JP6766012B2 - Buckling deformation inspection method of core tube and manufacturing method of optical fiber base material - Google Patents

Buckling deformation inspection method of core tube and manufacturing method of optical fiber base material Download PDF

Info

Publication number
JP6766012B2
JP6766012B2 JP2017110819A JP2017110819A JP6766012B2 JP 6766012 B2 JP6766012 B2 JP 6766012B2 JP 2017110819 A JP2017110819 A JP 2017110819A JP 2017110819 A JP2017110819 A JP 2017110819A JP 6766012 B2 JP6766012 B2 JP 6766012B2
Authority
JP
Japan
Prior art keywords
core tube
base material
optical fiber
fiber base
buckling deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017110819A
Other languages
Japanese (ja)
Other versions
JP2018203568A (en
Inventor
智宏 布目
智宏 布目
久幸 中込
久幸 中込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2017110819A priority Critical patent/JP6766012B2/en
Publication of JP2018203568A publication Critical patent/JP2018203568A/en
Application granted granted Critical
Publication of JP6766012B2 publication Critical patent/JP6766012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)

Description

本発明は、炉心管の座屈変形検査方法および光ファイバ母材の製造方法に関する。 The present invention relates to a method for inspecting buckling deformation of a core tube and a method for manufacturing an optical fiber base material.

従来から、下記特許文献1に示されるような、光ファイバ母材の製造に用いられる焼結装置が知られている。この焼結装置は、炉心管と、炉心管の外周に設けられたヒータと、を備えており、光ファイバ母材を炉心管内で加熱することで、光ファイバ母材に含まれるスートを焼結してガラス化するものである。さらに、この特許文献1では、炉心管の内圧を変化させることで、この炉心管に割れが発生したことを検査する方法を開示している。 Conventionally, a sintering apparatus used for manufacturing an optical fiber base material as shown in Patent Document 1 below has been known. This sintering device includes a core tube and a heater provided on the outer periphery of the core tube. By heating the optical fiber base material in the core tube, the suit contained in the optical fiber base material is sintered. And vitrify. Further, Patent Document 1 discloses a method of inspecting the occurrence of cracks in the core tube by changing the internal pressure of the core tube.

特許第5542932号公報Japanese Patent No. 5542923

ところで、この種の炉心管の材質としては、光ファイバ母材に不純物が混入しないようにするため、石英ガラスが用いられることがある。また、特に、塩素系ガスやフッ素系ガスなどの腐食性ガスを用いる場合には、耐薬品性の高い石英ガラス製の炉心管が多く用いられる。
ここで、石英ガラス製の炉心管は、加熱により軟化する。また、この炉心管には、自重等によって圧縮応力が作用している。このため、光ファイバ母材の焼結工程を繰り返すことで、炉心管は徐々に座屈変形してしまう。このような座屈変形は、炉心管のうちヒータの近傍において、特に発生しやすい。炉心管の座屈変形が進み、座屈変形部が炉心管内で回転する光ファイバ母材に接触すると、光ファイバ母材に外傷や破損などが発生してしまう。このような現象の発生を防ぐには、炉心管の座屈変形の有無やその程度を検査する必要がある。
By the way, as a material of this kind of core tube, quartz glass may be used in order to prevent impurities from being mixed in the optical fiber base material. Further, in particular, when a corrosive gas such as a chlorine-based gas or a fluorine-based gas is used, a core tube made of quartz glass having high chemical resistance is often used.
Here, the core tube made of quartz glass is softened by heating. In addition, compressive stress acts on this core tube due to its own weight and the like. Therefore, by repeating the sintering process of the optical fiber base material, the core tube is gradually buckled and deformed. Such buckling deformation is particularly likely to occur in the vicinity of the heater in the core tube. When the buckling deformation of the core tube progresses and the buckling deformation portion comes into contact with the optical fiber base material rotating in the core tube, the optical fiber base material is damaged or damaged. In order to prevent the occurrence of such a phenomenon, it is necessary to inspect the presence or absence of buckling deformation of the core tube and its degree.

しかしながら、上記特許文献1の方法では、炉心管の割れが発生した場合にはこれを検出することができるが、炉心管が割れずに座屈変形した場合には、炉心管の内圧が変化しないため、このような座屈変形を検出することができない。
また、近年では炉心管の大型化が進んでおり、炉心管の上端開口部からヒータまでの上下方向の距離が2m以上(長尺品では4m以上)となる場合がある。このため、炉心管の上端開口部から単純に目視しても、座屈変形の有無や程度を確認することが困難な場合が多い。
However, in the method of Patent Document 1, when a crack occurs in the core tube, it can be detected, but when the core tube is buckled and deformed without cracking, the internal pressure of the core tube does not change. Therefore, such buckling deformation cannot be detected.
Further, in recent years, the size of the core tube has been increasing, and the vertical distance from the upper end opening of the core tube to the heater may be 2 m or more (4 m or more for a long product). For this reason, it is often difficult to confirm the presence or absence and degree of buckling deformation by simply visually observing from the upper end opening of the core tube.

