JP6766689B2 - Relocation detection device, relocation detection system and relocation detection method - Google Patents

Relocation detection device, relocation detection system and relocation detection method Download PDF

Info

Publication number
JP6766689B2
JP6766689B2 JP2017036107A JP2017036107A JP6766689B2 JP 6766689 B2 JP6766689 B2 JP 6766689B2 JP 2017036107 A JP2017036107 A JP 2017036107A JP 2017036107 A JP2017036107 A JP 2017036107A JP 6766689 B2 JP6766689 B2 JP 6766689B2
Authority
JP
Japan
Prior art keywords
vibration
relocation
abnormality
relocation detection
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017036107A
Other languages
Japanese (ja)
Other versions
JP2018141704A (en
Inventor
聖悟 林
聖悟 林
中村 満
満 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2017036107A priority Critical patent/JP6766689B2/en
Priority to CN201810168319.3A priority patent/CN108507668B/en
Publication of JP2018141704A publication Critical patent/JP2018141704A/en
Application granted granted Critical
Publication of JP6766689B2 publication Critical patent/JP6766689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • General Factory Administration (AREA)

Description

本発明は、移設検知装置、移設検知システム及び移設検知方法に関する。 The present invention relates to a relocation detection device, a relocation detection system, and a relocation detection method.

移設検知装置は、振動検出手段が機械の振動を検出した場合に移設と判定し、機械の起動を禁止する。特許文献1に記載の移設検知装置は、地震による誤検知を回避する為に、振動検出手段が他の振動検出手段と同時に振動を検出した場合は移設と判定せず、機械の起動を許可する。 When the vibration detecting means detects the vibration of the machine, the relocation detecting device determines that the relocation is performed and prohibits the start of the machine. The relocation detection device described in Patent Document 1 does not determine relocation when the vibration detecting means detects vibration at the same time as other vibration detecting means in order to avoid false detection due to an earthquake, and permits the start of the machine. ..

特許第5948834号公報Japanese Patent No. 5948834

機械を設置する場所の違いによって、機械が地震による振動と共振する時刻にずれを生じる可能性があった。該場合、複数の振動検出手段のうち振動を検出したものと、振動を検出しないものとが出てしまい、移設検知装置は地震であっても移設と判定してしまう可能性があった。 Due to the difference in the location where the machine is installed, there is a possibility that the time when the machine resonates with the vibration caused by the earthquake may be different. In this case, among the plurality of vibration detecting means, one that detects vibration and one that does not detect vibration may appear, and the relocation detection device may determine that the relocation is due to an earthquake.

本発明の目的は、地震による誤検知を防止できる移設検知装置、移設検知システム及び移設検知方法を提供することである。 An object of the present invention is to provide a relocation detection device, a relocation detection system, and a relocation detection method capable of preventing false detection due to an earthquake.

請求項1に係る移設検知装置は、互いに異なる地点に設置した複数の機械の夫々に対応して設け、対応する前記機械の振動を検出する振動検出手段が前記機械の振動を検出した場合に、対応する前記機械の起動を禁止する制御手段を備えた移設検知装置において、前記制御手段は、前記振動検出手段が振動を検出した場合、自地点に設置した前記機械に対応する前記振動検出手段が検出した振動の情報である振動情報を取得する第一取得手段と、他地点に設置した前記機械に対応する他の振動検出手段が検出した振動の情報である振動情報を、他の移設検知装置から通信手段を介して取得する第二取得手段と、前記第一取得手段及び前記第二取得手段が取得した夫々の前記振動情報に基づき、同時刻に振動を検出したか判定する判定手段と、前記判定手段の判定結果の情報である判定結果情報を、前記他の移設検知装置との間で前記通信手段を介して送受信する送受信手段と、前記送受信手段によって送受信した前記判定結果情報に基づき、前記複数の機械の夫々に対応する複数の前記振動検出手段のうち、前記同時刻に振動を検出した前記振動検出手段が所定割合以上か判断する判断手段と、電池切れの異常を検出する異常検出手段と、前記通信手段を介して通信する複数の前記移設検知装置のうち前記異常検出手段が異常を検出した前記移設検知装置が有るか判断する異常判断手段とを備え、前記判断手段は、前記異常判断手段が複数の前記移設検知装置のうち異常を生じた前記移設検知装置が有ると判断した場合、前記送受信手段が送受信した複数の前記判定結果情報に基づき、前記複数の機械の夫々に対応する複数の前記振動検出手段の数から異常を生じた前記移設検知装置の数を差し引いた上で、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上か判断し、前記制御手段は、前記判断手段が、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上と判断した場合、対応する前記機械の起動を禁止せず、前記異常検出手段が異常を検出した場合、対応する前記機械の起動を禁止することを特徴とする。移設検知装置は、振動検出手段が機械の振動を検出すると移設と判定し、機械の起動を禁止する。地震が起きた場合、複数の機械に対応する複数の振動検出手段において同時刻で振動を検出する筈である。しかし機械の設置する場所に応じて地震の振動に対する共振時刻にずれが生じ、機械の振動を検出する時刻にずれが生じる場合がある。故に地震による振動であっても、機械を設置する場所によっては、振動情報が他の振動情報と一致しない場合がある。本態様は、複数の振動検出手段のうち所定割合以上が同時刻に振動を検出した場合、地震による誤検知と判断し、機械の起動を禁止しない。故に本態様は地震による誤検知を効果的に防止できる。尚、通信手段の通信方式は有線、無線の何れでもよい。機械の数は、多ければ多い方が好ましい。機械の数が多ければ、同時刻で振動を検出した割合を精度良く算出できるからである。振動検出手段は、機械に生じる振動を例えば加速度センサを用いて検出してもよい。
移設検知装置が故障して異常を生じると、移設検知装置は振動検出手段で機械の振動を正しく検出できない。本態様は、複数の移設検知装置のうち異常を生じた移設検知装置が有る場合、送受信手段が送受信した複数の判定結果情報に基づき、複数の機械の夫々に対応する複数の振動検出手段の数から異常を生じた移設検知装置の数を差し引いた上で、同時刻に振動を検出した振動検出手段が所定割合以上か判断する。故に本態様は、正常に動作する移設検知装置の振動検出手段の中で、同時刻で振動を検出した振動検出手段の割合を算出できるので、地震による振動か否かを精度良く判定できる。故に本態様は地震による誤検知を効果的に防止できる。本態様は、複数の移設検知装置の一部の移設検知装置に異常が生じても、その他の移設検知装置の判定結果情報を用いて、同時刻に振動を検出した振動検出手段が所定割合以上か判断するので、フォールトトレラントの向上を図ることができる。尚、「異常」とは、例えば移設検知装置が電池で駆動するものであれば、バッテリ電圧が閾値以下である状態を異常としてもよく、振動検出手段の振動を検出する機能の一部又は全部が不能となる状態(故障)を異常としみなしてもよい。
The relocation detection device according to claim 1 is provided corresponding to each of a plurality of machines installed at different points, and when the vibration detecting means for detecting the vibration of the corresponding machine detects the vibration of the machine. In the relocation detection device provided with the control means for prohibiting the start of the corresponding machine, when the vibration detection means detects the vibration, the vibration detection means corresponding to the machine installed at its own point causes the control means. The first acquisition means for acquiring the vibration information which is the detected vibration information and the vibration information which is the vibration information detected by the other vibration detection means corresponding to the machine installed at another point are transferred to another relocation detection device. A second acquisition means acquired from the above via a communication means, a determination means for determining whether or not vibration was detected at the same time based on the vibration information acquired by the first acquisition means and the second acquisition means, respectively. Based on the transmission / reception means for transmitting / receiving the determination result information, which is the information of the determination result of the determination means, to / from the other relocation detection device via the communication means and the determination result information transmitted / received by the transmission / reception means. Among the plurality of vibration detecting means corresponding to each of the plurality of machines, a determining means for determining whether the vibration detecting means for detecting vibration at the same time is equal to or higher than a predetermined ratio, and an abnormality detection for detecting an abnormality of dead battery. The means and an abnormality determination means for determining whether or not there is the relocation detection device for which the abnormality detection means has detected an abnormality among a plurality of the relocation detection devices communicating via the communication means are provided , and the determination means includes the means. When the abnormality determination means determines that there is the relocation detection device that has caused an abnormality among the plurality of the relocation detection devices, it corresponds to each of the plurality of machines based on the plurality of determination result information transmitted and received by the transmission / reception means. After subtracting the number of the relocation detecting devices that have caused an abnormality from the number of the plurality of the vibration detecting means, it is determined whether the vibration detecting means that detects the vibration at the same time is equal to or more than the predetermined ratio, and the control means. is pre SL determining means, when the said vibration detecting means detects the vibration at the same time it is determined that the predetermined ratio or more, without disabling the activation of the corresponding machine, the abnormality detecting means detects an abnormality In this case, the start of the corresponding machine is prohibited . When the vibration detecting means detects the vibration of the machine, the relocation detecting device determines that the relocation is performed and prohibits the start of the machine. When an earthquake occurs, vibrations should be detected at the same time by a plurality of vibration detecting means corresponding to a plurality of machines. However, the resonance time with respect to the vibration of the earthquake may deviate depending on the place where the machine is installed, and the time for detecting the vibration of the machine may deviate. Therefore, even if the vibration is caused by an earthquake, the vibration information may not match other vibration information depending on the place where the machine is installed. In this embodiment, when a predetermined ratio or more of the plurality of vibration detecting means detects vibration at the same time, it is determined that the vibration is erroneously detected due to an earthquake, and the start of the machine is not prohibited. Therefore, this aspect can effectively prevent false detection due to an earthquake. The communication method of the communication means may be either wired or wireless. The larger the number of machines, the better. This is because if the number of machines is large, the ratio of vibrations detected at the same time can be calculated accurately. The vibration detecting means may detect the vibration generated in the machine by using, for example, an acceleration sensor.
If the relocation detection device fails and an abnormality occurs, the relocation detection device cannot correctly detect the vibration of the machine by the vibration detecting means. In this embodiment, when there is a relocation detection device that has an abnormality among a plurality of relocation detection devices, the number of a plurality of vibration detection means corresponding to each of the plurality of machines is based on a plurality of determination result information transmitted / received by the transmission / reception means. After subtracting the number of relocation detection devices that have caused an abnormality from, it is determined whether or not the vibration detecting means that detects vibration at the same time has a predetermined ratio or more. Therefore, in this embodiment, the ratio of the vibration detecting means that detects the vibration at the same time can be calculated among the vibration detecting means of the relocation detecting device that operates normally, so that it is possible to accurately determine whether or not the vibration is caused by an earthquake. Therefore, this aspect can effectively prevent false detection due to an earthquake. In this embodiment, even if an abnormality occurs in some of the relocation detection devices of the plurality of relocation detection devices, the vibration detection means that detects the vibration at the same time by using the judgment result information of the other relocation detection devices has a predetermined ratio or more. Therefore, it is possible to improve the fault tolerant. The "abnormality" may mean, for example, if the relocation detection device is driven by a battery, a state in which the battery voltage is below the threshold value may be regarded as an abnormality, and a part or all of the function of detecting the vibration of the vibration detecting means. The state (failure) in which is impossible may be regarded as an abnormality.

請求項2に係る移設検知装置の前記振動検出手段は、前記機械に固定し、前記制御手段は、前記機械が稼働中か判断する稼働判断手段と、前記稼働判断手段が前記機械は稼働中と判断した場合、前記判定結果情報を無効化する無効化手段とを備え、前記判断手段は、前記送受信手段によって送受信した前記判定結果情報のうち、前記無効化手段が無効化した前記判定結果情報を考慮しないのがよい。振動検出手段は機械に固定するので、例えば工作機械のような機械が稼働して被削材を加工すると、機械は振動する場合がある。加工が原因で機械が振動すると、振動検出手段は機械の振動を正しく検出できない。機械の移設は、機械が稼働していない時に起きる。本態様は、機械が稼働中の場合は判定結果情報を無効化し、他の移設検知装置との間で通信手段を介して送受信した複数の判定結果情報のうち、無効化した判定結果情報を考慮しない。故に本態様は地震による振動か否かを精度良く判定できるので、地震による誤検知を効果的に防止できる。尚「稼働」とは、例えば機械の電源がオン状態であること、機械が動作すること、又は被削材を工具で切削する加工中であること等を意味してもよい。「考慮しない」とは、判断手段が行う所定割合の計算に含めないという意味である。 The vibration detecting means of the relocation detection device according to claim 2 is fixed to the machine, the control means is an operation determining means for determining whether the machine is operating, and the operation determining means is operating the machine. When a determination is made, the determination means includes an invalidation means for invalidating the determination result information, and the determination means uses the determination result information invalidated by the invalidation means among the determination result information transmitted / received by the transmission / reception means. It is better not to consider it. Since the vibration detecting means is fixed to the machine, the machine may vibrate when a machine such as a machine tool is operated to process the work material. When the machine vibrates due to machining, the vibration detecting means cannot correctly detect the vibration of the machine. Machine relocation occurs when the machine is not in operation. In this embodiment, the determination result information is invalidated when the machine is in operation, and the invalidated determination result information is taken into consideration among the plurality of determination result information transmitted / received to / from the other relocation detection device via the communication means. do not do. Therefore, in this embodiment, it is possible to accurately determine whether or not the vibration is caused by an earthquake, so that false detection due to an earthquake can be effectively prevented. Note that "operation" may mean, for example, that the power of the machine is on, that the machine is operating, that the work material is being cut with a tool, and the like. "Not considered" means not included in the calculation of the predetermined ratio performed by the judgment means.

請求項に係る移設検知システムは、互いに異なる地点に設置した複数の機械の夫々に対応して設け、対応する前記機械に生じる振動を検出する振動検出手段が振動を検出した場合に、対応する前記機械の起動を禁止する複数の移設検知装置と、前記複数の移設検知装置と通信手段を介して通信可能であって、振動を検出する振動検出手段を有するマスター装置とを備えた移設検知システムにおいて、前記複数の移設検知装置の夫々は、前記振動検出手段が振動を検出した場合に、前記振動検出手段が検出した振動の情報である第一振動情報を取得する第一取得手段と、前記マスター装置の前記振動検出手段が検出した振動の情報である第二振動情報を、前記通信手段を介して取得する第二取得手段と、前記第一取得手段及び前記第二取得手段が取得した前記第一振動情報及び前記第二振動情報とに基づき、同時刻に振動を検出したか判定する判定手段と、前記判定手段の判定結果の情報である判定結果情報を、前記マスター装置に送信する送信手段と、電池切れの異常を検出する異常検出手段とを備え、前記マスター装置は、前記複数の移設検知装置の夫々の前記送信手段が送信した前記判定結果情報を受信する受信手段と、前記受信手段が受信した複数の前記判定結果情報に基づき、前記複数の移設検知装置に対応する複数の前記振動検出手段のうち、前記同時刻に振動を検出した前記振動検出手段が所定割合以上か判断する判断手段と、前記判断手段が、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上と判断した場合、前記複数の機械の起動を禁止しないように前記複数の移設検知装置を制御する起動制御手段と、前記通信手段を介して通信する前記複数の移設検知装置のうち前記異常検出手段が異常を検出した前記移設検知装置が有るか判断する異常判断手段とを備え、前記判断手段は、前記異常判断手段が前記複数の移設検知装置のうち異常を検出した前記移設検知装置が有ると判断した場合、前記受信手段が受信した複数の前記判定結果情報に基づき、前記複数の機械の夫々に対応する複数の前記振動検出手段の数から異常を検出した前記移設検知装置の数を差し引いた上で、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上か判断し、前記起動制御手段は、前記判断手段が、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上と判断した場合、前記複数の機械の起動を禁止しないように前記複数の移設検知装置を制御し、前記異常判断手段が異常を検出した前記移設検知装置が有ると判断した場合、異常を検出した前記移設検知装置に対応する前記機械の起動を禁止するように前記複数の移設検知装置を制御すること
を特徴とする。移設検知システムにおいて、移設検知装置は、振動検出手段が機械の振動を検出すると移設と判定し、機械の起動を禁止する。地震が起きた場合、複数の機械に対応する複数の振動検出手段において同時刻で振動を検出する筈である。しかし機械の設置する場所に応じて地震の振動に対する共振時刻にずれが生じ、機械の振動を検出する時刻にずれが生じる場合がある。故に地震による振動であっても、機械を設置する場所によっては、振動情報が他の振動情報と一致しない場合がある。移設検知装置は自身の振動検出手段が検出した振動の第一振動情報と、第一マスター装置から取得した第二振動情報とに基づき、同時刻に振動を検出したか否か判定し、その判定結果情報をマスター装置に送信する。マスター装置は、複数の移設検知装置から受信した複数の判定結果情報に基づき、複数の移設検知装置に対応する複数の振動検出手段のうち、同時刻に振動を検出した振動検出手段が所定割合以上か判断する。同時刻に振動を検出した振動検出手段が所定割合以上の場合、マスター装置は複数の機械の起動を禁止しないように複数の移設検知装置を制御する。故に本態様は地震による誤検知を効果的に防止できる。尚、通信手段の通信方式は有線、無線の何れでもよい。機械の数は、多ければ多い方が好ましい。機械の数が多ければ、同時刻で振動を検出した割合を精度良く算出できるからである。振動検出手段は、機械に生じる振動を例えば加速度センサを用いて検出してもよい。
The relocation detection system according to claim 3 is provided corresponding to each of a plurality of machines installed at different points, and corresponds to a case where the vibration detecting means for detecting the vibration generated in the corresponding machine detects the vibration. A relocation detection system including a plurality of relocation detection devices for prohibiting the start-up of the machine, and a master device capable of communicating with the plurality of relocation detection devices via a communication means and having a vibration detection means for detecting vibration. In each of the plurality of relocation detection devices, the first acquisition means for acquiring the first vibration information which is the vibration information detected by the vibration detection means when the vibration detection means detects the vibration, and the first acquisition means. The second acquisition means that acquires the second vibration information, which is the vibration information detected by the vibration detection means of the master device, via the communication means, and the first acquisition means and the second acquisition means acquired by the second acquisition means. Based on the first vibration information and the second vibration information, a determination means for determining whether vibration is detected at the same time and a determination result information which is information on the determination result of the determination means are transmitted to the master device. The master device includes means and an abnormality detecting means for detecting an abnormality of running out of battery, and the master device includes a receiving means for receiving the determination result information transmitted by each of the transmitting means of the plurality of relocation detecting devices, and the receiving means. Based on the plurality of determination result information received by the means, it is determined whether or not the vibration detecting means that has detected the vibration at the same time out of the plurality of the vibration detecting means corresponding to the plurality of relocation detecting devices has a predetermined ratio or more. When the determination means and the determination means determine that the vibration detection means that detects vibration at the same time is equal to or greater than the predetermined ratio, the plurality of relocation detection devices are controlled so as not to prohibit the activation of the plurality of machines. The determination means is provided with an activation control means for determining whether or not there is a relocation detection device for which the abnormality detection means has detected an abnormality among the plurality of relocation detection devices communicating via the communication means. When the abnormality determination means determines that there is the relocation detection device that has detected an abnormality among the plurality of relocation detection devices, the plurality of machines of the plurality of machines are based on the plurality of determination result information received by the reception means. After subtracting the number of the relocation detecting devices that have detected an abnormality from the number of the plurality of vibration detecting means corresponding to each, it is determined whether or not the vibration detecting means that detected the vibration at the same time is the predetermined ratio or more. When the determination means determines that the vibration detecting means that detects the vibration at the same time is equal to or more than the predetermined ratio, the activation control means may perform the plurality of vibrations. When the plurality of relocation detection devices are controlled so as not to prohibit the start of the machine and the abnormality determination means determines that there is the relocation detection device that has detected the abnormality, the relocation detection device corresponding to the relocation detection device that has detected the abnormality. It is characterized in that the plurality of relocation detection devices are controlled so as to prohibit the start-up of the machine . In the relocation detection system, the relocation detection device determines that the relocation is when the vibration detecting means detects the vibration of the machine, and prohibits the start of the machine. When an earthquake occurs, vibrations should be detected at the same time by a plurality of vibration detecting means corresponding to a plurality of machines. However, the resonance time with respect to the vibration of the earthquake may deviate depending on the place where the machine is installed, and the time for detecting the vibration of the machine may deviate. Therefore, even if the vibration is caused by an earthquake, the vibration information may not match other vibration information depending on the place where the machine is installed. The relocation detection device determines whether or not vibration is detected at the same time based on the first vibration information of the vibration detected by its own vibration detection means and the second vibration information acquired from the first master device, and the determination is made. Send the result information to the master device. In the master device, among the plurality of vibration detecting means corresponding to the plurality of relocation detecting devices, the vibration detecting means that detects the vibration at the same time is a predetermined ratio or more based on the plurality of determination result information received from the plurality of relocation detecting devices. To judge. When the vibration detecting means that detects vibration at the same time is equal to or more than a predetermined ratio, the master device controls a plurality of relocation detecting devices so as not to prohibit the activation of the plurality of machines. Therefore, this aspect can effectively prevent false detection due to an earthquake. The communication method of the communication means may be either wired or wireless. The larger the number of machines, the better. This is because if the number of machines is large, the ratio of vibrations detected at the same time can be calculated accurately. The vibration detecting means may detect the vibration generated in the machine by using, for example, an acceleration sensor.

