JP6765359B2 - Structure manufacturing method and structure - Google Patents

Structure manufacturing method and structure Download PDF

Info

Publication number
JP6765359B2
JP6765359B2 JP2017195237A JP2017195237A JP6765359B2 JP 6765359 B2 JP6765359 B2 JP 6765359B2 JP 2017195237 A JP2017195237 A JP 2017195237A JP 2017195237 A JP2017195237 A JP 2017195237A JP 6765359 B2 JP6765359 B2 JP 6765359B2
Authority
JP
Japan
Prior art keywords
laminated
casting
wall thickness
outer shell
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017195237A
Other languages
Japanese (ja)
Other versions
JP2019063859A (en
Inventor
碩 黄
碩 黄
山田 岳史
岳史 山田
伸志 佐藤
伸志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2017195237A priority Critical patent/JP6765359B2/en
Publication of JP2019063859A publication Critical patent/JP2019063859A/en
Application granted granted Critical
Publication of JP6765359B2 publication Critical patent/JP6765359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、構造体の製造方法、及び構造体に関する。 The present invention relates to a method for producing a structure and the structure.

機械部品を鋳造により製造する場合、まず、製品の模型となる木型(金属、樹脂の場合もある)を作製し、この木型を基に砂型を造る。次いで、砂型に鋳湯を流し込み、砂型のキャビティ内で鋳物品を完成させる。しかし、このような鋳造においては、木型や砂型の作製に多くの工数を要し、完成品を得るまでのリードタイムが長くなってしまう。更に、少量生産の場合には、木型や砂型のコストが製品に付加されて製造コストが嵩む要因となる。 When manufacturing mechanical parts by casting, first, a wooden mold (which may be metal or resin) that serves as a model of the product is made, and a sand mold is made based on this wooden mold. Next, the casting water is poured into the sand mold to complete the cast article in the cavity of the sand mold. However, in such casting, it takes a lot of man-hours to produce a wooden mold or a sand mold, and the lead time until a finished product is obtained becomes long. Further, in the case of small-quantity production, the cost of wooden molds and sand molds is added to the product, which causes an increase in manufacturing cost.

一方、新規な生産手段として3Dプリンタを用いた造形のニーズが高まっており、金属材料を用いた造形の実用化に向けて研究開発が進められている。金属材料を造形する3Dプリンタは、レーザや電子ビーム、更にはアーク等の熱源を用いて、金属粉体や金属ワイヤを溶融させ、溶融金属を積層させることで造形物を作製する。 On the other hand, there is an increasing need for modeling using a 3D printer as a new means of production, and research and development are being promoted toward the practical application of modeling using metal materials. A 3D printer for modeling a metal material uses a laser, an electron beam, or a heat source such as an arc to melt a metal powder or a metal wire and laminate the molten metal to produce a modeled object.

このような溶融金属を積層して造形物を造形する技術として、溶着ビードを用いて金型を製造するものが知られている(例えば、特許文献1参照)。特許文献1には、金型の形状を表現する形状データを生成する工程と、生成された形状データに基づいて、金型を等高線に沿った積層体に分割する工程と、得られた積層体の形状データに基づいて、溶加材を供給する溶接トーチの移動経路を作成する工程と、を備える金型の製造方法が記載されている。 As a technique for laminating such molten metals to form a modeled object, there is known a technique for producing a mold using a welded bead (see, for example, Patent Document 1). Patent Document 1 describes a step of generating shape data expressing the shape of a mold, a step of dividing a mold into laminates along contour lines based on the generated shape data, and a obtained laminate. A method for manufacturing a mold including a step of creating a moving path of a welding torch for supplying a filler material based on the shape data of the above is described.

また、金属積層造形法を用いて中空部を有する金属成形体を製造し、この金属成形体を鋳包んで中空部が外部と連通した鋳造品を製造する製造方法が特許文献2に記載されている。 Further, Patent Document 2 describes a manufacturing method in which a metal molded body having a hollow portion is manufactured by using a metal lamination molding method, and the metal molded body is cast and wrapped to manufacture a cast product in which the hollow portion is communicated with the outside. There is.

特許第3784539号公報Japanese Patent No. 3784539 特開2014−113610号公報Japanese Unexamined Patent Publication No. 2014-113610

しかしながら、特許文献1の技術は、金型の製造方法に関するものであり、機械部品を大量に生産するための技術、特に、少量生産される機械部品の製造技術については記載されていない。また、特許文献2の技術は、金属積層造形法によって形成された金属成形体を鋳包んで、中空部を有する鋳物品を製造する技術である。そのため、金属成形体を鋳包む砂型、及び砂型を製作するための木型が不可欠であり、リードタイムが長くなる。また、少量生産時には、木型や砂型のコストについての課題が残る。 However, the technique of Patent Document 1 relates to a method for manufacturing a mold, and does not describe a technique for mass-producing machine parts, particularly a technique for manufacturing machine parts produced in a small amount. Further, the technique of Patent Document 2 is a technique of manufacturing a cast article having a hollow portion by casting and wrapping a metal molded body formed by a metal additive manufacturing method. Therefore, a sand mold for casting and wrapping the metal molded body and a wooden mold for producing the sand mold are indispensable, and the lead time becomes long. In addition, when producing in small quantities, there remains a problem regarding the cost of wooden molds and sand molds.

そして、鋳物品を製造する際、鋳物部の肉厚が部位によって異なる場合、肉厚が小さい部位では鋳湯が早く凝固し、肉厚が大きい部位では鋳湯が遅く凝固する。このように、鋳湯の凝固時の冷却速度が異なると、下記の(1)〜(3)の問題を生じてしまう。
(1)冷却速度の不均一により、鋳物部の機械的性質が不均一となる。
(2)鋳物部に残留応力が発生する。
(3)厚肉の部位に欠陥(引け巣)、割れ(き裂)が発生しやすい。
When the cast article is manufactured, if the wall thickness of the casting portion differs depending on the portion, the casting water solidifies quickly in the portion where the wall thickness is small, and the casting water solidifies slowly in the portion where the wall thickness is large. As described above, if the cooling rate at the time of solidification of the casting water is different, the following problems (1) to (3) occur.
(1) Due to the non-uniform cooling rate, the mechanical properties of the cast portion become non-uniform.
(2) Residual stress is generated in the casting part.
(3) Defects (shrinkage cavities) and cracks (cracks) are likely to occur in thick-walled parts.

本発明は、上述した事情に鑑みてなされたものであり、その目的は、構造体を低コスト、且つ、リードタイムを短縮して製造でき、しかも、材料特性の差違、残留応力、欠陥等の発生を抑制できる構造体の製造方法、及び構造体を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is that a structure can be manufactured at low cost and with a short lead time, and moreover, differences in material properties, residual stress, defects, etc. It is an object of the present invention to provide a method for producing a structure capable of suppressing the occurrence, and the structure.

本発明は下記構成からなる。
(1) アークにより溶加材を溶融及び凝固させた溶着ビードをベース上に積層して、少なくとも構造体の外殻を含む積層壁部を造形した後、造形された前記積層壁部で囲まれた内側空間に、鋳湯を流し込んで鋳物部を形成する構造体の製造方法であって、
前記構造体の水平断面における前記鋳物部及び当該鋳物部を挟む一対の前記積層壁部を通る直線であって、前記積層壁部のいずれかの位置の法線を特徴線としたとき、前記位置で前記特徴線により挟まれた前記鋳物部の前記特徴線に沿った肉厚に応じて、前記特徴線に沿った一対の前記積層壁部の合計肉厚を変化させる構造体の製造方法。
(2) 溶加材の溶融凝固体である溶着ビードがベース上に積層された積層壁部と、前記積層壁部で囲まれた内側空間に形成された鋳物部とを有する構造体であって、
前記構造体の水平断面における前記鋳物部及び当該鋳物部を挟む一対の前記積層壁部を通る直線であって、前記積層壁部のいずれかの位置の法線を特徴線としたとき、前記位置で前記特徴線により挟まれた前記鋳物部の前記特徴線に沿った肉厚に応じて、前記特徴線に沿った一対の前記積層壁部の合計肉厚が変化している構造体。
The present invention has the following configuration.
(1) A welded bead obtained by melting and solidifying a filler metal by an arc is laminated on a base to form a laminated wall portion including at least the outer shell of the structure, and then surrounded by the formed laminated wall portion. It is a method of manufacturing a structure in which casting water is poured into the inner space to form a casting part.
When a straight line passing through the casting portion and the pair of laminated wall portions sandwiching the casting portion in the horizontal cross section of the structure and the normal line at any position of the laminated wall portion is used as a feature line, the position A method for manufacturing a structure in which the total wall thickness of a pair of laminated wall portions along the feature line is changed according to the wall thickness of the casting portion sandwiched between the feature lines along the feature line.
(2) A structure having a laminated wall portion in which welded beads, which are melt-solidified bodies of filler metal, are laminated on a base, and a casting portion formed in an inner space surrounded by the laminated wall portion. ,
The position when a straight line passing through the casting portion and the pair of laminated wall portions sandwiching the casting portion in the horizontal cross section of the structure and the normal line at any position of the laminated wall portion is used as a feature line. A structure in which the total wall thickness of the pair of laminated wall portions along the feature line changes according to the wall thickness of the casting portion sandwiched between the feature lines along the feature line.

