JP6767936B2 - Spark plug and ignition device - Google Patents

Spark plug and ignition device Download PDF

Info

Publication number
JP6767936B2
JP6767936B2 JP2017125503A JP2017125503A JP6767936B2 JP 6767936 B2 JP6767936 B2 JP 6767936B2 JP 2017125503 A JP2017125503 A JP 2017125503A JP 2017125503 A JP2017125503 A JP 2017125503A JP 6767936 B2 JP6767936 B2 JP 6767936B2
Authority
JP
Japan
Prior art keywords
tip
insulating layer
insulator
spark plug
metal fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017125503A
Other languages
Japanese (ja)
Other versions
JP2019009048A (en
Inventor
博俊 吉▲崎▼
博俊 吉▲崎▼
大輝 吉田
大輝 吉田
直志 向山
直志 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2017125503A priority Critical patent/JP6767936B2/en
Publication of JP2019009048A publication Critical patent/JP2019009048A/en
Application granted granted Critical
Publication of JP6767936B2 publication Critical patent/JP6767936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spark Plugs (AREA)

Description

本発明は点火プラグ及び点火装置に関し、特に絶縁体の貫通を抑制できる点火プラグ及び点火装置に関するものである。 The present invention relates to a spark plug and an ignition device, and more particularly to an ignition plug and an ignition device capable of suppressing penetration of an insulator.

内燃機関の燃焼室に吸入した混合気に点火する点火プラグとして、非平衡プラズマを利用するものがある(特許文献1)。特許文献1に開示される点火プラグは、中心電極の先端を有底筒状の絶縁体が内包し、絶縁体の先端部が自身の先端から突出するように主体金具が絶縁体を外周側から保持する。点火プラグは、絶縁体の先端部の空間にプラズマを発生させ混合気に着火する。絶縁体の先端部からのプラズマの発生量を確保し、さらに先端部の熱を主体金具へ移動させ易くして先端部の異常過熱を防ぐため、絶縁体と主体金具との隙間はできるだけ狭くするのが好ましい。 As an ignition plug that ignites the air-fuel mixture sucked into the combustion chamber of an internal combustion engine, there is one that uses unbalanced plasma (Patent Document 1). In the spark plug disclosed in Patent Document 1, a bottomed tubular insulator encloses the tip of the center electrode, and the main metal fitting extends the insulator from the outer peripheral side so that the tip of the insulator protrudes from its own tip. Hold. The spark plug generates plasma in the space at the tip of the insulator and ignites the air-fuel mixture. The gap between the insulator and the main metal fitting should be as narrow as possible in order to secure the amount of plasma generated from the tip of the insulator and to facilitate the transfer of heat from the tip to the main metal fitting to prevent abnormal overheating of the tip. Is preferable.

特開2014−22341号公報Japanese Unexamined Patent Publication No. 2014-22341

しかし、主体金具や絶縁体の寸法のばらつきや組み付け精度、絶縁体と主体金具との線膨張差などを考慮して、絶縁体と主体金具との間には一定の大きさの隙間が設けられている。電界強度の高い主体金具の先端に強いプラズマが発生し易いので、絶縁体が貫通(絶縁破壊)するおそれがある。 However, a certain size of gap is provided between the insulator and the main metal fitting in consideration of the variation in the dimensions of the main metal fitting and the main metal fitting, the assembly accuracy, and the linear expansion difference between the insulator and the main metal fitting. ing. Since strong plasma is likely to be generated at the tip of the main metal fitting having a high electric field strength, the insulator may penetrate (dielectric breakdown).

本発明は上述した問題点を解決するためになされたものであり、絶縁体の貫通を抑制できる点火プラグ及び点火装置を提供することを目的としている。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a spark plug and an ignition device capable of suppressing penetration of an insulator.

この目的を達成するために本発明の点火プラグは、先端側から後端側へと軸線に沿って延び、先端が閉じた有底筒状の絶縁体と、絶縁体に自身の先端が内包される中心電極と、絶縁体の先端部が自身の先端から突出する状態で絶縁体を外周側から保持する筒状の主体金具と、を備えている。主体金具の内面のうち少なくとも内面の先端から後端側の一部を、全周に亘って覆う絶縁層を備えている。 In order to achieve this object, the spark plug of the present invention extends from the front end side to the rear end side along the axis, and has a bottomed tubular insulator with a closed tip and its own tip included in the insulator. It is provided with a central electrode and a tubular main metal fitting that holds the insulator from the outer peripheral side in a state where the tip of the insulator protrudes from its own tip. It is provided with an insulating layer that covers at least a part of the inner surface of the main metal fitting from the tip end side to the rear end side of the inner surface over the entire circumference.

請求項1記載の点火プラグによれば、絶縁層が、主体金具の内面のうち少なくとも内面の先端から後端側の一部を全周に亘って覆うので、主体金具の内面の先端の電界強度を低くできる。その結果、主体金具の内面の先端にプラズマを発生させ難くできるので、絶縁体の貫通を抑制できる。さらに、主体金具の内面の先端のプラズマの発生量を少なくすることにより、絶縁体の先端部からのプラズマの発生量を相対的に増やすことができる。
絶縁層の厚さは、内面の先端における絶縁層と絶縁体との間の軸線に垂直な方向の距離の0.1倍以上である。よって、電界強度を低下する絶縁層の効果を確保できる。
According to the spark plug according to claim 1, since the insulating layer covers at least a part of the inner surface of the main metal fitting from the tip of the inner surface to the rear end side over the entire circumference, the electric field strength of the tip of the inner surface of the main metal fitting is strong. Can be lowered. As a result, it is possible to make it difficult to generate plasma at the tip of the inner surface of the main metal fitting, so that penetration of the insulator can be suppressed. Further, by reducing the amount of plasma generated at the tip of the inner surface of the main metal fitting, the amount of plasma generated from the tip of the insulator can be relatively increased.
The thickness of the insulating layer is 0.1 times or more the distance in the direction perpendicular to the axis between the insulating layer and the insulator at the tip of the inner surface. Therefore, the effect of the insulating layer that lowers the electric field strength can be ensured.

請求項2記載の点火プラグによれば、絶縁層は、さらに、主体金具の先端面のうち少なくとも内面の先端から径方向外側の一部を、全周に亘って覆う。絶縁層の軸線に直交する方向における内面の先端から径方向外側の端までの長さは、内面の先端における絶縁層と絶縁体との間の、軸線に垂直な方向の距離の4.2倍以上である。よって、電界強度を低下する絶縁層の効果を確保できる。 According to the spark plug according to claim 2, the insulating layer further covers at least a part of the tip surface of the main metal fitting from the tip of the inner surface to the outer side in the radial direction over the entire circumference. The length from the tip of the inner surface to the outer edge in the radial direction in the direction orthogonal to the axis of the insulating layer is 4.2 times the distance in the direction perpendicular to the axis between the insulating layer and the insulator at the tip of the inner surface. That is all. Therefore, the effect of the insulating layer that lowers the electric field strength can be ensured.

請求項3記載の点火プラグによれば、絶縁層は、さらに、主体金具の先端面のうち少なくとも内面の先端から径方向外側の一部を、全周に亘って覆う。よって、請求項1の効果に加え、電界強度を低下する絶縁層の効果を向上できる。 According to the spark plug according to claim 3, the insulating layer further covers at least a part of the tip surface of the main metal fitting from the tip of the inner surface to the outer side in the radial direction over the entire circumference. Therefore, in addition to the effect of claim 1, the effect of the insulating layer that lowers the electric field strength can be improved.

請求項4記載の点火プラグによれば、絶縁層の軸線に直交する方向における内面の先端から径方向外側の端までの長さは、内面の先端における絶縁層と絶縁体との間の、軸線に垂直な方向の距離の4.2倍以上である。よって、請求項3の効果に加え、電界強度を低下する絶縁層の効果を確保できる。 According to the spark plug according to claim 4, the length from the tip of the inner surface to the outer end in the radial direction in the direction orthogonal to the axis of the insulating layer is the axis between the insulating layer and the insulator at the tip of the inner surface. It is more than 4.2 times the distance in the direction perpendicular to. Therefore, in addition to the effect of claim 3, the effect of the insulating layer that lowers the electric field strength can be ensured.