本発明はこのような事情を考慮してなされたもので、炉心管の座屈変形を検査可能な炉心管の検査方法を提供することを目的とする。 The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a method for inspecting a core tube capable of inspecting buckling deformation of the core tube.

上記課題を解決するために、本発明の第1態様に係る炉心管の検査方法は、光ファイバ母材を製造するために用いられる石英ガラス製の炉心管の検査方法であって、前記炉心管の上端開口部から前記炉心管内にレーザ光を照射し、前記炉心管における前記レーザ光の照射点を検出する。 In order to solve the above problems, the core tube inspection method according to the first aspect of the present invention is a quartz glass core tube inspection method used for producing an optical fiber base material, and is the core tube inspection method. The laser beam is irradiated into the core tube from the upper end opening of the core tube, and the irradiation point of the laser beam in the core tube is detected.

上記態様に係る炉心管の検査方法によれば、炉心管におけるレーザ光の照射点を検出することで、レーザ光が炉心管の底壁に照射されたか、あるいは座屈変形部に照射されたか、を判別することができる。これにより、炉心管の座屈変形の有無を検査することができる。 According to the method for inspecting the core tube according to the above aspect, by detecting the irradiation point of the laser light in the core tube, whether the laser light is irradiated to the bottom wall of the core tube or the buckling deformation portion. Can be determined. Thereby, the presence or absence of buckling deformation of the core tube can be inspected.

また、上記態様に係る炉心管の検査方法では、前記炉心管の中心軸と、前記炉心管の座屈変形部と、の径方向の距離を測定してもよい。 Further, in the core tube inspection method according to the above aspect, the radial distance between the central axis of the core tube and the buckling deformation portion of the core tube may be measured.

この場合、炉心管の中心軸と炉心管の座屈変形部との径方向の距離を測定することで、炉心管内で光ファイバ母材を回転させた際に、光ファイバ母材と座屈変形部とが接触するか否かを判断することができる。これにより、光ファイバ母材への外傷や破損が発生するのを抑えつつ、炉心管の交換頻度を必要最小限にして、光ファイバ母材の製造コストおよびリードタイムの低減を図ることができる。 In this case, by measuring the radial distance between the central axis of the core tube and the buckling deformation portion of the core tube, when the optical fiber base material is rotated in the core tube, the buckling deformation with the optical fiber base material is performed. It is possible to determine whether or not the unit comes into contact with the unit. As a result, it is possible to reduce the manufacturing cost and lead time of the optical fiber base material by minimizing the replacement frequency of the core tube while suppressing the occurrence of trauma or damage to the optical fiber base material.

また、本発明の第2態様に係る光ファイバ母材の製造方法は、上述の検査方法を用いて前記炉心管を検査し、前記炉心管内で前記光ファイバ母材を加熱して焼結させる。 Further, in the method for producing an optical fiber base material according to the second aspect of the present invention, the core tube is inspected using the above-mentioned inspection method, and the optical fiber base material is heated and sintered in the core tube.

上記態様の光ファイバ母材の製造方法によれば、光ファイバ母材を焼結させる際に、炉心管と光ファイバ母材とが接触することで光ファイバ母材に外傷や破損が発生するのを抑え、光ファイバ母材の品質を安定させることができる。 According to the method for producing an optical fiber base material according to the above aspect, when the optical fiber base material is sintered, the core tube and the optical fiber base material come into contact with each other, causing damage or damage to the optical fiber base material. It is possible to stabilize the quality of the optical fiber base material.

本発明の上記態様によれば、炉心管の座屈変形を検査可能な炉心管の検査方法を提供することができる。 According to the above aspect of the present invention, it is possible to provide a method for inspecting a core tube capable of inspecting buckling deformation of the core tube.

光ファイバ母材を製造するための炉心管の概略図である。It is the schematic of the core tube for manufacturing the optical fiber base material. 炉心管の検査方法の概略説明図である。It is a schematic explanatory drawing of the inspection method of a core tube.

(第1実施形態)
以下、本実施形態に係る炉心管の検査方法および光ファイバ母材の製造方法について、図1〜図2を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能な大きさとするため縮尺を適宜変更している。
(First Embodiment)
Hereinafter, the method for inspecting the core tube and the method for manufacturing the optical fiber base material according to the present embodiment will be described with reference to FIGS. 1 and 2. In each drawing used in the following description, the scale is appropriately changed in order to make each member a recognizable size.

