material from an external impact, the installation area of the vacuum heat insulating material relative to the area of the outer surface of the heat insulating container is reduced, and the heat insulating container is heated from the outside. Is easily transmitted, and the heat insulating property of the heat insulating container may be deteriorated.

本発明は、前記課題に鑑みてなされたものであり、外部の衝撃から真空断熱材をより確実に保護することができ、かつ断熱性を向上させることができる断熱容器を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a heat insulating container capable of more reliably protecting the vacuum heat insulating material from an external impact and improving heat insulating properties. To do.

前記目的を達成すべく、本発明の断熱容器は、容器本体と、該容器本体の開口部を閉塞する蓋部とを備えた断熱容器であって、前記容器本体は、剛性を有する外壁部と、該外壁部の内側に配置された内壁部と、該内壁部と前記外壁部との間に配置された真空断熱材とを備え、前記真空断熱材は、前記外壁部の側壁に隣接して配置された側壁用真空断熱材を含むことを特徴とする。 In order to achieve the above object, the heat insulating container of the present invention is a heat insulating container provided with a container body and a lid portion that closes an opening of the container body, and the container body is a rigid outer wall portion. The inner wall portion arranged inside the outer wall portion and the vacuum heat insulating material arranged between the inner wall portion and the outer wall portion are provided, and the vacuum heat insulating material is adjacent to the side wall of the outer wall portion. It is characterized by including the vacuum heat insulating material for the side wall arranged.

このような構成により、本発明の断熱容器は、剛性を有する外壁部によって外部からの衝撃を緩和し、外壁部と内壁部との間の空間に配置された真空断熱材の破損を防止することができる。したがって、本発明の断熱容器によれば、従来の断熱容器よりも外部の衝撃から真空断熱材をより確実に保護することができる。 With such a configuration, the heat insulating container of the present invention cushions the impact from the outside by the rigid outer wall portion and prevents the vacuum heat insulating material arranged in the space between the outer wall portion and the inner wall portion from being damaged. Can be done. Therefore, according to the heat insulating container of the present invention, the vacuum heat insulating material can be more reliably protected from an external impact than the conventional heat insulating container.

なお、外壁部の剛性とは、外部から外壁部に作用する力に対する外壁部の変形のしにくさである。真空断熱材の破損を防止する観点から、外壁部は、真空断熱材の剛性よりも高い剛性を有していることが好ましい。また、外壁部は、真空断熱材の破壊強度よりも高い破壊強度を有していることが好ましい。 The rigidity of the outer wall portion is the difficulty of deformation of the outer wall portion with respect to a force acting on the outer wall portion from the outside. From the viewpoint of preventing the vacuum heat insulating material from being damaged, the outer wall portion preferably has a rigidity higher than that of the vacuum heat insulating material. Further, the outer wall portion preferably has a breaking strength higher than the breaking strength of the vacuum heat insulating material.

真空断熱材は、たとえばグラスウールなどの芯材の周囲をラミネートフィルムなどの外装材によって覆い、その外装材の内部を真空状態にした板状の断熱材である。このような側壁用真空断熱材を外壁部の側壁に隣接して配置することで、容器本体の外表面の表面積に対し、側壁用真空断熱材の設置面積を極力大きくすることができ、外壁部の側壁を介した熱の移動を従来よりも広い範囲で遮断することができる。したがって、本発明の断熱容器によれば、従来の断熱容器よりも断熱性を向上させることができる。 The vacuum heat insulating material is a plate-shaped heat insulating material in which the periphery of a core material such as glass wool is covered with an exterior material such as a laminated film, and the inside of the exterior material is evacuated. By arranging such the vacuum heat insulating material for the side wall adjacent to the side wall of the outer wall portion, the installation area of the vacuum heat insulating material for the side wall can be made as large as possible with respect to the surface area of the outer surface of the container body, and the outer wall portion. The heat transfer through the side wall of the heat can be blocked in a wider range than before. Therefore, according to the heat insulating container of the present invention, the heat insulating property can be improved as compared with the conventional heat insulating container.

ここで、側壁用真空断熱材を外壁部の側壁に隣接して配置するとは、次の場合を含む。たとえば、側壁用真空断熱材が、外壁部の側壁に接着剤を介して接合されている場合、外壁部の側壁に接した状態で配置されている場合、および外壁部の側壁と僅かな隙間を介して対向して配置されている場合である。なお、側壁用真空断熱材と外壁部の側壁との間の隙間は、たとえば1mm以下または2mm以下にすることができる。このような隙間を有することで、たとえば、外壁部に外部からの衝撃が加わったときに、衝撃を緩和することができ、側壁用真空断熱材の損傷を防止することができる。 Here, arranging the vacuum heat insulating material for the side wall adjacent to the side wall of the outer wall portion includes the following cases. For example, when the vacuum heat insulating material for the side wall is joined to the side wall of the outer wall portion via an adhesive, when it is arranged in contact with the side wall of the outer wall portion, and when there is a slight gap with the side wall of the outer wall portion. This is the case when they are arranged so as to face each other. The gap between the vacuum heat insulating material for the side wall and the side wall of the outer wall portion can be, for example, 1 mm or less or 2 mm or less. By having such a gap, for example, when an external impact is applied to the outer wall portion, the impact can be alleviated and damage to the vacuum heat insulating material for the side wall can be prevented.

前記断熱容器は、前記外壁部の内表面および前記真空断熱材を覆う発泡樹脂材を備えていてもよい。前記内壁部と前記発泡樹脂材が別の部材である場合には、この発泡樹脂材によって、前記外壁部と前記内壁部との間で熱が移動するのを抑制し、断熱容器の断熱性を向上させることができる。また、前記内壁部が前記発泡樹脂材である場合には、この発泡樹脂材からなる内壁部によって断熱容器の断熱性を向上させることができる。また、いずれの場合にも、発泡樹脂材によって真空断熱材を支持し、真空断熱材の破損を防止することができる。したがって、外部の衝撃から真空断熱材をより確実に保護することができ、かつ断熱容器の断熱性を向上させることができる。 The heat insulating container may include a foamed resin material that covers the inner surface of the outer wall portion and the vacuum heat insulating material. When the inner wall portion and the foamed resin material are different members, the foamed resin material suppresses heat transfer between the outer wall portion and the inner wall portion, and improves the heat insulating property of the heat insulating container. Can be improved. Further, when the inner wall portion is made of the foamed resin material, the heat insulating property of the heat insulating container can be improved by the inner wall portion made of the foamed resin material. Further, in either case, the vacuum heat insulating material can be supported by the foamed resin material to prevent the vacuum heat insulating material from being damaged. Therefore, the vacuum heat insulating material can be more reliably protected from an external impact, and the heat insulating property of the heat insulating container can be improved.

前記容器本体は、矩形箱形の形状を有し、前記側壁用真空断熱材の周縁部は、前記外壁部の前記側壁の周縁部よりも内側に配置され、前記容器本体の角部に、前記側壁用真空断熱材が配置されていない緩衝部が形成されていてもよい。これにより、たとえば前記容器本体を構成する前記外壁部の角部が障害物に衝突したときに、前記側壁用真空断熱材に衝撃が加わるのを防止することができる。したがって、前記側壁用真空断熱材の破損をより効果的に防止することができる。 The container body has a rectangular box shape, and the peripheral edge portion of the vacuum heat insulating material for the side wall is arranged inside the peripheral edge portion of the side wall portion of the outer wall portion, and the corner portion of the container body is formed. A buffer portion in which the vacuum heat insulating material for the side wall is not arranged may be formed. Thereby, for example, when the corner portion of the outer wall portion constituting the container body collides with an obstacle, it is possible to prevent the vacuum heat insulating material for the side wall from being impacted. Therefore, the breakage of the vacuum heat insulating material for the side wall can be prevented more effectively.

前記緩衝部は、前記外壁部の内側の角と前記内壁部の外側の角との間に形成されていてもよい。たとえば、前記緩衝部は、前記容器本体の底壁に垂直な方向から見た平面視で、矩形の前記容器本体の対角線上に形成することができる。これにより、容器本体の外壁部の外側の角に衝撃が加わって、外壁部の内側の角と内壁部の外側の角との間の間隔が狭まっても、緩衝部によって衝撃を緩和し、前記側壁用真空断熱材の破損をより確実に防止することができる。 The cushioning portion may be formed between the inner corner of the outer wall portion and the outer corner of the inner wall portion. For example, the cushioning portion can be formed on the diagonal line of the rectangular container body in a plan view viewed from a direction perpendicular to the bottom wall of the container body. As a result, even if an impact is applied to the outer corner of the outer wall portion of the container body and the distance between the inner corner of the outer wall portion and the outer corner of the inner wall portion is narrowed, the impact is mitigated by the buffer portion. It is possible to more reliably prevent the vacuum heat insulating material for the side wall from being damaged.

前記外壁部および前記内壁部の素材は、非発泡樹脂材料であり、前記外壁部と前記内壁部との間の空間は、発泡樹脂材によって埋められていてもよい。これにより、前記外壁部および前記内壁部に対して、所望の剛性および機械的強度を付与することができる。また、前記外壁部と前記内壁部とを、たとえば熱溶着により接合して一体化することができる。さらに、発泡樹脂材によって、前記外壁部と前記内壁部との間で熱が移動するのを抑制し、断熱容器の断熱性を向上させることができるだけでなく、前記外壁部の内表面と前記内壁部の内表面を内側から支持して強度を向上させることができる。 The material of the outer wall portion and the inner wall portion is a non-foamed resin material, and the space between the outer wall portion and the inner wall portion may be filled with the foamed resin material. Thereby, desired rigidity and mechanical strength can be imparted to the outer wall portion and the inner wall portion. Further, the outer wall portion and the inner wall portion can be joined and integrated by, for example, heat welding. Further, the foamed resin material not only suppresses the transfer of heat between the outer wall portion and the inner wall portion and improves the heat insulating property of the heat insulating container, but also the inner surface of the outer wall portion and the inner wall portion. The inner surface of the portion can be supported from the inside to improve the strength.

前記真空断熱材は、前記内壁部の底壁に隣接して配置された底壁用真空断熱材を含んでいてもよい。この場合、前記外壁部の底壁を介した容器本体の内部と外部との間の熱の移動を抑制することができ、断熱容器の断熱性を向上させることができる。また、前記底壁用真空断熱材を前記外壁部の底壁から離隔させて配置することができる。そのため、たとえば前記外壁部の底壁に注入孔を形成し、この注入孔を介して前記外壁部と前記内壁部との間の空間に発泡樹脂材を充填し、この空間を発泡樹脂材で埋めることができる。 The vacuum heat insulating material may include a vacuum heat insulating material for the bottom wall arranged adjacent to the bottom wall of the inner wall portion. In this case, the transfer of heat between the inside and the outside of the container body through the bottom wall of the outer wall portion can be suppressed, and the heat insulating property of the heat insulating container can be improved. Further, the vacuum heat insulating material for the bottom wall can be arranged so as to be separated from the bottom wall of the outer wall portion. Therefore, for example, an injection hole is formed in the bottom wall of the outer wall portion, a foamed resin material is filled in the space between the outer wall portion and the inner wall portion through the injection hole, and this space is filled with the foamed resin material. be able to.

前記蓋部は、前記容器本体の前記開口部を覆う下壁部と、該下壁部の上方側に接合された上壁部と、該上壁部と該下壁部の間で該上壁部に隣接して配置された蓋部用真空断熱材とを有してもよい。 The lid portion includes a lower wall portion that covers the opening of the container body, an upper wall portion joined to the upper side of the lower wall portion, and the upper wall portion between the upper wall portion and the lower wall portion. It may have a vacuum heat insulating material for a lid portion arranged adjacent to the portion.