請求項5記載の点火プラグによれば、絶縁層の軸線方向における内面の先端からの長さは、内面の先端における絶縁層と絶縁体との間の、軸線に垂直な方向の距離以上である。よって、請求項1から4のいずれかの効果に加え、電界強度を低下する絶縁層の効果を確保できる。 According to the spark plug according to claim 5, the length of the insulating layer from the tip of the inner surface in the axial direction is equal to or greater than the distance between the insulating layer and the insulator at the tip of the inner surface in the direction perpendicular to the axis. .. Therefore, in addition to the effect of any one of claims 1 to 4, the effect of the insulating layer that lowers the electric field strength can be ensured.

請求項6記載の点火装置によれば、交流電圧または複数回のパルス電圧を中心電極に印加する電圧印加部により、請求項1から5のいずれかに記載の点火プラグの先端部の外面にプラズマが発生する。よって、請求項1から5のいずれかの効果が得られる。 According to the ignition device according to claim 6, a voltage application unit that applies an AC voltage or a plurality of pulse voltages to the center electrode causes a plasma on the outer surface of the tip end portion of the spark plug according to any one of claims 1 to 5. Occurs. Therefore, any of the effects of claims 1 to 5 can be obtained.

本発明の第1実施の形態における点火装置の模式図である。It is a schematic diagram of the ignition device in the 1st Embodiment of this invention. 点火プラグの片側断面図である。It is one side sectional view of the spark plug. 絶縁体の先端部を拡大した点火プラグの片側断面図である。It is one side sectional view of the spark plug which enlarged the tip part of an insulator. (a)は図3のIVaで示す部分を拡大して示した点火プラグの断面図であり、(b)は第2実施の形態における点火プラグの一部を拡大して示した断面図であり、(c)は第3実施の形態における点火プラグの一部を拡大して示した断面図である。(A) is a cross-sectional view of the spark plug shown by enlarging the portion shown by IVa in FIG. 3, and (b) is a cross-sectional view showing a part of the spark plug according to the second embodiment in an enlarged manner. , (C) is an enlarged cross-sectional view showing a part of the spark plug according to the third embodiment. (a)は第4実施の形態における点火プラグの一部を拡大して示した断面図であり、(b)は第5実施の形態における点火プラグの一部を拡大して示した断面図であり、(c)は第6実施の形態における点火プラグの一部を拡大して示した断面図である。(A) is an enlarged sectional view showing a part of the spark plug in the fourth embodiment, and (b) is an enlarged sectional view showing a part of the spark plug in the fifth embodiment. Yes, (c) is an enlarged cross-sectional view showing a part of the spark plug in the sixth embodiment. (a)は絶縁層から絶縁体までの距離に対する絶縁層の軸線方向の長さの比率と電界強度の低減率との関係を示す図であり、(b)は主体金具の内面に形成された絶縁層による電界強度の低減率と、主体金具の内面および先端面に形成された絶縁層による電界強度の低減率と、を比較した図である。(A) is a diagram showing the relationship between the ratio of the length of the insulating layer in the axial direction to the distance from the insulating layer to the insulator and the reduction rate of the electric field strength, and (b) is formed on the inner surface of the main metal fitting. It is a figure which compared the reduction rate of the electric field strength by the insulating layer, and the reduction rate of the electric field strength by the insulating layer formed on the inner surface and the tip surface of the main metal fitting. (a)は絶縁層から絶縁体までの距離に対する絶縁層の軸直角方向の長さの比率と電界強度の低減率との関係を示す図であり、(b)は絶縁層から絶縁体までの距離に対する絶縁層の厚さの比率と電界強度の低減率との関係を示す図である。(A) is a diagram showing the relationship between the ratio of the length of the insulating layer in the direction perpendicular to the axis to the distance from the insulating layer to the insulator and the reduction rate of the electric field strength, and (b) is a diagram showing the relationship from the insulating layer to the insulator. It is a figure which shows the relationship between the ratio of the thickness of the insulating layer with respect to the distance, and the reduction rate of the electric field strength.

以下、本発明の好ましい実施形態について添付図面を参照して説明する。図1は本発明の第1実施の形態における点火装置10の模式図である。点火装置10は、点火プラグ11と電圧印加部12とを備えている。点火プラグ11は、燃焼室14の内側に先端を露出させた状態で内燃機関13のねじ穴15に取り付けられる。点火プラグ11は、後端が電圧印加部12と電気的に接続されている。電圧印加部12は、バッテリ(図示せず)から供給される電力を用いて、交流電圧または複数回のパルス電圧を点火プラグ11に印加する。これにより、点火プラグ11は非平衡プラズマを発生させ、燃焼室14の混合気に着火する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic view of the ignition device 10 according to the first embodiment of the present invention. The ignition device 10 includes a spark plug 11 and a voltage application unit 12. The spark plug 11 is attached to the screw hole 15 of the internal combustion engine 13 with the tip exposed inside the combustion chamber 14. The rear end of the spark plug 11 is electrically connected to the voltage application unit 12. The voltage application unit 12 applies an AC voltage or a plurality of pulse voltages to the spark plug 11 by using the electric power supplied from the battery (not shown). As a result, the spark plug 11 generates non-equilibrium plasma and ignites the air-fuel mixture in the combustion chamber 14.

図2及び図3を参照して点火プラグ11について説明する。図2は点火プラグ11の軸線Oを境にした片側断面図であり、図3は絶縁体40の先端部48を拡大した点火プラグ11の片側断面図である。図2及び図3では、紙面下側を点火プラグ11の先端側、紙面上側を点火プラグ11の後端側という(図4(a)、図4(b)、図4(c)、図5(a)及び図5(b)においても同じ)。図2に示すように点火プラグ11は、主体金具20、絶縁体40及び中心電極50を備えている。 The spark plug 11 will be described with reference to FIGS. 2 and 3. FIG. 2 is a one-sided cross-sectional view of the spark plug 11 with the axis O as a boundary, and FIG. 3 is a one-sided cross-sectional view of the spark plug 11 with the tip 48 of the insulator 40 enlarged. In FIGS. 2 and 3, the lower side of the paper surface is referred to as the front end side of the spark plug 11, and the upper side of the paper surface is referred to as the rear end side of the spark plug 11 (FIGS. 4 (a), 4 (b), 4 (c), 5). The same applies to (a) and FIG. 5 (b)). As shown in FIG. 2, the spark plug 11 includes a main metal fitting 20, an insulator 40, and a center electrode 50.

図2に示すように主体金具20は、内燃機関13(図1参照)のねじ穴15に固定される略円筒状の部材であり、導電性を有する金属材料(例えば低炭素鋼等)によって形成されている。主体金具20は、後端側から先端側へと軸線Oに沿って加締め部21、工具係合部22、湾曲部23、座部24、胴部25の順に連接されている。胴部25は外周面にねじ部26が形成されている。 As shown in FIG. 2, the main metal fitting 20 is a substantially cylindrical member fixed to the screw hole 15 of the internal combustion engine 13 (see FIG. 1), and is formed of a conductive metal material (for example, low carbon steel). Has been done. The main metal fitting 20 is connected in this order from the rear end side to the front end side along the axis O in the order of the crimping portion 21, the tool engaging portion 22, the curved portion 23, the seat portion 24, and the body portion 25. A screw portion 26 is formed on the outer peripheral surface of the body portion 25.

加締め部21及び湾曲部23は、主体金具20を絶縁体40に固定するための部位である。工具係合部22は、ねじ部26をねじ穴15(図1参照)に結合するときにレンチ等の工具を係合させる部位である。座部24は、胴部25の後端側に位置し、径方向外側に環状に突出する部位である。座部24は、胴部25との間に環状のガスケット53が配置される。ガスケット53は、ねじ穴15にねじ部26が嵌められたときに、座部24と内燃機関13とに挟まれてねじ穴15とねじ部26との隙間を封止する。胴部25は、内周に棚部27(図3参照)が形成されている。 The crimping portion 21 and the curved portion 23 are portions for fixing the main metal fitting 20 to the insulator 40. The tool engaging portion 22 is a portion for engaging a tool such as a wrench when connecting the screw portion 26 to the screw hole 15 (see FIG. 1). The seat portion 24 is located on the rear end side of the body portion 25 and is a portion that projects radially outward in an annular shape. An annular gasket 53 is arranged between the seat portion 24 and the body portion 25. When the screw portion 26 is fitted into the screw hole 15, the gasket 53 is sandwiched between the seat portion 24 and the internal combustion engine 13 to seal the gap between the screw hole 15 and the screw portion 26. A shelf portion 27 (see FIG. 3) is formed on the inner circumference of the body portion 25.