設検知装置が故障して異常を生じると、移設検知装置は振動検出手段で機械の振動を正しく検出できない。複数の移設検知装置のうち異常を生じた移設検知装置が有る場合、本態様のマスター装置は、複数の機械の夫々に対応する複数の振動検出手段の数から異常を生じた移設検知装置の数を差し引いた上で、同時刻に振動を検出した振動検出手段が所定割合以上か判断する。故に本態様は、正常に動作する移設検知装置の振動検出手段の中で、同時刻で振動を検出した振動検出手段の割合を算出できるので、地震による振動か否かを精度良く判定できる。故に本態様は地震による誤検知を効果的に防止できる。本態様は、複数の移設検知装置の一部の移設検知装置に異常が生じても、その他の移設検知装置の判定結果情報を用いて、同時刻に振動を検出した振動検出手段が所定割合以上か判断するので、フォールトトレラントの向上を図ることができる。尚、「異常」とは、例えば移設検知装置が電池で駆動するものであれば、バッテリ電圧が閾値以下である状態を異常としてもよく、振動検出手段の振動を検出する機能の一部又は全部が不能となる状態(故障)を異常としみなしてもよい。 When shifting設検known devices occurs an abnormality has failed, the relocation detector can not correctly detect the vibration of the mechanical vibration detecting means. When there is a relocation detection device that has caused an abnormality among a plurality of relocation detection devices, the master device of this embodiment is the number of relocation detection devices that have caused an abnormality from the number of a plurality of vibration detection means corresponding to each of the plurality of machines. After subtracting, it is determined whether or not the vibration detecting means that detects the vibration at the same time has a predetermined ratio or more. Therefore, in this embodiment, the ratio of the vibration detecting means that detects the vibration at the same time can be calculated among the vibration detecting means of the relocation detecting device that operates normally, so that it is possible to accurately determine whether or not the vibration is caused by an earthquake. Therefore, this aspect can effectively prevent false detection due to an earthquake. In this embodiment, even if an abnormality occurs in some of the relocation detection devices of the plurality of relocation detection devices, the vibration detection means that detects the vibration at the same time by using the judgment result information of the other relocation detection devices has a predetermined ratio or more. Therefore, it is possible to improve the fault tolerant. The "abnormality" may mean, for example, if the relocation detection device is driven by a battery, a state in which the battery voltage is below the threshold value may be regarded as an abnormality, and a part or all of the function of detecting the vibration of the vibration detecting means. The state (failure) in which is impossible may be regarded as an abnormality.

請求項に係る移設検知システムの前記振動検出手段は、前記機械に固定し、前記複数の移設検知装置の夫々は、前記機械が稼働中か判断する稼働判断手段と、前記稼働判断手段が前記機械は稼働中と判断した場合に、前記判定結果情報を無効化する無効化手段とを備え、前記マスター装置の前記判断手段は、前記受信手段が受信した前記判定結果情報のうち、前記無効化手段が無効化した前記判定結果情報を考慮しないのがよい。振動検出手段は機械に固定するので、例えば工作機械のような機械が稼働して被削材を加工すると、機械は振動する場合がある。加工が原因で機械が振動すると、振動検出手段は機械の振動を正しく検出できない。機械の移設は、機械が稼働していない時に起きる。本態様の移設検知装置は、機械が稼働中の場合は判定結果情報を無効化する。マスター装置は、複数の移設検知装置との間で通信手段を介して受信した複数の判定結果情報のうち、無効化した判定結果情報を考慮しない。故に本態様は地震による振動か否かを精度良く判定できるので、地震による誤検知を効果的に防止できる。尚「稼働」とは、例えば機械の電源がオン状態であること、機械が動作すること、又は被削材を工具で切削する加工中であること等を意味してもよい。「考慮しない」とは、判断手段が行う所定割合の計算に含めないという意味である。 The vibration detection means of the relocation detection system according to claim 4 is fixed to the machine, and each of the plurality of relocation detection devices is an operation determination means for determining whether the machine is in operation, and the operation determination means is the operation determination means. When the machine is determined to be in operation, the determination means for invalidating the determination result information is provided, and the determination means of the master device invalidates the determination result information received by the receiving means. It is preferable not to consider the determination result information invalidated by the means. Since the vibration detecting means is fixed to the machine, the machine may vibrate when a machine such as a machine tool is operated to process the work material. When the machine vibrates due to machining, the vibration detecting means cannot correctly detect the vibration of the machine. Machine relocation occurs when the machine is not in operation. The relocation detection device of this aspect invalidates the determination result information when the machine is in operation. The master device does not consider the invalidated determination result information among the plurality of determination result information received via the communication means with the plurality of relocation detection devices. Therefore, in this embodiment, it is possible to accurately determine whether or not the vibration is caused by an earthquake, so that false detection due to an earthquake can be effectively prevented. Note that "operation" may mean, for example, that the power of the machine is on, that the machine is operating, that the work material is being cut with a tool, and the like. "Not considered" means not included in the calculation of the predetermined ratio performed by the judgment means.

請求項に係る移設検知装置の移設検知方法は、互いに異なる地点に設置した複数の機械の夫々に対応して設け、対応する前記機械の振動を検出する振動検出手段が前記機械の振動を検出した場合に、対応する前記機械の起動を禁止する制御工程を行う移設検知装置の移設検知方法において、前記制御工程は、前記振動検出手段が振動を検出した場合、自地点に設置した前記機械に対応する前記振動検出手段が検出した振動の情報である振動情報を取得する第一取得工程と、他地点に設置した前記機械に対応する他の振動検出手段が検出した振動の情報である振動情報を、他の移設検知装置から通信手段を介して取得する第二取得工程と、前記第一取得工程及び前記第二取得工程で取得した夫々の前記振動情報に基づき、同時刻に振動を検出したか判定する判定工程と、前記判定工程の判定結果の情報である判定結果情報を、前記他の移設検知装置との間で前記通信手段を介して送受信する送受信工程と、前記送受信工程によって送受信した前記判定結果情報に基づき、前記複数の機械の夫々に対応する複数の前記振動検出手段のうち、前記同時刻に振動を検出した前記振動検出手段が所定割合以上か判断する判断工程と、電池切れの異常を検出したか判断する異常検出判断工程と、前記通信手段を介して通信する複数の前記移設検知装置のうち前記異常検出判断工程にて異常を検出したと判断した前記移設検知装置が有るか判断する異常判断工程とを備え、前記判断工程では、前記異常判断工程にて複数の前記移設検知装置のうち異常を生じた前記移設検知装置が有ると判断した場合、前記送受信工程にて送受信した複数の前記判定結果情報に基づき、前記複数の機械の夫々に対応する複数の前記振動検出手段の数から異常を生じた前記移設検知装置の数を差し引いた上で、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上か判断し、前記制御工程では、前記判断工程にて、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上と判断した場合、対応する前記機械の起動を禁止せず、前記異常判断工程にて異常を生じた前記移設検知装置が有ると判断した場合、対応する前記機械の起動を禁止することを特徴とする。故に移設検知装置は上記各工程を行うことで、請求項1に記載の効果を得ることができる。 The relocation detection method of the relocation detection device according to claim 5 is provided corresponding to each of a plurality of machines installed at different points, and the vibration detecting means for detecting the vibration of the corresponding machine detects the vibration of the machine. In the relocation detection method of the relocation detection device that performs the control step of prohibiting the start of the corresponding machine, the control step is performed on the machine installed at the own point when the vibration detection means detects the vibration. The first acquisition step of acquiring vibration information which is the information of the vibration detected by the corresponding vibration detecting means, and the vibration information which is the information of the vibration detected by the other vibration detecting means corresponding to the machine installed at another point. Was detected at the same time based on the second acquisition process acquired from another relocation detection device via the communication means and the vibration information acquired in each of the first acquisition process and the second acquisition process. A transmission / reception step of transmitting / receiving the determination result information, which is information on the determination result of the determination process, to / from the other relocation detection device via the communication means, and a transmission / reception process of the transmission / reception process. Based on the determination result information, a determination step of determining whether or not the vibration detection means that detects vibration at the same time among the plurality of vibration detection means corresponding to each of the plurality of machines is at least a predetermined ratio, and a battery exhaustion. There is an abnormality detection determination step for determining whether or not an abnormality has been detected, and the relocation detection device for determining that an abnormality has been detected in the abnormality detection determination step among a plurality of the relocation detection devices communicating via the communication means. In the determination step, when it is determined that there is a relocation detection device that has caused an abnormality among a plurality of the relocation detection devices in the abnormality determination step, transmission / reception is performed in the transmission / reception step. Based on the plurality of determination result information, the number of the relocation detecting devices having an abnormality is subtracted from the number of the plurality of vibration detecting means corresponding to each of the plurality of machines, and then the vibration is generated at the same time. detected the vibration detecting means determines whether the predetermined ratio or more, and in the control step, at pre-Symbol decision step, when the said vibration detecting means detects the vibration at the same time it is determined that the predetermined ratio or more, the corresponding When it is determined that there is a relocation detection device that has caused an abnormality in the abnormality determination step without prohibiting the start-up of the machine, the start-up of the corresponding machine is prohibited . Therefore, the relocation detection device can obtain the effect according to claim 1 by performing each of the above steps.

請求項に係る移設検知システムの移設検知方法は、互いに異なる地点に設置した複数の機械の夫々に対応して設け、対応する前記機械に生じる振動を検出する振動検出手段が振動を検出した場合に、対応する前記機械の起動を禁止する複数の移設検知装置と、前記複数の移設検知装置と通信手段を介して通信可能であって、振動を検出する振動検出手段を有するマスター装置とを備えた移設検知システムの移設検知方法において、前記複数の移設検知装置の夫々が行う装置側工程と、前記マスター装置が行うマスター側工程とを備え、前記装置側工程は、前記振動検出手段が振動を検出した場合に、前記振動検出手段が検出した振動の情報である第一振動情報を取得する第一取得工程と、前記マスター装置の前記振動検出手段が検出した振動の情報である第二振動情報を、前記通信手段を介して取得する第二取得工程と、前記第一取得工程及び前記第二取得工程で取得した前記第一振動情報及び前記第二振動情報とに基づき、同時刻に振動を検出したか判定する判定工程と、前記判定工程の判定結果の情報である判定結果情報を、前記マスター装置に送信する送信工程と、電池切れの異常を検出する異常検出工程とを備え、前記マスター側工程は、前記複数の移設検知装置の夫々の前記送信工程で送信した前記判定結果情報を受信する受信工程と、前記受信工程で受信した複数の前記判定結果情報に基づき、前記複数の移設検知装置に対応する複数の前記振動検出手段のうち、前記同時刻に振動を検出した前記振動検出手段が所定割合以上か判断する判断工程と、前記判断工程で、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上と判断した場合、前記複数の機械の起動を禁止しないように前記複数の移設検知装置を制御する起動制御工程と、前記通信手段を介して通信する前記複数の移設検知装置のうち前記異常検出工程にて異常を検出した前記移設検知装置が有るか判断する異常判断工程とを備え、前記判断工程では、前記異常判断工程にて前記複数の移設検知装置のうち異常を検出した前記移設検知装置が有ると判断した場合、前記受信工程で受信した複数の前記判定結果情報に基づき、前記複数の機械の夫々に対応する複数の前記振動検出手段の数から異常を検出した前記移設検知装置の数を差し引いた上で、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上か判断し、前記起動制御工程では、前記判断工程にて、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上と判断した場合、前記複数の機械の起動を禁止しないように前記複数の移設検知装置を制御し、前記異常判断工程にて異常を検出した前記移設検知装置が有ると判断した場合、異常を検出した前記移設検知装置に対応する前記機械の起動を禁止するように前記複数の移設検知装置を制御することを特徴とする。故に移設検知システムの移設検知装置とマスター装置は、上記装置側工程とマスター側工程とを夫々行うことで、請求項に記載の効果を得ることができる。 The relocation detection method of the relocation detection system according to claim 6 is provided for each of a plurality of machines installed at different points, and the vibration detecting means for detecting the vibration generated in the corresponding machines detects the vibration. In addition, a plurality of relocation detection devices for prohibiting the start-up of the corresponding machine, and a master device capable of communicating with the plurality of relocation detection devices via communication means and having a vibration detection means for detecting vibration are provided. The relocation detection method of the relocation detection system includes a device-side process performed by each of the plurality of relocation detection devices and a master-side process performed by the master device. In the device-side process, the vibration detecting means generates vibration. When detected, the first acquisition step of acquiring the first vibration information which is the information of the vibration detected by the vibration detecting means and the second vibration information which is the information of the vibration detected by the vibration detecting means of the master device. Is generated at the same time based on the second acquisition step acquired via the communication means, the first acquisition step, and the first vibration information and the second vibration information acquired in the second acquisition step. The master includes a determination step of determining whether or not it has been detected, a transmission step of transmitting determination result information which is information on the determination result of the determination step to the master device, and an abnormality detection step of detecting an abnormality of dead battery. The side process is a receiving step of receiving the determination result information transmitted in each of the transmitting steps of the plurality of relocation detection devices, and the plurality of relocation detections based on the plurality of determination result information received in the receiving step. Among the plurality of vibration detecting means corresponding to the apparatus, the determination step of determining whether the vibration detecting means that has detected the vibration at the same time is equal to or higher than a predetermined ratio, and the determination step of detecting the vibration at the same time. When the vibration detecting means determines that the ratio is equal to or greater than the predetermined ratio, the activation control step of controlling the plurality of relocation detection devices so as not to prohibit the activation of the plurality of machines, and the plurality of relocations communicating via the communication means. Among the detection devices, the abnormality determination step of determining whether or not the relocation detection device that has detected the abnormality in the abnormality detection step is provided , and in the determination step, the abnormality among the plurality of relocation detection devices is determined in the abnormality determination step. When it is determined that there is the relocation detection device that has detected the above, an abnormality is detected from the number of the plurality of vibration detection means corresponding to each of the plurality of machines based on the plurality of determination result information received in the reception process. After subtracting the number of the relocation detection devices, it is determined whether the vibration detection means that detects the vibration at the same time is equal to or more than the predetermined ratio, and the start-up is performed. In the motion control step, when the vibration detecting means that detects vibration at the same time determines in the determination step that the ratio is equal to or greater than the predetermined ratio, the plurality of relocation detection devices are not prohibited from starting the plurality of machines. When it is determined that there is the relocation detection device that has detected the abnormality in the abnormality determination step, the plurality of relocation detections are prohibited so as to prohibit the activation of the machine corresponding to the relocation detection device that has detected the abnormality. It is characterized by controlling the device . Therefore, the relocation detection device and the master device of the relocation detection system can obtain the effect according to claim 3 by performing the device-side process and the master-side process, respectively.

移設検知システム100,200の構成図。The block diagram of the relocation detection system 100, 200. 移設検知システム100,200の電気的構成を示すブロック図。The block diagram which shows the electrical structure of the relocation detection system 100, 200. フラッシュメモリ24の記憶領域を示す概念図。The conceptual diagram which shows the storage area of a flash memory 24. 移設検知制御処理(第一実施形態)の流れ図。The flow chart of the relocation detection control process (first embodiment). 判定結果情報2441の概念図。The conceptual diagram of the determination result information 2441. 判定結果情報2442と集計情報2542の概念図。The conceptual diagram of the judgment result information 2442 and the aggregate information 2542. 判定結果情報2443と集計情報2543の概念図。The conceptual diagram of the determination result information 2443 and the aggregate information 2543. 判定結果情報2444と集計情報2544の概念図。The conceptual diagram of the determination result information 2444 and the aggregate information 2544. 判定結果情報送信処理の流れ図。A flow chart of the judgment result information transmission process. フラグ情報送信処理の流れ図。Flow chart of flag information transmission processing. 起動判定処理の流れ図。Flow chart of start judgment process. 移設検知制御処理(第二実施形態)の流れ図。The flow chart of the relocation detection control process (second embodiment). 判定結果情報2445と集計情報2545の概念図。The conceptual diagram of the judgment result information 2445 and the aggregate information 2545. 移設検知システム300,400の構成図。The block diagram of the relocation detection system 300, 400. 移設検知システム300,400の電気的構成を示すブロック図。The block diagram which shows the electrical structure of the relocation detection system 300, 400. フラッシュメモリ240の記憶領域を示す概念図。The conceptual diagram which shows the storage area of the flash memory 240. フラッシュメモリ74の記憶領域を示す概念図。The conceptual diagram which shows the storage area of a flash memory 74. マスター側制御処理(第三実施形態)の流れ図。The flow chart of the master side control process (third embodiment). スレーブ側制御処理(第三実施形態)の流れ図。The flow chart of the slave side control processing (third embodiment). フラッシュメモリ740の記憶領域を示す概念図。The conceptual diagram which shows the storage area of the flash memory 740. マスター側制御処理(第四実施形態)の流れ図。The flow chart of the master side control processing (fourth embodiment). 図21の続きを示す流れ図。The flow chart which shows the continuation of FIG. 21. スレーブ側制御処理(第四実施形態)の流れ図。The flow chart of the slave side control processing (fourth embodiment).

