JP6765272B2 - Polyimide film - Google Patents
Polyimide film Download PDFInfo
- Publication number
- JP6765272B2 JP6765272B2 JP2016195260A JP2016195260A JP6765272B2 JP 6765272 B2 JP6765272 B2 JP 6765272B2 JP 2016195260 A JP2016195260 A JP 2016195260A JP 2016195260 A JP2016195260 A JP 2016195260A JP 6765272 B2 JP6765272 B2 JP 6765272B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- points
- polyimide
- polyimide film
- width direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/281—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1067—Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
- C08G73/1071—Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1075—Partially aromatic polyimides
- C08G73/1078—Partially aromatic polyimides wholly aromatic in the diamino moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/032—Organic insulating material consisting of one material
- H05K1/0346—Organic insulating material consisting of one material containing N
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08J2379/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0154—Polyimide
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0183—Dielectric layers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Laminated Bodies (AREA)
Description
本発明は、ポリイミドフィルム及びその製造方法に関する。さらには、このポリイミドフィルムと金属箔とを備えたフレキシブル金属積層板に関する。 The present invention relates to a polyimide film and a method for producing the same. Furthermore, the present invention relates to a flexible metal laminated plate provided with the polyimide film and a metal foil.
フレキシブルプリント配線板(FPC:Flexible printed circuits)は、一般に、各種絶縁材料により形成され、柔軟性を有する絶縁性フィルムを基板とし、この基板の表面に、金属箔を加熱・圧着することにより貼りあわせる方法により製造される。上記絶縁性フィルムとしては、耐熱性、電気絶縁性に優れた、ポリイミドフィルムが好ましく用いられている。 Flexible printed wiring boards (FPCs) are generally made of various insulating materials and have a flexible insulating film as a substrate, which is bonded to the surface of the substrate by heating and crimping a metal foil. Manufactured by the method. As the insulating film, a polyimide film having excellent heat resistance and electrical insulating properties is preferably used.
近年、電子機器の小型化、軽量化を達成するために、基板に設けられる配線は微細化が進んでおり、実装する部品も小型化、高密度化されたものが搭載される。そのため、微細な配線を形成した後の寸法変化が大きくなると、設計段階での部品搭載位置からずれて、部品と基板とが良好に接続されなくなるという問題が生じる。 In recent years, in order to achieve miniaturization and weight reduction of electronic devices, the wiring provided on the substrate has been miniaturized, and the components to be mounted are also miniaturized and have high density. Therefore, if the dimensional change after forming the fine wiring becomes large, there arises a problem that the component and the substrate are not well connected due to the deviation from the component mounting position at the design stage.
このようなポリイミドフィルムの寸法変化を小さくしようとする試みがなされつつある。例えば、特許文献1(特開2015−10107号公報)には、製膜幅が1m以上あって、フィルムの機械搬送方向(MD)を基準として、フィルムの配向角度(θ)が45°と135°における配向係数AI(45、135)値が全幅にわたって12以下であり、全幅において対角線(45°、135°)方向のフレキシブル金属積層板のエッチング処理前後の寸法変化率がいずれも−0.05〜0.05%であり、少なくとも片面に厚みが0.5〜20μmの熱可塑性ポリイミド層を有するポリイミドフィルムによれば、寸歩変化が低減される旨が記載されている。 Attempts are being made to reduce such dimensional changes in polyimide films. For example, in Patent Document 1 (Japanese Unexamined Patent Publication No. 2015-10107), the film forming width is 1 m or more, and the orientation angles (θ) of the film are 45 ° and 135 with reference to the machine transport direction (MD) of the film. The orientation coefficient AI (45, 135) value at ° is 12 or less over the entire width, and the dimensional change rate before and after etching the flexible metal laminate in the diagonal (45 °, 135 °) direction over the entire width is -0.05. It is described that a polyimide film having a thermoplastic polyimide layer of about 0.05% and at least one side having a thickness of 0.5 to 20 μm reduces the step change.
このように、さらなるポリイミドフィルムの改善が求められている。 As described above, further improvement of the polyimide film is required.
本発明の目的は、製膜幅方向において寸法変化のバラツキが少ないポリイミドフィルム及びこのポリイミドフィルムを備えたフレキシブル金属積層板を提供することにある。 An object of the present invention is to provide a polyimide film having little variation in dimensional change in the film forming width direction and a flexible metal laminated plate provided with the polyimide film.
本発明の他の目的は、熱処理後の片伸びが小さいポリイミドフィルム及びこのポリイミドフィルムを備えたフレキシブル金属積層板を提供することにある。 Another object of the present invention is to provide a polyimide film having a small one-sided elongation after heat treatment and a flexible metal laminate provided with the polyimide film.
本発明のさらに他の目的は、上記のような特性を有するポリイミドフィルムを、優れた製膜性で製造する方法を提供することにある。 Still another object of the present invention is to provide a method for producing a polyimide film having the above-mentioned characteristics with excellent film-forming properties.
本発明者らの検討によれば、特許文献1のフィルムなどでは、寸法変化をある程度改善できるものの、フィルム全体では寸法変化のバラツキがあったり、熱処理による片伸び現象を生じることがわかった。また、寸法変化バラツキ低減と片伸びの低減を両立させるべく、支持体上でのイミド化を調整することを検討したが、把持された部分の裂け等、フィルム破れが発生し、両立が困難であった。 According to the studies by the present inventors, it has been found that the film of Patent Document 1 and the like can improve the dimensional change to some extent, but the film as a whole has a variation in the dimensional change and a one-sided elongation phenomenon due to heat treatment occurs. In addition, we considered adjusting imidization on the support in order to reduce dimensional change variation and one-sided elongation, but it was difficult to achieve both because film tearing occurred such as tearing of the gripped part. there were.
このような中、本発明者らは、さらなる鋭意研究を重ねた結果、ポリイミドフィルムにおいて、特許文献1のように特定の角度だけでなく、全角度の配向性を特定のAI値で規定するとともに、この特定のAI値と特定の線膨張係数とを組み合わせることにより、寸法変化を単に小さくするだけでなく、そのバラツキを抑制できること、また、熱処理後の片伸びを小さくできること、さらには、優れた成膜性を担保しつつ、このようなAI値や線膨張係数を調整するためには、ポリイミドフィルムの前駆体フィルムであるゲルフィルムのイミド化率等の調整が必要であることを見出した。この知見に基づいてさらに研究を進め、本発明を完成するに至った。 Under these circumstances, as a result of further diligent research, the present inventors have defined the orientation of not only a specific angle but also all angles with a specific AI value in the polyimide film as in Patent Document 1. By combining this specific AI value and a specific coefficient of linear expansion, it is possible not only to reduce the dimensional change but also to suppress the variation, and it is possible to reduce the one-sided elongation after heat treatment. It has been found that it is necessary to adjust the imidization rate of the gel film, which is a precursor film of the polyimide film, in order to adjust the AI value and the coefficient of linear expansion while ensuring the film-forming property. Further research was carried out based on this finding, and the present invention was completed.
すなわち、本発明は以下の発明に関する。
[1]フィルムの搬送方向(MD)の線膨張係数αMD及び幅方向(TD)の線膨張係数αTDの両方が7ppm/℃以下であり、超音波パルスの伝播速度Vを測定したときの下記式で表される異方性指数AI値が全幅にわたって15以下であるポリイミドフィルム。
AI=(VMAX^2−VMIN^2)/(VMAX^2+VMIN^2)
(式中、VMAX^2はパルス伝播速度の最大値の2乗、VMIN^2はパルス伝播速度の最小値の2乗を示す。)
[2]製膜幅が1000mm以上であり、αMDのフィルム幅方向の線膨張係数の差(最大値と最小値との差)が2ppm/℃以下である[1]に記載のポリイミドフィルム。
[3]製膜幅が1000mm以上であり、αTDのフィルム幅方向の線膨張係数の差(最大値と最小値との差)が2ppm/℃以下である[1]又は[2]に記載のポリイミドフィルム。
[4]ポリイミドフィルムが、パラフェニレンジアミンを含む芳香族ジアミン成分と、ピロメリット酸二無水物および3,3’−4,4’−ジフェニルテトラカルボン酸二無水物からなる群から選ばれる1種以上の酸無水物成分とを重合成分とするポリイミドで構成されている[1]〜[3]のいずれかに記載のポリイミドフィルム。
[5]ポリイミド前駆体溶液を支持体上に流延塗布してゲルフィルム(特に部分的に乾燥及び硬化させた自己支持性を有するゲルフィルム)を作製し、該ゲルフィルムを熱処理する[特に、該ゲルフィルムの幅方向両端を把持しつつ加熱炉を通過させ熱処理(乾燥及び熱処理)を行う]、[1]〜[4]のいずれかに記載のポリイミドフィルムの製造方法。
[6]ゲルフィルム(支持体から剥離したゲルフィルム)のイミド化率が55〜75%である[5]記載の製造方法。
[7][1]〜[4]のいずれかに記載のポリイミドフィルムと金属箔とを備えたフレキシブル金属積層板。
That is, the present invention relates to the following invention.
