JP6769491B2 - Nitriding parts and their manufacturing methods - Google Patents
Nitriding parts and their manufacturing methods Download PDFInfo
- Publication number
- JP6769491B2 JP6769491B2 JP2018543971A JP2018543971A JP6769491B2 JP 6769491 B2 JP6769491 B2 JP 6769491B2 JP 2018543971 A JP2018543971 A JP 2018543971A JP 2018543971 A JP2018543971 A JP 2018543971A JP 6769491 B2 JP6769491 B2 JP 6769491B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- nitriding
- compound layer
- fatigue strength
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005121 nitriding Methods 0.000 title claims description 114
- 238000004519 manufacturing process Methods 0.000 title description 9
- 150000001875 compounds Chemical class 0.000 claims description 85
- 229910000831 Steel Inorganic materials 0.000 claims description 68
- 239000010959 steel Substances 0.000 claims description 68
- 239000011800 void material Substances 0.000 claims description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 108
- 238000005452 bending Methods 0.000 description 51
- 239000007789 gas Substances 0.000 description 50
- 238000012360 testing method Methods 0.000 description 50
- 230000000694 effects Effects 0.000 description 24
- 230000035882 stress Effects 0.000 description 24
- 238000000034 method Methods 0.000 description 17
- 238000001887 electron backscatter diffraction Methods 0.000 description 12
- 238000005728 strengthening Methods 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 230000000007 visual effect Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 8
- 239000006104 solid solution Substances 0.000 description 8
- 238000005242 forging Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000005255 carburizing Methods 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 208000013201 Stress fracture Diseases 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000009661 fatigue test Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910001337 iron nitride Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002003 electron diffraction Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 208000010392 Bone Fractures Diseases 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 206010017076 Fracture Diseases 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/24—Nitriding
- C23C8/26—Nitriding of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/30—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/32—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明は、ガス窒化処理を施された鋼部品、特に面疲労強度及び曲げ疲労強度に優れる歯車、CVTシーブなどの窒化処理部品、及びその製造方法に関する。 The present invention relates to steel parts subjected to gas nitriding treatment, particularly gears having excellent surface fatigue strength and bending fatigue strength, nitriding parts such as CVT sheaves, and a method for manufacturing the same.
自動車や各種産業機械などに使用される鋼部品には、疲労強度、耐摩耗性、及び耐焼付き性などの機械的性質を向上させるために、浸炭焼入れ、高周波焼入れ、窒化、及び軟窒化などの表面硬化熱処理が施される。 Steel parts used in automobiles and various industrial machines are subjected to carburizing quenching, induction hardening, nitriding, and soft nitriding in order to improve mechanical properties such as fatigue strength, wear resistance, and seizure resistance. Surface hardening heat treatment is applied.
窒化処理及び軟窒化処理は、A1点以下のフェライト域で行われ、処理中に相変態がないため、熱処理ひずみを小さくすることができる。そのため、窒化処理及び軟窒化処理は、高い寸法精度を有する部品や大型の部品に用いられることが多く、例えば自動車のトランスミッション部品に用いられる歯車や、エンジンに用いられるクランク軸に適用されている。The nitriding treatment and the soft nitriding treatment are performed in the ferrite region of A 1 point or less, and since there is no phase transformation during the treatment, the heat treatment strain can be reduced. Therefore, the nitriding treatment and the soft nitriding treatment are often used for parts having high dimensional accuracy and large-sized parts, and are applied to, for example, gears used for transmission parts of automobiles and crankshafts used for engines.
窒化処理は、鋼材表面に窒素を侵入させる処理方法である。窒化処理に用いる媒体には、ガス、塩浴、プラズマなどがある。自動車のトランスミッション部品には、主に、生産性に優れるガス窒化処理が適用されている。ガス窒化処理によって、鋼材表面には、厚さが10μm以上の化合物層(Fe3N等の窒化物が析出した層)が形成され、さらに、化合物層の下側の鋼材表層には窒素拡散層である硬化層が形成される。化合物層は主にFe2〜3N(ε)とFe4N(γ’)で構成され、化合物層の硬さは母材となる鋼と比較して極めて高い。そのため、化合物層は、使用の初期において、鋼部品の耐摩耗性及び面疲労強度を向上させる。Nitriding treatment is a treatment method in which nitrogen penetrates into the surface of a steel material. The medium used for the nitriding treatment includes gas, salt bath, plasma and the like. Gas nitriding treatment, which is excellent in productivity, is mainly applied to transmission parts of automobiles. By gas nitriding treatment, the steel material surface is thick 10μm or more compound layers (Fe 3 N layers nitrides are precipitated such) is formed, further, nitrogen diffusion layers on the steel surface layer of the lower compound layer A hardened layer is formed. The compound layer is mainly composed of Fe 2 to 3 N (ε) and Fe 4 N (γ'), and the hardness of the compound layer is extremely high as compared with the base steel. Therefore, the compound layer improves the wear resistance and surface fatigue strength of steel parts at the initial stage of use.
特許文献1には、化合物層中のγ’相比率を30mol%以上とすることで、耐曲げ疲労強度を向上させた窒化処理部品が開示されている。 Patent Document 1 discloses a nitriding-treated component having improved bending fatigue resistance by setting the γ'phase ratio in the compound layer to 30 mol% or more.
特許文献2には、所定の構造を有する鉄窒化化合物層を鋼部材に生成した、低歪かつ優れた面疲労強度と曲げ疲労強度を有する鋼部材が開示されている。 Patent Document 2 discloses a steel member having a low strain and excellent surface fatigue strength and bending fatigue strength, in which an iron nitride compound layer having a predetermined structure is formed on the steel member.
特許文献3には、化合物層の生成を抑制することによって、十分な表面硬さ及び硬化層深さを有する低合金鋼の窒化処理方法が開示されている。 Patent Document 3 discloses a method for nitriding a low alloy steel having a sufficient surface hardness and a hardened layer depth by suppressing the formation of a compound layer.
特許文献4には、所定の構造を有する鉄窒化化合物層を表面に生成した、高い耐ピッティング性と曲げ疲労強度を有し、浸炭や浸炭窒化処理と比較して低歪である鋼部材が開示されている。 In Patent Document 4, a steel member having an iron nitride compound layer having a predetermined structure formed on the surface, having high pitting resistance and bending fatigue strength, and having low strain as compared with carburizing or carburizing nitriding treatment is provided. It is disclosed.
特許文献1の窒化処理部品は、雰囲気ガスにCO2を使用したガス軟窒化であることから、化合物層の表面側はε相になりやすいため、曲げ疲労強度はまだ十分ではないと考えられる。また、特許文献2の窒化処理部品は、鋼の成分によらず、NH3ガスが0.08〜0.34、H2ガスが0.54〜0.82、N2ガスが0.09〜0.18となるように制御しているため、鋼の成分によっては化合物層の構造や厚さが狙い通りにならない可能性がある。Since the nitriding component of Patent Document 1 is gas nitrocarburizing using CO 2 as the atmospheric gas, the surface side of the compound layer tends to be in the ε phase, and it is considered that the bending fatigue strength is not yet sufficient. Further, the nitriding parts of Patent Document 2 are 0.08 to 0.34 for NH 3 gas, 0.54 to 0.82 for H 2 gas, and 0.09 to 0.09 for N 2 gas, regardless of the steel composition. Since it is controlled to be 0.18, the structure and thickness of the compound layer may not be as intended depending on the composition of the steel.
特許文献3の窒化処理方法は、高KN値処理、低KN値処理の二段階窒化により化合物層を薄くすることを特徴としている。この方法は、一段目の窒化で化合物層を付与し、二段目の窒化で付与された化合物層を、硬化層へNを拡散させることにより分解することにより、有効硬化層を深くしているが、二段窒化という複雑な工程が必要となる。また、γ’相の比率が低くなり、ピッティングや曲げ疲労破壊の起点となりやすい。Nitriding method disclosed in Patent Document 3, the high K N value processing is characterized by thinning the compound layer by two-stage nitriding low K N value processing. In this method, the compound layer is imparted by the first-stage nitriding, and the compound layer imparted by the second-stage nitriding is decomposed by diffusing N into the cured layer to deepen the effective cured layer. However, a complicated process called two-stage nitriding is required. In addition, the ratio of the γ'phase becomes low, and it tends to be the starting point of pitting and bending fatigue fracture.
特許文献4の窒化処理は、処理時の各種ガス分圧の制御範囲が広いため、γ’相の比率が低くなったり、空隙率が高くなる可能性がある。 In the nitriding treatment of Patent Document 4, since the control range of various gas partial pressures during the treatment is wide, the ratio of the γ'phase may be low or the porosity may be high.
本発明の目的は、面疲労強度に加え回転曲げ疲労強度に優れた部品及びその製造方法を提供することである。 An object of the present invention is to provide a part having excellent rotational bending fatigue strength in addition to surface fatigue strength and a method for manufacturing the same.
本発明者らは、窒化処理によって鋼材の表面に形成される化合物層の形態に着目し、疲労強度との関係を調査した。 The present inventors focused on the morphology of the compound layer formed on the surface of the steel material by the nitriding treatment, and investigated the relationship with the fatigue strength.