絶縁体40は、機械的特性や高温下の絶縁性に優れるアルミナ等により形成された有底円筒状の部材である。絶縁体40は、自身の後端に開口し先端が閉じた穴部41が軸線Oに沿って形成されている。絶縁体40は、軸線O方向に延びる胴部42と、胴部42の軸線O方向の中央から径方向の外側へ張り出す環状の張出部43と、係止部44を介して胴部42の先端側に連接される脚部45と、を備えている。脚部45の外径は胴部42の外径よりも小さく設定されており、係止部44の外径は、先端側へ向かうにつれて縮径している。 The insulator 40 is a bottomed cylindrical member made of alumina or the like, which has excellent mechanical properties and heat insulating properties at high temperatures. In the insulator 40, a hole 41 that is open at the rear end of the insulator 40 and has a closed tip is formed along the axis O. The insulator 40 includes a body portion 42 extending in the axis O direction, an annular overhanging portion 43 extending radially outward from the center of the body portion 42 in the axis O direction, and a body portion 42 via a locking portion 44. It is provided with a leg portion 45 connected to the tip end side of the. The outer diameter of the leg portion 45 is set to be smaller than the outer diameter of the body portion 42, and the outer diameter of the locking portion 44 is reduced toward the tip side.

絶縁体40は主体金具20に挿入される。絶縁体40の係止部44と主体金具20の棚部27との間にパッキン54(図3参照)が介在する。パッキン54は、主体金具20を構成する金属材料よりも軟質の軟鋼板等の金属材料で形成される円環状の板材である。 The insulator 40 is inserted into the main metal fitting 20. A packing 54 (see FIG. 3) is interposed between the locking portion 44 of the insulator 40 and the shelf portion 27 of the main metal fitting 20. The packing 54 is an annular plate material formed of a metal material such as a mild steel plate that is softer than the metal material constituting the main metal fitting 20.

絶縁体40の張出部43よりも後端側の胴部32と主体金具20の工具係合部22との間に、リング部材55及びリング部材55に挟まれたタルク等の充填材56が配置される。主体金具20の加締め部21が絶縁体40に向けて径方向内側に加締められると、リング部材55及び充填材56を介して、絶縁体40が主体金具20の棚部27へ向けて押圧される。その結果、主体金具20は、パッキン54、リング部材55及び充填材56を介して絶縁体40を固定する。 A filler 56 such as talc sandwiched between the ring member 55 and the tool engaging portion 22 of the main metal fitting 20 is provided between the body portion 32 on the rear end side of the overhanging portion 43 of the insulator 40 and the tool engaging portion 22 of the main metal fitting 20. Be placed. When the crimping portion 21 of the main metal fitting 20 is crimped inward in the radial direction toward the insulator 40, the insulator 40 presses against the shelf portion 27 of the main metal fitting 20 via the ring member 55 and the filler 56. Will be done. As a result, the main metal fitting 20 fixes the insulator 40 via the packing 54, the ring member 55, and the filler 56.

中心電極50は、導電性を有する金属材料(例えばニッケル基合金等)によって形成された棒状の電極である。中心電極50は、絶縁体40の穴部41内に係止され、先端側から後端側へと軸線Oに沿って延びる。 The center electrode 50 is a rod-shaped electrode formed of a conductive metal material (for example, a nickel-based alloy or the like). The center electrode 50 is locked in the hole 41 of the insulator 40 and extends along the axis O from the front end side to the rear end side.

端子金具51は、電圧印加部12(図1参照)が接続される棒状の部材であり、導電性を有する金属材料(例えば低炭素鋼等)によって形成されている。端子金具51の先端側は絶縁体40の穴部41内に配置される。端子金具51と中心電極50との間に、導電性を有するシール材52が配置される。シール材52により中心電極50と端子金具51とは穴部41内で電気的に接続される。 The terminal fitting 51 is a rod-shaped member to which the voltage applying portion 12 (see FIG. 1) is connected, and is made of a conductive metal material (for example, low carbon steel or the like). The tip end side of the terminal fitting 51 is arranged in the hole 41 of the insulator 40. A conductive sealing material 52 is arranged between the terminal fitting 51 and the center electrode 50. The center electrode 50 and the terminal fitting 51 are electrically connected to each other in the hole 41 by the sealing material 52.

図3に示すように絶縁体40の脚部45は、係止部44の先端側に連接される第1部46と、第1部46の先端側に連接される第2部47と、を備えている。第1部46及び第2部47は、それぞれ外径が軸線O方向に亘って同一に設定されている。第2部47は、第1部46の外径よりも外径が小さく設定される。第1部46の径方向の外側に主体金具20の胴部25が配置され、第1部46の先端側および第2部47は、胴部25から先端側に突出する。先端部48は、絶縁体40のうち、主体金具20よりも軸線O方向の先端側に存在する部分である。先端部48にプラズマが発生する。 As shown in FIG. 3, the leg portion 45 of the insulator 40 has a first portion 46 connected to the tip end side of the locking portion 44 and a second portion 47 connected to the tip end side of the first portion 46. I have. The outer diameters of the first part 46 and the second part 47 are set to be the same over the axis O direction. The outer diameter of the second part 47 is set to be smaller than the outer diameter of the first part 46. The body portion 25 of the main metal fitting 20 is arranged on the outer side in the radial direction of the first portion 46, and the tip end side and the second portion 47 of the first portion 46 project from the body portion 25 toward the tip end side. The tip portion 48 is a portion of the insulator 40 that exists on the tip side in the axis O direction with respect to the main metal fitting 20. Plasma is generated at the tip 48.

主体金具20の胴部25は、絶縁体40の第1部46の径方向の外側に配置される。胴部25の内面28と第1部46との隙間が大きくなると、胴部25と第1部46との間にプラズマが発生し易くなり、エネルギー損失が生じ、先端部48に生じるプラズマの量が減り着火性が低下する。また、胴部25の内面28と第1部46との隙間が大きくなると、脚部45の熱が主体金具20へ伝わり難くなるので、先端部48が異常過熱し、先端部48が熱源となって着火する不具合が生じ易くなる。そこで、胴部25と第1部46との隙間はできるだけ狭くするのが好ましい。 The body portion 25 of the main metal fitting 20 is arranged outside the first portion 46 of the insulator 40 in the radial direction. When the gap between the inner surface 28 of the body portion 25 and the first portion 46 becomes large, plasma is likely to be generated between the body portion 25 and the first portion 46, energy loss occurs, and the amount of plasma generated at the tip portion 48. Is reduced and ignitability is reduced. Further, when the gap between the inner surface 28 of the body portion 25 and the first portion 46 becomes large, it becomes difficult for the heat of the leg portion 45 to be transferred to the main metal fitting 20, so that the tip portion 48 overheats abnormally and the tip portion 48 becomes a heat source. It is easy for problems to ignite. Therefore, it is preferable to make the gap between the body portion 25 and the first portion 46 as narrow as possible.

しかし、主体金具20や絶縁体40の寸法のばらつきや組み付け精度、絶縁体40と主体金具20との線膨張差などを考慮して、胴部25と第1部46との間には一定の大きさの隙間(例えば0.2〜0.5mm程度)が設けられている。電界が集中し易い主体金具20の先端(エッジ)に強いプラズマが発生し易いので、絶縁体40(第1部46)が貫通(絶縁破壊)するおそれがある。点火プラグ11には交流電圧または複数回のパルス電圧が印加されるので、電界強度の高い部分にプラズマが重畳され、絶縁体40が貫通に至り易い。そこで、主体金具20の内面28を覆う絶縁層31が設けられる。 However, in consideration of the variation in dimensions of the main metal fitting 20 and the insulator 40, the assembly accuracy, the linear expansion difference between the insulator 40 and the main metal fitting 20, and the like, the distance between the body portion 25 and the first portion 46 is constant. A sized gap (for example, about 0.2 to 0.5 mm) is provided. Since strong plasma is likely to be generated at the tip (edge) of the main metal fitting 20 where the electric field is easily concentrated, the insulator 40 (first part 46) may penetrate (dielectric breakdown). Since an AC voltage or a plurality of pulse voltages is applied to the spark plug 11, plasma is superimposed on a portion having a high electric field strength, and the insulator 40 easily penetrates. Therefore, an insulating layer 31 is provided to cover the inner surface 28 of the main metal fitting 20.