[1] The coefficient of linear expansion αMD in the transport direction (MD) and the coefficient of linear expansion αTD in the width direction (TD) of the film are both 7 ppm / ° C. or less, and the following formula is used when the propagation speed V of the ultrasonic pulse is measured. A polyimide film having an anisotropy index AI value represented by (1) of 15 or less over the entire width.
AI = (VMAX ^ 2-VMIN ^ 2) / (VMAX ^ 2 + VMIN ^ 2)
(In the equation, VMAX ^ 2 indicates the square of the maximum value of the pulse propagation velocity, and VMIN ^ 2 indicates the square of the minimum value of the pulse propagation velocity.)
[2] The polyimide film according to [1], wherein the film-forming width is 1000 mm or more, and the difference in linear expansion coefficient (difference between the maximum value and the minimum value) of αMD in the film width direction is 2 ppm / ° C. or less.
[3] The method according to [1] or [2], wherein the film-forming width is 1000 mm or more, and the difference in linear expansion coefficient (difference between the maximum value and the minimum value) of αTD in the film width direction is 2 ppm / ° C. or less. Polyimide film.
[4] A type of polyimide film selected from the group consisting of an aromatic diamine component containing paraphenylenediamine, pyromellitic dianhydride and 3,3'-4,4'-diphenyltetracarboxylic dianhydride. The polyimide film according to any one of [1] to [3], which is composed of a polyimide containing the above acid anhydride component as a polymerization component.
[5] A gel film (particularly a partially dried and cured gel film having self-supporting property) is prepared by casting and coating a polyimide precursor solution on a support, and the gel film is heat-treated [particularly. The method for producing a polyimide film according to any one of [1] to [4], wherein heat treatment (drying and heat treatment) is performed by passing the gel film through a heating furnace while grasping both ends in the width direction.
[6] The production method according to [5], wherein the gel film (gel film peeled from the support) has an imidization rate of 55 to 75%.
[7] A flexible metal laminate provided with the polyimide film according to any one of [1] to [4] and a metal foil.
本発明のポリイミドフィルムは、製膜(フィルム)幅方向において寸法変化のバラツキが少ない。また、本発明のポリイミドフィルムは、熱処理後の片伸びが小さい。
そして、本発明のポリイミドフィルムを用いて得られるフレキシブル金属積層板においては、金属箔を除去する前後の寸法変化がポリイミドフィルム製膜幅方向において小さい。
そのため、微細な配線を形成したフレキシブル金属積層板(FPC)等に好適に用いることができる。
また、本発明の製造方法によれば、ゲルフィルムのイミド化率の調整等により、上記のような優れた特性を有するポリイミドフィルムを、優れた成膜性で製造できる。
The polyimide film of the present invention has little variation in dimensional change in the film-forming (film) width direction. Further, the polyimide film of the present invention has a small one-sided elongation after heat treatment.
In the flexible metal laminated plate obtained by using the polyimide film of the present invention, the dimensional change before and after removing the metal foil is small in the polyimide film film forming width direction.
Therefore, it can be suitably used for a flexible metal laminated plate (FPC) or the like in which fine wiring is formed.
Further, according to the production method of the present invention, a polyimide film having the above-mentioned excellent characteristics can be produced with excellent film forming property by adjusting the imidization ratio of the gel film or the like.
[ポリイミドフィルム]
本発明のポリイミドフィルムは、特定の線膨張係数及び異方性指数(AI値)を有する。このような特定の線膨張係数と特定のAI値とを組み合わせて有することにより、効率よく、寸法変化のバラツキが少なく、熱処理後の片伸びが少ないフィルムとすることができる。
[Polyimide film]
The polyimide film of the present invention has a specific coefficient of linear expansion and anisotropy index (AI value). By having such a specific coefficient of linear expansion and a specific AI value in combination, it is possible to efficiently obtain a film having little variation in dimensional change and little elongation after heat treatment.
なお、線膨張係数やAI値は、例えば、フィルムを構成するポリイミドの組成、フィルムの製造条件(ゲルフィルムのイミド化率、延伸条件、支持体の温度、イミド化の速度、乾燥条件など)などを選択することにより調整できる。 The linear expansion coefficient and AI value are, for example, the composition of the polyimide constituting the film, the film manufacturing conditions (the imidization rate of the gel film, the stretching conditions, the temperature of the support, the imidization rate, the drying conditions, etc.). It can be adjusted by selecting.
まず、本発明のポリイミドフィルムにおいて、フィルムの搬送方向(MD)の線膨張係数αMD及び幅方向(TD)の線膨張係数αTDの両方が、7ppm/℃以下、好ましくは6ppm/℃以下、さらに好ましくは5ppm/℃以下、特に4.5ppm/℃以下である。 First, in the polyimide film of the present invention, both the linear expansion coefficient αMD in the transport direction (MD) and the linear expansion coefficient αTD in the width direction (TD) are 7 ppm / ° C. or lower, preferably 6 ppm / ° C. or lower, more preferably. Is 5 ppm / ° C or lower, particularly 4.5 ppm / ° C or lower.
本発明のポリイミドフィルムにおいて、αMDのフィルム幅方向の線膨張係数の差は、例えば、3ppm/℃以下、好ましくは2ppm以下、さらに好ましくは1.5ppm以下であってもよい。 In the polyimide film of the present invention, the difference in the coefficient of linear expansion of αMD in the film width direction may be, for example, 3 ppm / ° C. or less, preferably 2 ppm or less, and more preferably 1.5 ppm or less.
本発明のポリイミドフィルムにおいて、αTDのフィルム幅方向の線膨張係数の差は、例えば、3ppm/℃以下、好ましくは2ppm/℃以下、さらに好ましくは1.5ppm以下であってもよい。 In the polyimide film of the present invention, the difference in linear expansion coefficient of αTD in the film width direction may be, for example, 3 ppm / ° C. or less, preferably 2 ppm / ° C. or less, and more preferably 1.5 ppm or less.
なお、線膨張係数は、例えば、TMA−50(島津製作所製)を使用し、測定温度範囲50〜200℃、昇温速度10℃/分の条件で測定できる。 The coefficient of linear expansion can be measured using, for example, TMA-50 (manufactured by Shimadzu Corporation) under the conditions of a measurement temperature range of 50 to 200 ° C. and a heating rate of 10 ° C./min.
線膨張係数は、例えば、フィルム幅方向に製膜幅両端から200mm内側に入った点を2点選び、該2点を結ぶ直線の範囲内で該2点を含む直線上の中央部±200mm以内の1点とさらに任意の2点を選び、少なくともこれら5点で線膨張係数を測定し、得られた測定値の平均値として得ることができる。 For the linear expansion coefficient, for example, select two points 200 mm inside from both ends of the film forming width in the film width direction, and within the range of the straight line connecting the two points, within ± 200 mm of the central portion on the straight line including the two points. The coefficient of linear expansion can be measured at at least these five points by selecting one point and an arbitrary two points, and can be obtained as an average value of the obtained measured values.
また、フィルム幅方向の線膨張係数の差(バラツキ)は、例えば、フィルム幅方向に製膜幅両端から200mm内側に入った点を2点選び、該2点を結ぶ直線の範囲内で該2点を含む直線上の中央部±200mm以内の1点とさらに任意の2点を選び、少なくともこれら5点で線膨張係数を測定し、得られた測定値のうち、最大値と最小値との差として得ることができる。 For the difference (variation) in the coefficient of linear expansion in the film width direction, for example, select two points that are 200 mm inward from both ends of the film forming width in the film width direction, and the difference is within the range of a straight line connecting the two points. Select one point within ± 200 mm of the central part on the straight line including the point and any two points, measure the coefficient of linear expansion at at least these five points, and of the obtained measured values, the maximum value and the minimum value It can be obtained as a difference.
