JP6767594B1 - Refractory material - Google Patents

Refractory material Download PDF

Info

Publication number
JP6767594B1
JP6767594B1 JP2020042117A JP2020042117A JP6767594B1 JP 6767594 B1 JP6767594 B1 JP 6767594B1 JP 2020042117 A JP2020042117 A JP 2020042117A JP 2020042117 A JP2020042117 A JP 2020042117A JP 6767594 B1 JP6767594 B1 JP 6767594B1
Authority
JP
Japan
Prior art keywords
mass
refractory material
parts
rubber
rubber component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020042117A
Other languages
Japanese (ja)
Other versions
JP2021143257A (en
Inventor
高津 知道
知道 高津
貴司 清水
貴司 清水
英也 相馬
英也 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2020042117A priority Critical patent/JP6767594B1/en
Priority to JP2020155982A priority patent/JP6941214B2/en
Application granted granted Critical
Publication of JP6767594B1 publication Critical patent/JP6767594B1/en
Publication of JP2021143257A publication Critical patent/JP2021143257A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】コールドフローが抑制可能な耐火材を提供する。【解決手段】本発明によれば、ゴム成分、熱膨張性黒鉛、及び無機充填材を含有する耐火材であって、前記ゴム成分100質量部に対して、前記熱膨張性黒鉛の含有量が5〜400質量部、前記無機充填剤の含有量が50〜600質量部であり、前記ゴム成分は、ゲル分率が1〜70質量%である、耐火材が提供される。【選択図】なしPROBLEM TO BE SOLVED: To provide a refractory material capable of suppressing cold flow. According to the present invention, a refractory material containing a rubber component, a heat-expandable graphite, and an inorganic filler, wherein the content of the heat-expandable graphite is 100 parts by mass of the rubber component. A refractory material having 5 to 400 parts by mass, the content of the inorganic filler of 50 to 600 parts by mass, and the rubber component having a gel content of 1 to 70% by mass is provided. [Selection diagram] None

Description

本発明は、ゴム成分を含有する耐火材に関する。 The present invention relates to a refractory material containing a rubber component.

特許文献1には、ゴム成分と、熱膨張性黒鉛と、亜リン酸アルミニウムと、を含有する耐火材が示されている。 Patent Document 1 discloses a refractory material containing a rubber component, a heat-expandable graphite, and aluminum phosphite.

特開2006−274134号公報Japanese Unexamined Patent Publication No. 2006-274134

耐火材にゴム成分が含まれていると、保管の過程でコールドフローによる変形が発生することがある。このため、コールドフローによる変形の抑制が求められていた。 If the refractory material contains a rubber component, it may be deformed by cold flow during the storage process. Therefore, it has been required to suppress deformation due to cold flow.

本発明はこのような事情に鑑みてなされたものであり、コールドフローが抑制可能な耐火材を提供するものである。 The present invention has been made in view of such circumstances, and provides a refractory material capable of suppressing cold flow.

本発明によれば、ゴム成分、熱膨張性黒鉛、及び無機充填材を含有する耐火材であって、前記ゴム成分100質量部に対して、前記熱膨張性黒鉛の含有量が5〜400質量部、前記無機充填の含有量が50〜600質量部であり、前記ゴム成分は、ゲル分率が1〜70質量%である、耐火材が提供される。
According to the present invention, the refractory material contains a rubber component, a heat-expandable graphite, and an inorganic filler, and the content of the heat-expandable graphite is 5 to 400 mass by mass with respect to 100 parts by mass of the rubber component. parts, the content of the inorganic filler is 50 to 600 parts by mass, the rubber component, a gel fraction of 1 to 70 wt%, the refractory material is provided.

本発明に耐火材によれば、コールドフローの抑制が図られる。 According to the refractory material of the present invention, cold flow can be suppressed.

本発明の耐火材は、ゴム成分と、熱膨張性黒鉛と、無機充填材を含む。この耐火材は、一例では、シート状の耐火シートである。耐火シートの厚さは、例えば1〜10mmである。耐火シートをロール状に巻いて耐火シートロールとして保管や運搬をしてもよい。個別の耐火シートを積層したものや、耐火シートロールを立てた状態で保管をしていると、コールドフローによって耐火シートの側面の厚さ方向の中央が凹むように変形することがある。このような変形は耐火シートの外観を悪化させるので、このような変形を抑制することが本発明の課題の一つである。なお、耐火材の形状はシート状でなくてもよく、ブロック状などの別の形状であってもよい。また、耐火材は、用途に合わせた形状に成型した成型品であってもよい。成型方法としては、プレス成型が挙げられ、成型品としては、耐火二層管用目地材が例示される。 The refractory material of the present invention contains a rubber component, a heat-expandable graphite, and an inorganic filler. This refractory material is, for example, a sheet-shaped refractory sheet. The thickness of the refractory sheet is, for example, 1 to 10 mm. The refractory sheet may be rolled into a roll and stored or transported as a refractory sheet roll. If individual refractory sheets are laminated or stored with the refractory sheet roll upright, the cold flow may deform the sides of the refractory sheet so that the center in the thickness direction is dented. Since such deformation deteriorates the appearance of the refractory sheet, it is one of the subjects of the present invention to suppress such deformation. The shape of the refractory material does not have to be a sheet shape, and may be another shape such as a block shape. Further, the refractory material may be a molded product molded into a shape suitable for the intended use. Examples of the molding method include press molding, and examples of the molded product include joint materials for refractory double-layer pipes.