その結果、成分を調整した鋼を、生地のC量を考慮した窒化ポテンシャル制御下で窒化することにより、表面付近をγ’相主体の相構造とし、ポーラスの発生を抑制し、表層の圧縮残留応力を一定値以上とすることにより、優れた面疲労強度、及び回転曲げ疲労強度を有する窒化部品を作製できることを見出した。 As a result, by nitriding the steel whose composition has been adjusted under the nitriding potential control in consideration of the C amount of the dough, the vicinity of the surface has a phase structure mainly composed of the γ'phase, the generation of porous is suppressed, and the compression residue of the surface layer is obtained. It has been found that a nitrided part having excellent surface fatigue strength and rotational bending fatigue strength can be produced by setting the stress to a certain value or more.
本発明は、上記の知見をもとに、さらに検討を重ねてなされたものであって、その要旨は以下のとおりである。 The present invention has been further studied based on the above findings, and the gist thereof is as follows.
質量%で、C:0.05%以上、0.30%以下、Si:0.05%以上、1.5%以下、Mn:0.2%以上、2.5%以下、P:0.025%以下、S:0.003%以上、0.05%以下、Cr:0.5%超、2.0%以下、Al:0.01%以上、0.05%以下、N:0.003%以上、0.025%以下、Nb:0%以上、0.1%以下、B:0%以上、0.01%以下、Mo:0%以上、0.50%未満、V:0%以上、0.50%未満、Cu:0%以上、0.50%未満、Ni:0%以上、0.50%未満、及びTi:0%以上、0.05%未満を含有し、残部がFe及び不純物である鋼材を素材とした部品であって、鋼材の表面に形成された、鉄、窒素及び炭素を含有する厚さ3μm以上15μm未満の化合物層を有し、表面から5μmの深さまでの範囲の化合物層における相構造がγ’相を面積率で50%以上含有し、表面から3μmの深さまでの範囲において空隙面積率が10%未満であり、化合物層表面の圧縮残留応力が500MPa以上であることを特徴とする窒化処理部品。 In terms of mass%, C: 0.05% or more, 0.30% or less, Si: 0.05% or more, 1.5% or less, Mn: 0.2% or more, 2.5% or less, P: 0. 025% or less, S: 0.003% or more, 0.05% or less, Cr: more than 0.5%, 2.0% or less, Al: 0.01% or more, 0.05% or less, N: 0. 003% or more, 0.025% or less, Nb: 0% or more, 0.1% or less, B: 0% or more, 0.01% or less, Mo: 0% or more, less than 0.50%, V: 0% More than 0.50%, Cu: 0% or more, less than 0.50%, Ni: 0% or more, less than 0.50%, and Ti: 0% or more, less than 0.05%, and the balance A component made of steel, which is Fe and impurities, and has a compound layer having a thickness of 3 μm or more and less than 15 μm formed on the surface of the steel and containing iron, nitrogen, and carbon, up to a depth of 5 μm from the surface. The phase structure of the compound layer in the range of is 50% or more in area ratio of γ'phase, the void area ratio is less than 10% in the range from the surface to a depth of 3 μm, and the compressive residual stress on the surface of the compound layer is 500 MPa. Nitriding-treated parts characterized by the above.
本発明によれば、面疲労強度に加え回転曲げ疲労強度に優れた窒化処理部品を得ることができる。 According to the present invention, it is possible to obtain a nitrided component having excellent rotational bending fatigue strength in addition to surface fatigue strength.
以下、本発明の各要件について詳しく説明する。はじめに、素材となる鋼材の化学組成について説明する。以下、各成分元素の含有量及び部品表面における元素濃度を表す「%」は「質量%」を意味するものとする。 Hereinafter, each requirement of the present invention will be described in detail. First, the chemical composition of the steel material used as the material will be described. Hereinafter, "%" representing the content of each component element and the element concentration on the surface of the component shall mean "mass%".
[C:0.05%以上、0.30%以下]
Cは、部品の芯部硬さを確保するために必要な元素である。Cの含有量が0.05%未満では、芯部強度が低くなりすぎるため、面疲労強度や曲げ疲労強度が大きく低下する。また、Cの含有量が0.30%を超えると、化合物層厚さが大きくなり、面疲労強度や耐曲げ性が大きく低下する。C含有量の好ましい範囲は0.08〜0.25%である。[C: 0.05% or more, 0.30% or less]
C is an element necessary for ensuring the core hardness of the part. If the C content is less than 0.05%, the core strength becomes too low, so that the surface fatigue strength and the bending fatigue strength are greatly reduced. Further, when the C content exceeds 0.30%, the compound layer thickness becomes large, and the surface fatigue strength and bending resistance are greatly lowered. The preferred range of C content is 0.08 to 0.25%.
[Si:0.05%以上、1.5%以下]
Siは、固溶強化によって、芯部硬さを高める。また、焼戻し軟化抵抗を高め、摩耗条件下で高温となる部品表面の面疲労強度を高める。これらの効果を発揮させるため、0.05%以上を含有させる。一方、Siの含有量が1.5%を超えると、棒鋼、線材や熱間鍛造後の強度が高くなりすぎるため、切削加工性が大きく低下する。Si含有量の好ましい範囲は0.08〜1.3%である。[Si: 0.05% or more, 1.5% or less]
Si increases the hardness of the core by strengthening the solid solution. In addition, the temper softening resistance is increased, and the surface fatigue strength of the component surface, which becomes hot under wear conditions, is increased. In order to exert these effects, 0.05% or more is contained. On the other hand, if the Si content exceeds 1.5%, the strength of steel bars, wire rods and after hot forging becomes too high, so that the machinability is greatly reduced. The preferred range of Si content is 0.08 to 1.3%.
[Mn:0.2%以上、2.5%以下]
Mnは、固溶強化によって、芯部硬さを高める。さらに、Mnは、窒化処理時には、硬化層中に微細な窒化物(Mn3N2)を形成し、析出強化によって耐摩耗性及び面疲労強度を向上させる。これらの効果を得るため、Mnは0.2%以上が必要である。一方、Mnの含有量が2.5%を超えると、面疲労強度を高める効果が飽和するだけでなく、素材となる棒鋼、線材や熱間鍛造後の硬さが高くなりすぎるため、切削加工性が大きく低下する。Mn含有量の好ましい範囲は0.4〜2.3%である。[Mn: 0.2% or more, 2.5% or less]
Mn increases the hardness of the core portion by strengthening the solid solution. Further, Mn forms fine nitrides (Mn 3 N 2 ) in the hardened layer during the nitriding treatment, and improves wear resistance and surface fatigue strength by strengthening precipitation. In order to obtain these effects, Mn needs to be 0.2% or more. On the other hand, if the Mn content exceeds 2.5%, not only the effect of increasing the surface fatigue strength is saturated, but also the hardness of the steel bar, wire rod and hot forged material becomes too high, so that the cutting process is performed. The sex is greatly reduced. The preferred range of Mn content is 0.4 to 2.3%.
[P:0.025%以下]
Pは不純物であって、粒界偏析して部品を脆化させるので、含有量は少ない方が好ましい。Pの含有量が0.025%を超えると、曲げ矯正性や曲げ疲労強度が低下する場合がある。曲げ疲労強度の低下を防止するためのP含有量の好ましい上限は0.018%である。含有量を完全に0とするのは難しく、現実的な下限は0.001%である。[P: 0.025% or less]
Since P is an impurity and segregates at grain boundaries to embrittle parts, it is preferable that the content is small. If the P content exceeds 0.025%, the bending straightness and bending fatigue strength may decrease. The preferable upper limit of the P content for preventing a decrease in bending fatigue strength is 0.018%. It is difficult to make the content completely 0, and the practical lower limit is 0.001%.
[S:0.003%以上、0.05%以下]
Sは、Mnと結合してMnSを形成し、切削加工性を向上させる。この効果を得るために、Sは0.003%以上が必要である。しかしながら、Sの含有量が0.05%を超えると、粗大なMnSを生成しやすくなり、面疲労強度や曲げ疲労強度が大きく低下する。S含有量の好ましい範囲は0.005〜0.03%である。[S: 0.003% or more, 0.05% or less]
S combines with Mn to form MnS and improves machinability. In order to obtain this effect, S needs to be 0.003% or more. However, when the S content exceeds 0.05%, coarse MnS is likely to be generated, and the surface fatigue strength and bending fatigue strength are greatly reduced. The preferred range of S content is 0.005 to 0.03%.
[Cr:0.5%超、2.0%以下]
Crは、窒化処理時に、微細な窒化物(CrN)を硬化層中に形成し、析出強化によって面疲労強度及び曲げ疲労強度を向上させる。これらの効果を得るため、Crは0.5%超が必要である。一方、Crの含有量が2.0%を超えると、面疲労強度を向上させる効果が飽和するだけでなく、素材となる棒鋼、線材や熱間鍛造後の硬さが高くなりすぎるため、切削加工性が著しく低下する。Cr含有量の好ましい範囲は0.7〜1.8%である。[Cr: more than 0.5%, less than 2.0%]
Cr forms fine nitrides (CrN) in the hardened layer during the nitriding treatment, and improves surface fatigue strength and bending fatigue strength by precipitation strengthening. In order to obtain these effects, Cr needs to be more than 0.5%. On the other hand, if the Cr content exceeds 2.0%, not only the effect of improving the surface fatigue strength is saturated, but also the hardness of the steel bar, wire rod and hot forged material becomes too high, so that cutting is performed. Workability is significantly reduced. The preferred range of Cr content is 0.7 to 1.8%.