本発明によれば、構造体を低コスト、且つ、リードタイムを短縮して製造でき、しかも、材料特性の差違、残留応力、欠陥等の発生を抑制できる。 According to the present invention, the structure can be manufactured at low cost and the lead time can be shortened, and the difference in material properties, residual stress, defects, and the like can be suppressed.

本発明の構造体を製造する製造システムの模式的な概略構成図である。It is a schematic schematic block diagram of the manufacturing system which manufactures the structure of this invention. 第1構成例の構造体の斜視図である。It is a perspective view of the structure of 1st configuration example. ベースプレート上に第1層目の移動軌跡に沿ってトーチを移動させ、第1層目の溶着ビードを形成した状態を示す工程説明図である。It is a process explanatory drawing which shows the state which moved the torch along the movement locus of the 1st layer on the base plate, and formed the welding bead of the 1st layer. 構造体の水平方向の断面図である。It is sectional drawing in the horizontal direction of a structure. 図4に示すA部の部分拡大図である。It is a partially enlarged view of the part A shown in FIG. 第2構成例の構造体の概略斜視図である。It is a schematic perspective view of the structure of the 2nd configuration example. 図6に示す構造体のVII−VII線断面図である。FIG. 6 is a sectional view taken along line VII-VII of the structure shown in FIG. 第3構成例の構造体の概略斜視図である。It is a schematic perspective view of the structure of the 3rd configuration example. 図8に示す構造体のIX−IX線断面図である。It is IX-IX line sectional view of the structure shown in FIG. 第4構成例の構造体の概略斜視図である。It is a schematic perspective view of the structure of the 4th configuration example. 図10に示す構造体のXI−XI線断面図である。FIG. 5 is a sectional view taken along line XI-XI of the structure shown in FIG.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1は本発明の構造体を製造する製造システムの模式的な概略構成図である。
本構成の製造システム100は、積層造形装置11と、鋳造装置13と、積層造形装置11を統括制御するコントローラ15と、を備える。コントローラ15は、鋳造装置13を含めて制御するものであってもよい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic schematic configuration diagram of a manufacturing system for manufacturing the structure of the present invention.
The manufacturing system 100 having this configuration includes a laminated modeling device 11, a casting device 13, and a controller 15 that controls the laminated modeling device 11 in an integrated manner. The controller 15 may be controlled including the casting device 13.

積層造形装置11は、先端軸にトーチ17を有する溶接ロボット19と、トーチ17に溶加材(溶接ワイヤ)Mを供給する溶加材供給部23とを有する。 The laminated modeling device 11 includes a welding robot 19 having a torch 17 on a tip shaft, and a filler material supply unit 23 that supplies a filler metal (welding wire) M to the torch 17.

鋳造装置13は、不図示の加熱炉によって加熱された鋳湯25を貯留するるつぼ27を有し、不図示の注湯機構によって鋳湯25が所望の位置に供給可能となっている。これら積層造形装置11と鋳造装置13は、本構成においては、それぞれ既存の装置が用いられる。 The casting apparatus 13 has a crucible 27 for storing the casting water 25 heated by a heating furnace (not shown), and the casting water 25 can be supplied to a desired position by a pouring mechanism (not shown). As the laminated molding device 11 and the casting device 13, existing devices are used in this configuration.

コントローラ15は、CAD/CAM部31と、軌道演算部33と、記憶部35と、これらが接続される制御部37と、を有する。
溶接ロボット19は、多関節ロボットであり、先端軸に設けたトーチ17には、溶加材Mが連続供給可能に支持される。トーチ17の位置や姿勢は、ロボットアームの自由度の範囲で3次元的に任意に設定可能となっている。
The controller 15 includes a CAD / CAM unit 31, an orbit calculation unit 33, a storage unit 35, and a control unit 37 to which these are connected.
The welding robot 19 is an articulated robot, and the filler metal M is continuously supplied to the torch 17 provided on the tip shaft. The position and posture of the torch 17 can be arbitrarily set three-dimensionally within the range of freedom of the robot arm.

トーチ17は、不図示のシールドノズルを有し、シールドノズルからシールドガスが供給される。アーク溶接法としては、被覆アーク溶接や炭酸ガスアーク溶接等の消耗電極式、TIG溶接やプラズマアーク溶接等の非消耗電極式のいずれであってもよく、作製する構造体の外殻及び内殻となる積層壁部Wに応じて適宜選定される。 The torch 17 has a shield nozzle (not shown), and shield gas is supplied from the shield nozzle. The arc welding method may be either a consumable electrode type such as shielded metal arc welding or carbon dioxide arc welding, or a non-consumable electrode type such as TIG welding or plasma arc welding, and the outer shell and inner shell of the structure to be manufactured may be used. It is appropriately selected according to the laminated wall portion W.

例えば、消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、溶融電流が給電される溶加材Mがコンタクトチップに保持される。トーチ17は、溶加材Mを保持しつつ、シールドガス雰囲気で溶加材Mの先端からアークを発生する。溶加材Mは、ロボットアーム等に取り付けた不図示の繰り出し機構により、溶加材供給部23からトーチ17に送給される。そして、トーチ17を移動しつつ、連続送給される溶加材Mを溶融及び凝固させると、ベースプレート41上に溶加材Mの溶融凝固体である線状の溶着ビード43が形成される。 For example, in the case of the consumable electrode type, a contact tip is arranged inside the shield nozzle, and the filler metal M to which the melting current is supplied is held by the contact tip. The torch 17 generates an arc from the tip of the filler metal M in a shield gas atmosphere while holding the filler metal M. The filler metal M is fed from the filler metal supply unit 23 to the torch 17 by a feeding mechanism (not shown) attached to a robot arm or the like. Then, when the filler metal M that is continuously fed is melted and solidified while moving the torch 17, a linear weld bead 43 that is a molten solidified body of the filler metal M is formed on the base plate 41.

CAD/CAM部31は、作製しようとする構造体の外殻及び内殻となる積層壁部Wの形状データを作成した後、複数の層に分割して各層の形状を表す層形状データを生成する。軌道演算部33は、生成された層形状データに基づいてトーチ17の移動軌跡を求める。記憶部35は、生成された層形状データやトーチ17の移動軌跡等のデータを記憶する。 The CAD / CAM unit 31 creates shape data of the laminated wall portion W which is the outer shell and the inner shell of the structure to be manufactured, and then divides the structure into a plurality of layers to generate layer shape data representing the shape of each layer. To do. The trajectory calculation unit 33 obtains the movement trajectory of the torch 17 based on the generated layer shape data. The storage unit 35 stores data such as the generated layer shape data and the movement locus of the torch 17.

制御部37は、記憶部35に記憶された層形状データやトーチ17の移動軌跡に基づく駆動プログラムを実行して、溶接ロボット19を駆動する。 The control unit 37 drives the welding robot 19 by executing a drive program based on the layer shape data stored in the storage unit 35 and the movement locus of the torch 17.

上記構成の製造システム100は、設定された層形状データから生成されるトーチ17の移動軌跡に沿って、トーチ17を溶接ロボット19の駆動により移動させながら、溶加材Mを溶融させ、溶融した溶加材Mをベースプレート41上に供給する。これにより、ベースプレート41上に線状の溶着ビード43が形成され、上記した積層壁部Wがベースプレート41上に造形される。 The manufacturing system 100 having the above configuration melts the filler metal M while moving the torch 17 by driving the welding robot 19 along the movement locus of the torch 17 generated from the set layer shape data. The filler metal M is supplied onto the base plate 41. As a result, a linear welded bead 43 is formed on the base plate 41, and the above-mentioned laminated wall portion W is formed on the base plate 41.

なお、ベースプレート41は、鋼板等の金属板からなり、基本的には積層壁部Wの底面(最下層の面)より大きいものが使用される。なお、ベースプレート41は、板状に限らず、ブロック体や棒状等、他の形状のベースであってもよい。 The base plate 41 is made of a metal plate such as a steel plate, and is basically one that is larger than the bottom surface (bottom layer surface) of the laminated wall portion W. The base plate 41 is not limited to a plate shape, and may be a base having another shape such as a block body or a rod shape.

積層壁部Wの造形後、鋳造装置13により、造形された積層壁部Wの内側空間45に鋳湯25を流し込む。流し込んだ鋳湯25が凝固すると、積層壁部Wの内側に鋳物部47が形成された構造体が得られる。 After modeling the laminated wall portion W, the casting device 13 pours the casting water 25 into the inner space 45 of the formed laminated wall portion W. When the poured casting water 25 solidifies, a structure in which the casting portion 47 is formed inside the laminated wall portion W is obtained.