このように、蓋部用真空断熱材を上壁部に隣接して配置することで、蓋部用真空断熱材を下壁部に隣接して配置する場合と比較して、蓋部用真空断熱材を前記蓋部の外表面の面積に近いより広い面積に配置することができる。したがって、蓋部用真空断熱材によって、蓋部の上壁部を介した断熱容器の内部と外部との間の熱の移動をより効果的に遮断し、断熱容器の断熱性をより向上させることができる。 By arranging the vacuum heat insulating material for the lid adjacent to the upper wall portion in this way, the vacuum heat insulating material for the lid portion is compared with the case where the vacuum heat insulating material for the lid portion is arranged adjacent to the lower wall portion. The material can be arranged in a wider area close to the area of the outer surface of the lid. Therefore, the vacuum heat insulating material for the lid portion more effectively blocks the heat transfer between the inside and the outside of the heat insulating container through the upper wall portion of the lid portion, and further improves the heat insulating property of the heat insulating container. Can be done.

前記上壁部と前記下壁部との間の空間を埋める発泡樹脂材を備えてもよい。この発泡樹脂材によって、前記上壁部と前記下壁部との間の熱の移動を抑制し、断熱容器の断熱性を向上させることができる。また、発泡樹脂材によって蓋部用真空断熱材を支持し、蓋部用真空断熱材の破損を防止することができる。したがって、外部の衝撃から蓋部用真空断熱材をより確実に保護することができ、かつ断熱容器の断熱性を向上させることができる。 A foamed resin material that fills the space between the upper wall portion and the lower wall portion may be provided. With this foamed resin material, the transfer of heat between the upper wall portion and the lower wall portion can be suppressed, and the heat insulating property of the heat insulating container can be improved. Further, the vacuum heat insulating material for the lid can be supported by the foamed resin material, and the vacuum heat insulating material for the lid can be prevented from being damaged. Therefore, the vacuum heat insulating material for the lid can be more reliably protected from an external impact, and the heat insulating property of the heat insulating container can be improved.

前記上壁部および前記下壁部の素材は、非発泡樹脂材料であってもよい。これにより、前記上壁部および前記下壁部に対して、所望の剛性および機械的強度を付与することができる。また、前記上壁部と前記下壁部とを、たとえば熱溶着により接合して一体化することができる。 The material of the upper wall portion and the lower wall portion may be a non-foamed resin material. Thereby, desired rigidity and mechanical strength can be imparted to the upper wall portion and the lower wall portion. Further, the upper wall portion and the lower wall portion can be joined and integrated by, for example, heat welding.

本発明によれば、外部の衝撃から真空断熱材をより確実に保護することができ、かつ断熱性を向上させることができる断熱容器を提供することができる。 According to the present invention, it is possible to provide a heat insulating container capable of more reliably protecting the vacuum heat insulating material from an external impact and improving the heat insulating property.

本発明の一実施形態に係る断熱容器の断面図。Sectional drawing of the heat insulating container which concerns on one Embodiment of this invention. 図1に示す断熱容器のII−II線に沿う断面図。FIG. 2 is a cross-sectional view taken along the line II-II of the heat insulating container shown in FIG. 図1に示す断熱容器の製造方法の一例を示すフロー図。The flow chart which shows an example of the manufacturing method of the heat insulation container shown in FIG. 図3に示す断熱材接合工程の説明図。The explanatory view of the heat insulating material joining process shown in FIG. 図3に示す型内配置工程および発泡樹脂充填工程の説明図。The explanatory view of the in-mold arrangement process and the foamed resin filling process shown in FIG. 図3に示す容器接合工程の説明図。The explanatory view of the container joining process shown in FIG. 図1に示す断熱容器の製造方法の他の一例を示すフロー図。FIG. 5 is a flow chart showing another example of the method for manufacturing the heat insulating container shown in FIG. 図5に示す発泡樹脂成形工程の説明図。The explanatory view of the foam resin molding process shown in FIG. 図5に示す断熱材接合工程の説明図。The explanatory view of the heat insulating material joining process shown in FIG. 図5に示す容器配置工程および容器接合工程の説明図。The explanatory view of the container arrangement process and the container joining process shown in FIG. 本発明の実施例に係る断熱容器の模式的な断面図。Schematic cross-sectional view of the heat insulating container according to the Example of this invention. 比較例に係る断熱容器の模式的な断面図。Schematic cross-sectional view of a heat insulating container according to a comparative example. 実施例と比較例の断熱容器の断熱性試験の結果を示すグラフ。The graph which shows the result of the heat insulation test of the heat insulation container of an Example and a comparative example.

以下、図面を参照して本発明に係る断熱容器の一実施形態を説明する。 Hereinafter, an embodiment of the heat insulating container according to the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る断熱容器100の上下方向に沿う断面図である。図2は、図1に示すII−II線に沿う断熱容器100の断面図である。 FIG. 1 is a cross-sectional view taken along the vertical direction of the heat insulating container 100 according to the embodiment of the present invention. FIG. 2 is a cross-sectional view of the heat insulating container 100 along the line II-II shown in FIG.

本実施形態の断熱容器100は、たとえば、断熱性を有する容器本体10と、この容器本体の上部の開口部10aを閉塞する断熱性を有する蓋部20とを備えている。 The heat-insulating container 100 of the present embodiment includes, for example, a container body 10 having a heat-insulating property and a lid portion 20 having a heat-insulating property that closes the opening 10a at the top of the container body.

容器本体10は、たとえば、全体としておおむね直方体の形状を有する矩形の箱形に形成されている。容器本体10は、おおむね長方形板状の底壁10bと、この底壁10bの各辺に立設された側壁10cとを有し、上部が開放されている。すなわち、容器本体10は、上端部に側壁10cによって画定されたおおむね長方形の開口部10aを有している。なお、容器本体10の形状は、特に限定されず、たとえば、円筒状、楕円筒状、多角形柱状など、任意の形状に形成することができる。容器本体10は、外壁部11と内壁部12と真空断熱材30とを備えている。 The container body 10 is formed, for example, in the shape of a rectangular box having a substantially rectangular parallelepiped shape as a whole. The container body 10 has a bottom wall 10b having a substantially rectangular plate shape and side walls 10c erected on each side of the bottom wall 10b, and the upper portion is open. That is, the container body 10 has a substantially rectangular opening 10a defined by the side wall 10c at the upper end. The shape of the container body 10 is not particularly limited, and can be formed into any shape such as a cylindrical shape, an elliptical cylinder shape, and a polygonal columnar shape. The container body 10 includes an outer wall portion 11, an inner wall portion 12, and a vacuum heat insulating material 30.

外壁部11は、たとえば、硬質の非発泡樹脂によって製作されている。外壁部11の素材である非発泡樹脂としては、たとえば、ポリエチレンやポリプロピレンなどのポリオレフィン系樹脂を用いることができる。外壁部11は、たとえば0.5mm以上かつ5mm以下の厚さを有し、一定の剛性および機械的強度を有している。外壁部11の剛性および機械的強度は、たとえば、真空断熱材30の剛性および機械的強度よりも高くされている。すなわち、外壁部11は、真空断熱材30よりも外力に対して変形しにくく、耐久性、突き刺し強度(JIS Z1707:1997)、および耐衝撃性などに優れている。 The outer wall portion 11 is made of, for example, a hard non-foamed resin. As the non-foaming resin that is the material of the outer wall portion 11, for example, a polyolefin resin such as polyethylene or polypropylene can be used. The outer wall portion 11 has a thickness of, for example, 0.5 mm or more and 5 mm or less, and has a certain rigidity and mechanical strength. The rigidity and mechanical strength of the outer wall portion 11 are made higher than, for example, the rigidity and mechanical strength of the vacuum heat insulating material 30. That is, the outer wall portion 11 is less likely to be deformed by an external force than the vacuum heat insulating material 30, and is excellent in durability, piercing strength (JIS Z1707: 1997), impact resistance, and the like.

内壁部12は、外壁部11の内側に配置されている。内壁部12は、たとえば外壁部11と同様の素材によって製作されている。図示の例において、内壁部12は、上端部にフランジ部12aを有している。フランジ部12aは、内壁部12の上端部から、容器本体10の開口部10aの外方へ向けて張り出している。フランジ部12aの周縁部は、たとえば熱溶着によって、外壁部11の上端部に全周にわたって接合されている。 The inner wall portion 12 is arranged inside the outer wall portion 11. The inner wall portion 12 is made of the same material as the outer wall portion 11, for example. In the illustrated example, the inner wall portion 12 has a flange portion 12a at the upper end portion. The flange portion 12a projects from the upper end portion of the inner wall portion 12 toward the outside of the opening 10a of the container body 10. The peripheral edge portion of the flange portion 12a is joined to the upper end portion of the outer wall portion 11 over the entire circumference by, for example, heat welding.

真空断熱材30は、たとえばグラスウールなどの断熱材をアルミ蒸着が施されたラミネートフィルムなどの外装材で覆い、この外装材の内部を真空状態にした板状の断熱材である。真空断熱材30は、容器本体10の外壁部11と内壁部12との間の空間に配置されている。すなわち、本実施形態の断熱容器100において、容器本体10は、外壁部11と内壁部12によって構成された中空の側壁10cおよび底壁10bの内部に、真空断熱材30を備えている。 The vacuum heat insulating material 30 is a plate-shaped heat insulating material in which a heat insulating material such as glass wool is covered with an exterior material such as a laminated film on which aluminum is vapor-deposited, and the inside of the exterior material is evacuated. The vacuum heat insulating material 30 is arranged in the space between the outer wall portion 11 and the inner wall portion 12 of the container body 10. That is, in the heat insulating container 100 of the present embodiment, the container main body 10 is provided with the vacuum heat insulating material 30 inside the hollow side wall 10c and the bottom wall 10b formed by the outer wall portion 11 and the inner wall portion 12.

本実施形態の断熱容器100は、たとえば、複数の真空断熱材30を備えている。真空断熱材30は、たとえば、側壁用真空断熱材31と底壁用真空断熱材32を含むことができる。真空断熱材30は、必ずしも底壁用真空断熱材32を含む必要はないが、断熱容器100の断熱性を向上させる観点から、底壁用真空断熱材32を含むことが好ましい。本実施形態の断熱容器100は、真空断熱材30として、容器本体10に側壁用真空断熱材31と底壁用真空断熱材32を備えている。 The heat insulating container 100 of the present embodiment includes, for example, a plurality of vacuum heat insulating materials 30. The vacuum heat insulating material 30 can include, for example, the vacuum heat insulating material 31 for the side wall and the vacuum heat insulating material 32 for the bottom wall. The vacuum heat insulating material 30 does not necessarily include the vacuum heat insulating material 32 for the bottom wall, but it is preferable to include the vacuum heat insulating material 32 for the bottom wall from the viewpoint of improving the heat insulating property of the heat insulating container 100. In the heat insulating container 100 of the present embodiment, as the vacuum heat insulating material 30, the container body 10 is provided with the vacuum heat insulating material 31 for the side wall and the vacuum heat insulating material 32 for the bottom wall.

本実施形態の断熱容器100は、外壁部11の側壁11cに隣接して配置された側壁用真空断熱材31を備える点に最大の特徴を有している。より具体的には、側壁用真空断熱材31は、たとえば外壁部11の側壁11cに接着剤を介して接合されている。また、側壁用真空断熱材31は、たとえば外壁部11の側壁11cに接した状態で支持されていてもよいし、たとえば0.1mmから2mm程度の微小な隙間を介して外壁部11の側壁11cと対向して配置されてもよい。 The heat insulating container 100 of the present embodiment has the greatest feature in that it includes the vacuum heat insulating material 31 for the side wall arranged adjacent to the side wall 11c of the outer wall portion 11. More specifically, the vacuum heat insulating material 31 for the side wall is joined to the side wall 11c of the outer wall portion 11 via an adhesive, for example. Further, the vacuum heat insulating material 31 for the side wall may be supported in a state of being in contact with the side wall 11c of the outer wall portion 11, for example, or the side wall 11c of the outer wall portion 11 via a minute gap of, for example, about 0.1 mm to 2 mm. It may be arranged to face the.