(光ファイバ母材の製造方法)
まず、光ファイバ母材の製造方法について説明する。本実施形態では、VAD法やOVD法などのスート法を用いる場合について説明するが、他の製法を採用してもよい。
スート法によって光ファイバ母材を製造する際、まず、反応容器内に設置されたバーナから、酸素ガス、水素ガス、不活性ガスなどを流し、これらのガスを反応させた火炎中に、SiClなどのガラス原料ガスを投入する。これにより、ガラス微粒子が生成される。このガラス微粒子を、反応容器内で回転するターゲットに付着させることで、ターゲットの外周にスートが堆積する。これにより、焼結前の光ファイバ母材(以下、未焼結母材という)が得られる。
(Manufacturing method of optical fiber base material)
First, a method for manufacturing an optical fiber base material will be described. In the present embodiment, a case where a suit method such as a VAD method or an OVD method is used will be described, but other manufacturing methods may be adopted.
When producing an optical fiber base material by the soot method, first, oxygen gas, hydrogen gas, an inert gas, etc. are flowed from a burner installed in a reaction vessel, and SiCl 4 is placed in a flame in which these gases are reacted. Inject glass raw material gas such as. As a result, glass fine particles are generated. By adhering the glass fine particles to the target rotating in the reaction vessel, soot is deposited on the outer circumference of the target. As a result, an optical fiber base material before sintering (hereinafter referred to as an unsintered base material) can be obtained.

次に、未焼結母材を、図1に示すような焼結装置10によって焼結させる(焼結工程)。焼結装置10は、石英ガラス製の炉心管4と、炉心管4を加熱する焼結炉5と、を備えている。焼結炉5は、炉心管4の外周に設けられている。焼結炉5内には、外気から遮断されたヒータ6が設けられている。 Next, the unsintered base material is sintered by the sintering apparatus 10 as shown in FIG. 1 (sintering step). The sintering apparatus 10 includes a core tube 4 made of quartz glass and a sintering furnace 5 for heating the core tube 4. The sintering furnace 5 is provided on the outer periphery of the core tube 4. A heater 6 shut off from the outside air is provided in the sintering furnace 5.

炉心管4は、周壁4aおよび底壁4bを有する有底筒状に形成されている。また、炉心管4には、図示しないガス導入口およびガス排出口設けられている。以下、炉心管4の中心軸線Oを単に中心軸線Oといい、中心軸線Oに沿う方向を上下方向という。また、上下方向に沿う底壁4b側を下方といい、その反対側を上方という。また、上下方向から見た平面視において、中心軸線Oに直交する方向を径方向といい、中心軸線O周りに周回する方向を周方向という。 The core tube 4 is formed in a bottomed tubular shape having a peripheral wall 4a and a bottom wall 4b. Further, the core tube 4 is provided with a gas introduction port and a gas discharge port (not shown). Hereinafter, the central axis O of the core tube 4 is simply referred to as the central axis O, and the direction along the central axis O is referred to as the vertical direction. Further, the bottom wall 4b side along the vertical direction is referred to as the lower side, and the opposite side is referred to as the upper side. Further, in a plan view seen from the vertical direction, the direction orthogonal to the central axis O is called the radial direction, and the direction orbiting around the central axis O is called the circumferential direction.

焼結工程では、支持棒1およびダミー部2を介して、未焼結母材を炉心管4内で保持する。そして、炉心管4の上端開口部を蓋体7で閉塞し、支持棒1を回転させつつ下降させる。これにより、未焼結母材がその下部から上部に向かって加熱されて焼結し、光ファイバ母材3が得られる。なお、上記焼結処理の際に、この炉心管4内で光ファイバ母材3の脱水処理が行われてもよい。 In the sintering step, the unsintered base material is held in the core tube 4 via the support rod 1 and the dummy portion 2. Then, the upper end opening of the core tube 4 is closed by the lid 7, and the support rod 1 is lowered while rotating. As a result, the unsintered base material is heated from the lower part to the upper part and sintered, and the optical fiber base material 3 is obtained. At the time of the sintering treatment, the optical fiber base material 3 may be dehydrated in the core tube 4.

また、このようにして得られた光ファイバ母材3を溶融させて線引きすることで、光ファイバが得られる。 Further, an optical fiber can be obtained by melting and drawing the optical fiber base material 3 thus obtained.

ところで、先述の通り炉心管4は石英ガラスによって形成されている。これは、焼結工程の際に、光ファイバ母材3に不純物が混入しないようにするためであるが、石英ガラスは加熱によって軟化する。一方で、炉心管4の周壁4aには、炉心管4の自重による、上下方向の圧縮応力が作用する。以上のことから、光ファイバ母材3の焼結工程を繰り返すと、図2に示すように、炉心管4のうち焼結炉5に近い部分が座屈変形してしまう場合がある。炉心管4が座屈変形し、周壁4aが炉心管4の内側に向けて突出すると、この突出した部分(座屈変形部B)が、炉心管4内で回転する光ファイバ母材3に接触してしまうおそれがある。炉心管4の座屈変形部Bと光ファイバ母材3とが接触すると、光ファイバ母材3に外傷が発生してしまう。 By the way, as described above, the core tube 4 is made of quartz glass. This is to prevent impurities from being mixed into the optical fiber base material 3 during the sintering process, but the quartz glass is softened by heating. On the other hand, a compressive stress in the vertical direction due to the weight of the core tube 4 acts on the peripheral wall 4a of the core tube 4. From the above, when the sintering step of the optical fiber base material 3 is repeated, as shown in FIG. 2, the portion of the core tube 4 close to the sintering furnace 5 may buckle and deform. When the core tube 4 is buckled and deformed and the peripheral wall 4a protrudes toward the inside of the core tube 4, this protruding portion (buckling deformed portion B) comes into contact with the optical fiber base material 3 rotating in the core tube 4. There is a risk of doing so. When the buckling deformation portion B of the core tube 4 and the optical fiber base material 3 come into contact with each other, the optical fiber base material 3 is damaged.