また、耐火材は、例えば200℃以上で熱膨張を開始し強固な断熱層を形成することによって耐火性能を発揮する。膨張倍率は、例えば3〜30倍であり、5〜25倍が好ましく、7〜20倍がさらに好ましい。 Further, the refractory material exhibits fire resistance performance by starting thermal expansion at, for example, 200 ° C. or higher and forming a strong heat insulating layer. The expansion ratio is, for example, 3 to 30 times, preferably 5 to 25 times, and even more preferably 7 to 20 times.

以下、各成分について詳細に説明する。 Hereinafter, each component will be described in detail.

<ゴム成分>
本発明の耐火材に用いるゴム成分としては、例えば、天然ゴム、イソプレンゴム、スチレン−ブタジエンゴム、クロロプレンゴム等のジエン系ゴムや、ブチルゴム、エチレン−プロピレンゴム等の主鎖中に少量の二重結合を導入したゴム(例えば、エチレン−プロピレン−ジエンゴム)が挙げられる。本発明の耐火シートにあっては、これらの単体だけでなく、混練性、成形性等を改善するために2種以上を混合して使用してもよい。
<Rubber component>
The rubber component used in the fireproof material of the present invention includes, for example, a diene rubber such as natural rubber, isoprene rubber, styrene-butadiene rubber, and chloroprene rubber, and a small amount of double in the main chain such as butyl rubber and ethylene-propylene rubber. Examples include rubber having a bond introduced (for example, ethylene-propylene-diene rubber). In the refractory sheet of the present invention, not only these simple substances but also two or more kinds may be mixed and used in order to improve kneadability, moldability and the like.

ゴム成分は、ゲル分率が1〜70質量%である。ゲル分率が1質量%未満だとコールドフローを防げない。70質量%を超えると混練した際の分散性が悪くなる。ゲル分率は、5〜50質量%が好ましく、10〜30質量%がさらに好ましい。ゲル分は、ゴムが三次元的に架橋した成分であり、ゲル分を所定量含むことによって、耐火材の機械的強度が高められてコールドフローが抑制される。 The rubber component has a gel fraction of 1 to 70% by mass. Cold flow cannot be prevented if the gel fraction is less than 1% by mass. If it exceeds 70% by mass, the dispersibility at the time of kneading deteriorates. The gel fraction is preferably 5 to 50% by mass, more preferably 10 to 30% by mass. The gel component is a component in which rubber is three-dimensionally crosslinked, and by containing a predetermined amount of the gel component, the mechanical strength of the refractory material is increased and cold flow is suppressed.

ゲル分は、ゴム成分の架橋によって生成されるので、ゴム成分の架橋の程度を変化させることによって、ゲル分率を増減させることができる。架橋の程度を変化させる方法としては、ゴム成分の硫黄加硫や過酸化物架橋の程度を変化させたり、ゲル分率が比較的高い再生ゴムの添加量を変化させたりする方法が挙げられる。 Since the gel component is produced by cross-linking the rubber component, the gel component can be increased or decreased by changing the degree of cross-linking of the rubber component. Examples of the method for changing the degree of cross-linking include a method of changing the degree of sulfur vulcanization and peroxide cross-linking of the rubber component, and a method of changing the amount of recycled rubber having a relatively high gel fraction.

ゲル分とは、トルエンに不溶な成分であり、ゲル分率は、以下の方法で算出した値である。
(a)約5.0gのゴム成分を秤量(W1)。
(b)秤量したゴム成分をトルエン100mL中に室温で7日間浸漬。
(c)SUS304の#40メッシュを秤量(W2)。
(d)秤量したメッシュにて、浸漬したゴム成分を濾過。
(e)メッシュ上の残渣物を室温にて7日間乾燥、さらに80℃にて24時間乾燥し、残渣物をメッシュごと秤量(W3)。
(f)ゲル分率=((W3−W2)/(W1))×100(%)
The gel content is a component insoluble in toluene, and the gel content is a value calculated by the following method.
(A) Approximately 5.0 g of rubber component is weighed (W1).
(B) The weighed rubber component is immersed in 100 mL of toluene at room temperature for 7 days.
(C) Weighing # 40 mesh of SUS304 (W2).
(D) The immersed rubber component is filtered through a weighed mesh.
(E) The residue on the mesh was dried at room temperature for 7 days, further dried at 80 ° C. for 24 hours, and the residue was weighed together with the mesh (W3).
(F) Gel fraction = ((W3-W2) / (W1)) x 100 (%)

ゴム成分は、再生ゴムを含むことが好ましい。再生ゴムとは、加硫ゴムに熱、圧力及び物理的に処理を加え、再び粘着性、可塑性を与えて原料ゴムと同様の目的で利用できるようにしたものである。再生ゴムとしては、天然ゴム、ブチルゴム、SBRおよびそれらの混合物由来のものが挙げられる。 The rubber component preferably contains recycled rubber. Recycled rubber is vulcanized rubber that has been heat, pressured, and physically treated to give it adhesiveness and plasticity again so that it can be used for the same purposes as raw rubber. Examples of the recycled rubber include those derived from natural rubber, butyl rubber, SBR and mixtures thereof.