次に、上記構成の製造システム100により、積層壁部Wの造形と鋳物部47の形成とを実施して構造体を得るまでの具体的な手順について詳述する。
<第1構成例>
図2は第1構成例の構造体の斜視図である。
一例として示す本構成の構造体51は、ギヤポンプの外筒として使用される中空のケーシングである。この構造体51は、積層壁部Wと、積層壁部Wの内側空間45に鋳湯を流し込んで凝固させた鋳物部47とを有する。
Next, a specific procedure for obtaining a structure by forming the laminated wall portion W and forming the casting portion 47 by the manufacturing system 100 having the above configuration will be described in detail.
<First configuration example>
FIG. 2 is a perspective view of the structure of the first configuration example.
The structure 51 having the present configuration shown as an example is a hollow casing used as an outer cylinder of a gear pump. The structure 51 has a laminated wall portion W and a casting portion 47 which is solidified by pouring casting water into the inner space 45 of the laminated wall portion W.

積層壁部Wは、ギヤポンプの外筒の骨格を形成する断面略楕円形の外殻55と、外殻55の内側に形成された断面円弧状の内殻57とを有する。内殻57は、2つの円筒体が互いの半径距離よりも近くに平行配置されて一つの内壁として繋がった形状を有する。一対の部分円筒状の内壁によって画成された中空空間には、それぞれポンプのロータが挿入され、内殻57の内側面がロータの対向面となる。 The laminated wall portion W has an outer shell 55 having a substantially elliptical cross section forming the skeleton of the outer cylinder of the gear pump, and an inner shell 57 having an arcuate cross section formed inside the outer shell 55. The inner shell 57 has a shape in which two cylindrical bodies are arranged in parallel closer than each other's radial distance and connected as one inner wall. A pump rotor is inserted into each of the hollow spaces defined by a pair of partially cylindrical inner walls, and the inner surface of the inner shell 57 serves as a facing surface of the rotor.

上記構成の構造体51は、以下に示す手順によって作製される。即ち、図1に示すCAD/CAM部31が、記憶部35が有する構造体51の積層壁部Wの形状データを入力し、入力された形状データに基づいて、互いに平行に分割された各層P(1),P(2),…,P(n)の層形状データを生成する。 The structure 51 having the above configuration is produced by the procedure shown below. That is, the CAD / CAM unit 31 shown in FIG. 1 inputs the shape data of the laminated wall portion W of the structure 51 of the storage unit 35, and each layer P divided in parallel with each other based on the input shape data. (1), P (2), ..., P (n) layer shape data is generated.

そして、軌道演算部33が、各層形状データに基づいて、各層P(1),P(2),…,P(n)におけるトーチ17の移動軌跡を生成し、溶接ロボット19の駆動プログラムを生成する。そして、制御部37は、生成された駆動プログラムに基づいて溶接ロボット19を駆動する。 Then, the trajectory calculation unit 33 generates the movement locus of the torch 17 in each layer P (1), P (2), ..., P (n) based on each layer shape data, and generates a drive program for the welding robot 19. To do. Then, the control unit 37 drives the welding robot 19 based on the generated drive program.

図3はベースプレート41上に第1層目の移動軌跡に沿ってトーチ17を移動させ、第1層目の溶着ビード43を形成した状態を示す工程説明図である。
ベースプレート41上でトーチ17を移動させつつ、溶加材Mとベースプレート41とをアークにより溶融させることで、溶融した溶加材Mをベースプレート41上に隆起させて盛り付ける。これにより、外殻55と内殻57の第1層目の溶着ビード43が形成される。2層目以降の溶着ビード43は、溶加材Mのみの溶融によって形成される。
FIG. 3 is a process explanatory view showing a state in which the torch 17 is moved on the base plate 41 along the movement locus of the first layer to form the welded bead 43 of the first layer.
While moving the torch 17 on the base plate 41, the filler metal M and the base plate 41 are melted by an arc, so that the melted filler metal M is raised and served on the base plate 41. As a result, the welded bead 43 of the first layer of the outer shell 55 and the inner shell 57 is formed. The welded beads 43 of the second and subsequent layers are formed by melting only the filler metal M.

つまり、溶加材Mが溶融及び凝固した溶着ビード43を、ベースプレート41上の平面視で、閉じられた線状の層にして形成する。そして、この線状の層を上下方向に隙間なく積層して積層壁部Wを形成し、有底筒状の積層造形体を造形する。 That is, the welded bead 43 in which the filler metal M is melted and solidified is formed into a closed linear layer in a plan view on the base plate 41. Then, the linear layers are laminated in the vertical direction without gaps to form a laminated wall portion W, and a bottomed tubular laminated model is formed.

次に、上記した層形状データによる造形を更に詳細に説明する。
図4は構造体51の水平方向の断面図、図5は図4に示すA部の部分拡大図である。
図4に示す構造体51の水平断面において、外殻55と内殻57とが最も接近する外殻55の位置をPt1、外殻55の長手軸中央で内殻57の穿部57aに対向する外殻55の位置をPt2とする。
Next, modeling based on the above-mentioned layer shape data will be described in more detail.
FIG. 4 is a cross-sectional view of the structure 51 in the horizontal direction, and FIG. 5 is a partially enlarged view of part A shown in FIG.
In the horizontal cross section of the structure 51 shown in FIG. 4, the position of the outer shell 55 where the outer shell 55 and the inner shell 57 are closest to each other is Pt1 and faces the hole 57a of the inner shell 57 at the center of the longitudinal axis of the outer shell 55. The position of the outer shell 55 is Pt2.

位置Pt1での外殻55の法線を特徴線L1とする。特徴線L1は、鋳物部47と、この鋳物部47を挟む一対の積層壁部である外殻55及び内殻57を通る。この特徴線L1に沿った鋳物部47の肉厚をtc1、特徴線L1に沿った外殻55の肉厚をtout1、特徴線L1に沿った内殻57の肉厚をtin1とする。
また、位置Pt2での外殻55の法線を特徴線L2とする。特徴線L2も同様に、鋳物部47と、この鋳物部47を挟む一対の積層壁部である外殻55及び内殻57を通る。この特徴線L2に沿った鋳物部47の肉厚をtc2、特徴線L2に沿った外殻55の肉厚をtout2、特徴線L2に沿った内殻57の肉厚をtin2とする。
The normal line of the outer shell 55 at the position Pt1 is defined as the feature line L1. The feature line L1 passes through the casting portion 47 and the outer shell 55 and the inner shell 57, which are a pair of laminated wall portions sandwiching the casting portion 47. The thickness of the casting portion 47 along this characteristic line L1 t c1, the thickness of the outer shell 55 along the characteristic line L1 t out1, the thickness of the inner shell 57 along the characteristic line L1 and t in1 ..
Further, the normal line of the outer shell 55 at the position Pt2 is defined as the feature line L2. Similarly, the feature line L2 passes through the casting portion 47 and the outer shell 55 and the inner shell 57, which are a pair of laminated wall portions sandwiching the casting portion 47. The thickness of the casting portion 47 along this characteristic line L2 t c2, the thickness of the outer shell 55 along a characteristic line L2 t out2, the thickness of the inner shell 57 along the characteristic line L2 and t in2 ..

ここで、本構成の構造体51は、一例として示す外殻55の位置Pt1,Pt2において、外殻55,内殻57,鋳物部47の各肉厚の関係が(1)式を満足するように、それぞれ決定される。 Here, in the structure 51 having the present configuration, the relationship between the thicknesses of the outer shell 55, the inner shell 57, and the casting portion 47 at the positions Pt1 and Pt2 of the outer shell 55 shown as an example satisfies the equation (1). Each is decided.

(tin1+tout1)/tc1=(tin2+tout2)/tc2…(1)
( Tin1 + t out1 ) / t c1 = (t in2 + t out2 ) / t c2 ... (1)

上記(1)式は、位置Pt1,Pt2についての厚さの関係を示しているが、外殻55の他の点(例えばPti等の任意の点)においても、外殻55,内殻57,鋳物部47の肉厚(位置Ptiではtouti,tini,tci)の関係が(1)式と同様に決定される。つまり、鋳物部47の肉厚が大きいほど、外殻55及び内殻57の合計肉厚も大きくし、鋳物部47の肉厚が小さいほど、外殻55及び内殻57の合計肉厚も小さくする。これにより、各位置の特徴線L1,L2,Liに沿った積層壁部W(外殻55、内殻57)と鋳物部47との体積比が一定になるようにする。また、外殻55の全ての位置において(1)式を満足するのではなく、複数の代表点で(1)式を満足させる構成であってもよい。 The above equation (1) shows the relationship of thickness with respect to the positions Pt1 and Pt2, but also at other points of the outer shell 55 (for example, any point such as Pti), the outer shell 55 and the inner shell 57, The relationship of the wall thickness of the casting portion 47 (to ti , t ini , t ci at the position Pti) is determined in the same manner as in Eq. (1). That is, the larger the wall thickness of the casting portion 47, the larger the total wall thickness of the outer shell 55 and the inner shell 57, and the smaller the wall thickness of the casting portion 47, the smaller the total wall thickness of the outer shell 55 and the inner shell 57. To do. As a result, the volume ratio of the laminated wall portion W (outer shell 55, inner shell 57) along the feature lines L1, L2, Li at each position and the casting portion 47 is made constant. Further, the configuration may not satisfy the equation (1) at all the positions of the outer shell 55, but may satisfy the equation (1) at a plurality of representative points.