そこで本実施形態では、上記のような座屈変形部Bと光ファイバ母材3との接触を未然に防止するために、以下のような炉心管の検査方法を採用している。 Therefore, in the present embodiment, the following inspection method for the core tube is adopted in order to prevent the buckling deformation portion B and the optical fiber base material 3 from coming into contact with each other.

(炉心管の検査方法)
図2に示すように、本実施形態の炉心管の検査方法では、検査装置20を用いる。検査装置20は、炉心管4の上端開口部に取り付けられるステージ21と、ステージ21に沿って水平面内を移動するレーザ光源22と、を備えている。なお、炉心管4を検査する際は、炉心管4から光ファイバ母材3および蓋体7を予め除去する。
(Inspection method for core tube)
As shown in FIG. 2, the inspection device 20 is used in the core tube inspection method of the present embodiment. The inspection device 20 includes a stage 21 attached to the upper end opening of the core tube 4, and a laser light source 22 that moves in a horizontal plane along the stage 21. When inspecting the core tube 4, the optical fiber base material 3 and the lid 7 are removed from the core tube 4 in advance.

レーザ光源22は、その下端部からレーザ光Lを出射する。レーザ光Lとしては、赤色光(0.6μm帯)や緑色光(0.5μm帯)を用いることができる。レーザ光Lは、上下方向に沿って、下方に向けて進行する。レーザ光Lが炉心管4の底壁4bに照射された場合と、座屈変形部Bに照射された場合とでは、炉心管4の上端開口部から観察した際に、照射点の見え方が異なる。このため、検査作業者は、レーザ光Lの照射点を炉心管4の上端開口部から視認することで、その部分の座屈変形の有無を検査することができる。 The laser light source 22 emits the laser beam L from its lower end. As the laser light L, red light (0.6 μm band) or green light (0.5 μm band) can be used. The laser beam L travels downward along the vertical direction. When the laser beam L is irradiated to the bottom wall 4b of the core tube 4 and the buckling deformation portion B is irradiated, the appearance of the irradiation point is different when observed from the upper end opening of the core tube 4. different. Therefore, the inspection worker can inspect the presence or absence of buckling deformation of the portion by visually recognizing the irradiation point of the laser beam L from the upper end opening of the core tube 4.

なお、石英ガラス製の炉心管4は、室温まで冷却されると、失透により破損する可能性が高いため、通常では休転時においても900℃程度の温度が維持される。石英ガラスは900℃程度で赤熱するが、炉心管4におけるレーザ光Lの照射点は、赤熱した部分よりも明るく光るため、目視によっても照射点を容易に確認することができる。なお、レーザ光Lの照射点を目視により確認する場合には、検査作業者は、安全のためにレーザ保護眼鏡を着用する。 When the core tube 4 made of quartz glass is cooled to room temperature, there is a high possibility that it will be damaged due to devitrification. Therefore, normally, the temperature of about 900 ° C. is maintained even at rest. Quartz glass glows red at about 900 ° C., but the irradiation point of the laser beam L in the core tube 4 shines brighter than the red-hot portion, so that the irradiation point can be easily confirmed visually. When visually confirming the irradiation point of the laser beam L, the inspection worker wears laser protective goggles for safety.

ところで、炉心管4が座屈変形している場合であっても、座屈変形部Bと光ファイバ母材3とのクリアランス(隙間)が確保されている場合には、引き続き炉心管4を用いることができる。このため、座屈変形部Bが炉心管4の内側にどの程度突出しているかを測定することも有効である。 By the way, even when the core tube 4 is buckled and deformed, if the clearance (gap) between the buckling deformed portion B and the optical fiber base material 3 is secured, the core tube 4 is still used. be able to. Therefore, it is also effective to measure how much the buckling deformation portion B protrudes inside the core tube 4.

そこで、検査装置20としては、水準器を有するステージ21と、このステージ21と一体化されたレーザ光源22と、を備えたレーザ墨出し機を好適に用いることができる。この場合、レーザ光源22を、径方向に水平に移動させつつ、その移動距離を正確に測定することができる。検査作業者は、中心軸線Oを起点としてレーザ光源22を移動させ、レーザ光Lが座屈変形部Bに照射された時点で、レーザ光源22の移動を停止することで、径方向における座屈変形部Bと中心軸線Oとの距離Rを測定することができる。この距離Rと光ファイバ母材3の半径との差が、座屈変形部Bと光ファイバ母材3との間のクリアランスである。 Therefore, as the inspection device 20, a laser marking machine including a stage 21 having a spirit level and a laser light source 22 integrated with the stage 21 can be preferably used. In this case, the laser light source 22 can be moved horizontally in the radial direction, and the moving distance can be accurately measured. The inspection worker moves the laser light source 22 starting from the central axis O, and stops the movement of the laser light source 22 when the laser beam L irradiates the buckling deformation portion B, thereby causing buckling in the radial direction. The distance R between the deformed portion B and the central axis O can be measured. The difference between this distance R and the radius of the optical fiber base material 3 is the clearance between the buckling deformation portion B and the optical fiber base material 3.