[Al:0.01%以上、0.05%以下]
Alは、脱酸元素であり、十分な脱酸のために0.01%以上が必要である。一方で、Alは硬質な酸化物系介在物を形成しやすく、Alの含有量が0.05%を超えると、曲げ疲労強度の低下が著しくなり、他の要件を満たしていても所望の曲げ疲労強度が得られなくなる。Al含有量の好ましい範囲は0.02〜0.04%である。[Al: 0.01% or more, 0.05% or less]
Al is a deoxidizing element, and 0.01% or more is required for sufficient deoxidation. On the other hand, Al tends to form hard oxide-based inclusions, and when the Al content exceeds 0.05%, the bending fatigue strength is significantly reduced, and even if other requirements are satisfied, desired bending is achieved. Fatigue strength cannot be obtained. The preferred range of Al content is 0.02 to 0.04%.
[N:0.003%以上、0.025%以下]
Nは、Al、Vと結合してAlN、VNを形成する。AlN、VNはオーステナイト粒のピンニング作用により、窒化処理前の鋼材の組織を微細化し、窒化処理部品の機械的特性のばらつきを低減する効果を持つ。Nの含有量が0.003%未満ではこの効果は得難い。一方で、Nの含有量が0.025%を超えると、粗大なAlNが形成されやすくなるため、上記の効果は得難くなる。N含有量の好ましい範囲は0.005〜0.020%である。[N: 0.003% or more, 0.025% or less]
N combines with Al and V to form AlN and VN. AlN and VN have the effect of refining the structure of the steel material before the nitriding treatment by the pinning action of the austenite grains and reducing the variation in the mechanical properties of the nitriding treated parts. If the N content is less than 0.003%, this effect is difficult to obtain. On the other hand, if the N content exceeds 0.025%, coarse AlN is likely to be formed, so that the above effect is difficult to obtain. The preferred range of N content is 0.005 to 0.020%.
本発明の窒化処理部品の素材となる鋼の化学成分は、上記の元素を含有し、残部はFe及び不可避的不純物である。不可避的不純物とは、原材料に含まれる、あるいは製造の過程で混入する成分であり、意図的に鋼に含有させたものではない成分のことをいう。 The chemical composition of steel used as a material for the nitriding parts of the present invention contains the above elements, and the balance is Fe and unavoidable impurities. Inevitable impurities are components contained in raw materials or mixed in during the manufacturing process, and are components not intentionally contained in steel.
ただし、本発明の窒化処理部品の素材となる鋼は、Feの一部に代えて、以下に示す元素を含有してもよい。 However, the steel used as the material for the nitrided parts of the present invention may contain the following elements instead of a part of Fe.
[Nb:0%以上、0.1%以下]
Nbは、CやNと結合してNbCやNbNを形成する。NbC、NbNのピンニング作用により、オーステナイト粒の粗大化が抑制され、窒化処理前の鋼材の組織を微細化し、窒化処理部品の機械的特性のばらつきを低減する効果を持つ。この効果はNbを微量添加すれば得られるが、より確実に効果を得るためには、Nbは0.01%以上とするのが好ましい。Nbの含有量が0.1%を超えると、粗大なNbC、NbNが形成されやすくなるため、上記の効果は得にくくなる。 [Nb: 0% or more, 0.1% or less]
Nb combines with C and N to form NbC and NbN. By the pinning action of NbC and NbN, coarsening of austenite grains is suppressed, the structure of the steel material before the nitriding treatment is made finer, and there is an effect of reducing variations in the mechanical properties of the nitriding treatment parts. This effect can be obtained by adding a small amount of Nb, but in order to obtain the effect more reliably, it is preferable that Nb is 0.01% or more. When the content of Nb exceeds 0.1%, coarse NbC and NbN are likely to be formed, so that the above effect is difficult to obtain.
[B:0以上、0.01%以下]
Bは、Pの粒界偏析を抑制し、靭性を向上させる効果を持つ。また、Nと結合してBNを形成し切削性を向上させる。これらの効果はNbを微量添加すれば得られるが、より確実に効果を得るためには、Bは0.0005%以上とすることが好ましい。Bの含有量が0.01%を超えると、上記効果が飽和するだけでなく、多量のBNが偏析することで鋼材に割れが生じることがある。[B: 0 or more, 0.01% or less]
B has the effect of suppressing the grain boundary segregation of P and improving the toughness. In addition, it combines with N to form BN and improves machinability. These effects can be obtained by adding a small amount of Nb, but in order to obtain the effects more reliably, B is preferably 0.0005% or more. If the B content exceeds 0.01%, not only the above effect is saturated, but also a large amount of BN segregates, which may cause cracks in the steel material.
[Mo:0%以上、0.50%未満]
Moは、窒化時に微細な窒化物(Mo2N)を硬化層中に形成し、析出強化によって面疲労強度及び曲げ疲労強度を向上させる。また、Moは、窒化時に時効硬化作用を発揮して芯部硬さを向上させる。これらの効果を得るためのMo含有量は0.01%以上とするのが好ましい。一方、Moの含有量が0.50%以上では、素材となる棒鋼、線材や熱間鍛造後の硬さが高くなりすぎるため、切削加工性が著しく低下する他、合金コストが増大する。切削加工性確保のためのMo含有量の好ましい上限は0.40%未満である。[Mo: 0% or more, less than 0.50%]
Mo forms fine nitrides (Mo 2 N) in the hardened layer at the time of nitriding, and improves surface fatigue strength and bending fatigue strength by precipitation strengthening. In addition, Mo exerts an aging hardening action at the time of nitriding to improve the hardness of the core portion. The Mo content for obtaining these effects is preferably 0.01% or more. On the other hand, when the Mo content is 0.50% or more, the hardness of the steel bars and wires used as raw materials and after hot forging becomes too high, so that the machinability is remarkably lowered and the alloy cost is increased. The preferable upper limit of the Mo content for ensuring machinability is less than 0.40%.
[V:0%以上、0.50%未満]
Vは、窒化及び軟窒化時に微細な窒化物(VN)を形成し、析出強化によって面疲労強度及び曲げ疲労強度を向上させ、部品の芯部硬さを高くする。また、組織微細化の効果も有する。これらの作用を得るため、Vは0.01%以上とするのが好ましい。一方、Vの含有量が0.50%以上では、素材となる棒鋼、線材や熱間鍛造後の硬さが高くなりすぎるため、切削加工性が著しく低下する他、合金コストが増大する。切削加工性確保のためのV含有量の好ましい範囲は0.40%未満である。[V: 0% or more, less than 0.50%]
V forms fine nitrides (VN) during nitriding and soft nitriding, and improves surface fatigue strength and bending fatigue strength by precipitation strengthening, and increases the core hardness of parts. It also has the effect of microstructure miniaturization. In order to obtain these effects, V is preferably 0.01% or more. On the other hand, when the V content is 0.50% or more, the hardness of the steel bars and wires used as raw materials and after hot forging becomes too high, so that the machinability is remarkably lowered and the alloy cost is increased. The preferable range of the V content for ensuring machinability is less than 0.40%.
[Cu:0%以上、0.50%未満]
Cuは、固溶強化元素として部品の芯部硬さならびに窒素拡散層の硬さを向上させる。Cuの固溶強化の作用を発揮させるためには0.01%以上の含有が好ましい。一方、Cuの含有量が0.50%以上では、素材となる棒鋼、線材や熱間鍛造後の硬さが高くなりすぎるため、切削加工性が著しく低下する他、熱間延性が低下するため、熱間圧延時、熱間鍛造時に表面傷発生の原因となる。熱間延性維持のためのCu含有量の好ましい範囲は0.40%未満である。[Cu: 0% or more, less than 0.50%]
Cu improves the hardness of the core of the component and the hardness of the nitrogen diffusion layer as a solid solution strengthening element. In order to exert the effect of strengthening the solid solution of Cu, the content is preferably 0.01% or more. On the other hand, when the Cu content is 0.50% or more, the hardness of the steel bars and wires used as raw materials and after hot forging becomes too high, so that the machinability is remarkably lowered and the hot ductility is lowered. , It causes surface scratches during hot rolling and hot forging. The preferred range of Cu content for maintaining hot ductility is less than 0.40%.
[Ni:0%以上、0.50%未満]
Niは、固溶強化により芯部硬さ及び表層硬さを向上させる。Niの固溶強化の作用を発揮させるためには0.01%以上の含有が好ましい。一方、Niの含有量が0.50%以上では、棒鋼、線材や熱間鍛造後の硬さが高くなりすぎるため、切削加工性が著しく低下する他、合金コストが増大する。十分な切削加工性を得るためのNi含有量の好ましい範囲は0.40%未満である。[Ni: 0% or more, less than 0.50%]
Ni improves the core hardness and surface hardness by solid solution strengthening. In order to exert the effect of strengthening the solid solution of Ni, the content is preferably 0.01% or more. On the other hand, when the Ni content is 0.50% or more, the hardness of steel bars, wire rods and after hot forging becomes too high, so that the machinability is remarkably lowered and the alloy cost is increased. The preferred range of Ni content for obtaining sufficient machinability is less than 0.40%.
[Ti:0%以上、0.05%未満]
Tiは、Nと結合してTiNを形成し、芯部硬さ及び表層硬さを向上させる。この作用を得るため、Tiは0.005%以上とするのが好ましい。一方、Tiの含有量が0.05%以上では、芯部硬さ及び表層硬さを向上させる効果が飽和する他、合金コストが増大する。Ti含有量の好ましい範囲は0.007〜0.04%未満である。[Ti: 0% or more, less than 0.05%]
Ti combines with N to form TiN, which improves core hardness and surface hardness. In order to obtain this effect, Ti is preferably 0.005% or more. On the other hand, when the Ti content is 0.05% or more, the effect of improving the core hardness and the surface hardness is saturated, and the alloy cost increases. The preferred range of Ti content is 0.007 to less than 0.04%.