図4(a)を参照して絶縁層31について説明する。図4(a)は図3のIVaで示す部分を拡大して示した点火プラグ11の断面図である。点火プラグ11は、主体金具20(胴部25)の内面28のうち内面28の先端29から後端側(図4(a)上側)の一部を、全周に亘って覆う絶縁層31が設けられている。 The insulating layer 31 will be described with reference to FIG. 4A. FIG. 4A is a cross-sectional view of the spark plug 11 in which the portion shown by IVa in FIG. 3 is enlarged. The spark plug 11 has an insulating layer 31 that covers a part of the inner surface 28 of the main metal fitting 20 (body portion 25) from the tip 29 to the rear end side (upper side of FIG. 4A) of the inner surface 28 over the entire circumference. It is provided.

なお、主体金具20の内面28とは、絶縁体40の外周と対向する面のことをいう。本実施の形態では、内面28は、棚部27の先端(図3下側)から先端29まで軸線O方向に亘って直径が同一である。内面28の先端29とは、主体金具20の先端面30と内面28とが交わる角のことをいう。主体金具20の先端面30とは、主体金具20の先端側を向く面のことをいう。 The inner surface 28 of the main metal fitting 20 refers to a surface facing the outer circumference of the insulator 40. In the present embodiment, the inner surface 28 has the same diameter from the tip of the shelf 27 (lower side in FIG. 3) to the tip 29 in the axis O direction. The tip 29 of the inner surface 28 means the angle at which the tip surface 30 of the main metal fitting 20 and the inner surface 28 intersect. The tip surface 30 of the main metal fitting 20 means a surface facing the tip side of the main metal fitting 20.

絶縁層31は、1×10〜1×1015Ω・m程度の体積抵抗率を有している。絶縁層31は、化学蒸着(CVD)、絶縁塗料の塗布および焼き付け、めっき、溶射などの周知の手段で主体金具20に形成される。絶縁層31があると、絶縁層31が無い場合に比べて、内面28の先端29の電界強度を低くできるので、先端29と脚部45との間にプラズマを生じ難くできる。その結果、絶縁体40(脚部45)の貫通を抑制できると共に、先端29にプラズマが発生することによるエネルギー損失を抑制し、先端部48からのプラズマの発生量を相対的に増やすことができる。 The insulating layer 31 has a volume resistivity of about 1 × 10 7 to 1 × 10 15 Ω · m. The insulating layer 31 is formed on the main metal fitting 20 by well-known means such as chemical vapor deposition (CVD), coating and baking of an insulating paint, plating, and thermal spraying. With the insulating layer 31, the electric field strength of the tip 29 of the inner surface 28 can be lowered as compared with the case without the insulating layer 31, so that plasma can be less likely to be generated between the tip 29 and the leg 45. As a result, the penetration of the insulator 40 (leg portion 45) can be suppressed, the energy loss due to the generation of plasma at the tip portion 29 can be suppressed, and the amount of plasma generated from the tip portion 48 can be relatively increased. ..

絶縁層31の軸線O方向における先端29から後端側の端32までの長さLは、先端29における絶縁層31と絶縁体40との間の、軸線O(図3参照)に垂直な方向の距離D以上の長さ、即ちL/D≧1に設定される。先端29付近が距離D以上の長さLの絶縁層31で覆われていれば、電界が集中する先端29の電界強度を抑制できる。 The length L from the tip 29 to the rear end 32 in the axis O direction of the insulating layer 31 is the direction perpendicular to the axis O (see FIG. 3) between the insulating layer 31 and the insulator 40 at the tip 29. The length is set to a distance D or more, that is, L / D ≧ 1. If the vicinity of the tip 29 is covered with an insulating layer 31 having a length L of a distance D or more, the electric field strength of the tip 29 where the electric field is concentrated can be suppressed.

絶縁層31の厚さTは、距離Dの0.1倍以上に設定される。なお、絶縁層31は厚さTを均一にする必要はない。絶縁層31のうち薄い部分の厚さが距離Dの0.1倍以上あれば、効果が得られるからである。 The thickness T of the insulating layer 31 is set to 0.1 times or more the distance D. It is not necessary for the insulating layer 31 to have a uniform thickness T. This is because the effect can be obtained if the thickness of the thin portion of the insulating layer 31 is 0.1 times or more the distance D.

次に図4(b)を参照して第2実施の形態について説明する。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図4(b)は第2実施の形態における点火プラグ60の一部を拡大して示した断面図である。なお、図4(b)は、図4(a)と同じ部分が図示されている(図4(c)、図5(a)図5(b)及び図5(c)においても同じ)。 Next, a second embodiment will be described with reference to FIG. 4 (b). The same parts as those described in the first embodiment are designated by the same reference numerals, and the following description will be omitted. FIG. 4B is an enlarged cross-sectional view showing a part of the spark plug 60 according to the second embodiment. Note that FIG. 4 (b) shows the same portion as that of FIG. 4 (a) (the same applies to FIGS. 4 (c), 5 (a), 5 (b), and 5 (c)).

点火プラグ60は、主体金具61の先端面62のうち内面28と連絡する部分に面取りが施されている。点火プラグ60は、主体金具61の先端面62と内面28とが交わる先端29から後端側(図4(b)上側)の内面28の一部を、全周に亘って覆う絶縁層31が設けられている。第2実施の形態の点火プラグ60によれば、絶縁層31により、第1実施の形態と同様の効果が得られる。 The spark plug 60 is chamfered at a portion of the tip surface 62 of the main metal fitting 61 that communicates with the inner surface 28. The spark plug 60 has an insulating layer 31 that covers a part of the inner surface 28 on the rear end side (upper side of FIG. 4B) from the tip 29 where the front end surface 62 and the inner surface 28 of the main metal fitting 61 intersect. It is provided. According to the spark plug 60 of the second embodiment, the same effect as that of the first embodiment can be obtained by the insulating layer 31.

図4(c)を参照して第3実施の形態について説明する。第1実施の形態および第2実施の形態では、内面28の一部が絶縁層31で覆われる場合について説明した。これに対し第3実施の形態では、内面28及び先端面30の一部が絶縁層71で覆われる場合について説明する。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図4(c)は第3実施の形態における点火プラグ70の一部を拡大して示した断面図である。 The third embodiment will be described with reference to FIG. 4 (c). In the first embodiment and the second embodiment, the case where a part of the inner surface 28 is covered with the insulating layer 31 has been described. On the other hand, in the third embodiment, a case where a part of the inner surface 28 and the tip surface 30 is covered with the insulating layer 71 will be described. The same parts as those described in the first embodiment are designated by the same reference numerals, and the following description will be omitted. FIG. 4C is an enlarged cross-sectional view showing a part of the spark plug 70 according to the third embodiment.

点火プラグ70は、主体金具20の内面28の先端29付近を覆う絶縁層71を備えている。絶縁層71は、主体金具20の内面28の先端29から後端側(図4(c)上側)の一部を全周に亘って覆う内面部72と、先端29から先端面30の外側(図4(c)左側)の一部を全周に亘って覆う端面部73と、を備えている。内面部72に加えて端面部73を設けることにより、先端29の電界の集中をさらに抑制できるので、絶縁層71による絶縁体40の貫通を抑制する効果を向上できる。 The spark plug 70 includes an insulating layer 71 that covers the vicinity of the tip 29 of the inner surface 28 of the main metal fitting 20. The insulating layer 71 includes an inner surface portion 72 that covers a part of the inner surface 28 of the main metal fitting 20 from the tip end 29 to the rear end side (upper side of FIG. 4C) over the entire circumference, and the outer surface (from the tip end 29 to the tip surface 30). An end face portion 73 that covers a part of FIG. 4C (left side) over the entire circumference is provided. By providing the end surface portion 73 in addition to the inner surface portion 72, the concentration of the electric field at the tip 29 can be further suppressed, so that the effect of suppressing the penetration of the insulator 40 by the insulating layer 71 can be improved.