また、本発明のポリイミドフィルムは、超音波パルスの伝播速度Vを測定したときの下記式で表される異方性指数AI値が、全幅にわたって15以下[例えば、0〜15(例えば、0.5〜14.8)、好ましくは14.5以下(例えば、1〜14.2)、さらに好ましくは14以下(例えば、2〜13.8)、特に13.5以下(例えば、3〜13.2)]である。 Further, in the polyimide film of the present invention, the anisotropy index AI value represented by the following formula when the propagation speed V of the ultrasonic pulse is measured is 15 or less over the entire width [for example, 0 to 15 (for example, 0. 5 to 14.8), preferably 14.5 or less (eg, 1-14.2), more preferably 14 or less (eg, 2 to 13.8), especially 13.5 or less (eg, 3 to 13. 2)].
AI=(VMAX^2−VMIN^2)/(VMAX^2+VMIN^2)
(式中、VMAX^2はパルス伝播速度の最大値の2乗、VMIN^2はパルス伝播速度の最小値の2乗を示す。)
AI = (VMAX ^ 2-VMIN ^ 2) / (VMAX ^ 2 + VMIN ^ 2)
(In the equation, VMAX ^ 2 indicates the square of the maximum value of the pulse propagation velocity, and VMIN ^ 2 indicates the square of the minimum value of the pulse propagation velocity.)
なお、AI値は、例えば、以下のようにして測定できる。
フィルム幅方向に製膜幅両端から200mm内側に入った点を2点選び、該2点を結ぶ直線の範囲内で該2点を含む直線上の中央部±200mm以内の1点とさらに任意の2点を選び、少なくともこれら5点でAIを測定する。AIは野村商事製SST−2500を使用して測定できる。SST−2500を使用すると、フィルムの面方向0〜180°(0°はMDに平行)について11.25°刻みで16方向の超音波速度が自動的に測定される。なお、角度(配向角度)は、配向軸の方向を意味しており、フィルムの機械搬送方向(MD)を基準線となる0°とし、時計方向へ回転させた側の角度で表す。得られた各方向の速度の内、最も大きいパルス伝播速度をVMAX、得られた各方向の速度のうち、最も小さいパルス伝播速度をVMINとし、これらの値からAIを求める。
The AI value can be measured, for example, as follows.
Select two points that are 200 mm inside from both ends of the film forming width in the film width direction, and within the range of the straight line connecting the two points, one point within ± 200 mm of the central part on the straight line including the two points and further arbitrary Select 2 points and measure AI at at least these 5 points. AI can be measured using SST-2500 manufactured by Nomura Shoji. When the SST-2500 is used, the ultrasonic velocity in 16 directions is automatically measured in 11.25 ° increments from 0 to 180 ° in the plane direction of the film (0 ° is parallel to the MD). The angle (orientation angle) means the direction of the orientation axis, and the machine transport direction (MD) of the film is 0 ° as a reference line, and is represented by the angle on the side rotated in the clockwise direction. Among the obtained velocities in each direction, the largest pulse propagation velocity is defined as VMAX, and among the obtained velocities in each direction, the smallest pulse propagation velocity is defined as VMIN, and AI is obtained from these values.
本発明のポリイミドフィルムの幅(製膜幅)は、特に限定されないが、特に、1000mm以上(例えば、1200〜2500mm)、好ましくは1500mm以上(例えば、1700〜2500mm)、さらに好ましくは2000mm以上(例えば、2000〜2500mm)であってもよい。 The width (film-forming width) of the polyimide film of the present invention is not particularly limited, but is particularly limited to 1000 mm or more (for example, 1200 to 2500 mm), preferably 1500 mm or more (for example, 1700 to 2500 mm), and more preferably 2000 mm or more (for example). , 2000-2500 mm).
本発明では、このような比較的広幅のフィルムにおいても、上記のような特定の線膨張係数及び異方性指数(AI値)を充足でき、寸法変化(熱収縮)のバラツキや熱処理後の片伸びを小さくできる。 In the present invention, even in such a relatively wide film, the specific linear expansion coefficient and anisotropy index (AI value) as described above can be satisfied, and variations in dimensional change (heat shrinkage) and pieces after heat treatment can be satisfied. The elongation can be reduced.
本発明のポリイミドフィルムの厚み(平均厚み)は、特に限定されず、用途等に応じて適宜選択でき、例えば、1μm以上(例えば、1〜300μm)、好ましくは2〜200μm、さらに好ましくは3〜150μm(例えば、5〜100μm)程度であってもよい。 The thickness (average thickness) of the polyimide film of the present invention is not particularly limited and can be appropriately selected depending on the intended use, for example, 1 μm or more (for example, 1 to 300 μm), preferably 2 to 200 μm, and more preferably 3 to 3. It may be about 150 μm (for example, 5 to 100 μm).
本発明のポリイミドフィルムは、前記のように、製膜幅方向における寸法変化(熱収縮)のバラツキや熱処理後の片伸びが小さい。また、本発明のポリイミドフィルムを用いて得られるフレキシブル金属積層板の製膜幅方向における寸法変化率バラツキが小さい。 As described above, the polyimide film of the present invention has a small variation in dimensional change (heat shrinkage) in the film-forming width direction and a small elongation after heat treatment. Further, the variation in the dimensional change rate in the film forming width direction of the flexible metal laminated plate obtained by using the polyimide film of the present invention is small.
例えば、本発明のポリイミドフィルムは、フレキシブル金属積層板の金属箔を除去する前後のフィルム製膜幅方向の寸法変化率のバラツキにおいて、0.05%以下、好ましくは0.04%以下であってもよい。 For example, the polyimide film of the present invention has a variation in the dimensional change rate in the film forming width direction before and after removing the metal foil of the flexible metal laminate, which is 0.05% or less, preferably 0.04% or less. May be good.
また、本発明のポリイミドフィルムにおいて、幅方向の200℃における熱収縮率差は、0.05%以下、好ましくは0.04%以下、さらに好ましくは0.02%以下であってもよい。 Further, in the polyimide film of the present invention, the difference in heat shrinkage at 200 ° C. in the width direction may be 0.05% or less, preferably 0.04% or less, and more preferably 0.02% or less.
なお、フィルム幅方向における、寸法変化率のバラツキや熱収縮率差は、例えば、フィルム幅方向に製膜幅両端から200mm内側に入った点を2点選び、該2点を結ぶ直線の範囲内で該2点を含む直線上の中央部±200mm以内の1点とさらに任意の2点を選び、少なくともこれら5点で寸法変化率や熱収縮率を測定し、得られた測定値のうち、最大値と最小値との差として得ることができる。 The variation in the dimensional change rate and the difference in the heat shrinkage rate in the film width direction are, for example, within the range of a straight line connecting the two points by selecting two points 200 mm inside from both ends of the film forming width in the film width direction. Select one point within ± 200 mm of the central part on the straight line including the two points and any other two points, measure the dimensional change rate and heat shrinkage rate at at least these five points, and among the obtained measured values, It can be obtained as the difference between the maximum value and the minimum value.
さらに、本発明のポリイミドフィルムは、幅508mm及び長さ6.5mにおいて、200℃で30分間処理したときの片伸び(後述の図1におけるaの長さ)が、5mm以下、好ましくは4mm以下、さらに好ましくは3.5mm以下であってもよい。 Further, the polyimide film of the present invention has a width of 508 mm and a length of 6.5 m, and has a one-sided elongation (length of a in FIG. 1 described later) when treated at 200 ° C. for 30 minutes, which is 5 mm or less, preferably 4 mm or less. , More preferably 3.5 mm or less.
本発明のフィルムは、ポリイミドで構成(又は形成)されている。以下に、フィルムの製法とともに、ポリイミドについても説明する。 The film of the present invention is composed (or formed) of polyimide. The polyimide will be described below as well as the film manufacturing method.
[ポリイミド及びポリイミドフィルムの製造方法]
ポリイミド(又はポリアミック酸)は、芳香族ジアミン成分と酸無水物成分とを重合成分とする。
[Manufacturing method of polyimide and polyimide film]
Polyimide (or polyamic acid) has an aromatic diamine component and an acid anhydride component as a polymerization component.
具体的には、ポリイミド(又はポリイミドフィルム)を製造するに際して、まず、芳香族ジアミン成分と酸無水物成分とを有機溶媒中で重合させることにより、ポリアミック酸(ポリイミド前駆体)溶液を得る。 Specifically, when producing a polyimide (or polyimide film), first, a polyamic acid (polyimide precursor) solution is obtained by polymerizing an aromatic diamine component and an acid anhydride component in an organic solvent.