外殻55と内殻57の肉厚は、互いに等しいか、略等しくすることが好ましい。これにより、外殻55からの放熱量と、内殻57からの放熱量との差が小さくなり、鋳物部47の冷却速度が不均一になりにくくなる。また、熱がこもりやすい内殻57側よりも外殻55側の放熱が活発となる傾向のある場合には、外殻55の肉厚を内殻57の肉厚より大きくすることが好ましい。 The wall thicknesses of the outer shell 55 and the inner shell 57 are preferably equal to or substantially equal to each other. As a result, the difference between the amount of heat radiated from the outer shell 55 and the amount of heat radiated from the inner shell 57 becomes small, and the cooling rate of the casting portion 47 is less likely to become uneven. Further, when heat dissipation on the outer shell 55 side tends to be more active than on the inner shell 57 side where heat tends to be trapped, it is preferable to make the wall thickness of the outer shell 55 larger than the wall thickness of the inner shell 57.

外殻55と内殻57の肉厚の変更は、具体的には、図5に示すように、鋳物部47の肉厚tc1,tc2に応じて、溶着ビード43の水平断面におけるビード幅を増減させることで行える。ビード幅は、図示例のように溶着ビード43を並列させて形成する場合には、溶着ビード43の列数を調整することで増減させる。この調整は、CAD/CAM部31と軌道演算部33によって行われる。 Specifically, as shown in FIG. 5, the thickness of the outer shell 55 and the inner shell 57 is changed according to the wall thicknesses t c1 and t c2 of the casting portion 47, and the bead width in the horizontal cross section of the welded bead 43. It can be done by increasing or decreasing. When the weld beads 43 are formed in parallel as shown in the illustrated example, the bead width is increased or decreased by adjusting the number of rows of the weld beads 43. This adjustment is performed by the CAD / CAM unit 31 and the trajectory calculation unit 33.

上記のように層P1(1)の溶着ビード43を形成した後、同様に層P(2),P(3),…,P(n)の溶着ビード43を順次に形成し、複数の層P(1),P(2),P(3),…,P(n)の溶着ビード43を積層させる。これにより、外殻55と内殻57を有する積層壁部Wが得られる。 After forming the welded bead 43 of the layer P1 (1) as described above, the welded beads 43 of the layers P (2), P (3), ..., P (n) are formed in this order in the same manner, and a plurality of layers are formed. Welded beads 43 of P (1), P (2), P (3), ..., P (n) are laminated. As a result, a laminated wall portion W having an outer shell 55 and an inner shell 57 can be obtained.

そして、積層壁部Wの外殻55と内殻57とによって画成される内側空間45に、鋳湯25を流し込んで凝固させ、鋳物部47を形成する。ベースプレート41は、必要に応じて、ワイヤーソーやダイヤモンドカッター等による切断機で切断し、所望の形状の構造体51とする。 Then, the casting water 25 is poured into the inner space 45 defined by the outer shell 55 and the inner shell 57 of the laminated wall portion W and solidified to form the casting portion 47. The base plate 41 is cut with a cutting machine such as a wire saw or a diamond cutter, if necessary, to form a structure 51 having a desired shape.

以上、説明したように、本構成の構造体51の製造方法によれば、積層壁部Wを溶着ビード43の積層によって造形するので、鋳造のための型作製が不要となり、鋳造工数や型材料のコストを低減できると共に、構造体51を製造するリードタイムが短縮される。また、比較的コスト高となる積層材料の使用が外殻55、内殻57だけで済み、材料費を抑えて製造コストを低減できる。 As described above, according to the manufacturing method of the structure 51 having the present configuration, since the laminated wall portion W is formed by laminating the welding beads 43, it is not necessary to make a mold for casting, and the casting man-hours and the mold material are not required. The cost of manufacturing the structure 51 can be reduced, and the lead time for manufacturing the structure 51 can be shortened. Further, the use of the laminated material, which is relatively expensive, is limited to the outer shell 55 and the inner shell 57, and the material cost can be suppressed and the manufacturing cost can be reduced.

また、積層壁部Wは、外殻55の法線方向(特徴線L1,L2,…,Li)に沿った鋳物部47の肉厚、つまり、図3に示す内側空間45の厚さと、上記の特徴線に沿った外殻55及び内殻57の合計肉厚との比率が、予め設定した比率となるように積層造形される。これによれば、内側空間45に流し込んだ鋳湯は、鋳物部47の各部における肉厚に応じて冷却速度が調整され、いずれの部位に対しても均等な冷却速度になる。よって、流し込んだ鋳湯は、その水平断面内において各部が同時に凝固するようになり、均質な鋳物部47が得られる。このため、構造体51の機械的性質の不均一、鋳物部47の残留応力、鋳物部47の厚肉部分における引け巣等の欠陥、き裂等の割れの発生を抑制でき、高品質な構造体51を製造できる。 Further, the laminated wall portion W includes the wall thickness of the casting portion 47 along the normal direction of the outer shell 55 (feature lines L1, L2, ..., Li), that is, the thickness of the inner space 45 shown in FIG. The ratio to the total wall thickness of the outer shell 55 and the inner shell 57 along the feature line of is a preset ratio. According to this, the cooling rate of the casting water poured into the inner space 45 is adjusted according to the wall thickness of each part of the casting part 47, and the cooling rate becomes uniform for all parts. Therefore, each part of the poured casting water is solidified at the same time in the horizontal cross section, and a homogeneous casting part 47 is obtained. Therefore, non-uniform mechanical properties of the structure 51, residual stress of the casting portion 47, defects such as shrinkage cavities in the thick portion of the casting portion 47, and cracks such as cracks can be suppressed, and the structure is of high quality. Body 51 can be manufactured.

なお、上記した構造体51の製造方法では、鋳物部47の肉厚、つまり内側空間45の厚さと、外殻55及び内殻57の合計肉厚との比率を一定としたが、この比率の値は、構造体51の機械的性質が均一となる比率を解析により事前に予測して決定してもよく、鋳造分野における冷やし金の板厚を設定する手法等に基づいて決定してもよい。 In the method for manufacturing the structure 51 described above, the ratio of the wall thickness of the casting portion 47, that is, the thickness of the inner space 45 to the total wall thickness of the outer shell 55 and the inner shell 57 is constant, but this ratio The value may be determined by predicting in advance the ratio at which the mechanical properties of the structure 51 become uniform by analysis, or may be determined based on a method of setting the plate thickness of the chilled metal in the casting field or the like. ..

また、上記比率は、一定値であることが好ましいが、適宜な範囲の中で変動することを許容してもよい。つまり、構造体51の形状によっては、(1)式に示すように鋳物部47の肉厚と、外殻55及び内殻57の合計肉厚との比率を一定にしなくても、比率が概ね一定であればよい。その場合でも、鋳湯の冷却速度が部位によらずに略均等になり、鋳物部47の不具合の発生を抑制できる。また、上記比率としては、例えば、0.015〜2、好ましくは0.1〜1.5、更に好ましくは0.4〜1とすることができる。この範囲であれば、良好な鋳物部47が得られる。 Further, the above ratio is preferably a constant value, but it may be allowed to fluctuate within an appropriate range. That is, depending on the shape of the structure 51, even if the ratio between the wall thickness of the cast portion 47 and the total wall thickness of the outer shell 55 and the inner shell 57 is not constant as shown in the equation (1), the ratio is approximately the same. It may be constant. Even in that case, the cooling rate of the casting water becomes substantially uniform regardless of the portion, and the occurrence of defects in the casting portion 47 can be suppressed. The ratio can be, for example, 0.015 to 2, preferably 0.1 to 1.5, and more preferably 0.4 to 1. Within this range, a good casting portion 47 can be obtained.