底壁用真空断熱材32は、側壁用真空断熱材31と同様に、たとえば内壁部12の底壁12bに接着剤を介して接合されている。また、底壁用真空断熱材32は、側壁用真空断熱材31と同様に、たとえば内壁部12の底壁12bに接した状態で支持されていてもよいし、たとえば0.1mmから2mm程度の微小な隙間を介して内壁部12の底壁12bと対向して配置されてもよい。 Like the vacuum heat insulating material 31 for the side wall, the vacuum heat insulating material 32 for the bottom wall is joined to the bottom wall 12b of the inner wall portion 12 via an adhesive, for example. Further, the vacuum heat insulating material 32 for the bottom wall may be supported in a state of being in contact with the bottom wall 12b of the inner wall portion 12, for example, about 0.1 mm to 2 mm, like the vacuum heat insulating material 31 for the side wall. It may be arranged so as to face the bottom wall 12b of the inner wall portion 12 through a minute gap.

また、断熱容器100は、たとえば、容器本体10の外壁部11の内表面および真空断熱材30を覆う発泡樹脂材40を備えることができる。発泡樹脂材40としては、たとえばビーズ法発泡ポリプロピレン(expanded polypropylene:EPP)、ビーズ法発泡スチロール(expanded polystyrene:EPS)、ポリウレタン系樹脂の発泡体などを用いることができる。図示の例において、発泡樹脂材40は、容器本体10の外壁部11の内表面、ならびに側壁用真空断熱材31の外壁部11に対向する外面を除く上面、下面、および側面を覆い、外壁部11と内壁部12との間の空間を埋めている。 Further, the heat insulating container 100 may include, for example, a foamed resin material 40 that covers the inner surface of the outer wall portion 11 of the container body 10 and the vacuum heat insulating material 30. As the foamed resin material 40, for example, expanded polypropylene (EPP) by the bead method, expanded polystyrene (EPS) by the bead method, a foam of a polyurethane resin, or the like can be used. In the illustrated example, the foamed resin material 40 covers the upper surface, the lower surface, and the side surface excluding the inner surface of the outer wall portion 11 of the container body 10 and the outer surface facing the outer wall portion 11 of the vacuum heat insulating material 31 for the side wall, and the outer wall portion. The space between the 11 and the inner wall portion 12 is filled.

発泡樹脂材40は、たとえば、容器本体10の外壁部11と内壁部12に接合されていてもよいし、外壁部11と内壁部12との間にぴったりとはめ込まれていてもよい。後者の場合、発泡樹脂材40は、外壁部11と内壁部12との間の寸法に対応し、所定の負の寸法公差を有する厚さに設定され、外壁部11と内壁部12に接するかまたはこれらに微小な隙間を介して対向してもよい。さらに、内壁部12を省略して、発泡樹脂材40を容器本体10の内壁部として用いてもよい。この場合、容器本体10の内表面に、発泡樹脂材40が露出した状態になる。 The foamed resin material 40 may be joined to the outer wall portion 11 and the inner wall portion 12 of the container body 10, for example, or may be fitted tightly between the outer wall portion 11 and the inner wall portion 12. In the latter case, the foamed resin material 40 is set to a thickness corresponding to the dimension between the outer wall portion 11 and the inner wall portion 12 and having a predetermined negative dimensional tolerance, and is in contact with the outer wall portion 11 and the inner wall portion 12. Alternatively, they may face each other through a minute gap. Further, the inner wall portion 12 may be omitted, and the foamed resin material 40 may be used as the inner wall portion of the container body 10. In this case, the foamed resin material 40 is exposed on the inner surface of the container body 10.

図1および図2に示すように、断熱容器100の容器本体10が矩形箱形の形状を有する場合に、容器本体10の外壁部11と内壁部12の間で外壁部11に隣接して配置された側壁用真空断熱材31の周縁部は、外壁部11の側壁11cの周縁部よりも内側に配置することができる。これにより、容器本体10の角部10dに、側壁用真空断熱材31が配置されていない緩衝部10eが形成されている。ここで、容器本体10の角部10dとは、容器本体10の側壁10cと側壁10cの間または側壁10cと底壁10bの間に形成されるとがった部分である。 As shown in FIGS. 1 and 2, when the container body 10 of the heat insulating container 100 has a rectangular box shape, it is arranged adjacent to the outer wall portion 11 between the outer wall portion 11 and the inner wall portion 12 of the container body 10. The peripheral edge portion of the vacuum heat insulating material 31 for the side wall can be arranged inside the peripheral edge portion of the side wall 11c of the outer wall portion 11. As a result, a cushioning portion 10e in which the vacuum heat insulating material 31 for the side wall is not arranged is formed at the corner portion 10d of the container body 10. Here, the corner portion 10d of the container body 10 is a sharp portion formed between the side wall 10c and the side wall 10c of the container body 10 or between the side wall 10c and the bottom wall 10b.

容器本体10の角部10dの緩衝部10eは、図2に示すように、たとえば容器本体10の外壁部11の内側の角11eと内壁部12の外側の角12dとの間に形成されていてもよい。また、緩衝部10eは、たとえば、容器本体10の底壁10bに垂直な方向から見た平面視で、矩形の容器本体10の対角線DL上に形成することができる。外壁部11の内側の角11eは、図1に示す外壁部11の底壁11bから、この底壁11bに垂直な方向に沿って、外壁部11の側壁11cの上端まで延在している。同様に、内壁部12の外側の角12dは、図1に示す内壁部12の底壁12bから、この底壁12bに垂直な方向に沿って、内壁部12の側壁12cの上端まで延在している。 As shown in FIG. 2, the cushioning portion 10e of the corner portion 10d of the container body 10 is formed between, for example, the inner corner 11e of the outer wall portion 11 of the container body 10 and the outer corner 12d of the inner wall portion 12. May be good. Further, the cushioning portion 10e can be formed on the diagonal DL of the rectangular container body 10 in a plan view viewed from a direction perpendicular to the bottom wall 10b of the container body 10, for example. The inner corner 11e of the outer wall portion 11 extends from the bottom wall 11b of the outer wall portion 11 shown in FIG. 1 to the upper end of the side wall 11c of the outer wall portion 11 along the direction perpendicular to the bottom wall 11b. Similarly, the outer corner 12d of the inner wall portion 12 extends from the bottom wall 12b of the inner wall portion 12 shown in FIG. 1 to the upper end of the side wall 12c of the inner wall portion 12 along the direction perpendicular to the bottom wall 12b. ing.

また、図1に示すように、容器本体10の底壁10bに垂直な方向において、外壁部11の内寸H1に対する緩衝部10eの内寸H2は、たとえば、以下の式(1)を満たす。
また、図2に示すように、容器本体10の底壁10bに沿う方向において、外壁部11の縦横の内寸L1、L2に対する緩衝部10eの縦横の内寸L3,L4は、たとえば、以下の式(2)および(3)を満たす。
Further, as shown in FIG. 1, in the direction perpendicular to the bottom wall 10b of the container body 10, the inner dimension H2 of the buffer portion 10e with respect to the inner dimension H1 of the outer wall portion 11 satisfies, for example, the following equation (1).
Further, as shown in FIG. 2, in the direction along the bottom wall 10b of the container body 10, the vertical and horizontal inner dimensions L3 and L4 of the buffer portion 10e with respect to the vertical and horizontal inner dimensions L1 and L2 of the outer wall portion 11 are, for example, as follows. The equations (2) and (3) are satisfied.

0.04≦(H2×2)/H1≦0.15 (1)
0.04≦(L3×2)/L1≦0.15 (2)
0.04≦(L4×2)/L2≦0.15 (3)
0.04 ≦ (H2 × 2) / H1 ≦ 0.15 (1)
0.04 ≦ (L3 × 2) / L1 ≦ 0.15 (2)
0.04 ≦ (L4 × 2) / L2 ≦ 0.15 (3)

すなわち、図1に示すように、容器本体10の底壁10bに垂直な高さ方向において、外壁部11の側壁11cの両端部に形成された緩衝部10eの内寸H2の合計は、外壁部11の高さ方向の内寸H1の4%以上かつ15%以下であることが好ましい。また、図2に示すように、容器本体10の底壁10bに沿う平断面において、矩形の外壁部11の縦方向に沿う側壁11cの両端部に形成された緩衝部10eの内寸L3の合計は、外壁部11の縦方向の内寸L1の4%以上かつ15%以下であることが好ましい。また、容器本体10の底壁10bに垂直な平面視で、矩形の外壁部11の横方向に沿う側壁11cの両端部に形成された緩衝部10eの内寸L4の合計は、外壁部11の横方向の内寸L2の4%以上かつ15%以下であることが好ましい。 That is, as shown in FIG. 1, in the height direction perpendicular to the bottom wall 10b of the container body 10, the total of the inner dimensions H2 of the cushioning portions 10e formed at both ends of the side wall 11c of the outer wall portion 11 is the outer wall portion. It is preferable that the inner dimension H1 in the height direction of 11 is 4% or more and 15% or less. Further, as shown in FIG. 2, in a flat cross section along the bottom wall 10b of the container body 10, the total inner dimensions L3 of the cushioning portions 10e formed at both ends of the side wall 11c along the vertical direction of the rectangular outer wall portion 11. Is preferably 4% or more and 15% or less of the vertical inner dimension L1 of the outer wall portion 11. Further, in a plan view perpendicular to the bottom wall 10b of the container body 10, the total of the inner dimensions L4 of the cushioning portions 10e formed at both ends of the side wall 11c along the lateral direction of the rectangular outer wall portion 11 is the sum of the outer wall portions 11. It is preferably 4% or more and 15% or less of the inner dimension L2 in the lateral direction.

蓋部20は、たとえば、容器本体10の開口部10aを覆う下壁部21と、この下壁部21の上方側に接合された上壁部22と、この上壁部22と下壁部21の間で上壁部22に隣接して配置された蓋部用真空断熱材33とを有することができる。蓋部20は、平板状に形成され、容器本体10の開口部10aに係合する凸部を有することができる。上壁部22および下壁部21の素材は、前述の容器本体10の外壁部11および内壁部12と同様の非発泡樹脂材料を用いることができる。 The lid portion 20 includes, for example, a lower wall portion 21 that covers the opening 10a of the container body 10, an upper wall portion 22 joined to the upper side of the lower wall portion 21, and the upper wall portion 22 and the lower wall portion 21. It is possible to have the vacuum heat insulating material 33 for the lid portion arranged adjacent to the upper wall portion 22 between the two. The lid portion 20 is formed in a flat plate shape and can have a convex portion that engages with the opening portion 10a of the container body 10. As the material of the upper wall portion 22 and the lower wall portion 21, the same non-foamed resin material as the outer wall portion 11 and the inner wall portion 12 of the container body 10 described above can be used.

また、蓋部用真空断熱材33としては、前述の容器本体10の真空断熱材30と同様のものを用いることができる。なお、蓋部20は、たとえばブロー成形などにより、下壁部21と上壁部22とを同時に一体成形することによって製作してもよい。この場合、蓋部20は、内部に蓋部用真空断熱材33を有しなくてもよい。 Further, as the vacuum heat insulating material 33 for the lid portion, the same material as the vacuum heat insulating material 30 of the container body 10 described above can be used. The lid portion 20 may be manufactured by integrally molding the lower wall portion 21 and the upper wall portion 22 at the same time by, for example, blow molding. In this case, the lid portion 20 does not have to have the vacuum heat insulating material 33 for the lid portion inside.