芳香族ジアミン成分は、通常、パラフェニレンジアミン(PPD)を少なくとも含む。芳香族ジアミン成分は、パラフェニレンジアミン以外ものを含んでいてもよく、パラフェニレンジアミン以外の前記芳香族ジアミン成分の具体例としては、メタフェニレンジアミン、ベンジジン、パラキシリレンジアミン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルホン、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、1,5−ジアミノナフタレン、3,3’−ジメトキシベンジジン、1,4−ビス(3メチル−5アミノフェニル)ベンゼン及びこれらのアミド形成性誘導体が挙げられる。
これらは、1種単独で使用してもよく、2種以上を混合して用いてもよい。
芳香族ジアミン成分としては、パラフェニレンジアミン(PPD)と、4,4’−ジアミノジフェニルエーテル及び/又は3,4’−ジアミノジフェニルエーテル(DPE)との組み合わせが好ましく、特に、パラフェニレンジアミン(PPD)と、4,4’−ジアミノジフェニルエーテル及び/又は3,4’−ジアミノジフェニルエーテル(DPE)との組み合わせが好ましく、特に、パラフェニレンジアミン(PPD)と、4,4’−ジアミノジフェニルエーテル(DPE)との組み合わせが好ましい。
The aromatic diamine component usually contains at least para-phenylenediamine (PPD). The aromatic diamine component may contain a component other than paraphenylenediamine, and specific examples of the aromatic diamine component other than paraphenylenediamine include metaphenylenediamine, benzidine, paraxylylene diamine, 4,4'-. Diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 1,5-diaminonaphthalene, Examples thereof include 3,3'-dimethoxybenzidine, 1,4-bis (3 methyl-5 aminophenyl) benzene and amide-forming derivatives thereof.
These may be used individually by 1 type, or may be used by mixing 2 or more types.
As the aromatic diamine component, a combination of para-phenylenediamine (PPD) and 4,4'-diaminodiphenyl ether and / or 3,4'-diaminodiphenyl ether (DPE) is preferable, and para-phenylenediamine (PPD) is particularly used. , 4,4'-Diaminodiphenyl ether and / or combination with 3,4'-diaminodiphenyl ether (DPE) is preferable, and in particular, a combination of para-phenylenediamine (PPD) and 4,4'-diaminodiphenyl ether (DPE). Is preferable.
芳香族ジアミン成分がパラフェニレンジアミンを含む場合、芳香族ジアミン成分に対するパラフェニレンジアミンの割合は、例えば、20モル%以上(例えば、25〜100モル%)、好ましくは30モル%以上(例えば、31〜80モル%)、さらに好ましくは35モル%以上(例えば、37〜70モル%)であってもよく、通常30〜50モル%(例えば、35〜45モル%)であってもよい。 When the aromatic diamine component contains paraphenylenediamine, the ratio of paraphenylenediamine to the aromatic diamine component is, for example, 20 mol% or more (for example, 25 to 100 mol%), preferably 30 mol% or more (for example, 31). ~ 80 mol%), more preferably 35 mol% or more (eg 37-70 mol%), and usually 30-50 mol% (eg 35-45 mol%).
パラフェニレンジアミン(PPD)と、4,4’−ジアミノジフェニルエーテル及び/又は3,4’−ジアミノジフェニルエーテル(DPE)とを組み合わせる場合、これらの割合は、PPD/DPE(モル比)=80/20〜30/70、好ましくは75/25〜35/65(例えば、70/30〜35/65)程度であってもよく、通常60/40〜30/70(例えば、50/50〜35/65、好ましくは45/55〜37/63)であってもよい。 When para-phenylenediamine (PPD) is combined with 4,4'-diaminodiphenyl ether and / or 3,4'-diaminodiphenyl ether (DPE), the ratio of these is PPD / DPE (molar ratio) = 80/20 ~ It may be about 30/70, preferably about 75/25 to 35/65 (for example, 70/30 to 35/65), and usually 60/40 to 30/70 (for example, 50/50 to 35/65). It may be preferably 45/55 to 37/63).
酸無水物成分(又は酸のアミド形成性誘導体)としては、例えば、ピロメリット酸、3,3’,4,4’−ジフェニルテトラカルボン酸、2,3’,3,4’−ジフェニルテトラカルボン酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸、2,2−ビス(3,4−ジカルボキシフェニル)エーテル、ピリジン−2,3,5,6−テトラカルボン酸等の芳香族テトラカルボン酸の無水物が挙げられる。これらは、1種単独で使用してもよく、2種以上を混合して用いてもよい。これらの中でも、ピロメリット酸二無水物(PMPA)、3,3’,4,4’−ジフェニルテトラカルボン酸二無水物(BPDA)が好ましく、特に、これらを組み合わせるのが好ましい。 Examples of the acid anhydride component (or an amide-forming derivative of the acid) include pyromellitic acid, 3,3', 4,4'-diphenyltetracarboxylic acid, 2,3', 3,4'-diphenyltetracarboxylic acid. Acid, 3,3', 4,4'-benzophenone tetracarboxylic acid, 2,3,6,7-naphthalene tetracarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl) ether, pyridine-2, Examples thereof include anhydrides of aromatic tetracarboxylic acids such as 3,5,6-tetracarboxylic acids. These may be used alone or in combination of two or more. Among these, pyromellitic dianhydride (PMPA) and 3,3', 4,4'-diphenyltetracarboxylic dianhydride (BPDA) are preferable, and it is particularly preferable to combine them.
酸無水物成分がBPDAを含む場合、酸無水物成分に対するBPDAの割合は、例えば、15モル%以上(例えば、15〜100モル%)、好ましくは20モル%以上(例えば、22〜90モル%)、好ましくは25モル%以上(例えば、28〜80モル%)、さらに好ましくは30モル%以上(例えば、32〜60モル%)であってもよく、通常25〜45モル%(例えば、30〜40モル%)であってもよい。 When the acid anhydride component contains BPDA, the ratio of BPDA to the acid anhydride component is, for example, 15 mol% or more (for example, 15 to 100 mol%), preferably 20 mol% or more (for example, 22 to 90 mol%). ), Preferably 25 mol% or more (eg, 28-80 mol%), more preferably 30 mol% or more (eg, 32-60 mol%), and usually 25-45 mol% (eg, 30). ~ 40 mol%).
ピロメリット酸二無水物(PMPA)と3,3’,4,4’−ジフェニルテトラカルボン酸二無水物(BPDA)とを組み合わせる場合、これらの割合は、PMPA/BPDA(モル比)=90/10〜20/80、好ましくは85/15〜30/70、さらに好ましくは80/20〜35/65(例えば、75/25〜40/60)程度であってもよく、通常70/30〜50/50(例えば、70/30〜55/45、好ましくは69/31〜60/40)であってもよい。 When combining pyromellitic dianhydride (PMPA) and 3,3', 4,4'-diphenyltetracarboxylic dianhydride (BPDA), the ratio of these is PMPA / BPDA (molar ratio) = 90 / It may be about 10 to 20/80, preferably 85/15 to 30/70, more preferably 80/20 to 35/65 (for example, 75/25 to 40/60), and usually 70/30 to 50. It may be / 50 (for example, 70/30 to 55/45, preferably 69/31 to 60/40).
ポリアミック酸溶液の形成に使用される有機溶媒としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド系溶媒、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド等のホルムアミド系溶媒、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド等のアセトアミド系溶媒、N−メチル−2−ピロリドン、N−ビニル−2−ピロリドン等のピロリドン系溶媒、フェノール、o−,m−,又はp−クレゾール、キシレノール、ハロゲン化フェノール、カテコール等のフェノール系溶媒又はヘキサメチルホスホルアミド、γ−ブチロラクトン等の非プロトン性極性溶媒を挙げることができ、これらを単独又は2種以上を使用した混合物として用いるのが望ましいが、さらにはキシレン、トルエン等の芳香族炭化水素の使用も可能である。 Examples of the organic solvent used for forming the polyamic acid solution include sulfoxide-based solvents such as dimethyl sulfoxide and diethyl sulfoxide, formamide-based solvents such as N, N-dimethylformamide and N, N-diethylformamide, and N, N-. Acetamide solvents such as dimethylacetamide, N, N-diethylacetamide, pyroridone solvents such as N-methyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, phenol, o-, m-, or p-cresol, xylenol. , Phenolic solvents such as halogenated phenol and catechol, or aprotonic polar solvents such as hexamethylphospholamide and γ-butyrolactone, and it is desirable to use these alone or as a mixture using two or more kinds. However, it is also possible to use aromatic hydrocarbons such as xylene and toluene.