なお、光ファイバ母材3の中心軸と炉心管4の中心軸とは完全に同軸にはならず、誤差が生じる。また、光ファイバ母材3の外周面の振れなどを考慮すると、距離Rと光ファイバ母材3の半径との差分が所定の値より小さくなった場合には、炉心管4を交換することが望ましい。上記所定の値は、光ファイバ母材3の中心軸と炉心管4との中心軸との一致の精度、光ファイバ母材3の外周面の振れ、光ファイバ母材3がヒータ6によって加熱された際の熱膨張などを考慮して決定するとよい。 The central axis of the optical fiber base material 3 and the central axis of the core tube 4 are not completely coaxial, and an error occurs. Further, considering the runout of the outer peripheral surface of the optical fiber base material 3, when the difference between the distance R and the radius of the optical fiber base material 3 becomes smaller than a predetermined value, the core tube 4 may be replaced. desirable. The above predetermined values are the accuracy of matching the central axis of the optical fiber base material 3 with the central axis of the core tube 4, the runout of the outer peripheral surface of the optical fiber base material 3, and the heating of the optical fiber base material 3 by the heater 6. It is advisable to decide in consideration of thermal expansion at the time.

以上説明したように、本実施形態の炉心管の検査方法によれば、炉心管4におけるレーザ光Lの照射点を目視によって検出(視認)することで、レーザ光Lが炉心管4の底壁4bに照射されたか、あるいは座屈変形部Bに照射されたか、を判別することができる。これにより、炉心管4の座屈変形の有無を簡便に検査することができる。 As described above, according to the core tube inspection method of the present embodiment, the laser beam L is detected (visually) visually at the irradiation point of the laser beam L in the core tube 4, so that the laser beam L is the bottom wall of the core tube 4. It is possible to determine whether the 4b is irradiated or the buckling deformation portion B is irradiated. As a result, the presence or absence of buckling deformation of the core tube 4 can be easily inspected.

また、炉心管4の中心軸線Oと、炉心管4の座屈変形部Bと、の径方向における距離Rを測定することで、炉心管4内で光ファイバ母材3を回転させた際に、光ファイバ母材3と座屈変形部Bとが接触するか否かを判断することができる。これにより、光ファイバ母材3への外傷や破損が発生するのを抑えつつ、炉心管4の交換頻度を必要最小限にして、光ファイバ母材3の製造コストおよびリードタイムの低減を図ることができる。 Further, by measuring the distance R in the radial direction between the central axis O of the core tube 4 and the buckling deformation portion B of the core tube 4, when the optical fiber base material 3 is rotated in the core tube 4. , It is possible to determine whether or not the optical fiber base material 3 and the buckling deformation portion B are in contact with each other. As a result, the manufacturing cost and lead time of the optical fiber base material 3 can be reduced by minimizing the replacement frequency of the core tube 4 while suppressing the occurrence of trauma or damage to the optical fiber base material 3. Can be done.

また、上述の検査方法を用いて炉心管4を検査し、炉心管4内で光ファイバ母材3を加熱して焼結させる光ファイバ母材の製造方法を採用することで、光ファイバ母材3に外傷や破損が発生するのを抑え、光ファイバ母材3の品質を安定させることができる。 Further, by inspecting the core tube 4 using the above-mentioned inspection method and adopting a method for producing an optical fiber base material in which the optical fiber base material 3 is heated and sintered in the core tube 4, the optical fiber base material is manufactured. It is possible to suppress the occurrence of damage or damage to the optical fiber base material 3 and stabilize the quality of the optical fiber base material 3.

(第2実施形態)
次に、本発明に係る第2実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
第1実施形態では、目視によってレーザ光Lの反射点を確認したが、本実施形態では、反射したレーザ光Lを受光部によって受光する。
(Second Embodiment)
Next, the second embodiment according to the present invention will be described, but the basic configuration is the same as that of the first embodiment. Therefore, the same reference numerals are given to the same configurations, the description thereof will be omitted, and only the different points will be described.
In the first embodiment, the reflection point of the laser beam L is visually confirmed, but in the present embodiment, the reflected laser beam L is received by the light receiving unit.