蓋部用真空断熱材33は、前述の側壁用真空断熱材31と同様に、たとえば上壁部22に接着剤を介して接合されている。また、蓋部用真空断熱材33は、側壁用真空断熱材31と同様に、たとえば上壁部22に接した状態で支持されていてもよいし、たとえば0.1mmから2mm程度の微小な隙間を介して上壁部22と対向して配置されてもよい。 The vacuum heat insulating material 33 for the lid portion is joined to the upper wall portion 22 via an adhesive, for example, in the same manner as the vacuum heat insulating material 31 for the side wall described above. Further, the vacuum heat insulating material 33 for the lid portion may be supported in a state of being in contact with the upper wall portion 22, for example, like the vacuum heat insulating material 31 for the side wall portion, and for example, a minute gap of about 0.1 mm to 2 mm may be supported. It may be arranged so as to face the upper wall portion 22 via the above.

また、蓋部20は、前述の容器本体10と同様に、上壁部22と下壁部21との間の空間を埋める発泡樹脂材50を備えてもよい。発泡樹脂材50としては、前述の容器本体10の発泡樹脂材40と同様のものを用いることができる。また、前述の容器本体10の発泡樹脂材40と同様に、発泡樹脂材50は、たとえば、蓋部20の上壁部22と下壁部21に接合されていてもよいし、上壁部22と下壁部21との間にぴったりとはめ込まれていてもよい。後者の場合、発泡樹脂材50は、上壁部22と下壁部21との間の寸法に対応し、所定の負の寸法公差を有する厚さに設定され、上壁部22と下壁部21に接するかまたはこれらに微小な隙間を介して対向してもよい。 Further, the lid portion 20 may be provided with a foamed resin material 50 that fills the space between the upper wall portion 22 and the lower wall portion 21, similarly to the container body 10 described above. As the foamed resin material 50, the same material as the foamed resin material 40 of the container body 10 described above can be used. Further, similarly to the foamed resin material 40 of the container body 10 described above, the foamed resin material 50 may be joined to the upper wall portion 22 and the lower wall portion 21 of the lid portion 20, for example, or the upper wall portion 22. It may be fitted tightly between the lower wall portion 21 and the lower wall portion 21. In the latter case, the foamed resin material 50 is set to a thickness corresponding to the dimension between the upper wall portion 22 and the lower wall portion 21 and having a predetermined negative dimensional tolerance, and the upper wall portion 22 and the lower wall portion 21 are set. It may be in contact with 21 or may face them through a minute gap.

以下、本実施形態の断熱容器100の作用について説明する。 Hereinafter, the operation of the heat insulating container 100 of the present embodiment will be described.

本実施形態の断熱容器100は、たとえば、容器本体10の開口部10aを介して保温または保冷を要する物品を容器本体10に収容し、容器本体10の開口部10aを蓋部20によって閉塞することで、物品が収容された内部空間を周囲の環境から隔離して断熱することができる。 In the heat insulating container 100 of the present embodiment, for example, an article requiring heat retention or cold insulation is housed in the container body 10 through the opening 10a of the container body 10, and the opening 10a of the container body 10 is closed by the lid 20. Therefore, the internal space in which the article is housed can be isolated from the surrounding environment and insulated.

断熱容器100の内部に収容される物品は、たとえば、清涼飲料、菓子類、鮮魚等の魚介類、ハムやソーセージ等の加工食品、各種枝肉や精肉、チーズ等の乳製品、ワクチンやアンプルなどの医薬品、米飯や惣菜、青果等、比較的に重量が大きいものが多い。断熱容器100の内部に重量の大きい物品が収容されると、たとえば断熱容器100を落下させたり、障害物にぶつけたりしたときに、外部から断熱容器100に作用する衝撃が大きくなりやすい。そのため、断熱容器100は、高い耐衝撃性、耐久性、および緩衝性が要求される。 Articles housed inside the heat insulating container 100 include, for example, soft drinks, confectionery, seafood such as fresh fish, processed foods such as ham and sausage, various carcasses and meat, dairy products such as cheese, vaccines and ampoules. Many of them are relatively heavy, such as medicines, rice, prepared foods, and fruits and vegetables. When a heavy article is housed inside the heat insulating container 100, for example, when the heat insulating container 100 is dropped or hit against an obstacle, the impact acting on the heat insulating container 100 from the outside tends to be large. Therefore, the heat insulating container 100 is required to have high impact resistance, durability, and cushioning property.

ここで、本実施形態の断熱容器100において、容器本体10は、剛性を有する外壁部11と、この外壁部11の内側に配置された内壁部12と、この内壁部12と外壁部11との間に配置された真空断熱材30とを備えている。また、真空断熱材30は、外壁部11の側壁11cに隣接して配置された側壁用真空断熱材31を含んでいる。換言すると、容器本体10は、真空断熱材30として、外壁部11の側壁11cに隣接して配置された側壁用真空断熱材31を備えている。 Here, in the heat insulating container 100 of the present embodiment, the container body 10 has a rigid outer wall portion 11, an inner wall portion 12 arranged inside the outer wall portion 11, and the inner wall portion 12 and the outer wall portion 11. It is provided with a vacuum heat insulating material 30 arranged between them. Further, the vacuum heat insulating material 30 includes the vacuum heat insulating material 31 for the side wall arranged adjacent to the side wall 11c of the outer wall portion 11. In other words, the container body 10 includes the vacuum heat insulating material 31 for the side wall, which is arranged adjacent to the side wall 11c of the outer wall portion 11, as the vacuum heat insulating material 30.

これにより、たとえば、断熱容器100の輸送時などに、断熱容器100に障害物が衝突して容器本体10に外部から衝撃が加わった場合でも、剛性を有する外壁部11によって衝撃を緩和し、真空断熱材30を保護して破損を防止することができる。さらに、剛性を有する外壁部11によって容器本体10の強度が確保され、たとえば、断熱容器100の輸送時や保管時などに複数の断熱容器100を積み重ねることが可能になる。 As a result, for example, even when an obstacle collides with the heat insulating container 100 and an impact is applied to the container body 10 from the outside during transportation of the heat insulating container 100, the shock is mitigated by the rigid outer wall portion 11 and a vacuum is provided. The heat insulating material 30 can be protected to prevent damage. Further, the strength of the container body 10 is ensured by the rigid outer wall portion 11, and for example, a plurality of heat insulating containers 100 can be stacked during transportation or storage of the heat insulating container 100.

また、外壁部11と内壁部12との中間や、内壁部12の側壁12cに隣接して側壁用真空断熱材31を配置する場合と比較して、容器本体10の側壁10cの外表面の表面積に対する側壁用真空断熱材31の設置面積を拡大することが可能になる。これは、内壁部12の側壁12cの表面積よりも外壁部11の側壁11cの表面積の方が大きいためである。 Further, the surface area of the outer surface of the side wall 10c of the container body 10 is compared with the case where the vacuum heat insulating material 31 for the side wall is arranged between the outer wall portion 11 and the inner wall portion 12 or adjacent to the side wall 12c of the inner wall portion 12. It becomes possible to expand the installation area of the vacuum heat insulating material 31 for the side wall. This is because the surface area of the side wall 11c of the outer wall portion 11 is larger than the surface area of the side wall 12c of the inner wall portion 12.

このように、側壁用真空断熱材31の設置面積を従来よりも拡大することで、側壁用真空断熱材31によって、外壁部11の側壁11cを介した容器本体10の内部と外部との間の熱の移動を、より広い範囲で遮断することができる。したがって、本実施形態の断熱容器100によれば、従来の断熱容器100よりも、外部の衝撃から真空断熱材30をより確実に保護することができ、かつ断熱性を向上させることができる。 In this way, by expanding the installation area of the vacuum heat insulating material 31 for the side wall as compared with the conventional case, the vacuum heat insulating material 31 for the side wall is used between the inside and the outside of the container body 10 via the side wall 11c of the outer wall portion 11. The heat transfer can be blocked in a wider range. Therefore, according to the heat insulating container 100 of the present embodiment, the vacuum heat insulating material 30 can be more reliably protected from an external impact and the heat insulating property can be improved as compared with the conventional heat insulating container 100.

また、前述のように、側壁用真空断熱材31が外壁部11の側壁11cに接合され、または接している場合には、容器本体10の側壁10cを介して容器本体10の内部へ伝わる熱の伝達経路は、次のようになる。まず、外気の熱が容器本体10の外壁部11の側壁11cに伝わる。さらに、この外壁部11の側壁11cから、順次、側壁用真空断熱材31、発泡樹脂材40、および内壁部12の側壁12cを介して、容器本体10の内部に熱が伝わる。 Further, as described above, when the vacuum heat insulating material 31 for the side wall is joined to or in contact with the side wall 11c of the outer wall portion 11, the heat transferred to the inside of the container body 10 via the side wall 10c of the container body 10 The transmission route is as follows. First, the heat of the outside air is transferred to the side wall 11c of the outer wall portion 11 of the container body 10. Further, heat is sequentially transferred from the side wall 11c of the outer wall portion 11 to the inside of the container body 10 via the vacuum heat insulating material 31 for the side wall, the foamed resin material 40, and the side wall 12c of the inner wall portion 12.

ここで、各部材の熱伝導率は、たとえば、外壁部11が約0.17W/(m・K)から約0.19W/(m・K)程度、真空断熱材30が約0.004W/(m・K)程度、発泡樹脂材40が約0.022W/(m・K)から約0.033W/(m・K)程度、内壁部12が外壁部11と同程度である。このように、比較的に熱伝導率が高い外壁部11の側壁11cに隣接して、容器本体10の外方側に側壁用真空断熱材31を配置することで、容器本体10のより外方側で熱の伝達を効果的に遮断し、容器本体10の断熱性を向上させることができる。 Here, the thermal conductivity of each member is, for example, about 0.17 W / (m · K) to about 0.19 W / (m · K) for the outer wall portion 11 and about 0.004 W / W / for the vacuum heat insulating material 30. (M · K), the foamed resin material 40 is about 0.022 W / (m · K) to about 0.033 W / (m · K), and the inner wall portion 12 is about the same as the outer wall portion 11. In this way, by arranging the vacuum heat insulating material 31 for the side wall on the outer side of the container body 10 adjacent to the side wall 11c of the outer wall portion 11 having a relatively high thermal conductivity, the outer side of the container body 10 can be arranged. The heat transfer can be effectively blocked on the side, and the heat insulating property of the container body 10 can be improved.

より具体的には、外壁部11の側壁11cから外壁部11と内壁部12との間の発泡樹脂材40や空気等に伝わる熱を、側壁用真空断熱材31によって遮断することで、発泡樹脂材40や空気を介して内壁部12に伝わる熱を減少させることができる。したがって、容器本体10において、より高い断熱効果を得ることができる。また、容器本体10の外表面の結露を防止できる。 More specifically, the foamed resin is blocked from the heat transferred from the side wall 11c of the outer wall portion 11 to the foamed resin material 40 and the air between the outer wall portion 11 and the inner wall portion 12 by the vacuum heat insulating material 31 for the side wall. The heat transferred to the inner wall portion 12 via the material 40 and air can be reduced. Therefore, a higher heat insulating effect can be obtained in the container body 10. In addition, dew condensation on the outer surface of the container body 10 can be prevented.

さらに、容器本体10は、外壁部11の側壁11cと側壁用真空断熱材31との間に隙間を有する場合がある。この場合、外壁部11の側壁11cと側壁用真空断熱材31との間の空気によって断熱層が形成される。空気の熱伝導率は、たとえば0.026W/(m・K)程度であり、外壁部11の熱伝導率よりも低い。したがって、外壁部11から側壁用真空断熱材31へ伝わる熱を空気の断熱層によって減少させ、容器本体10の断熱性を向上させることができる。 Further, the container body 10 may have a gap between the side wall 11c of the outer wall portion 11 and the vacuum heat insulating material 31 for the side wall. In this case, the heat insulating layer is formed by the air between the side wall 11c of the outer wall portion 11 and the vacuum heat insulating material 31 for the side wall. The thermal conductivity of air is, for example, about 0.026 W / (m · K), which is lower than the thermal conductivity of the outer wall portion 11. Therefore, the heat transferred from the outer wall portion 11 to the vacuum heat insulating material 31 for the side wall can be reduced by the heat insulating layer of air, and the heat insulating property of the container body 10 can be improved.