重合方法は、公知のいずれの方法で行ってもよく、例えば
(1)先に芳香族ジアミン成分全量を溶媒中に入れ、その後、酸無水物成分を芳香族ジアミン成分全量と当量(等モル)になるように加えて重合する方法。
(2)先に酸無水物成分全量を溶媒中に入れ、その後、芳香族ジアミン成分を酸無水物成分と当量になるように加えて重合する方法。
(3)一方の芳香族ジアミン成分(a1)を溶媒中に入れた後、反応成分に対して一方の酸無水物成分(b1)が95〜105モル%となる比率で反応に必要な時間混合した後、もう一方の芳香族ジアミン成分(a2)を添加し、続いて、もう一方の酸無水物成分(b2)を全芳香族ジアミン成分と全酸無水物成分とがほぼ当量になるように添加して重合する方法。
(4)一方の酸無水物成分(b1)を溶媒中に入れた後、反応成分に対して一方の芳香族ジアミン成分(a1)が95〜105モル%となる比率で反応に必要な時間混合した後、もう一方の酸無水物成分(b2)を添加し、続いてもう一方の芳香族ジアミン成分(a2)を全芳香族ジアミン成分と全酸無水物成分とがほぼ当量になるように添加して重合する方法。
(5)溶媒中で一方の芳香族ジアミン成分と酸無水物成分をどちらかが過剰になるよう反応させてポリアミック酸溶液(A)を調整し、別の溶媒中でもう一方の芳香族ジアミン成分と酸無水物成分をどちらかが過剰になるよう反応させてポリアミック酸溶液(B)を調整する。こうして得られた各ポリアミック酸溶液(A)と(B)を混合し、重合を完結する方法。この時ポリアミック酸溶液(A)を調整するに際し芳香族ジアミン成分が過剰の場合、ポリアミック酸溶液(B)では酸無水物成分を過剰に、またポリアミック酸溶液(A)で酸無水物成分が過剰の場合、ポリアミック酸溶液(B)では芳香族ジアミン成分を過剰にし、ポリアミック酸溶液(A)と(B)を混ぜ合わせこれら反応に使用される全芳香族ジアミン成分と全酸無水物成分とがほぼ当量になるように調整する。なお、重合方法はこれらに限定されることはなく、その他公知の方法を用いてもよい。
The polymerization method may be any known method. For example, (1) first put the entire amount of the aromatic diamine component in the solvent, and then add the acid anhydride component to the total amount of the aromatic diamine component (equal molar). A method of polymerizing in addition to.
(2) A method in which the entire amount of the acid anhydride component is first put into a solvent, and then the aromatic diamine component is added so as to be equivalent to the acid anhydride component for polymerization.
(3) After putting one aromatic diamine component (a1) in a solvent, mix for the time required for the reaction at a ratio of one acid anhydride component (b1) to 95 to 105 mol% with respect to the reaction component. After that, the other aromatic diamine component (a2) is added, and then the other acid anhydride component (b2) is adjusted so that the total aromatic diamine component and the total acid anhydride component are approximately equivalent. A method of adding and polymerizing.
(4) After putting one acid anhydride component (b1) in a solvent, mix for the time required for the reaction at a ratio of one aromatic diamine component (a1) to 95 to 105 mol% with respect to the reaction component. After that, the other acid anhydride component (b2) is added, and then the other aromatic diamine component (a2) is added so that the total aromatic diamine component and the total acid anhydride component are approximately equivalent. And polymerize.
(5) One aromatic diamine component and an acid anhydride component are reacted in an excess in a solvent to prepare a polyamic acid solution (A), and the other aromatic diamine component is prepared in another solvent. And the acid anhydride component are reacted so that either one becomes excessive to prepare a polyamic acid solution (B). A method of mixing each of the polyamic acid solutions (A) and (B) thus obtained to complete the polymerization. At this time, if the aromatic diamine component is excessive when preparing the polyamic acid solution (A), the acid anhydride component is excessive in the polyamic acid solution (B) and the acid anhydride component is excessive in the polyamic acid solution (A). In the case of, the aromatic diamine component is excessive in the polyamic acid solution (B), the polyamic acid solutions (A) and (B) are mixed, and the total aromatic diamine component and the total acid anhydride component used in these reactions are mixed. Adjust so that they are almost equivalent. The polymerization method is not limited to these, and other known methods may be used.
なお、ポリアミック酸溶液は、フィルムの易滑性を得るため必要に応じて、酸化チタン、微細シリカ、炭酸カルシウム、リン酸カルシウム、リン酸水素カルシウム、ポリイミドフィラー等の化学的に不活性な有機フィラー又は無機フィラー等を含有していてもよい。 The polyamic acid solution is a chemically inactive organic filler such as titanium oxide, fine silica, calcium carbonate, calcium phosphate, calcium hydrogen phosphate, polyimide filler, or an inorganic filler, as necessary to obtain the slipperiness of the film. It may contain a filler or the like.
ポリアミック酸溶液は、通常、5〜40重量%程度の固形分を含有し、好ましくは10〜30重量%程度の固形分を含有する。また、その粘度は、ブルックフィールド粘度計による測定値で通常10〜2000Pa・s程度であってもよく、安定した送液のために、好ましくは100〜1000Pa・s程度であってもよい。また、有機溶媒溶液中のポリアミック酸は部分的にイミド化されていてもよい。 The polyamic acid solution usually contains about 5 to 40% by weight of solids, preferably about 10 to 30% by weight of solids. Further, the viscosity may be usually about 10 to 2000 Pa · s as measured by a Brookfield viscometer, and preferably about 100 to 1000 Pa · s for stable liquid feeding. Further, the polyamic acid in the organic solvent solution may be partially imidized.
次に、ポリイミドフィルムの製造方法について説明する。ポリイミドフィルムを製膜(製造)は、例えば、ポリアミック酸溶液を環化反応させてゲルフィルムを得る工程(1)、得られたゲルフィルムを加熱(及び脱溶媒)処理する工程(2)を経て得ることができる。なお、加熱処理により、乾燥及びイミド化が進行する。 Next, a method for producing the polyimide film will be described. The film formation (manufacturing) of the polyimide film is carried out, for example, through a step (1) of cyclizing a polyamic acid solution to obtain a gel film and a step (2) of heating (and desolving) the obtained gel film. Obtainable. In addition, drying and imidization proceed by the heat treatment.
工程(1)において、ポリアミック酸溶液を環化反応させる方法は、特に限定されないが、具体的には、(i)ポリアミック酸溶液をフィルム状にキャストし、熱的に脱水環化させてゲルフィルムを得る方法(熱閉環法)、又は(ii)ポリアミック酸溶液に環化触媒及び転化剤(脱水剤)を混合し化学的に脱環化させてゲルフィルムを作製し、加熱により、ゲルフィルムを得る方法(化学閉環法)等が挙げられ、特に後者の方法が好ましい。上記ポリアミック酸溶液は、ゲル化遅延剤等を含有することができる。ゲル化遅延剤としては、特に限定されず、アセチルアセトン等を使用することができる。 In the step (1), the method for ring-forming the polyamic acid solution is not particularly limited, but specifically, (i) the polyamic acid solution is cast into a film and thermally dehydrated and cyclized to form a gel film. (Thermal ring closure method) or (ii) A cyclization catalyst and a conversion agent (dehydrating agent) are mixed with a polyamic acid solution and chemically decyclized to prepare a gel film, and the gel film is heated by heating. Examples thereof include a method for obtaining (chemical ring closure method), and the latter method is particularly preferable. The polyamic acid solution can contain a gelation retarder and the like. The gelation retarder is not particularly limited, and acetylacetone or the like can be used.