次に、本発明の窒化処理部品の化合物層について説明する。 Next, the compound layer of the nitrided component of the present invention will be described.
[化合物層の厚さ:3μm以上15μm未満]
化合物層とは窒化処理により形成された鉄窒化物の層であり、その厚さは、窒化処理部品の面疲労強度や曲げ強度に影響する。化合物層が厚すぎると、ピッティングや曲げによる破壊の起点となりやすい。化合物層が薄すぎると、表面の残留応力が十分に得られず、面疲労強度や曲げ強度が低下する。本発明の窒化処理部品においては、面疲労強度や曲げ強度の観点から、化合物層の厚さは3μm以上15μm未満とする。[Thickness of compound layer: 3 μm or more and less than 15 μm]
The compound layer is a layer of iron nitride formed by nitriding treatment, and its thickness affects the surface fatigue strength and bending strength of the nitriding treated part. If the compound layer is too thick, it tends to be a starting point of fracture due to pitting or bending. If the compound layer is too thin, the residual stress on the surface cannot be sufficiently obtained, and the surface fatigue strength and the bending strength are lowered. In the nitrided component of the present invention, the thickness of the compound layer is 3 μm or more and less than 15 μm from the viewpoint of surface fatigue strength and bending strength.
化合物層の厚さは、ガス窒化処理後、供試材の垂直断面を研磨し、エッチングして光学顕微鏡で観察して測定する。エッチングは、3%ナイタール溶液で20〜30秒間行う。化合物層は、低合金鋼の表層に存在し、白い未腐食の層として観察される。光学顕微鏡により500倍で撮影した組織写真5視野(視野面積:2.2×104μm2)を観察する。各視野において、水平方向に30μm毎に4点を測定する。測定された20点の値の平均値を、化合物厚さ(μm)と定義する。図1に測定方法の概略を、図2に化合物層と拡散層の組織写真の一例を示す。The thickness of the compound layer is measured by polishing the vertical cross section of the test material after gas nitriding treatment, etching it, and observing it with an optical microscope. Etching is performed with a 3% nital solution for 20-30 seconds. The compound layer is present on the surface of the low alloy steel and is observed as a white uncorroded layer. Observe 5 visual fields (field of view area: 2.2 × 10 4 μm 2 ) of the tissue photograph taken at 500 times with an optical microscope. In each field of view, 4 points are measured every 30 μm in the horizontal direction. The average value of the measured 20 points is defined as the compound thickness (μm). FIG. 1 shows an outline of the measurement method, and FIG. 2 shows an example of a microstructure photograph of the compound layer and the diffusion layer.
[表面〜5μmの化合物層のγ’相比率:50%以上]
表面〜5μmの化合物層においてγ’相の比率が低く、ε相比率が高いと、ピッティングや曲げ疲労破壊の起点となりやすくなる。これは、ε相の破壊靭性値がγ’相と比べ低いためである。また、表面付近の相がγ’相であるとε相である場合に比べ、後述する圧縮残留応力を表面に導入しやすくなり、疲労強度を向上させることが可能となる。[Γ'phase ratio of compound layer of surface ~ 5 μm: 50% or more]
When the ratio of the γ'phase is low and the ratio of the ε phase is high in the compound layer having a surface of about 5 μm, it is likely to be a starting point of pitting and bending fatigue fracture. This is because the fracture toughness value of the ε phase is lower than that of the γ'phase. Further, when the phase near the surface is the γ'phase, it becomes easier to introduce the compressive residual stress described later into the surface as compared with the case where it is the ε phase, and the fatigue strength can be improved.
化合物層中のγ’相比率は、後方散乱電子回折法(Electron BackScatter Diffraction:EBSD)で求める。具体的には、化合物層の最表面から5μm深さまでの、面積150μm2についてEBSD測定を行い、γ’相、ε相を判別する解析図を作成する。そして、得られたEBSD解析像について、画像処理アプリケーションを用いてγ’相の面積比を求め、これをγ’相比率(%)と定義する。EBSD測定では、4000倍前後の倍率で10視野程度測定するのが適当である。The γ'phase ratio in the compound layer is determined by backscattered electron diffraction (Electron Backscatter Diffraction: EBSD). Specifically, EBSD measurement is performed on an area of 150 μm 2 from the outermost surface of the compound layer to a depth of 5 μm, and an analysis diagram for discriminating between the γ'phase and the ε phase is created. Then, for the obtained EBSD analysis image, the area ratio of the γ'phase is obtained by using an image processing application, and this is defined as the γ'phase ratio (%). In the EBSD measurement, it is appropriate to measure about 10 fields of view at a magnification of about 4000 times.
上記のγ’相比率は表面〜5μmの深さの「化合物層の」γ’相の比率を意味する。すなわち化合物層の厚さが表面から5μmに満たない場合は、化合物層厚さ分の領域におけるγ’相比率を算出する。一例として、化合物の厚さが表面から3μmであれば、表面〜3μmの深さの化合物層のγ’相の割合がγ’相比率となる。 The γ'phase ratio described above means the ratio of the "γ'phase" of the "compound layer" at a depth of ~ 5 μm on the surface. That is, when the thickness of the compound layer is less than 5 μm from the surface, the γ'phase ratio in the region corresponding to the thickness of the compound layer is calculated. As an example, if the thickness of the compound is 3 μm from the surface, the ratio of the γ'phase of the compound layer having a depth of the surface to 3 μm is the γ'phase ratio.
γ’相比率は好ましくは60%以上、より好ましくは65%以上、さらに好ましくは70%以上である。 The γ'phase ratio is preferably 60% or more, more preferably 65% or more, still more preferably 70% or more.
γ’相比率は、X線回折を用いて求める方法も考えられる。しかしながら、X線回折による測定は、測定領域があいまいとなり、正確なγ’相比率を求めることができない。したがって、本発明における化合物層中のγ’相比率はEBSDで求めるものとする。 A method of obtaining the γ'phase ratio by using X-ray diffraction can also be considered. However, in the measurement by X-ray diffraction, the measurement region becomes ambiguous, and an accurate γ'phase ratio cannot be obtained. Therefore, the γ'phase ratio in the compound layer in the present invention is determined by EBSD.
[表面〜3μmの化合物層の空隙面積率:10%未満]
表面〜3μmの化合物層に空隙が存在すると応力集中が生じ、ピッティングや曲げ疲労破壊の起点となる。そのため、空隙面積率は10%未満とする必要がある。[Void area ratio of compound layer with surface to 3 μm: less than 10%]
If voids are present in the compound layer having a surface of 3 μm, stress concentration occurs, which is a starting point for pitting and bending fatigue fracture. Therefore, the void area ratio needs to be less than 10%.
空隙は、母材による拘束力の小さい鋼材表面において、粒界などエネルギー的に安定な場所から、N2ガスが粒界に沿って鋼材表面から脱離することにより形成される。N2の発生は、後述する窒化ポテンシャルKNが高いほど発生しやすくなる。これは、KNが高くなるに従い、bcc→γ’→εの相変態が起こり、γ’相よりもε相の方がN2の固溶量が大きいため、ε相の方がN2ガスを発生させやすいためである。図3に化合物層に空隙が形成される概略を、図4に空隙が形成された組織写真を示す。Voids, the smaller the steel surface binding by the base material, from the energy stable location such as grain boundaries, N 2 gas is formed by elimination from the surface of the steel material along the grain boundaries. The generation of N 2 is more likely to occur as the nitriding potential K N, which will be described later, is higher. This is because the phase transformation of bcc → γ'→ ε occurs as K N increases, and the solid solution amount of N 2 is larger in the ε phase than in the γ'phase, so the ε phase is the N 2 gas. This is because it is easy to generate. FIG. 3 shows an outline in which voids are formed in the compound layer, and FIG. 4 shows a microstructure photograph in which voids are formed.
空隙面積率は、光学顕微鏡観察によって測定することができる。具体的には、供試材の断面における表面〜3μmの深さを、倍率1000倍にて5視野測定(視野面積:5.6×103μm2)して、各視野について最表面から3μm深さの範囲中に占める空隙の割合を空隙面積率とする。The void area ratio can be measured by observation with an optical microscope. Specifically, the depth of the surface to 3 μm in the cross section of the test material is measured in 5 visual fields (visual field area: 5.6 × 10 3 μm 2 ) at a magnification of 1000 times, and 3 μm from the outermost surface for each visual field. The ratio of voids in the depth range is defined as the void area ratio.
空隙面積率は好ましくは5%未満、より好ましくは2%未満であり、さらに好ましくは1%未満であり、0であることが最も好ましい。 The void area ratio is preferably less than 5%, more preferably less than 2%, still more preferably less than 1%, and most preferably 0.