受光部としては、炉心管4に照射されて反射したレーザ光Lを受光することで、レーザ光源22と反射点との上下方向における距離を測定できるものを、好適に用いることができる。このようなレーザ光源22および受光部としては、例えば反射型の距離センサとして市販されているものを用いることができる。 As the light receiving unit, a unit capable of measuring the distance between the laser light source 22 and the reflection point in the vertical direction by receiving the laser light L irradiated and reflected on the core tube 4 can be preferably used. As such a laser light source 22 and a light receiving unit, for example, those commercially available as a reflection type distance sensor can be used.

レーザ光源22と反射点との上下方向における距離は、反射点が炉心管4の底壁4bであるか座屈変形部Bであるかによって大きく変化する。従って、受光部による反射光の検出結果に基づいて、水平方向におけるレーザ光源22の位置に、座屈変形部Bが存在するか否かを判定することができる。
また、本実施形態によれば、炉心管4の座屈変形の有無およびその程度を、目視によらずにより安全に検出することができる。
The vertical distance between the laser light source 22 and the reflection point varies greatly depending on whether the reflection point is the bottom wall 4b of the core tube 4 or the buckling deformation portion B. Therefore, based on the detection result of the reflected light by the light receiving unit, it can be determined whether or not the buckling deformation portion B exists at the position of the laser light source 22 in the horizontal direction.
Further, according to the present embodiment, the presence or absence of buckling deformation of the core tube 4 and the degree thereof can be safely detected without visual inspection.

以下、具体的な実施例を用いて、上記実施形態を説明する。なお、以下の実施例は本発明を限定するものではない。
(実施例)
内径がφ300mmの石英ガラス製の炉心管4を用いた。この炉心管4に、外径がφ200mmの光ファイバ母材3をセットした。すなわち、炉心管4の周壁4aと光ファイバ母材3との間の径方向の隙間は、50mmである。この光ファイバ母材3を回転させつつ炉心管4内に進入させ、焼結炉5の位置まで下降させて、脱水処理および焼結処理を行った。このような脱水・焼結処理を100回繰り返し、前記第1実施形態で説明した炉心管4の検査方法を実施した。
Hereinafter, the above embodiment will be described with reference to specific examples. The following examples do not limit the present invention.
(Example)
A quartz glass core tube 4 having an inner diameter of φ300 mm was used. An optical fiber base material 3 having an outer diameter of φ200 mm was set in the core tube 4. That is, the radial gap between the peripheral wall 4a of the core tube 4 and the optical fiber base material 3 is 50 mm. The optical fiber base material 3 was allowed to enter the core tube 4 while rotating, and was lowered to the position of the sintering furnace 5, where dehydration treatment and sintering treatment were performed. Such dehydration / sintering treatment was repeated 100 times, and the inspection method of the core tube 4 described in the first embodiment was carried out.

本実施例では、レーザ光Lとして、レーザポインタ(クラス2、1mW以下、赤色光)を用いた。炉心管4内におけるレーザ光Lの照射点を視認したところ、ヒータ6の近傍で、座屈変形部Bの存在が確認された。また、中心軸線Oを起点として、この座屈変形部Bに向けてレーザ光源22を径方向に移動させたところ、距離R(図2参照)が130mmであることが判明した。この測定結果と、光ファイバ母材3の半径が100mmであることから、光ファイバ母材3と座屈変形部Bとの間のクリアランスは30mm確保されていることが判った。このため、炉心管4は座屈変形しているが実用上問題無いと判断し、炉心管4を交換せずに前記脱水・焼結処理を行った。この結果、炉心管4と光ファイバ母材3とが接触することなく、正常に光ファイバ母材3を製造することができた。 In this embodiment, a laser pointer (class 2, 1 mW or less, red light) was used as the laser light L. When the irradiation point of the laser beam L in the core tube 4 was visually recognized, the presence of the buckling deformation portion B was confirmed in the vicinity of the heater 6. Further, when the laser light source 22 was moved in the radial direction toward the buckling deformation portion B starting from the central axis O, it was found that the distance R (see FIG. 2) was 130 mm. From this measurement result and the radius of the optical fiber base material 3 being 100 mm, it was found that a clearance of 30 mm was secured between the optical fiber base material 3 and the buckling deformation portion B. Therefore, although the core tube 4 is buckled and deformed, it is judged that there is no problem in practical use, and the dehydration / sintering treatment is performed without replacing the core tube 4. As a result, the optical fiber base material 3 could be normally manufactured without contacting the core tube 4 and the optical fiber base material 3.

上記脱水・焼結処理を200回繰り返した時点で、再度炉心管4の検査を行ったところ、距離Rが115mmであることが判明した。この測定結果から、光ファイバ母材3と座屈変形部Bとの間のクリアランスが15mmであり、光ファイバ母材3の外周面の振れなどを考慮すると、光ファイバ母材3と座屈変形部Bとが接触するおそれがあることが判った。このため、炉心管4の交換を実施した。 When the above dehydration / sintering treatment was repeated 200 times, the core tube 4 was inspected again, and it was found that the distance R was 115 mm. From this measurement result, the clearance between the optical fiber base material 3 and the buckling deformation portion B is 15 mm, and considering the runout of the outer peripheral surface of the optical fiber base material 3, the optical fiber base material 3 and the buckling deformation portion 3 are buckled. It was found that there is a risk of contact with part B. Therefore, the core tube 4 was replaced.