環化触媒としては、アミン類、例えば、脂肪族第3級アミン(トリメチルアミン、トリエチレンジアミンなど)、芳香族第3級アミン(ジメチルアニリンなど)、複素環第3級アミン(例えば、イソキノリン、ピリジン、β−ピコリンなど)などが挙げられる。これらは、1種単独で使用してもよく、2種以上を混合して用いてもよい。これらのうち、β−ピコリンなどの複素環式第3級アミンが好ましい。 Examples of the cyclization catalyst include amines such as aliphatic tertiary amines (trimethylamine, triethylenediamine, etc.), aromatic tertiary amines (dimethylaniline, etc.), heterocyclic tertiary amines (eg, isoquinoline, pyridine, etc.). (Β-picoline, etc.) and the like. These may be used individually by 1 type, or may be used by mixing 2 or more types. Of these, heterocyclic tertiary amines such as β-picoline are preferred.
脱水剤としては、酸無水物、例えば、脂肪族カルボン酸無水物(例えば、無水酢酸、無水プロピオン酸、無水酪酸など)、芳香族カルボン酸無水物(例えば、無水安息香酸など)などが挙げられる。これらは、1種単独で使用してもよく、2種以上を混合して用いてもよい。これらの中でも、無水酢酸及び/又は無水安息香酸が好ましく、特に無水酢酸が好ましい。 Examples of the dehydrating agent include acid anhydrides, for example, aliphatic carboxylic acid anhydrides (for example, acetic anhydride, propionic anhydride, butyric anhydride, etc.), aromatic carboxylic acid anhydrides (for example, benzoic anhydride, etc.) and the like. .. These may be used individually by 1 type, or may be used by mixing 2 or more types. Among these, acetic anhydride and / or benzoic anhydride are preferable, and acetic anhydride is particularly preferable.
環化触媒及び脱水剤の使用量は、特に限定されないが、それぞれ、ポリアミック酸(又はポリアミド酸)のアミド基(又はカルボキシル基)1モルに対して、例えば、1モル以上(例えば、1.5〜10モル)、好ましくは2モル以上(例えば、2.2〜8モル)、さらに好ましくは2.5モル以上(例えば、2.7〜5モル)程度であってもよく、通常2〜4モル(例えば、2.5〜3.3モル)程度であってもよい。 The amounts of the cyclization catalyst and the dehydrating agent used are not particularly limited, but are, for example, 1 mol or more (for example, 1.5) with respect to 1 mol of the amide group (or carboxyl group) of the polyamic acid (or polyamic acid). It may be about 10 mol), preferably 2 mol or more (for example, 2.2 to 8 mol), more preferably 2.5 mol or more (for example, 2.7 to 5 mol), and usually 2 to 4 mol. It may be about mol (for example, 2.5 to 3.3 mol).
ゲルフィルム(自己支持性を有するゲルフィルム)は、通常、ポリアミック酸溶液(特に環化触媒及び転化剤を混合したポリアミック酸溶液)を、支持体上に流延(塗布)して部分的に乾燥及び硬化(イミド化)させることで得ることができる。 A gel film (a gel film having self-supporting property) is usually obtained by casting (coating) a polyamic acid solution (particularly a polyamic acid solution in which a cyclization catalyst and a conversion agent are mixed) on a support and partially drying the gel film. And can be obtained by curing (imidization).
より具体的には、ゲルフィルムは、ポリアミック酸溶液を、スリット付き口金から支持体上に流延してフィルム状に成型し、支持体からの受熱、熱風又は電気ヒーター等の熱源からの受熱により、加熱して閉環反応させ、遊離した有機溶媒等の揮発分を乾燥させることにより自己支持性を有するゲルフィルムとした後、支持体から剥離することにより得てもよい。 More specifically, the gel film is formed by casting a polyamic acid solution from a mouthpiece with a slit onto a support to form a film, and receiving heat from the support, hot air, or a heat source such as an electric heater. , The ring-closing reaction is carried out by heating, and the volatile components such as the liberated organic solvent are dried to form a gel film having self-supporting property, and then the gel film may be peeled off from the support.
支持体としては、特に限定されないが、金属(例えばステンレス)製の回転ドラム、エンドレスベルト等が例として挙げられる。支持体の温度は、特に限定されず、例えば、30〜200℃、好ましくは40〜150℃、さらに好ましくは50〜120℃であってもよく、特に70〜100℃(例えば、75〜95℃)程度であってもよい。 The support is not particularly limited, and examples thereof include a rotating drum made of metal (for example, stainless steel), an endless belt, and the like. The temperature of the support is not particularly limited and may be, for example, 30 to 200 ° C., preferably 40 to 150 ° C., more preferably 50 to 120 ° C., particularly 70 to 100 ° C. (for example, 75 to 95 ° C.). ) May be the case.
なお、支持体の温度は、(i)液体又は気体の熱媒体、(ii)電気ヒーター等の輻射熱等により制御できる。 The temperature of the support can be controlled by (i) a liquid or gas heat medium, (ii) radiant heat from an electric heater or the like.
ゲルフィルム(加熱処理に供するゲルフィルム、支持体から剥離したゲルフィルム)のイミド化率は、例えば、50〜80%、好ましくは52〜78%、さらに好ましくは55〜75%(例えば、57〜73%)程度であってもよい。 The imidization rate of the gel film (gel film to be subjected to heat treatment, gel film peeled from the support) is, for example, 50 to 80%, preferably 52 to 78%, and more preferably 55 to 75% (for example, 57 to 57 to). It may be about 73%).
なお、イミド化率は、FT−IRを用いて1375cm−1と1500cm−1のピーク高さの比によって求める下式によって表される。 Note that the imidization ratio is represented by the following formula determined by the ratio of the peak height of 1375 cm -1 and 1500 cm -1 using FT-IR.
イミド化率(%)=A/B×100
[式中、Aは(測定対象のフィルムの1375cm−1のピーク高さ)/(測定対象のフィルムの1500cm−1のピーク高さ)、Bは(基準となるポリイミドフィルムの1375cm−1のピーク高さ)/(基準となるフィルムの1500cm−1のピーク高さ)を示す。]
Imidization rate (%) = A / B × 100
[In the formula, A (1375 cm peak height of -1 of the measurement target film) / (the peak of 1500 cm -1 of the height of the measurement target film), B is the peak of 1375 cm -1 of the polyimide film comprising (reference Height) / (peak height of 1500 cm -1 of the reference film) is shown. ]
ゲルフィルムのイミド化率を上記のような範囲とすることで、本発明のポリイミドフィルムを効率良く得やすい。 By setting the imidization ratio of the gel film in the above range, the polyimide film of the present invention can be easily obtained efficiently.
工程(2)では、ゲルフィルムを加熱[及び乾燥(脱溶媒)]処理する。通常、工程(2)は、ゲルフィルムの幅方向両端を把持しつつ加熱炉(テンター加熱路など)を通過させて、熱処理(及び乾燥)を行う工程を含んでいてもよい。 In step (2), the gel film is heated [and dried (desolventized)]. Usually, the step (2) may include a step of performing heat treatment (and drying) by passing the gel film through a heating furnace (such as a tenter heating path) while grasping both ends in the width direction of the gel film.
具体的には、支持体から剥離されたゲルフィルムは、特に限定されないが、通常、回転ロールにより走行速度を規制しながら搬送方向に延伸されてもよい。搬送方向への延伸は、140℃以下の温度で実施されてもよい。その延伸倍率(MDX)は、通常1.05〜1.9倍であり、好ましくは1.1〜1.6倍であり、さらに好ましくは1.1〜1.5倍(例えば、1.15〜1.3倍)である。 Specifically, the gel film peeled from the support is not particularly limited, but usually, the gel film may be stretched in the transport direction while regulating the traveling speed by a rotating roll. Stretching in the transport direction may be carried out at a temperature of 140 ° C. or lower. The draw ratio (MDX) is usually 1.05 to 1.9 times, preferably 1.1 to 1.6 times, and more preferably 1.1 to 1.5 times (for example, 1.15). ~ 1.3 times).
また、ゲルフィルム(特に、搬送方向に延伸されたゲルフィルム)は、テンター装置に導入され、テンタークリップに幅方向両端部を把持されて、テンタークリップと共に走行しながら、幅方法へ延伸されてもよい。 Further, even if the gel film (particularly the gel film stretched in the transport direction) is introduced into the tenter device, both ends in the width direction are gripped by the tenter clip, and the gel film is stretched in the width method while traveling together with the tenter clip. Good.