更に、上記の特徴線L1,L2,…,Liは、外殻55の法線として設定しているが、これに限らず、内殻57の法線として設定してもよい。また、外殻55の法線と内殻57の法線とを混在させてもよい。その場合、構造体51が複雑な形状であっても、外殻55、内殻57の肉厚をより適格に設定できる。構造体51が更に複雑な形状である場合、外殻55の外側面や、内殻57の内側面に対して、法絡線(凹凸を有する表面の頂部同士を結ぶ線や曲線)や外接円等の線の法線から特徴線を設定してもよい。その場合、鋳物部47の均等な冷却によって、構造体51の機械的性質をより均一化できる。 Further, the above feature lines L1, L2, ..., Li are set as the normals of the outer shell 55, but are not limited to this, and may be set as the normals of the inner shell 57. Further, the normal of the outer shell 55 and the normal of the inner shell 57 may be mixed. In that case, even if the structure 51 has a complicated shape, the wall thicknesses of the outer shell 55 and the inner shell 57 can be set more appropriately. When the structure 51 has a more complicated shape, a normal line (a line or curve connecting the tops of the surface having irregularities) or a circumscribed circle with respect to the outer surface of the outer shell 55 and the inner surface of the inner shell 57. The feature line may be set from the normal of the line such as. In that case, the mechanical properties of the structure 51 can be made more uniform by uniformly cooling the casting portion 47.

更に、上記の比率は、構造体51の水平断面における長さにより求めているが、水平断面に交差する断面における長さから求める比率であってもよい。例えば、積層造形時の積層壁部Wの上下方向と、鋳湯を注入する際の積層壁部Wの上下方向とが異なる方向である場合、鋳湯を注入する際の上下方向を基準にして積層壁部Wを造形するのが好ましい。 Further, although the above ratio is obtained from the length in the horizontal cross section of the structure 51, it may be a ratio obtained from the length in the cross section intersecting the horizontal cross section. For example, when the vertical direction of the laminated wall portion W at the time of laminated molding is different from the vertical direction of the laminated wall portion W at the time of injecting the casting hot water, the vertical direction at the time of injecting the casting hot water is used as a reference. It is preferable to form the laminated wall portion W.

<第2構成例>
図6は第2構成例の構造体51Aの概略斜視図、図7は図6に示す構造体51AのVII−VII線断面図である。
図6に示す本構成の構造体51Aは、全体が円錐台状に形成され、積層壁部Wと鋳物部47Aとを有する。積層壁部Wは、外殻55と内殻57を有する。外殻55は、上方へ向かって次第に窄まる円錐状に形成される。内殻57は、上下方向に略同径の円筒状に形成される。鋳物部47Aは、積層壁部Wの外殻55と内殻57との間の内側空間45に鋳湯を流し込み、凝固させることで形成される。この構造体51Aの外殻55,内殻57、鋳物部47Aは、積層方向(上下方向)に沿って水平断面の肉厚がそれぞれ変化している。
<Second configuration example>
FIG. 6 is a schematic perspective view of the structure 51A of the second configuration example, and FIG. 7 is a sectional view taken along line VII-VII of the structure 51A shown in FIG.
Structure 51A of the structure shown in FIG. 6 is entirely formed in a truncated cone shape, and a laminated wall W A and the casting portion 47A. Laminated wall W A has an inner shell 57 and outer shell 55. The outer shell 55 is formed in a conical shape that gradually narrows upward. The inner shell 57 is formed in a cylindrical shape having substantially the same diameter in the vertical direction. Casting unit 47A includes pouring Soleil the inner space 45 between the inner shell 57 and outer shell 55 of laminated wall W A, it is formed by coagulation. The outer shell 55, inner shell 57, and casting portion 47A of the structure 51A have different wall thicknesses in horizontal cross sections along the stacking direction (vertical direction).

図7に示すように、本構成の構造体51Aにおいて、前述同様に水平断面における外殻55の任意の点における法線方向の特徴線Lに沿った鋳物部47Aの肉厚をt、特徴線Lに沿った外殻55の肉厚をtout、特徴線に沿った内殻57の肉厚をtinとする。本構成の構造体51Aは、鋳物部47Aの肉厚tが上方ほど小さいが、(2)式で示すように、特徴線Lに沿った鋳物部の肉厚(t)と、積層壁部Wである外殻55と内殻57との合計肉厚(tin+tout)との比率Rが一定にされている。 As shown in FIG. 7, in the structure 51A having the present configuration, the wall thickness of the casting portion 47A along the feature line L in the normal direction at an arbitrary point of the outer shell 55 in the horizontal cross section is t c , and the feature is the same as described above. the thickness t out of the outer shell 55 along the line L, and the thickness of the inner shell 57 along the feature line to t in. In the structure 51A having this configuration, the wall thickness t c of the casting portion 47A is smaller toward the upper side, but as shown in equation (2), the wall thickness (t c ) of the casting portion along the feature line L and the laminated wall part W ratio R 1 between the total thickness of the outer shell 55 and inner shell 57 is a (t in + t out) is constant.

=(tin+tout)/t…(2)
R 1 = (t in + ton out ) / t c ... (2)

本構成の構造体51Aによれば、積層壁部Wである外殻55及び内殻57と、鋳物部47Aとの体積比のばらつきが小さくなる。したがって、構造体51Aの機械的性質の不均一、鋳物部47Aの残留応力、鋳物部47Aの厚肉部分における引け巣等の欠陥、き裂等の割れの発生を抑制でき、高品質な構造体51Aを製造できる。 According to the structure 51A of this configuration, the outer shell 55 and inner shell 57 are stacked wall W A, variations in the volume ratio of the casting portion 47A is reduced. Therefore, non-uniform mechanical properties of the structure 51A, residual stress of the casting portion 47A, defects such as shrinkage cavities in the thick portion of the casting portion 47A, and cracks such as cracks can be suppressed, and the structure is of high quality. 51A can be manufactured.

<第3構成例>
図8は第3構成例の構造体51Bの概略斜視図、図9は図8に示す構造体51BのIX−IX線断面図である。
図8に示す本構成の構造体51Bは、第2構成例の構造体51Aの内殻57を備えず、外殻55の内側空間全てに鋳物部47Bが形成されている。構造体51Bの外殻55と、鋳物部47Aとは、積層方向(上下方向)に沿って水平断面の肉厚がそれぞれ変化している。
<Third configuration example>
FIG. 8 is a schematic perspective view of the structure 51B of the third configuration example, and FIG. 9 is a sectional view taken along line IX-IX of the structure 51B shown in FIG.
The structure 51B of the present configuration shown in FIG. 8 does not include the inner shell 57 of the structure 51A of the second configuration example, and the casting portion 47B is formed in the entire inner space of the outer shell 55. The outer shell 55 of the structure 51B and the casting portion 47A have different wall thicknesses in horizontal cross sections along the stacking direction (vertical direction).

ここで、図9に示すように、水平断面における外殻55の任意の点における法線方向の特徴線Lに沿った鋳物部47Aの厚さをt、特徴線Lに沿った外殻55の厚さをtoutとする。 Here, as shown in FIG. 9, the thickness of the casting portion 47A along the feature line L in the normal direction at an arbitrary point of the outer shell 55 in the horizontal cross section is t c , and the outer shell 55 along the feature line L. Let the thickness of be to out .

本構成の構造体51Bは、鋳物部47Aの肉厚tが上方ほど小さいが、(3)式で示すように、特徴線Lに沿った鋳物部の肉厚tと、積層壁部Wである外殻55の肉厚toutとの比率Rが水平断面内のいずれの位置においても一定にされている。 In the structure 51B having this configuration, the wall thickness t c of the casting portion 47A is smaller toward the upper side, but as shown in equation (3), the wall thickness t c of the casting portion along the feature line L and the laminated wall portion W is constant at any position of the ratio R 2 is a horizontal cross-section of the wall thickness t out of the outer shell 55 is B.

=2tout/t…(3)
R 2 = 2t out / t c ... (3)

本構成の構造体51Bの場合も、外殻55と鋳物部47Aとの体積比のばらつきが小さくなり、第1,第2構成例と同様に高品質な構造体51Bが得られる。 Also in the case of the structure 51B having this configuration, the variation in the volume ratio between the outer shell 55 and the cast portion 47A becomes small, and a high-quality structure 51B can be obtained as in the first and second configuration examples.

<第4構成例>
図10は第4構成例の構造体51Cの概略斜視図、図11は図10に示す構造体51CのXI−XI線断面図である。
図10に示す本構成の構造体51Cは、第3構成例の構造体51Bの上に同形状の構造体51Bを上下反転させて重ねた形状に形成される。つまり、鋳物部47Cは、図中下側から大径部、小径部、大径部として一体に形成され、積層壁部Wである外殻55は、鋳物部47Cの水平断面における外径に応じて幅広部、幅狭部、幅広部として一体に形成されている。
<Fourth configuration example>
10 is a schematic perspective view of the structure 51C of the fourth configuration example, and FIG. 11 is a sectional view taken along line XI-XI of the structure 51C shown in FIG.
The structure 51C having the present configuration shown in FIG. 10 is formed in a shape in which a structure 51B having the same shape is inverted and stacked on the structure 51B of the third configuration example. That is, the casting unit 47C includes large diameter portion, the small diameter portion from the lower side in the drawing, are formed integrally as a large diameter portion, the outer shell 55 is a laminated wall W C is the outer diameter of the horizontal cross section of the casting portion 47C It is integrally formed as a wide portion, a narrow portion, and a wide portion accordingly.