内面部72の軸線O方向における先端29から後端側の端74までの長さLは、先端29における内面部72と絶縁体40との間の、軸線O(図3参照)に垂直な方向の距離D以上の長さ、即ちL/D≧1に設定される。 The length L from the tip 29 to the rear end 74 in the axis O direction of the inner surface portion 72 is the direction perpendicular to the axis O (see FIG. 3) between the inner surface portion 72 and the insulator 40 at the tip 29. The length is set to be equal to or greater than the distance D, that is, L / D ≧ 1.

なお、軸線O(図3参照)に直交する方向における先端29から径方向外側の端75までの絶縁層71の長さM(内面部72の厚さTを含まない長さ)は、距離Dの4.2倍以上に設定される。また、内面部72及び端面部73の厚さTは、距離Dの0.1倍以上に設定される。 The length M of the insulating layer 71 (the length excluding the thickness T of the inner surface portion 72) from the tip 29 to the radial outer end 75 in the direction orthogonal to the axis O (see FIG. 3) is the distance D. It is set to 4.2 times or more of. Further, the thickness T of the inner surface portion 72 and the end surface portion 73 is set to 0.1 times or more the distance D.

次に図5(a)を参照して第4実施の形態について説明する。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図5(b)は第4実施の形態における点火プラグ80の一部を拡大して示した断面図である。 Next, a fourth embodiment will be described with reference to FIG. 5 (a). The same parts as those described in the first embodiment are designated by the same reference numerals, and the following description will be omitted. FIG. 5B is an enlarged cross-sectional view showing a part of the spark plug 80 according to the fourth embodiment.

点火プラグ80は、主体金具81の先端面82のうち内面28と連絡する部分に丸みが付けられている。主体金具81の先端面82と内面28とが交わる先端29を覆う絶縁層83が、点火プラグ80に設けられている。絶縁層83は内面部84及び端面部85を備えている。内面部84は、先端29から後端側(図5(a)上側)の内面28の一部を全周に亘って覆う部分である。端面部85は、先端29から先端面82の外側(図5(a)左側)の一部を全周に亘って覆う部分である。 The spark plug 80 has a rounded portion of the tip surface 82 of the main metal fitting 81 that communicates with the inner surface 28. The spark plug 80 is provided with an insulating layer 83 that covers the tip 29 where the tip surface 82 and the inner surface 28 of the main metal fitting 81 intersect. The insulating layer 83 includes an inner surface portion 84 and an end surface portion 85. The inner surface portion 84 is a portion that covers a part of the inner surface 28 from the front end 29 to the rear end side (upper side in FIG. 5A) over the entire circumference. The end surface portion 85 is a portion that covers a part of the outside (left side in FIG. 5A) from the tip end 29 to the tip end surface 82 over the entire circumference.

内面部84の軸線O方向における先端29から後端側の端86までの長さLは、先端29における内面部84と絶縁体40との間の、軸線O(図3参照)に垂直な方向の距離D以上の長さ、即ちL/D≧1に設定される。 The length L from the tip 29 to the end 86 on the rear end side of the inner surface portion 84 in the axis O direction is the direction perpendicular to the axis O (see FIG. 3) between the inner surface portion 84 and the insulator 40 at the tip 29. The length is set to be equal to or greater than the distance D, that is, L / D ≧ 1.

軸線O(図3参照)に直交する方向における先端29から径方向外側の端87までの絶縁層83の長さM(内面部84の厚さTを含まない長さ)は、距離Dの4.2倍以上に設定される。第4実施の形態の点火プラグ80によれば、絶縁層83により、第3実施の形態と同様の効果が得られる。 The length M (the length excluding the thickness T of the inner surface portion 84) of the insulating layer 83 from the tip 29 to the radial outer end 87 in the direction orthogonal to the axis O (see FIG. 3) is 4 of the distance D. . Set to 2 times or more. According to the spark plug 80 of the fourth embodiment, the same effect as that of the third embodiment can be obtained by the insulating layer 83.

図5(b)を参照して第5実施の形態について説明する。第1実施の形態から第4実施の形態では、絶縁層31,71,83の厚さTがほぼ均一の場合について説明した。これに対し第5実施の形態では、絶縁層91の端94,95に近づくにつれて厚さが次第に薄くなる絶縁層91について説明する。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図5(b)は第5実施の形態における点火プラグ90の一部を拡大して示した断面図である。 The fifth embodiment will be described with reference to FIG. 5 (b). In the first to fourth embodiments, the case where the thickness T of the insulating layers 31, 71, and 83 is substantially uniform has been described. On the other hand, in the fifth embodiment, the insulating layer 91 whose thickness gradually becomes thinner as it approaches the ends 94 and 95 of the insulating layer 91 will be described. The same parts as those described in the first embodiment are designated by the same reference numerals, and the following description will be omitted. FIG. 5B is an enlarged cross-sectional view showing a part of the spark plug 90 according to the fifth embodiment.

点火プラグ90は、主体金具20の内面28の先端29付近を覆う絶縁層91を備えている。絶縁層91は、内面部92及び端面部93を備えている。内面部92は、先端29から後端側(図5(b)上側)の内面28の一部を全周に亘って覆う部分である。端面部93は、先端29から先端面30の外側(図5(b)左側)の一部を全周に亘って覆う部分である。 The spark plug 90 includes an insulating layer 91 that covers the vicinity of the tip 29 of the inner surface 28 of the main metal fitting 20. The insulating layer 91 includes an inner surface portion 92 and an end surface portion 93. The inner surface portion 92 is a portion that covers a part of the inner surface 28 from the front end 29 to the rear end side (upper side in FIG. 5B) over the entire circumference. The end face portion 93 is a portion that covers a part of the outside (left side of FIG. 5B) from the tip 29 to the tip surface 30 over the entire circumference.

絶縁層91の軸線O方向における先端29から後端側の端94までの長さLは、先端29における絶縁層91と絶縁体40との間の、軸線O(図3参照)に垂直な方向の距離D以上の長さ、即ちL≧Dに設定される。端95は、内面部92の厚さTが距離Dの0.1倍となる部位である。そのため、内面部92の厚さTは、距離Dの0.1倍以上に設定される。 The length L from the tip 29 to the rear end 94 of the insulating layer 91 in the axis O direction is the direction perpendicular to the axis O (see FIG. 3) between the insulating layer 91 and the insulator 40 at the tip 29. The length of the distance D or more, that is, L ≧ D is set. The end 95 is a portion where the thickness T of the inner surface portion 92 is 0.1 times the distance D. Therefore, the thickness T of the inner surface portion 92 is set to 0.1 times or more the distance D.

また、軸線O(図3参照)に直交する方向における先端29から径方向外側の端95までの絶縁層91の長さM(先端29における内面部92の厚さTを含まない長さ)は、距離Dの4.2倍以上に設定される。端95は、端面部93の厚さTが距離Dの0.1倍となる部位である。そのため、端面部93の厚さTは、距離Dの0.1倍以上に設定される。第5実施の形態の点火プラグ90によれば、絶縁層91により、第3実施の形態と同様の効果が得られる。 Further, the length M of the insulating layer 91 from the tip 29 to the radial outer end 95 in the direction orthogonal to the axis O (see FIG. 3) (the length not including the thickness T of the inner surface portion 92 of the tip 29) is , It is set to 4.2 times or more of the distance D. The end 95 is a portion where the thickness T of the end face portion 93 is 0.1 times the distance D. Therefore, the thickness T of the end face portion 93 is set to 0.1 times or more the distance D. According to the spark plug 90 of the fifth embodiment, the same effect as that of the third embodiment can be obtained by the insulating layer 91.

図5(c)を参照して第6実施の形態について説明する。第5実施の形態では、絶縁層91の端94,95に近づくにつれて絶縁層91の厚さTが次第に薄くなる場合について説明した。これに対し第6実施の形態では、絶縁層101の端104,105に近づくにつれて厚さが次第に薄くなる部分と、厚さがほぼ均一の部分と、が併存する絶縁層101について説明する。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図5(c)は第6実施の形態における点火プラグ100の一部を拡大して示した断面図である。 The sixth embodiment will be described with reference to FIG. 5 (c). In the fifth embodiment, the case where the thickness T of the insulating layer 91 gradually becomes thinner as it approaches the ends 94 and 95 of the insulating layer 91 has been described. On the other hand, in the sixth embodiment, the insulating layer 101 in which a portion whose thickness gradually decreases as it approaches the ends 104 and 105 of the insulating layer 101 and a portion whose thickness is substantially uniform coexist will be described. The same parts as those described in the first embodiment are designated by the same reference numerals, and the following description will be omitted. FIG. 5C is an enlarged cross-sectional view showing a part of the spark plug 100 according to the sixth embodiment.

点火プラグ100は、主体金具20の内面28の先端29付近を覆う絶縁層101を備えている。絶縁層101は、内面部102及び端面部103を備えている。内面部102は、先端29から後端側(図5(c)上側)の内面28の一部を全周に亘って覆う部分である。端面部103は、先端29から先端面30の外側(図5(c)左側)の一部を全周に亘って覆う部分である。 The spark plug 100 includes an insulating layer 101 that covers the vicinity of the tip 29 of the inner surface 28 of the main metal fitting 20. The insulating layer 101 includes an inner surface portion 102 and an end surface portion 103. The inner surface portion 102 is a portion that covers a part of the inner surface 28 from the front end 29 to the rear end side (upper side in FIG. 5C) over the entire circumference. The end face portion 103 is a portion that covers a part of the outside (left side of FIG. 5C) from the tip 29 to the tip surface 30 over the entire circumference.

絶縁層101の軸線O方向における先端29から後端側の端104までの長さLは、先端29における絶縁層101と絶縁体40との間の、軸線O(図3参照)に垂直な方向の距離D以上の長さ、即ちL≧Dに設定される。端104は、内面部102の厚さTが距離Dの0.1倍となる部位である。そのため、内面部102の厚さTは、距離Dの0.1倍以上に設定される。 The length L from the tip 29 to the rear end 104 of the insulating layer 101 in the axis O direction is the direction perpendicular to the axis O (see FIG. 3) between the insulating layer 101 and the insulator 40 at the tip 29. The length of the distance D or more, that is, L ≧ D is set. The end 104 is a portion where the thickness T of the inner surface portion 102 is 0.1 times the distance D. Therefore, the thickness T of the inner surface portion 102 is set to 0.1 times or more the distance D.

また、軸線O(図3参照)に直交する方向における先端29から径方向外側の端105までの絶縁層101の長さM(先端29における内面部102の厚さTを含まない長さ)は、距離Dの4.2倍以上に設定される。端105は、端面部103の厚さTが距離Dの0.1倍となる部位である。そのため、端面部103の厚さTは、距離Dの0.1倍以上に設定される。第6実施の形態の点火プラグ100によれば、絶縁層101により、第3実施の形態と同様の効果が得られる。 Further, the length M of the insulating layer 101 from the tip 29 to the radial outer end 105 in the direction orthogonal to the axis O (see FIG. 3) (the length not including the thickness T of the inner surface portion 102 at the tip 29) is , It is set to 4.2 times or more of the distance D. The end 105 is a portion where the thickness T of the end face portion 103 is 0.1 times the distance D. Therefore, the thickness T of the end face portion 103 is set to 0.1 times or more the distance D. According to the spark plug 100 of the sixth embodiment, the same effect as that of the third embodiment can be obtained by the insulating layer 101.

本発明を実施例によりさらに詳しく説明するが、本発明はこの実施例に限定されるものではない。 The present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

(実施例1)
第1実施の形態で説明した絶縁層31が形成された点火プラグ11について、コンピュータを用いて絶縁層31の長さLと電界強度との関係をシミュレーション(静電場解析)した。ソフトウェアはANSYS Mechanical APDL(ANSYS, Inc.)を用い、シミュレーションの対象は2D軸対称モデルとした。
(Example 1)
For the spark plug 11 on which the insulating layer 31 was formed described in the first embodiment, the relationship between the length L of the insulating layer 31 and the electric field strength was simulated (electrostatic field analysis) using a computer. The software used was ANSYS Mechanical APDL (ANSYS, Inc.), and the simulation target was a 2D axisymmetric model.

モデルの各部の寸法は以下のとおりであった(図3参照)。中心電極50の外径D1=Φ1.7mm、絶縁体40の第2部47の外径D2=Φ4.1mm、絶縁体40の第1部46の外径D3=Φ7.2mm、第1部46のうち主体金具20から突出した部分の長さL1=1.0mm、中心電極50のうち主体金具20から突出した部分の長さL2=11.3mm、絶縁体40の先端部48の長さL3=12.7mm、絶縁層31の厚さT=0.1mm、絶縁層31から絶縁体40までの距離D=0.25mm。 The dimensions of each part of the model were as follows (see FIG. 3). The outer diameter D1 of the center electrode 50 = Φ1.7 mm, the outer diameter D2 of the second part 47 of the insulator 40 = Φ4.1 mm, the outer diameter D3 of the first part 46 of the insulator 40 = Φ7.2 mm, the first part 46 Of these, the length L1 = 1.0 mm of the portion protruding from the main metal fitting 20, the length L2 = 11.3 mm of the portion of the center electrode 50 protruding from the main metal fitting 20, and the length L3 of the tip 48 of the insulator 40. = 12.7 mm, thickness T of insulating layer 31 = 0.1 mm, distance D from insulating layer 31 to insulator 40 = 0.25 mm.

絶縁体40及び絶縁層31の比誘電率を9.5、先端部48を取り囲む空気(比誘電率は1.0)の体積をΦ104mm×62.7mmとした。絶縁層31の長さLを0.2〜5.3mmの範囲で変化させ、中心電極50によって絶縁体40の穴部41の内表面と主体金具20との間に20kVの電圧を印加したときの電界強度(V/m)を計算した。 The relative permittivity of the insulator 40 and the insulating layer 31 was 9.5, and the volume of air (relative permittivity was 1.0) surrounding the tip 48 was Φ104 mm × 62.7 mm. When the length L of the insulating layer 31 is changed in the range of 0.2 to 5.3 mm and a voltage of 20 kV is applied between the inner surface of the hole 41 of the insulator 40 and the main metal fitting 20 by the center electrode 50. The electric field strength (V / m) of was calculated.

図6(a)は絶縁層31から絶縁体40までの距離Dに対する絶縁層31の軸線方向の長さLの比率(L/D)と電界強度の低減率(%)との関係を示す図である。電界強度の低減率(%)は、絶縁層31が無い場合の内面28の先端29の電界強度に対して、絶縁層31の表面(特にエッジの部分)の電界強度がどれだけ低減したかを示す指標である。なお、絶縁層31が無い場合は、内面28の先端29から絶縁体40までの距離を0.25mmにするため、絶縁体40の第1部46の外径D3=Φ7.4mmとした。 FIG. 6A is a diagram showing the relationship between the ratio (L / D) of the axial length L of the insulating layer 31 to the distance D from the insulating layer 31 to the insulator 40 and the reduction rate (%) of the electric field strength. Is. The reduction rate (%) of the electric field strength is how much the electric field strength of the surface (particularly the edge portion) of the insulating layer 31 is reduced with respect to the electric field strength of the tip 29 of the inner surface 28 when the insulating layer 31 is not present. It is an index to show. When the insulating layer 31 is not provided, the outer diameter D3 = Φ7.4 mm of the first portion 46 of the insulator 40 is set in order to make the distance from the tip 29 of the inner surface 28 to the insulator 40 0.25 mm.

図6(a)から、L/D=1を境にしてグラフの傾きが大きく変化することがわかった。絶縁層31をL/D≧1に設定することにより、主体金具20の内面28の先端29付近の電界強度を低下する効果を高くできることが明らかになった。 From FIG. 6A, it was found that the slope of the graph changed significantly with L / D = 1 as the boundary. It has been clarified that by setting the insulating layer 31 to L / D ≧ 1, the effect of lowering the electric field strength near the tip 29 of the inner surface 28 of the main metal fitting 20 can be enhanced.

(実施例2)
第1実施の形態で説明した絶縁層31の効果と、第3実施の形態で説明した絶縁層71の効果と、を比較するシミュレーションを行った。絶縁層31の長さL、絶縁層71のうち内面部72の長さL及び端面部73の長さMを5.3mmとし、絶縁層31、内面部72及び端面部73の厚さTを0.01〜0.8mmの範囲で変化させた以外は、実施例1と同じ条件の下で電界強度を計算した。
(Example 2)
A simulation was performed to compare the effect of the insulating layer 31 described in the first embodiment with the effect of the insulating layer 71 described in the third embodiment. The length L of the insulating layer 31 and the length L of the inner surface portion 72 and the length M of the end surface portion 73 of the insulating layer 71 are set to 5.3 mm, and the thickness T of the insulating layer 31, the inner surface portion 72 and the end surface portion 73 is set. The electric field strength was calculated under the same conditions as in Example 1 except that the variation was made in the range of 0.01 to 0.8 mm.

