JP6765485B2 - How to measure the cracking strength of ultra-high strength fiber reinforced concrete - Google Patents

How to measure the cracking strength of ultra-high strength fiber reinforced concrete Download PDF

Info

Publication number
JP6765485B2
JP6765485B2 JP2019149739A JP2019149739A JP6765485B2 JP 6765485 B2 JP6765485 B2 JP 6765485B2 JP 2019149739 A JP2019149739 A JP 2019149739A JP 2019149739 A JP2019149739 A JP 2019149739A JP 6765485 B2 JP6765485 B2 JP 6765485B2
Authority
JP
Japan
Prior art keywords
load
strain
strength
specimen
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019149739A
Other languages
Japanese (ja)
Other versions
JP2019215366A (en
Inventor
豪士 中崎
豪士 中崎
充 谷村
充 谷村
小野 剛士
剛士 小野
洋二 小川
洋二 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2019149739A priority Critical patent/JP6765485B2/en
Publication of JP2019215366A publication Critical patent/JP2019215366A/en
Application granted granted Critical
Publication of JP6765485B2 publication Critical patent/JP6765485B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、超高強度繊維補強コンクリートのひび割れ発生強度を高い精度で測定する方法と、該方法に用いる超高強度繊維補強コンクリートの供試体に関する。 The present invention relates to a method for measuring the crack generation strength of ultra-high-strength fiber-reinforced concrete with high accuracy, and a specimen of ultra-high-strength fiber-reinforced concrete used in the method.

超高強度繊維補強コンクリートが一軸引張力を受ける場合、荷重が小さい初期の段階では線形弾性が成立するが、さらに荷重が大きくなってひび割れが発生すると、線形弾性は成立しない。そこで、非特許文献1では、引張応力(荷重)とひずみの関係を示すグラフ上で、線形弾性が不成立となる点の応力を、ひび割れ発生強度と定め、ひび割れ発生後の最大応力である引張強度と区別している。ちなみに、非特許文献1では、超高強度繊維補強コンクリートのひび割れ発生強度(設計値)は8N/mm、引張強度(設計値)は8.8N/mmと規定している。
前記ひび割れ発生強度の測定方法には、直接引張強度試験、割裂引張強度試験(図1、非特許文献1の図3.2.4)、および曲げ強度試験がある。そして、該測定方法は、原則として、測定対象の構造物に想定されている引張応力の状況を考慮して、これらの試験方法から選択する。しかし、前記直接引張強度試験は、一般性があるものの、その試験方法は標準化されていない。また、割裂引張強度試験は、望ましくはコンクリートの試験方法であるJIS A 1113「コンクリートの割裂引張強度試験方法」に準拠して行うとされている。
When the ultra-high strength fiber reinforced concrete receives a uniaxial tensile force, linear elasticity is established in the initial stage when the load is small, but linear elasticity is not established when the load is further increased and cracks occur. Therefore, in Non-Patent Document 1, the stress at the point where the linear elasticity is not established on the graph showing the relationship between the tensile stress (load) and the strain is defined as the crack generation strength, and the tensile strength which is the maximum stress after the crack occurs. Is distinguished from. Incidentally, Non-Patent Document 1 defines that the crack generation strength (design value) of ultra-high strength fiber reinforced concrete is 8 N / mm 2 and the tensile strength (design value) is 8.8 N / mm 2 .
The method for measuring the crack generation strength includes a direct tensile strength test, a split tensile strength test (FIG. 1, FIG. 3.2.4 of Non-Patent Document 1), and a bending strength test. Then, as a general rule, the measuring method is selected from these test methods in consideration of the state of tensile stress assumed for the structure to be measured. However, although the direct tensile strength test is general, the test method has not been standardized. Further, the split tensile strength test is preferably performed in accordance with JIS A 1113 "Concrete split tensile strength test method", which is a concrete test method.

しかし、引張強度が3N/mm程度のコンクリートの割裂引張強度試験を、引張強度が8.8N/mmと格段に高い超高強度繊維補強コンクリートのひび割れ発生強度の測定に用いると、ひび割れ発生強度のバラツキが大きくなり測定精度が低下する。 However, when the split tensile strength test of concrete with a tensile strength of about 3 N / mm 2 is used to measure the crack generation strength of ultra-high strength fiber reinforced concrete with a significantly high tensile strength of 8.8 N / mm 2 , cracks occur. The variation in strength becomes large and the measurement accuracy decreases.

土木学会 コンクリート委員会 超高強度繊維補強コンクリート研究小委員会編、「超高強度繊維補強コンクリートの設計・施工指針(案)」、11〜12頁、社団法人 土木学会、平成16年9月28日発行Japan Society of Civil Engineers Concrete Committee, edited by Ultra High Strength Fiber Reinforced Concrete Research Subcommittee, "Design and Construction Guidelines for Ultra High Strength Fiber Reinforced Concrete (Draft)", pp. 11-12, Japan Society of Civil Engineers, September 28, 2004 Issued daily

そこで、本発明は、超高強度繊維補強コンクリートのひび割れ発生強度を高い精度で測定する方法と、該方法に用いる超高強度繊維補強コンクリートの供試体を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for measuring the crack generation strength of ultra-high-strength fiber-reinforced concrete with high accuracy, and a specimen of ultra-high-strength fiber-reinforced concrete used in the method.

本発明者は、超高強度繊維補強コンクリートのひび割れ発生強度のバラツキを小さくするための手段を種々検討した結果、(i)ひび割れ発生強度測定用供試体として用いる円柱供試体の両端面が平滑で、(ii)試験機の上下の加圧板と供試体との接触部分に隙間がなければ、ひび割れ発生強度の測定値のバラツキを小さくできることを見出し、本発明を完成させた。
すなわち、本発明は、以下の構成を有する超高強度繊維補強コンクリートのひび割れ発生強度の測定方法と、超高強度繊維補強コンクリートの供試体である。
As a result of various studies on means for reducing the variation in crack generation strength of ultra-high strength fiber reinforced concrete, the present inventor (i) has smooth both ends of a cylindrical specimen used as a specimen for measuring crack generation strength. , (Ii) The present invention was completed by finding that the variation in the measured value of the crack generation strength can be reduced if there is no gap between the upper and lower pressure plates of the testing machine and the test piece.
That is, the present invention is a method for measuring the crack generation strength of ultra-high-strength fiber-reinforced concrete having the following configurations, and a specimen of ultra-high-strength fiber-reinforced concrete.