幅方向への延伸は、200℃以上の温度で実施されてもよい。その延伸倍率(TDX)は、例えば、MDXの1.1〜1.5倍であり、好ましくは1.2〜1.45倍であってもよい。具体的な延伸倍率(TDX)は、例えば、1.1〜2倍、好ましくは1.3〜1.8倍、さらに好ましくは1.35〜1.7倍(例えば、1.4〜1.6倍)であってもよい。 Stretching in the width direction may be carried out at a temperature of 200 ° C. or higher. The stretch ratio (TDX) may be, for example, 1.1 to 1.5 times that of MDX, preferably 1.2 to 1.45 times. The specific draw ratio (TDX) is, for example, 1.1 to 2 times, preferably 1.3 to 1.8 times, more preferably 1.35 to 1.7 times (for example, 1.4 to 1. 6 times).
このようにして得られたポリイミドフィルムが得られる。得られたポリイミドフィルムに対しては、さらにアニール処理や、易接着処理(例えば、コロナ処理、プラズマ処理のような電気処理又はブラスト処理)を行ってもよい。 The polyimide film thus obtained can be obtained. The obtained polyimide film may be further subjected to an annealing treatment or an easy-adhesion treatment (for example, an electric treatment such as a corona treatment or a plasma treatment or a blast treatment).
[フレキシブル金属積層板]
本発明のポリイミドフィルムは、例えば、フレキシブル金属積層板(フレキシブルプリント配線板)の絶縁性フィルムとして利用できる。
[Flexible metal laminate]
The polyimide film of the present invention can be used, for example, as an insulating film for a flexible metal laminated board (flexible printed wiring board).
そのため、本発明には、本発明のポリイミドフィルムを備えたフレキシブル金属積層板を含む。このようなフレキシブル金属積層板は、通常、ポリイミドフィルムと金属箔とを備えている。 Therefore, the present invention includes a flexible metal laminate provided with the polyimide film of the present invention. Such a flexible metal laminate usually includes a polyimide film and a metal foil.
金属箔を構成する金属の種類は特に限定はないが、例として銅及び銅合金、ステンレス鋼及びその合金、ニッケル及びニッケル合金(42合金も含む)、アルミニウム及びアルミニウム合金等が挙げられる。好ましくは銅及び銅合金である。また、これらの金属表面に防錆層や耐熱層(例えば、クロム、亜鉛等のメッキ処理)、シランカップリング剤等を形成したものも利用できる。好ましくは銅及び/又は、ニッケル、亜鉛、鉄、クロム、コバルト、モリブテン、タングステン、バナジウム、ベリリウム、チタン、スズ、マンガン、アルミニウム、燐、珪素等のうち、少なくとも1種以上の成分と銅を含む銅合金であり、これらは回路加工上好まれて使用される。特に望ましい金属箔としては圧延又は電解メッキ法によって形成された銅箔であり、その厚さは3〜150μmが好ましく、3〜35μmがより好ましい。 The type of metal constituting the metal foil is not particularly limited, and examples thereof include copper and copper alloys, stainless steel and its alloys, nickel and nickel alloys (including 42 alloys), aluminum and aluminum alloys, and the like. Copper and copper alloys are preferred. Further, those having a rust preventive layer, a heat resistant layer (for example, plating treatment of chromium, zinc, etc.), a silane coupling agent, or the like formed on these metal surfaces can also be used. Preferably, it contains at least one component of copper and / or nickel, zinc, iron, chromium, cobalt, molybdenum, tungsten, vanadium, beryllium, titanium, tin, manganese, aluminum, phosphorus, silicon and the like and copper. Copper alloys, which are preferred for circuit processing. A particularly desirable metal foil is a copper foil formed by rolling or electroplating, and the thickness thereof is preferably 3 to 150 μm, more preferably 3 to 35 μm.
金属箔は両面共に如何なる粗化処理も施されていないものであっても、片面若しくは両面に粗化処理が施されていてもよい。 The metal foil may not have been subjected to any roughening treatment on both sides, or may be roughened on one side or both sides.
フレキシブル金属積層板は、ポリイミドフィルム及び金属箔を備えている限り、その積層の形態は特に限定されず、例えば、ポリイミドフィルムと金属箔とが直接的に積層されていてもよく、接着層(接着剤層)を介してポリイミドフィルムと金属箔とが積層され(貼り合わせられ)てもよい。 The flexible metal laminate is not particularly limited in the form of lamination as long as it includes the polyimide film and the metal foil. For example, the polyimide film and the metal foil may be directly laminated, and an adhesive layer (adhesive) may be provided. The polyimide film and the metal foil may be laminated (bonded) via the agent layer).
接着層を構成する接着成分は、特に限定されず、例えば、熱硬化性樹脂、熱可塑性樹脂のいずれであってもよい。特に、接着層は、熱可塑性ポリイミドで構成してもよい。 The adhesive component constituting the adhesive layer is not particularly limited, and may be, for example, a thermosetting resin or a thermoplastic resin. In particular, the adhesive layer may be made of thermoplastic polyimide.
そのため、本発明には、前記ポリイミドフィルムの少なくとも片面に熱可塑性ポリイミド層(熱可塑性ポリイミドで構成された接着層)を有する接着フィルム(積層フィルム)も含まれる。 Therefore, the present invention also includes an adhesive film (laminated film) having a thermoplastic polyimide layer (adhesive layer composed of thermoplastic polyimide) on at least one side of the polyimide film.
熱可塑性ポリイミドは、前駆体であるポリアミック酸をイミド化することにより得られる。熱可塑性ポリイミドの前駆体についても、特に限定されるわけではなく、公知のあらゆるポリアミック酸を用いることができる。またその製造に関しても、公知の原料や反応条件等を用いることができる。また、必要に応じて無機又は有機物のフィラーを添加してもよい。 The thermoplastic polyimide is obtained by imidizing the precursor polyamic acid. The precursor of the thermoplastic polyimide is not particularly limited, and any known polyamic acid can be used. Also, known raw materials, reaction conditions and the like can be used for the production thereof. Inorganic or organic fillers may be added as needed.
熱可塑性ポリイミドのガラス転移温度は、例えば、150℃〜350℃程度であってもよい。 The glass transition temperature of the thermoplastic polyimide may be, for example, about 150 ° C. to 350 ° C.
接着フィルムは、上記ポリイミドフィルム(非熱可塑性ポリイミドフィルム)の少なくとも片面に熱可塑性ポリイミドを含有する接着層を設けることにより得られる。その具体的な製造方法としては、基材フィルムとなるポリイミドフィルムに接着層を形成する方法、又は接着層をシート状に成形し、これを上記ポリイミドフィルムに貼り合わせる方法等が好適に例示される。このうち、前者の方法を採る場合、接着層に含有される熱可塑性ポリイミドの前駆体であるポリアミック酸を完全にイミド化してしまうと、有機溶媒への溶解性が低下する場合があることから、ポリイミドフィルム上に上記接着層を設けることが困難となる場合がある。従って、上記観点から、熱可塑性ポリイミドの前駆体であるポリアミック酸を含有する溶液を調製して、これを基材フィルムに塗布し、次いでイミド化する手順を採った方がより好ましい。 The adhesive film can be obtained by providing an adhesive layer containing a thermoplastic polyimide on at least one side of the polyimide film (non-thermoplastic polyimide film). As a specific manufacturing method thereof, a method of forming an adhesive layer on a polyimide film to be a base film, a method of forming an adhesive layer into a sheet shape, and a method of bonding the adhesive layer to the polyimide film are preferably exemplified. .. Of these, when the former method is adopted, if the polyamic acid, which is a precursor of the thermoplastic polyimide contained in the adhesive layer, is completely imidized, the solubility in an organic solvent may decrease. It may be difficult to provide the adhesive layer on the polyimide film. Therefore, from the above viewpoint, it is more preferable to take a procedure of preparing a solution containing a polyamic acid which is a precursor of thermoplastic polyimide, applying the solution to the base film, and then imidizing the solution.
ポリアミック酸溶液をポリイミドフィルムに流延、塗布する方法については特に限定されず、ダイコーター、リバースコーター、ブレードコーター等、既存の方法を使用することができる。接着層は連続的に形成する場合に、発明の効果が顕著となる。すなわち、上述のようにして得られたポリイミドフィルムを巻き取り、これを繰り出して、熱可塑性ポリイミドの前駆体であるポリアミック酸を含む溶液を、連続的に塗布する方法である。また、前記ポリアミック酸溶液には、用途に応じて、例えば、フィラーのような他の材料を含んでもよい。また耐熱性接着フィルム各層の厚み構成については、用途に応じた総厚みになるように適宜調整すればよい。 The method of casting and applying the polyamic acid solution to the polyimide film is not particularly limited, and existing methods such as a die coater, a reverse coater, and a blade coater can be used. When the adhesive layer is continuously formed, the effect of the invention becomes remarkable. That is, it is a method in which the polyimide film obtained as described above is wound up, unwound, and a solution containing polyamic acid, which is a precursor of thermoplastic polyimide, is continuously applied. In addition, the polyamic acid solution may contain other materials such as fillers, depending on the intended use. Further, the thickness structure of each layer of the heat-resistant adhesive film may be appropriately adjusted so as to have a total thickness according to the application.