また、本実施形態の断熱容器100は、前述のように、真空断熱材30が内壁部12の底壁12bに隣接して配置された底壁用真空断熱材32を含んでいる。換言すると、容器本体10は、真空断熱材30として、内壁部12の底壁12bに隣接して配置された底壁用真空断熱材32を備えている。 Further, as described above, the heat insulating container 100 of the present embodiment includes the vacuum heat insulating material 32 for the bottom wall in which the vacuum heat insulating material 30 is arranged adjacent to the bottom wall 12b of the inner wall portion 12. In other words, the container body 10 includes the vacuum heat insulating material 32 for the bottom wall, which is arranged adjacent to the bottom wall 12b of the inner wall portion 12, as the vacuum heat insulating material 30.

この底壁用真空断熱材32によって、内壁部12の底壁12bを介した容器本体10の内部と外部との間の熱の移動を抑制することができ、断熱容器100の断熱性を向上させることができる。より具体的には、底壁用真空断熱材32によって、たとえば断熱容器100の内部に収容された物品の熱が、内壁部12の底壁12bから外壁部11の底壁11bへ伝わるのを抑制し、物品の熱を外部に逃げにくくして、物品を効果的に保温することができる。 The vacuum heat insulating material 32 for the bottom wall can suppress the transfer of heat between the inside and the outside of the container body 10 through the bottom wall 12b of the inner wall portion 12, and improve the heat insulating property of the heat insulating container 100. be able to. More specifically, the vacuum heat insulating material 32 for the bottom wall suppresses the heat of the article housed inside the heat insulating container 100, for example, from being transferred from the bottom wall 12b of the inner wall portion 12 to the bottom wall 11b of the outer wall portion 11. However, the heat of the article is hard to escape to the outside, and the article can be effectively kept warm.

より詳細には、断熱容器100に収容された物品は、容器本体10の内壁部12の底壁12bの上に配置される。そのため、保温を要する物品から断熱容器100の外部への熱の伝達経路は、内壁部12の底壁12b、底壁用真空断熱材32、内壁部12と外壁部11との間の発泡樹脂材40または空気、および外壁部11の底壁11bとなる。しかし、内壁部12の底壁12bに隣接して底壁用真空断熱材32を配置することで、断熱容器100に収容された物品から内壁部12の底壁12bに伝わった熱が内壁部12と外壁部11との間の発泡樹脂材40または空気に伝わるのを抑制することができる。 More specifically, the article housed in the heat insulating container 100 is arranged on the bottom wall 12b of the inner wall portion 12 of the container body 10. Therefore, the heat transfer path from the article requiring heat retention to the outside of the heat insulating container 100 is the bottom wall 12b of the inner wall portion 12, the vacuum heat insulating material 32 for the bottom wall, and the foamed resin material between the inner wall portion 12 and the outer wall portion 11. 40 or air, and the bottom wall 11b of the outer wall portion 11. However, by arranging the vacuum heat insulating material 32 for the bottom wall adjacent to the bottom wall 12b of the inner wall portion 12, the heat transferred from the article housed in the heat insulating container 100 to the bottom wall 12b of the inner wall portion 12 is transferred to the inner wall portion 12 It is possible to suppress the transmission to the foamed resin material 40 or the air between the and the outer wall portion 11.

一方、断熱容器100に収容された保冷を要する物品には、最終的に内壁部12の底壁12bから熱が伝わる。そのため、内壁部12の底壁12bに隣接して底壁用真空断熱材32を配置することで、外壁部11の底壁11bおよび外壁部11と内壁部12との間の発泡樹脂材40または空気を介して内壁部12の底壁12bに伝わる熱を遮断することができる。したがって、容器本体10の外部から内壁部12の底壁12bへ伝わる熱を減少させ、容器本体10の断熱性を向上させることができる。 On the other hand, heat is finally transferred from the bottom wall 12b of the inner wall portion 12 to the article requiring cold insulation housed in the heat insulating container 100. Therefore, by arranging the vacuum heat insulating material 32 for the bottom wall adjacent to the bottom wall 12b of the inner wall portion 12, the bottom wall 11b of the outer wall portion 11 and the foamed resin material 40 between the outer wall portion 11 and the inner wall portion 12 or The heat transferred to the bottom wall 12b of the inner wall portion 12 through the air can be blocked. Therefore, the heat transferred from the outside of the container body 10 to the bottom wall 12b of the inner wall portion 12 can be reduced, and the heat insulating property of the container body 10 can be improved.

また、断熱容器100の内部に外気温よりも温度の高い物品を収容する場合に、内壁部から外壁部11へ伝わる熱を、真空断熱材30によって遮断することで、内壁部12の温度の低下を抑制して、断熱容器100の内表面の結露を防止することができる。この場合、内壁部12の底壁12bに隣接して底壁用真空断熱材32を配置することで、内壁部12の底壁12bの熱が内壁部12と外壁部11との間の発泡樹脂材40または空気に伝わるのをより効果的に抑制して、内壁部12の底壁12bの温度低下を抑制し、底壁12bの内表面の結露をより効果的に防止できる。 Further, when an article having a temperature higher than the outside air temperature is housed inside the heat insulating container 100, the heat transferred from the inner wall portion to the outer wall portion 11 is blocked by the vacuum heat insulating material 30, so that the temperature of the inner wall portion 12 is lowered. Can be suppressed to prevent dew condensation on the inner surface of the heat insulating container 100. In this case, by arranging the vacuum heat insulating material 32 for the bottom wall adjacent to the bottom wall 12b of the inner wall portion 12, the heat of the bottom wall 12b of the inner wall portion 12 is generated by the foamed resin between the inner wall portion 12 and the outer wall portion 11. It is possible to more effectively suppress the transmission to the material 40 or the air, suppress the temperature drop of the bottom wall 12b of the inner wall portion 12, and more effectively prevent the dew condensation on the inner surface of the bottom wall 12b.

また、断熱容器100の内部に外気温よりも温度の低い物品を収容する場合に、外壁部11から断熱容器100の内部の物品へ伝わる熱を、真空断熱材30によって遮断することができる。これにより、外壁部11の温度低下を抑制して、断熱容器100の外表面の結露を防止することができる。この場合、外壁部11の側壁11cに隣接して側壁用真空断熱材31を配置することで、外壁部11の側壁11cの熱が外壁部11と内壁部12との間の発泡樹脂材40または空気に伝わるのを効果的に抑制して、外壁部11の側壁11cの内表面の結露をより効果的に防止できる。 Further, when the article having a temperature lower than the outside air temperature is housed inside the heat insulating container 100, the heat transferred from the outer wall portion 11 to the article inside the heat insulating container 100 can be blocked by the vacuum heat insulating material 30. As a result, it is possible to suppress the temperature drop of the outer wall portion 11 and prevent dew condensation on the outer surface of the heat insulating container 100. In this case, by arranging the vacuum heat insulating material 31 for the side wall adjacent to the side wall 11c of the outer wall portion 11, the heat of the side wall 11c of the outer wall portion 11 is generated by the foamed resin material 40 or the foamed resin material 40 between the outer wall portion 11 and the inner wall portion 12. It is possible to effectively suppress the transmission to the air and more effectively prevent dew condensation on the inner surface of the side wall 11c of the outer wall portion 11.

また、本実施形態の断熱容器100は、前述のように、容器本体10の底壁用真空断熱材32を内壁部12の底壁12bに隣接して配置している。これにより、容器本体10の底壁用真空断熱材32を外壁部11の底壁11bから離隔させて配置することができる。そのため、たとえば後述する断熱容器100の製造方法M1(図3参照)において、容器本体10の外壁部11の底壁11bに注入孔11d(図4A参照)を形成し、この注入孔11dを介して外壁部11と内壁部12との間の空間に発泡樹脂材40を注入するときに、底壁用真空断熱材32が工程の妨げになるのを防止できる。 Further, in the heat insulating container 100 of the present embodiment, as described above, the vacuum heat insulating material 32 for the bottom wall of the container body 10 is arranged adjacent to the bottom wall 12b of the inner wall portion 12. As a result, the vacuum heat insulating material 32 for the bottom wall of the container body 10 can be arranged so as to be separated from the bottom wall 11b of the outer wall portion 11. Therefore, for example, in the manufacturing method M1 (see FIG. 3) of the heat insulating container 100 described later, an injection hole 11d (see FIG. 4A) is formed in the bottom wall 11b of the outer wall portion 11 of the container body 10, and the injection hole 11d is formed through the injection hole 11d. When the foamed resin material 40 is injected into the space between the outer wall portion 11 and the inner wall portion 12, the vacuum heat insulating material 32 for the bottom wall can be prevented from interfering with the process.

また、本実施形態の断熱容器100は、前述のように、容器本体10の外壁部11の内表面および真空断熱材30を覆う発泡樹脂材40を備えている。この場合、容器本体10の発泡樹脂材40によって、容器本体10の外壁部11と内壁部12との間の熱の移動を抑制し、断熱容器100の断熱性を向上させることができる。また、容器本体10の発泡樹脂材40によって、容器本体10の真空断熱材30を支持して破損を防止することができる。したがって、本実施形態の断熱容器100によれば、容器本体10の発泡樹脂材40によって、外部の衝撃から真空断熱材30をより確実に保護することができ、かつ断熱容器100の断熱性を向上させることができる。 Further, as described above, the heat insulating container 100 of the present embodiment includes a foamed resin material 40 that covers the inner surface of the outer wall portion 11 of the container body 10 and the vacuum heat insulating material 30. In this case, the foamed resin material 40 of the container body 10 can suppress the transfer of heat between the outer wall portion 11 and the inner wall portion 12 of the container body 10, and can improve the heat insulating property of the heat insulating container 100. Further, the foamed resin material 40 of the container body 10 can support the vacuum heat insulating material 30 of the container body 10 and prevent damage. Therefore, according to the heat insulating container 100 of the present embodiment, the foamed resin material 40 of the container body 10 can more reliably protect the vacuum heat insulating material 30 from an external impact and improve the heat insulating property of the heat insulating container 100. Can be made to.

また、本実施形態の断熱容器100は、前述のように、容器本体10が矩形箱形の形状を有している。そして、側壁用真空断熱材31の周縁部が、容器本体10を構成する外壁部11の側壁11cの周縁部よりも内側に配置されている。そして、容器本体10の角部10dに、側壁用真空断熱材31が配置されていない緩衝部10eが形成されている。これにより、たとえば断熱容器100の輸送時などに、容器本体10の角部10dに障害物が衝突したときに、側壁用真空断熱材31に衝撃が加わるのを防止することができる。したがって、本実施形態の断熱容器100によれば、側壁用真空断熱材31の破損をより効果的に防止することができる。 Further, in the heat insulating container 100 of the present embodiment, as described above, the container body 10 has a rectangular box shape. The peripheral edge of the vacuum heat insulating material 31 for the side wall is arranged inside the peripheral edge of the side wall 11c of the outer wall portion 11 constituting the container body 10. Then, a buffer portion 10e on which the vacuum heat insulating material 31 for the side wall is not arranged is formed at the corner portion 10d of the container body 10. As a result, it is possible to prevent the vacuum heat insulating material 31 for the side wall from being impacted when an obstacle collides with the corner portion 10d of the container body 10 during transportation of the heat insulating container 100, for example. Therefore, according to the heat insulating container 100 of the present embodiment, the breakage of the vacuum heat insulating material 31 for the side wall can be prevented more effectively.