[1]下記(A)〜(D)工程を経た状態の円柱供試体に載荷して、荷重とひずみの関係を求め、該荷重とひずみの関係において線形弾性が不成立となる点の荷重に対応する引張応力を、ひび割れ発生強度と定めて測定する、超高強度繊維補強コンクリートのひび割れ発生強度の測定方法。
(A)超高強度繊維補強コンクリートの円柱供試体の二つの端面における凹凸の高低差の平均値が、一端面あたり1.0mm以下になるように、二つの端面を円柱供試体の厚さ(長さ)で5〜10mm研磨する、円柱供試体の研磨工程
(B)平板の上に、前記研磨した円柱供試体を横向きに載置し、平板と該円柱供試体の側面が接触する部分に、隙間が生じていないか否か確認する第一の確認作業と、隙間が生じていないと確認した場合は、該円柱供試体の側面から180°回転した位置にある円柱供試体の側面を、再度、平板の上に載置して、平板と該円柱供試体の側面が接触する部分に、隙間が生じていないか否か確認する第二の確認作業を行い、いずれの確認作業においても隙間が生じていないことを確認できた円柱供試体を、ひび割れ発生強度の測定対象として選別する、測定対象の選別工程
(C)前記隙間が生じていないと確認した二つの側面を結ぶ面と直交するように、前記選別した円柱供試体の二つの端面の中心にひずみゲージを貼付する、ひずみゲージの貼付工程
(D)前記隙間が生じていないと確認した二つの側面が、圧縮試験機の上下の加圧板とそれぞれ接触するように、前記円柱供試体を圧縮試験機に載置する、円柱供試体の載置工程
ただし、荷重が50kNまでの範囲内において、
(i)前記二つの端面のひずみが正と負の逆(非対称)になる場合、
(ii)一つの端面においてひずみが生じない場合、
(iii)一つの端面のひずみが、他の端面のひずみの1.5倍以上になる場合
のいずれかの場合が生じたときは、載荷を中断して除荷した後、前記(B)〜(D)工程を再実施して、再度、載荷を行う。
[2]下記(a)および(b)工程を経て選別された特性値が、閾値を超えたときは、載荷を中断して除荷した後、前記(B)〜(D)工程を再実施して、再度、載荷を行う、前記[1]に記載の超高強度繊維補強コンクリートのひび割れ発生強度の測定方法。
(a)ひずみが100×10−6までの範囲内において、荷重と二つの端面のひずみの実測値を用いて、各端面ごとに、荷重(説明変数)とひずみ(目的変数)の比例関係を表す二つの単回帰式を求める、単回帰分析工程
(b)前記二つの単回帰式中の傾きの値を比較して、大きい方の値を特性値として選別する、特性値の選別工程
[3]ひび割れ発生強度が5N/mm以上の超高強度繊維補強コンクリートを、ひび割れ発生強度の測定対象とする、前記[1]または[2]に記載の超高強度繊維補強コンクリートのひび割れ発生強度の測定方法。
[1] The load is loaded on a cylindrical specimen that has undergone the following steps (A) to (D), the relationship between the load and strain is obtained, and the load at the point where linear elasticity is not established in the relationship between the load and strain is supported. A method for measuring the cracking strength of ultra-high-strength fiber-reinforced concrete, in which the tensile stress to be applied is defined as the cracking strength.
(A) Thickness of the two end faces of the columnar specimen of ultra-high strength fiber reinforced concrete so that the average value of the height difference of the unevenness on the two end faces of the columnar specimen is 1.0 mm or less per one end face. Polishing step of a cylindrical specimen to be polished by (length) by 5 to 10 mm (B) A portion where the polished cylindrical specimen is placed sideways on a flat plate and the flat plate and the side surface of the cylindrical specimen come into contact with each other. In addition, the first confirmation work to confirm whether or not there is a gap, and when it is confirmed that there is no gap, the side surface of the cylindrical specimen located 180 ° rotated from the side surface of the cylindrical specimen. , Again, place it on the flat plate and perform the second confirmation work to confirm whether there is a gap in the part where the flat plate and the side surface of the cylindrical specimen come into contact, and in any of the confirmation operations. A step of selecting a measurement target, in which a cylindrical specimen that has been confirmed to have no gap is selected as a measurement target for crack generation strength (C) orthogonal to the surface connecting the two sides that have been confirmed to have no gap. The strain gauge is attached to the center of the two end faces of the selected cylindrical specimen. (D) The two sides confirmed that the gap is not formed are the upper and lower sides of the compression tester. The step of placing the cylindrical specimen on the compression tester so that it comes into contact with the pressure plate of the above, however, within the range of the load up to 50 kN.
(i) When the strains on the two end faces are opposite (asymmetric) between positive and negative (asymmetric)
(ii) If there is no strain on one end face
(iii) When any of the cases where the strain of one end face becomes 1.5 times or more the strain of the other end face occurs, the loading is interrupted and the load is removed, and then the above (B) to (D) The process is re-executed, and loading is performed again.
[2] When the characteristic value selected through the following steps (a) and (b) exceeds the threshold value, the loading is interrupted and the load is removed, and then the steps (B) to (D) are repeated. Then, the method for measuring the crack generation strength of the ultra-high strength fiber reinforced concrete according to the above [1], wherein the load is performed again.
(A) Within the range of strain up to 100 × 10-6 , the proportional relationship between the load (explanatory variable) and strain (objective variable) is determined for each end face using the measured values of the load and the strain of the two end faces. Simple regression analysis step of obtaining the two simple regression equations to be represented (b) Comparison of the inclination values in the two simple regression equations and selecting the larger value as the characteristic value [3] ] The crack generation strength of the ultra-high strength fiber reinforced concrete according to the above [1] or [2], wherein the ultra-high strength fiber reinforced concrete having a crack generation strength of 5 N / mm 2 or more is the target for measuring the crack generation strength. Measuring method.

本発明の超高強度繊維補強コンクリートのひび割れ発生強度の測定方法は、測定効率が高く、また、ひび割れ発生強度の測定値のバラツキを小さくできるため、測定精度が高い。 The method for measuring the crack generation strength of the ultra-high strength fiber reinforced concrete of the present invention has high measurement efficiency and can reduce the variation in the measured value of the crack generation strength, so that the measurement accuracy is high.

円柱供試体を用いた割裂引張試験の一例を示す図である(非特許文献1の11頁の図3.2.4を転載)。It is a figure which shows an example of the split tensile test using a cylindrical specimen (reprinted FIG. 3.2.4 of page 11 of Non-Patent Document 1). 円柱供試体の上面(打ち込み面)の状態を示す写真である。It is a photograph which shows the state of the upper surface (driving surface) of a cylindrical specimen. 平板と円柱供試体の側面との間の隙間を示す写真である。It is a photograph which shows the gap between a flat plate and a side surface of a cylindrical specimen. 平板と円柱供試体の側面との間に光をあてている写真である。It is a photograph shining light between the flat plate and the side surface of the cylindrical specimen. 平板と円柱供試体の側面との間に隙間ゲージを挿入している写真である。This is a photograph in which a feeler gauge is inserted between the flat plate and the side surface of the cylindrical specimen. 平板上に敷いた紙ヤスリの上に円柱供試体を横向きに置き、円柱供試体の長さ方向に沿って前後に移動したときに生じた紙ヤスリ上の擦過線を示す写真である。It is a photograph showing the scraping line on the sandpaper generated when the cylindrical specimen is placed sideways on the sandpaper laid on the flat plate and moved back and forth along the length direction of the cylindrical specimen. 平板と円柱供試体の側面との間に隙間がない状態を示す写真である。It is a photograph which shows the state which there is no gap between a flat plate and a side surface of a cylindrical specimen. 平板と円柱供試体の側面との間に隙間がないことを確認した円柱供試体の端面に、線を引いた状態を示す写真である。It is a photograph showing a state in which a line is drawn on the end face of the cylindrical specimen, which is confirmed to have no gap between the flat plate and the side surface of the cylindrical specimen. 該円柱供試体の端面の中心を通って隙間が確認されない側面を結ぶ直線と、該直線に直交する直線を示す写真である。It is a photograph which shows the straight line which connects the side surface which passes through the center of the end face of the columnar specimen, and the gap is not confirmed, and the straight line which is orthogonal to the straight line. 円柱供試体の端面の中心にひずみゲージを貼付した状態を示す写真である。It is a photograph which shows the state which attached the strain gauge to the center of the end face of a cylindrical specimen. 圧縮試験機の上下の加圧板とそれぞれ接触するように、前記円柱供試体を圧縮試験機に載置した状態を示す写真である。It is a photograph which shows the state which the cylindrical specimen is placed on the compression tester so that it comes into contact with the upper and lower pressure plates of a compression tester respectively. 載荷の初期における荷重とひずみの関係(線形弾性)を示すグラフである。なお、凡例中の「ゲージ」とは、ひずみゲージをいう。It is a graph which shows the relationship (linear elasticity) of a load and strain at the initial stage of loading. The "gauge" in the legend means a strain gauge. 載荷の全期間における荷重とひずみの関係を示すグラフである。It is a graph which shows the relationship between the load and strain in the whole period of loading.