再生ゴムのゲル分率は、30質量%以上が好ましく、30〜90質量%が好ましく、50〜85質量%がさらに好ましく、60〜80質量%がさらに好ましい。このようなゲル分率の再生ゴムを添加することによってコールドフロー耐性を効果的に高めることができる。 The gel fraction of the recycled rubber is preferably 30% by mass or more, preferably 30 to 90% by mass, further preferably 50 to 85% by mass, still more preferably 60 to 80% by mass. Cold flow resistance can be effectively enhanced by adding recycled rubber having such a gel fraction.

ゴム成分中の再生ゴムの割合は、2〜90質量%が好ましく、10〜60質量部がさらに好ましく、20〜40質量部がさらに好ましい。この場合に、再生ゴムの分散性が良好になりやすい。 The ratio of the regenerated rubber in the rubber component is preferably 2 to 90% by mass, more preferably 10 to 60 parts by mass, still more preferably 20 to 40 parts by mass. In this case, the dispersibility of the recycled rubber tends to be good.

<熱膨張性黒鉛>
熱膨張性黒鉛は、天然グラファイト、熱分解グラファイト等の粉末を、硫酸、硝酸等の無機酸と濃硝酸、過マンガン酸塩等の強酸化剤とで処理されたもので、グラファイト層状構造を維持した結晶化合物である。これらは200℃程度以上の温度に曝されると、100倍以上に熱膨張するものである。なお、これら天然グラファイト、熱分解グラファイト等の粉末は、脱酸処理に加え、更に中和処理したタイプ他、各種品種があるがいずれも使用できる。
<Thermal expandable graphite>
Thermally expandable graphite is obtained by treating powders such as natural graphite and thermally decomposed graphite with an inorganic acid such as sulfuric acid and nitric acid and a strong oxidizing agent such as concentrated nitric acid and permanganate to maintain a graphite layered structure. It is a graphite compound. When they are exposed to a temperature of about 200 ° C. or higher, they thermally expand 100 times or more. As for these powders of natural graphite, pyrolytic graphite and the like, in addition to the deoxidizing treatment, there are various types such as a neutralized type and all of them can be used.

熱膨張性黒鉛の粒度は、20〜400メッシュ(JIS Z 8901による測定)程度が好ましい。400メッシュより粒度が小さくなると熱膨張性黒鉛の膨張度が小さく、得られる耐火材が火災時に充分熱膨張しない場合があり、また20メッシュより粒度が大きくなると分散性が悪くなり得られる耐火材の弾性が低下する場合がある。 The particle size of the heat-expandable graphite is preferably about 20 to 400 mesh (measured by JIS Z 8901). If the particle size is smaller than 400 mesh, the degree of expansion of the heat-expandable graphite is small, and the obtained refractory material may not expand sufficiently in the event of a fire, and if the particle size is larger than 20 mesh, the dispersibility may deteriorate. Elasticity may decrease.

熱膨張性黒鉛の含有量は、ゴム成分100質量部に対して5〜400質量部であり、10〜300質量部が好ましく、30〜150質量部がさらに好ましい。熱膨張性黒鉛の含有量が5質量部より少ないと得られた耐火材が火災時に充分熱膨張しない場合があり、400質量部を超えると熱膨張倍率は大きくなるものの、得られる耐火材の強度等の物性が低下したり、耐火材が膨張した後の形状安定性が低下したりする傾向がある。 The content of the heat-expandable graphite is 5 to 400 parts by mass, preferably 10 to 300 parts by mass, and more preferably 30 to 150 parts by mass with respect to 100 parts by mass of the rubber component. If the content of the heat-expandable graphite is less than 5 parts by mass, the obtained refractory material may not expand sufficiently in the event of a fire, and if it exceeds 400 parts by mass, the coefficient of thermal expansion increases, but the strength of the obtained refractory material There is a tendency that the physical properties of the refractory material deteriorate, and the shape stability after the refractory material expands.