また、本実施形態の断熱容器100は、前述のように、容器本体10の角部10dの緩衝部10eが容器本体10の外壁部11の内側の角11eと内壁部12の外側の角12dとの間に形成されている。これにより、たとえば容器本体10の角部10dすなわち外壁部11の外側の角に衝撃が加わって、外壁部11の内側の角11eの近傍の部分と内壁部12の外側の角12dの近傍の部分との間の間隔が狭まっても、緩衝部10eによって衝撃を緩和し、側壁用真空断熱材31の破損をより確実に防止することができる。なお、真空断熱材30は、断熱容器100の外部から視認することができないため、このように外部の衝撃から真空断熱材30を保護して破損させないことが、極めて重要である。 Further, in the heat insulating container 100 of the present embodiment, as described above, the cushioning portion 10e of the corner portion 10d of the container main body 10 has the inner corner 11e of the outer wall portion 11 of the container main body 10 and the outer corner 12d of the inner wall portion 12. Is formed between. As a result, for example, an impact is applied to the corner portion 10d of the container body 10, that is, the outer corner of the outer wall portion 11, and the portion near the inner corner 11e of the outer wall portion 11 and the portion near the outer corner 12d of the inner wall portion 12. Even if the distance between the and the vacuum heat insulating material 31 is narrowed, the shock absorbing portion 10e can alleviate the impact and more reliably prevent the vacuum heat insulating material 31 for the side wall from being damaged. Since the vacuum heat insulating material 30 cannot be visually recognized from the outside of the heat insulating container 100, it is extremely important to protect the vacuum heat insulating material 30 from the external impact and prevent it from being damaged.

また、本実施形態の断熱容器100は、前述のように、容器本体10の外壁部11の内寸H1,L1,L2と緩衝部10eの内寸H2,L3,L4が、前記式(1)から(3)の関係を満たしている。これにより、緩衝部10eによって衝撃を緩和して側壁用真空断熱材31の破損をより確実に防止することができるだけでなく、側壁用真空断熱材31の設置面積を確保して断熱容器100の断熱性を向上させることができる。 Further, in the heat insulating container 100 of the present embodiment, as described above, the inner dimensions H1, L1, L2 of the outer wall portion 11 of the container main body 10 and the inner dimensions H2, L3, L4 of the cushioning portion 10e have the same formula (1). From (3) is satisfied. As a result, not only can the shock absorbing portion 10e alleviate the impact and more reliably prevent the vacuum heat insulating material 31 for the side wall from being damaged, but also the installation area of the vacuum heat insulating material 31 for the side wall is secured to insulate the heat insulating container 100. The sex can be improved.

また、本実施形態の断熱容器100は、前述のように、容器本体10の外壁部11および内壁部12の素材が非発泡樹脂材料である。この場合、外壁部11および内壁部12に対して所望の剛性および機械的強度を付与することができる。また、外壁部11と内壁部12とを、たとえば熱溶着により接合して一体化することができる。また、容器本体10の外壁部11および内壁部12の素材を非発泡樹脂材料とすることで、断熱容器100の耐衝撃性および耐久性を向上させ、洗浄等を行って繰り返し使用することが可能になる。さらに、外壁部11と内壁部12との間の空間が発泡樹脂材40によって埋められているので、発泡樹脂材40の断熱性と弾性によって、容器本体10の断熱性と強度をより向上させることが可能になる。 Further, in the heat insulating container 100 of the present embodiment, as described above, the materials of the outer wall portion 11 and the inner wall portion 12 of the container body 10 are non-foamed resin materials. In this case, desired rigidity and mechanical strength can be imparted to the outer wall portion 11 and the inner wall portion 12. Further, the outer wall portion 11 and the inner wall portion 12 can be joined and integrated by, for example, heat welding. Further, by using a non-foamed resin material as the material of the outer wall portion 11 and the inner wall portion 12 of the container body 10, the impact resistance and durability of the heat insulating container 100 can be improved, and the container body 100 can be washed and used repeatedly. become. Further, since the space between the outer wall portion 11 and the inner wall portion 12 is filled with the foamed resin material 40, the heat insulating property and the elasticity of the foamed resin material 40 further improve the heat insulating property and the strength of the container body 10. Becomes possible.

また、本実施形態の断熱容器100は、前述のように、蓋部20が、容器本体10の開口部10aを覆う下壁部21と、この下壁部21の上方側に接合された上壁部22と、この上壁部22と下壁部21の間で上壁部22に隣接して配置された蓋部用真空断熱材33とを有している。このように、蓋部用真空断熱材33を上壁部22に隣接して配置することで、蓋部用真空断熱材33を下壁部21に隣接して配置する場合と比較して、蓋部用真空断熱材33を蓋部20の外表面の面積に近いより広い面積に配置することができる。したがって、蓋部用真空断熱材33によって、蓋部20の上壁部22を介した断熱容器100の内部と外部との間の熱の移動をより効果的に抑制し、断熱容器100の断熱性をより向上させることができる。 Further, in the heat insulating container 100 of the present embodiment, as described above, the lid portion 20 is joined to the lower wall portion 21 that covers the opening 10a of the container body 10 and the upper wall that is joined to the upper side of the lower wall portion 21. It has a portion 22 and a vacuum heat insulating material 33 for a lid portion arranged adjacent to the upper wall portion 22 between the upper wall portion 22 and the lower wall portion 21. By arranging the vacuum heat insulating material 33 for the lid portion adjacent to the upper wall portion 22 in this way, as compared with the case where the vacuum heat insulating material 33 for the lid portion is arranged adjacent to the lower wall portion 21, the lid The vacuum heat insulating material 33 for the part can be arranged in a wider area close to the area of the outer surface of the lid part 20. Therefore, the vacuum heat insulating material 33 for the lid portion more effectively suppresses the transfer of heat between the inside and the outside of the heat insulating container 100 through the upper wall portion 22 of the lid portion 20, and the heat insulating property of the heat insulating container 100. Can be further improved.

また、本実施形態の断熱容器100は、前述のように、蓋部20が上壁部22と下壁部21との間の空間を埋める発泡樹脂材50を備えている。この蓋部20の発泡樹脂材50によって、下壁部21と上壁部22との間の熱の移動を抑制し、断熱容器100の断熱性を向上させることができる。また、蓋部20の発泡樹脂材50によって蓋部用真空断熱材33を支持し、蓋部用真空断熱材33の破損を防止することができる。したがって、本実施形態の断熱容器100によれば、外部の衝撃から蓋部用真空断熱材33をより確実に保護することができ、かつ断熱容器100の断熱性を向上させることができる。 Further, as described above, the heat insulating container 100 of the present embodiment includes a foamed resin material 50 in which the lid portion 20 fills the space between the upper wall portion 22 and the lower wall portion 21. The foamed resin material 50 of the lid portion 20 can suppress the transfer of heat between the lower wall portion 21 and the upper wall portion 22, and can improve the heat insulating property of the heat insulating container 100. Further, the foamed resin material 50 of the lid portion 20 supports the vacuum heat insulating material 33 for the lid portion, and the vacuum heat insulating material 33 for the lid portion can be prevented from being damaged. Therefore, according to the heat insulating container 100 of the present embodiment, the vacuum heat insulating material 33 for the lid can be more reliably protected from an external impact, and the heat insulating property of the heat insulating container 100 can be improved.

また、本実施形態の断熱容器100は、前述のように、上壁部22および下壁部21の素材が非発泡樹脂材料である。これにより、上壁部22および下壁部21に対して、所望の剛性および機械的強度を付与することができる。また、上壁部22と下壁部21とを、たとえば熱溶着により接合して一体化することができる。 Further, in the heat insulating container 100 of the present embodiment, as described above, the materials of the upper wall portion 22 and the lower wall portion 21 are non-foamed resin materials. As a result, desired rigidity and mechanical strength can be imparted to the upper wall portion 22 and the lower wall portion 21. Further, the upper wall portion 22 and the lower wall portion 21 can be joined and integrated by, for example, heat welding.

以上説明したように、本実施形態の断熱容器100によれば、従来の断熱容器100よりも外部の衝撃から真空断熱材30をより確実に保護することができ、かつ断熱性を向上させることができる。 As described above, according to the heat insulating container 100 of the present embodiment, the vacuum heat insulating material 30 can be more reliably protected from external impacts and the heat insulating property can be improved as compared with the conventional heat insulating container 100. it can.

以下、本実施形態の断熱容器100の製造方法について説明する。 Hereinafter, a method for manufacturing the heat insulating container 100 of the present embodiment will be described.

図3は、図1に示す断熱容器100の製造方法M1の一例を示すフロー図である。この製造方法M1は、たとえば、断熱材接合工程S11と、型内配置工程S12と、発泡樹脂充填工程S13と、容器接合工程S14と、を有することができる。 FIG. 3 is a flow chart showing an example of the manufacturing method M1 of the heat insulating container 100 shown in FIG. This manufacturing method M1 can include, for example, a heat insulating material joining step S11, an in-mold placement step S12, a foamed resin filling step S13, and a container joining step S14.

図4Aは、図3に示す断熱材接合工程S11の説明図である。断熱材接合工程S11は、容器本体10を構成する接合前の外壁部11と内壁部12に、それぞれ真空断熱材30を接合する工程である。より具体的には、外壁部11の各側壁11cの内表面に、各側壁11cの周縁部を露出させた状態で、たとえば接着剤を介して側壁用真空断熱材31を接合する。また、内壁部12の底壁12bの下面に、たとえば接着剤を介して底壁用真空断熱材32を接合する。 FIG. 4A is an explanatory view of the heat insulating material joining step S11 shown in FIG. The heat insulating material joining step S11 is a step of joining the vacuum heat insulating material 30 to the outer wall portion 11 and the inner wall portion 12 before joining which form the container body 10. More specifically, the vacuum heat insulating material 31 for the side wall is joined to the inner surface of each side wall 11c of the outer wall portion 11 with the peripheral edge portion of each side wall 11c exposed, for example, via an adhesive. Further, the vacuum heat insulating material 32 for the bottom wall is joined to the lower surface of the bottom wall 12b of the inner wall portion 12 via, for example, an adhesive.

なお、内壁部12の底壁12bの下面に対向する底壁用真空断熱材32の面積は、内壁部12の底壁12bの下面の面積に等しくてもよい。また、外壁部11の底壁11bに、発泡樹脂を充填するための注入孔11dを形成することができる。この注入孔11dは、たとえば外壁部11の成形時にあらかじめ形成しておくことができる。 The area of the vacuum heat insulating material 32 for the bottom wall facing the lower surface of the bottom wall 12b of the inner wall portion 12 may be equal to the area of the lower surface of the bottom wall 12b of the inner wall portion 12. Further, an injection hole 11d for filling the foamed resin can be formed in the bottom wall 11b of the outer wall portion 11. The injection hole 11d can be formed in advance, for example, when the outer wall portion 11 is molded.

図4Bは、図3に示す型内配置工程S12および発泡樹脂充填工程S13の説明図である。型内配置工程S12は、側壁用真空断熱材31が接合された外壁部11の内側に、底壁用真空断熱材32が接合された内壁部12を配置した状態で、外壁部11と内壁部12とを金型D内に配置する工程である。 FIG. 4B is an explanatory view of the in-mold placement step S12 and the foamed resin filling step S13 shown in FIG. In the in-mold placement step S12, the outer wall portion 11 and the inner wall portion are arranged in a state where the inner wall portion 12 to which the vacuum heat insulating material 32 for the bottom wall is joined is arranged inside the outer wall portion 11 to which the vacuum heat insulating material 31 for the side wall is joined. This is a step of arranging the 12 and the mold D in the mold D.