(比較例)
上記実施例と同様の条件で、脱水・焼結処理を150回繰り返した時点で、炉心管4を上方から単純に観察したところ、座屈変形量は少ないと判断された。このため、光ファイバ母材3を炉心管4内に挿入して脱水・焼結処理を開始したところ、光ファイバ母材3がヒータ6の近傍まで下降した時点で異音が発生した。このため、脱水・焼結処理を中止して光ファイバ母材3の状態を確認すると、その表面に擦れ傷があり、一部に割れが生じていた。事後的に、実施例と同様の検査方法によって炉心管4を検査すると、距離Rが110mmであることが判った。つまり、光ファイバ母材3と座屈変形部Bとのクリアランスが10mmしかなく、光ファイバ母材3の外周面の振れなどによって、光ファイバ母材3が座屈変形部Bに接触してしまったと考えられる。
(Comparison example)
When the dehydration / sintering treatment was repeated 150 times under the same conditions as in the above example, the core tube 4 was simply observed from above, and it was determined that the amount of buckling deformation was small. Therefore, when the optical fiber base material 3 was inserted into the core tube 4 and the dehydration / sintering treatment was started, an abnormal noise was generated when the optical fiber base material 3 was lowered to the vicinity of the heater 6. Therefore, when the dehydration / sintering treatment was stopped and the state of the optical fiber base material 3 was confirmed, the surface was scratched and a part of the optical fiber base material was cracked. After the fact, when the core tube 4 was inspected by the same inspection method as in the example, it was found that the distance R was 110 mm. That is, the clearance between the optical fiber base material 3 and the buckling deformation portion B is only 10 mm, and the optical fiber base material 3 comes into contact with the buckling deformation portion B due to the runout of the outer peripheral surface of the optical fiber base material 3. It is thought that it was.

上記実施例と比較例との対比から、本実施形態の炉心管の検査方法によれば、光ファイバ母材3に外傷や破損が発生するのを抑えつつ、炉心管4の交換頻度を必要最小限にできることが確認された。 From the comparison between the above-described embodiment and the comparative example, according to the core tube inspection method of the present embodiment, the frequency of replacement of the core tube 4 is minimized while suppressing the occurrence of trauma or damage to the optical fiber base material 3. It was confirmed that it could be limited.

なお、本発明の技術的範囲は前記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、前記実施形態では、ヒータ6が一か所に配置されていたが、ヒータ6が複数個所に配置されていてもよい。また、炉心管4の形状などは図示の例に限られず、適宜変更してもよい。 For example, in the above embodiment, the heater 6 is arranged at one place, but the heater 6 may be arranged at a plurality of places. Further, the shape of the core tube 4 is not limited to the illustrated example, and may be changed as appropriate.

その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。 In addition, it is possible to replace the constituent elements in the above-described embodiment with well-known constituent elements as appropriate without departing from the spirit of the present invention, and the above-described embodiments and modifications may be appropriately combined.

1…支持棒 2…ダミー部 3…光ファイバ母材 4…炉心管 5…焼結炉 6…ヒータ 10…焼結装置 20…検査装置 21…ステージ 22…レーザ光源 B…座屈変形部 L…レーザ光 1 ... Support rod 2 ... Dummy part 3 ... Optical fiber base material 4 ... Core tube 5 ... Sintering furnace 6 ... Heater 10 ... Sintering device 20 ... Inspection device 21 ... Stage 22 ... Laser light source B ... Buckling deformation part L ... Laser light

Claims (5)

光ファイバ母材を製造するために用いられる石英ガラス製の炉心管の座屈変形検査方法であって、
前記炉心管の上端開口部から前記炉心管内にレーザ光を照射し、前記炉心管における前記レーザ光の照射点で反射して前記上端開口部に直接到達した反射光を検出する、炉心管の座屈変形検査方法。
A buckling deformation inspection method for a quartz glass core tube used to manufacture an optical fiber base material.
A seat of the core tube that irradiates the inside of the core tube with a laser beam from the upper end opening of the core tube, and detects the reflected light that is reflected at the irradiation point of the laser beam in the core tube and directly reaches the upper end opening. Bending deformation inspection method.
前記炉心管の中心軸と、前記炉心管の座屈変形部と、の径方向の距離を測定する、請求項1に記載の炉心管の座屈変形検査方法。 The buckling deformation inspection method for a core tube according to claim 1, wherein the distance between the central axis of the core tube and the buckling deformation portion of the core tube in the radial direction is measured. 水準器を有するステージと、前記ステージと一体化されたレーザ光源と、を備えたレーザ墨出し機を用いて前記レーザ光を照射する、請求項1または2に記載の炉心管の座屈変形検査方法。The buckling deformation inspection of the core tube according to claim 1 or 2, wherein the laser beam is irradiated by using a laser marking machine provided with a stage having a spirit level and a laser light source integrated with the stage. Method. 前記炉心管が透明である、請求項1から3のいずれか1項に記載の炉心管の座屈変形検査方法。The buckling deformation inspection method for a core tube according to any one of claims 1 to 3, wherein the core tube is transparent. 請求項1から4のいずれか1項に記載の炉心管の座屈変形検査方法を用いて前記炉心管を検査し、
前記炉心管内で前記光ファイバ母材を加熱して焼結させる、
光ファイバ母材の製造方法。
The core tube is inspected by using the buckling deformation inspection method for the core tube according to any one of claims 1 to 4 .
The optical fiber base material is heated and sintered in the core tube.
Manufacturing method of optical fiber base material.
JP2017110819A 2017-06-05 2017-06-05 Buckling deformation inspection method of core tube and manufacturing method of optical fiber base material Active JP6766012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017110819A JP6766012B2 (en) 2017-06-05 2017-06-05 Buckling deformation inspection method of core tube and manufacturing method of optical fiber base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017110819A JP6766012B2 (en) 2017-06-05 2017-06-05 Buckling deformation inspection method of core tube and manufacturing method of optical fiber base material