[化合物層表面の圧縮残留応力:500MPa以上]
本発明の窒化処理部品は、窒化処理により鋼の表面が硬化するとともに、鋼の表層部に圧縮残留応力が導入され、部品の疲労強度、耐摩耗性が向上する。本発明の窒化処理部品は、化合物層を上述した向上とし、さらに表面に圧縮残留応力を500MPa以上導入することにより、優れた面疲労強度、回転曲げ疲労強度を有するものとなる。部品の表面にこのような圧縮残留応力を導入するための製造方法は後述する。[Compressive residual stress on the surface of the compound layer: 500 MPa or more]
In the nitriding-treated component of the present invention, the surface of the steel is hardened by the nitriding treatment, and compressive residual stress is introduced into the surface layer portion of the steel, so that the fatigue strength and wear resistance of the component are improved. The nitriding component of the present invention has excellent surface fatigue strength and rotational bending fatigue strength by improving the compound layer as described above and further introducing a compressive residual stress of 500 MPa or more on the surface. A manufacturing method for introducing such compressive residual stress on the surface of a component will be described later.
次に、本発明の窒化処理部品の製造方法の一例を説明する。 Next, an example of the method for manufacturing the nitrided component of the present invention will be described.
本発明の窒化処理部品の製造方法では、上述した成分を有する鋼材に対してガス窒化処理を施す。ガス窒化処理の処理温度は550〜620℃であり、ガス窒化処理全体の処理時間は1.5〜10時間である。 In the method for manufacturing a nitrided part of the present invention, a steel material having the above-mentioned components is subjected to gas nitriding treatment. The treatment temperature of the gas nitriding treatment is 550 to 620 ° C., and the treatment time of the entire gas nitriding treatment is 1.5 to 10 hours.
[処理温度:550〜620℃]
ガス窒化処理の温度(窒化処理温度)は、主に、窒素の拡散速度と相関があり、表面硬さ及び硬化層深さに影響を及ぼす。窒化処理温度が低すぎれば、窒素の拡散速度が遅く、表面硬さが低くなり、硬化層深さが浅くなる。一方、窒化処理温度がAC1点を超えれば、フェライト相(α相)よりも窒素の拡散速度が小さいオーステナイト相(γ相)が鋼中に生成され、表面硬さが低くなり、硬化層深さが浅くなる。したがって、本実施形態では、窒化処理温度はフェライト温度域周囲の550〜620℃である。この場合、表面硬さが低くなるのを抑制でき、かつ、硬化層深さが浅くなるのを抑制できる。[Treatment temperature: 550 to 620 ° C]
The temperature of the gas nitriding treatment (nitriding treatment temperature) mainly correlates with the diffusion rate of nitrogen and affects the surface hardness and the depth of the hardened layer. If the nitriding treatment temperature is too low, the diffusion rate of nitrogen is slow, the surface hardness is low, and the cured layer depth is shallow. On the other hand, if it exceeds nitriding temperature the C1 point A, ferrite phase (alpha phase) the nitrogen diffusion rate is small austenite phase than (gamma phase) is generated in the steel, the surface hardness becomes low, hardening depth The shallowness becomes shallow. Therefore, in the present embodiment, the nitriding treatment temperature is 550 to 620 ° C. around the ferrite temperature range. In this case, it is possible to suppress the decrease in surface hardness and the shallow depth of the hardened layer.
[ガス窒化処理全体の処理時間:1.5〜10時間]
ガス窒化処理は、NH3、H2、N2を含む雰囲気で実施する。窒化処理全体の時間、つまり、窒化処理の開始から終了までの時間(処理時間)は、化合物層の形成及び分解と窒素の拡散浸透と相関があり、表面硬さ及び硬化層深さに影響を及ぼす。処理時間が短すぎると表面硬さが低くなり、硬化層深さが浅くなる。一方、処理時間が長すぎれば、脱窒や脱炭が発生して鋼の表面硬さが低下する。処理時間が長すぎればさらに、製造コストが高くなる。したがって、窒化処理全体の処理時間は1.5〜10時間である。[Processing time for the entire gas nitriding process: 1.5 to 10 hours]
The gas nitriding treatment is carried out in an atmosphere containing NH 3 , H 2 and N 2 . The time of the entire nitriding treatment, that is, the time from the start to the end of the nitriding treatment (treatment time), correlates with the formation and decomposition of the compound layer and the diffusion and permeation of nitrogen, and affects the surface hardness and the depth of the hardened layer. To exert. If the treatment time is too short, the surface hardness becomes low and the cured layer depth becomes shallow. On the other hand, if the treatment time is too long, denitrification and decarburization will occur and the surface hardness of the steel will decrease. If the processing time is too long, the manufacturing cost will be higher. Therefore, the processing time of the entire nitriding treatment is 1.5 to 10 hours.
なお、本実施形態のガス窒化処理の雰囲気は、NH3、H2及びN2の他、不可避的に酸素、二酸化炭素などの不純物を含む。好ましい雰囲気は、NH3、H2及びN2を合計で99.5%(体積%)以上である。The atmosphere of the gas nitriding treatment of the present embodiment inevitably contains impurities such as oxygen and carbon dioxide in addition to NH 3 , H 2 and N 2 . The preferred atmosphere is NH 3 , H 2 and N 2 totaling 99.5% (volume%) or more.
一酸化炭素、二酸化炭素を数%程度含む雰囲気下でのガス軟窒化処理を施すと、Cの固溶限の高いε相が優先的に生成される。γ’層はCをほとんど固溶できないので、軟窒化処理を施した場合、化合物層はε単相となる。さらに、ε相の成長速度はγ’相よりも速いので、ε相が安定的に生成するガス軟窒化では化合物層が必要以上に厚く形成される。したがって、本発明においてはガス軟窒化処理ではなく、後述のとおり窒化ポテンシャルKNを制御したガス窒化処理を施す必要がある。When gas nitrocarburizing treatment is performed in an atmosphere containing about several% of carbon monoxide and carbon dioxide, the ε phase having a high solid solution limit of C is preferentially generated. Since C can hardly be dissolved in the γ'layer, the compound layer becomes an ε single phase when soft nitriding treatment is performed. Furthermore, since the growth rate of the ε phase is faster than that of the γ'phase, the compound layer is formed thicker than necessary in gas nitrocarburizing in which the ε phase is stably formed. Therefore, in the present invention, it is necessary to perform the gas nitriding treatment in which the nitriding potential KN is controlled as described later, instead of the gas nitrocarburizing treatment.
[窒化処理のガス条件]
本発明の窒化処理方法では、生地のC量を考慮して制御された窒化ポテンシャルの下で窒化処理が施される。これにより、表面〜5μmの深さの化合物層における相構造をγ’相比率50%以上とし、表面〜3μmの深さにおける空隙面積率を10%未満とし、化合物層表面の圧縮残留応力を500MPa以上とすることができる。[Gas conditions for nitriding]
In the nitriding treatment method of the present invention, the nitriding treatment is performed under a nitriding potential controlled in consideration of the C amount of the dough. As a result, the phase structure of the compound layer at a depth of ~ 5 μm is set to γ'phase ratio of 50% or more, the void area ratio at a depth of ~ 3 μm is set to less than 10%, and the compressive residual stress on the surface of the compound layer is set to 500 MPa. It can be the above.
ガス窒化処理の窒化ポテンシャルKNは、下記式で定義される。The nitriding potential K N of the gas nitriding process is defined by the following equation.
KN(atm-1/2)=(NH3分圧(atm))/[(H2分圧(atm))3/2]K N (atm- 1 / 2 ) = (NH 3 partial pressure (atm)) / [(H 2 partial pressure (atm)) 3/2 ]
ガス窒化処理の雰囲気のNH3及びH2の分圧は、ガスの流量を調整することにより制御することができる。窒化処理により化合物層を形成するためには、ガス窒化処理時のKNが一定値以上である必要があるが、前述のとおり、KNが高くなりすぎると、N2ガスを発生させやすいε相の割合が多くなり、空隙が多くなる。したがって、KNの条件を設け、空隙の発生を抑制させることが重要である。The partial pressure of NH 3 and H 2 in the atmosphere of gas nitriding can be controlled by adjusting the flow rate of the gas. In order to form a compound layer by nitriding treatment, K N at the time of gas nitriding treatment needs to be a certain value or more, but as described above, if K N becomes too high, N 2 gas is likely to be generated ε. The proportion of phases increases and the voids increase. Therefore, it is important to set the K N condition to suppress the generation of voids.
本発明者らの検討の結果、ガス窒化処理の窒化処理ポテンシャルは化合物層の相構造、及び窒化処理部品の回転曲げ疲労強度に影響し、最適な窒化ポテンシャルは鋼のC含有量により定まることを見出した。 As a result of the study by the present inventors, it was found that the nitriding potential of the gas nitriding treatment affects the phase structure of the compound layer and the rotational bending fatigue strength of the nitriding treated part, and the optimum nitriding potential is determined by the C content of the steel. I found it.
具体的には、鋼のC含有量(質量%)を(質量%C)としたとき、ガス窒化処理時の窒化処理ポテンシャルが、ガス窒化処理中常に0.15≦KN≦−0.17×ln(質量%C)+0.20を満たせば、化合物層の相構造がγ’相比率50%以上となり、さらに、窒化処理部品が高い回転曲げ疲労強度及び面疲労強度を有することを知見した。Specifically, when the C content (mass%) of the steel is (mass% C), the nitriding potential during the gas nitriding process is always 0.15 ≤ K N ≤ -0.17 during the gas nitriding process. It was found that when × ln (mass% C) +0.20 is satisfied, the phase structure of the compound layer becomes a γ'phase ratio of 50% or more, and the nitriding part has high rotational bending fatigue strength and surface fatigue strength. ..