発泡樹脂充填工程S13は、たとえば、金型D内に配置された外壁部11と内壁部12との間に、外壁部11の底壁11bの注入孔11dを介して樹脂材料を充填して発泡させ、発泡樹脂材40を形成する工程である。この工程により、発泡樹脂材40を外壁部11と内壁部12に接合することができる。また、発泡樹脂材40の形成後に、外壁部11の注入孔11dに、たとえば栓を溶着することで、注入孔11dを閉塞することができる。 In the foamed resin filling step S13, for example, the resin material is filled between the outer wall portion 11 and the inner wall portion 12 arranged in the mold D through the injection hole 11d of the bottom wall 11b of the outer wall portion 11 and foamed. This is a step of forming the foamed resin material 40. By this step, the foamed resin material 40 can be joined to the outer wall portion 11 and the inner wall portion 12. Further, after the foamed resin material 40 is formed, the injection hole 11d can be closed by welding, for example, a plug to the injection hole 11d of the outer wall portion 11.

図4Cは、図3に示す容器接合工程S14の説明図である。容器接合工程S14は、金型Dから取り出した外壁部11と内壁部12とを接合して、容器本体10を得る工程である。具体的には、たとえば熱溶着によって、内壁部12のフランジ部12aの周縁部と外壁部11の側壁11cの上端部とを全周にわたって接合し、外壁部11と内壁部12とを一体化する。以上により、図1に示す断熱容器100の容器本体10を得ることができる。なお、図1に示す蓋部20は、この製造方法M1と同様の工程によって、容器本体10と同様に製造することができる。 FIG. 4C is an explanatory view of the container joining step S14 shown in FIG. The container joining step S14 is a step of joining the outer wall portion 11 and the inner wall portion 12 taken out from the mold D to obtain the container main body 10. Specifically, for example, by heat welding, the peripheral edge of the flange portion 12a of the inner wall portion 12 and the upper end portion of the side wall 11c of the outer wall portion 11 are joined over the entire circumference, and the outer wall portion 11 and the inner wall portion 12 are integrated. .. From the above, the container body 10 of the heat insulating container 100 shown in FIG. 1 can be obtained. The lid portion 20 shown in FIG. 1 can be manufactured in the same manner as the container body 10 by the same process as the manufacturing method M1.

図5は、図1に示す断熱容器100の製造方法の他の一例を示すフロー図である。この製造方法M2は、たとえば、発泡樹脂成形工程S21と、断熱材接合工程S22と、容器配置工程S23と、容器接合工程S24と、を有することができる。 FIG. 5 is a flow chart showing another example of the method for manufacturing the heat insulating container 100 shown in FIG. This manufacturing method M2 can include, for example, a foamed resin molding step S21, a heat insulating material joining step S22, a container arranging step S23, and a container joining step S24.

図6Aは、図5に示す発泡樹脂成形工程S21の説明図である。発泡樹脂成形工程S21は、容器本体10を構成する外壁部11と内壁部12との間の空間を埋める発泡樹脂材40を成形する工程である。より具体的には、図示を省略する成形金型を用いて、外壁部11と内壁部12との間の空間の形状に対応する形状の発泡樹脂材40を成形する。この工程において、発泡樹脂材40の側壁の外面に側壁用真空断熱材31を収容する凹部41を形成し、発泡樹脂材40の底壁の上面に底壁用真空断熱材32を収容する凹部42を形成することができる。 FIG. 6A is an explanatory view of the foamed resin molding step S21 shown in FIG. The foamed resin molding step S21 is a step of molding the foamed resin material 40 that fills the space between the outer wall portion 11 and the inner wall portion 12 constituting the container body 10. More specifically, a foamed resin material 40 having a shape corresponding to the shape of the space between the outer wall portion 11 and the inner wall portion 12 is molded by using a molding die (not shown). In this step, a recess 41 for accommodating the vacuum heat insulating material 31 for the side wall is formed on the outer surface of the side wall of the foamed resin material 40, and a recess 42 for accommodating the vacuum heat insulating material 32 for the bottom wall is formed on the upper surface of the bottom wall of the foamed resin material 40. Can be formed.

図6Bは、図5に示す断熱材接合工程S22の説明図である。断熱材接合工程S22は、発泡樹脂材40に真空断熱材30を接合する工程である。真空断熱材30は、たとえば、成形後の発泡樹脂材40の凹部41,42に接着剤を介して接合することができる。また、前述の発泡樹脂成形工程S21において、成形金型内に真空断熱材30を配置して、発泡樹脂材40の成形とともに発泡樹脂材40と真空断熱材30とを接合してもよい。この場合、発泡樹脂成形工程S21と断熱材接合工程S22を同時に完了させることができる。 FIG. 6B is an explanatory view of the heat insulating material joining step S22 shown in FIG. The heat insulating material joining step S22 is a step of joining the vacuum heat insulating material 30 to the foamed resin material 40. The vacuum heat insulating material 30 can be joined to the recesses 41 and 42 of the foamed resin material 40 after molding via an adhesive, for example. Further, in the foamed resin molding step S21 described above, the vacuum heat insulating material 30 may be arranged in the molding die, and the foamed resin material 40 and the vacuum heat insulating material 30 may be joined together with the molding of the foamed resin material 40. In this case, the foamed resin molding step S21 and the heat insulating material joining step S22 can be completed at the same time.

図6Cは、図5に示す容器配置工程S23および容器接合工程S24の説明図である。容器配置工程S23は、外壁部11の内側に真空断熱材30が接合された発泡樹脂材40を配置するとともに、発泡樹脂材40の内側に内壁部12を配置する工程である。これにより、外壁部11と内壁部12との間の空間を埋めるように発泡樹脂材40を配置するとともに、側壁用真空断熱材31を外壁部11の側壁11cに隣接して配置し、底壁用真空断熱材32を内壁部12の底壁12bに隣接して配置することができる。 FIG. 6C is an explanatory view of the container arranging step S23 and the container joining step S24 shown in FIG. The container arranging step S23 is a step of arranging the foamed resin material 40 to which the vacuum heat insulating material 30 is bonded inside the outer wall portion 11 and arranging the inner wall portion 12 inside the foamed resin material 40. As a result, the foamed resin material 40 is arranged so as to fill the space between the outer wall portion 11 and the inner wall portion 12, and the vacuum heat insulating material 31 for the side wall is arranged adjacent to the side wall 11c of the outer wall portion 11 to form the bottom wall. The vacuum heat insulating material 32 for use can be arranged adjacent to the bottom wall 12b of the inner wall portion 12.

容器接合工程S24は、外壁部11と内壁部12とを接合して、容器本体10を得る工程である。具体的には、たとえば熱溶着によって、内壁部12のフランジ部12aの周縁部と外壁部11の側壁11cの上端部とを全周にわたって接合し、外壁部11と内壁部12とを一体化する。以上により、図1に示す断熱容器100の容器本体10を得ることができる。なお、図1に示す蓋部20は、この製造方法M2と同様の工程によって、容器本体10と同様に製造することができる。 The container joining step S24 is a step of joining the outer wall portion 11 and the inner wall portion 12 to obtain the container main body 10. Specifically, for example, by heat welding, the peripheral edge of the flange portion 12a of the inner wall portion 12 and the upper end portion of the side wall 11c of the outer wall portion 11 are joined over the entire circumference, and the outer wall portion 11 and the inner wall portion 12 are integrated. .. From the above, the container body 10 of the heat insulating container 100 shown in FIG. 1 can be obtained. The lid portion 20 shown in FIG. 1 can be manufactured in the same manner as the container body 10 by the same process as the manufacturing method M2.

以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and there are design changes and the like within a range not deviating from the gist of the present invention. Also, they are included in the present invention.

以下、本発明の断熱容器の実施例とその比較対象としての比較例について説明する。 Hereinafter, examples of the heat insulating container of the present invention and comparative examples as comparison targets thereof will be described.

[実施例]
図7は、本発明の実施例に係る断熱容器100Aの模式的な断面図である。実施例の断熱容器100Aとして、蓋部20が真空断熱材30を有しない以外は、図1に示す前述の実施形態の断熱容器100と同様の構成を有する断熱容器100Aを用意した。容器本体10の長手方向に沿って配置された側壁用真空断熱材31の寸法は、340mm×150mm×15mmであった。容器本体10の短手方向に沿って配置された側壁用真空断熱材31の寸法は、275mm×150mm×15mmであった。底壁用真空断熱材32の寸法は、340mm×150mm×15mmであった。
[Example]
FIG. 7 is a schematic cross-sectional view of the heat insulating container 100A according to the embodiment of the present invention. As the heat insulating container 100A of the embodiment, a heat insulating container 100A having the same configuration as the heat insulating container 100 of the above-described embodiment shown in FIG. 1 was prepared except that the lid 20 does not have the vacuum heat insulating material 30. The dimensions of the vacuum heat insulating material 31 for the side wall arranged along the longitudinal direction of the container body 10 were 340 mm × 150 mm × 15 mm. The dimensions of the vacuum heat insulating material 31 for the side wall arranged along the lateral direction of the container body 10 were 275 mm × 150 mm × 15 mm. The dimensions of the vacuum heat insulating material 32 for the bottom wall were 340 mm × 150 mm × 15 mm.

各真空断熱材30は、熱伝導率が0.002W/(m・K)以上かつ0.006W/(m・K)以下のものを用いた。また、発泡樹脂材40は、熱伝導率が0.02W/(m・K)以上かつ0.08W/(m・K)以下のものを用いた。また、容器本体10の外壁部11および内壁部12ならびに蓋部20の上壁部22および下壁部21の素材として、ポリプロピレンを用い、これらの厚さを約1mmから約2.5mmの範囲とした。 As each vacuum heat insulating material 30, those having a thermal conductivity of 0.002 W / (m · K) or more and 0.006 W / (m · K) or less were used. Further, as the foamed resin material 40, a material having a thermal conductivity of 0.02 W / (m · K) or more and 0.08 W / (m · K) or less was used. Further, polypropylene is used as the material of the outer wall portion 11 and the inner wall portion 12 of the container body 10 and the upper wall portion 22 and the lower wall portion 21 of the lid portion 20, and the thickness thereof is in the range of about 1 mm to about 2.5 mm. did.

[比較例]
図8は、比較例に係る断熱容器100Zの模式的な断面図である。比較例の断熱容器100Zとして、側壁用真空断熱材31が内壁部12の側壁12cに隣接して配置され、底壁用真空断熱材32が外壁部11の底壁11bに隣接して配置されている以外は、図7に示す実施例の断熱容器100Aと同様の構成を有する断熱容器100Zを用意した。比較例1の断熱容器100Zの各側壁用真空断熱材31は、実施例1の断熱容器100Aの各側壁用真空断熱材31と比較して、容器本体10の内側に配置されている。そのため、比較例1の断熱容器100Zの各側壁用真空断熱材31の寸法は、実施例1の断熱容器100Aの各側壁用真空断熱材31と比較して、10%程度小さくなった。
[Comparison example]
FIG. 8 is a schematic cross-sectional view of the heat insulating container 100Z according to the comparative example. As the heat insulating container 100Z of the comparative example, the vacuum heat insulating material 31 for the side wall is arranged adjacent to the side wall 12c of the inner wall portion 12, and the vacuum heat insulating material 32 for the bottom wall is arranged adjacent to the bottom wall 11b of the outer wall portion 11. A heat insulating container 100Z having the same configuration as the heat insulating container 100A of the embodiment shown in FIG. 7 was prepared. The vacuum heat insulating material 31 for each side wall of the heat insulating container 100Z of Comparative Example 1 is arranged inside the container body 10 as compared with the vacuum heat insulating material 31 for each side wall of the heat insulating container 100A of Example 1. Therefore, the size of the vacuum heat insulating material 31 for each side wall of the heat insulating container 100Z of Comparative Example 1 is about 10% smaller than that of the vacuum heat insulating material 31 for each side wall of the heat insulating container 100A of Example 1.