本構成の構造体51Cの場合も、図11に示すように、特徴線Lに沿った鋳物部の肉厚tと、外殻55の肉厚toutとの比率R(上記(2)式参照)が、いずれの水平断面においても一定にされている。これにより、高品質な構造体51Cが得られる。 Also in the case of the structure 51C having this configuration, as shown in FIG. 11, the ratio R 2 of the wall thickness t c of the casting portion along the feature line L and the wall thickness to out of the outer shell 55 ((2) above). (See formula) is constant in all horizontal sections. As a result, a high quality structure 51C can be obtained.

本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。 The present invention is not limited to the above-described embodiment, and can be modified or applied by those skilled in the art based on the combination of the configurations of the embodiments with each other, the description of the specification, and well-known techniques. It is the planned invention and is included in the scope of seeking protection.

例えば、本発明は、水平方向と上下方向の少なくともいずれかの方向に沿って肉厚が変化する構造体にも適用可能であり、例えば、角筒形状の構造体、平面視で矩形状、三角形状、楕円形状等の各種形状の構造体にも適用可能である。 For example, the present invention can be applied to a structure in which the wall thickness changes along at least one of the horizontal direction and the vertical direction. For example, a square tube-shaped structure, a rectangular shape in a plan view, and a triangular shape. It can also be applied to structures having various shapes such as a shape and an elliptical shape.

また、上記した構造体の製造方法では、アーク放電により溶接ワイヤを溶解して溶着ビードを形成しており、低コストで且つ短いリードタイムで構造体を作製している。この溶着ビードの形成は、アーク放電に限らず、アーク放電とレーザとを併用した加熱方式、レーザによる加熱方式、摩擦撹拌方式等、他の加熱方式を採用してもよい。レーザにより加熱する場合、加熱量を更に細かく制御でき、溶着ビードの状態をより適正に維持して、積層壁部の更なる品質向上に寄与できる。 Further, in the above-described structure manufacturing method, the welding wire is melted by arc discharge to form a welded bead, and the structure is manufactured at low cost and with a short lead time. The formation of the welded bead is not limited to arc discharge, and other heating methods such as a heating method using both arc discharge and a laser, a heating method using a laser, and a friction stir welding method may be adopted. When heating with a laser, the amount of heating can be controlled more finely, the state of the welded bead can be maintained more appropriately, and the quality of the laminated wall portion can be further improved.

更に、上記の説明では、溶着ビードを一つの閉じられた線状にした層を形成した構成を示しているが、溶着ビードによる閉じられた線は、同一の水平断面上で複数箇所に存在してもよい。また、閉じられた線状の層において、溶着ビードによる線の外側や内側に更に延出する溶着ビード部分が存在してもよい。いずれの場合でも、閉じられた領域内にそれぞれ鋳湯を流し込むことで、より複雑な形状の構造体を作製できる。この場合の閉じられた領域とは、円形や楕円形に限らず、正方形、長方形、多角形等の任意の形状とすることができる。 Further, in the above description, the structure in which the welded beads are formed into one closed linear layer is shown, but the closed lines due to the welded beads are present at a plurality of locations on the same horizontal cross section. You may. Further, in the closed linear layer, there may be a welded bead portion extending further to the outside or the inside of the line by the welded bead. In either case, a structure having a more complicated shape can be produced by pouring the casting water into each of the closed regions. The closed area in this case is not limited to a circle or an ellipse, and may be any shape such as a square, a rectangle, or a polygon.

また、上記の説明では、一本の線状の溶着ビードにより積層壁部を造形しているが、ウィービング動作のようにトーチ17を揺動させながら溶着ビードを形成したり、溶接ロボット19の駆動により、円や三角等の軌跡を描かせながらトーチ17を移動させたりしてもよい。その場合、溶接方向とは別方向の移動成分を有してトーチ17が移動されるため、溶着ビード幅を増減でき、外殻55、内殻57の幅を任意に調整できる。 Further, in the above description, the laminated wall portion is formed by one linear welding bead, but the welding bead is formed while swinging the torch 17 as in the weaving operation, or the welding robot 19 is driven. Therefore, the torch 17 may be moved while drawing a locus such as a circle or a triangle. In that case, since the torch 17 is moved with a moving component in a direction different from the welding direction, the welding bead width can be increased or decreased, and the widths of the outer shell 55 and the inner shell 57 can be arbitrarily adjusted.

以上の通り、本明細書には次の事項が開示されている。
(1) アークにより溶加材を溶融及び凝固させた溶着ビードをベース上に積層して、少なくとも構造体の外殻を含む積層壁部を造形した後、造形された前記積層壁部で囲まれた内側空間に、鋳湯を流し込んで鋳物部を形成する構造体の製造方法であって、
前記構造体の水平断面における前記鋳物部及び当該鋳物部を挟む一対の前記積層壁部を通る直線であって、前記積層壁部のいずれかの位置の法線を特徴線としたとき、前記位置で前記特徴線により挟まれた前記鋳物部の前記特徴線に沿った肉厚に応じて、前記特徴線に沿った一対の前記積層壁部の合計肉厚を変化させる構造体の製造方法。
この構造体の製造方法によれば、溶着ビードの積層によって積層壁部を成形するので、鋳造のための型作製が不要となり、鋳造工数や型材料のコストを低減できると共に、構造体を製造するリードタイムが短縮される。また、比較的高コストな積層材料の使用が積層壁部だけで済み、材料費を抑えて製造コストを低減できる。
そして、構造体の水平断面での積層壁部の法線を特徴線とし、この特徴線に沿った鋳物部の肉厚に応じて一対の積層壁部の合計肉厚を変化させることで、一対の積層壁部間の内側空間に注がれた鋳湯の冷却速度が均一になる。これにより、構造体の機械的性質の不均一、鋳物部の残留応力、鋳物部の厚肉部分における引け巣等の欠陥やき裂などの割れの発生を抑制できる。よって、高品質な構造体を製造することができる。
As described above, the following matters are disclosed in this specification.
(1) A welded bead obtained by melting and solidifying a filler metal by an arc is laminated on a base to form a laminated wall portion including at least the outer shell of the structure, and then surrounded by the formed laminated wall portion. It is a method of manufacturing a structure in which casting water is poured into the inner space to form a casting part.
When a straight line passing through the casting portion and the pair of laminated wall portions sandwiching the casting portion in the horizontal cross section of the structure and the normal line at any position of the laminated wall portion is used as a feature line, the position A method for manufacturing a structure in which the total wall thickness of a pair of laminated wall portions along the feature line is changed according to the wall thickness of the casting portion sandwiched between the feature lines along the feature line.
According to this method for manufacturing a structure, since the laminated wall portion is formed by laminating welded beads, it is not necessary to prepare a mold for casting, the man-hours for casting and the cost of the mold material can be reduced, and the structure is manufactured. Lead time is shortened. Further, the use of a relatively high-cost laminated material is only required for the laminated wall portion, and the material cost can be suppressed and the manufacturing cost can be reduced.
Then, the normal line of the laminated wall portion in the horizontal cross section of the structure is used as a feature line, and the total wall thickness of the pair of laminated wall portions is changed according to the wall thickness of the casting portion along the feature line. The cooling rate of the casting water poured into the inner space between the laminated walls becomes uniform. As a result, it is possible to suppress non-uniform mechanical properties of the structure, residual stress in the casting portion, defects such as shrinkage cavities in the thick portion of the casting portion, and cracks such as cracks. Therefore, a high quality structure can be manufactured.

(2) 前記積層壁部は、前記外殻の内側に前記溶着ビードにより造形された内殻を含み、
前記積層壁部の合計肉厚は、前記外殻の肉厚と前記内殻の肉厚とを合わせた厚さである(1)に記載の構造体の製造方法。
この構造体の製造方法によれば、溶着ビードにより造形された外殻と内殻との間に鋳物部が設けられ、鋳物部は、その部位によらずに均一な冷却速度で凝固される。
(2) The laminated wall portion includes an inner shell formed by the welded bead inside the outer shell.
The method for manufacturing a structure according to (1), wherein the total wall thickness of the laminated wall portion is a thickness obtained by combining the wall thickness of the outer shell and the wall thickness of the inner shell.
According to the method for manufacturing this structure, a casting portion is provided between the outer shell and the inner shell formed by the welding bead, and the casting portion is solidified at a uniform cooling rate regardless of the portion.

(3) 前記特徴線は、前記外殻の法線である(2)に記載の構造体の製造方法。
この構造体の製造方法によれば、外殻が内殻よりも単純形状である場合に、より適切な肉厚の設定が可能となる。
(3) The method for manufacturing a structure according to (2), wherein the feature line is a normal of the outer shell.
According to the method for manufacturing this structure, when the outer shell has a simpler shape than the inner shell, it is possible to set a more appropriate wall thickness.

(4) 前記特徴線は、前記内殻の法線である(2)に記載の構造体の製造方法。
この構造体の製造方法によれば、内殻が外殻よりも単純形状である場合に、より適切な肉厚の設定が可能となる。
(4) The method for manufacturing a structure according to (2), wherein the feature line is a normal of the inner shell.
According to the method for manufacturing this structure, when the inner shell has a simpler shape than the outer shell, it is possible to set a more appropriate wall thickness.

(5) 前記特徴線に沿った前記鋳物部の肉厚と、一対の前記積層壁部の合計肉厚との比率を予め設定し、
設定された前記比率に基づいて前記特徴線に沿った前記鋳物部の肉厚と、一対の前記積層壁部の合計肉厚を決定する(1)〜(4)のいずれか一つに記載の構造体の製造方法。
この構造体の製造方法によれば、一対の積層壁部と鋳物部との体積比のばらつきを低減でき、更に高品質な構造体を製造できる。
(5) The ratio of the wall thickness of the casting portion along the feature line to the total wall thickness of the pair of laminated wall portions is set in advance.
The description in any one of (1) to (4), wherein the wall thickness of the casting portion along the feature line and the total wall thickness of the pair of the laminated wall portions are determined based on the set ratio. Method of manufacturing the structure.
According to this method for manufacturing a structure, it is possible to reduce the variation in the volume ratio between the pair of laminated wall portions and the cast portion, and it is possible to manufacture a higher quality structure.

(6) 前記比率は、前記構造体の前記水平断面内において一定値である(5)に記載の構造体の製造方法。
この構造体の製造方法によれば、一定の比率で一対の積層壁部と鋳物部の肉厚が決定されるため、鋳物部をより均一な冷却速度で凝固させることができる。
(6) The method for manufacturing a structure according to (5), wherein the ratio is a constant value within the horizontal cross section of the structure.
According to the method for manufacturing this structure, the wall thickness of the pair of laminated wall portions and the casting portion is determined at a constant ratio, so that the casting portion can be solidified at a more uniform cooling rate.

(7) 前記比率は、前記構造体の互いに異なる高さの前記水平断面で、それぞれ同じ一定値である(6)に記載の構造体の製造方法。
この構造体の製造方法によれば、高さ方向に関しても一定の比率で一対の積層壁部と鋳物部との肉厚が決定されるため、鋳物部を更に均一な冷却速度で凝固させることができる。
(7) The method for manufacturing a structure according to (6), wherein the ratio is the same constant value in the horizontal cross sections of the structures having different heights from each other.
According to the manufacturing method of this structure, the wall thickness of the pair of laminated wall portions and the casting portion is determined at a constant ratio also in the height direction, so that the casting portion can be solidified at a more uniform cooling rate. it can.

(8) 溶加材の溶融凝固体である溶着ビードがベース上に積層された積層壁部と、前記積層壁部で囲まれた内側空間に形成された鋳物部とを有する構造体であって、
前記構造体の水平断面における前記鋳物部及び当該鋳物部を挟む一対の前記積層壁部を通る直線であって、前記積層壁部のいずれかの位置の法線を特徴線としたとき、前記位置で前記特徴線により挟まれた前記鋳物部の前記特徴線に沿った肉厚に応じて、前記特徴線に沿った一対の前記積層壁部の合計肉厚が変化している構造体。
この構造体によれば、溶着ビードの積層によって積層壁部を成形するので、鋳造のための型作製が不要となり、鋳造工数や型材料のコストを低減できると共に、構造体を製造するリードタイムが短縮される。また、比較的高コストな積層材料の使用が積層壁部だけで済み、材料費を抑えて製造コストを低減できる。
そして、構造体の水平断面での積層壁部の法線を特徴線とし、この特徴線に沿った鋳物部の肉厚に応じて一対の積層壁部の合計肉厚を変化させることで、一対の積層壁部間の内側空間に注がれた鋳湯の冷却速度が均一になる。これにより、構造体の機械的性質の不均一、鋳物部の残留応力、鋳物部の厚肉部分における引け巣等の欠陥やき裂などの割れの発生を抑制できる。
(8) A structure having a laminated wall portion in which welded beads, which are melt-solidified bodies of filler metal, are laminated on a base, and a casting portion formed in an inner space surrounded by the laminated wall portion. ,
The position when a straight line passing through the casting portion and the pair of laminated wall portions sandwiching the casting portion in the horizontal cross section of the structure and the normal line at any position of the laminated wall portion is used as a feature line. A structure in which the total wall thickness of the pair of laminated wall portions along the feature line changes according to the wall thickness of the casting portion sandwiched between the feature lines along the feature line.
According to this structure, since the laminated wall portion is formed by laminating the welded beads, it is not necessary to prepare a mold for casting, the man-hours for casting and the cost of the mold material can be reduced, and the lead time for manufacturing the structure is reduced. It will be shortened. Further, the use of a relatively high-cost laminated material is only required for the laminated wall portion, and the material cost can be suppressed and the manufacturing cost can be reduced.
Then, the normal line of the laminated wall portion in the horizontal cross section of the structure is used as a feature line, and the total wall thickness of the pair of laminated wall portions is changed according to the wall thickness of the casting portion along the feature line. The cooling rate of the casting water poured into the inner space between the laminated walls becomes uniform. As a result, it is possible to suppress non-uniform mechanical properties of the structure, residual stress in the casting portion, defects such as shrinkage cavities in the thick portion of the casting portion, and cracks such as cracks.

(9) 前記積層壁部は、前記構造体の外殻と、前記外殻の内側に前記溶着ビードにより造形された内殻とを含み、
一対の前記積層壁部の合計肉厚は、前記外殻の肉厚と前記内殻の肉厚とを合わせた厚さである(8)に記載の構造体。
この構造体によれば、溶着ビードにより造形された外殻と内殻との間に鋳物部が設けられ、鋳物部は、その部位によらずに均一な冷却速度で凝固される。
(9) The laminated wall portion includes an outer shell of the structure and an inner shell formed by the welding bead inside the outer shell.
The structure according to (8), wherein the total wall thickness of the pair of laminated wall portions is a total thickness of the wall thickness of the outer shell and the wall thickness of the inner shell.
According to this structure, a casting portion is provided between the outer shell and the inner shell formed by the welding bead, and the casting portion is solidified at a uniform cooling rate regardless of the portion.

(10) 前記特徴線は、前記外殻の法線である(9)に記載の構造体の製造方法。
この構造体によれば、外殻が内殻よりも単純形状である場合に、より適切な肉厚の設定が可能となる。
(10) The method for manufacturing a structure according to (9), wherein the feature line is a normal of the outer shell.
According to this structure, when the outer shell has a simpler shape than the inner shell, it is possible to set a more appropriate wall thickness.

(11) 前記特徴線は、前記内殻の法線である(9)に記載の構造体の製造方法。
この構造体によれば、内殻が外殻よりも単純形状である場合に、より適切な肉厚の設定が可能となる。
(11) The method for manufacturing a structure according to (9), wherein the feature line is a normal of the inner shell.
According to this structure, when the inner shell has a simpler shape than the outer shell, it is possible to set a more appropriate wall thickness.

(12)前記特徴線に沿った前記鋳物部の肉厚と前記積層壁部の合計肉厚との比率は、前記水平断面内で一定である(8)〜(11)のいずれか一つに記載の構造体の製造方法。
この構造体によれば、一対の積層壁部と鋳物部との体積比のばらつきを低減できる。
(12) The ratio of the wall thickness of the casting portion to the total wall thickness of the laminated wall portion along the feature line is constant in any one of (8) to (11) in the horizontal cross section. The method for manufacturing the described structure.
According to this structure, it is possible to reduce the variation in the volume ratio between the pair of laminated wall portions and the casting portion.

(13)前記比率は、前記構造体の互いに異なる前記水平断面で一定である(12)に記載の構造体。
この構造体によれば、高さ方向に関しても一定の比率で一対の積層壁部と鋳物部との肉厚が決定されるため、鋳物部の冷却速度が更に均一となる。
(13) The structure according to (12), wherein the ratio is constant in the horizontal cross sections different from each other of the structure.
According to this structure, the wall thickness of the pair of laminated wall portions and the casting portion is determined at a constant ratio also in the height direction, so that the cooling rate of the casting portion becomes more uniform.

25 鋳湯
41 ベースプレート(ベース)
43 溶着ビード
45 内側空間
47,47A,47B,47C 鋳物部
51,51A,51B,51C 構造体
55 外殻
57 内殻
L,L1,L2,Li 特徴線
M 溶加材
W,W,W,W 積層壁部
25 Casting water 41 Base plate (base)
43 weld bead 45 inside the space 47 and 47A, 47B, 47C casting portion 51, 51A, 51B, shell 51C structure 55 within the shell 57 L, L1, L2, Li characteristic line M filler material W, W A, W B , W C laminated wall

Claims (13)

アークにより溶加材を溶融及び凝固させた溶着ビードをベース上に積層して、少なくとも構造体の外殻を含む積層壁部を造形した後、造形された前記積層壁部で囲まれた内側空間に、鋳湯を流し込んで鋳物部を形成する構造体の製造方法であって、
前記構造体の水平断面における前記鋳物部及び当該鋳物部を挟む一対の前記積層壁部を通る直線であって、前記積層壁部のいずれかの位置の法線を特徴線としたとき、前記位置で前記特徴線により挟まれた前記鋳物部の前記特徴線に沿った肉厚に応じて、前記特徴線に沿った一対の前記積層壁部の合計肉厚を変化させる構造体の製造方法。
A welded bead obtained by melting and solidifying a filler metal by an arc is laminated on a base to form a laminated wall portion including at least the outer shell of the structure, and then an inner space surrounded by the formed laminated wall portion. It is a method of manufacturing a structure in which casting water is poured into a structure to form a casting portion.
When a straight line passing through the casting portion and the pair of laminated wall portions sandwiching the casting portion in the horizontal cross section of the structure and the normal line at any position of the laminated wall portion is used as a feature line, the position A method for manufacturing a structure in which the total wall thickness of a pair of laminated wall portions along the feature line is changed according to the wall thickness of the casting portion sandwiched between the feature lines along the feature line.
前記積層壁部は、前記外殻の内側に前記溶着ビードにより造形された内殻を含み、
前記積層壁部の合計肉厚は、前記外殻の肉厚と前記内殻の肉厚とを合わせた厚さである請求項1に記載の構造体の製造方法。
The laminated wall portion includes an inner shell formed by the welding bead inside the outer shell.
The method for manufacturing a structure according to claim 1, wherein the total wall thickness of the laminated wall portion is a thickness obtained by combining the wall thickness of the outer shell and the wall thickness of the inner shell.
前記特徴線は、前記外殻の法線である請求項2に記載の構造体の製造方法。 The method for manufacturing a structure according to claim 2, wherein the feature line is a normal of the outer shell. 前記特徴線は、前記内殻の法線である請求項2に記載の構造体の製造方法。 The method for manufacturing a structure according to claim 2, wherein the feature line is a normal of the inner shell. 前記特徴線に沿った前記鋳物部の肉厚と、一対の前記積層壁部の合計肉厚との比率を予め設定し、
設定された前記比率に基づいて前記特徴線に沿った前記鋳物部の肉厚と、一対の前記積層壁部の合計肉厚を決定する請求項1〜請求項4のいずれか一項に記載の構造体の製造方法。
The ratio of the wall thickness of the casting portion along the feature line to the total wall thickness of the pair of laminated wall portions is set in advance.
The invention according to any one of claims 1 to 4, wherein the wall thickness of the casting portion along the feature line and the total wall thickness of the pair of laminated wall portions are determined based on the set ratio. How to manufacture the structure.
前記比率は、前記構造体の前記水平断面内において一定値である請求項5に記載の構造体の製造方法。 The method for manufacturing a structure according to claim 5, wherein the ratio is a constant value within the horizontal cross section of the structure. 前記比率は、前記構造体の互いに異なる高さの前記水平断面で、それぞれ同じ一定値である請求項6に記載の構造体の製造方法。 The method for manufacturing a structure according to claim 6, wherein the ratio is the same constant value in the horizontal cross sections of the structures having different heights from each other. 溶加材の溶融凝固体である溶着ビードがベース上に積層された積層壁部と、前記積層壁部で囲まれた内側空間に形成された鋳物部とを有する構造体であって、
前記構造体の水平断面における前記鋳物部及び当該鋳物部を挟む一対の前記積層壁部を通る直線であって、前記積層壁部のいずれかの位置の法線を特徴線としたとき、前記位置で前記特徴線により挟まれた前記鋳物部の前記特徴線に沿った肉厚に応じて、前記特徴線に沿った一対の前記積層壁部の合計肉厚が変化している構造体。
A structure having a laminated wall portion in which welded beads, which are melt-solidified bodies of filler metal, are laminated on a base, and a casting portion formed in an inner space surrounded by the laminated wall portion.
The position when a straight line passing through the casting portion and the pair of laminated wall portions sandwiching the casting portion in the horizontal cross section of the structure and the normal line at any position of the laminated wall portion is used as a feature line. A structure in which the total wall thickness of the pair of laminated wall portions along the feature line changes according to the wall thickness of the casting portion sandwiched between the feature lines along the feature line.
前記積層壁部は、前記構造体の外殻と、前記外殻の内側に前記溶着ビードにより造形された内殻とを含み、
一対の前記積層壁部の合計肉厚は、前記外殻の肉厚と前記内殻の肉厚とを合わせた厚さである請求項8に記載の構造体。
The laminated wall portion includes an outer shell of the structure and an inner shell formed by the welding bead inside the outer shell.
The structure according to claim 8, wherein the total wall thickness of the pair of laminated wall portions is a total thickness of the wall thickness of the outer shell and the wall thickness of the inner shell.
前記特徴線は、前記外殻の法線である請求項9に記載の構造体。 The structure according to claim 9, wherein the feature line is a normal of the outer shell. 前記特徴線は、前記内殻の法線である請求項9に記載の構造体。 The structure according to claim 9, wherein the feature line is a normal of the inner shell. 前記特徴線に沿った前記鋳物部の肉厚と前記積層壁部の合計肉厚との比率は、前記水平断面内で一定である請求項8〜請求項11のいずれか一項に記載の構造体。 The structure according to any one of claims 8 to 11, wherein the ratio of the wall thickness of the casting portion to the total wall thickness of the laminated wall portion along the feature line is constant within the horizontal cross section. body. 前記比率は、前記構造体の互いに異なる前記水平断面で一定である請求項12に記載の構造体。 The structure according to claim 12, wherein the ratio is constant in the horizontal cross sections different from each other of the structure.
JP2017195237A 2017-10-05 2017-10-05 Structure manufacturing method and structure Active JP6765359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017195237A JP6765359B2 (en) 2017-10-05 2017-10-05 Structure manufacturing method and structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017195237A JP6765359B2 (en) 2017-10-05 2017-10-05 Structure manufacturing method and structure

Publications (2)

Publication Number Publication Date
JP2019063859A JP2019063859A (en) 2019-04-25
JP6765359B2 true JP6765359B2 (en) 2020-10-07

Family

ID=66337096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017195237A Active JP6765359B2 (en) 2017-10-05 2017-10-05 Structure manufacturing method and structure

Country Status (1)

Country Link
JP (1) JP6765359B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05161957A (en) * 1991-12-11 1993-06-29 Aisin Takaoka Ltd Casting method and mold
JP3784539B2 (en) * 1998-07-01 2006-06-14 本田技研工業株式会社 Mold manufacturing method
JP5670034B2 (en) * 2009-04-27 2015-02-18 錦見鋳造株式会社 Method for manufacturing thin-walled spheroidal graphite cast iron products
CN101817121B (en) * 2010-04-15 2012-03-28 华中科技大学 Deposition forming composite manufacturing method of part and mould and auxiliary device thereof
JP2014113610A (en) * 2012-12-07 2014-06-26 Koiwai Co Ltd Casting and method for manufacturing the same
JP5758535B1 (en) * 2014-09-29 2015-08-05 株式会社日▲高▼合金 Manufacturing method of metal molded product and image

Also Published As

Publication number Publication date
JP2019063859A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP6737762B2 (en) Manufacturing method and manufacturing apparatus for molded article
JP7010799B2 (en) Structure manufacturing method and structure
JP6822881B2 (en) Manufacturing method and manufacturing system for laminated models
JP6778887B2 (en) Manufacturing method of 3D shaped object
WO2017022226A1 (en) Method for manufacturing three-dimensionally shaped object
JP6765360B2 (en) Structure manufacturing method and structure
JP6865667B2 (en) Manufacturing method of laminated model
JP6810018B2 (en) Manufacturing method of laminated model
WO2019176759A1 (en) Method for producing shaped article and shaped article
JP2020168642A (en) Laminated molding manufacturing method and laminated molding
JP7123738B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
JP2019089126A (en) Manufacturing method of molded body, manufacturing apparatus, and molded body
JP6829180B2 (en) Structure and method of manufacturing the structure
JP2019076916A (en) Manufacturing method of lamination molded product and lamination molded product
JP2019063858A (en) Method for manufacturing laminated molding and laminated molding
JP6765359B2 (en) Structure manufacturing method and structure
JP7160703B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
JP7258715B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
WO2019181556A1 (en) Method for producing shaped article and shaped article
WO2019098021A1 (en) Method for producing molded article, production device, and molded article
JP7181154B2 (en) Laminate-molded article manufacturing method
JP7409997B2 (en) Manufacturing method for additively manufactured objects
JP7355672B2 (en) Manufacturing method for additively manufactured objects
JP7189110B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
JP6792533B2 (en) Manufacturing method of structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200915

R150 Certificate of patent or registration of utility model

Ref document number: 6765359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150