1.超高強度繊維補強コンクリートのひび割れ発生強度の測定方法
本発明の超高強度繊維補強コンクリートのひび割れ発生強度の測定方法は、前記のとおり、(A)円柱供試体の研磨工程、(B)測定対象の選別工程、(C)ひずみゲージの貼付工程、および(D)円柱供試体の載置工程を経た状態の円柱供試体に載荷して、荷重とひずみの関係を求め、該荷重とひずみの関係において線形弾性が不成立となる点の荷重に対応する引張応力を、ひび割れ発生強度と定めて測定する方法である。なお、本発明において、超高強度繊維補強コンクリートは、コンクリートの他に超高強度繊維補強モルタルも含む概念である。
以下、本発明について、前記各工程に分け、図2〜図11を用いて詳細に説明する。
1. 1. Method for measuring crack generation strength of ultra-high-strength fiber-reinforced concrete The method for measuring crack-generating strength of ultra-high-strength fiber-reinforced concrete of the present invention is as described above: (A) polishing step of columnar specimen, (B) measurement target. The load and strain are obtained by loading on the columnar specimen after undergoing the sorting step, (C) the strain gauge pasting step, and (D) the columnar specimen mounting step, and the relationship between the load and strain. In this method, the tensile stress corresponding to the load at the point where the linear elasticity is not established is defined as the crack generation strength and measured. In the present invention, the ultra-high-strength fiber-reinforced concrete is a concept including an ultra-high-strength fiber-reinforced mortar in addition to concrete.
Hereinafter, the present invention will be described in detail with reference to FIGS. 2 to 11 in each of the above steps.

(A)円柱供試体の研磨工程
該工程は、超高強度繊維補強コンクリートの円柱供試体の二つの端面における凹凸の高低差の平均値が、一端面あたり1.5mm以下になるように研磨する工程である。
超高強度繊維補強コンクリートの円柱供試体の上面(打ち込み面)および下面(底面)は、凹凸があるため荷重が不均一になり易く、ひび割れ発生強度のバラツキが大きくなる。したがって、該端面を平滑にするため、二つの端面を研磨する。上面の鋼繊維や余盛りがバリになっている場合があること、特に上面には気泡が多くみられること(図2)、また下面は型枠底面付近に歪みがある場合があることを考慮すると、研磨する厚さ(長さ)は、一端面あたり、好ましくは5〜10mmである。また、該研磨した二つの端面における凹凸の高低差の平均値は、一端面あたり、好ましくは1.5mm以下である。なお、前記高低差の平均値は、一端面あたり、より好ましくは1.0mm以下、さらに好ましくは0.5mm以下である。前記高低差はノギス等を用いて測定できる。また、研磨装置としてはコンクリート端面成形機が挙げられる。
なお、超高強度繊維補強コンクリートの円柱供試体の作製は、前記JIS A 1113「コンクリートの割裂引張強度試験方法」に準拠して行うとよい。該供試体の作製時において、型枠面のエントラップトエアの低減を目的として行う、木槌等を用いた型枠面の打撃や加振は、コンクリート中の繊維が沈降しないように最小限に留める。
(A) Polishing Step of Cylindrical Specimen In this step, the average value of the height difference of the unevenness between the two end faces of the columnar specimen of ultra-high strength fiber reinforced concrete is 1.5 mm or less per one end face. It is a process.
Since the upper surface (driving surface) and lower surface (bottom surface) of the columnar specimen of ultra-high-strength fiber-reinforced concrete have irregularities, the load tends to be uneven, and the crack generation strength varies widely. Therefore, in order to smooth the end faces, the two end faces are polished. Considering that the steel fibers and excess pile on the upper surface may be burrs, especially the upper surface may have many air bubbles (Fig. 2), and the lower surface may be distorted near the bottom surface of the formwork. Then, the thickness (length) to be polished is preferably 5 to 10 mm per one end surface. Further, the average value of the height difference of the unevenness between the two polished end faces is preferably 1.5 mm or less per one end face. The average value of the height difference is more preferably 1.0 mm or less, still more preferably 0.5 mm or less per one end surface. The height difference can be measured using a caliper or the like. Further, as a polishing apparatus, a concrete end face forming machine can be mentioned.
The columnar specimen of ultra-high strength fiber reinforced concrete may be produced in accordance with JIS A 1113 “Concrete split tensile strength test method”. When manufacturing the specimen, the impact and vibration of the formwork surface using a mallet or the like, which is performed for the purpose of reducing the entrapped air on the formwork surface, should be minimized so that the fibers in the concrete do not settle. stop.

(B)測定対象の選別工程
該工程は、平板の上に、前記研磨した円柱供試体を横向きに載置し、平板と該円柱供試体の側面が線接触する部分(以下「接触線」という。)に隙間が生じないか否か確認する第一の確認作業と、隙間が生じていないと確認した場合は、該円柱供試体の側面から180°回転した位置にある円柱供試体の側面を、再度、平板の上に載置して、接触線に隙間が生じないか否か確認する第二の確認作業を行い、いずれの確認作業においても隙間が生じないことを確認できた円柱供試体を、ひび割れ発生強度の測定対象として選別する工程である。
平板の上に、前記研磨した円柱供試体を横向きに載置すると、接触線に隙間が生じている場合がある(図3)。この隙間の存在は、平板と円柱供試体の側面との間に、光をあてるか(図4)、隙間ゲージを挿入するか(図5)、または、平板上に敷いた紙ヤスリの上に円柱供試体を横向きに置き、円柱供試体の長さ方向に沿って前後に移動したときに生じる紙ヤスリ上の擦過線の連続性の有無により確認できる。すなわち、光が漏れていないか、隙間ゲージが挿入できないか、紙ヤスリ上の擦過線に連続性があれば(図6)、接触線に隙間がないことが確認できる(図7)。
隙間が確認された場合は、隙間が確認されない側面を見い出すまで、円柱供試体を少し回転して、別の側面について前記隙間の確認作業(第一の確認作業)を繰り返し行う。
隙間が確認されない側面を見い出した場合は、円柱供試体を該側面から180°回転した位置にある側面について、前記隙間の確認作業(第二の確認作業)を行う。そして、第一および第二の確認作業のいずれにおいても、隙間が確認されない側面を見い出すまでは、前記第一および第二の確認作業を繰り返す。なお、継目が長さ方向にある型枠を用いて作製した円柱供試体では、該供試体の継目に当たる側面部分は隙間が大きくかつ多いため、好ましくは、該側面部分は前記確認作業の対象から除く。
そして、第一および第二の確認作業おいて、隙間が確認されない側面を見い出したときは、該円柱供試体をひび割れ発生強度の測定対象として選別し、例えば、後工程である(C)工程において、ひずみゲージを貼付する位置と方向を明確に表示するために、該円柱供試体の端面の中心を通って隙間が確認されない二つの側面(図8)を結ぶ直線と、該直線に直交する直線の二つの直線を記入する(図9)。
(B) Selection Step for Measurement Target In this step, the polished cylindrical specimen is placed sideways on a flat plate, and a portion where the flat plate and the side surface of the cylindrical specimen are in line contact (hereinafter referred to as "contact line"). The first confirmation work to confirm whether or not there is a gap in), and if it is confirmed that there is no gap, the side surface of the cylindrical specimen located 180 ° rotated from the side surface of the cylindrical specimen. , Again, the cylindrical specimen was placed on a flat plate and the second confirmation work was performed to confirm whether or not there was a gap in the contact line, and it was confirmed that no gap was generated in any of the confirmation operations. Is a step of selecting as a measurement target of the crack generation strength.
When the polished cylindrical specimen is placed sideways on a flat plate, a gap may be formed in the contact line (FIG. 3). The presence of this gap can be determined by shining light between the flat plate and the side surface of the cylindrical specimen (Fig. 4), inserting a feeler gauge (Fig. 5), or on sandpaper laid on the flat plate. This can be confirmed by the presence or absence of continuity of the scraping lines on the sandpaper that occur when the cylindrical specimen is placed sideways and moved back and forth along the length direction of the cylindrical specimen. That is, if there is no light leakage, the feeler gauge cannot be inserted, or the scraping lines on the sandpaper are continuous (FIG. 6), it can be confirmed that there are no gaps in the contact lines (FIG. 7).
When a gap is confirmed, the cylindrical specimen is rotated a little until a side surface where the gap is not confirmed is found, and the gap confirmation work (first confirmation work) is repeated for another side surface.
When a side surface in which no gap is confirmed is found, the gap confirmation work (second confirmation work) is performed on the side surface at a position where the cylindrical specimen is rotated 180 ° from the side surface. Then, in both the first and second confirmation operations, the first and second confirmation operations are repeated until a side surface on which no gap is confirmed is found. In a cylindrical specimen produced by using a mold having a seam in the length direction, the side surface portion corresponding to the seam of the specimen has a large gap and a large gap. Therefore, the side surface portion is preferably from the target of the confirmation work. except.
Then, in the first and second confirmation operations, when a side surface in which no gap is confirmed is found, the columnar specimen is selected as a measurement target of the crack generation strength, and for example, in the subsequent step (C). , In order to clearly display the position and direction to which the strain gauge is attached, a straight line connecting two side surfaces (FIG. 8) through the center of the end face of the cylindrical specimen and no gap is confirmed, and a straight line orthogonal to the straight line. Fill in the two straight lines (Fig. 9).

(C)ひずみゲージの貼付工程
該工程は、前記隙間が生じていないと確認した二つの側面を結ぶ面と直交するように、前記選別した円柱供試体の二つの端面の中心にひずみゲージを貼付する工程である(図10)。
(C) Strain gauge affixing step In this step, a strain gauge is affixed to the center of the two end faces of the selected cylindrical specimen so as to be orthogonal to the surface connecting the two side surfaces confirmed that no gap is formed. (Fig. 10).

(D)円柱供試体の載置工程
該工程は、前記隙間が生じていないと確認した二つの側面が、圧縮試験機の上下の加圧板とそれぞれ接触するように、前記円柱供試体を圧縮試験機に載置する工程である(図11)。
次に、本発明において、ひび割れ発生強度のバラツキを、さらに抑制する二種類の方法について詳細に説明する。
(D) Placement Step of Cylindrical Specimen In this step, the cylindrical specimen was subjected to a compression test so that the two sides confirmed that no gap was formed were in contact with the upper and lower pressure plates of the compression tester. This is a process of mounting on a machine (Fig. 11).
Next, in the present invention, two types of methods for further suppressing the variation in crack generation strength will be described in detail.

2.ひび割れ発生強度のバラツキの抑制(その1)
前記(A)〜(D)工程を経た後に、前記円柱供試体に載荷して荷重とひずみを測定し、荷重が50kNまでの範囲内において、
(i)前記二つの端面のひずみが正と負の逆(非対称)になる場合、
(ii)一つの端面においてひずみが生じない場合、
(iii)一つの端面のひずみが、他の端面のひずみの1.5倍以上になる場合
のいずれかが生じたときは、ひび割れ発生強度の測定値のバラツキが大きくなるため、好ましくは、載荷を中断して除荷した後、前記(B)〜(D)工程を再実施して、再度、載荷を行う。荷重が50kNまでの範囲内では、載荷を繰り返しても、得られるひび割れ発生強度の値には影響しない。
なお、超高強度繊維補強コンクリートの円柱供試体への載荷は、JIS A 1113「コンクリートの割裂引張強度試験方法」に準拠して行うとよい。また、荷重とひずみを連続的に測定すれば、ひび割れの発生により線形弾性が不成立になる点が明確に把握できるから好ましい。
2. Suppression of variation in crack generation strength (Part 1)
After going through the steps (A) to (D), the load and strain are measured by loading on the cylindrical specimen, and the load is within a range of up to 50 kN.
(i) When the strains on the two end faces are opposite (asymmetric) between positive and negative (asymmetric)
(ii) If there is no strain on one end face
(iii) When any of the cases where the strain of one end face is 1.5 times or more the strain of the other end face occurs, the measured value of the crack generation strength becomes large, so it is preferable to load the load. After interrupting and unloading, the above steps (B) to (D) are repeated, and loading is performed again. Within the load range of up to 50 kN, repeated loading does not affect the obtained cracking strength value.
The ultra-high-strength fiber-reinforced concrete may be loaded onto a cylindrical specimen in accordance with JIS A 1113 “Concrete Split Tensile Strength Test Method”. In addition, it is preferable to continuously measure the load and strain because it is possible to clearly understand that the linear elasticity is not established due to the occurrence of cracks.

3.ひび割れ発生強度のバラツキの抑制(その2)
さらに、本発明において、ひび割れ発生強度のバラツキを抑制するために、例えば、図12の(1)に示すように、下記(a)および(b)工程を経て選別された特性値が、閾値を超えたときは、載荷を中断して除荷した後、前記(B)〜(D)工程を再実施して、再度、載荷を行う。
(a)ひずみが100×10−6までの範囲内において、荷重と二つの端面のひずみの実測値を用いて、各端面ごとに、荷重(説明変数)とひずみ(目的変数)の比例関係を表す二つの単回帰式を求める、単回帰分析工程(図12)
ここで、荷重を説明変数(横軸)に、ひずみを目的変数(縦軸)にとるのは、載荷しながらひずみを計測するため、荷重を横軸にとるとグラフが見やすくなるからである。
(b)前記二つの単回帰式中の傾きの値を比較して、大きい方の値を特性値として選別する、特性値の選別工程
ここで、傾きの大きい方の値を、特性値として選別する理由は、経験上、傾きが大きい(引張ヤング係数が小さい)方が、ひび割れ発生強度をより低く(すなわち、安全側で)評価できるからである。
なお、ひずみが100×10−6までの範囲では、載荷を繰り返しても、得られるひび割れ発生強度の値には影響しない。
3. 3. Suppression of variation in crack generation strength (Part 2)
Further, in the present invention, in order to suppress the variation in the crack generation strength, for example, as shown in FIG. 12 (1), the characteristic values selected through the following steps (a) and (b) set the threshold value. When the load is exceeded, the loading is interrupted and the load is removed, and then the above steps (B) to (D) are repeated and the loading is performed again.
(A) Within the range of strain up to 100 × 10-6 , the proportional relationship between the load (explanatory variable) and strain (objective variable) is determined for each end face using the measured values of the load and the strain of the two end faces. Simple regression analysis step to obtain two simple regression equations to represent (Fig. 12)
Here, the load is set as the explanatory variable (horizontal axis) and the strain is set as the objective variable (vertical axis) because the strain is measured while being loaded, and the graph is easier to see when the load is set on the horizontal axis.
(B) Selection step of characteristic value in which the slope values in the two simple regression equations are compared and the larger value is selected as the characteristic value. Here, the value with the larger slope is selected as the characteristic value. The reason for this is that, from experience, the larger the slope (the smaller the tensile Young's modulus), the lower the crack generation strength (that is, on the safe side) can be evaluated.
In the range of strain up to 100 × 10-6 , repeated loading does not affect the obtained value of crack generation strength.

次に、前記閾値について説明する。
(1)閾値の考え方
超高強度繊維補強コンクリートのひび割れ発生強度は、すでに述べたように、荷重(引張応力)とひずみの関係において、線形弾性が不成立となる点の荷重(限界応力)である。
そもそも、十分な強度が発現したコンクリートは、弾性体に近い力学的挙動を示すため、鋼材と同様に、荷重とひずみの関係は線形になる。
ここで、コンクリートが完全な弾性体であれば、圧縮応力や引張応力に対するひずみの挙動は、いずれも同じになる。しかし、コンクリートは完全な弾性体ではないため、同一の応力に対し圧縮ひずみと引張ひずみは同じにならず、引張ヤング係数は圧縮ヤング係数より小さくなる(このことは、硬化して十分に強度が発現したコンクリートにおいて一般的に確認されている。ただし、若材齢時の現象は除く。)。例えば、水結合材比が19〜25%の高強度コンクリートでは、引張ヤング係数は圧縮ヤング係数の0.8倍程度である。
そこで、本発明で用いる閾値を定めるために、以下の仮定をする。
(i)標準熱養生を行なった超高強度繊維補強コンクリート(FM)および超高強度繊維補強コンクリート(FO)の圧縮ヤング係数(Ec)は、それぞれ、50kN/mmおよび45kN/mmと仮定する。なお、前記FMおよびFOは、後記する超強高度繊維補強コンクリート「ダクタル」(登録商標)の品番である。
(ii)引張ヤング係数(Et)は、圧縮ヤング係数の0.8倍と仮定する。
(iii)部材安全係数(γ)は1.3と仮定する。
Next, the threshold value will be described.
(1) Concept of threshold The crack generation strength of ultra-high strength fiber reinforced concrete is the load (marginal stress) at the point where linear elasticity is not established in the relationship between load (tensile stress) and strain, as described above. ..
In the first place, concrete that has developed sufficient strength exhibits mechanical behavior close to that of an elastic body, so that the relationship between load and strain is linear, similar to steel materials.
Here, if the concrete is a completely elastic body, the behavior of strain with respect to compressive stress and tensile stress is the same. However, since concrete is not a perfect elastic body, the compressive strain and tensile strain are not the same for the same stress, and the tensile Young's modulus is smaller than the compressive Young's modulus (this means that it hardens and is sufficiently strong. It is generally confirmed in the developed concrete, except for the phenomenon at the young age.) For example, in high-strength concrete having a water-bonding material ratio of 19 to 25%, the tensile Young's modulus is about 0.8 times the compressive Young's modulus.
Therefore, in order to determine the threshold value used in the present invention, the following assumptions are made.
(I) compression Young's modulus of the ultra high strength fiber reinforced concrete was subjected to standard heat curing (FM) and ultra high strength fiber-reinforced concrete (FO) (Ec), respectively, assuming 50 kN / mm 2 and 45 kN / mm 2 To do. The FM and FO are part numbers of the ultra-strong advanced fiber reinforced concrete "Dactal" (registered trademark) described later.
(Ii) The tensile Young's modulus (Et) is assumed to be 0.8 times the compressive Young's modulus.
(Iii) It is assumed that the member safety factor (γ) is 1.3.

(c2)閾値の決定
これらの仮定に基づき、圧縮ヤング係数(Ec)と引張ヤング係数(Et)の関係式(1)を導出すると、
Et=0.8×Ec/γ=0.615×Ec ・・・(1)
一方、引張応力(σ)とひずみ(ε)の関係式(2)は、
σ=Et×ε ・・・(2)
また、引張応力(σ)と荷重(P)の関係式(3)は、
σ=2P/(π×d×L) ・・・(3)
ただし、(3)式中、dは円柱供試体の端面の直径、Lは研磨した二つの端面間の距離(長さ)を表す。
よって、前記(1)〜(3)式から、ひずみと荷重の関係式(4)が求まる。
ε=2/(0.615×Ec×π×d×L)×P ・・・(4)
前記(4)式の係数(傾き)である2/(0.615×Ec×π×d×L)に、Ec=50kN/mmまたは45kN/mm、d=100mm、およびL=200mmを代入すると、超高強度繊維補強コンクリート(FM)では1.04、超高強度繊維補強コンクリート(FO)では1.17となる。ここで、前記のとおり、経験上、傾きが大きい方が、ひび割れ発生強度をより低く(すなわち、安全側で)評価できるから、小数点以下第二位を切り上げて、それぞれ1.1および1.2を閾値として採用する。
(C2) Determination of threshold value Based on these assumptions, the relational expression (1) between the compression Young's modulus (Ec) and the tensile Young's modulus (Et) can be derived.
Et = 0.8 × Ec / γ = 0.615 × Ec ・ ・ ・ (1)
On the other hand, the relational expression (2) between tensile stress (σ) and strain (ε) is
σ = Et × ε ・ ・ ・ (2)
The relational expression (3) between the tensile stress (σ) and the load (P) is
σ = 2P / (π × d × L) ・ ・ ・ (3)
However, in Eq. (3), d represents the diameter of the end face of the cylindrical specimen, and L represents the distance (length) between the two polished end faces.
Therefore, the relational expression (4) between strain and load can be obtained from the above equations (1) to (3).
ε = 2 / (0.615 × Ec × π × d × L) × P ・ ・ ・ (4)
Wherein (4) the coefficient a (slope) 2 / (0.615 × Ec × π × d × L) of formula, Ec = 50kN / mm 2 or 45kN / mm 2, d = 100mm , and L = 200 mm Substituting, it becomes 1.04 for ultra-high strength fiber reinforced concrete (FM) and 1.17 for ultra-high strength fiber reinforced concrete (FO). Here, as described above, from experience, the larger the inclination, the lower the crack generation strength can be evaluated (that is, on the safe side), so the second decimal place is rounded up to 1.1 and 1.2, respectively. Is adopted as the threshold value.

3.荷重とひずみの関係に基づくひび割れ発生強度の決定
そして、図12の(2)に示すように、前記(a)および(b)工程を経て選別された特性値が閾値以下の場合には、該(a)工程でその一部を使用した荷重とひずみの全載荷期間の実測値を用いて、例えば、荷重を縦軸に、ひずみを横軸にしてグラフ(図13)を作成し、該グラフから線形弾性が不成立になる点の荷重(P)の値を読み取り、前記(3)式に代入して、線形弾性が不成立となる点の荷重に対応する引張応力(σ)であるひび割れ発生強度を得る。
3. 3. Determining the crack generation strength based on the relationship between load and strain And, as shown in (2) of FIG. 12, when the characteristic value selected through the steps (a) and (b) is equal to or less than the threshold value, the said. Using the measured values of the total loading period of the load and strain using a part of the load in the step (a), for example, a graph (FIG. 13) is created with the load on the vertical axis and the strain on the horizontal axis. The value of the load (P) at the point where the linear elasticity is not established is read from, and substituted into the above equation (3), and the crack generation strength which is the tensile stress (σ) corresponding to the load at the point where the linear elasticity is not established is obtained. To get.

2.超高強度繊維補強コンクリートの供試体
該供試体は、供試体の二つの端面における凹凸の高低差の平均値が、一端面あたり1.5mm以下である円柱供試体である。凹凸の高低差の平均値が1.5mm以下であれば、ひび割れ発生強度のバラツキを小さくできる。なお、前記高低差の平均値は、前記のとおり、好ましくは1.0mm以下、より好ましくは0.5mm以下である。
また、超高強度繊維補強コンクリートの円柱供試体は、打設時においてコンクリートの1層打ちを行う以外は、非特許文献1の80頁に記載の「参考資料2 強度試験用供試体の作り方」に従い作製する。
2. Specimen of ultra-high-strength fiber reinforced concrete The specimen is a cylindrical specimen in which the average value of the height difference of the unevenness on the two end faces of the specimen is 1.5 mm or less per one end face. When the average value of the height difference of the unevenness is 1.5 mm or less, the variation in the crack generation strength can be reduced. As described above, the average value of the height difference is preferably 1.0 mm or less, more preferably 0.5 mm or less.
In addition, for the columnar specimen of ultra-high strength fiber reinforced concrete, except that one layer of concrete is cast at the time of casting, "Reference Material 2 How to make a specimen for strength test" described on page 80 of Non-Patent Document 1. Produce according to.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.使用材料とコンクリート配合
使用した超強高度繊維補強コンクリートは、ダクタルFMとダクタルFO(登録商標、太平洋セメント社製)であり、単位水量はダクタルFMが180kg/m、ダクタルFOが185kg/mとした。
Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples.
1. 1. Superstrong Advanced Fiber Reinforced Concrete Using the materials used and the concrete mix is Ductal FM and Ductal FO (registered trademark, Pacific Ocean manufactured Cement Co.), and the unit quantity of water is Ductal FM 180 kg / m 3, Ductal FO is 185 kg / m 3 And said.

2.超高強度繊維補強コンクリートのひび割れ発生強度の測定
(1)ダクタルFMを用いた供試体の作製
該供試体は、打設時においてコンクリートの1層打ちを行なった以外は、非特許文献1の80頁に記載の「参考資料2 強度試験用供試体の作り方」に従い、鋼製型枠を用いて、直径100mm、長さ200mmの円柱供試体を作製した。
なお、エントラップトエアをできる限り巻き込まないように、コンクリートを1層で連続的に前記型枠へ流し込み、振動締固めは行わなかった。また、該コンクリートは、24時間、気中養生した後に脱型し、さらに90℃で48時間、蒸気養生して円柱供試体を作製した(図2)。
2. Measurement of cracking strength of ultra-high-strength fiber reinforced concrete (1) Preparation of specimen using Ductal FM The specimen is 80 of Non-Patent Document 1 except that one layer of concrete was cast at the time of casting. A columnar specimen having a diameter of 100 mm and a length of 200 mm was prepared using a steel formwork according to "Reference Material 2 How to Make a Specimen for Strength Test" described on the page.
In addition, concrete was continuously poured into the formwork in one layer so as not to entrap entrapped air as much as possible, and vibration compaction was not performed. Further, the concrete was cured in the air for 24 hours, then demolded, and then steam-cured at 90 ° C. for 48 hours to prepare a cylindrical specimen (FIG. 2).

(2)円柱供試体の研磨
次に、該供試体の二つの端面を、コンクリート端面成形機を用いて、両端面ともに5mm程度研磨して、二つの端面における凹凸の高低差の平均値を、一端面あたり1mmにした。
(2) Polishing of a cylindrical specimen Next, the two end faces of the specimen were polished by about 5 mm on both end faces using a concrete end face molding machine, and the average value of the height difference of the unevenness on the two end faces was calculated. One end surface was set to 1 mm.

(3)測定対象の選別
該研磨した円柱供試体を横向きに載置し、反対側から光をあてて接触線に隙間が生じていないか否か確認した(図4)。隙間が生じていないと確認した後は、該円柱供試体の側面から180°回転した位置にある円柱供試体の側面を、再度、平板の上に載置して、接触線に隙間が生じないか否か光をあてて確認した。そして、いずれの確認作業においても隙間が生じないことを確認した円柱供試体を、ひび割れ発生強度の測定対象として選別した(図7)。
(3) Selection of measurement target The polished cylindrical specimen was placed sideways, and light was applied from the opposite side to confirm whether or not there was a gap in the contact line (Fig. 4). After confirming that no gap is formed, the side surface of the cylindrical specimen located 180 ° rotated from the side surface of the cylindrical specimen is placed on the flat plate again, and no gap is generated in the contact line. It was confirmed by shining light on it. Then, the columnar specimens confirmed that no gap was generated in any of the confirmation operations were selected as the measurement target of the crack generation strength (FIG. 7).

(4)ひずみゲージの貼付
さらに、該円柱供試体の端面の中心を通って隙間が確認されない二つの側面を結ぶ直線と、該直線に直交する直線の二つの直線を記入した(図9)。そして、前記選別した円柱供試体の二つの端面の中心において、前記直交する直線に平行に、ひずみゲージ1とひずみゲージ2を貼付した(図10)。
(4) Attachment of strain gauge Further, two straight lines, a straight line connecting two side surfaces through the center of the end face of the cylindrical specimen and no gap is confirmed, and a straight line orthogonal to the straight line were drawn (FIG. 9). Then, the strain gauge 1 and the strain gauge 2 were attached in parallel with the orthogonal straight lines at the centers of the two end faces of the selected cylindrical specimen (FIG. 10).

(5)円柱供試体の載置
前記隙間が生じていないと確認した二つの側面が、圧縮試験機の上下の加圧板とそれぞれ接触するように、前記円柱供試体を圧縮試験機(型番:ACA−100A、前川試験機製作所社製)に載置した(図11)。
(5) Placement of the cylindrical specimen The cylindrical specimen is placed in the compression tester (model number: ACA) so that the two sides confirmed that no gap is formed come into contact with the upper and lower pressure plates of the compression tester. It was placed on -100A, manufactured by Maekawa Testing Machine Mfg. Co., Ltd. (Fig. 11).

(6)ひび割れ発生強度の測定
JIS A 1113「コンクリートの割裂引張強度試験方法」に準拠して、圧縮試験機に載置した円柱供試体に載荷して、荷重とひずみの関係を求め、該荷重とひずみの関係において線形弾性が不成立となる点の荷重に対応する引張応力からひび割れ発生強度を求めた。
なお、荷重が50kNまでの範囲内において、(i)二つの端面のひずみが正と負の逆(非対称)になった場合、(ii)一つの端面においてひずみが生じなかった場合、または(iii)一つの端面のひずみが、他の端面のひずみの1.5倍以上になった場合は、載荷を中断して除荷した後、前記(3)〜(5)の工程を再実施して、再度、載荷を行った(再実施1)。
また、100×10−6までの範囲のひずみの測定において求めた特性値が、段落0018において採用した閾値(1.1)を超えた場合も、載荷を中断して除荷した後、前記(3)〜(5)の工程を再実施して、再度、載荷を行った(再実施2)。
ダクタルFMの各円柱供試体のひび割れ発生強度の値を表1に示す。また、前記再実施1または再実施2の実施の有無も表1に併記する。
(6) Measurement of cracking strength In accordance with JIS A 1113 "Split tensile strength test method for concrete", the load is placed on a columnar specimen placed on a compression tester, the relationship between load and strain is determined, and the load is obtained. The crack generation strength was obtained from the tensile stress corresponding to the load at the point where the linear elasticity was not established in relation to the strain.
When the load is within the range of up to 50 kN, (i) the strains on the two end faces are opposite (asymmetric) to positive and negative, (ii) no strain occurs on one end face, or (iii). ) If the strain on one end face is 1.5 times or more the strain on the other end face, the loading is interrupted and the load is removed, and then the steps (3) to (5) above are repeated. , The load was carried out again (re-implementation 1).
Further, even when the characteristic value obtained in the measurement of the strain in the range of 100 × 10-6 exceeds the threshold value (1.1) adopted in paragraph 0018, the loading is interrupted and the load is removed, and then the above ( The steps 3) to (5) were re-executed, and loading was performed again (re-implementation 2).
Table 1 shows the values of crack generation strength of each cylindrical specimen of Dactal FM. Table 1 also shows whether or not the re-implementation 1 or re-execution 2 has been carried out.

比較として、前記段落0022で作製した円柱供試体を非特許文献1に記載の方法(従来の方法)に準拠して、単回帰式の傾きとひび割れ発生強度を求めた。得られたひび割れ発生強度を表2に示す。また、荷重が50kNまでの範囲内において、下記(i)〜(iii)のうちのいずれかの発生の有無を表2に示す。
(i)二つの端面のひずみが正と負の逆(非対称)になった。
(ii)一つの端面においてひずみが生じなかった。
(iii)一つの端面のひずみが、他の端面のひずみの1.5倍以上になった。
さらに、100×10−6までの範囲のひずみの測定において求めた特性値の値と再実施2の必要性の判定も表2に示す。
As a comparison, the tilt and crack generation strength of the simple regression equation were determined for the cylindrical specimen prepared in paragraph 0022 according to the method described in Non-Patent Document 1 (conventional method). Table 2 shows the obtained crack generation strength. Table 2 shows the presence or absence of any one of the following (i) to (iii) within the range of the load up to 50 kN.
(i) The strains on the two end faces are opposite (asymmetric) between positive and negative.
(ii) No strain was generated on one end face.
(iii) The strain on one end face is more than 1.5 times the strain on the other end face.
In addition, Table 2 also shows the value of the characteristic value obtained in the measurement of strain in the range of 100 × 10-6 and the determination of the necessity of re-execution 2.

次に、表1と表2のデータに基づいて算出した、ひび割れ発生強度の平均値、標準偏差、および変動係数を表3に示す。 Next, Table 3 shows the average value, standard deviation, and coefficient of variation of the crack occurrence intensity calculated based on the data in Tables 1 and 2.

ダクタルFMに代えて、ダクタルFOを用いた以外は、前記と同様の試験方法により、単回帰式の傾きとひび割れ発生強度を求めた。ひび割れ発生強度の測定結果を表4と表5に示す。また、表4と表5のデータに基づいて算出した、ひび割れ発生強度の平均値、標準偏差、および変動係数を表6に示す。 The inclination and crack generation strength of the simple regression equation were determined by the same test method as described above except that the ductal FO was used instead of the ductal FM. The measurement results of the crack generation strength are shown in Tables 4 and 5. Table 6 shows the average value, standard deviation, and coefficient of variation of the crack occurrence strength calculated based on the data in Tables 4 and 5.

(7)ひび割れ発生強度のバラツキについて
表3と表6に示すように、ダクタルFMおよびダクタルFOともに、変動係数は、すべての実施例において、比較例と比べ1/7〜2/3と小さい。したがって、本発明のひび割れ発生強度の測定方法は、従来の方法と比べ、ひび割れ発生強度のバラツキが顕著に小さい。
以上のことから、本発明は、超高強度繊維補強コンクリートのひび割れ発生強度を、高い精度で、効率よく測定することができる。
(7) Variation in cracking strength As shown in Tables 3 and 6, the coefficient of variation of both Dactal FM and Dactal FO is as small as 1/7 to 2/3 as compared with Comparative Examples in all the examples. Therefore, in the method for measuring the crack generation strength of the present invention, the variation in the crack generation strength is remarkably small as compared with the conventional method.
From the above, the present invention can efficiently measure the crack generation strength of ultra-high strength fiber reinforced concrete with high accuracy.

Claims (3)

下記(A)〜(D)工程を経た状態の円柱供試体に載荷して、荷重とひずみの関係を求め、該荷重とひずみの関係において線形弾性が不成立となる点の荷重に対応する引張応力を、ひび割れ発生強度と定めて測定する、超高強度繊維補強コンクリートのひび割れ発生強度の測定方法。
(A)超高強度繊維補強コンクリートの円柱供試体の二つの端面における凹凸の高低差の平均値が、一端面あたり1.0mm以下になるように、二つの端面を円柱供試体の厚さ(長さ)で5〜10mm研磨する、円柱供試体の研磨工程
(B)平板の上に、前記研磨した円柱供試体を横向きに載置し、平板と該円柱供試体の側面が接触する部分に、隙間が生じていないか否か確認する第一の確認作業と、隙間が生じていないと確認した場合は、該円柱供試体の側面から180°回転した位置にある円柱供試体の側面を、再度、平板の上に載置して、平板と該円柱供試体の側面が接触する部分に、隙間が生じていないか否か確認する第二の確認作業を行い、いずれの確認作業においても隙間が生じていないことを確認できた円柱供試体を、ひび割れ発生強度の測定対象として選別する、測定対象の選別工程
(C)前記隙間が生じていないと確認した二つの側面を結ぶ面と直交するように、前記選別した円柱供試体の二つの端面の中心にひずみゲージを貼付する、ひずみゲージの貼付工程
(D)前記隙間が生じていないと確認した二つの側面が、圧縮試験機の上下の加圧板とそれぞれ接触するように、前記円柱供試体を圧縮試験機に載置する、円柱供試体の載置工程
ただし、荷重が50kNまでの範囲内において、
(i)前記二つの端面のひずみが正と負の逆(非対称)になる場合、
(ii)一つの端面においてひずみが生じない場合、
(iii)一つの端面のひずみが、他の端面のひずみの1.5倍以上になる場合
のいずれかの場合が生じたときは、載荷を中断して除荷した後、前記(B)〜(D)工程を再実施して、再度、載荷を行う。
The load is placed on a columnar specimen that has undergone the following steps (A) to (D), the relationship between the load and strain is obtained, and the tensile stress corresponding to the load at which linear elasticity is not established in the relationship between the load and strain. Is a method for measuring the cracking strength of ultra-high-strength fiber-reinforced concrete, which is determined as the cracking strength.
(A) Thickness of the two end faces of the columnar specimen of ultra-high strength fiber reinforced concrete so that the average value of the height difference of the unevenness on the two end faces of the columnar specimen is 1.0 mm or less per one end face. Polishing step of a cylindrical specimen to be polished by (length) by 5 to 10 mm (B) A portion where the polished cylindrical specimen is placed sideways on a flat plate and the flat plate and the side surface of the cylindrical specimen come into contact with each other. In addition, the first confirmation work to confirm whether or not there is a gap, and when it is confirmed that there is no gap, the side surface of the cylindrical specimen located 180 ° rotated from the side surface of the cylindrical specimen. , Again, place it on the flat plate and perform the second confirmation work to confirm whether there is a gap in the part where the flat plate and the side surface of the cylindrical specimen come into contact, and in any of the confirmation operations. A step of selecting a measurement target, in which a cylindrical specimen for which it has been confirmed that no gap has not been formed is selected as a measurement target for the crack generation strength (C). A strain gauge affixing step (D) in which a strain gauge is affixed to the center of two end faces of the selected cylindrical specimen so that the gap is not formed, the upper and lower sides of the compression tester are The step of placing the cylindrical specimen on the compression tester so that it comes into contact with each of the pressure plates of the above, however, within the range of the load up to 50 kN.
(i) When the strains on the two end faces are opposite (asymmetric) between positive and negative (asymmetric)
(ii) If there is no strain on one end face
(iii) When any of the cases where the strain of one end face becomes 1.5 times or more the strain of the other end face occurs, the loading is interrupted and the load is removed, and then the above (B) to (D) The step is re-executed and the loading is performed again.
下記(a)および(b)工程を経て選別された特性値が、閾値を超えたときは、載荷を中断して除荷した後、前記(B)〜(D)工程を再実施して、再度、載荷を行う、請求項1に記載の超高強度繊維補強コンクリートのひび割れ発生強度の測定方法。
(a)ひずみが100×10−6までの範囲内において、荷重と二つの端面のひずみの実測値を用いて、各端面ごとに、荷重(説明変数)とひずみ(目的変数)の比例関係を表す二つの単回帰式を求める、単回帰分析工程
(b)前記二つの単回帰式中の傾きの値を比較して、大きい方の値を特性値として選別する、特性値の選別工程
When the characteristic value selected through the following steps (a) and (b) exceeds the threshold value, the loading is interrupted and the load is removed, and then the steps (B) to (D) are repeated. The method for measuring the crack generation strength of the ultra-high-strength fiber-reinforced concrete according to claim 1, wherein the load is carried out again.
(A) Within the range of strain up to 100 × 10-6 , the proportional relationship between load (explanatory variable) and strain (objective variable) is determined for each end face using the measured values of load and strain of the two end faces. Simple regression analysis step of obtaining the two simple regression equations to be represented (b) Selection step of the characteristic value in which the slope values in the two simple regression equations are compared and the larger value is selected as the characteristic value.
ひび割れ発生強度が5N/mm以上の超高強度繊維補強コンクリートを、ひび割れ発生強度の測定対象とする、請求項1または2に記載の超高強度繊維補強コンクリートのひび割れ発生強度の測定方法。
The method for measuring the crack generation strength of the ultra-high strength fiber reinforced concrete according to claim 1 or 2, wherein the ultra-high strength fiber reinforced concrete having a crack generation strength of 5 N / mm 2 or more is the target for measuring the crack generation strength.
JP2019149739A 2019-08-19 2019-08-19 How to measure the cracking strength of ultra-high strength fiber reinforced concrete Active JP6765485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019149739A JP6765485B2 (en) 2019-08-19 2019-08-19 How to measure the cracking strength of ultra-high strength fiber reinforced concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019149739A JP6765485B2 (en) 2019-08-19 2019-08-19 How to measure the cracking strength of ultra-high strength fiber reinforced concrete

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015097820A Division JP6575991B2 (en) 2015-05-13 2015-05-13 Method for measuring crack initiation strength of ultra high strength fiber reinforced concrete

Publications (2)

Publication Number Publication Date
JP2019215366A JP2019215366A (en) 2019-12-19
JP6765485B2 true JP6765485B2 (en) 2020-10-07

Family

ID=68919490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019149739A Active JP6765485B2 (en) 2019-08-19 2019-08-19 How to measure the cracking strength of ultra-high strength fiber reinforced concrete

Country Status (1)

Country Link
JP (1) JP6765485B2 (en)

Also Published As

Publication number Publication date
JP2019215366A (en) 2019-12-19

Similar Documents

Publication Publication Date Title
Drougkas et al. Compressive strength and elasticity of pure lime mortar masonry
Li et al. Failure processes of modeled recycled aggregate concrete under uniaxial compression
Isla et al. Analysis of steel fibers pull-out. Experimental study
KR101291504B1 (en) Experimental Device and Method of restrained shrinkage of Concrete
Larbi et al. Experimental and numerical investigations about textile-reinforced concrete and hybrid solutions for repairing and/or strengthening reinforced concrete beams
Ali-Ahmad et al. Experimental investigation and fracture analysis of debonding between concrete and FRP sheets
Carrara et al. Shear tests of carbon fiber plates bonded to concrete with control of snap-back
Barnard Researches into the complete stress-strain curve for concrete
Ranaivomanana et al. Basic creep of concrete under compression, tension and bending
Boulekbache et al. Failure mechanism of fibre reinforced concrete under splitting test using digital image correlation
Sassoni et al. Comparison between experimental methods for evaluating the compressive strength of existing masonry buildings
JP6575991B2 (en) Method for measuring crack initiation strength of ultra high strength fiber reinforced concrete
CN101458183A (en) Mechanical property detecting method for shale porous brick masonry
JP6765485B2 (en) How to measure the cracking strength of ultra-high strength fiber reinforced concrete
Herrmann et al. The influence of fibre orientation in self-compacting concrete on 4-point bending strength.
Li et al. Potential use of strain hardening ECC in permanent formwork with small scale flexural beams
CN109598037B (en) Method for calculating ultimate bearing capacity of reinforced concrete slab
Fíla et al. Experimental investigation of mortar mechanical properties for glass brick masonry
Su et al. The effect of coarse aggregate size on the stress-strain curves of concrete under uniaxial compression
US20170349487A1 (en) Fibers for Reinforcing Concrete
CN111721627B (en) Device and testing method for ultra-early tensile creep of cement-based material
Jemison Compressive behavior of masonry columns confined with steel reinforced grout (SRG) composite
CN210221692U (en) Concrete creep test device
CN112748017A (en) Method for testing compressive strength of composite structure concrete interface
Lepissier Tensile Behavior of Ultra-High Performance Concrete Under Direct Tension

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200915

R150 Certificate of patent or registration of utility model

Ref document number: 6765485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250