[断熱性試験]
実施例の断熱容器100Aの断熱性と、比較例の断熱容器100Zの断熱性を比較する断熱性試験を行った。具体的には、各断熱容器100A,100Zに、約25℃の水をそれぞれ2Lずつ収容したふたつの容器Cと、容器C内の水の温度を測定するための温度計を収容した。その後、各断熱容器100A,100Zを、気温が5℃の環境に10時間にわたって放置して、容器C内の水の温度を測定した。
[Insulation test]
A heat insulating property test was conducted to compare the heat insulating property of the heat insulating container 100A of the example with the heat insulating property of the heat insulating container 100Z of the comparative example. Specifically, each of the heat insulating containers 100A and 100Z contained two containers C each containing 2 L of water at about 25 ° C. and a thermometer for measuring the temperature of the water in the container C. Then, each of the heat insulating containers 100A and 100Z was left in an environment where the air temperature was 5 ° C. for 10 hours, and the temperature of the water in the container C was measured.

図9は、横軸を時間[h]、縦軸を水の温度[℃]として、実施例および比較例の断熱容器100A,100Zの断熱性試験の結果を示すグラフである。図9に示すように、比較例の断熱容器100Zは、10時間後の容器C内の水の温度が約6℃以上低下して19℃未満になった。これに対し、実施例の断熱容器100Aは、10時間後の容器C内の水の温度の低下を約5℃に抑制することができ、水の温度を約20℃に維持することができた。以上の結果から、実施例の断熱容器100Aは、比較例の断熱容器100Zよりも高い断熱性を有していることが明らかになった。 FIG. 9 is a graph showing the results of heat insulation tests of heat insulating containers 100A and 100Z of Examples and Comparative Examples, where the horizontal axis is time [h] and the vertical axis is water temperature [° C.]. As shown in FIG. 9, in the heat insulating container 100Z of the comparative example, the temperature of the water in the container C after 10 hours decreased by about 6 ° C. or more to less than 19 ° C. On the other hand, in the heat insulating container 100A of the example, the decrease in the temperature of the water in the container C after 10 hours could be suppressed to about 5 ° C., and the temperature of the water could be maintained at about 20 ° C. .. From the above results, it was clarified that the heat insulating container 100A of the example has higher heat insulating property than the heat insulating container 100Z of the comparative example.

10 容器本体
10a 開口部
10d 角部
10e 緩衝部
11 外壁部
11c 側壁
11e 内側の角
12 内壁部
12b 底壁
12d 外側の角
20 蓋部
21 下壁部
22 上壁部
30 真空断熱材
31 側壁用真空断熱材
32 底壁用真空断熱材
33 蓋部用真空断熱材
40 発泡樹脂材
50 発泡樹脂材
100 断熱容器
100A 断熱容器
10 Container body 10a Opening 10d Square part 10e Buffer part 11 Outer wall part 11c Side wall 11e Inner corner 12 Inner wall part 12b Bottom wall 12d Outer corner 20 Lid part 21 Lower wall part 22 Upper wall part 30 Vacuum heat insulating material 31 Vacuum for side wall Insulation material 32 Vacuum heat insulating material for bottom wall 33 Vacuum heat insulating material for lid 40 Foamed resin material 50 Foamed resin material 100 Insulation container 100A Insulation container

Claims (8)

容器本体と、該容器本体の開口部を閉塞する蓋部とを備えた輸送用断熱容器であって、
前記容器本体は、剛性を有する非発泡樹脂を素材とする外壁部と、該外壁部の内側に配置された前記非発泡樹脂を素材とする内壁部と、該内壁部と前記外壁部との間に配置された真空断熱材とを備え、
前記真空断熱材は、前記外壁部の側壁に隣接して配置された側壁用真空断熱材と、前記内壁部の底壁に隣接して配置された底壁用真空断熱材と、を含み、
前記外壁部の内表面および前記真空断熱材を覆う発泡樹脂材を備えることを特徴とする輸送用断熱容器。
A heat-insulating container for transportation provided with a container body and a lid portion that closes an opening of the container body.
The container body is between an outer wall portion made of a rigid non-foaming resin, an inner wall portion made of the non-foaming resin arranged inside the outer wall portion, and the inner wall portion and the outer wall portion. With vacuum heat insulating material placed in
The vacuum insulation material is seen containing a vacuum heat insulating material for the side wall positioned adjacent to the side wall of the outer wall portion, and a vacuum heat insulating material for arranged bottom wall adjacent the bottom wall of the inner wall portion,
A heat insulating container for transportation, which comprises a foamed resin material that covers the inner surface of the outer wall portion and the vacuum heat insulating material .
前記容器本体は、矩形箱形の形状を有し、
前記側壁用真空断熱材の周縁部は、前記外壁部の前記側壁の周縁部よりも内側に配置され、
前記容器本体の角部に、前記側壁用真空断熱材が配置されていない緩衝部が形成されていることを特徴とする請求項1に記載の輸送用断熱容器。
The container body has a rectangular box shape and has a rectangular box shape.
The peripheral edge portion of the vacuum heat insulating material for the side wall is arranged inside the peripheral edge portion of the side wall portion of the outer wall portion.
Wherein the corner portion of the container body, transport insulated container according to claim 1, wherein a buffer unit for the side wall for the vacuum heat insulating material is not arranged is formed.
前記緩衝部は、前記外壁部の内側の角と前記内壁部の外側の角との間に形成されていることを特徴とする請求項に記載の輸送用断熱容器。 The heat insulating container for transportation according to claim 2 , wherein the cushioning portion is formed between an inner corner of the outer wall portion and an outer corner of the inner wall portion. 前記外壁部と前記内壁部との間の空間は、発泡樹脂材によって埋められていることを特徴とする請求項1から請求項のいずれか一項に記載の輸送用断熱容器。 The heat insulating container for transportation according to any one of claims 1 to 3 , wherein the space between the outer wall portion and the inner wall portion is filled with a foamed resin material. 前記側壁用真空断熱材の上縁部、下縁部および左右の側縁部は、それぞれ、前記側壁の上縁部、下縁部および左右の側縁部よりも内側に配置されていることを特徴とする請求項1から請求項のいずれか一項に記載の輸送用断熱容器。 The upper edge portion, the lower edge portion and the left and right side edge portions of the vacuum heat insulating material for the side wall are arranged inside the upper edge portion, the lower edge portion and the left and right side edge portions of the side wall, respectively. The heat insulating container for transportation according to any one of claims 1 to 4 , which is characteristic. 前記蓋部は、前記容器本体の前記開口部を覆う下壁部と、該下壁部の上方側に接合された上壁部と、該上壁部と該下壁部の間で該上壁部に隣接して配置された蓋部用真空断熱材とを有することを特徴とする請求項1から請求項のいずれか一項に記載の輸送用断熱容器。 The lid portion includes a lower wall portion that covers the opening of the container body, an upper wall portion joined to the upper side of the lower wall portion, and the upper wall portion between the upper wall portion and the lower wall portion. The transport heat insulating container according to any one of claims 1 to 5 , further comprising a vacuum heat insulating material for a lid portion arranged adjacent to the portion. 前記上壁部と前記下壁部との間の空間を埋める発泡樹脂材を備えることを特徴とする請求項に記載の輸送用断熱容器。 The heat insulating container for transportation according to claim 6 , further comprising a foamed resin material that fills a space between the upper wall portion and the lower wall portion. 前記上壁部および前記下壁部の素材は、非発泡樹脂材料であることを特徴とする請求項または請求項に記載の輸送用断熱容器。 The heat insulating container for transportation according to claim 6 or 7 , wherein the material of the upper wall portion and the lower wall portion is a non-foamed resin material.
JP2017000257A 2017-01-04 2017-01-04 Insulated container for transportation Active JP6770897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017000257A JP6770897B2 (en) 2017-01-04 2017-01-04 Insulated container for transportation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017000257A JP6770897B2 (en) 2017-01-04 2017-01-04 Insulated container for transportation

Publications (2)

Publication Number Publication Date
JP2018108851A JP2018108851A (en) 2018-07-12
JP6770897B2 true JP6770897B2 (en) 2020-10-21

Family

ID=62844190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017000257A Active JP6770897B2 (en) 2017-01-04 2017-01-04 Insulated container for transportation

Country Status (1)

Country Link
JP (1) JP6770897B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020037445A (en) * 2018-09-06 2020-03-12 パナソニックIpマネジメント株式会社 Heat insulation container
JP7374452B2 (en) * 2019-03-15 2023-11-07 三甲株式会社 Lid body
WO2020255888A1 (en) * 2019-06-17 2020-12-24 パナソニックIpマネジメント株式会社 Isothermal container
JP7467844B2 (en) * 2019-08-30 2024-04-16 大日本印刷株式会社 Insulating Structures and Buildings
DE202019105203U1 (en) * 2019-09-19 2019-10-10 Va-Q-Tec Ag Insert container for a shipping carrier
DE202019105348U1 (en) * 2019-09-26 2019-10-07 Va-Q-Tec Ag Thermal insulation container
DE202019105519U1 (en) * 2019-10-07 2019-10-21 Va-Q-Tec Ag Heat insulation container for transport
FR3137075A1 (en) * 2022-06-22 2023-12-29 William Donato Triple insulated insulated box

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233383A (en) * 1989-03-04 1990-09-14 Meisei Kogyo Kk Heat insulating container and its manufacture
JP3213454B2 (en) * 1993-09-30 2001-10-02 三洋電機株式会社 Insulated box
US6244458B1 (en) * 1998-07-09 2001-06-12 Thermo Solutions, Inc. Thermally insulated container
JP2007191195A (en) * 2006-01-20 2007-08-02 Doi Giken:Kk Cool box and manufacturing method of cool box body
JP4520950B2 (en) * 2006-01-28 2010-08-11 グローブライド株式会社 Cold box
JP2007246097A (en) * 2006-03-13 2007-09-27 Akiyasu Inaba Storage container
JP2015169372A (en) * 2014-03-06 2015-09-28 大日本印刷株式会社 Heat insulation container, and method of manufacturing heat insulation container

Also Published As

Publication number Publication date
JP2018108851A (en) 2018-07-12

Similar Documents

Publication Publication Date Title
JP6770897B2 (en) Insulated container for transportation
US8250882B2 (en) Insulated shipping container and method of making the same
JP6627244B2 (en) Refrigerated transport container made of foamed synthetic resin
WO2014118821A1 (en) Thermal insulation box
KR200471021Y1 (en) Box-type packaging which can control the internal temperature
KR20210041064A (en) Vacuum-insulated laminated container for temperature-controlled transportation of food
JP2007191195A (en) Cool box and manufacturing method of cool box body
KR101438784B1 (en) Packing box having heat and cold insulation function.
JP7378979B2 (en) Temperature storage container
KR20130003061U (en) Packing box for agricultural products
US10047998B2 (en) Cooler chest interior insulation device and method
JP2010036955A (en) Packing member
JP2008260568A (en) Thermal insulation container and pre-cooling low-temperature storage distribution method of goods using the same
KR20150000671U (en) Box-type packaging which can control the internal temperature
KR101134298B1 (en) The resin tray for fruit packaging
JP3204455U (en) Collective packaging container
JP6478155B2 (en) Packing material
JP3080942U (en) Packing bag with air cushion
KR100664279B1 (en) Vacuum isolation material for refrigerator cabinet and manufacturing method thereof and isolation structure of refrigerator cabinet applying the same
DK179853B1 (en) Transportation Box
KR101982638B1 (en) Superchilling packaging system for fresh delivery
KR102602365B1 (en) Packing container having cooling insulation
CN108275335B (en) Liquid crystal display panel packaging box and application thereof
CN218967442U (en) Foam combined packaging structure for refrigerator
JP7465117B2 (en) Collective packaging container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200928

R150 Certificate of patent or registration of utility model

Ref document number: 6770897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150