ガス窒化処理の平均窒化処理ポテンシャルが上式を満たしていても、一時でも上式を満たさない窒化処理ポテンシャル値を取る場合、化合物層におけるγ’相比率が50%以上とならない。 Even if the average nitriding potential of the gas nitriding treatment satisfies the above equation, the γ'phase ratio in the compound layer does not become 50% or more when the nitriding potential value that does not satisfy the above equation is taken even for a while.
図5に、窒化処理ポテンシャルと、化合物層のγ’比率及び回転曲げ疲労強度の関係を調査した結果を示す。図5は、後述する実施例の鋼j(表1)についてのものである。 FIG. 5 shows the results of investigating the relationship between the nitriding potential, the γ'ratio of the compound layer, and the rotational bending fatigue strength. FIG. 5 shows the steel j (Table 1) of the embodiment described later.
このように、本窒化処理方法では、生地となる鋼のC量に応じた窒化ポテンシャルKNの下でガス窒化処理を実施する。これにより、安定的に鋼の表面にγ’相を付与することが可能となり、優れた面疲労強度、回転曲げ疲労強度、好ましくは、面疲労強度が2000MPa以上、回転曲げ疲労強度が600MPa以上の窒化処理部品を得ることができる。As described above, in this nitriding treatment method, the gas nitriding treatment is carried out under the nitriding potential K N according to the amount of C of the steel as the dough. This makes it possible to stably impart the γ'phase to the surface of the steel, and has excellent surface fatigue strength, rotational bending fatigue strength, preferably surface fatigue strength of 2000 MPa or more, and rotational bending fatigue strength of 600 MPa or more. Nitrided parts can be obtained.
表1に示す化学成分を有する鋼a〜aaを、50kg真空溶解炉で溶解して溶鋼を製造し、溶鋼を鋳造してインゴットを製造した。なお、表1中のa〜sは、本発明で規定する化学成分を有する鋼である。一方、鋼t〜aaは、少なくとも1元素以上、本発明で規定する化学成分から外れた比較例の鋼である。 Steels a to aa having the chemical components shown in Table 1 were melted in a 50 kg vacuum melting furnace to produce molten steel, and molten steel was cast to produce an ingot. Reference numerals a to s in Table 1 are steels having the chemical components specified in the present invention. On the other hand, steels t to aa are comparative steels having at least one element or more that deviates from the chemical composition specified in the present invention.
このインゴットを熱間鍛造して直径40mmの丸棒とした。続いて、各丸棒を焼鈍した後、切削加工を施し図6に示す面疲労強度を評価するためのローラーピッティング試験用の小ローラー、図7に示す大ローラーを作製した。さらに、図8に示す耐曲げ疲労強度を評価するための円柱試験片を作製した。 This ingot was hot forged to form a round bar with a diameter of 40 mm. Subsequently, after each round bar was annealed, a small roller for a roller pitting test for evaluating the surface fatigue strength shown in FIG. 6 and a large roller shown in FIG. 7 were produced by cutting. Further, a cylindrical test piece for evaluating the bending fatigue resistance shown in FIG. 8 was prepared.
採取された試験片に対して、次の条件でガス窒化処理を実施した。試験片をガス窒化炉に装入し、炉内にNH3、H2、N2の各ガスを導入して、表2に示す条件で窒化処理を実施した。ただし、試験番号34は、雰囲気中にCO2ガスを体積率で3%添加したガス軟窒化処理とした。また、試験番号35は、窒化条件を前半と後半で変えた、2段窒化処理とした。試験番号36は、特許文献3における実施例16に相当する。ガス窒化処理後の試験片に対して、80℃の油を用いて油冷を実施した。The collected test pieces were subjected to gas nitriding treatment under the following conditions. The test piece was charged into a gas nitriding furnace, NH 3 , H 2 , and N 2 gases were introduced into the furnace, and the nitriding treatment was carried out under the conditions shown in Table 2. However, Test No. 34 was a gas nitrocarburizing treatment in which 3% of CO 2 gas was added in a volume fraction to the atmosphere. Further, the test number 35 was a two-stage nitriding treatment in which the nitriding conditions were changed between the first half and the second half. Test number 36 corresponds to Example 16 in Patent Document 3. The test piece after the gas nitriding treatment was oil-cooled using oil at 80 ° C.
雰囲気中のH2分圧は、ガス窒化炉体に直接装着した熱伝導式H2センサを用いて測定した。標準ガスと測定ガスとの熱伝導度の違いをガス濃度に換算して測定した。H2分圧は、ガス窒化処理の間、継続して測定した。The H 2 partial pressure in the atmosphere was measured using a heat conduction type H 2 sensor directly mounted on the gas nitriding furnace body. The difference in thermal conductivity between the standard gas and the measured gas was converted into gas concentration and measured. H 2 partial pressure during the gas nitriding treatment was continuously measured.
また、NH3分圧は、炉外に手動ガラス管式NH3分析計を取り付けて測定した。The NH 3 partial pressure was measured by attaching a manual glass tube type NH 3 analyzer outside the furnace.
10分毎に残留NH3の分圧を測定すると同時に窒化ポテンシャルKNを算出し、目標値に収束するように、NH3流量及びN2流量を調整した。NH3分圧を測定する10分毎に窒化ポテンシャルKNを算出し、目標値に収束するように、NH3流量及びN2流量を調整した。
[化合物層厚さ及び空隙面積率の測定]
ガス窒化処理後の小ローラーの、長さ方向に垂直な方向の断面を鏡面研磨し、エッチングした。走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いてエッチングされた断面を観察し、化合物層厚さの測定及び表層部の空隙の有無の確認を行った。エッチングは、3%ナイタール溶液で20〜30秒間行った。[Measurement of compound layer thickness and void area ratio]
The cross section of the small roller after the gas nitriding treatment in the direction perpendicular to the length direction was mirror-polished and etched. The etched cross section was observed using a scanning electron microscope (SEM), the thickness of the compound layer was measured, and the presence or absence of voids in the surface layer was confirmed. Etching was performed with a 3% nital solution for 20-30 seconds.
化合物層は、表層に存在する白い未腐食の層として確認可能である。4000倍で撮影した組織写真10視野(視野面積:6.6×102μm2)から化合物層を観察し、それぞれ10μm毎に3点の化合物層の厚さを測定した。そして、測定された30点の平均値を、化合物厚さ(μm)と定義した。The compound layer can be confirmed as a white uncorroded layer existing on the surface layer. The compound layer was observed from 10 visual fields (visual field area: 6.6 × 10 2 μm 2 ) of the tissue photograph taken at 4000 times, and the thickness of the compound layer at 3 points was measured every 10 μm. Then, the average value of the measured 30 points was defined as the compound thickness (μm).
同様に、最表面から3μm深さの範囲の面積90μm2中に占める空隙の総面積の比(空隙面積率、単位は%)を、画像処理アプリケーションにより2値化して求めた。そして、測定された10視野の平均値を、空隙面積率(%)と定義した。化合物層が3μm未満の場合においても、同様に表面から3μm深さまでを測定対象とした。Similarly, the ratio of the total area of voids (void area ratio, unit is%) to the area 90 μm 2 in the range of 3 μm depth from the outermost surface was quantified by an image processing application. Then, the average value of the measured 10 visual fields was defined as the void area ratio (%). Even when the compound layer was less than 3 μm, the measurement target was similarly up to a depth of 3 μm from the surface.
[γ’相比率の測定]
化合物層中のγ’相比率を、後方散乱電子回折法(Electron BackScatter Diffraction:EBSD)で求めた。化合物層の最表面から5μm深さまでの、面積150μm2についてEBSD測定を行い、γ’相、ε相を判別する解析図を作成し、得られたEBSD解析像について、画像処理アプリケーションを用いてγ’相比率(%)を決定した。EBSD測定では、4000倍の倍率で10視野測定した。[Measurement of γ'phase ratio]
The γ'phase ratio in the compound layer was determined by backscattered electron diffraction (Electron Backscatter Diffraction: EBSD). EBSD measurement was performed on an area of 150 μm2 from the outermost surface of the compound layer to a depth of 5 μm, an analysis diagram for discriminating between the γ'phase and the ε phase was created, and the obtained EBSD analysis image was γ'using an image processing application. The phase ratio (%) was determined. In the EBSD measurement, 10 visual fields were measured at a magnification of 4000 times.
そして、測定された10視野のγ’相比の平均値を、γ’相比率(%)と定義した。化合物層が5μmに満たない場合は、化合物層厚さ分の領域におけるγ’相比率を算出した。 Then, the average value of the measured γ'phase ratios of the 10 visual fields was defined as the γ'phase ratio (%). When the compound layer was less than 5 μm, the γ'phase ratio in the region corresponding to the thickness of the compound layer was calculated.
[化合物層残留応力]
窒化後の小ローラー接触部に対し、微小部X線残留応力測定装置を用いて、表3の条件でγ’相、ε相及び母層(matrix)の残留応力σγ’、σε、σmを測定した。さらに、EBSDにて求めた、最表面から3μm深さ範囲の面積90μm2中に占めるγ’相、ε相及び母層の面積比Vγ’、Vε、Vmを用いて、以下の式で求まる残留応力σcを表面の残留応力とした。[Compound layer residual stress]
Residual stress of γ'phase, ε phase and matrix (matrix) σ γ' , σ ε , σ under the conditions of Table 3 using a micro part X-ray residual stress measuring device for the small roller contact part after nitriding. m was measured. Further, using the area ratios V γ' , V ε , and V m of the γ'phase , the ε phase, and the mother layer in the 90 μm 2 area in the depth range of 3 μm from the outermost surface, which are determined by EBSD, the following equation is used. The residual stress σ c obtained in the above was taken as the residual stress on the surface.