<無機充填材>
無機充填材は、特に制限されるものではないが、例えば、亜リン酸アルミニウム、シリカ、珪藻土、アルミナ、酸化亜鉛、酸化チタン、酸化マグネシウム、酸化鉄、水酸化アルミニウム、水酸化マグネシウム、ホウ酸亜鉛、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、ケイ酸カルシウム、タルク、クレー、マイカ、ベントナイト、活性白土、セピオライト、ガラス繊維、ガラスビーズ、窒化アルミニウム、窒化ホウ素、カーボンブラック、グラファイト、ポリリン酸アンモニウム等が挙げられる。これらは単体で使用してもよく、また2種以上を併用しても良い。無機充填の添加によって、耐火材のコールドフロー耐性、形状保持性及び難燃性を向上させることができる。分散性の観点から、無機充填材の体積平均粒径は、レーザー回折法の測定値で1〜50μmが好ましい。

<Inorganic filler>
The inorganic filler is not particularly limited, but for example, aluminum phosphite, silica, diatomaceous earth, alumina, zinc oxide, titanium oxide, magnesium oxide, iron oxide, aluminum hydroxide, magnesium hydroxide, zinc borate. , Calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, hydrotalcite, calcium sulfate, barium sulfate, calcium silicate, talc, clay, mica, bentonite, active white clay, sepiolite, glass fiber, glass beads, aluminum nitride, nitride Examples thereof include boron, carbon black, graphite and ammonium polyphosphate. These may be used alone or in combination of two or more. The addition of inorganic fillers, cold flow resistance of the refractory material, it is possible to improve the shape retention and flame retardancy. From the viewpoint of dispersibility, the volume average particle diameter of the inorganic filler is preferably 1 to 50 μm as measured by a laser diffraction method.

無機充填材の含有量は、ゴム成分100質量部に対して50〜600質量部であり、80〜550質量部が好ましく、100〜500質量部がさらに好ましく、200〜450質量部がさらに好ましい。50質量部より少ないと難燃性が悪くなる傾向があり、600質量部を超えると可撓性や強度が低下する傾向がある。 The content of the inorganic filler is 50 to 600 parts by mass, preferably 80 to 550 parts by mass, more preferably 100 to 500 parts by mass, and further preferably 200 to 450 parts by mass with respect to 100 parts by mass of the rubber component. If it is less than 50 parts by mass, the flame retardancy tends to deteriorate, and if it exceeds 600 parts by mass, the flexibility and strength tend to decrease.

無機充填材は、亜リン酸アルミニウムを含有することが好ましい。この場合に、耐火材に含まれる熱膨張性黒鉛が膨張した後の形状保持性が良好になりやすい。分散性の観点から亜リン酸アルミニウムの体積平均粒径は、レーザー回折法の測定値で1〜100μmが好ましい。 The inorganic filler preferably contains aluminum phosphite. In this case, the shape retention after the heat-expandable graphite contained in the refractory material expands tends to be good. From the viewpoint of dispersibility, the volume average particle diameter of aluminum phosphite is preferably 1 to 100 μm as measured by a laser diffraction method.

亜リン酸アルミニウムの含有量は、ゴム成分100質量部に対して10〜300質量部が好ましく、13〜280質量部がさらに好ましく、50〜250質量部がさらに好ましい。10質量部より少ないと形状保持性が悪くなる傾向があり、300質量部を超えると可撓性が低下する傾向がある。 The content of aluminum phosphite is preferably 10 to 300 parts by mass, more preferably 13 to 280 parts by mass, and even more preferably 50 to 250 parts by mass with respect to 100 parts by mass of the rubber component. If it is less than 10 parts by mass, the shape retention tends to deteriorate, and if it exceeds 300 parts by mass, the flexibility tends to decrease.

無機充填材は、水酸化アルミニウムや水酸化マグネシウム等の金属水酸化物を含有することが好ましい。この場合、加熱時の脱水反応による吸熱で温度上昇が抑えられる。金属水酸化物は、好ましくは、水酸化アルミニウムである。金属水酸化物の含有量は、ゴム成分100質量部に対して10〜300質量部が好ましく、50〜250質量部がさらに好ましい。 The inorganic filler preferably contains a metal hydroxide such as aluminum hydroxide or magnesium hydroxide. In this case, the temperature rise is suppressed by endothermic reaction due to the dehydration reaction during heating. The metal hydroxide is preferably aluminum hydroxide. The content of the metal hydroxide is preferably 10 to 300 parts by mass, more preferably 50 to 250 parts by mass with respect to 100 parts by mass of the rubber component.

<加硫剤と加硫促進剤>
本発明の耐火材は、加硫剤と加硫促進剤を含有してもよい。加硫剤及び加硫促進剤は、加硫可能なゴムの架橋度を向上させ、ゴム自体の強度を向上させるものである。なお、ゴムの強度は、硬度にて評価できるものである。但し、本発明の耐火材は、加硫剤と加硫促進剤を含有していなくてもよい。言い換えると、本発明の耐火材は、加硫されていなくてもよい。耐火材が加硫されていないとコールドフローが生じやすくなるため、耐火材が加硫されていない場合に、本発明を適用することの技術的意義が顕著である。
<Vulcanizing agent and vulcanization accelerator>
The refractory material of the present invention may contain a vulcanizing agent and a vulcanization accelerator. The vulcanizing agent and the vulcanization accelerator improve the degree of cross-linking of the vulcanizable rubber and improve the strength of the rubber itself. The strength of rubber can be evaluated by hardness. However, the refractory material of the present invention does not have to contain a vulcanizing agent and a vulcanization accelerator. In other words, the refractory material of the present invention does not have to be vulcanized. If the refractory material is not vulcanized, cold flow is likely to occur. Therefore, the technical significance of applying the present invention is remarkable when the refractory material is not vulcanized.