なお、主体金具20に端面部73を設ける場合は、端面部73の厚さTの分だけ主体金具20の軸線O方向の長さを短縮した。また、主体金具20の内面に絶縁層を設ける場合は、絶縁層から絶縁体40までの距離を0.25mmにするため、絶縁層の厚さTに応じて絶縁体40の第1部46の外径D3を調整した。 When the end face portion 73 is provided on the main metal fitting 20, the length of the main metal fitting 20 in the axis O direction is shortened by the thickness T of the end face portion 73. When the insulating layer is provided on the inner surface of the main metal fitting 20, the distance from the insulating layer to the insulator 40 is 0.25 mm, so that the first part 46 of the insulator 40 is provided according to the thickness T of the insulating layer. The outer diameter D3 was adjusted.

図6(b)は主体金具20の内面28に形成された絶縁層31による電界強度の低減率と、主体金具20の内面28及び先端面30に形成された絶縁層71による電界強度の低減率と、を比較した図である。図6(b)は、横軸に距離Dに対する厚さTの比率(T/D)をとり、縦軸に電界強度の低減率(%)をとった。破線は絶縁層31のグラフであり、実線は絶縁層71のグラフである。図6(b)から、主体金具20に絶縁層71(端面部73)を設けることより、電界強度の低減率を大きくできることが明らかになった。 FIG. 6B shows the reduction rate of the electric field strength by the insulating layer 31 formed on the inner surface 28 of the main metal fitting 20, and the reduction rate of the electric field strength by the insulating layer 71 formed on the inner surface 28 and the tip surface 30 of the main metal fitting 20. It is a figure comparing with and. In FIG. 6B, the horizontal axis represents the ratio of the thickness T to the distance D (T / D), and the vertical axis represents the reduction rate (%) of the electric field strength. The broken line is a graph of the insulating layer 31, and the solid line is a graph of the insulating layer 71. From FIG. 6B, it was clarified that the reduction rate of the electric field strength can be increased by providing the insulating layer 71 (end face portion 73) on the main metal fitting 20.

(実施例3)
第3実施の形態で説明した絶縁層71の長さMと距離Dとの関係を調べるシミュレーションを行った。絶縁層71の内面部72の長さLを5.3mm、内面部72及び端面部73の厚さTを0.1mmとし、端面部73の長さMを0.4〜4.45mmの範囲で変化させた以外は、実施例1と同じ条件の下で電界強度を計算した。
(Example 3)
A simulation was performed to investigate the relationship between the length M and the distance D of the insulating layer 71 described in the third embodiment. The length L of the inner surface portion 72 of the insulating layer 71 is 5.3 mm, the thickness T of the inner surface portion 72 and the end face portion 73 is 0.1 mm, and the length M of the end face portion 73 is in the range of 0.4 to 4.45 mm. The electric field strength was calculated under the same conditions as in Example 1 except that it was changed in.

図7(a)は絶縁層71から絶縁体40までの距離Dに対する絶縁層71の軸直角方向の長さMの比率(M/D)と電界強度の低減率(%)との関係を示す図である。図7(a)から、M/D=4.2を境にしてグラフの傾きが変化することがわかった。絶縁層71をM/D≧4.2に設定することにより、主体金具20の内面28の先端29付近の電界強度を低下する効果を高くできることが明らかになった。 FIG. 7A shows the relationship between the ratio (M / D) of the length M of the insulating layer 71 in the direction perpendicular to the axis to the distance D from the insulating layer 71 to the insulator 40 and the reduction rate (%) of the electric field strength. It is a figure. From FIG. 7A, it was found that the slope of the graph changes with M / D = 4.2 as a boundary. It has been clarified that by setting the insulating layer 71 to M / D ≧ 4.2, the effect of lowering the electric field strength near the tip 29 of the inner surface 28 of the main metal fitting 20 can be enhanced.

(実施例4)
第1実施の形態で説明した絶縁層31の厚さTと距離Dとの関係を調べるシミュレーションを行った。絶縁層31の長さLを5.3mmとし、距離Dを0.15〜0.5mmの範囲、絶縁層31の厚さTを0.01〜0.8mmの範囲で変化させた以外は、実施例1と同じ条件の下で電界強度を計算した。
(Example 4)
A simulation was performed to investigate the relationship between the thickness T of the insulating layer 31 and the distance D described in the first embodiment. Except that the length L of the insulating layer 31 was 5.3 mm, the distance D was changed in the range of 0.15 to 0.5 mm, and the thickness T of the insulating layer 31 was changed in the range of 0.01 to 0.8 mm. The electric field strength was calculated under the same conditions as in Example 1.

図7(b)は絶縁層31から絶縁体40までの距離Dに対する絶縁層31の厚さTの比率(T/D)と電界強度の低減率(%)との関係を示す図である。図7(b)から、T/D<0.1のときの低減率に対して、T/D≧0.1のときの低減率を約3倍以上にできることがわかった。よって、絶縁層31は、距離Dの1/10以上の厚さTがあれば望ましいことが明らかになった。 FIG. 7B is a diagram showing the relationship between the ratio (T / D) of the thickness T of the insulating layer 31 to the distance D from the insulating layer 31 to the insulator 40 and the reduction rate (%) of the electric field strength. From FIG. 7B, it was found that the reduction rate when T / D ≥ 0.1 can be about 3 times or more the reduction rate when T / D <0.1. Therefore, it has become clear that the insulating layer 31 is desirable if it has a thickness T of 1/10 or more of the distance D.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。 Although the present invention has been described above based on the embodiments, the present invention is not limited to the above-described embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It is easy to infer.

上記各実施の形態では、主体金具20の内面28が、棚部27の先端(図3下側)から先端29まで軸線O方向に亘って直径が同一の場合について説明したが、必ずしもこれに限られるものではない。主体金具20の内面28の形状や直径は、主体金具20による熱放散性や組み付け精度などを考慮して適宜設定できる。 In each of the above embodiments, the case where the inner surface 28 of the main metal fitting 20 has the same diameter from the tip of the shelf 27 (lower side in FIG. 3) to the tip 29 in the axis O direction has been described, but this is not necessarily the case. It is not something that can be done. The shape and diameter of the inner surface 28 of the main metal fitting 20 can be appropriately set in consideration of the heat dissipation property and the assembly accuracy of the main metal fitting 20.

上記各実施の形態では、絶縁体40の係止部44よりも先端側の脚部45が、根元の第1部46の直径に比べて先端側の第2部47の直径が小さい場合について説明したが、必ずしもこれに限られるものではない。軸線O方向に亘って脚部45の直径を同一にすることは当然可能である。また、絶縁体40の脚部45のうち主体金具20から先端側に突出した部分の直径を、脚部45のうち主体金具20の内側に存在する部分の直径より大きくすることは当然可能である。 In each of the above embodiments, the case where the leg portion 45 on the distal end side of the locking portion 44 of the insulator 40 has a smaller diameter of the second portion 47 on the distal end side than the diameter of the first portion 46 at the root will be described. However, it is not necessarily limited to this. Of course, it is possible to make the diameters of the legs 45 the same over the axis O direction. Further, it is naturally possible to make the diameter of the portion of the leg portion 45 of the insulator 40 protruding toward the tip side from the main metal fitting 20 larger than the diameter of the portion of the leg portion 45 existing inside the main metal fitting 20. ..

上記各実施の形態では、中心電極50のうち脚部45の内側に配置される部分の直径が軸線O方向に亘って同一の場合について説明したが、必ずしもこれに限られるものではない。中心電極50の根元の部分の直径よりも脚部45の先端側に配置される部分の直径を大きくすることは当然可能である。脚部45の直径や中心電極50の直径を適宜設定することにより、絶縁体40の先端部48の表面積や径方向の厚さを設定して、先端部48の周囲に発生するプラズマの量を適宜設定できる。 In each of the above embodiments, the case where the diameter of the portion of the center electrode 50 arranged inside the leg portion 45 is the same over the axis O direction has been described, but the present invention is not necessarily limited to this. Of course, it is possible to make the diameter of the portion arranged on the tip side of the leg portion 45 larger than the diameter of the base portion of the center electrode 50. By appropriately setting the diameter of the leg portion 45 and the diameter of the center electrode 50, the surface area and the thickness in the radial direction of the tip portion 48 of the insulator 40 are set, and the amount of plasma generated around the tip portion 48 is determined. Can be set as appropriate.

上記各実施の形態では、絶縁体40が一つの部材で形成される場合について説明したが、必ずしもこれに限られるものではない。絶縁体40を複数の部材に分割し、その部材間を接着やねじ等によって接合して絶縁体40とすることは当然可能である。 In each of the above embodiments, the case where the insulator 40 is formed of one member has been described, but the present invention is not necessarily limited to this. Of course, it is possible to divide the insulator 40 into a plurality of members and join the members with adhesives, screws, or the like to form the insulator 40.

10 点火装置
11,60,70,80,90,100 点火プラグ
12 電圧印加部
20,61,81 主体金具
28 主体金具の内面
29 内面の先端
30,62,82 主体金具の先端面
31,71,83,91,101 絶縁層
40 絶縁体
48 絶縁体の先端部
50 中心電極
75,87,95,105 端
D 距離
L,M 長さ
O 軸線
T 厚さ
10 Ignition device 11, 60, 70, 80, 90, 100 Ignition plug 12 Voltage application part 20, 61, 81 Main metal fittings 28 Inner surface of main metal fittings 29 Inner surface tip 30, 62, 82 Tip surface of main metal fittings 31, 71, 83,91,101 Insulator layer 40 Insulator 48 Insulator tip 50 Center electrode 75,87,95,105 End D Distance L, M Length O Axis T Thickness

Claims (6)

先端側から後端側へと軸線に沿って延び、先端が閉じた有底筒状の絶縁体と、
前記絶縁体に自身の先端が内包される中心電極と、
前記絶縁体の先端部が自身の先端から突出する状態で前記絶縁体を外周側から保持する筒状の主体金具と、を備える点火プラグであって、
前記主体金具の内面のうち少なくとも前記内面の先端から後端側の一部を、全周に亘って覆う絶縁層を備え
前記絶縁層の厚さは、前記内面の前記先端における前記絶縁層と前記絶縁体との間の軸線に垂直な方向の距離の0.1倍以上である点火プラグ。
A bottomed tubular insulator that extends from the front end side to the rear end side along the axis and has a closed tip.
A center electrode whose tip is included in the insulator,
A spark plug including a tubular main metal fitting that holds the insulator from the outer peripheral side in a state where the tip portion of the insulator protrudes from its own tip.
An insulating layer is provided which covers at least a part of the inner surface of the main metal fitting from the tip end side to the rear end side of the inner surface over the entire circumference .
A spark plug in which the thickness of the insulating layer is 0.1 times or more the distance in the direction perpendicular to the axis between the insulating layer and the insulator at the tip of the inner surface .
先端側から後端側へと軸線に沿って延び、先端が閉じた有底筒状の絶縁体と、
前記絶縁体に自身の先端が内包される中心電極と、
前記絶縁体の先端部が自身の先端から突出する状態で前記絶縁体を外周側から保持する筒状の主体金具と、を備える点火プラグであって、
前記主体金具の内面のうち少なくとも前記内面の先端から後端側の一部を、全周に亘って覆う絶縁層を備え
前記絶縁層は、さらに、前記主体金具の先端面のうち少なくとも前記内面の前記先端から径方向外側の一部を、全周に亘って覆い、
前記絶縁層の軸線に直交する方向における前記内面の前記先端から径方向外側の端までの長さは、前記内面の前記先端における前記絶縁層と前記絶縁体との間の、軸線に垂直な方向の距離の4.2倍以上である点火プラグ。
A bottomed tubular insulator that extends from the front end side to the rear end side along the axis and has a closed tip.
A center electrode whose tip is included in the insulator,
A spark plug including a tubular main metal fitting that holds the insulator from the outer peripheral side in a state where the tip portion of the insulator protrudes from its own tip.
An insulating layer is provided which covers at least a part of the inner surface of the main metal fitting from the tip end side to the rear end side of the inner surface over the entire circumference .
The insulating layer further covers at least a part of the tip surface of the main metal fitting radially outward from the tip of the inner surface over the entire circumference.
The length from the tip of the inner surface to the outer end in the radial direction in the direction orthogonal to the axis of the insulating layer is the direction perpendicular to the axis between the insulating layer and the insulator at the tip of the inner surface. Spark plug that is more than 4.2 times the distance of .
前記絶縁層は、さらに、前記主体金具の先端面のうち少なくとも前記内面の前記先端から径方向外側の一部を、全周に亘って覆う請求項1記載の点火プラグ。 The spark plug according to claim 1, wherein the insulating layer further covers at least a part of the tip surface of the main metal fitting radially outward from the tip of the inner surface over the entire circumference. 前記絶縁層の軸線に直交する方向における前記内面の前記先端から径方向外側の端までの長さは、前記内面の前記先端における前記絶縁層と前記絶縁体との間の、軸線に垂直な方向の距離の4.2倍以上である請求項3記載の点火プラグ。 The length from the tip of the inner surface to the outer end in the radial direction in the direction orthogonal to the axis of the insulating layer is the direction perpendicular to the axis between the insulating layer and the insulator at the tip of the inner surface. The spark plug according to claim 3, which is 4.2 times or more the distance of. 前記絶縁層の軸線方向における前記内面の前記先端からの長さは、前記内面の前記先端における前記絶縁層と前記絶縁体との間の、軸線に垂直な方向の距離以上である請求項1から4のいずれかに記載の点火プラグ。 The length from the tip of the inner surface in the axial direction of the insulating layer, of claims 1 to is the direction perpendicular distance above the axis between the insulating layer and said insulator in said tip of said inner surface The spark plug according to any one of 4 . 請求項1から5のいずれかに記載の点火プラグと、
交流電圧または複数回のパルス電圧を前記中心電極に印加することによって前記先端部の外面に非平衡プラズマを発生させる電圧印加部と、を備える点火装置。
The spark plug according to any one of claims 1 to 5.
An ignition device including a voltage application unit that generates non-equilibrium plasma on the outer surface of the tip portion by applying an AC voltage or a plurality of pulse voltages to the center electrode.
JP2017125503A 2017-06-27 2017-06-27 Spark plug and ignition device Active JP6767936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017125503A JP6767936B2 (en) 2017-06-27 2017-06-27 Spark plug and ignition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017125503A JP6767936B2 (en) 2017-06-27 2017-06-27 Spark plug and ignition device

Publications (2)

Publication Number Publication Date
JP2019009048A JP2019009048A (en) 2019-01-17
JP6767936B2 true JP6767936B2 (en) 2020-10-14

Family

ID=65029093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017125503A Active JP6767936B2 (en) 2017-06-27 2017-06-27 Spark plug and ignition device

Country Status (1)

Country Link
JP (1) JP6767936B2 (en)

Also Published As

Publication number Publication date
JP2019009048A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP5963775B2 (en) Corona igniter with controlled corona formation position
JP5041561B2 (en) Spark plug
JP6238895B2 (en) Corona igniter with temperature control function
US10153618B2 (en) Spark plug
JP2015129628A (en) Improved high energy ignition spark igniter
CN107689555B (en) Spark plug and ignition device
WO2011118087A1 (en) Spark plug
JP6767936B2 (en) Spark plug and ignition device
JPWO2020196245A1 (en) Spark plug
US10090648B1 (en) Spark plug
JP6719420B2 (en) Spark plug
JP6592473B2 (en) Spark plug
JP6667463B2 (en) Spark plug
JP6781141B2 (en) Spark plug
JP6738310B2 (en) Spark plug
JP5910604B2 (en) Spark plug for internal combustion engine
JP6510703B1 (en) Spark plug
JP7070196B2 (en) Spark plug for internal combustion engine
JP6467370B2 (en) Spark plug
JP6524136B2 (en) Spark plug
JP6691876B2 (en) Spark plug
JP6661958B2 (en) Spark plugs for internal combustion engines
JP2015099765A (en) Spark plug for internal combustion engine
JP5971806B2 (en) Plasma jet ignition plug and manufacturing method thereof
JP2018139197A (en) Spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200918

R150 Certificate of patent or registration of utility model

Ref document number: 6767936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250