σc=Vγ’σγ’+Vεσε+Vmσm σ c = V γ 'σ γ ' + V ε σ ε + V m σ m
[面疲労強度評価試験]
ローラーピッティング試験用小ローラーを、熱処理ひずみを除く目的で掴み部の仕上げ加工を行った後、それぞれローラーピッティング試験片に供した。仕上げ加工後の形状を図2に示す。[Surface fatigue strength evaluation test]
The small rollers for the roller pitting test were subjected to finishing of the grip portion for the purpose of removing heat treatment strain, and then subjected to each roller pitting test piece. The shape after finishing is shown in FIG.
ローラーピッティング試験は、上記のローラーピッティング試験用小ローラーと図3に示す形状のローラーピッティング試験用大ローラーの組み合わせで、表4に示す条件で行った。 The roller pitting test was carried out under the conditions shown in Table 4 with a combination of the above-mentioned small roller for the roller pitting test and the large roller for the roller pitting test having the shape shown in FIG.
なお、図2、3における寸法の単位は「mm」である。上記ローラーピッティング試験用大ローラーは、JISのSCM420の規格を満たす鋼を用いて、一般的な製造工程、つまり「焼きならし→試験片加工→ガス浸炭炉による共析浸炭→低温焼戻し→研磨」の工程によって作製したものであり、表面から0.05mmの位置、すなわち、深さ0.05mmの位置におけるビッカース硬さHvは740〜760で、また、ビッカース硬さHvが550以上の深さは、0.8〜1.0mmの範囲にあった。 The unit of dimensions in FIGS. 2 and 3 is "mm". The large roller for the roller pitting test uses steel that meets the JIS SCM420 standard, and is used in the general manufacturing process, that is, "normalizing-> test piece processing-> eutectoid carburizing by gas carburizing furnace-> low-temperature tempering-> polishing. The Vickers hardness Hv is 740 to 760 at a position 0.05 mm from the surface, that is, a position at a depth of 0.05 mm, and the Vickers hardness Hv is a depth of 550 or more. Was in the range of 0.8 to 1.0 mm.
表4に、面疲労強度の評価を行った試験条件を示す。試験打ち切り回数は、一般的な鋼の疲労元を示す2×107回とし、小ローラー試験片においてピッティングが発生せずに2×107回に達した最大面圧を小ローラー試験片の疲労限とした。Table 4 shows the test conditions for which the surface fatigue strength was evaluated. The number of test censoring was 2 × 10 7 times, which indicates the source of fatigue of general steel, and the maximum surface pressure reached 2 × 10 7 times without pitting in the small roller test piece was set as the small roller test piece. It was set as the fatigue limit.
ピッティング発生の検出は、試験機に備え付けられた振動計によって行い、振動発生後に、小ローラー試験片と大ローラー試験片の両方の回転を停止させ、ピッティング発生と回転数を確認した。 The occurrence of pitting was detected by a vibrometer provided in the testing machine, and after the vibration was generated, the rotation of both the small roller test piece and the large roller test piece was stopped, and the pitting occurrence and the rotation speed were confirmed.
本発明部品においては、疲労限における最大面圧が2000MPa以上であることを目標とした。 In the parts of the present invention, the target is that the maximum surface pressure at the fatigue limit is 2000 MPa or more.
[耐回転曲げ疲労強度]
ガス窒化処理に供した円柱試験片に対し、小野式回転曲げ疲労試験を実施した。回転数は3000rpm、試験打ち切り回数は、一般的な鋼の疲労限を示す1×107回とし、回転曲げ疲労試験片において、破断が生じずに1×107回に達した最大応力を回転曲げ疲労試験片の疲労限とした。[Rotating bending fatigue strength]
The Ono-type rotary bending fatigue test was performed on the cylindrical test piece subjected to the gas nitriding treatment. Rpm 3000 rpm, test abort count is set to 1 × 10 7 times showing the fatigue limit of general steel, the rotary bending fatigue test piece, the rotation of the maximum stress fracture reaches 1 × 10 7 times without causing The fatigue limit of the bending fatigue test piece was set.
本発明部品においては、疲労限における最大応力が600MPa以上であることを目標にした。 In the parts of the present invention, it was aimed that the maximum stress in the fatigue limit is 600 MPa or more.
[試験結果]
結果を表2に示す。試験番号1〜25は鋼の成分、及びガス窒化処理の条件が本発明の範囲内であり、化合物厚さが3〜15μm、化合物層のγ’層比率が50%以上、化合物層空隙面積率10%未満、化合物層の圧縮残留応力が500MPa以上となった。その結果、面疲労強度が2000MPa以上、回転曲げ疲労強度が600MPa以上と良好な結果が得られた。[Test results]
The results are shown in Table 2. In test numbers 1 to 25, the steel components and the conditions for gas nitriding treatment are within the scope of the present invention, the compound thickness is 3 to 15 μm, the γ'layer ratio of the compound layer is 50% or more, and the compound layer void area ratio. It was less than 10%, and the compressive residual stress of the compound layer was 500 MPa or more. As a result, good results were obtained with a surface fatigue strength of 2000 MPa or more and a rotary bending fatigue strength of 600 MPa or more.
試験番号26は窒化温度が高すぎ、その結果、化合物層のγ’相比率が低く、空隙面積率が大きく、残留応力が低くなったので、面疲労強度、回転曲げ疲労強度が低くなった。 In Test No. 26, the nitriding temperature was too high, and as a result, the γ'phase ratio of the compound layer was low, the void area ratio was large, and the residual stress was low, so that the surface fatigue strength and the rotational bending fatigue strength were low.
試験番号27は窒化温度が低すぎ、化合物層が形成されず、表面の残留応力も低くなったので、面疲労強度、回転曲げ疲労強度が低くなった。 In Test No. 27, the nitriding temperature was too low, the compound layer was not formed, and the residual stress on the surface was also low, so that the surface fatigue strength and the rotational bending fatigue strength were low.
試験番号28は窒化時間が長すぎ、空隙面積率が大きくなり、それに伴い表面の残留応力が開放されて低くなったので、回転曲げ疲労強度が低くなった。 In Test No. 28, the nitriding time was too long, the void area ratio became large, and the residual stress on the surface was released and lowered accordingly, so that the rotational bending fatigue strength became low.
試験番号29は窒化時間が短すぎ、十分な化合物層厚さが得られず、表面の残留応力が低くなったので、面疲労強度、回転曲げ疲労強度が低くなった。 In Test No. 29, the nitriding time was too short, a sufficient compound layer thickness could not be obtained, and the residual stress on the surface was low, so that the surface fatigue strength and the rotational bending fatigue strength were low.
試験番号30は窒化ポテンシャルの下限が低く、十分な化合物層厚さが得られず、表面の残留応力が低くなったので、面疲労強度、回転曲げ疲労強度が低くなった。 In Test No. 30, the lower limit of the nitriding potential was low, a sufficient compound layer thickness could not be obtained, and the residual stress on the surface was low, so that the surface fatigue strength and the rotational bending fatigue strength were low.
試験番号31は窒化ポテンシャルの下限が低すぎ、化合物層が生成されず、表面の残留応力が低くなったので、面疲労強度、回転曲げ疲労強度が低くなった。 In Test No. 31, the lower limit of the nitriding potential was too low, the compound layer was not formed, and the residual stress on the surface was low, so that the surface fatigue strength and the rotational bending fatigue strength were low.
試験番号32は窒化ポテンシャルの上限が高く、空隙面積率が増加し、回転曲げ疲労強度が低くなった。 In test number 32, the upper limit of the nitriding potential was high, the void area ratio was increased, and the rotational bending fatigue strength was low.
試験番号33は窒化ポテンシャルの上下限が適切ではなく、化合物層厚さが厚くなり、空隙面積率が増加したので、面疲労強度、回転曲げ疲労強度が低くなった。 In Test No. 33, the upper and lower limits of the nitriding potential were not appropriate, the compound layer thickness became thicker, and the void area ratio increased, so that the surface fatigue strength and the rotational bending fatigue strength became low.
試験番号34は軟窒化処理であり、表面にγ’相がほとんど生成されず、残留応力が低くなったので、面疲労強度、回転曲げ疲労強度が低くなった。 Test number 34 was a soft nitriding treatment, in which a γ'phase was hardly generated on the surface and the residual stress was low, so that the surface fatigue strength and the rotational bending fatigue strength were low.
試験番号35は、平均のKNは適正でありγ’相比率は高いが、窒化処理中のKNの上限が高く、空隙面積率が増加した。In test number 35, the average K N was appropriate and the γ'phase ratio was high, but the upper limit of K N during the nitriding treatment was high, and the void area ratio increased.
試験番号36は鋼のC量が高すぎ、化合物層厚さが厚くなったので、面疲労強度が低くなった。 In test number 36, the amount of C in the steel was too high and the compound layer thickness became thick, so that the surface fatigue strength became low.
試験番号37は鋼のC量が低すぎ、十分な芯部強度が得られなかったので、母層を起点として早期に破壊した。 In test number 37, the amount of C in the steel was too low, and sufficient core strength could not be obtained. Therefore, the steel was broken at an early stage starting from the mother layer.