Publications (2)

Publication Number Publication Date
JP2018203568A JP2018203568A (en) 2018-12-27
JP6766012B2 true JP6766012B2 (en) 2020-10-07

Family

ID=64956311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017110819A Active JP6766012B2 (en) 2017-06-05 2017-06-05 Buckling deformation inspection method of core tube and manufacturing method of optical fiber base material

Country Status (1)

Country Link
JP (1) JP6766012B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868815A (en) * 1997-02-20 1999-02-09 Lucent Technologies Inc. Method of making an optical fiber by blowing on a preform tube to enhance collapse
JP2002022089A (en) * 2000-07-10 2002-01-23 Toshiba Corp Pipe inside inspection and repair device
JP2002338259A (en) * 2001-05-15 2002-11-27 Sumitomo Electric Ind Ltd Device for heating glass preform and method for controlling the same
WO2012002476A1 (en) * 2010-06-30 2012-01-05 株式会社フジクラ Reactor core tube inspection method and production method of parent metal for silica glass optical fibre
JP2013019786A (en) * 2011-07-12 2013-01-31 Toshiba Corp Inside tube wall inspection apparatus and inside tube wall inspection method
JP2015048262A (en) * 2013-08-30 2015-03-16 日立金属株式会社 Breakage detection method for furnace core tube and sintering furnace

Also Published As

Publication number Publication date
JP2018203568A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
EP1364919B1 (en) Method for manufacturing a preform and optical fibre from the preform
TWI480505B (en) Evaluation method of silica glass crucible and manufacture method of silicon single crystal
US20100139323A1 (en) Optical fiber manufacturing apparatus and optical fiber manufacturing method
KR100608980B1 (en) Glass rod manufacturing method and glass rod manufacturing apparatus
WO2012002476A1 (en) Reactor core tube inspection method and production method of parent metal for silica glass optical fibre
US7891213B2 (en) Vertical drawing method for producing a cylindrical glass body and device for carrying out said method
JP6766012B2 (en) Buckling deformation inspection method of core tube and manufacturing method of optical fiber base material
JP5614857B2 (en) Evaluation method of silica glass crucible
JP2011108766A (en) Maintenance method for epitaxial growth apparatus, method of calibrating pyrometer, and susceptor for pyrometer calibration
JP5294354B2 (en) Method for manufacturing optical fiber porous preform
US11787726B2 (en) Sintering method of porous glass base material for optical fiber
KR101290091B1 (en) Method for controlling diameter of grin lens fiber and fiber drawing equipment
CN110577357B (en) Method for drawing optical fiber
JP6790410B2 (en) Method for manufacturing glass fine particle deposits
JP5250377B2 (en) Optical fiber preform manufacturing apparatus and manufacturing method
JP4762408B2 (en) Method for manufacturing optical fiber porous preform
JP6114795B2 (en) Method for determining three-dimensional distribution of bubble distribution in silica glass crucible, method for producing silicon single crystal
JP2015048262A (en) Breakage detection method for furnace core tube and sintering furnace
JP5923644B2 (en) Method for determining three-dimensional distribution of infrared absorption spectrum of silica glass crucible, method for producing silicon single crystal
JPH111337A (en) Detection of cracking of oven core tube in process for sintering optical fiber base material and production of optical fiber base material
JP2017138322A (en) Method for determining three-dimensional arrangement of air bubble of silica grass crucible and method for evaluating silica glass crucible
JP2003300735A (en) Method for detecting foreign matter in glass preform
JP2016183098A (en) Evaluation method of silica glass crucible, and manufacturing method of silicon single crystal
CN105776841A (en) Device and method for detecting falling of glass micro-particle depositional body during manufacturing of optical fiber preform rod
JP2017052693A (en) Silica glass crucible checking method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200916

R151 Written notification of patent or utility model registration

Ref document number: 6766012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151