<その他の成分>
本発明では、その効果を阻害しない範囲で、通常のゴム配合物に使用される可塑剤、軟化剤、老化防止剤、加工助剤、滑剤、粘着付与剤等を併用してもよい。成形性の調整に有効な軟化剤や可塑剤の例としては、パラフィン系やナフテン系等のプロセスオイル、流動パラフィンやその他のパラフィン類、ワックス類、シリコーンオイルや液状ポリブテン等の合成高分子系軟化剤、フタル酸系やアジピン酸系、セバシン酸系やリン酸系等のエステル系可塑剤類、ステアリン酸やそのエステル類、アルキルスルホン酸エステル類や粘着付与剤などがあげられる。
<Other ingredients>
In the present invention, a plasticizer, a softening agent, an antiaging agent, a processing aid, a lubricant, a tackifier and the like used in ordinary rubber formulations may be used in combination as long as the effect is not impaired. Examples of softeners and plasticizers that are effective in adjusting moldability include paraffin-based and naphthen-based process oils, liquid paraffins and other paraffins, waxes, and synthetic polymer-based softeners such as silicone oil and liquid polybutene. Examples thereof include agents, ester-based plasticizers such as phthalic acid-based and adipic acid-based, sebacic acid-based and phosphoric acid-based, stearic acid and its esters, alkyl sulfonic acid esters and tackifiers.

本発明の耐火材は、上記各成分をバンバリーミキサー、ニーダーミキサー、二本ロール等公知の混練装置を用いて混練されたものを、例えば、プレス成形、ロール成形、押し出し成形、カレンダー成形等の従来公知の成形方法でシート状に成形することで得ることが出来る。 The fireproof material of the present invention is obtained by kneading each of the above components using a known kneading device such as a Banbury mixer, a kneader mixer, or a double roll, for example, press molding, roll molding, extrusion molding, calendar molding, or the like. It can be obtained by molding into a sheet by a known molding method.

以下、本発明を実施例及び比較例により具体的に説明するが、これらの実施例は本発明を限定するものでない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but these Examples do not limit the present invention.

1.耐火材の作製
表1〜表3の配合に示した成分を、容量3リットルのニーダーミキサーを用いて120℃で2分間混練した。次いで、得られた混練物を熱プレス機でプレスして厚さ5mmのシート状の耐火材を得た。
1. 1. Preparation of Refractory Materials The components shown in the formulations shown in Tables 1 to 3 were kneaded at 120 ° C. for 2 minutes using a kneader mixer having a capacity of 3 liters. Next, the obtained kneaded product was pressed with a hot press to obtain a sheet-shaped refractory material having a thickness of 5 mm.

表中の成分の詳細は、以下の通りである。
(1)ゴム成分
ブチル268(0%):ブチルゴム(JSR株式会社製「ブチル268」、ゲル分率0%)
IIR−S(75%):再生ゴム(縣護謨工業株式会社製「IIR−S」、ゲル分率75%)
The details of the components in the table are as follows.
(1) Rubber component Butyl 268 (0%): Butyl rubber ("Butyl 268" manufactured by JSR Corporation, gel fraction 0%)
IIR-S (75%): Recycled rubber ("IIR-S" manufactured by Iwago Kogyo Co., Ltd., gel fraction 75%)

ゲル分率は、以下の方法で測定したものである。
(a)ゴム成分を秤量(W1)。
(b)秤量したゴム成分をトルエン中に室温で7日間浸漬。
(c)SUS304の#40メッシュを秤量(W2)。
(d)秤量したメッシュにて浸漬したゴム成分を濾過。
(e)メッシュ上の残渣物を室温にて7日間乾燥、さらに80℃にて24時間乾燥し、残渣物をメッシュごと秤量(W3)。
(f)ゲル分率=((W3−W2)/(W1))×100(%)
The gel fraction was measured by the following method.
(A) Weigh the rubber component (W1).
(B) The weighed rubber component is immersed in toluene at room temperature for 7 days.
(C) Weighing # 40 mesh of SUS304 (W2).
(D) The rubber component immersed in the weighed mesh is filtered.
(E) The residue on the mesh was dried at room temperature for 7 days, further dried at 80 ° C. for 24 hours, and the residue was weighed together with the mesh (W3).
(F) Gel fraction = ((W3-W2) / (W1)) x 100 (%)