試験番号38は鋼のSi量が低すぎ、十分な芯部硬さが得られなかったので、母層を起点として早期に破壊した。 In Test No. 38, the amount of Si in the steel was too low, and sufficient core hardness could not be obtained. Therefore, the steel was broken at an early stage starting from the mother layer.
試験番号39は鋼のMn量が低すぎ、十分な硬化層硬さ、芯部硬さが得られなかったので、母層を起点として早期に破壊した。 In Test No. 39, the amount of Mn of the steel was too low, and sufficient hardness of the hardened layer and hardness of the core could not be obtained. Therefore, the steel was broken at an early stage starting from the mother layer.
試験番号40は鋼のP、S量が高すぎ、Pの粒界偏析、及び粗大なMnSの生成により、早期に破壊した。 In test number 40, the amounts of P and S in the steel were too high, and the steel was broken at an early stage due to grain boundary segregation of P and formation of coarse MnS.
試験番号41は鋼のCr量が低すぎ、十分な拡散層硬さ、芯部硬さが得られなかったので、母層を起点として早期に破壊した。 In Test No. 41, the amount of Cr in the steel was too low, and sufficient diffusion layer hardness and core hardness could not be obtained. Therefore, the steel was broken at an early stage starting from the mother layer.
試験番号42は鋼のAl量が高すぎ、酸化物系介在物が生成し、母層を起点として早期に破壊した。 In test number 42, the Al content of the steel was too high, oxide-based inclusions were formed, and the steel fractured at an early stage starting from the matrix layer.
試験番号43は鋼のC量、Mn量、Cr量が低く、さらに窒化ポテンシャルの上限が高く、空隙面積率が増加したので、面疲労強度、回転曲げ疲労強度が低くなった。 In test number 43, the C amount, Mn amount, and Cr amount of the steel were low, the upper limit of the nitriding potential was high, and the void area ratio was increased, so that the surface fatigue strength and the rotational bending fatigue strength were low.
以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示にすぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。 The embodiments of the present invention have been described above. However, the embodiments described above are merely examples for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and the above-described embodiment can be appropriately modified and implemented without departing from the spirit of the present invention.
Claims (1)
C :0.05%以上、0.30%以下、
Si:0.05%以上、1.5%以下、
Mn:0.2%以上、2.5%以下、
P :0.025%以下、
S :0.003%以上、0.05%以下、
Cr:0.5%超、2.0%以下、
Al:0.01%以上、0.05%以下、
N :0.003%以上、0.025%以下、
Nb:0%以上、0.1%以下、
B :0%以上、0.01%以下、
Mo:0%以上、0.50%未満、
V :0%以上、0.50%未満、
Cu:0%以上、0.50%未満、
Ni:0%以上、0.50%未満、及び
Ti:0%以上、0.05%未満
を含有し、残部がFe及び不純物である鋼材を素材とした部品であって、
鋼材の表面に形成された、鉄、窒素及び炭素を含有する厚さ3μm以上15μm未満の化合物層を有し、
表面から5μmの深さまでの範囲の化合物層における相構造がγ’相を面積率で50%以上含有し、
表面から3μmの深さまでの範囲において空隙面積率が10%未満であり、
化合物層表面の圧縮残留応力が500MPa以上である
ことを特徴とする窒化処理部品。By mass%
C: 0.05% or more, 0.30% or less,
Si: 0.05% or more, 1.5% or less,
Mn: 0.2% or more, 2.5% or less,
P: 0.025% or less,
S: 0.003% or more, 0.05% or less,
Cr: Over 0.5%, 2.0% or less,
Al: 0.01% or more, 0.05% or less,
N: 0.003% or more, 0.025% or less,
Nb: 0% or more, 0.1% or less,
B: 0% or more, 0.01% or less,
Mo: 0% or more, less than 0.50%,
V: 0% or more, less than 0.50%,
Cu: 0% or more, less than 0.50%,
Parts made of steel containing Ni: 0% or more and less than 0.50%, and Ti: 0% or more and less than 0.05%, with the balance being Fe and impurities.
It has a compound layer having a thickness of 3 μm or more and less than 15 μm, which is formed on the surface of a steel material and contains iron, nitrogen and carbon.
The phase structure in the compound layer in the range from the surface to a depth of 5 μm contains γ'phase in an area ratio of 50% or more.
The void area ratio is less than 10% in the range from the surface to a depth of 3 μm.
A nitriding component characterized in that the compressive residual stress on the surface of the compound layer is 500 MPa or more.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016197262 | 2016-10-05 | ||
JP2016197262 | 2016-10-05 | ||
PCT/JP2017/036373 WO2018066666A1 (en) | 2016-10-05 | 2017-10-05 | Nitrided component and method for producing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018066666A1 JPWO2018066666A1 (en) | 2019-08-08 |
JP6769491B2 true JP6769491B2 (en) | 2020-10-14 |
Family
ID=61831769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018543971A Active JP6769491B2 (en) | 2016-10-05 | 2017-10-05 | Nitriding parts and their manufacturing methods |
Country Status (7)
Country | Link |
---|---|
US (1) | US20200040439A1 (en) |
EP (1) | EP3524708A4 (en) |
JP (1) | JP6769491B2 (en) |
KR (1) | KR20190028520A (en) |
CN (1) | CN109715845A (en) |
BR (1) | BR112019006046A2 (en) |
WO (1) | WO2018066666A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111406123B (en) | 2017-11-16 | 2021-11-26 | 日本制铁株式会社 | Nitrided component |
JP6881498B2 (en) * | 2018-08-27 | 2021-06-02 | Jfeスチール株式会社 | Parts and their manufacturing methods |
JP7180300B2 (en) * | 2018-11-15 | 2022-11-30 | 日本製鉄株式会社 | Steel parts and manufacturing method thereof |
JP7295378B2 (en) * | 2019-01-22 | 2023-06-21 | 日本製鉄株式会社 | Gas nitrocarburized part and its manufacturing method |
DE112020006870T5 (en) | 2020-03-11 | 2022-12-29 | Nippon Steel Corporation | GAS SOFT NITRIDING-TREATED COMPONENT AND MANUFACTURING METHOD THEREOF |
CN115605629A (en) * | 2020-05-15 | 2023-01-13 | 杰富意钢铁株式会社(Jp) | Steel and steel component |
CN113249651A (en) * | 2021-04-29 | 2021-08-13 | 南京钢铁股份有限公司 | Gear steel bar material with controlled rolling and high-temperature tempering |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI464281B (en) * | 2009-06-17 | 2014-12-11 | Nippon Steel & Sumitomo Metal Corp | Nitriding and nitriding parts |
US8876988B2 (en) * | 2010-11-17 | 2014-11-04 | Nippon Steel & Sumitomo Metal Corporation | Steel for nitriding and nitrided part |
JPWO2012115135A1 (en) * | 2011-02-23 | 2014-07-07 | Dowaサーモテック株式会社 | Nitride steel member and manufacturing method thereof |
JP5656908B2 (en) | 2012-04-18 | 2015-01-21 | Dowaサーモテック株式会社 | Nitride steel member and manufacturing method thereof |
JP2015117412A (en) | 2013-12-18 | 2015-06-25 | 大同特殊鋼株式会社 | Nitriding treatment method, and nitrided article |
US10094014B2 (en) * | 2014-03-13 | 2018-10-09 | Nippon Steel & Sumitomo Metal Corporation | Nitriding method and nitrided part production method |
-
2017
- 2017-10-05 US US16/338,383 patent/US20200040439A1/en not_active Abandoned
- 2017-10-05 EP EP17858502.2A patent/EP3524708A4/en active Pending
- 2017-10-05 BR BR112019006046A patent/BR112019006046A2/en not_active Application Discontinuation
- 2017-10-05 CN CN201780058243.2A patent/CN109715845A/en not_active Withdrawn
- 2017-10-05 KR KR1020197004429A patent/KR20190028520A/en active IP Right Grant
- 2017-10-05 JP JP2018543971A patent/JP6769491B2/en active Active
- 2017-10-05 WO PCT/JP2017/036373 patent/WO2018066666A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CN109715845A (en) | 2019-05-03 |
BR112019006046A2 (en) | 2019-06-25 |
KR20190028520A (en) | 2019-03-18 |
WO2018066666A1 (en) | 2018-04-12 |
JPWO2018066666A1 (en) | 2019-08-08 |
EP3524708A4 (en) | 2020-02-19 |
EP3524708A1 (en) | 2019-08-14 |
US20200040439A1 (en) | 2020-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6769491B2 (en) | Nitriding parts and their manufacturing methods | |
JP6922998B2 (en) | Nitriding parts | |
JP6388075B2 (en) | Nitriding / soft nitriding parts and nitriding / soft nitriding methods with excellent wear resistance and pitting resistance | |
JP6766876B2 (en) | Nitriding parts and their manufacturing methods | |
CN107849679B (en) | Nitrided steel member and method for producing same | |
JP2012136730A (en) | Hot processed steel for surface hardening | |
JP7364895B2 (en) | Steel parts and their manufacturing method | |
US10344371B2 (en) | Steel sheet for soft-nitriding treatment, method of manufacturing same, and soft-nitrided steel | |
JP7295378B2 (en) | Gas nitrocarburized part and its manufacturing method | |
JP7277859B2 (en) | Gas nitrocarburized part and its manufacturing method | |
JP7180300B2 (en) | Steel parts and manufacturing method thereof | |
JP7339560B2 (en) | nitriding parts | |
JP6521079B2 (en) | Nitrided steel part and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200825 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200907 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6769491 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |