JP6765401B2 - Runner structure - Google Patents

Runner structure Download PDF

Info

Publication number
JP6765401B2
JP6765401B2 JP2018198688A JP2018198688A JP6765401B2 JP 6765401 B2 JP6765401 B2 JP 6765401B2 JP 2018198688 A JP2018198688 A JP 2018198688A JP 2018198688 A JP2018198688 A JP 2018198688A JP 6765401 B2 JP6765401 B2 JP 6765401B2
Authority
JP
Japan
Prior art keywords
flow path
molten metal
runner structure
cavity
flows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018198688A
Other languages
Japanese (ja)
Other versions
JP2020066012A (en
Inventor
猛 岡田
猛 岡田
政吾 西原
政吾 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018198688A priority Critical patent/JP6765401B2/en
Priority to CN201910992454.4A priority patent/CN111069560B/en
Publication of JP2020066012A publication Critical patent/JP2020066012A/en
Application granted granted Critical
Publication of JP6765401B2 publication Critical patent/JP6765401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2272Sprue channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/14Machines with evacuated die cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

本発明は、ランナー構造に関する。 The present invention relates to a runner structure.

金型に溶融した金属を高速・高圧で圧入することにより、高い寸法精度の鋳物を短時間に大量に生産する鋳造方式であるダイカストという金型鋳造法が知られている。さらに、金型のキャビティ部を減圧して真空化した状態で溶湯を圧入する真空ダイカスト法も知られている(例えば、特許文献1参照)。 A mold casting method called die casting, which is a casting method for mass-producing castings with high dimensional accuracy in a short time by press-fitting molten metal into a mold at high speed and high pressure, is known. Further, a vacuum die casting method is also known in which the molten metal is press-fitted in a state where the cavity portion of the mold is depressurized and evacuated (see, for example, Patent Document 1).

特許文献1では、キャビティと減圧手段とを接続するガス抜き路と、ガス抜き路を開閉する減圧バルブとを備え、ガス抜き路のキャビティと減圧バルブとの間で、溶湯の流れに対抗する位置に溶湯検知センサを設けている。 In Patent Document 1, a gas vent path for connecting the cavity and the decompression means and a decompression valve for opening and closing the gas vent path are provided, and a position opposed to the flow of molten metal between the cavity of the gas vent path and the decompression valve. Is equipped with a molten metal detection sensor.

特開2016−131995号公報Japanese Unexamined Patent Publication No. 2016-131995

注湯時には鋳型から発生するガスや空気が溶湯に巻き込まれ、鋳物にガス欠陥が生じることは古くから知られており、ガスの発生を抑制したりガス抜きを行うなど数々の対策が取られている。注湯時に金型のキャビティ内を減圧することもその対策の一つである。ガス欠陥を抑制するために注湯完了まで減圧を行うことが望ましいが、溶湯の充填後速やかに減圧路を遮断しなければ金型から溶湯が噴出し減圧手段や減圧路まで溶湯が侵入してしまうため、充填完了の高精度な検知と確実な減圧路の遮断を行う必要があった。そこで、特許文献1のように、溶湯の流れに対抗する位置に溶湯検知センサを設け、センサの溶湯検知精度向上を狙った技術が提案されている。しかし、センサを設けるランナー部の構造や発生するガス量によってはセンサ部にガスが滞留し、溶湯検知センサの部分まで溶湯が流れた場合でも、溶湯検知センサで溶湯を検知するタイミングが遅れてしまうことがある。 It has long been known that gas and air generated from the mold are caught in the molten metal during pouring, causing gas defects in the casting, and various measures have been taken such as suppressing gas generation and degassing. There is. One of the countermeasures is to reduce the pressure inside the mold cavity when pouring hot water. It is desirable to reduce the pressure until the pouring is completed in order to suppress gas defects, but if the decompression path is not shut off immediately after filling the molten metal, the molten metal will eject from the mold and the molten metal will invade the decompression means and the decompression path. Therefore, it is necessary to perform highly accurate detection of filling completion and reliable blocking of the decompression path. Therefore, as in Patent Document 1, a technique has been proposed in which a molten metal detection sensor is provided at a position opposed to the flow of the molten metal to improve the accuracy of the molten metal detection of the sensor. However, depending on the structure of the runner section where the sensor is installed and the amount of gas generated, gas stays in the sensor section, and even if the molten metal flows to the molten metal detection sensor, the timing of detecting the molten metal with the molten metal detection sensor will be delayed. Sometimes.

本発明は、このような事情に鑑みてなされたものであり、溶湯を確実に検知することができ、かつガス抜けのよいランナー構造を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a runner structure capable of reliably detecting molten metal and having good gas release.

本発明のランナー構造は、溶湯が充填される金型のキャビティ部と減圧手段とを連結し、前記溶湯が流れる溶湯流路を備え、前記減圧手段により前記溶湯流路を通じて前記キャビティ部を減圧して真空化するランナー構造であって、前記溶湯流路内には、第1方向に延在し、前記溶湯流路に流入した前記溶湯を前記第1方向に流す第1流路と、前記第1流路の終端部に接続されて、前記第1方向とは異なる第2方向に延びる第2流路と、前記第1流路の上流側に接続され、前記第1方向とは異なる第3方向に延びる第3流路と、前記第1流路に設けられ、前記溶湯の到達を検知する検知部と、前記第3流路の下流前記第2流路が接続される第4流路と、が設けられ、前記第3流路は、前記第3方向に延びた後に屈曲された屈曲部を有し、前記屈曲部には、前記屈曲部に流れた前記溶湯を溜める貯留部が形成され、前記第3流路は、前記第1流路に接続される部分から前記貯留部に接続される部分に向けて幅が狭くなり、前記貯留部に接続される部分の幅が、前記貯留部の外面の対向する2つの部分の距離より小さくなるように形成されていることを特徴とする。 The runner structure of the present invention is provided with a molten metal flow path through which the molten metal flows by connecting a cavity portion of a mold filled with the molten metal and a decompression means, and the cavity portion is depressurized through the molten metal flow path by the decompression means. A first flow path that extends in the first direction and allows the molten metal that has flowed into the molten metal flow path to flow in the first direction, and the first flow path, which has a runner structure for evacuating. A second flow path connected to the end of the first flow path and extending in a second direction different from the first direction, and a third flow path connected to the upstream side of the first flow path and different from the first direction. a third flow path extending in the direction, disposed within the first flow path, and a detector for detecting the arrival of the molten metal, a fourth flow of the second flow path downstream of the third flow passage is connected A passage is provided, and the third flow path has a bent portion that is bent after extending in the third direction, and the bent portion has a storage portion for storing the molten metal that has flowed into the bent portion. The width of the third flow path is narrowed from the portion connected to the first flow path toward the portion connected to the storage portion, and the width of the portion connected to the storage portion is the width of the portion. It is characterized in that it is formed so as to be smaller than the distance between two opposing portions on the outer surface of the storage portion .

本発明のランナー構造によれば、溶湯流路に流入した溶湯を第1方向に流す第1流路の終端部には、第1方向とは異なる第2方向に延びる第2流路が連結されているので、溶湯が第1流路の終端部に流入する際に残存したガスは、溶湯の流れに押され第2流路に流下し、第1流路の終端部の周囲に溜まることがない。これにより、ガスが第1流路の終端部で滞留し、第1流路に設けられた検知部に溶湯が到達しない状態(溶湯を検知することができない状態)になるのを回避することができ、溶湯を確実に検知することができる。また、第2流路はオリフィスの役目を持ち、残存ガスは第2流路に流れるが、溶湯の流れは少量に抑えられることで、検知部の周囲には早期に溶湯が充満する。したがって、溶湯の到達により機械的に押圧される機械式の検知部を使用することができ、電気センサを使用する場合に比べて、コストダウンを図ることができる。なお、検知部は、溶湯が到達した場合に反応するものであればよく、電気センサでもよい。 According to the runner structure of the present invention, a second flow path extending in a second direction different from the first direction is connected to the end of the first flow path through which the molten metal flowing into the molten metal flow path flows in the first direction. Therefore, the gas remaining when the molten metal flows into the terminal portion of the first flow path is pushed by the flow of the molten metal and flows down to the second flow path, and may be accumulated around the terminal portion of the first flow path. Absent. As a result, it is possible to prevent the gas from staying at the end of the first flow path and preventing the molten metal from reaching the detection unit provided in the first flow path (a state in which the molten metal cannot be detected). It is possible and the molten metal can be detected reliably. Further, the second flow path serves as an orifice, and the residual gas flows to the second flow path, but the flow of the molten metal is suppressed to a small amount, so that the molten metal fills the periphery of the detection unit at an early stage. Therefore, it is possible to use a mechanical detection unit that is mechanically pressed by the arrival of the molten metal, and it is possible to reduce the cost as compared with the case of using an electric sensor. The detection unit may be an electric sensor as long as it reacts when the molten metal arrives.

また、前記第2流路は、前記第3流路より前記溶湯を流す方向における断面積が小さいことが好ましい。 Further, it is preferable that the second flow path has a smaller cross-sectional area in the direction in which the molten metal flows than the third flow path.

この構成によれば、溶湯は、第2流路より第3流路に多く流れる。これにより、減圧手段からキャビティにつながる過程で十分な有効断面積を得ることができ、キャビティ内残留ガスの減少に貢献できる。 According to this configuration, more molten metal flows in the third flow path than in the second flow path. As a result, a sufficient effective cross-sectional area can be obtained in the process of connecting the decompression means to the cavity, which can contribute to the reduction of the residual gas in the cavity.

本出願人の鋭意検討の結果、溶湯が高圧・高速で流入するときに微小な凝固片が発生して、キャビティ内で飛散し、この凝固片が溶湯より先に、溶湯流路と減圧手段との連結を遮断する開閉可能な遮断弁に到達した場合、凝固片が遮断弁に付着し、遮断弁の動作不良を起こす場合があることが分かった。 As a result of diligent examination by the applicant, when the molten metal flows in at high pressure and high speed, minute solidified pieces are generated and scattered in the cavity, and the solidified pieces are used in the molten metal flow path and the depressurizing means before the molten metal. It was found that when the openable shutoff valve that shuts off the connection is reached, the coagulated pieces may adhere to the shutoff valve and cause the shutoff valve to malfunction.

上記構成によれば、第3流路の屈曲部に形成された貯留部で、溶湯を溜めることができるので、凝固片も貯留部で溜めることができる。この貯留部に溜まった凝固片は後に流れてくる溶湯の中に紛れるので、凝固片が遮断弁に付着することを防止することができる。 According to the above configuration, the molten metal can be stored in the storage portion formed at the bent portion of the third flow path, so that the coagulated pieces can also be stored in the storage portion. Since the coagulated pieces accumulated in this storage portion are mixed in the molten metal that flows later, it is possible to prevent the coagulated pieces from adhering to the shutoff valve.

また、第3流路の流動方向に向けて幅が狭くなるのに対し、奥行き方向を拡大することで、減圧手段からキャビティにつながる過程で十分な有効断面積を確保し、キャビティ内残留ガスの減少に貢献できる。 Further, while the width becomes narrower in the flow direction of the third flow path, by expanding the depth direction, a sufficient effective cross-sectional area is secured in the process of connecting from the decompression means to the cavity, and the residual gas in the cavity is retained. Can contribute to the decrease.

また、前記第2流路は、前記第3流路の直下流側部に接続されていることが好ましい。 Further, it is preferable that the second flow path is connected to a portion immediately downstream of the third flow path.

この構成によれば、溶湯が第1流路の終端部に流下したときに第2流路に流下したガスを、第3流路の直下流側に流すことができる。これにより、第2流路を流れてきたガス中に浮遊した凝固片は、第3流路を流れる溶湯に補足されるので、凝固片が遮断弁まで飛散して遮断弁に付着することがない。 According to this configuration, when the molten metal flows down to the end of the first flow path, the gas that flows down into the second flow path can flow to the immediate downstream side of the third flow path. As a result, the solidified pieces suspended in the gas flowing through the second flow path are captured by the molten metal flowing through the third flow path, so that the solidified pieces do not scatter to the shutoff valve and adhere to the shutoff valve. ..

本発明の実施形態のランナー構造を有するダイカスト装置を示す概略図である。It is the schematic which shows the die-casting apparatus which has the runner structure of embodiment of this invention. ランナー構造を示す断面図である。It is sectional drawing which shows the runner structure. ランナー構造を示す側面図である。It is a side view which shows the runner structure. ランナー構造の第1流路に金属の溶湯が流入した状態を示す説明図である。It is explanatory drawing which shows the state which the molten metal flowed into the 1st flow path of a runner structure. ランナー構造の第1流路を金属の溶湯が流れた状態を示す説明図である。It is explanatory drawing which shows the state which the molten metal flowed through the 1st flow path of a runner structure. ランナー構造の第1流路の終端部まで金属の溶湯が流れた状態を示す説明図である。It is explanatory drawing which shows the state which the molten metal flowed to the end part of the 1st flow path of a runner structure. ランナー構造の第3流路の貯留部まで金属の溶湯が流れた状態を示す説明図である。It is explanatory drawing which shows the state which the molten metal flowed to the storage part of the 3rd flow path of a runner structure. ランナー構造の第4排出路まで金属の溶湯が流れた状態を示す説明図である。It is explanatory drawing which shows the state which the molten metal flowed to the 4th discharge passage of a runner structure.

以下、本発明の実施形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1〜図3に示すように、ダイカスト装置10は、金属の鋳物C1を鋳造するための金属の溶湯M1(図4参照)を供給する供給装置11と、金属の鋳物C1を鋳造する鋳造金型12と、鋳造金型12の内部を減圧して真空化する減圧ポンプ13と、鋳造金型12と減圧ポンプ13とを連結するランナー構造14と、ダイカスト装置10を統括的に制御する制御装置15を備える。 As shown in FIGS. 1 to 3, the die casting device 10 includes a supply device 11 for supplying a molten metal M1 (see FIG. 4) for casting the metal casting C1 and a casting die for casting the metal casting C1. The mold 12, the decompression pump 13 that decompresses the inside of the casting die 12 to vacuum, the runner structure 14 that connects the casting die 12 and the decompression pump 13, and the control device that comprehensively controls the die casting device 10. 15 is provided.

鋳造金型12は、所定の金属の鋳物C1を鋳造するものであり、第1型12aと、第2型12bとを備える。 The casting die 12 is for casting a predetermined metal casting C1, and includes a first mold 12a and a second mold 12b.

第1型12aに対して第2型12bを相対的に接近させることにより型締めが行われ、第1型12aに対して第2型12bを相対的に離間させることにより型開きが行われる。本実施形態では、図1の左方向に第2型12bが移動することで型締めされ、図1の右方向に第2型12bが移動することで型開きされる。第2型12bは、制御装置15により駆動される型移動機構(図示せず)により移動される。 Molding is performed by bringing the second type 12b relatively close to the first type 12a, and mold opening is performed by relatively separating the second type 12b from the first type 12a. In the present embodiment, the mold is clamped by moving the second mold 12b to the left in FIG. 1, and the mold is opened by moving the second mold 12b to the right in FIG. The second type 12b is moved by a type moving mechanism (not shown) driven by the control device 15.

第1型12aと第2型12bとにより型締めが行われることにより、金属の鋳物C1が鋳造されるキャビティ20が形成される。キャビティ20は、鋳造金型12に設けられた金型通路(図示せず)を介してランナー構造14に連結されている。なお、図1において、供給装置11と鋳造金型12とを結ぶ線、鋳造金型12とランナー構造14とを結ぶ線、及び、ランナー構造14と減圧ポンプ13とを結ぶ線は、連結していることを示すための線である。 By performing the mold clamping with the first mold 12a and the second mold 12b, the cavity 20 in which the metal casting C1 is cast is formed. The cavity 20 is connected to the runner structure 14 via a mold passage (not shown) provided in the casting mold 12. In FIG. 1, the line connecting the supply device 11 and the casting die 12, the line connecting the casting die 12 and the runner structure 14, and the line connecting the runner structure 14 and the pressure reducing pump 13 are connected. It is a line to show that there is.

第1型12aには、キャビティ20を形成するための形成凹部21が設けられている。金属の溶湯M1は、供給装置11から供給され、供給路及びランナー(図示せず)を通ってキャビティ20内に充填される。キャビティ20内に充填された金属の溶湯M1は、金型通路を通ってランナー構造14に送られる。 The first type 12a is provided with a forming recess 21 for forming the cavity 20. The molten metal M1 is supplied from the supply device 11 and fills the cavity 20 through a supply path and a runner (not shown). The molten metal M1 filled in the cavity 20 is sent to the runner structure 14 through the mold passage.

[ランナー構造]
ランナー構造14は、中空状に形成され、キャビティ20及び金型通路を介して送られてきた金属の溶湯M1を、中空部となる流路14a内を流し、排出口14bから排出する。
[Runner structure]
The runner structure 14 is formed in a hollow shape, and the molten metal M1 sent through the cavity 20 and the mold passage flows through the flow path 14a which is the hollow portion and is discharged from the discharge port 14b.

ランナー構造14の流路14aは、第1方向D1(図1及び図2における上下方向)に延在し、金型通路から流入した金属の溶湯M1を第1方向D1に流す第1流路31と、第1流路31の終端部(図1及び図2における上端部)に連結されて、第1方向D1とは異なる第2方向D2(図1及び図2における斜め下方向)に延びる第2流路32とを備える。 The flow path 14a of the runner structure 14 extends in the first direction D1 (vertical direction in FIGS. 1 and 2), and the first flow path 31 for flowing the molten metal M1 flowing from the mold passage into the first direction D1. And is connected to the end portion (upper end portion in FIGS. 1 and 2) of the first flow path 31 and extends in the second direction D2 (diagonally downward direction in FIGS. 1 and 2) different from the first direction D1. It is provided with two flow paths 32.

流路14aは、第1流路31の上流側(図1及び図2における下側)に連結され、第1方向D1とは異なる第3方向D3(図1及び図2における左右方向)に延びる第3流路33と、第3流路33に接続されて、金属の溶湯M1を減圧ポンプ13との連結部分まで流す第4流路34とを備える。第2〜第4流路32〜34は、左右一対で設けられている。 The flow path 14a is connected to the upstream side (lower side in FIGS. 1 and 2) of the first flow path 31 and extends in a third direction D3 (horizontal direction in FIGS. 1 and 2) different from the first direction D1. A third flow path 33 and a fourth flow path 34 connected to the third flow path 33 and flowing the molten metal M1 to the connecting portion with the decompression pump 13 are provided. The second to fourth flow paths 32 to 34 are provided in pairs on the left and right.

第1流路31の終端部よりも前部分には、金属の溶湯M1の到達を検知する検知部36が設けられている。この検知部36は、機械的な検知部であり、金属の溶湯M1が到達した場合に、金属の溶湯M1に接触あるいは押し込まれることで、金属の溶湯M1を検知する。検知部36は、金属の溶湯M1による押圧が無くなると、金属の鋳物C1取出し後、手動あるいは弾性部材の弾性力等を利用して自動で初期位置に復帰される。検知部36は、制御装置15に接続されており、金属の溶湯M1を検知すると制御装置15に検知信号を送る。 A detection unit 36 for detecting the arrival of the molten metal M1 is provided in front of the terminal portion of the first flow path 31. The detection unit 36 is a mechanical detection unit, and when the molten metal M1 arrives, the molten metal M1 is detected by coming into contact with or being pushed into the molten metal M1. When the pressing by the molten metal M1 is removed, the detection unit 36 is automatically returned to the initial position after taking out the metal casting C1 manually or by using the elastic force of the elastic member. The detection unit 36 is connected to the control device 15, and when it detects the molten metal M1, it sends a detection signal to the control device 15.

第2流路32の第2方向D2(金属の溶湯M1の流れる方向)に直交する方向における断面積は、第3流路33の第3方向D3(金属の溶湯M1の流れる方向)に直交する方向における断面積より小さい。 The cross-sectional area of the second flow path 32 in the direction orthogonal to the second direction D2 (direction in which the molten metal M1 flows) is orthogonal to the third direction D3 (direction in which the molten metal M1 flows) of the third flow path 33. It is smaller than the cross-sectional area in the direction.

第3流路33は、第3方向D3に延びる部分では、上流側から下流側に向かうにつれて図3における上下方向の長さが長くなるように傾斜されている。 The third flow path 33 is inclined so that the length in the vertical direction in FIG. 3 becomes longer from the upstream side to the downstream side in the portion extending in the third direction D3.

第3流路33は、第3方向D3に延びた後に上方に屈曲されて上方に延びる屈曲部33aを有する。屈曲部33aには、屈曲部33aに流れた金属の溶湯M1を溜める例えば円形状の貯留部33bが形成されている。第2流路32は、第3流路33の貯留部33bよりも下流側に接続されている。 The third flow path 33 has a bent portion 33a that extends upward in the third direction D3 and then bends upward. The bent portion 33a is formed with, for example, a circular storage portion 33b for storing the molten metal M1 that has flowed through the bent portion 33a. The second flow path 32 is connected to the downstream side of the storage portion 33b of the third flow path 33.

第3流路33は、第1流路31に接続される上流部分から貯留部33bに接続される部分に向けて(下流側に向けて)幅が狭くなる。第3流路33は、貯留部33bに接続される部分の幅が、貯留部33bの直径(外面の対向する2つの部分の距離)より小さくなるように形成されている。この構成により、金属の溶湯M1の流速及び流量を維持しつつ、詳しくは後述する飛散する凝固片P1を確実に貯留部33b内に集め、補足することができる。 The width of the third flow path 33 narrows from the upstream portion connected to the first flow path 31 toward the portion connected to the storage portion 33b (toward the downstream side). The third flow path 33 is formed so that the width of the portion connected to the storage portion 33b is smaller than the diameter of the storage portion 33b (the distance between the two opposing portions on the outer surface). With this configuration, while maintaining the flow velocity and the flow rate of the molten metal M1, the scattered solidified pieces P1 described in detail can be reliably collected and supplemented in the storage portion 33b.

第4流路34は、第3流路33の下流端部に接続されて、第3流路33から流れてきた金属の溶湯M1を排出口14bまで流すものであり、第1〜第4排出路41〜44を備える。 The fourth flow path 34 is connected to the downstream end of the third flow path 33 and allows the molten metal M1 flowing from the third flow path 33 to flow to the discharge port 14b, and the first to fourth discharges. The roads 41 to 44 are provided.

第1排出路41は、第3流路33よりも図2における奥側(図3における下方)に設けられ、第3流路33の下流端部に接続されて図2における斜め上方向に延びる。第2排出路42は、第1排出路41よりも図2における手前側(図3における上方)に設けられ、第1排出路41の下流端部に接続されて図2における上方に延びる。 The first discharge passage 41 is provided on the back side (lower side in FIG. 3) in FIG. 2 from the third flow path 33, is connected to the downstream end of the third flow path 33, and extends diagonally upward in FIG. .. The second discharge passage 42 is provided on the front side (upper in FIG. 3) in FIG. 2 with respect to the first discharge passage 41, is connected to the downstream end of the first discharge passage 41, and extends upward in FIG.

第3排出路43は、第2排出路43の下流端部に接続されて図2における内側方向に延びる。第1〜第3排出路41〜43は、第2〜第4流路32〜34と同様に左右一対で設けられている。 The third discharge passage 43 is connected to the downstream end of the second discharge passage 43 and extends inward in FIG. The first to third discharge passages 41 to 43 are provided in pairs on the left and right, similarly to the second to fourth flow paths 32 to 34.

第4排出路44は、2個の第3排出路43のそれぞれの下流端部に接続され、円弧形状で形成されている。第4排出路44には、例えば円形状の排出口14bが形成され、排出口14bを開閉する開閉バルブ48が設けられている。開閉バルブ48は、制御装置15により駆動が制御される。なお、開閉バルブ48は、ランナー構造14とは別に設けるようにしてもよい。 The fourth discharge passage 44 is connected to each downstream end of the two third discharge passages 43 and is formed in an arc shape. For example, a circular discharge port 14b is formed in the fourth discharge path 44, and an on-off valve 48 for opening and closing the discharge port 14b is provided. The drive of the on-off valve 48 is controlled by the control device 15. The on-off valve 48 may be provided separately from the runner structure 14.

[鋳造工程]
ダイカスト装置10により金属の鋳物C1を鋳造する場合、先ず、制御装置15は、型移動機構を駆動して、第2型12bを図1における左側に移動して型締めを行い、キャビティ20を形成する。
[Casting process]
When casting the metal casting C1 by the die casting device 10, first, the control device 15 drives the mold moving mechanism to move the second mold 12b to the left side in FIG. 1 to perform mold clamping to form the cavity 20. To do.

次に、制御装置15は、開閉バルブ48を開放して排出口14bを開口させた後、減圧ポンプ13を駆動して、キャビティ20の内部、及びランナー構造14の内部を真空化する。 Next, the control device 15 opens the on-off valve 48 to open the discharge port 14b, and then drives the pressure reducing pump 13 to evacuate the inside of the cavity 20 and the inside of the runner structure 14.

上記真空化を維持したまま、制御装置15は、供給装置11を駆動して金属の溶湯M1を供給し、供給路及びランナーを通して金属の溶湯M1をキャビティ20に充填する。キャビティ20及びランナー構造14は真空化されており、さらに、キャビティ20はランナー構造14に連結されているため、キャビティ20に供給された金属の溶湯M1は、金型通路を通ってランナー構造14に送られる。 While maintaining the vacuuming, the control device 15 drives the supply device 11 to supply the molten metal M1 and fills the cavity 20 with the molten metal M1 through the supply path and the runner. Since the cavity 20 and the runner structure 14 are evacuated and the cavity 20 is connected to the runner structure 14, the molten metal M1 supplied to the cavity 20 passes through the mold passage to the runner structure 14. Sent.

図4に示すように、キャビティ20及び金型通路を介して送られてきた金属の溶湯M1は、第1流路31に流入され、図5に示すように、金属の溶湯M1は、第1流路31内を第1方向D1に流れる。なお、図4〜図8は、金属の溶湯M1の流れを簡易的に示す図である。 As shown in FIG. 4, the molten metal M1 sent through the cavity 20 and the mold passage flows into the first flow path 31, and as shown in FIG. 5, the molten metal M1 is the first. It flows in the first direction D1 in the flow path 31. It should be noted that FIGS. 4 to 8 are diagrams that simply show the flow of the molten metal M1.

図6に示すように、金属の溶湯M1が第1流路31内を第1方向D1に流れて、第1流路31の終端部に到達すると、金属の溶湯M1は、第2流路32内を第2方向D2に流れ、さらに、第3流路33内を第3方向D3に流れる。本実施形態では、第3流路33は、その流動方向(第3方向D3)に向けて幅(図2及び図6における上下方向の長さ)が狭くなるのに対し、奥行き方向(図3における上下方向)が拡大するように形成されている。これにより、減圧ポンプ13からキャビティ20につながる過程で十分な有効断面積を確保し、キャビティ20内残留ガスの減少に貢献できる。 As shown in FIG. 6, when the molten metal M1 flows in the first flow path 31 in the first direction D1 and reaches the end of the first flow path 31, the molten metal M1 moves into the second flow path 32. It flows in the second direction D2, and further flows in the third flow path 33 in the third direction D3. In the present embodiment, the width (length in the vertical direction in FIGS. 2 and 6) of the third flow path 33 becomes narrower in the flow direction (third direction D3), whereas the width (length in the vertical direction in FIGS. 2 and 6) becomes narrower in the depth direction (FIG. 3). (Up and down direction) is formed so as to expand. As a result, a sufficient effective cross-sectional area can be secured in the process of connecting the pressure reducing pump 13 to the cavity 20, and the residual gas in the cavity 20 can be reduced.

金属の溶湯M1が第1流路31の終端部の壁面に当接すると、ガスが発生する。このガスは、第2流路32内を第2方向D2に流れるので、ガスが第1流路31の終端部の周囲に溜まることを抑制することができる。これにより、ガスにより、第1流路31に設けられた検知部36に金属の溶湯M1が到達しない状態(金属の溶湯M1を検知することができない状態)になるのを回避することができ、金属の溶湯M1を確実に検知することができる。また、第2流路32はオリフィスの役目を果たし、凝固片を含む発生ガスは通過するが、大量の金属の溶湯M1が流下した際は流量を制限し、第1流路31は早期に金属の溶湯M1で充満する。これにより、機械式の検知方式を用いた際は確実に検知することができる。 When the molten metal M1 comes into contact with the wall surface at the end of the first flow path 31, gas is generated. Since this gas flows in the second flow path 32 in the second direction D2, it is possible to prevent the gas from accumulating around the terminal portion of the first flow path 31. As a result, it is possible to prevent the molten metal M1 from reaching the detection unit 36 provided in the first flow path 31 due to the gas (a state in which the molten metal M1 cannot be detected). The molten metal M1 can be reliably detected. Further, the second flow path 32 serves as an orifice, and the generated gas containing the solidified piece passes through, but when a large amount of molten metal M1 flows down, the flow rate is limited, and the first flow path 31 is the metal at an early stage. Fill with molten metal M1. As a result, when a mechanical detection method is used, it can be reliably detected.

また、第2流路32の第2方向D2(金属の溶湯M1の流れる方向)に直交する方向における断面積は、第3流路33の第3方向D3(金属の溶湯M1の流れる方向)に直交する方向における断面積より小さい。したがって、金属の溶湯M1は第2流路32より第3流路33に多く流れる。これにより、減圧ポンプ13からキャビティ20につながる過程で十分な有効断面積を得ることができ、キャビティ20内残留ガスの減少に貢献できる。 Further, the cross-sectional area in the direction orthogonal to the second direction D2 (flow direction of the molten metal M1) of the second flow path 32 is in the third direction D3 (direction of flow of the molten metal M1) of the third flow path 33. It is smaller than the cross-sectional area in the orthogonal direction. Therefore, the molten metal M1 flows more in the third flow path 33 than in the second flow path 32. As a result, a sufficient effective cross-sectional area can be obtained in the process of connecting the pressure reducing pump 13 to the cavity 20, which can contribute to the reduction of the residual gas in the cavity 20.

一方、図6に示すように、金属の溶湯M1が第1流路31内に流入したときに発生した凝固片P1は、金属の溶湯M1より先に、第2流路32を流れて第3流路33の屈曲部33aに流入する。 On the other hand, as shown in FIG. 6, the solidified piece P1 generated when the molten metal M1 flows into the first flow path 31 flows through the second flow path 32 before the molten metal M1 and is the third. It flows into the bent portion 33a of the flow path 33.

図6に示すように、金属の溶湯M1が第1流路31内を第1方向D1に流れて、第1流路31の終端部の前部分に設けられた検知部36に到達すると、検知部36は、金属の溶湯M1に接触あるいは押し込まれて、金属の溶湯M1を検知する。検知部36は、金属の溶湯M1を検知すると制御装置15に検知信号を送る。 As shown in FIG. 6, when the molten metal M1 flows in the first flow path 31 in the first direction D1 and reaches the detection unit 36 provided in the front portion of the terminal portion of the first flow path 31, it is detected. The unit 36 is brought into contact with or pushed into the molten metal M1 to detect the molten metal M1. When the detection unit 36 detects the molten metal M1, it sends a detection signal to the control device 15.

制御装置15は、検知部36から検知信号が入力されると、開閉バルブ48を閉じて排出口14bを閉鎖させた後、減圧ポンプ13の駆動を停止させる。 When the detection signal is input from the detection unit 36, the control device 15 closes the on-off valve 48, closes the discharge port 14b, and then stops the drive of the pressure reducing pump 13.

キャビティ20に充填された金属の溶湯M1が固化した後、第2型12bを図1における右方向に移動させて、型開きを行う。そして、金属の鋳物C1を、鋳造金型12から取り外す。これにより、金属の鋳物C1が鋳造される。 After the molten metal M1 filled in the cavity 20 is solidified, the second mold 12b is moved to the right in FIG. 1 to open the mold. Then, the metal casting C1 is removed from the casting mold 12. As a result, the metal casting C1 is cast.

本実施形態では、開閉バルブ48が開放状態から閉鎖状態になるまで、所定時間T1を要し、この所定時間T1の間、金属の溶湯M1は、ランナー構造14内を流れる。 In the present embodiment, it takes a predetermined time T1 from the open / closed state to the closed state of the on-off valve 48, and during this predetermined time T1, the molten metal M1 flows in the runner structure 14.

本実施形態では、図7に示すように、第2流路32を流れて屈曲部33aに流入した凝固片P1は、貯留部33bに流れる。貯留部33bには、第3流路33内を第3方向D3に流れる金属の溶湯M1も流入する。これにより、凝固片P1は、金属の溶湯M1の中に紛れるので、凝固片P1が、先行して流れて開閉バルブ48に付着することを防止することができる。 In the present embodiment, as shown in FIG. 7, the solidified piece P1 that has flowed through the second flow path 32 and has flowed into the bent portion 33a flows into the storage portion 33b. The molten metal M1 flowing in the third direction D3 also flows into the storage portion 33b in the third flow path 33. As a result, the solidified piece P1 is mixed in the molten metal M1, so that the solidified piece P1 can be prevented from flowing in advance and adhering to the on-off valve 48.

図8に示すように、第2流路32を流れる金属の溶湯M1と、第3流路33を流れる金属の溶湯M1とは、合流して第1〜第4排出路41〜44を流れる。本実施形態では、金属の溶湯M1が第3排出路43まで流れたときに、上記所定時間T1が経過し、開閉バルブ48が閉じられる。これにより、金属の溶湯M1が排出口14bから排出された状態で、開閉バルブ48を閉じたときに発生する破損等の故障を防止することができる。 As shown in FIG. 8, the molten metal M1 flowing through the second flow path 32 and the molten metal M1 flowing through the third flow path 33 merge and flow through the first to fourth discharge passages 41 to 44. In the present embodiment, when the molten metal M1 flows to the third discharge passage 43, the predetermined time T1 elapses and the on-off valve 48 is closed. As a result, it is possible to prevent a failure such as breakage that occurs when the on-off valve 48 is closed while the molten metal M1 is discharged from the discharge port 14b.

本実施形態では、第3流路33の屈曲部33aと、第1排出路41とは段差があるので、段差がないものに比べて、金属の溶湯M1が第3流路33の屈曲部33aから第1排出路41まで流れるときの速度が遅くなる。同様に、第1排出路41と第2排出路42とは段差がある。これにより、段差がないものに比べて、金属の溶湯M1が屈曲部33aから第4排出路44まで流れるときの速度が遅くなる。したがって、上記所定時間T1を長くすることができ、開放状態から閉鎖状態になるまでの時間は長いが安価である開閉バルブを用いることができる。 In the present embodiment, since the bent portion 33a of the third flow path 33 and the first discharge path 41 have a step, the molten metal M1 has a bent portion 33a of the third flow path 33 as compared with the one having no step. The speed when flowing from to the first discharge passage 41 becomes slow. Similarly, there is a step between the first discharge path 41 and the second discharge path 42. As a result, the speed at which the molten metal M1 flows from the bent portion 33a to the fourth discharge passage 44 becomes slower than that without a step. Therefore, the above-mentioned predetermined time T1 can be lengthened, and an on-off valve that takes a long time from the open state to the closed state but is inexpensive can be used.

また、本実施形態では、第2排出路42は、第3排出路43よりも図2における上側まで延びているので、第1排出路41から流入した金属の溶湯M1は、第2排出路42の図2における上端まで流れて折り返した後に、第3排出路43に流れる(図8参照)。これにより、上記折り返しがないものに比べて、第2排出路42から第3排出路43に流れるまでの時間を長くすることができ、上記所定時間T1を長くすることができる。 Further, in the present embodiment, since the second discharge passage 42 extends to the upper side in FIG. 2 with respect to the third discharge passage 43, the molten metal M1 flowing in from the first discharge passage 41 is the second discharge passage 42. After flowing to the upper end in FIG. 2 and turning back, it flows into the third discharge passage 43 (see FIG. 8). As a result, the time from the second discharge passage 42 to the third discharge passage 43 can be lengthened, and the predetermined time T1 can be lengthened, as compared with the case where there is no folding back.

以上、本発明を、その好適な実施形態について説明したが、当業者であれば容易に理解できるように、本発明はこのような実施形態により限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。 The present invention has been described above with respect to preferred embodiments thereof, but as can be easily understood by those skilled in the art, the present invention is not limited to such embodiments and deviates from the gist of the present invention. It can be changed as appropriate as long as it does not.

例えば、ランナー構造14の形状は適宜変更可能であり、例えば、貯留部33bや第4排出路44の形状は、矩形状でもよい。 For example, the shape of the runner structure 14 can be changed as appropriate. For example, the shape of the storage portion 33b and the fourth discharge passage 44 may be rectangular.

上記実施形態では、機械式の検知部36を用いているが、金属の溶湯M1の到達を検知するものであればよく、電気センサでもよい。 In the above embodiment, the mechanical detection unit 36 is used, but any electric sensor may be used as long as it detects the arrival of the molten metal M1.

また、上記実施形態に示した構成要素は必ずしも全てが必須なものではなく、本発明の趣旨を逸脱しない限りにおいて適宜取捨選択することが可能である。 In addition, not all of the constituent elements shown in the above embodiments are indispensable, and they can be appropriately selected as long as they do not deviate from the gist of the present invention.

10…ダイカスト装置、11…供給装置、12…鋳造金型、13…減圧ポンプ(減圧手段)、14…ランナー構造、14a…流路(溶湯流路)、14b…排出口、15…制御装置、20…キャビティ、31〜34…第1〜第4流路、33a…屈曲部、33b…貯留部、36…検知部、41〜44…第1〜第4排出路、48…開閉バルブ、D1〜D3…第1〜第3方向、M1…金属の溶湯、P1…凝固片 10 ... Die casting device, 11 ... Supply device, 12 ... Casting die, 13 ... Decompression pump (decompression means), 14 ... Runner structure, 14a ... Flow path (molten metal flow path), 14b ... Discharge port, 15 ... Control device, 20 ... Cavity, 31.34 ... First to fourth flow paths, 33a ... Bending part, 33b ... Storage part, 36 ... Detection part, 41 to 44 ... First to fourth discharge passages, 48 ... Open / close valve, D1 to D3 ... 1st to 3rd directions, M1 ... molten metal, P1 ... solidified piece

Claims (3)

溶湯が充填される金型のキャビティ部と減圧手段とを連結し、前記溶湯が流れる溶湯流路を備え、前記減圧手段により前記溶湯流路を通じて前記キャビティ部を減圧して真空化するランナー構造であって、
前記溶湯流路内には、
第1方向に延在し、前記溶湯流路に流入した前記溶湯を前記第1方向に流す第1流路と、
前記第1流路の終端部に接続されて、前記第1方向とは異なる第2方向に延びる第2流路と、
前記第1流路の上流側に接続され、前記第1方向とは異なる第3方向に延びる第3流路と、
前記第1流路に設けられ、前記溶湯の到達を検知する検知部と、
前記第3流路の下流前記第2流路が接続される第4流路と、
が設けられ、
前記第3流路は、前記第3方向に延びた後に屈曲された屈曲部を有し、
前記屈曲部には、前記屈曲部に流れた前記溶湯を溜める貯留部が形成され、
前記第3流路は、前記第1流路に接続される部分から前記貯留部に接続される部分に向けて幅が狭くなり、前記貯留部に接続される部分の幅が、前記貯留部の外面の対向する2つの部分の距離より小さくなるように形成されていることを特徴とするランナー構造。
With a runner structure in which the cavity of the mold filled with the molten metal and the decompression means are connected, the molten metal flow path through which the molten metal flows is provided, and the cavity is depressurized and evacuated through the molten metal flow path by the decompression means. There,
In the molten metal flow path,
A first flow path extending in the first direction and flowing the molten metal flowing into the molten metal flow path in the first direction,
A second flow path that is connected to the end of the first flow path and extends in a second direction different from the first direction.
A third flow path connected to the upstream side of the first flow path and extending in a third direction different from the first direction,
Provided within the first flow path, and a detector for detecting the arrival of the molten metal,
A fourth flow path to which the second flow path is connected downstream of the third flow path,
Is provided,
The third flow path has a bent portion that is bent after extending in the third direction.
A storage portion for storing the molten metal flowing through the bent portion is formed in the bent portion.
The width of the third flow path becomes narrower from the portion connected to the first flow path toward the portion connected to the storage portion, and the width of the portion connected to the storage portion is the width of the storage portion. A runner structure characterized in that it is formed so as to be smaller than the distance between two opposing portions on the outer surface .
請求項1に記載のランナー構造において、
前記第2流路は、前記第3流路より前記溶湯を流す方向に直交する方向における断面積が小さいことを特徴とするランナー構造。
In the runner structure according to claim 1,
The second flow path has a runner structure having a smaller cross-sectional area in a direction orthogonal to the direction in which the molten metal flows than the third flow path.
請求項1又は2に記載のランナー構造において、
前記第2流路は、前記第3流路の直下流側部に接続されていることを特徴とするランナー構造。
In the runner structure according to claim 1 or 2.
The runner structure is characterized in that the second flow path is connected to a portion immediately downstream of the third flow path.
JP2018198688A 2018-10-22 2018-10-22 Runner structure Active JP6765401B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018198688A JP6765401B2 (en) 2018-10-22 2018-10-22 Runner structure
CN201910992454.4A CN111069560B (en) 2018-10-22 2019-10-18 Flow passage structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018198688A JP6765401B2 (en) 2018-10-22 2018-10-22 Runner structure

Publications (2)

Publication Number Publication Date
JP2020066012A JP2020066012A (en) 2020-04-30
JP6765401B2 true JP6765401B2 (en) 2020-10-07

Family

ID=70310499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018198688A Active JP6765401B2 (en) 2018-10-22 2018-10-22 Runner structure

Country Status (2)

Country Link
JP (1) JP6765401B2 (en)
CN (1) CN111069560B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11511335B2 (en) 2021-03-30 2022-11-29 Honda Motor Co., Ltd. Gas suction device of casting mold

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3708038B2 (en) * 2001-10-23 2005-10-19 有限会社ダイ Degassing structure in mold
JP4644645B2 (en) * 2006-09-14 2011-03-02 富士重工業株式会社 Vacuum die casting equipment
DE102007054520B4 (en) * 2007-11-06 2013-01-17 Electronics Gmbh Vertrieb Elektronischer Geräte Venting device for a die casting device
CN101869974B (en) * 2010-05-20 2013-02-13 包昌强 Vacuum die casting stopping device and control method thereof
JP2013128947A (en) * 2011-12-21 2013-07-04 Toshiba Mach Co Ltd Die casting machine with casting die, die casting machine and casting die unit
CN108480596B (en) * 2018-05-22 2020-03-31 宁波北仑益鸣企业管理服务有限公司 Vacuum valve air exhaust device for die casting die

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11511335B2 (en) 2021-03-30 2022-11-29 Honda Motor Co., Ltd. Gas suction device of casting mold

Also Published As

Publication number Publication date
CN111069560B (en) 2021-10-26
CN111069560A (en) 2020-04-28
JP2020066012A (en) 2020-04-30

Similar Documents

Publication Publication Date Title
JP6439999B2 (en) Casting apparatus and casting method
JP6765401B2 (en) Runner structure
JP7143470B1 (en) Casting mold heating method and casting apparatus
JP2005066696A (en) Die-casting machine or injection molding machine
JP2014213372A (en) Degassing device for die casting
JP2008149358A (en) Casting method and casting apparatus
JP7055522B2 (en) Degassing device and degassing method for die casting equipment
JP3655992B2 (en) Vacuum die casting apparatus and casting method
KR101387571B1 (en) High vacuum die-casting method in which sealed space is vacuumized before cavity is vacuumizd
JP4376469B2 (en) Vacuum open / close valve position detector
KR101387570B1 (en) High vacuum die-casting method for front pillar of vehicle
JP2008073714A (en) Casting method and casting device
JP2002172456A (en) Gas purging device in die for die casting
JP6379759B2 (en) Casting apparatus and product quality judgment method
JP2006026698A (en) Instrument for measuring inner pressure of cavity in die for die casting
JP2020082109A (en) Gas vent device for die casting
JP2008296228A (en) Method and apparatus of die casting
KR101387569B1 (en) High vacuum die-casting method in which sealed space vacuumizing step is started prior to cavity vacuumizing step
KR101359388B1 (en) High vacuum die-casting method
EP4219043A1 (en) Vacuum pressure process and apparatus for high pressure die casting
JP2016131995A (en) Die-casting die
JPS5846387B2 (en) Gas venting device for mold
JP2735860B2 (en) GF valve non-operation detection method
KR101359385B1 (en) High vacuum die-casting method
KR101387572B1 (en) High vacuum die-casting method for front pillar of vehicle in which sealed space is vacuumized before cavity is vacuumizd

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200915

R150 Certificate of patent or registration of utility model

Ref document number: 6765401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150