(2)熱膨張性黒鉛
熱膨張性黒鉛SS−3:エア・ウォーター・ケミカル株式会社製「SS−3」(60質量%以上が粒度50メッシュ以上)
(3)無機充填材
亜リン酸アルミニウム:太平化学産業株式会社製「APA−100」(平均粒径50μm)
水酸化アルミニウム:住友化学株式会社製「C−301N」(平均粒径1.5μm)
(4)軟化剤
軟化剤LV−100:液状ゴム(JXTGエネルギー株式会社製「日石ポリブテンLV−100」)
(2) Thermally expandable graphite Thermally expandable graphite SS-3: "SS-3" manufactured by Air Water Chemical Inc. (60% by mass or more has a particle size of 50 mesh or more)
(3) Inorganic filler Aluminum phosphate: "APA-100" manufactured by Taihei Kagaku Sangyo Co., Ltd. (average particle size 50 μm)
Aluminum hydroxide: "C-301N" manufactured by Sumitomo Chemical Co., Ltd. (average particle size 1.5 μm)
(4) Softener Softener LV-100: Liquid rubber ("Nippon Oil Polybutene LV-100" manufactured by JXTG Energy Co., Ltd.)

2.評価
各実施例、比較例の耐火材について、以下の測定及び評価を行った。結果を表1〜表3に示す。
2. Evaluation The following measurements and evaluations were performed on the refractory materials of each Example and Comparative Example. The results are shown in Tables 1 to 3.

実施例1〜実施例11と、比較例1〜比較例2を比較すると、ゴム成分のゲル分率を1〜70質量%にすることによって、分散性を損なうことなくコールドフロー耐性を付与することできることが分かる。 Comparing Examples 1 to 11 with Comparative Examples 1 to 2, the cold flow resistance is imparted without impairing the dispersibility by setting the gel fraction of the rubber component to 1 to 70% by mass. I know I can do it.

実施例4及び実施例12〜13と、比較例3〜比較例4を比較すると、ゴム成分100質量部に対する熱膨張性黒鉛の含有量を5〜400質量部とすることによって、熱膨張性及び形状保持性を良好にすることができることが分かる。 Comparing Examples 4 and 12 to 13 with Comparative Examples 3 to 4, the heat-expandable graphite content is set to 5 to 400 parts by mass with respect to 100 parts by mass of the rubber component. It can be seen that the shape retention can be improved.

実施例4及び実施例14〜15と、比較例5〜比較例6を比較すると、ゴム成分100質量部に対する無機充填材の含有量を50〜600質量部とすることによって、可撓性及び難燃性を良好にすることができることが分かる。 Comparing Examples 4 and 14 to 15 with Comparative Examples 5 to 6, the flexibility and difficulty are achieved by setting the content of the inorganic filler to 50 to 600 parts by mass with respect to 100 parts by mass of the rubber component. It can be seen that the flammability can be improved.

評価方法の詳細は、以下の通りである。 The details of the evaluation method are as follows.

<コールドフロー耐性>
厚さ5mmの耐火材を50mm□に切断し、それを剥離紙に挟みながら10枚積層した。その積層物を、側面を下にして40℃のオーブンにて30日間静置し、10枚の耐火材のそれぞれに発生した凹みを測定した。そして、最も深かった凹みの深さを指標値とした。指標値が小さいほど、コールドフローによる変形が起きにくいことを意味しており、指標値に基づいて、コールドフロー耐性を以下の基準で評価した。
×:指標値が5mm以上
△:指標値が3mm以上5mm未満
○:指標値が1mm以上3mm未満
◎:指標値が1mm未満
<Cold flow resistance>
A refractory material having a thickness of 5 mm was cut into 50 mm square pieces, and 10 sheets were laminated while being sandwiched between release papers. The laminate was allowed to stand in an oven at 40 ° C. with the side side facing down for 30 days, and the dents generated in each of the 10 refractory materials were measured. Then, the depth of the deepest dent was used as an index value. The smaller the index value, the less likely it is that deformation due to cold flow will occur, and based on the index value, cold flow resistance was evaluated according to the following criteria.
X: Index value is 5 mm or more Δ: Index value is 3 mm or more and less than 5 mm ○: Index value is 1 mm or more and less than 3 mm ◎: Index value is less than 1 mm

<可撓性>
厚さ5mmの耐火材から試験片を1号ダンベルの形状に打ち抜き、試験片の中央を押さえた状態で試験片の両端を徐々に持ち上げ、試験片に亀裂が入った時点での角度(中央と一端を結ぶ直線と、中央と他端を結ぶ直線がなす角度)を測定し、以下の基準で評価した。
×:45度未満の角度で亀裂が発生した。
△:45度以上90度未満の角度で亀裂が発生した。
○:90度以上180度未満の角度で亀裂が発生した。
◎:180度の角度でも亀裂が発生しなかった。
<Flexibility>
Punch the test piece into the shape of a No. 1 dumbbell from a refractory material with a thickness of 5 mm, gradually lift both ends of the test piece while holding the center of the test piece, and the angle at the time when the test piece cracks (center and The angle between the straight line connecting one end and the straight line connecting the center and the other end) was measured and evaluated according to the following criteria.
X: A crack was generated at an angle of less than 45 degrees.
Δ: A crack was generated at an angle of 45 degrees or more and less than 90 degrees.
◯: A crack was generated at an angle of 90 degrees or more and less than 180 degrees.
⊚: No crack occurred even at an angle of 180 degrees.