図1〜図11を参照し、本発明の第一実施形態を説明する。図1を参照し、移設検知システム1の構成を説明する。移設検知システム1は、例えば三つの機械M1〜M3を備える。機械M1〜M3は、例えば主軸に装着した工具で被削材を加工する工作機械であり、工場の同一フロア内にて、機械M1はA地点、機械M2はB地点、機械M3はC地点に設置する。機械M1は、移設検知装置20を備え、機械M2は、移設検知装置40を備え、機械M3は、移設検知装置60を備える。移設検知装置20、40、60は、機械M1、M2,M3に生じた振動を検出し、機械M1、M2、M3の移設を夫々検知する。移設を検知する方法は振動以外でもよく、例えば加速度、傾斜等を検出して移設を検知してもよい。移設検知装置20は機械M1の移設を検知した場合、機械M1の起動を制限し、移設検知装置40は機械M2の移設を検知した場合、機械M2の起動を制限し、移設検知装置60は機械M3の移設を検知した場合、機械M3の起動を制限する。移設検知装置20、40、60は、互いに通信可能である。 The first embodiment of the present invention will be described with reference to FIGS. 1 to 11. The configuration of the relocation detection system 1 will be described with reference to FIG. The relocation detection system 1 includes, for example, three machines M1 to M3. Machines M1 to M3 are machine tools that process work materials with tools mounted on the spindle, for example. Machine M1 is at point A, machine M2 is at point B, and machine M3 is at point C on the same floor of the factory. Install. The machine M1 includes a relocation detection device 20, the machine M2 includes a relocation detection device 40, and the machine M3 includes a relocation detection device 60. The relocation detection devices 20, 40, and 60 detect the vibration generated in the machines M1, M2, and M3, and detect the relocation of the machines M1, M2, and M3, respectively. The method of detecting the relocation may be other than vibration, and for example, the relocation may be detected by detecting acceleration, inclination, or the like. When the relocation detection device 20 detects the relocation of the machine M1, the start of the machine M1 is restricted, the relocation detection device 40 limits the start of the machine M2 when the relocation of the machine M2 is detected, and the relocation detection device 60 limits the start of the machine. When the relocation of the M3 is detected, the start of the machine M3 is restricted. The relocation detection devices 20, 40, and 60 can communicate with each other.

図2を参照し、機械M1の電気的構成を説明する。機械M1は、数値制御装置10、軸制御部17、モータ18等を備える。数値制御装置10は、CPU11、ROM12、RAM13、機械I/F14、入出力部15等を備える。ROM12、RAM13、機械I/F14、入出力部15はCPU11に例えば高速バスで接続する。CPU11は機械M1の動作を統括制御する。ROM12は各種プログラム等を記憶する。RAM13は各種情報を一時的に記憶する。軸制御部17はモータ18の駆動を制御する。モータ18は、例えば機械M1の主軸を回転する主軸モータ、主軸と被削材を固定する工作台を相対的に移動するX軸モータ、Y軸モータ、Z軸モータ等である。軸制御部17は機械I/F14に接続する。故に軸制御部17はCPU11からの制御指令に基づきモータ18の駆動を制御する。 The electrical configuration of the machine M1 will be described with reference to FIG. The machine M1 includes a numerical control device 10, an axis control unit 17, a motor 18, and the like. The numerical control device 10 includes a CPU 11, a ROM 12, a RAM 13, a machine I / F 14, an input / output unit 15, and the like. The ROM 12, the RAM 13, the machine I / F 14, and the input / output unit 15 are connected to the CPU 11 by, for example, a high-speed bus. The CPU 11 comprehensively controls the operation of the machine M1. The ROM 12 stores various programs and the like. The RAM 13 temporarily stores various types of information. The shaft control unit 17 controls the drive of the motor 18. The motor 18 is, for example, a spindle motor that rotates the spindle of the machine M1, an X-axis motor that relatively moves a work table for fixing the spindle and a work material, a Y-axis motor, a Z-axis motor, and the like. The shaft control unit 17 is connected to the machine I / F14. Therefore, the axis control unit 17 controls the drive of the motor 18 based on the control command from the CPU 11.

移設検知装置20の電気的構成を説明する。移設検知装置20は、CPU21、振動検出部22、リアルタイムクロック23、フラッシュメモリ24、通信I/F25、内蔵電池27等を備える。振動検出部22、リアルタイムクロック23、フラッシュメモリ24、通信I/F25はCPU21に例えば高速バスで接続する。CPU21は、移設検知装置20の動作を統括制御する。CPU21は、数値制御装置10の入出力部15に接続する。振動検出部22は機械M1に生じる振動を検出する。振動検出部22は機械M1に固定するとよい。振動検出部22は、例えば加速度センサ等を用いることができる。リアルタイムクロック23は、例えばコンピュータの電源がオフでも現在時刻を刻み続ける集積回路である。リアルタイムクロック23は例えば内蔵電池27で駆動する。フラッシュメモリ24は後述する各種記憶領域(図3参照)を備える。通信I/F25は、配線L1を介してバス5に接続する。移設検知装置20は内蔵電池27で駆動する。 The electrical configuration of the relocation detection device 20 will be described. The relocation detection device 20 includes a CPU 21, a vibration detection unit 22, a real-time clock 23, a flash memory 24, a communication I / F 25, a built-in battery 27, and the like. The vibration detection unit 22, the real-time clock 23, the flash memory 24, and the communication I / F 25 are connected to the CPU 21 by, for example, a high-speed bus. The CPU 21 comprehensively controls the operation of the relocation detection device 20. The CPU 21 is connected to the input / output unit 15 of the numerical control device 10. The vibration detection unit 22 detects the vibration generated in the machine M1. The vibration detection unit 22 may be fixed to the machine M1. The vibration detection unit 22 can use, for example, an acceleration sensor or the like. The real-time clock 23 is an integrated circuit that keeps track of the current time even when the computer is turned off, for example. The real-time clock 23 is driven by, for example, the built-in battery 27. The flash memory 24 includes various storage areas (see FIG. 3) described later. The communication I / F 25 is connected to the bus 5 via the wiring L1. The relocation detection device 20 is driven by the built-in battery 27.

機械M2とM3の夫々の電気的構成は、機械M1と同一である。機械M2は、数値制御装置30と移設検知装置40を備える。機械M3は、数値制御装置50と移設検知装置60を備える。機械M2の移設検知装置40の通信I/F(図示略)は、配線L2を介してバス5に接続する。機械M3の移設検知装置60の通信I/F(図示略)は、配線L3を介してバス5に接続する。故に移設検知装置20、40、60は、バス5を介して互いに通信可能である。 The electrical configuration of each of the machines M2 and M3 is the same as that of the machine M1. The machine M2 includes a numerical control device 30 and a relocation detection device 40. The machine M3 includes a numerical control device 50 and a relocation detection device 60. The communication I / F (not shown) of the relocation detection device 40 of the machine M2 is connected to the bus 5 via the wiring L2. The communication I / F (not shown) of the relocation detection device 60 of the machine M3 is connected to the bus 5 via the wiring L3. Therefore, the relocation detection devices 20, 40, and 60 can communicate with each other via the bus 5.

図3を参照し、フラッシュメモリ24の記憶領域を説明する。フラッシュメモリ24は、振動履歴情報記憶領域241、フラグ記憶領域242、クロック値記憶領域243、判定結果情報記憶領域244等を備える。振動履歴情報記憶領域241は、振動履歴情報を記憶する。振動履歴情報とは、例えば振動検出部22が振動を検出した日時に関する情報である。フラグ記憶領域242は、起動制限フラグ等を記憶する。起動制限フラグは例えば1か0である。CPU21は機械M1に起動制限をかける場合、フラグ記憶領域242に1を記憶する。起動制限フラグはオンする。CPU21は機械M1の起動制限を解除する場合、フラグ記憶領域242に0を記憶する。起動制限フラグはオフする。クロック値記憶領域243は、例えば振動検出部22が振動を検出した時のリアルタイムクロック23のクロック値等を記憶する。判定結果情報記憶領域244は、判定結果情報を記憶する。判定結果情報とは、例えば移設検知装置20が機械M1の振動を検出した場合に、その振動が、移設検知装置40が検出した機械M2の振動と同時刻の振動か否かを判定した情報である。 The storage area of the flash memory 24 will be described with reference to FIG. The flash memory 24 includes a vibration history information storage area 241, a flag storage area 242, a clock value storage area 243, a determination result information storage area 244, and the like. The vibration history information storage area 241 stores vibration history information. The vibration history information is, for example, information regarding the date and time when the vibration detection unit 22 detects vibration. The flag storage area 242 stores the activation restriction flag and the like. The activation restriction flag is, for example, 1 or 0. When the machine M1 is restricted from starting, the CPU 21 stores 1 in the flag storage area 242. The activation restriction flag is turned on. When the start restriction of the machine M1 is released, the CPU 21 stores 0 in the flag storage area 242. The startup restriction flag is turned off. The clock value storage area 243 stores, for example, the clock value of the real-time clock 23 when the vibration detection unit 22 detects vibration. The determination result information storage area 244 stores the determination result information. The determination result information is, for example, information that determines whether or not the vibration detected by the relocation detection device 40 is the same time as the vibration of the machine M2 detected by the relocation detection device 40 when the relocation detection device 20 detects the vibration of the machine M1. is there.

図4を参照し、移設検知制御処理を説明する。本処理は、移設検知装置20のCPU21が実行する処理である。移設検知装置40、60のCPUも同様に実行する。移設検知装置20を起動すると、CPU21はフラッシュメモリ24に記憶する移設検知制御プログラムを呼び出し、本処理を実行する。 The relocation detection control process will be described with reference to FIG. This process is a process executed by the CPU 21 of the relocation detection device 20. The CPUs of the relocation detection devices 40 and 60 are also executed in the same manner. When the relocation detection device 20 is activated, the CPU 21 calls the relocation detection control program stored in the flash memory 24 and executes this process.

CPU21はリアルタイムクロック33の動作を開始する(S1)。CPU21は振動を検出したか否か判断する(S2)。振動検出部22は機械M1に生じた振動を検出する。電源オフ時の機械M1に生じる振動は、機械M1の移設時に生じる振動と地震による振動がある。振動検出部22はこれらの振動を区別なく同様に検出する。CPU21は振動検出部22が振動を検出するまで(S2:NO)、S2に戻って処理を繰り返す。 The CPU 21 starts the operation of the real-time clock 33 (S1). The CPU 21 determines whether or not the vibration is detected (S2). The vibration detection unit 22 detects the vibration generated in the machine M1. The vibration generated in the machine M1 when the power is turned off includes the vibration generated when the machine M1 is relocated and the vibration caused by an earthquake. The vibration detection unit 22 detects these vibrations in the same manner without distinction. The CPU 21 returns to S2 and repeats the process until the vibration detection unit 22 detects the vibration (S2: NO).

振動を検出した場合(S2:YES)、CPU21はフラッシュメモリ34のフラグ記憶領域242に1を記憶し、起動制限フラグをオンする(S3)。CPU21はリアルタイムクロック23の現在のクロック値X1を、フラッシュメモリ34のクロック値記憶領域243に記憶する(S4)。CPU21は振動日時をフラッシュメモリ24の振動履歴情報記憶領域241に記憶する。 When vibration is detected (S2: YES), the CPU 21 stores 1 in the flag storage area 242 of the flash memory 34 and turns on the activation restriction flag (S3). The CPU 21 stores the current clock value X1 of the real-time clock 23 in the clock value storage area 243 of the flash memory 34 (S4). The CPU 21 stores the vibration date and time in the vibration history information storage area 241 of the flash memory 24.

CPU21は他の移設検知装置40、60と通信可能か否か判断する(S5)。通信可能か否かの判断手法として、例えばCPU21は移設検知装置40に応答要求信号を送信するとよい。移設検知装置40のCPUは応答要求信号を受信した場合、移設検知装置20に応答信号を返信する。CPU21は応答信号を受信するまで(S5:NO)、S5に戻って待機状態となる。CPU21は応答信号を受信した場合、通信可能と判断し(S5:YES)、リアルタイムクロック33の現在のクロック値Y1を更に取得する(S6)。CPU21は移設検知装置40、60に振動情報を送信する(S7)。振動情報は、フラッシュメモリ24に記憶したクロック値X1と、取得したクロック値Y1を含む情報である。 The CPU 21 determines whether or not it is possible to communicate with the other relocation detection devices 40 and 60 (S5). As a method for determining whether or not communication is possible, for example, the CPU 21 may transmit a response request signal to the relocation detection device 40. When the CPU of the relocation detection device 40 receives the response request signal, it returns the response signal to the relocation detection device 20. The CPU 21 returns to S5 and enters a standby state until it receives a response signal (S5: NO). When the CPU 21 receives the response signal, it determines that communication is possible (S5: YES), and further acquires the current clock value Y1 of the real-time clock 33 (S6). The CPU 21 transmits vibration information to the relocation detection devices 40 and 60 (S7). The vibration information is information including the clock value X1 stored in the flash memory 24 and the acquired clock value Y1.

CPU21は、移設検知装置20の相手装置である移設検知装置40に機械M2の振動情報が有るか否か判断する(S9)。移設検知装置40の相手装置は、移設検知装置60である。移設検知装置60の相手装置は、移設検知装置20である。各移設検知装置の相手装置の情報は、例えばフラッシュメモリに予め記憶する。機械M2の振動情報は例えばクロック値X2,Y2を含む情報である。クロック値X2は、移設検知装置40の振動検出部が振動を検出した時のリアルタイムクロックのクロック値である。クロック値Y2は、移設検知装置40で現在取得したリアルタイムクロックのクロック値である。移設検知装置40が機械M2の振動を検知していない場合、クロック値X2はフラッシュメモリに記憶していないので、機械M2の振動情報は無い。移設検知装置40に対して振動情報の有無を確認する為に、CPU21は例えば移設検知装置40に確認信号を送信してもよい。確認信号は振動情報の有無の確認を指示する信号である。移設検知装置40のCPUは確認信号を受信すると、振動情報の有無を示す応答信号を、確認信号を送信した移設検知装置20に返信する。CPU21は応答信号を受信し、振動情報の有無を認識する。 The CPU 21 determines whether or not the relocation detection device 40, which is a partner device of the relocation detection device 20, has vibration information of the machine M2 (S9). The other device of the relocation detection device 40 is the relocation detection device 60. The other device of the relocation detection device 60 is the relocation detection device 20. Information on the other device of each relocation detection device is stored in advance in, for example, a flash memory. The vibration information of the machine M2 is information including, for example, clock values X2 and Y2. The clock value X2 is the clock value of the real-time clock when the vibration detection unit of the relocation detection device 40 detects the vibration. The clock value Y2 is the clock value of the real-time clock currently acquired by the relocation detection device 40. When the relocation detection device 40 does not detect the vibration of the machine M2, the clock value X2 is not stored in the flash memory, so that there is no vibration information of the machine M2. In order to confirm the presence or absence of vibration information to the relocation detection device 40, the CPU 21 may transmit a confirmation signal to, for example, the relocation detection device 40. The confirmation signal is a signal instructing confirmation of the presence or absence of vibration information. When the CPU of the relocation detection device 40 receives the confirmation signal, it returns a response signal indicating the presence or absence of vibration information to the relocation detection device 20 that has transmitted the confirmation signal. The CPU 21 receives the response signal and recognizes the presence or absence of vibration information.

移設検知装置40に機械M2の振動情報を記憶していない場合(S9:NO)、移設検知装置40は機械M2の振動を検出していない。CPU21は、機械M1では振動検出、機械M2では振動非検出とし、同時振動では無いと判定する。CPU21は判定結果情報を作成し、フラッシュメモリ24の判定結果情報記憶領域244に記憶する(S13)。 When the relocation detection device 40 does not store the vibration information of the machine M2 (S9: NO), the relocation detection device 40 does not detect the vibration of the machine M2. The CPU 21 determines that the machine M1 does not detect the vibration and the machine M2 does not detect the vibration, and determines that the vibration is not simultaneous. The CPU 21 creates the determination result information and stores it in the determination result information storage area 244 of the flash memory 24 (S13).

移設検知装置40に機械M2の振動情報が有る場合(S9:YES)、移設検知装置40から機械M2の振動情報を取得する(S10)。機械M2の振動情報は、例えばクロック値X2,Y2を含む情報である。CPU21は、経過クロック数K1,K2を算出する(S11)。経過クロック数K1は振動検出部22が振動を検出してから現在までの経過時間に対応するクロック数である。経過クロック数K1はX1−Y1である。経過クロック数K2はX2−Y2である。 When the relocation detection device 40 has vibration information of the machine M2 (S9: YES), the vibration information of the machine M2 is acquired from the relocation detection device 40 (S10). The vibration information of the machine M2 is information including, for example, clock values X2 and Y2. The CPU 21 calculates the elapsed clock numbers K1 and K2 (S11). The elapsed clock number K1 is the number of clocks corresponding to the elapsed time from the vibration detection unit 22 detecting the vibration to the present. The elapsed clock number K1 is X1-Y1. The elapsed clock number K2 is X2-Y2.

CPU21は同時振動の判定を行う(S12)。同時振動の判定は、K1とK2の誤差が許容範囲か否かで判断する。誤差の許容範囲は作業者が事前に設定可能である。K1とK2の誤差が許容範囲内である場合、機械M1で検出した振動と機械M2で検出した振動は同時振動と判定できる。K1とK2の誤差が許容範囲外である場合、機械M1で検出した振動と機械M2で検出した振動は同時振動ではないので、個別に起きた振動と判定できる。CPU21は判定結果情報を作成し、フラッシュメモリ24の判定結果情報記憶領域244に記憶する(S13)。例えば、図5に示す判定結果情報2441は、機械M1では振動を検出、機械M2でも振動を検出、機械M1とM2では同時振動を生じたことを示す。 The CPU 21 determines the simultaneous vibration (S12). The simultaneous vibration is determined based on whether or not the error between K1 and K2 is within the allowable range. The tolerance of the error can be set in advance by the operator. When the error between K1 and K2 is within the permissible range, the vibration detected by the machine M1 and the vibration detected by the machine M2 can be determined to be simultaneous vibrations. When the error between K1 and K2 is out of the permissible range, the vibration detected by the machine M1 and the vibration detected by the machine M2 are not simultaneous vibrations, and therefore can be determined to be vibrations that have occurred individually. The CPU 21 creates the determination result information and stores it in the determination result information storage area 244 of the flash memory 24 (S13). For example, the determination result information 2441 shown in FIG. 5 indicates that the machine M1 detects the vibration, the machine M2 also detects the vibration, and the machines M1 and M2 generate simultaneous vibration.

CPU21は、他の移設検知装置40、60に向けて判定結果情報要求信号を送信する(S14)。判定結果情報要求信号とは、移設検知装置40、60に対して判定結果情報の送信を要求する信号である。後述する判定結果情報送信処理(図9参照)では、移設検知装置40、60の夫々のCPUは、判定結果要求信号を受信すると、移設検知装置20に向けて判定結果情報を送信する。CPU21は他の移設検知装置40、60から判定結果情報を受信したか否か判断する(S15)。判定結果情報を受信するまで(S15:NO)、CPU21はS15に戻って待機する。判定結果情報を受信した場合(S15:YES)、CPU21は機械M1〜M3の全ての判定結果情報を集計する(S16)。 The CPU 21 transmits a determination result information request signal to the other relocation detection devices 40 and 60 (S14). The determination result information request signal is a signal that requests the relocation detection devices 40 and 60 to transmit the determination result information. In the determination result information transmission process (see FIG. 9), which will be described later, when the CPUs of the relocation detection devices 40 and 60 receive the determination result request signal, they transmit the determination result information to the relocation detection device 20. The CPU 21 determines whether or not the determination result information has been received from the other relocation detection devices 40 and 60 (S15). The CPU 21 returns to S15 and waits until the determination result information is received (S15: NO). When the determination result information is received (S15: YES), the CPU 21 aggregates all the determination result information of the machines M1 to M3 (S16).

図6に示す判定結果情報2442は、機械M1、M2、M3の夫々の判定結果情報を纏めたものである。判定結果情報2442を見ると、機械M1では振動を検出、機械M2では振動を非検出、機械M3では振動を検出しており、機械M3とM1の間で同時振動と判定している。機械M2では振動を検出していないので、機械M2の移設検知装置40から受信する判定結果情報は、機械M2では振動を非検出であることを示す情報のみである。 The determination result information 2442 shown in FIG. 6 is a compilation of the determination result information of each of the machines M1, M2, and M3. Looking at the determination result information 2442, the machine M1 detects the vibration, the machine M2 does not detect the vibration, and the machine M3 detects the vibration, and it is determined that the machines M3 and M1 are simultaneously vibrating. Since the machine M2 does not detect the vibration, the determination result information received from the relocation detection device 40 of the machine M2 is only the information indicating that the machine M2 does not detect the vibration.

CPU21は判定結果情報2442を集計し、同時振動検出割合(%)を算出する。同時振動検出割合とは、移設検知システム100を構成する複数の移設検知装置20、40、60のうち同時振動を検出した移設検知装置の割合である。CPU21は判定結果情報2442に基づき、例えば集計情報2542を作成する。集計情報2542によれば、同時振動検出割合の算出式の母数は機械M1〜M3なので3、同時振動検出数は機械M1とM3なので2、故に同時振動検出割合は2/3×100=67(%)である。CPU21は集計情報2542をフラッシュメモリ24に記憶する。 The CPU 21 aggregates the determination result information 2442 and calculates the simultaneous vibration detection rate (%). The simultaneous vibration detection ratio is the ratio of the relocation detection devices that have detected the simultaneous vibration among the plurality of relocation detection devices 20, 40, and 60 constituting the relocation detection system 100. The CPU 21 creates, for example, aggregated information 2542 based on the determination result information 2442. According to the aggregated information 2542, the parameter of the calculation formula of the simultaneous vibration detection ratio is 3 because the machines M1 to M3, and the number of simultaneous vibration detections is 2 because the machines M1 and M3. Therefore, the simultaneous vibration detection ratio is 2/3 × 100 = 67. (%). The CPU 21 stores the aggregated information 2542 in the flash memory 24.

図7に示す判定結果情報2443では、機械M1〜M3の全てで振動を検出しているが、同時振動の判定は、機械M1とM2の間だけである。故に判定結果情報2443を集計した集計情報2543によれば、算出式の母数は3、同時振動検出数は2、同時振動検出割合は2/3×100=67(%)となる。図8に示す判定結果情報2444では、機械M1では振動を検出、機械M2では振動を非検出、機械M3では振動を検出しているが、何れも同時振動とは判定していない。故に判定結果情報2443を集計した集計情報2544によれば、算出式の母数は3、同時振動検出数は0、同時振動検出割合は0/3×100=0(%)となる。 In the determination result information 2443 shown in FIG. 7, vibration is detected in all of the machines M1 to M3, but the simultaneous vibration is determined only between the machines M1 and M2. Therefore, according to the aggregated information 2543 that aggregates the determination result information 2443, the parameter of the calculation formula is 3, the number of simultaneous vibration detections is 2, and the simultaneous vibration detection ratio is 2/3 × 100 = 67 (%). In the determination result information 2444 shown in FIG. 8, the machine M1 detects the vibration, the machine M2 does not detect the vibration, and the machine M3 detects the vibration, but none of them is determined to be simultaneous vibration. Therefore, according to the aggregated information 2544 that aggregates the determination result information 2443, the parameter of the calculation formula is 3, the number of simultaneous vibration detections is 0, and the simultaneous vibration detection ratio is 0/3 × 100 = 0 (%).

図4に戻り、CPU21は同時振動検出割合が一定割合以上か否か判断する(S17)。一定割合は、例えば50%よりも大きい値に設定するとよい。図6に示す集計情報2542においては、同時振動検出割合は67%であるので(S17:YES)、機械M1で検出した振動は地震による振動の可能性が高く、移設による振動の可能性は低い。故にCPU21はフラグ記憶領域242に0を記憶し、起動制限フラグをオフする(S18)。故に数値制御装置10のCPU11は、後述する起動判定処理(図11参照)にて機械M1を起動できる。CPU21はS2に戻り、機械M1の移設を引き続き監視する。 Returning to FIG. 4, the CPU 21 determines whether or not the simultaneous vibration detection ratio is equal to or higher than a certain ratio (S17). The constant ratio may be set to a value larger than, for example, 50%. In the aggregated information 2542 shown in FIG. 6, since the simultaneous vibration detection ratio is 67% (S17: YES), the vibration detected by the machine M1 has a high possibility of vibration due to an earthquake, and the possibility of vibration due to relocation is low. .. Therefore, the CPU 21 stores 0 in the flag storage area 242 and turns off the start restriction flag (S18). Therefore, the CPU 11 of the numerical control device 10 can start the machine M1 by the start determination process (see FIG. 11) described later. The CPU 21 returns to S2 and continues to monitor the relocation of the machine M1.

図8に示す集計情報2544においては、同時振動検出割合は0%であるので(S17:NO)、機械M1で検出した振動は、地震による振動の可能性は低く、移設による振動の可能性が高い。故にCPU21は起動制限フラグをオンにした状態で、本処理を終了する。故に数値制御装置10のCPU11は、後述する起動判定処理(図11参照)にて機械M1の起動を制限できる。 In the aggregated information 2544 shown in FIG. 8, since the simultaneous vibration detection ratio is 0% (S17: NO), the vibration detected by the machine M1 is unlikely to be due to an earthquake, and there is a possibility of vibration due to relocation. high. Therefore, the CPU 21 ends this process with the start restriction flag turned on. Therefore, the CPU 11 of the numerical control device 10 can limit the activation of the machine M1 by the activation determination process (see FIG. 11) described later.

図9を参照し、判定結果情報送信処理を説明する。本処理は、移設検知装置20のCPU21が実行する処理である。移設検知装置40、60のCPUも同様に実行する。移設検知装置20と他の移設検知装置40、60との間で通信が開始すると、CPU21はフラッシュメモリ24に記憶する判定結果情報送信プログラムを呼び出し、本処理を定期的に実行する。 The determination result information transmission process will be described with reference to FIG. This process is a process executed by the CPU 21 of the relocation detection device 20. The CPUs of the relocation detection devices 40 and 60 are also executed in the same manner. When communication is started between the relocation detection device 20 and the other relocation detection devices 40 and 60, the CPU 21 calls a determination result information transmission program stored in the flash memory 24 and periodically executes this process.

CPU21は、他の移設検知装置40、60から判定結果情報要求信号を受信したか否か判断する(S21)。判定結果情報要求信号を受信しない場合(S21:NO)、CPU21は本処理を終了する。判定結果情報要求信号を受信した場合(S21:YES)、CPU21はフラッシュメモリ24の判定結果情報記憶領域244に、判定結果情報を記憶しているか否か判断する(S22)。判定結果情報を記憶している場合(S22:YES)、CPU21はフラッシュメモリ24に記憶する判定結果情報を、判定結果情報要求信号を送信した移設検知装置に向けて送信し(S23)、本処理を終了する。判定結果情報を記憶していない場合(S22:NO)、機械M1では振動を検出していないので、CPU21は、機械M1の振動を非検出とする判定結果情報を作成し、判定結果情報要求信号を送信した移設検知装置に向けて送信する(S24)。CPU21は本処理を終了する。 The CPU 21 determines whether or not the determination result information request signal has been received from the other relocation detection devices 40 and 60 (S21). When the determination result information request signal is not received (S21: NO), the CPU 21 ends this process. When the determination result information request signal is received (S21: YES), the CPU 21 determines whether or not the determination result information is stored in the determination result information storage area 244 of the flash memory 24 (S22). When the determination result information is stored (S22: YES), the CPU 21 transmits the determination result information stored in the flash memory 24 to the relocation detection device that has transmitted the determination result information request signal (S23), and this process is performed. To finish. When the determination result information is not stored (S22: NO), the machine M1 does not detect the vibration. Therefore, the CPU 21 creates the determination result information in which the vibration of the machine M1 is not detected, and the determination result information request signal. Is transmitted to the relocation detection device that transmitted the above (S24). The CPU 21 ends this process.

図10を参照し、フラグ情報送信処理を説明する。本処理は、移設検知装置20のCPU21が実行する処理である。移設検知装置40、60のCPUも同様に実行する。移設検知装置20を起動すると、CPU21はフラッシュメモリ24に記憶するフラグ情報送信プログラムを呼び出し、本処理を定期的に実行する。 The flag information transmission process will be described with reference to FIG. This process is a process executed by the CPU 21 of the relocation detection device 20. The CPUs of the relocation detection devices 40 and 60 are also executed in the same manner. When the relocation detection device 20 is activated, the CPU 21 calls the flag information transmission program stored in the flash memory 24 and periodically executes this process.

CPU21は、数値制御装置10のCPU11からフラグ情報要求信号を受信したか否か判断する(S31)。機械M1の電源がオンした場合、数値制御装置10のCPU11は後述する起動判定処理(図11参照)において、フラグ情報要求信号を移設検知装置20に送信する。フラグ情報要求信号は、起動制限フラグに関する情報を要求する信号である。フラグ情報要求信号を受信していない場合(S31:NO)、CPU21は本処理を終了する。フラグ情報要求信号を受信した場合(S31:YES)、CPU21は起動制限フラグのフラグ情報を数値制御装置10のCPU11に送信する(S32)。起動制限フラグのフラグ情報は、例えばオンかオフ(1か0)を示す情報である。CPU21は本処理を終了する。 The CPU 21 determines whether or not the flag information request signal has been received from the CPU 11 of the numerical control device 10 (S31). When the power of the machine M1 is turned on, the CPU 11 of the numerical control device 10 transmits a flag information request signal to the relocation detection device 20 in the activation determination process (see FIG. 11) described later. The flag information request signal is a signal requesting information regarding the activation restriction flag. When the flag information request signal is not received (S31: NO), the CPU 21 ends this process. When the flag information request signal is received (S31: YES), the CPU 21 transmits the flag information of the start restriction flag to the CPU 11 of the numerical control device 10 (S32). The flag information of the activation restriction flag is, for example, information indicating on or off (1 or 0). The CPU 21 ends this process.

図11を参照し、起動判定処理を説明する。本処理は、機械M1の数値制御装置10のCPU11が実行する処理である。機械M2、M3の数値制御装置30、50のCPUも同様に実行する。機械M1の電源をオンすると、CPU11はROM12に記憶する起動判定プログラムを呼び出して本処理を実行する。 The activation determination process will be described with reference to FIG. This process is a process executed by the CPU 11 of the numerical control device 10 of the machine M1. The CPUs of the numerical control devices 30 and 50 of the machines M2 and M3 are also executed in the same manner. When the power of the machine M1 is turned on, the CPU 11 calls the start determination program stored in the ROM 12 to execute this process.

CPU11はフラグ情報要求信号を、移設検知装置20のCPU21に送信する(S41)。移設検知装置20のCPU21は、上述のフラグ情報送信処理(図10参照)においてフラグ情報を返信する(図10のS32参照)。CPU11はフラグ情報を受信したか否か判断する(S42)。CPU11はフラグ情報を受信するまで(S42:NO)、S42に戻って待機する。フラグ情報を受信した場合(S42:YES)、CPU11は、受信したフラグ情報に基づき、起動制限フラグはオンか否か判断する(S43)。起動制限フラグがオンの場合(S43:YES)、機械M1は移設の可能性が高いので、CPU11は機械M1の起動を禁止する(S44)。故に機械M1が移設した場合、数値制御装置10は機械M1の起動を禁止できる。 The CPU 11 transmits a flag information request signal to the CPU 21 of the relocation detection device 20 (S41). The CPU 21 of the relocation detection device 20 returns the flag information in the above-mentioned flag information transmission process (see FIG. 10) (see S32 in FIG. 10). The CPU 11 determines whether or not the flag information has been received (S42). The CPU 11 returns to S42 and waits until it receives the flag information (S42: NO). When the flag information is received (S42: YES), the CPU 11 determines whether or not the start restriction flag is on based on the received flag information (S43). When the start restriction flag is on (S43: YES), the machine M1 is likely to be relocated, so the CPU 11 prohibits the start of the machine M1 (S44). Therefore, when the machine M1 is relocated, the numerical control device 10 can prohibit the start of the machine M1.

起動制限フラグがオフの場合(S43:NO)、機械M1は移設の可能性が低く、若しくは機械M1に生じた振動は地震による振動の可能性が高いので、CPU11は正常に機械M1を起動する(S45)。故に数値制御装置10は、電源オフ中に機械M1に振動が生じても、その振動が地震による振動である場合は、機械M1を正常に起動できる。 When the start restriction flag is off (S43: NO), the machine M1 is unlikely to be relocated, or the vibration generated in the machine M1 is likely to be caused by an earthquake, so that the CPU 11 normally starts the machine M1. (S45). Therefore, even if the machine M1 vibrates while the power is off, the numerical control device 10 can normally start the machine M1 if the vibration is due to an earthquake.

以上説明の如く、第一実施形態の移設検知システム100は、機械M1、M2、M3を備える。移設検知装置20、40、60は、機械M1〜M3の夫々に対応して設ける。移設検知装置20のCPU21は、振動検出部22が機械M1の振動を検出した場合、起動禁止フラグをオンし、対応する機械M1の起動を禁止する。移設検知装置20、40、60は、配線L1〜L3、バス5を介して、相互に通信可能である。振動検出部22が機械M1の振動を検出した場合、CPU21は該振動に関する振動情報(クロック値X1、Y1)を取得する。CPU21は取得した振動情報を、予め決められた他の移設検知装置40に送信する。CPU21は他の移設検知装置40から振動情報(クロック値X2、Y2)を取得する。 As described above, the relocation detection system 100 of the first embodiment includes machines M1, M2, and M3. The relocation detection devices 20, 40, and 60 are provided corresponding to the machines M1 to M3, respectively. When the vibration detection unit 22 detects the vibration of the machine M1, the CPU 21 of the relocation detection device 20 turns on the start prohibition flag and prohibits the start of the corresponding machine M1. The relocation detection devices 20, 40, and 60 can communicate with each other via the wirings L1 to L3 and the bus 5. When the vibration detection unit 22 detects the vibration of the machine M1, the CPU 21 acquires vibration information (clock values X1, Y1) related to the vibration. The CPU 21 transmits the acquired vibration information to another predetermined relocation detection device 40. The CPU 21 acquires vibration information (clock values X2, Y2) from another relocation detection device 40.

CPU21は取得した振動情報(クロック値X1、Y1、X2、Y2)に基づき、機械M1とM2の同時振動の判定を行う。CPU21は判定結果情報を作成し、他の移設検知装置40、60に送信すると共に、他の移設検知装置40、60から夫々の判定結果情報を受信する。CPU21は、移設検知装置20、40、60の夫々の判定結果情報を集計し、移設検知装置20、40、60のうち、同時刻で振動を検出した移設検知装置の割合(同時振動検出割合)が一定割合以上か判断する。地震による振動に応じて機械M1〜M3は振動するが、機械M1〜M3の設置する場所は互いに異なるので、例えば設置床面の硬さ、機械M1〜M3の構造の違い、地震の大きさ、地震の揺れの方向等によって、機械M1〜M3が共振する時刻や振動の大きさにズレが生じる場合がある。同時振動検出割合が一定割合以上の場合、一部の移設検知装置が同時に振動を検出していなくても、地震による振動の可能性が高い。故に移設検知装置20は、振動検出時に先にオンした起動禁止フラグをオフすることで、対応する機械M1の起動禁止を解除する。故に数値制御装置10のCPU11は機械M1の起動を正常に起動できる。故に移設検知装置20は、機械M1の地震による移設の誤検出を効果的に防止できる。 The CPU 21 determines the simultaneous vibration of the machines M1 and M2 based on the acquired vibration information (clock values X1, Y1, X2, Y2). The CPU 21 creates the determination result information and transmits it to the other relocation detection devices 40 and 60, and also receives the determination result information from the other relocation detection devices 40 and 60. The CPU 21 aggregates the determination result information of each of the relocation detection devices 20, 40, and 60, and among the relocation detection devices 20, 40, and 60, the ratio of the relocation detection devices that detect vibration at the same time (simultaneous vibration detection ratio). Is more than a certain percentage. The machines M1 to M3 vibrate according to the vibration caused by the earthquake, but since the places where the machines M1 to M3 are installed are different from each other, for example, the hardness of the installation floor surface, the difference in the structure of the machines M1 to M3, the magnitude of the earthquake, etc. Depending on the direction of the shaking of the earthquake, the time when the machines M1 to M3 resonate and the magnitude of the vibration may deviate. When the simultaneous vibration detection ratio is a certain ratio or more, there is a high possibility of vibration due to an earthquake even if some relocation detection devices do not detect vibration at the same time. Therefore, the relocation detection device 20 cancels the start prohibition of the corresponding machine M1 by turning off the start prohibition flag that was turned on earlier at the time of vibration detection. Therefore, the CPU 11 of the numerical control device 10 can normally start the machine M1. Therefore, the relocation detection device 20 can effectively prevent erroneous detection of relocation of the machine M1 due to an earthquake.

同時振動検出割合が一定割合未満の場合、地震による振動の可能性は低い。故に移設検知装置20は、機械M1は移設したとみなし、起動禁止フラグはオンのままで機械M1の起動を禁止する。故に数値制御装置10のCPU11は機械M1の起動を制限できる。故に移設検知装置20は、機械M1の移設を地震と区別して精度良く検知できる。 If the simultaneous vibration detection rate is less than a certain rate, the possibility of vibration due to an earthquake is low. Therefore, the relocation detection device 20 considers that the machine M1 has been relocated, and prohibits the start of the machine M1 while keeping the start prohibition flag on. Therefore, the CPU 11 of the numerical control device 10 can limit the activation of the machine M1. Therefore, the relocation detection device 20 can accurately detect the relocation of the machine M1 by distinguishing it from an earthquake.

上記第一実施形態の説明にて、振動検出部22は本発明の振動検出手段の一例である。配線L1〜L3、バス5は本発明の通信手段の一例である。CPU21は本発明の制御手段の一例である。図4のS4とS6の処理を実行するCPU21は本発明の第一取得手段の一例である。S10の処理を実行するCPU21は本発明の第二取得手段の一例である。S11、S12の処理を実行するCPU21は本発明の判定手段の一例である。S13、S15の処理を実行するCPU21は本発明の送受信手段の一例である。S16、S17の処理を実行するCPU21は本発明の判断手段の一例である。 In the description of the first embodiment, the vibration detection unit 22 is an example of the vibration detection means of the present invention. Wiring L1 to L3 and bus 5 are examples of the communication means of the present invention. The CPU 21 is an example of the control means of the present invention. The CPU 21 that executes the processes of S4 and S6 of FIG. 4 is an example of the first acquisition means of the present invention. The CPU 21 that executes the process of S10 is an example of the second acquisition means of the present invention. The CPU 21 that executes the processes of S11 and S12 is an example of the determination means of the present invention. The CPU 21 that executes the processes of S13 and S15 is an example of the transmission / reception means of the present invention. The CPU 21 that executes the processes of S16 and S17 is an example of the determination means of the present invention.

図1、図2、図12、図13を参照し、本発明の第二実施形態を説明する。図1、図2に示す如く、第二実施形態の移設検知システム200の構成は、第一実施形態の移設検知システム100の構成と同様である。移設検知装置20は機械M1に取り付けるので、機械M1の稼働中、例えば被削材を工具で切削する時に生じる振動の影響で、移設検知装置20は機械M1の振動を正しく検出できない、又は振動を検出しない可能性がある。また、機械M1の移設は機械M1の主電源がオフ期間内に起きるので、主電源がオンの間は、機械の移設は起きない。故に第二実施形態の移設検知装置20は、後述する移設検知制御処理(図12参照)の最初に、機械M1の主電源がオンかオフかの判定を行い、オンの場合は機械M1は移設していないと判断し、機械M1の判定結果情報を無効化する制御を行う。 A second embodiment of the present invention will be described with reference to FIGS. 1, 2, 12, and 13. As shown in FIGS. 1 and 2, the configuration of the relocation detection system 200 of the second embodiment is the same as the configuration of the relocation detection system 100 of the first embodiment. Since the relocation detection device 20 is attached to the machine M1, the relocation detection device 20 cannot correctly detect the vibration of the machine M1 or detects the vibration due to the influence of the vibration generated when the machine M1 is in operation, for example, when the work material is cut with a tool. It may not be detected. Further, since the relocation of the machine M1 occurs within the main power supply of the machine M1 during the off period, the relocation of the machine does not occur while the main power supply is on. Therefore, the relocation detection device 20 of the second embodiment determines whether the main power supply of the machine M1 is on or off at the beginning of the relocation detection control process (see FIG. 12) described later, and if it is on, the machine M1 is relocated. It is determined that this is not the case, and control is performed to invalidate the determination result information of the machine M1.

図12に示す第二実施形態の移設検知制御処理は、第一実施形態の移設検知制御処理(図4参照)のS1とS2の間にS50の判断処理を追加し、主電源がオンの場合に行うS51の処理を更に追加する。S50、S51以外の処理は第一実施形態と共通なので、第二実施形態は追加した処理を中心に説明する。第一実施形態と共通する部分、共通する処理は同一符号、同一ステップ番号を付して説明する。 The relocation detection control process of the second embodiment shown in FIG. 12 is a case where the determination process of S50 is added between S1 and S2 of the relocation detection control process (see FIG. 4) of the first embodiment and the main power is on. The processing of S51 to be performed in 1 is further added. Since the processes other than S50 and S51 are common to the first embodiment, the second embodiment will be described focusing on the added process. The parts common to the first embodiment and the common processes will be described with the same reference numerals and the same step numbers.

移設検知装置20のCPU21は、リアルタイムクロック33の動作を開始した後(S1)、機械M1の主電源がオンか否か判断する(S50)。主電源がオフの場合(S50:NO)、CPU21は上記第一実施形態と同様に、機械M1の振動を監視し(S2)、振動を検出した場合は(S2:YES)、S3以降の処理を順次実行する。 After starting the operation of the real-time clock 33 (S1), the CPU 21 of the relocation detection device 20 determines whether or not the main power supply of the machine M1 is on (S50). When the main power supply is off (S50: NO), the CPU 21 monitors the vibration of the machine M1 (S2), and when the vibration is detected (S2: YES), the processing after S3 is performed as in the first embodiment. Are executed sequentially.

主電源がオンの場合(S50:YES)、機械M1は稼働中であり、機械M1が振動してしまうので、地震によって機械M1に生じる振動を正しく検出できない。故にCPU21は稼働中というステータス情報を判定結果情報として、フラッシュメモリ24の判定結果情報記憶領域244に記憶し(S51)、本処理を終了する。故にCPU21は判定結果情報送信処理(図9参照)のS21の処理において、移設検知装置40、60の夫々のCPUから判定結果情報要求信号を受信した場合(S21:YES)、フラッシュメモリ24に記憶した判定結果情報を移設検知装置40、60に送信する(S23又はS24)。 When the main power supply is on (S50: YES), the machine M1 is in operation and the machine M1 vibrates, so that the vibration generated in the machine M1 due to the earthquake cannot be detected correctly. Therefore, the CPU 21 stores the status information that the CPU 21 is in operation as the determination result information in the determination result information storage area 244 of the flash memory 24 (S51), and ends this process. Therefore, when the CPU 21 receives the determination result information request signal from the respective CPUs of the relocation detection devices 40 and 60 in the process of S21 of the determination result information transmission process (see FIG. 9) (S21: YES), the CPU 21 stores the determination result information in the flash memory 24. The determined determination result information is transmitted to the relocation detection devices 40 and 60 (S23 or S24).

例えば移設検知装置40のCPUは、図12に示す移設検知制御処理において、移設検知装置20のCPU21から判定結果情報を受信する(S15:YES)。CPUは移設検知装置20、40、60の全ての判定結果情報を集計する(S16)。例えば図13に示す判定結果情報2445を見ると、機械M1では稼働中というステータスのみを記憶しており、機械M2では振動を検出、機械M3では振動を検出しており、機械M2とM3の間で同時振動と判定している。判定結果情報2445を集計した集計情報2545によれば、機械M1の判定結果情報は稼働中というステータスのみであることから、機械M1の判定結果情報は無効化している。故に算出式の母数は3から1減算した2となる。同時振動検出数は2、同時振動検出割合は2/2×100=100(%)となる。故にCPUはS17における同時振動検出割合の計算において、機械が稼働中である移設検知装置を考慮しないので、検出した振動が地震による振動か移設による振動かの区別を精度良く行うことができる。 For example, the CPU of the relocation detection device 40 receives the determination result information from the CPU 21 of the relocation detection device 20 in the relocation detection control process shown in FIG. 12 (S15: YES). The CPU aggregates all the determination result information of the relocation detection devices 20, 40, and 60 (S16). For example, looking at the determination result information 2445 shown in FIG. 13, the machine M1 stores only the status of being in operation, the machine M2 detects vibration, the machine M3 detects vibration, and the space between the machines M2 and M3. Is judged to be simultaneous vibration. According to the aggregated information 2545 that aggregates the determination result information 2445, the determination result information of the machine M1 is invalidated because the determination result information of the machine M1 is only the status of being in operation. Therefore, the parameter of the calculation formula is 2 obtained by subtracting 1 from 3. The number of simultaneous vibrations detected is 2, and the ratio of simultaneous vibrations detected is 2/2 × 100 = 100 (%). Therefore, since the CPU does not consider the relocation detection device in which the machine is operating in the calculation of the simultaneous vibration detection ratio in S17, it is possible to accurately distinguish whether the detected vibration is due to an earthquake or vibration due to relocation.

以上説明の如く、第二実施形態の移設検知システム200は、第一実施形態と同様の構成を備える。移設検知装置20、40、60は、機械M1〜M3に取り付ける。移設検知装置20のCPU21は、機械M1が稼働中か判断する。機械M1が稼働中の場合、CPU21は稼働中というステータスのみの情報を、判定結果情報として他の移設検知装置40、60に送信する。稼働中というステータスのみの判定結果情報は無効化している。移設検知装置40、60のCPUは、移設検知装置20、40、60の夫々の判定結果情報のうち、無効化した機械M1の無効化した判定結果情報を考慮しない。故に移設検知装置20、40、60は、機械M1〜M3の夫々において稼働中に伴って生じる振動の誤検出を防止できると共に、地震による振動と移設による振動の区別を精度良く行うことができる。 As described above, the relocation detection system 200 of the second embodiment has the same configuration as that of the first embodiment. The relocation detection devices 20, 40, and 60 are attached to the machines M1 to M3. The CPU 21 of the relocation detection device 20 determines whether the machine M1 is in operation. When the machine M1 is in operation, the CPU 21 transmits information only in the status of being in operation to the other relocation detection devices 40 and 60 as determination result information. The judgment result information of only the status of being in operation is invalidated. The CPUs of the relocation detection devices 40 and 60 do not consider the invalidated determination result information of the invalidated machine M1 among the determination result information of the relocation detection devices 20, 40 and 60, respectively. Therefore, the relocation detection devices 20, 40, and 60 can prevent erroneous detection of vibrations that occur during operation of the machines M1 to M3, and can accurately distinguish between vibrations due to an earthquake and vibrations due to relocation.

上記第二実施形態の説明にて、図12のS50の処理を実行するCPU21は本発明の稼働判断手段の一例である。S51の処理を実行するCPU21は本発明の無効化手段の一例である。 In the description of the second embodiment, the CPU 21 that executes the process of S50 of FIG. 12 is an example of the operation determination means of the present invention. The CPU 21 that executes the process of S51 is an example of the invalidation means of the present invention.

図14〜図19を参照し、第三実施形態を説明する。図14に示す如く、第三実施形態の移設検知システム300は、三つの機械M1〜M3と一つのマスター装置70を備える。第一実施形態と同様に、機械M1は、移設検知装置20を備える。機械M2は、移設検知装置40を備える。機械M3は、移設検知装置60を備える。移設検知装置20、40、60は、マスター装置70のスレーブとして機能する。マスター装置70は、移設検知装置20、40、60と個々に通信可能に接続する。第一実施形態と共通する部分、共通する処理は同一符号、同一ステップ番号を付して説明する。 A third embodiment will be described with reference to FIGS. 14 to 19. As shown in FIG. 14, the relocation detection system 300 of the third embodiment includes three machines M1 to M3 and one master device 70. Similar to the first embodiment, the machine M1 includes a relocation detection device 20. The machine M2 includes a relocation detection device 40. The machine M3 includes a relocation detection device 60. The relocation detection devices 20, 40, and 60 function as slaves of the master device 70. The master device 70 is individually communicably connected to the relocation detection devices 20, 40, and 60. The parts common to the first embodiment and the common processes will be described with the same reference numerals and the same step numbers.

図15〜図17を参照し、機械M1〜M3とマスター装置70の電気的構成を説明する。図15に示す如く、機械M1〜M3の夫々の電気的構成は、第一実施形態(図2参照)と同一である。図16に示す如く、移設検知装置20のフラッシュメモリ240は、振動履歴情報記憶領域241、フラグ記憶領域242、クロック値記憶領域243等を備える。他の移設検知装置40、60の夫々のフラッシュメモリも同一の記憶領域を備える。マスター装置70は、移設検知装置20と同一構成を備える。マスター装置70は、CPU71、振動検出部72、リアルタイムクロック73、フラッシュメモリ74、通信I/F75、内蔵電池77等を備える。移設検知装置20の通信I/F25は、配線L1を介して、マスター装置70の通信I/F75に通信可能に接続する。移設検知装置40の通信I/Fは、配線L2を介して、マスター装置70の通信I/F75に通信可能に接続する。移設検知装置60の通信I/F25は、配線L3を介して、マスター装置70の通信I/F75に通信可能に接続する。図17に示す如く、マスター装置70のフラッシュメモリ74は、判定結果情報記憶領域741、クロック値記憶領域742等を備える。 The electrical configurations of the machines M1 to M3 and the master device 70 will be described with reference to FIGS. 15 to 17. As shown in FIG. 15, each electrical configuration of the machines M1 to M3 is the same as that of the first embodiment (see FIG. 2). As shown in FIG. 16, the flash memory 240 of the relocation detection device 20 includes a vibration history information storage area 241, a flag storage area 242, a clock value storage area 243, and the like. The flash memories of the other relocation detection devices 40 and 60 also have the same storage area. The master device 70 has the same configuration as the relocation detection device 20. The master device 70 includes a CPU 71, a vibration detection unit 72, a real-time clock 73, a flash memory 74, a communication I / F75, a built-in battery 77, and the like. The communication I / F 25 of the relocation detection device 20 is communicably connected to the communication I / F 75 of the master device 70 via the wiring L1. The communication I / F of the relocation detection device 40 is communicably connected to the communication I / F 75 of the master device 70 via the wiring L2. The communication I / F 25 of the relocation detection device 60 is communicably connected to the communication I / F 75 of the master device 70 via the wiring L3. As shown in FIG. 17, the flash memory 74 of the master device 70 includes a determination result information storage area 741, a clock value storage area 742, and the like.

図18を参照し、マスター側制御処理を説明する。本処理は、マスター装置70のCPU71が実行する処理である。マスター装置70を起動すると、CPU71はフラッシュメモリ74に記憶するマスター側制御プログラムを呼び出し、本処理を実行する。 The master side control process will be described with reference to FIG. This process is a process executed by the CPU 71 of the master device 70. When the master device 70 is started, the CPU 71 calls the master control program stored in the flash memory 74 and executes this process.

CPU71はリアルタイムクロック73の動作を開始する(S61)。CPU71は振動を検出したか否か判断する(S62)。振動検出部72が振動を検出した場合(S62:YES)、CPU71はリアルタイムクロック73の現在のクロック値X2を、フラッシュメモリ74のクロック値記憶領域742に記憶する(S63)。 The CPU 71 starts the operation of the real-time clock 73 (S61). The CPU 71 determines whether or not vibration has been detected (S62). When the vibration detection unit 72 detects vibration (S62: YES), the CPU 71 stores the current clock value X2 of the real-time clock 73 in the clock value storage area 742 of the flash memory 74 (S63).

CPU71はスレーブである移設検知装置20、40、60の何れかより通信要求が有るか否か判断する(S64)。スレーブから通信要求が有るまで(S64:NO)、CPU71は待機する。スレーブから通信要求が有った場合(S64:YES)、CPU71は通信要求があったスレーブに応答信号を返信する共に、リアルタイムクロック73の現在のクロック値Y2を更に取得し(S65)、フラッシュメモリ74のクロック値記憶領域742に記憶する。CPU71はクロック値X2、Y2を、通信要求のあったスレーブに送信する(S66)。 The CPU 71 determines whether or not there is a communication request from any of the slave relocation detection devices 20, 40, and 60 (S64). The CPU 71 waits until there is a communication request from the slave (S64: NO). When there is a communication request from the slave (S64: YES), the CPU 71 returns a response signal to the slave that requested the communication, and further acquires the current clock value Y2 of the real-time clock 73 (S65), and the flash memory. It is stored in the clock value storage area 742 of 74. The CPU 71 transmits the clock values X2 and Y2 to the slave that requested the communication (S66).

CPU71は他のスレーブから通信要求が有るか否か判断する(S67)。他のスレーブから通信要求があった場合(S67:YES)、CPU71はS65に戻り、通信要求のあったスレーブに対して上記処理を繰り返す(S65〜S67)。他のスレーブから通信要求が無かった場合(S67:NO)、CPU71は通信中のスレーブから、上記実施形態と同様の判定結果情報を受信する(S68)。CPU71は受信した判定結果情報を、フラッシュメモリ74の判定結果情報記憶領域741に記憶する。CPU71は、移設検知装置20、40、60の全ての判定結果情報を集計する(S69)。 The CPU 71 determines whether or not there is a communication request from another slave (S67). When there is a communication request from another slave (S67: YES), the CPU 71 returns to S65 and repeats the above processing for the slave for which the communication request has been made (S65 to S67). When there is no communication request from the other slave (S67: NO), the CPU 71 receives the determination result information similar to that of the above embodiment from the slave during communication (S68). The CPU 71 stores the received determination result information in the determination result information storage area 741 of the flash memory 74. The CPU 71 aggregates all the determination result information of the relocation detection devices 20, 40, and 60 (S69).

第一実施形態と同様に、CPU71は判定結果情報に基づき集計情報を作成し、同時振動検出割合を算出する。CPU71は同時振動検出割合が一定割合以上か否か判断する(S70)。同時振動検出割合が一定割合以上の場合(S70:YES)、地震による振動の可能性が高いので、CPU71は、起動制限フラグオフ信号を、移設検知装置20、40、60に送信する(S71)。起動制限フラグオフ信号は、移設検知装置20、40、60の夫々のフラッシュメモリに記憶する起動制限フラグをオフにする信号である。起動制限フラグオフ信号送信後、CPU71はS62に戻り処理を繰り返す。同時振動検出割合が一定割合未満の場合(S70:NO)、地震による振動の可能性は低いので、CPU71はそのまま本処理を終了する。 Similar to the first embodiment, the CPU 71 creates aggregated information based on the determination result information and calculates the simultaneous vibration detection ratio. The CPU 71 determines whether or not the simultaneous vibration detection ratio is a certain ratio or more (S70). When the simultaneous vibration detection ratio is a certain ratio or more (S70: YES), there is a high possibility of vibration due to an earthquake, so the CPU 71 transmits a start restriction flag-off signal to the relocation detection devices 20, 40, 60 (S71). The activation restriction flag off signal is a signal for turning off the activation restriction flag stored in the flash memories of the relocation detection devices 20, 40, and 60, respectively. After transmitting the start restriction flag off signal, the CPU 71 returns to S62 and repeats the process. When the simultaneous vibration detection ratio is less than a certain ratio (S70: NO), the possibility of vibration due to an earthquake is low, so the CPU 71 ends this process as it is.

振動検出部72が振動を検出しない場合(S62:NO)、CPU71は他のスレーブから判定結果情報を受信したか否か判断する(S74)。他のスレーブから判定結果情報を受信しなかった場合(S74:NO)、CPU71はS62に戻り、処理を繰り返す。他のスレーブから判定結果情報を受信した場合(S74:YES)、CPU71は他のスレーブから受信した判定結果情報を、フラッシュメモリ74の判定結果情報記憶領域741に記憶する。CPU71は、フラッシュメモリ74に記憶する全ての判定結果情報を集計する(S69)。第二実施形態と同様に、同時振動検出割合が一定割合以上の場合(S70:YES)、地震による振動の可能性が高いので、CPU71は、起動制限フラグオフ信号を、移設検知装置20、40、60に送信する(S71)。CPU71は、S62に戻り処理を繰り返す。同時振動検出割合が一定割合未満の場合(S70:NO)、地震による振動の可能性は低いので、CPU71は何もせずに本処理を終了する。 When the vibration detection unit 72 does not detect vibration (S62: NO), the CPU 71 determines whether or not the determination result information has been received from another slave (S74). When the determination result information is not received from the other slave (S74: NO), the CPU 71 returns to S62 and repeats the process. When the determination result information is received from the other slave (S74: YES), the CPU 71 stores the determination result information received from the other slave in the determination result information storage area 741 of the flash memory 74. The CPU 71 aggregates all the determination result information stored in the flash memory 74 (S69). Similar to the second embodiment, when the simultaneous vibration detection ratio is a certain ratio or more (S70: YES), there is a high possibility of vibration due to an earthquake, so that the CPU 71 sends a start restriction flag-off signal to the relocation detection devices 20, 40, It is transmitted to 60 (S71). The CPU 71 returns to S62 and repeats the process. When the simultaneous vibration detection ratio is less than a certain ratio (S70: NO), the possibility of vibration due to an earthquake is low, so the CPU 71 ends this process without doing anything.

図19を参照し、スレーブ側制御処理を説明する。本処理は、スレーブである移設検知装置20、40、60のCPUが実行する処理である。本実施形態は、移設検知装置20のCPU21が実行する場合を例に説明する。移設検知装置20を起動すると、CPU21はフラッシュメモリ24に記憶するスレーブ側制御プログラムを呼び出し、本処理を実行する。 The slave side control process will be described with reference to FIG. This process is a process executed by the CPUs of the slave relocation detection devices 20, 40, and 60. This embodiment will be described by taking the case where the CPU 21 of the relocation detection device 20 executes as an example. When the relocation detection device 20 is activated, the CPU 21 calls the slave-side control program stored in the flash memory 24 and executes this process.

CPU21はリアルタイムクロック23の動作を開始する(S81)。CPU21は振動を検出したか否か判断する(S82)。振動検出部22が振動を検出した場合(S82:YES)、CPU21はフラッシュメモリ240のフラグ記憶領域242に記憶する起動制限フラグをオンにする(S83)。CPU21はリアルタイムクロック23の現在のクロック値X1を、フラッシュメモリ240のクロック値記憶領域243に記憶する(S84)。CPU21はマスター装置70と通信可能か否か判断する(S85)。マスター装置70と通信可能となるまで(S85:NO)、CPU71は待機する。マスター装置70と通信可能になった場合(S85:YES)、CPU71はリアルタイムクロック23の現在のクロック値Y1を更に取得し、フラッシュメモリ240のクロック値記憶領域243に記憶する(S86)。 The CPU 21 starts the operation of the real-time clock 23 (S81). The CPU 21 determines whether or not vibration has been detected (S82). When the vibration detection unit 22 detects vibration (S82: YES), the CPU 21 turns on the start limit flag stored in the flag storage area 242 of the flash memory 240 (S83). The CPU 21 stores the current clock value X1 of the real-time clock 23 in the clock value storage area 243 of the flash memory 240 (S84). The CPU 21 determines whether or not communication with the master device 70 is possible (S85). The CPU 71 waits until communication with the master device 70 becomes possible (S85: NO). When communication with the master device 70 becomes possible (S85: YES), the CPU 71 further acquires the current clock value Y1 of the real-time clock 23 and stores it in the clock value storage area 243 of the flash memory 240 (S86).

CPU21はマスター装置70に振動情報(クロック値X2、Y2)が有るか否か判断する(S87)。マスター装置70に振動情報が有る場合(S87:YES)、CPU21はマスター装置70から振動情報を取得する(S88)。CPU21は、振動情報(クロック値X1、Y1、X2、Y2)に基づき、第一実施形態と同様に、経過クロック数K1,K2を算出する(S89)。 The CPU 21 determines whether or not the master device 70 has vibration information (clock values X2, Y2) (S87). When the master device 70 has vibration information (S87: YES), the CPU 21 acquires the vibration information from the master device 70 (S88). The CPU 21 calculates the elapsed clock numbers K1 and K2 based on the vibration information (clock values X1, Y1, X2, Y2) as in the first embodiment (S89).

CPU21は同時振動の判定を行う(S90)。第一実施形態と同様に、K1とK2の誤差が許容範囲内である場合、機械M1で検出した振動とマスター装置70で検出した振動は同時振動と判定できる。K1とK2の誤差が許容範囲外である場合、機械M1で検出した振動とマスター装置70で検出した振動は同時振動ではないので、個別に起きた振動と判定できる。CPU21は判定結果情報を作成し、マスター装置70に送信する(S92)。マスター装置70に振動情報が無い場合(S87:NO)、CPU71は自身を振動と判定する判定結果情報を作成し(S91)、マスター装置70に判定結果情報を送信する(S92)。 The CPU 21 determines the simultaneous vibration (S90). Similar to the first embodiment, when the error between K1 and K2 is within the allowable range, the vibration detected by the machine M1 and the vibration detected by the master device 70 can be determined to be simultaneous vibrations. When the error between K1 and K2 is out of the permissible range, the vibration detected by the machine M1 and the vibration detected by the master device 70 are not simultaneous vibrations, and therefore can be determined to be vibrations that have occurred individually. The CPU 21 creates determination result information and transmits it to the master device 70 (S92). When there is no vibration information in the master device 70 (S87: NO), the CPU 71 creates determination result information for determining itself as vibration (S91) and transmits the determination result information to the master device 70 (S92).

CPU21は、マスター装置70から起動制限フラグオフ信号を受信したか否か判断する(S93)。起動制限フラグオフ信号を受信した場合(S93:YES)、CPU21はフラッシュメモリ240のフラグ記憶領域242に記憶する起動制限フラグをオフする(S94)。数値制御装置10のCPU11は、上述の起動判定処理(図11参照)において、起動制限フラグはオフなので(S43:NO)、機械M1を正常に起動する(S45)。機械M2、M3に対応する数値制御装置30、50の夫々のCPUも同様に、機械M2、M3を正常に起動する。故に移設検知システム300は、地震による振動の可能性が高い場合、機械M1〜M3の起動を全て許可できる。故に移設検知装置20、40,60のうち何れかの移設検知装置が、何等かの理由で振動を検出する時刻が他の移設検知装置とずれていたとしても、同時に振動を検出した割合が高かった場合は、地震による振動と判定するので、地震による振動の誤検出を防止できる。 The CPU 21 determines whether or not a start restriction flag off signal has been received from the master device 70 (S93). When the start limit flag off signal is received (S93: YES), the CPU 21 turns off the start limit flag stored in the flag storage area 242 of the flash memory 240 (S94). Since the start restriction flag is off (S43: NO) in the above-mentioned start determination process (see FIG. 11), the CPU 11 of the numerical control device 10 normally starts the machine M1 (S45). Similarly, the CPUs of the numerical control devices 30 and 50 corresponding to the machines M2 and M3 also normally start the machines M2 and M3. Therefore, the relocation detection system 300 can allow all the activation of the machines M1 to M3 when there is a high possibility of vibration due to an earthquake. Therefore, even if the time at which any of the relocation detection devices 20, 40, and 60 detects vibration is different from that of the other relocation detection devices for some reason, the ratio of detecting vibration at the same time is high. In this case, it is determined that the vibration is caused by an earthquake, so that it is possible to prevent erroneous detection of vibration caused by an earthquake.

マスター装置70から起動制限フラグオフ信号を受信しなかった場合(S93:NO)、CPU21は何もせずに本処理を終了する。移設検知装置20において振動を検出していれば(S82:YES)、フラッシュメモリ240に記憶する起動制限フラグはオンである(S83)。数値制御装置10のCPU11は、上述の起動判定処理(図11参照)において、起動制限フラグがオンであれば(S43:YES)、機械M1の起動を制限する(S44)。移設検知装置20は、振動を検出したときに起動制限フラグをオンし、その状態を保持するので、数値制御装置10のCPUは、対応する機械M1の起動を制限できる。移設検知装置40、60も、移設検知装置20と同様である。 When the start restriction flag off signal is not received from the master device 70 (S93: NO), the CPU 21 ends this process without doing anything. If vibration is detected in the relocation detection device 20 (S82: YES), the activation restriction flag stored in the flash memory 240 is ON (S83). In the above-mentioned start determination process (see FIG. 11), the CPU 11 of the numerical control device 10 limits the start of the machine M1 if the start limit flag is ON (S43: YES) (S44). Since the relocation detection device 20 turns on the start limit flag when the vibration is detected and holds the state, the CPU of the numerical control device 10 can limit the start of the corresponding machine M1. The relocation detection devices 40 and 60 are also the same as the relocation detection devices 20.

以上説明の如く、第三実施形態の移設検知システム300は、三つの機械M1、M2、M3と、一つのマスター装置70を備える。移設検知装置20、40、60は、機械M1〜M3の夫々に対応して設ける。移設検知装置20、40、60は、夫々の振動検出部22が振動を検出した場合に、起動禁止フラグをオンし、対応する機械M1〜M3の起動を禁止する。マスター装置70は、振動検出部72を有し、移設検知装置20、40、60と個々に通信可能である。 As described above, the relocation detection system 300 of the third embodiment includes three machines M1, M2, M3 and one master device 70. The relocation detection devices 20, 40, and 60 are provided corresponding to the machines M1 to M3, respectively. When each of the vibration detection units 22 detects vibration, the relocation detection devices 20, 40, and 60 turn on the start prohibition flag and prohibit the start of the corresponding machines M1 to M3. The master device 70 has a vibration detection unit 72 and can communicate with the relocation detection devices 20, 40, and 60 individually.

移設検知装置20のCPU21は、振動検出部22が機械M1の振動を検出した場合、該振動に関する振動情報(クロック値X1、Y1)を取得する。移設検知装置20は、取得した振動情報を配線L1を介して、マスター装置70に送信する。CPU21は、マスター装置70の振動検出部72が検出した振動情報(クロック値X2、Y2)を、配線L1を介してマスター装置70から取得する。CPU21は、自身で取得した振動情報(第一振動情報に相当)と、マスター装置70から取得した振動情報(第二振動情報に相当)とに基づき、同時刻に振動を検出したか判定する。CPU21は判定結果情報を作成し、マスター装置70に送信する。 When the vibration detection unit 22 detects the vibration of the machine M1, the CPU 21 of the relocation detection device 20 acquires vibration information (clock values X1, Y1) related to the vibration. The relocation detection device 20 transmits the acquired vibration information to the master device 70 via the wiring L1. The CPU 21 acquires vibration information (clock values X2, Y2) detected by the vibration detection unit 72 of the master device 70 from the master device 70 via the wiring L1. The CPU 21 determines whether or not the vibration is detected at the same time based on the vibration information (corresponding to the first vibration information) acquired by itself and the vibration information (corresponding to the second vibration information) acquired from the master device 70. The CPU 21 creates determination result information and transmits it to the master device 70.

マスター装置70のCPU71は、移設検知装置20、40、60のCPUが送信した判定結果情報を受信する。CPU71は、受信した複数の判定結果情報に基づき、移設検知装置20、40、60のうち、同時刻に振動を検出した移設検知装置の割合が一定割合以上か判断する。同時刻に振動を検出した移設検知装置の割合が一定割合以上の場合、移設検知装置20、40,60のうち何れかの移設検知装置が何等かの理由で振動を検出する時刻が他の移設検知装置とずれていたとしても、同時に振動を検出した割合が高いので、地震による振動と判定できる。故にCPU71は移設検知装置20、40、60に対して、起動制限フラグオフ信号を送信する。起動制限フラグオフ信号を受信した移設検知装置20、40、60は、夫々のフラッシュメモリに記憶する起動制限フラグをオフする。故に機械M1〜M3を制御する数値制御装置10、30、50のCPUは、機械M1〜M3の起動を制限することなく、正常に起動できる。 The CPU 71 of the master device 70 receives the determination result information transmitted by the CPUs of the relocation detection devices 20, 40, and 60. Based on the received plurality of determination result information, the CPU 71 determines whether the ratio of the relocation detection devices 20, 40, and 60 that have detected vibration at the same time is a certain ratio or more. If the ratio of the relocation detection devices that detect vibration at the same time is a certain percentage or more, the time when any of the relocation detection devices 20, 40, and 60 detects vibration for some reason is the other relocation. Even if it deviates from the detection device, the rate of detecting vibration at the same time is high, so it can be determined that the vibration is due to an earthquake. Therefore, the CPU 71 transmits a start restriction flag off signal to the relocation detection devices 20, 40, and 60. The relocation detection devices 20, 40, and 60 that have received the activation restriction flag off signal turn off the activation restriction flag stored in their respective flash memories. Therefore, the CPUs of the numerical control devices 10, 30, and 50 that control the machines M1 to M3 can be normally started without limiting the start of the machines M1 to M3.

上記第三実施形態の説明にて、図19のS84とS86の処理を実行するCPU21は本発明の第一取得手段の一例である。S88の処理を実行するCPU21は本発明の第二取得手段の一例である。S89、S90の処理を実行するCPU21は本発明の判定手段の一例であるS92の処理を実行するCPU21は本発明の送信手段の一例である。図20のS68、S74の処理を実行するCPU71は本発明の受信手段の一例である。S69、S70の処理を実行するCPU71は本発明の判断手段の一例である。S71の処理を実行するCPU71は本発明の起動制御手段の一例である。 In the description of the third embodiment, the CPU 21 that executes the processes of S84 and S86 of FIG. 19 is an example of the first acquisition means of the present invention. The CPU 21 that executes the process of S88 is an example of the second acquisition means of the present invention. The CPU 21 that executes the processes of S89 and S90 is an example of the determination means of the present invention. The CPU 21 that executes the processes of S92 is an example of the transmission means of the present invention. The CPU 71 that executes the processes of S68 and S74 of FIG. 20 is an example of the receiving means of the present invention. The CPU 71 that executes the processes of S69 and S70 is an example of the determination means of the present invention. The CPU 71 that executes the process of S71 is an example of the activation control means of the present invention.

図14、図15、図20〜図23を参照し、本発明の第四実施形態を説明する。第四実施形態の移設検知システム400の構成及び電気的構成は、図14,図15に示す第三実施形態の移設検知システム300の構成及び電気的構成と同一である。第三実施形態と共通する部分、共通する処理は同一符号、同一ステップ番号を付して説明する。第四実施形態は、移設検知装置20、40、60の何れかに異常が生じた場合、その異常を生じた移設検知装置に対応する機械の起動を制限すると共に、その他の移設検知装置のうち一定割合以上で同時刻に振動を検知した場合は、地震による誤検知と判断する。移設検知装置の異常とは、例えば内蔵電池のバッテリ切れ、振動検出部72の故障等である。図20に示す如く、マスター装置70のフラッシュメモリ740は、判定結果情報記憶領域741、クロック値記憶領域742、異常情報記憶領域743等を備える。 A fourth embodiment of the present invention will be described with reference to FIGS. 14, 15, and 20 to 23. The configuration and electrical configuration of the relocation detection system 400 of the fourth embodiment are the same as the configuration and electrical configuration of the relocation detection system 300 of the third embodiment shown in FIGS. 14 and 15. The parts common to the third embodiment and the common processes will be described with the same reference numerals and the same step numbers. In the fourth embodiment, when an abnormality occurs in any of the relocation detection devices 20, 40, and 60, the start of the machine corresponding to the relocation detection device in which the abnormality occurs is restricted, and among the other relocation detection devices. If vibration is detected at the same time at a certain rate or higher, it is judged to be a false detection due to an earthquake. The abnormality of the relocation detection device is, for example, a dead battery of the built-in battery, a failure of the vibration detection unit 72, or the like. As shown in FIG. 20, the flash memory 740 of the master device 70 includes a determination result information storage area 741, a clock value storage area 742, an abnormality information storage area 743, and the like.

図21,図22を参照し、マスター側制御処理を説明する。本処理は、マスター装置70のCPU71が実行する処理である。マスター装置70を起動すると、CPU71はフラッシュメモリ740に記憶するマスター側制御プログラムを呼び出し、本処理を実行する。第四実施形態のマスター側制御処理は、図18に示す第三実施形態のマスター側制御処理を一部変形したものであるので、共通する部分は同一ステップ番号を付して説明を簡略又は省略し異なる部分を中心に説明する。 The master side control process will be described with reference to FIGS. 21 and 22. This process is a process executed by the CPU 71 of the master device 70. When the master device 70 is activated, the CPU 71 calls the master control program stored in the flash memory 740 and executes this process. Since the master-side control process of the fourth embodiment is a partial modification of the master-side control process of the third embodiment shown in FIG. 18, the common parts are given the same step numbers and the description is simplified or omitted. The explanation will focus on the different parts.

CPU71はリアルタイムクロック73の動作を開始する(S101)。CPU71はスレーブである移設検知装置20、40、60と通信を開始する(S102)。CPU71は、移設検知装置20、40、60のうち異常を検出した移設検知装置が有るか否か判断する(S103)。例えば移設検知装置40の内蔵電池にバッテリ切れが生じた場合、移設検知装置40は異常である。移設検知装置40のCPUは、異常信号をマスター装置70に送信する。マスター装置70のCPU71は、移設検知装置40から異常信号を受信すると(S103:YES)、CPU71はフラッシュメモリ740の異常情報記憶領域743に異常情報を記憶する(S104)。異常情報とは、例えば異常を生じた移設検知装置に関する情報である。移設検知装置40が異常である場合、移設検知装置40は機械M2の移設を正しく検知できない場合があるので、機械M2の起動を制限するのが望ましい。故にCPU71はフラッシュメモリ740に記憶した異常情報に基づき、異常を生じた移設検知装置40にのみ、起動制限フラグオン信号を送信し(S105)、本処理を終了する。 The CPU 71 starts the operation of the real-time clock 73 (S101). The CPU 71 starts communication with the relocation detection devices 20, 40, and 60, which are slaves (S102). The CPU 71 determines whether or not there is a relocation detection device that has detected an abnormality among the relocation detection devices 20, 40, and 60 (S103). For example, when the built-in battery of the relocation detection device 40 runs out of battery, the relocation detection device 40 is abnormal. The CPU of the relocation detection device 40 transmits an abnormality signal to the master device 70. When the CPU 71 of the master device 70 receives the abnormality signal from the relocation detection device 40 (S103: YES), the CPU 71 stores the abnormality information in the abnormality information storage area 743 of the flash memory 740 (S104). The abnormality information is, for example, information about a relocation detection device that has caused an abnormality. If the relocation detection device 40 is abnormal, the relocation detection device 40 may not be able to correctly detect the relocation of the machine M2, so it is desirable to limit the start-up of the machine M2. Therefore, based on the abnormality information stored in the flash memory 740, the CPU 71 transmits a start restriction flag-on signal only to the relocation detection device 40 in which the abnormality has occurred (S105), and ends this process.

移設検知装置20、40、60のうち異常を検出した移設検知装置が無い場合(S103:NO)、図22に示す如く、CPU71は振動検出部72が振動を検出したか否か判断する(S62)。振動を検出した場合(S62:YES)、CPU71は第三実施形態と同様に、S63〜S68の処理を実行する。スレーブから判定結果情報を受信した後(S68)、CPU71は、異常を生じた移設検知装置が有るか否か判断する(S111)。フラッシュメモリ740の異常情報記憶領域743に異常情報を記憶していなければ(S111:NO)、CPU71は第三実施形態と同様に、全ての移設検知装置20、40、60の夫々の判定結果情報を集計し(S69)、同時振動検出割合が一定割合以上か否か判断する(S70)。 When there is no relocation detection device that has detected an abnormality among the relocation detection devices 20, 40, and 60 (S103: NO), the CPU 71 determines whether or not the vibration detection unit 72 has detected vibration (S62), as shown in FIG. 22. ). When the vibration is detected (S62: YES), the CPU 71 executes the processes S63 to S68 as in the third embodiment. After receiving the determination result information from the slave (S68), the CPU 71 determines whether or not there is a relocation detection device that has caused an abnormality (S111). If the abnormality information is not stored in the abnormality information storage area 743 of the flash memory 740 (S111: NO), the CPU 71 has the determination result information of all the relocation detection devices 20, 40, and 60 as in the third embodiment. (S69), and it is determined whether or not the simultaneous vibration detection ratio is a certain ratio or more (S70).

異常を生じた移設検知装置が有る場合(S111:YES)、CPU71は判定結果情報に基づき判定結果情報を集計する際に、移設検知装置20、40、60の数から異常を生じた移設検知装置の数を差し引いてから、同時振動検出割合を算出する(S113)。故にCPU71は異常を生じた移設検知装置を除外した上で、同時振動検出割合を算出できるので、CPU71は地震による振動か否かを精度良く判定できる。CPU71は第三実施形態と同様に、算出した同時振動検出割合が一定割合以上か否か判断する(S70)。以後の処理は第三実施形態と同じである。 When there is a relocation detection device that has caused an abnormality (S111: YES), the CPU 71 is a relocation detection device that has caused an abnormality from the numbers of the relocation detection devices 20, 40, and 60 when aggregating the judgment result information based on the judgment result information. After subtracting the number of, the simultaneous vibration detection ratio is calculated (S113). Therefore, since the CPU 71 can calculate the simultaneous vibration detection ratio after excluding the relocation detection device in which the abnormality has occurred, the CPU 71 can accurately determine whether or not the vibration is due to an earthquake. Similar to the third embodiment, the CPU 71 determines whether or not the calculated simultaneous vibration detection ratio is equal to or higher than a certain ratio (S70). Subsequent processing is the same as in the third embodiment.

図23を参照し、スレーブ側制御処理を説明する。本処理は、スレーブである移設検知装置20、40、60のCPUが実行する処理である。移設検知装置20を起動すると、CPU21はフラッシュメモリ240に記憶するスレーブ側制御プログラムを呼び出し、本処理を実行する。第四実施形態のマスター側制御処理は、図19に示す第三実施形態のスレーブ側制御処理を一部変形したものであるので、共通する部分は同一ステップ番号を付して説明を簡略又は省略し、異なる部分を中心に説明する。 The slave side control process will be described with reference to FIG. 23. This process is a process executed by the CPUs of the slave relocation detection devices 20, 40, and 60. When the relocation detection device 20 is activated, the CPU 21 calls the slave-side control program stored in the flash memory 240 and executes this process. Since the master-side control process of the fourth embodiment is a partial modification of the slave-side control process of the third embodiment shown in FIG. 19, the common parts are given the same step numbers and the description is simplified or omitted. However, the explanation will focus on the different parts.

CPU21はリアルタイムクロック23の動作を開始し(S81)、振動を検出したか否か判断する(S82)。振動検出部22が振動を検出した場合(S82:YES)、CPU21は第三実施形態と同様に、S83以降の処理を実行する。振動検出部22が振動を検出しなかった場合(S82:NO)、CPU21はマスター装置70から起動制限フラグオン信号を受信したか否か判断する(S201)。起動制限フラグオン信号を受信していない場合(S201:NO)、CPU71はS82に戻って処理を繰り返す。 The CPU 21 starts the operation of the real-time clock 23 (S81), and determines whether or not vibration has been detected (S82). When the vibration detection unit 22 detects vibration (S82: YES), the CPU 21 executes the processes after S83 as in the third embodiment. When the vibration detection unit 22 does not detect the vibration (S82: NO), the CPU 21 determines whether or not the start restriction flag-on signal has been received from the master device 70 (S201). When the start restriction flag on signal is not received (S201: NO), the CPU 71 returns to S82 and repeats the process.

起動制限フラグオン信号を受信した場合(S201::YES)、移設検知装置20は異常を生じており、機械M1の移設を正常に検知できない可能性があるので、CPU71はフラッシュメモリ240のフラグ記憶領域242に1を記憶し、起動制限フラグをオンする(S202)。故に数値制御装置10のCPU11は、上述した起動判定処理(図11参照)にて、起動制限フラグはオンしているので(S43:YES)、機械M1の起動を制限できる(S44)。例えば移設検知装置20にバッテリ切れが生じた場合、移設検知装置20は機械M1の起動を制限できるので、移設を正常に検知できない状態で、機械M1が稼働するのを防止できる。 When the start restriction flag-on signal is received (S201 :: YES), the relocation detection device 20 has an abnormality and may not be able to detect the relocation of the machine M1 normally. Therefore, the CPU 71 has a flag storage area of the flash memory 240. 1 is stored in 242, and the activation restriction flag is turned on (S202). Therefore, since the start restriction flag is turned on in the start determination process (see FIG. 11) described above in the CPU 11 of the numerical control device 10 (S43: YES), the start of the machine M1 can be restricted (S44). For example, when the battery of the relocation detection device 20 runs out, the relocation detection device 20 can limit the start-up of the machine M1, so that it is possible to prevent the machine M1 from operating in a state where the relocation cannot be detected normally.

以上説明の如く、第四実施形態の移設検知システム400は、第三実施形態と同様に、三つの機械M1、M2、M3と、一つのマスター装置70を備える。マスター装置70のCPU71は、配線L1、L2、L3を介して通信する移設検知装置20、40、60のうち、例えばバッテリ切れ等の異常を生じた移設検知装置が有るか判断する。異常を生じた移設検知装置が有る場合、CPU71は、第三実施形態と同様に、移設検知装置20、40、60から受信した複数の判定結果情報に基づき、同時振動検出割合を算出する。第四実施形態のCPU71は、同時振動検出割合を算出する際に、移設検知装置20、40、60の数に相当する母数から異常を生じた移設検知装置の数を差し引いた上で、同時振動検出割合を算出する。即ちCPU71は、正常に動作する移設検知装置の振動検出部の中で、同時刻で振動を検出した振動検出手段の割合を算出できるので、地震による振動か否かを精度良く判定できる。 As described above, the relocation detection system 400 of the fourth embodiment includes three machines M1, M2, M3 and one master device 70, as in the third embodiment. The CPU 71 of the master device 70 determines whether any of the relocation detection devices 20, 40, and 60 that communicate via the wirings L1, L2, and L3 has a relocation detection device that has caused an abnormality such as a dead battery. When there is a relocation detection device that has caused an abnormality, the CPU 71 calculates the simultaneous vibration detection ratio based on the plurality of determination result information received from the relocation detection devices 20, 40, and 60, as in the third embodiment. When calculating the simultaneous vibration detection ratio, the CPU 71 of the fourth embodiment subtracts the number of the relocation detection devices having an abnormality from the population parameter corresponding to the number of the relocation detection devices 20, 40, 60, and then simultaneously. Calculate the vibration detection rate. That is, since the CPU 71 can calculate the ratio of the vibration detecting means that detected the vibration at the same time in the vibration detecting unit of the relocation detecting device that operates normally, it is possible to accurately determine whether or not the vibration is caused by an earthquake.

上記第四実施形態の説明にて、図21のS103の処理を実行するCPU71は本発明の異常判断手段の一例である。図22のS111、S113、S70の処理を実行するCPU71は本発明の判断手段の一例である。 In the description of the fourth embodiment, the CPU 71 that executes the process of S103 of FIG. 21 is an example of the abnormality determination means of the present invention. The CPU 71 that executes the processes of S111, S113, and S70 of FIG. 22 is an example of the determination means of the present invention.

本発明は上記実施形態に限らず各種変形が可能なことはいうまでもない。上記第一〜第四実施形態の機械の数は三つであるが、複数であればよい。同時振動検出割合が一定割合以上か否かで起動制限フラグのオンオフを決めるので、機械の数は多い方が好ましい。機械M1〜M3は、被削材を切削する工作機械であるが、本発明はその他の種類の機械にも適用可能である。移設検知装置20、40、60は内蔵電池で駆動するものであるが、例えば外部電源で駆動するものでもよい。例えば機械の主電源がオンのときは、機械の電源を利用し、主電源がオフのときは、内蔵電池を利用するようにしてもよい。 Needless to say, the present invention is not limited to the above embodiment and can be modified in various ways. The number of machines in the first to fourth embodiments is three, but it may be a plurality. Since the on / off of the start limit flag is determined by whether or not the simultaneous vibration detection ratio is a certain ratio or more, it is preferable that the number of machines is large. The machines M1 to M3 are machine tools for cutting a work material, but the present invention is also applicable to other types of machines. The relocation detection devices 20, 40, and 60 are driven by the built-in battery, but may be driven by, for example, an external power source. For example, when the main power of the machine is on, the power of the machine may be used, and when the main power is off, the built-in battery may be used.

移設検知装置20の振動検出部22(図2参照)、マスター装置70の振動検出部72(図15参照)は、加速度センサであるが、振動を検出する機器であれば何でもよく、例えば傾きを検出するようにしてもよい。 The vibration detection unit 22 (see FIG. 2) of the relocation detection device 20 and the vibration detection unit 72 (see FIG. 15) of the master device 70 are acceleration sensors, but any device that detects vibration may be used, for example, tilting. It may be detected.

第一、第二実施形態の移設検知装置20のCPU21は、第四実施形態の如く、例えば自身である移設検知装置20に異常(例えばバッテリ切れ等)を検出した場合に、他の移設検知装置に異常情報を送信するようにしてもよい。CPU21は他の移設検知装置から異常情報を受信した場合、異常情報を送信した装置以外の他の移設検知装置から受信した判定結果情報を集計する際に、移設検知装置20、40、60の数から異常を生じた移設検知装置の数を差し引いた上で、同時振動検出割合を算出すればよい。故に第一実施形態は、第四実施形態と同様の効果を得ることができる。 The CPU 21 of the relocation detection device 20 of the first and second embodiments detects, for example, an abnormality (for example, dead battery) in the relocation detection device 20 itself, as in the fourth embodiment, and another relocation detection device. The abnormality information may be transmitted to. When the CPU 21 receives the abnormality information from another relocation detection device, the number of the relocation detection devices 20, 40, 60 is calculated when the determination result information received from the device other than the device that transmitted the abnormality information is aggregated. The simultaneous vibration detection ratio may be calculated after subtracting the number of the relocation detection devices that have caused an abnormality from. Therefore, the first embodiment can obtain the same effect as the fourth embodiment.

第三、第四実施形態の移設検知システム300、400におけるマスター装置70のCPU71は第二実施形態の如く、例えば機械M1〜M3が稼働中か否かを判断し、稼働中の機械に対応する移設検知装置から受信する判定結果情報を無効化してもよい。CPU71は移設検知装置から受信した判定結果情報のうち無効化した判定結果情報を考慮しないので、検出した振動が地震による振動か否かを精度良く判定できるので、地震による誤検知を効果的に防止できる。 As in the second embodiment, the CPU 71 of the master device 70 in the relocation detection systems 300 and 400 of the third and fourth embodiments determines whether or not the machines M1 to M3 are in operation, and corresponds to the operating machines. The determination result information received from the relocation detection device may be invalidated. Since the CPU 71 does not consider the invalidated judgment result information among the judgment result information received from the relocation detection device, it can accurately determine whether or not the detected vibration is due to an earthquake, effectively preventing false detection due to an earthquake. it can.

本実施形態はCPUの代わりに、マイクロコンピュータ、ASIC (Application Specific Integrated Circuits)、FPGA (Field Programmable Gate Array)等を、プロセッサとして用いてもよい。移動制御処理は、複数のプロセッサによって分散処理してもよい。プログラムを記憶するフラッシュメモリは、例えばHDD及び又は記憶装置等の他の非一時的な記憶媒体で構成してもよい。非一時的な記憶媒体は、情報を記憶する期間に関わらず、情報を留めておくことが可能な記憶媒体であればよい。非一時的な記憶媒体は、一時的な記憶媒体(例えば、伝送される信号)を含まなくてもよい。移動制御プログラムは、例えば、図示外のネットワークに接続されたサーバからダウンロードして(即ち、伝送信号として送信され)、フラッシュメモリ等の記憶装置等に記憶してもよい。この場合、プログラムは、サーバに備えられたHDDなどの非一時的な記憶媒体に保存していればよい。 In this embodiment, instead of the CPU, a microcomputer, an ASIC (Application Specific Integrated Circuits), an FPGA (Field Programmable Gate Array), or the like may be used as a processor. The movement control process may be distributed by a plurality of processors. The flash memory for storing the program may be composed of, for example, an HDD and / or other non-temporary storage medium such as a storage device. The non-temporary storage medium may be any storage medium capable of storing information regardless of the period for storing the information. The non-temporary storage medium may not include a temporary storage medium (eg, a signal to be transmitted). The mobile control program may be downloaded from, for example, a server connected to a network (not shown) (that is, transmitted as a transmission signal) and stored in a storage device such as a flash memory. In this case, the program may be stored in a non-temporary storage medium such as an HDD provided in the server.

5 バス
20、40、60 移設検知装置
21 CPU
22 振動検出部
70 マスター装置
71 CPU
72 振動検出部
300、400 移設検知システム
L1〜L3 配線
M1〜M3 機械
X1、X2 クロック値
Y1、Y2 クロック値
5 Bus 20, 40, 60 Relocation detection device 21 CPU
22 Vibration detector 70 Master device 71 CPU
72 Vibration detection unit 300, 400 Relocation detection system L1 to L3 Wiring M1 to M3 Machine X1, X2 Clock value Y1, Y2 Clock value

Claims (6)

互いに異なる地点に設置した複数の機械の夫々に対応して設け、対応する前記機械の振動を検出する振動検出手段が前記機械の振動を検出した場合に、対応する前記機械の起動を禁止する制御手段を備えた移設検知装置において、
前記制御手段は、
前記振動検出手段が振動を検出した場合、自地点に設置した前記機械に対応する前記振動検出手段が検出した振動の情報である振動情報を取得する第一取得手段と、
他地点に設置した前記機械に対応する他の振動検出手段が検出した振動の情報である振動情報を、他の移設検知装置から通信手段を介して取得する第二取得手段と、
前記第一取得手段及び前記第二取得手段が取得した夫々の前記振動情報に基づき、同時刻に振動を検出したか判定する判定手段と、
前記判定手段の判定結果の情報である判定結果情報を、前記他の移設検知装置との間で前記通信手段を介して送受信する送受信手段と、
前記送受信手段によって送受信した前記判定結果情報に基づき、前記複数の機械の夫々に対応する複数の前記振動検出手段のうち、前記同時刻に振動を検出した前記振動検出手段が所定割合以上か判断する判断手段と
電池切れの異常を検出する異常検出手段と、
前記通信手段を介して通信する複数の前記移設検知装置のうち前記異常検出手段が異常を検出した前記移設検知装置が有るか判断する異常判断手段と
を備え
前記判断手段は、
前記異常判断手段が複数の前記移設検知装置のうち異常を生じた前記移設検知装置が有ると判断した場合、前記送受信手段が送受信した複数の前記判定結果情報に基づき、前記複数の機械の夫々に対応する複数の前記振動検出手段の数から異常を生じた前記移設検知装置の数を差し引いた上で、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上か判断し、
前記制御手段は、
記判断手段が、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上と判断した場合、対応する前記機械の起動を禁止せず、
前記異常検出手段が異常を検出した場合、対応する前記機械の起動を禁止すること
を特徴とする移設検知装置。
Control that is provided corresponding to each of a plurality of machines installed at different points and prohibits the start of the corresponding machine when the vibration detecting means for detecting the vibration of the corresponding machine detects the vibration of the machine. In a relocation detection device equipped with means
The control means
When the vibration detecting means detects vibration, the first acquiring means for acquiring the vibration information which is the vibration information detected by the vibration detecting means corresponding to the machine installed at the own point, and
A second acquisition means for acquiring vibration information, which is vibration information detected by another vibration detection means corresponding to the machine installed at another point, from another relocation detection device via a communication means.
A determination means for determining whether or not vibration was detected at the same time based on the vibration information acquired by the first acquisition means and the second acquisition means, respectively.
A transmission / reception means for transmitting / receiving determination result information, which is information on the determination result of the determination means, to / from the other relocation detection device via the communication means.
Based on the determination result information transmitted / received by the transmission / reception means, it is determined whether or not the vibration detection means that detects vibration at the same time is equal to or more than a predetermined ratio among the plurality of vibration detection means corresponding to each of the plurality of machines. and the judgment means,
Anomaly detection means for detecting abnormal battery exhaustion,
It is provided with an abnormality determining means for determining whether or not there is the relocation detecting device for which the abnormality detecting means has detected an abnormality among the plurality of the relocation detecting devices communicating via the communication means .
The judgment means is
When the abnormality determination means determines that there is the relocation detection device that has caused an abnormality among the plurality of the relocation detection devices, the plurality of machines are subjected to each of the plurality of determination result information transmitted and received by the transmission / reception means. After subtracting the number of the relocation detecting devices that have caused an abnormality from the number of the corresponding plurality of the vibration detecting means, it is determined whether the vibration detecting means that detects the vibration at the same time is equal to or more than the predetermined ratio.
The control means
Before SL determining means, the case where the vibration detecting means detects the vibration at the same time determines that the predetermined ratio or more, without disabling the activation of the corresponding machine,
A relocation detection device characterized in that when the abnormality detecting means detects an abnormality, the start of the corresponding machine is prohibited .
前記振動検出手段は、前記機械に固定し、
前記制御手段は、
前記機械が稼働中か判断する稼働判断手段と、
前記稼働判断手段が前記機械は稼働中と判断した場合、前記判定結果情報を無効化する無効化手段と
を備え、
前記判断手段は、前記送受信手段によって送受信した前記判定結果情報のうち、前記無効化手段が無効化した前記判定結果情報を考慮しないこと
を特徴とする請求項1に記載の移設検知装置。
The vibration detecting means is fixed to the machine and
The control means
An operation determination means for determining whether the machine is in operation,
When the operation determination means determines that the machine is in operation, the operation determination means includes an invalidation means for invalidating the determination result information.
The relocation detection device according to claim 1, wherein the determination means does not consider the determination result information invalidated by the invalidation means among the determination result information transmitted / received by the transmission / reception means.
互いに異なる地点に設置した複数の機械の夫々に対応して設け、対応する前記機械に生じる振動を検出する振動検出手段が振動を検出した場合に、対応する前記機械の起動を禁止する複数の移設検知装置と、前記複数の移設検知装置と通信手段を介して通信可能であって、振動を検出する振動検出手段を有するマスター装置とを備えた移設検知システムにおいて、
前記複数の移設検知装置の夫々は、
前記振動検出手段が振動を検出した場合に、前記振動検出手段が検出した振動の情報である第一振動情報を取得する第一取得手段と、
前記マスター装置の前記振動検出手段が検出した振動の情報である第二振動情報を、前記通信手段を介して取得する第二取得手段と、
前記第一取得手段及び前記第二取得手段が取得した前記第一振動情報及び前記第二振動情報とに基づき、同時刻に振動を検出したか判定する判定手段と、
前記判定手段の判定結果の情報である判定結果情報を、前記マスター装置に送信する送信手段と
電池切れの異常を検出する異常検出手段と
を備え、
前記マスター装置は、
前記複数の移設検知装置の夫々の前記送信手段が送信した前記判定結果情報を受信する受信手段と、
前記受信手段が受信した複数の前記判定結果情報に基づき、前記複数の移設検知装置に対応する複数の前記振動検出手段のうち、前記同時刻に振動を検出した前記振動検出手段が所定割合以上か判断する判断手段と、
前記判断手段が、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上と判断した場合、前記複数の機械の起動を禁止しないように前記複数の移設検知装置を制御する起動制御手段と
前記通信手段を介して通信する前記複数の移設検知装置のうち前記異常検出手段が異常を検出した前記移設検知装置が有るか判断する異常判断手段と
を備え
前記判断手段は、
前記異常判断手段が前記複数の移設検知装置のうち異常を検出した前記移設検知装置が有ると判断した場合、前記受信手段が受信した複数の前記判定結果情報に基づき、前記複数の機械の夫々に対応する複数の前記振動検出手段の数から異常を検出した前記移設検知装置の数を差し引いた上で、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上か判断し、
前記起動制御手段は、
前記判断手段が、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上と判断した場合、前記複数の機械の起動を禁止しないように前記複数の移設検知装置を制御し、
前記異常判断手段が異常を検出した前記移設検知装置が有ると判断した場合、異常を検出した前記移設検知装置に対応する前記機械の起動を禁止するように前記複数の移設検知装置を制御すること
を特徴とする移設検知システム。
A plurality of relocations that are provided corresponding to each of a plurality of machines installed at different points and prohibit the start of the corresponding machine when the vibration detecting means for detecting the vibration generated in the corresponding machine detects the vibration. In a relocation detection system including a detection device and a master device capable of communicating with the plurality of relocation detection devices via communication means and having a vibration detection means for detecting vibration.
Each of the plurality of relocation detection devices
When the vibration detecting means detects vibration, the first acquiring means for acquiring the first vibration information which is the vibration information detected by the vibration detecting means, and
A second acquisition means that acquires second vibration information, which is vibration information detected by the vibration detection means of the master device, via the communication means.
A determination means for determining whether or not vibration was detected at the same time based on the first acquisition means, the first vibration information acquired by the second acquisition means, and the second vibration information.
And transmitting means for transmitting the determination result information which is information of the determination result of said determining means, said master device,
Equipped with an abnormality detection means to detect an abnormality of dead battery ,
The master device
A receiving means for receiving the determination result information transmitted by the transmitting means of each of the plurality of relocation detection devices, and a receiving means for receiving the determination result information.
Among the plurality of vibration detecting means corresponding to the plurality of relocation detection devices based on the plurality of determination result information received by the receiving means, is the vibration detecting means that detects vibration at the same time a predetermined ratio or more? Judgment means to judge and
When the determination means determines that the vibration detection means that detects vibration at the same time is equal to or greater than the predetermined ratio, the activation control means that controls the plurality of relocation detection devices so as not to prohibit the activation of the plurality of machines. and,
It is provided with an abnormality determining means for determining whether or not there is the relocation detecting device for which the abnormality detecting means has detected an abnormality among the plurality of relocation detecting devices communicating via the communication means .
The judgment means is
When the abnormality determining means determines that there is the relocation detecting device that has detected an abnormality among the plurality of relocation detecting devices, the plurality of machines are subjected to each of the plurality of determination result information received by the receiving means. After subtracting the number of the relocation detecting devices that have detected an abnormality from the number of the corresponding plurality of the vibration detecting means, it is determined whether the vibration detecting means that has detected the vibration at the same time is equal to or more than the predetermined ratio.
The activation control means
When the determination means determines that the vibration detection means that detects the vibration at the same time is equal to or greater than the predetermined ratio, the plurality of relocation detection devices are controlled so as not to prohibit the activation of the plurality of machines.
When the abnormality determination means determines that there is the relocation detection device that has detected the abnormality, the plurality of relocation detection devices are controlled so as to prohibit the start of the machine corresponding to the relocation detection device that has detected the abnormality. A relocation detection system featuring.
前記振動検出手段は、前記機械に固定し、
前記複数の移設検知装置の夫々は、
前記機械が稼働中か判断する稼働判断手段と、
前記稼働判断手段が前記機械は稼働中と判断した場合に、前記判定結果情報を無効化する無効化手段と
を備え、
前記マスター装置の前記判断手段は、前記受信手段が受信した前記判定結果情報のうち、前記無効化手段が無効化した前記判定結果情報を考慮しないこと
を特徴とする請求項に記載の移設検知システム。
The vibration detecting means is fixed to the machine and
Each of the plurality of relocation detection devices
An operation determination means for determining whether the machine is in operation,
When the operation determination means determines that the machine is in operation, the operation determination means includes an invalidation means for invalidating the determination result information.
The relocation detection according to claim 3 , wherein the determination means of the master device does not consider the determination result information invalidated by the invalidation means among the determination result information received by the receiving means. system.
互いに異なる地点に設置した複数の機械の夫々に対応して設け、対応する前記機械の振動を検出する振動検出手段が前記機械の振動を検出した場合に、対応する前記機械の起動を禁止する制御工程を行う移設検知装置の移設検知方法において、
前記制御工程は、
前記振動検出手段が振動を検出した場合、自地点に設置した前記機械に対応する前記振動検出手段が検出した振動の情報である振動情報を取得する第一取得工程と、
他地点に設置した前記機械に対応する他の振動検出手段が検出した振動の情報である振動情報を、他の移設検知装置から通信手段を介して取得する第二取得工程と、
前記第一取得工程及び前記第二取得工程で取得した夫々の前記振動情報に基づき、同時刻に振動を検出したか判定する判定工程と、
前記判定工程の判定結果の情報である判定結果情報を、前記他の移設検知装置との間で前記通信手段を介して送受信する送受信工程と、
前記送受信工程によって送受信した前記判定結果情報に基づき、前記複数の機械の夫々に対応する複数の前記振動検出手段のうち、前記同時刻に振動を検出した前記振動検出手段が所定割合以上か判断する判断工程と
電池切れの異常を検出したか判断する異常検出判断工程と、
前記通信手段を介して通信する複数の前記移設検知装置のうち前記異常検出判断工程にて異常を検出したと判断した前記移設検知装置が有るか判断する異常判断工程と
を備え
前記判断工程では、
前記異常判断工程にて複数の前記移設検知装置のうち異常を生じた前記移設検知装置が有ると判断した場合、前記送受信工程にて送受信した複数の前記判定結果情報に基づき、前記複数の機械の夫々に対応する複数の前記振動検出手段の数から異常を生じた前記移設検知装置の数を差し引いた上で、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上か判断し、
前記制御工程では
記判断工程にて、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上と判断した場合、対応する前記機械の起動を禁止せず、
前記異常判断工程にて異常を生じた前記移設検知装置が有ると判断した場合、対応する前記機械の起動を禁止すること
を特徴とする移設検知方法。
Control that is provided corresponding to each of a plurality of machines installed at different points and prohibits the start of the corresponding machine when the vibration detecting means for detecting the vibration of the corresponding machine detects the vibration of the machine. In the relocation detection method of the relocation detection device that performs the process,
The control step is
When the vibration detecting means detects vibration, the first acquisition step of acquiring vibration information which is the vibration information detected by the vibration detecting means corresponding to the machine installed at the own point, and
A second acquisition step of acquiring vibration information, which is vibration information detected by another vibration detecting means corresponding to the machine installed at another point, from another relocation detecting device via a communication means.
A determination step of determining whether vibration was detected at the same time based on the vibration information acquired in the first acquisition step and the second acquisition step, respectively.
A transmission / reception step of transmitting / receiving determination result information, which is information on the determination result of the determination process, to / from the other relocation detection device via the communication means.
Based on the determination result information transmitted / received by the transmission / reception step, it is determined whether or not the vibration detection means that detects vibration at the same time is equal to or more than a predetermined ratio among the plurality of vibration detection means corresponding to each of the plurality of machines. and the determining step,
Anomaly detection judgment process to determine whether an abnormality of dead battery has been detected,
It is provided with an abnormality determination step of determining whether or not there is the relocation detection device that has been determined to have detected an abnormality in the abnormality detection determination step among the plurality of relocation detection devices that communicate via the communication means .
In the judgment process,
When it is determined in the abnormality determination step that there is the relocation detection device that has caused an abnormality among the plurality of relocation detection devices, the plurality of machines are subjected to the determination result information transmitted / received in the transmission / reception process. After subtracting the number of the relocation detecting devices that have caused an abnormality from the number of the plurality of vibration detecting means corresponding to each, it is determined whether or not the vibration detecting means that detected the vibration at the same time is the predetermined ratio or more.
In the control step ,
In front SL determination step, when the said vibration detecting means detects the vibration at the same time it is determined that the predetermined ratio or more, without disabling the activation of the corresponding machine,
A relocation detection method, characterized in that when it is determined that there is a relocation detection device in which an abnormality has occurred in the abnormality determination step, the start of the corresponding machine is prohibited .
互いに異なる地点に設置した複数の機械の夫々に対応して設け、対応する前記機械に生じる振動を検出する振動検出手段が振動を検出した場合に、対応する前記機械の起動を禁止する複数の移設検知装置と、前記複数の移設検知装置と通信手段を介して通信可能であって、振動を検出する振動検出手段を有するマスター装置とを備えた移設検知システムの移設検知方法において、
前記複数の移設検知装置の夫々が行う装置側工程と、
前記マスター装置が行うマスター側工程と
を備え、
前記装置側工程は、
前記振動検出手段が振動を検出した場合に、前記振動検出手段が検出した振動の情報である第一振動情報を取得する第一取得工程と、
前記マスター装置の前記振動検出手段が検出した振動の情報である第二振動情報を、前記通信手段を介して取得する第二取得工程と、
前記第一取得工程及び前記第二取得工程で取得した前記第一振動情報及び前記第二振動情報とに基づき、同時刻に振動を検出したか判定する判定工程と、
前記判定工程の判定結果の情報である判定結果情報を、前記マスター装置に送信する送信工程と
電池切れの異常を検出する異常検出工程と
を備え、
前記マスター側工程は、
前記複数の移設検知装置の夫々の前記送信工程で送信した前記判定結果情報を受信する受信工程と、
前記受信工程で受信した複数の前記判定結果情報に基づき、前記複数の移設検知装置に対応する複数の前記振動検出手段のうち、前記同時刻に振動を検出した前記振動検出手段が所定割合以上か判断する判断工程と、
前記判断工程で、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上と判断した場合、前記複数の機械の起動を禁止しないように前記複数の移設検知装置を制御する起動制御工程と
前記通信手段を介して通信する前記複数の移設検知装置のうち前記異常検出工程にて異常を検出した前記移設検知装置が有るか判断する異常判断工程と
を備え
前記判断工程では、
前記異常判断工程にて前記複数の移設検知装置のうち異常を検出した前記移設検知装置が有ると判断した場合、前記受信工程で受信した複数の前記判定結果情報に基づき、前記複数の機械の夫々に対応する複数の前記振動検出手段の数から異常を検出した前記移設検知装置の数を差し引いた上で、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上か判断し、
前記起動制御工程では、
前記判断工程にて、前記同時刻に振動を検出した前記振動検出手段が前記所定割合以上と判断した場合、前記複数の機械の起動を禁止しないように前記複数の移設検知装置を制御し、
前記異常判断工程にて異常を検出した前記移設検知装置が有ると判断した場合、異常を検出した前記移設検知装置に対応する前記機械の起動を禁止するように前記複数の移設検知装置を制御すること
を特徴とする移設検知方法。
A plurality of relocations that are provided corresponding to each of a plurality of machines installed at different points and prohibit the start of the corresponding machine when the vibration detecting means for detecting the vibration generated in the corresponding machine detects the vibration. In a relocation detection method of a relocation detection system including a detection device and a master device capable of communicating with the plurality of relocation detection devices via a communication means and having a vibration detection means for detecting vibration.
The device-side process performed by each of the plurality of relocation detection devices,
It is provided with a master-side process performed by the master device.
The device-side process
When the vibration detecting means detects vibration, the first acquisition step of acquiring the first vibration information which is the vibration information detected by the vibration detecting means, and the first acquisition step.
A second acquisition step of acquiring second vibration information, which is vibration information detected by the vibration detecting means of the master device, via the communication means.
A determination step of determining whether or not vibration was detected at the same time based on the first acquisition step, the first vibration information acquired in the second acquisition step, and the second vibration information.
A transmission step of transmitting the determination judgment result information is information determination result of the step, the master device,
It is equipped with an abnormality detection process that detects abnormalities in dead batteries .
The master side process is
A receiving step of receiving the determination result information transmitted in each of the transmitting steps of the plurality of relocation detection devices, and a receiving step of receiving the determination result information.
Among the plurality of vibration detecting means corresponding to the plurality of relocation detection devices based on the plurality of determination result information received in the receiving step, is the vibration detecting means that detects vibration at the same time a predetermined ratio or more? Judgment process to judge and
In the determination step, when the vibration detecting means that detects vibration at the same time determines that the ratio is equal to or greater than the predetermined ratio, the activation control step of controlling the plurality of relocation detection devices so as not to prohibit the activation of the plurality of machines. and,
It is provided with an abnormality determination step of determining whether or not there is the relocation detection device that has detected an abnormality in the abnormality detection step among the plurality of relocation detection devices that communicate via the communication means .
In the judgment process,
When it is determined that there is the relocation detection device that has detected an abnormality among the plurality of relocation detection devices in the abnormality determination step, each of the plurality of machines is based on the plurality of determination result information received in the reception step. After subtracting the number of the relocation detecting devices that detected the abnormality from the number of the plurality of the vibration detecting means corresponding to the above, it is determined whether the vibration detecting means that detected the vibration at the same time is equal to or more than the predetermined ratio.
In the start control step,
In the determination step, when the vibration detection means that detects vibration at the same time determines that the ratio is equal to or greater than the predetermined ratio, the plurality of relocation detection devices are controlled so as not to prohibit the activation of the plurality of machines.
When it is determined that there is the relocation detection device that has detected the abnormality in the abnormality determination step, the plurality of relocation detection devices are controlled so as to prohibit the activation of the machine corresponding to the relocation detection device that has detected the abnormality. A relocation detection method characterized by this.
JP2017036107A 2017-02-28 2017-02-28 Relocation detection device, relocation detection system and relocation detection method Active JP6766689B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017036107A JP6766689B2 (en) 2017-02-28 2017-02-28 Relocation detection device, relocation detection system and relocation detection method
CN201810168319.3A CN108507668B (en) 2017-02-28 2018-02-28 Displacement detection device, displacement detection system, and displacement detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017036107A JP6766689B2 (en) 2017-02-28 2017-02-28 Relocation detection device, relocation detection system and relocation detection method

Publications (2)

Publication Number Publication Date
JP2018141704A JP2018141704A (en) 2018-09-13
JP6766689B2 true JP6766689B2 (en) 2020-10-14

Family

ID=63375904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017036107A Active JP6766689B2 (en) 2017-02-28 2017-02-28 Relocation detection device, relocation detection system and relocation detection method

Country Status (2)

Country Link
JP (1) JP6766689B2 (en)
CN (1) CN108507668B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7409237B2 (en) * 2020-06-30 2024-01-09 ブラザー工業株式会社 Relocation detection system and control method

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643919B2 (en) * 1988-08-05 1994-06-08 株式会社新潟鐵工所 Phase estimation method and failure diagnosis device
JPH0332962A (en) * 1989-06-30 1991-02-13 Suzuki Motor Corp Burglar prevention device for vehicle
JPH08212476A (en) * 1995-01-31 1996-08-20 Hitachi Building Syst Eng & Service Co Ltd Building terminal device
JP3395428B2 (en) * 1995-02-21 2003-04-14 株式会社日立製作所 Engine control device
US5801618A (en) * 1996-02-08 1998-09-01 Jenkins; Mark Vehicle alarm and lot monitoring system
JP3603825B2 (en) * 2001-08-27 2004-12-22 オムロン株式会社 Surveillance systems, central monitors, and on-board monitors
JP3839400B2 (en) * 2002-12-16 2006-11-01 日立建機株式会社 Anti-theft device
US7224263B2 (en) * 2003-02-12 2007-05-29 Fujitsu Ten Limited Security apparatus
JP2004340706A (en) * 2003-05-15 2004-12-02 Toshiba Mitsubishi-Electric Industrial System Corp Apparatus for diagnosing instrument
JP4319101B2 (en) * 2004-07-08 2009-08-26 株式会社日立製作所 Moving object abnormality detection system
JP2009139105A (en) * 2007-12-03 2009-06-25 Sharp Corp Household earthquake determination apparatus and household electric appliance system
CN102200492B (en) * 2010-02-26 2014-08-13 兄弟工业株式会社 Detection system for mobile device
JP5126259B2 (en) * 2010-03-15 2013-01-23 ブラザー工業株式会社 Relocation detection system
JP2011180650A (en) * 2010-02-26 2011-09-15 Brother Industries Ltd Machine tool, method for determining transfer of machine tool, control program, and storage medium
JP5948834B2 (en) * 2011-12-09 2016-07-06 ブラザー工業株式会社 Relocation detection apparatus and control method
CN103217155B (en) * 2012-01-20 2017-10-13 德马吉森精机株式会社 The displacement detection and control method of equipment, the displacement detection of equipment and control unit
CN102862548B (en) * 2012-10-23 2015-06-10 北京车网互联科技股份有限公司 Global positioning system (GPS) vehicle anti-theft method and vehicle anti-theft device with acceleration transducer
JP5907905B2 (en) * 2013-02-05 2016-04-26 三菱電機株式会社 Earthquake detection device, server device, and earthquake detection method
CN203204747U (en) * 2013-03-18 2013-09-18 张殿英 Automatic telling machine remote anti-theft detecting device
KR20150027591A (en) * 2013-09-04 2015-03-12 엘에스산전 주식회사 Emergency stop apparatus for scada system
JP6293537B2 (en) * 2014-03-19 2018-03-14 株式会社東芝 Inspection system and abnormality detection method
JP6399947B2 (en) * 2015-02-25 2018-10-03 Kddi株式会社 Earthquake determination apparatus, system, program and method capable of earthquake determination by learning
JP6409629B2 (en) * 2015-03-11 2018-10-24 オムロン株式会社 Sensor system
DE102015208771B3 (en) * 2015-05-12 2016-09-01 Robert Bosch Gmbh Device and method for theft detection
CN105179013B (en) * 2015-08-12 2017-05-24 中国矿业大学(北京) Coal illegal mining monitoring method based on vibration monitoring and positioning

Also Published As

Publication number Publication date
CN108507668A (en) 2018-09-07
JP2018141704A (en) 2018-09-13
CN108507668B (en) 2020-07-10

Similar Documents

Publication Publication Date Title
JP6675297B2 (en) Information processing method, information processing system, and information processing apparatus
US7721153B2 (en) System, method and program product for recovering from a failure
CN101681286A (en) Multiprocessor system and its control method
JP6766689B2 (en) Relocation detection device, relocation detection system and relocation detection method
JP5101338B2 (en) Machine tool, unauthorized transfer notification device, and machine operation restriction method
EP2012217B1 (en) Multi-component system
JP2013120168A (en) Relocation detector, and control method
CN107179980B (en) Method for monitoring a computing system and corresponding computing system
JP5397270B2 (en) Relocation detection system
JP6464928B2 (en) Parts ordering system, program, and method
JP2010067000A (en) System for replacing deteriorated or failed battery
JP5126259B2 (en) Relocation detection system
CN113678101B (en) Information processing apparatus, moving object, and information processing method
JP2009237758A (en) Server system, server management method, and program therefor
JP2009026182A (en) Program execution system and execution device
JP2007008609A (en) Elevator control device
JP5305895B2 (en) Reporting device and elevator car
JP2010049367A (en) Control device and control method therefor
KR101194563B1 (en) System and method for motion control in network
JP4734096B2 (en) Elevator control system
JP6844375B2 (en) System monitoring method and computer equipment
JP2005078582A (en) Remote monitoring device
JP5029123B2 (en) Electronic control device and communication system
KR102407523B1 (en) Watchdog apparatus and controlling method thereof of air-bag control system
JP2009151377A (en) Numerical control device with transfer preventing function and transfer prevention system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R150 Certificate of patent or registration of utility model

Ref document number: 6766689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150