<熱膨張性>
厚さ5mm、幅30mm、長さ30mmの耐火材を300℃で0.5時間熱処理し、その膨張倍率を測定し、以下の基準で評価した。
×:1倍以上3倍未満
△:3倍以上6倍未満
○:6倍以上10倍未満
◎:10倍以上
<Thermal expansion property>
A refractory material having a thickness of 5 mm, a width of 30 mm and a length of 30 mm was heat-treated at 300 ° C. for 0.5 hours, and the expansion ratio was measured and evaluated according to the following criteria.
×: 1 times or more and less than 3 times Δ: 3 times or more and less than 6 times ○: 6 times or more and less than 10 times ◎: 10 times or more

<形状保持性>
上記の熱膨張性を評価した後、その試料を指で持ち上げた際の形状安定性を目視と指触で以下の基準で評価した。
◎:指で持ち上げて30cmの高さから落としても型崩れがなかった。
○:指で持ち上げても型崩れがなかったが、30cmの高さから落とすと型崩れした。
△:形はあるが手で持つと崩壊した。
×:形もなく手でも持ち上がらなかった。
<Shape retention>
After evaluating the above thermal expansion property, the shape stability when the sample was lifted by a finger was evaluated visually and by touch according to the following criteria.
⊚: Even if it was lifted with a finger and dropped from a height of 30 cm, it did not lose its shape.
◯: It did not lose its shape when lifted with a finger, but it lost its shape when dropped from a height of 30 cm.
Δ: Although it has a shape, it collapsed when held by hand.
×: It had no shape and could not be lifted by hand.

<分散性(混錬性)>
実施例・比較例の配合に示した成分を、容量3リットルのニーダーミキサーを用いて120℃で2分間混練し、次いで混錬したコンパウンドを顕微鏡にて観察し、以下の基準で評価した。
◎:2mmφ以上のゴム成分が10cm□に0〜2個
○:2mmφ以上のゴム成分が10cm□に3〜5個
△:2mmφ以上のゴム成分が10cm□に6〜10個
×:2mmφ以上のゴム成分が10cm□に11個以上
<Dispersiveness (mixability)>
The components shown in the formulations of Examples and Comparative Examples were kneaded at 120 ° C. for 2 minutes using a kneader mixer having a capacity of 3 liters, and then the kneaded compound was observed under a microscope and evaluated according to the following criteria.
⊚: 0 to 2 rubber components of 2 mmφ or more in 10 cm □ ○: 3 to 5 rubber components of 2 mmφ or more in 10 cm □ △: 6 to 10 rubber components of 2 mmφ or more in 10 cm □ ×: 2 mmφ or more 11 or more rubber components in 10 cm □

<難燃性>
JIS K7201に準じて燃焼試験装置(スガ試験機(株)製,ON−1D型)を用いて酸素指数を測定し、以下の基準で難燃性を評価した。
×:30未満
△:酸素指数が30以上40未満
○:酸素指数が40以上50未満
◎:酸素指数が50以上
<Flame retardant>
The oxygen index was measured using a combustion test device (manufactured by Suga Test Instruments Co., Ltd., ON-1D type) according to JIS K7201, and the flame retardancy was evaluated according to the following criteria.
×: Less than 30 Δ: Oxygen index is 30 or more and less than 40 ○: Oxygen index is 40 or more and less than 50 ◎: Oxygen index is 50 or more

Claims (6)

ゴム成分、熱膨張性黒鉛、及び無機充填材を含有する耐火材であって、前記ゴム成分100質量部に対して、前記熱膨張性黒鉛の含有量が5〜400質量部、前記無機充填の含有量が50〜600質量部であり、前記ゴム成分は、ゲル分率が1〜70質量%であり、
前記ゴム成分は、再生ゴムと、未加硫ゴムを含む、耐火材。
Rubber component, a refractory material containing heat-expandable graphite, and an inorganic filler, wherein the rubber component 100 parts by weight, the content of the heat-expandable graphite is 5 to 400 parts by weight, the inorganic filler content is 50 to 600 parts by mass, the rubber component may gel fraction Ri 1 to 70% by mass,
The rubber component is a refractory material containing recycled rubber and unvulcanized rubber .
請求項1に記載の耐火材であって、
前記ゲル分率は、5〜50質量%である、耐火材。
The refractory material according to claim 1.
A refractory material having a gel fraction of 5 to 50% by mass.
請求項1又は請求項2に記載の耐火材であって、前記再生ゴムのゲル分率が30質量%以上である、耐火材。 The refractory material according to claim 1 or 2, wherein the recycled rubber has a gel fraction of 30% by mass or more. 請求項1〜請求項3の何れか1つに記載の耐火材であって、前記ゴム成分中の前記再生ゴムの割合が2〜90質量%である、耐火材。 The refractory material according to any one of claims 1 to 3, wherein the proportion of the recycled rubber in the rubber component is 2 to 90% by mass. 請求項1〜請求項4の何れか1つに記載の耐火材であって、
前記ゴム成分100質量部に対して、前記熱膨張性黒鉛の含有量は、10〜300質量部である、耐火材。
The refractory material according to any one of claims 1 to 4.
A refractory material in which the content of the thermally expandable graphite is 10 to 300 parts by mass with respect to 100 parts by mass of the rubber component.
請求項1〜請求項5の何れか1つに記載の耐火材であって、
前記無機充填は、亜リン酸アルミニウムを含有し、
前記ゴム成分100質量部に対して、前記亜リン酸アルミニウムの含有量は、10〜300質量部である、耐火材。
The refractory material according to any one of claims 1 to 5.
Wherein the inorganic filler contains aluminum phosphite,
A refractory material having an aluminum phosphite content of 10 to 300 parts by mass with respect to 100 parts by mass of the rubber component.
JP2020042117A 2020-03-11 2020-03-11 Refractory material Active JP6767594B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020042117A JP6767594B1 (en) 2020-03-11 2020-03-11 Refractory material
JP2020155982A JP6941214B2 (en) 2020-03-11 2020-09-17 Refractory material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020042117A JP6767594B1 (en) 2020-03-11 2020-03-11 Refractory material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020155982A Division JP6941214B2 (en) 2020-03-11 2020-09-17 Refractory material

Publications (2)

Publication Number Publication Date
JP6767594B1 true JP6767594B1 (en) 2020-10-14
JP2021143257A JP2021143257A (en) 2021-09-24

Family

ID=72745096

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020042117A Active JP6767594B1 (en) 2020-03-11 2020-03-11 Refractory material
JP2020155982A Active JP6941214B2 (en) 2020-03-11 2020-09-17 Refractory material

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020155982A Active JP6941214B2 (en) 2020-03-11 2020-09-17 Refractory material

Country Status (1)

Country Link
JP (2) JP6767594B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125056A (en) * 2002-10-02 2004-04-22 Hayakawa Rubber Co Ltd Sound insulation piping
JP2005180649A (en) * 2003-12-22 2005-07-07 A & A Material Corp Sound insulation fireproof two-layered pipe
JP2006274134A (en) * 2005-03-30 2006-10-12 Denki Kagaku Kogyo Kk Joint material and gasket
JP2010168440A (en) * 2009-01-21 2010-08-05 Showa Denko Kenzai Kk Thermally expansible and fire-resistant composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5380962B2 (en) * 2008-09-10 2014-01-08 横浜ゴム株式会社 Pneumatic studless tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125056A (en) * 2002-10-02 2004-04-22 Hayakawa Rubber Co Ltd Sound insulation piping
JP2005180649A (en) * 2003-12-22 2005-07-07 A & A Material Corp Sound insulation fireproof two-layered pipe
JP2006274134A (en) * 2005-03-30 2006-10-12 Denki Kagaku Kogyo Kk Joint material and gasket
JP2010168440A (en) * 2009-01-21 2010-08-05 Showa Denko Kenzai Kk Thermally expansible and fire-resistant composition

Also Published As

Publication number Publication date
JP6941214B2 (en) 2021-09-29
JP2021143323A (en) 2021-09-24
JP2021143257A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
JP6139018B2 (en) Fireproof resin composition
JP4450760B2 (en) Joint materials and gaskets
WO2018139494A1 (en) Thermally expandable fire-resistant sheet
JP2007297856A (en) Fire-resistant cover sheet for steel frame
JP3779291B2 (en) Thermally expandable fire protection composition
JP3746003B2 (en) Adhesive refractory rubber composition and sheet
JP6767594B1 (en) Refractory material
US20240368365A1 (en) Firm silicone rubber foam thermal insulation
JP6960028B2 (en) Refractory material
JP2002226659A (en) Flame retardant polyvinyl chloride resin molded article
JP2006087819A (en) Joint filling material and gasket for fire prevention
JP4130009B2 (en) Refractory resin composition and sheet molded body using the same
JP2024088660A (en) Fire-resistant resin composition, fire-resistant material, fire-resistant laminate, partition penetration processing structure and partition penetration processing method
JP7202736B1 (en) battery
JP2007160690A (en) Fireproofing sheet for steel frame
JP7018108B1 (en) Refractory material
EP3424999A1 (en) Refractory elastomer composition and molded article thereof
JP2000313748A (en) Flame retardant vinyl chloride-based resin molded product
JP2022026587A (en) Refractory material
JP6896134B1 (en) Thermally expandable putty composition
JP7281022B1 (en) Fire-resistant silicone rubber composition, method for producing the same, molding and battery
JP3558915B2 (en) Flame retardant vinyl chloride resin molding
JPH11181204A (en) Flame-retardant vinyl chloride resin molded product
JP7142139B1 (en) Inflatable refractory material
JP2024069089A (en) Multilayer body for sealing materials, sealing material and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200330

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200330

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200917

R150 Certificate of patent or registration of utility model

Ref document number: 6767594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250