イミド化の方法としては、加熱イミド化法又は化学的イミド化法のどちらも用いることができる。いずれのイミド化手順を採る場合も、イミド化を効率良く進めるために加熱を行うが、その時の温度は、(熱可塑性ポリイミドのガラス転移温度−100℃)〜(ガラス転移温度+200℃)の範囲内に設定することが好ましく、(熱可塑性ポリイミドのガラス転移温度−50℃)〜(ガラス転移温度+150℃)の範囲内に設定することがより好ましい。加熱温度は高い方がイミド化が起こりやすいため、イミド化速度を速くすることができ、生産性の面で好ましい。但し、高すぎると熱可塑性ポリイミドが熱分解を起こすことがある。一方、加熱温度が低すぎると、化学的イミド化でもイミド化が進みにくく、イミド化工程に要する時間が長くなってしまう。 As the imidization method, either a thermal imidization method or a chemical imidization method can be used. In any of the imidization procedures, heating is performed in order to promote imidization efficiently, and the temperature at that time is in the range of (glass transition temperature of thermoplastic polyimide -100 ° C) to (glass transition temperature + 200 ° C). It is preferable to set it in the range of (glass transition temperature of thermoplastic polyimide −50 ° C.) to (glass transition temperature + 150 ° C.). Since imidization is more likely to occur at a higher heating temperature, the imidization rate can be increased, which is preferable in terms of productivity. However, if it is too high, the thermoplastic polyimide may cause thermal decomposition. On the other hand, if the heating temperature is too low, imidization is difficult to proceed even with chemical imidization, and the time required for the imidization step becomes long.
イミド化時間に関しては、実質的にイミド化及び乾燥が完結するに十分な時間を取ればよく、特に限定されるものではない。 The imidization time is not particularly limited as long as it takes a sufficient time to substantially complete imidization and drying.
熱可塑性ポリイミドの厚さは0.1μm以上30μm以下が好ましく、0.5μm以上20μm以下がより好ましい。 The thickness of the thermoplastic polyimide is preferably 0.1 μm or more and 30 μm or less, and more preferably 0.5 μm or more and 20 μm or less.
非熱可塑性ポリイミドと金属の加熱圧着方法としては、非熱可塑性ポリイミドフィルムに熱可塑性ポリイミドの前駆体のポリアミック酸及び/またはポリイミド溶液を塗布・乾燥させた後金属と張り合わせるか、予め金属に熱可塑性ポリイミドを同様の方法で形成させた後、非熱可塑性ポリイミドフィルムと張り合わせる方法があり、張り合わせには加熱プレス法及び/又は連続ラミネート法が使用できる。加熱プレス法としては例えば、プレス機の所定のサイズに切りだした金属箔とポリイミドとを重ね合わせを行ない、加熱プレスにより熱圧着することにより製造できる。 As a method of heat-bonding the non-thermoplastic polyimide and the metal, a polyamic acid and / or a polyimide solution, which is a precursor of the thermoplastic polyimide, is applied to the non-thermoplastic polyimide film and then bonded to the metal or preheated to the metal. After forming the plastic polyimide by the same method, there is a method of laminating with a non-thermoplastic polyimide film, and a heat pressing method and / or a continuous laminating method can be used for laminating. As a heat pressing method, for example, it can be manufactured by superimposing a metal foil cut out to a predetermined size of a press machine and polyimide and thermocompression bonding by a heat press.
連続ラミネート法としては、特に制限は無いが、例えば、ロールとロール間に挟み込み、張り合わせを行なう方法がある。このロールは金属ロール、ゴムロール等が利用できる。材質に制限はないが、金属ロールとしては、鋼材やステンレス材料が使用される。表面にハードクロムメッキ、タングステンカーバイド等表面硬度を高めた処理ロールを使用することが好ましい。ゴムロールとしては、金属ロールの表面に耐熱性のあるシリコンゴム、フッ素系のゴムを使用することが好ましい。 The continuous laminating method is not particularly limited, but for example, there is a method of sandwiching and laminating between rolls. As this roll, a metal roll, a rubber roll and the like can be used. There are no restrictions on the material, but steel or stainless steel is used as the metal roll. It is preferable to use a treatment roll having an increased surface hardness such as hard chrome plating or tungsten carbide on the surface. As the rubber roll, it is preferable to use heat-resistant silicone rubber or fluorine-based rubber on the surface of the metal roll.
また、ベルトラミネートと呼ばれる、上下2本の金属ロールを1組とし、それを1組以上直列に配置した上下ロール間に上下2つのシームレスのステンレスベルトを間に配置させ、そのベルトを金属ロールにより加圧し、更に、金属ロールやその他熱源により加熱させることで連続ラミネートしてもよい。 In addition, two upper and lower metal rolls called belt laminates are made into one set, and two seamless stainless steel belts on the upper and lower sides are arranged between the upper and lower rolls in which one or more sets are arranged in series, and the belts are arranged by the metal rolls. Continuous lamination may be performed by pressurizing and further heating with a metal roll or other heat source.
ラミネート温度としては、200〜400℃の温度範囲が好ましい。加熱プレス及び/又は連続ラミネート後、加熱アニールすることも好ましい。 The lamination temperature is preferably in the temperature range of 200 to 400 ° C. It is also preferable to heat-anneal after heat pressing and / or continuous laminating.
本発明のフレキシブル金属積層板は、金属箔をエッチングして所望のパターン配線を形成すれば、各種の小型化、高密度化された部品を実装したフレキシブル配線板として用いることができる。もちろん、本発明の用途はこれに限定されるものではなく、金属箔を含む積層体であれば、種々の用途に利用できることはいうまでもない。 The flexible metal laminated plate of the present invention can be used as a flexible wiring board on which various miniaturized and high-density parts are mounted by etching a metal foil to form a desired pattern wiring. Of course, the use of the present invention is not limited to this, and it goes without saying that a laminate containing a metal foil can be used for various purposes.
本発明は、本発明の効果を奏する限り、本発明の技術的範囲内において、上記の構成を種々組み合わせた態様を含む。 The present invention includes various combinations of the above configurations within the technical scope of the present invention as long as the effects of the present invention are exhibited.
次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples, and many modifications are made in the art within the technical idea of the present invention. It is possible by a person with ordinary knowledge.
本発明における各種特性の測定方法について以下に説明する。 The method for measuring various characteristics in the present invention will be described below.
(イミド化率)
イミド化率とは製品のポリイミドフィルムに対して対象とするフィルムのイミド基がどの程度存在するかを相対的に表すものである。
FT−IRを用いて1375cm−1と1500cm−1のピーク高さの比によって求める下式によって表される。
(Immidization rate)
The imidization ratio represents the relative presence of the imide group of the target film with respect to the polyimide film of the product.
Using FT-IR is represented by the following formula determined by the ratio of the peak height of 1375 cm -1 and 1500 cm -1.
イミド化率(%)=A/B×100
[式中、Aは(測定対象のフィルムの1375cm−1のピーク高さ)/(測定対象のフィルムの1500cm−1のピーク高さ)、Bは(基準となるポリイミドフィルムの1375cm−1のピーク高さ)/(基準となるフィルムの1500cm−1のピーク高さ)を示す。]
Imidization rate (%) = A / B × 100
[In the formula, A (1375 cm peak height of -1 of the measurement target film) / (the peak of 1500 cm -1 of the height of the measurement target film), B is the peak of 1375 cm -1 of the polyimide film comprising (reference Height) / (peak height of 1500 cm -1 of the reference film) is shown. ]
なお、基準となるポリイミドフィルムには、乾燥及び熱処理を行った後のフィルムを用いた。 As the reference polyimide film, a film that had been dried and heat-treated was used.
(AI値)
超音波パルスの伝播速度Vは、以下の野村商事製SST−2500(Sonic Sheet Tester)を使用して測定した。SST−2500を使用すると、フィルムの面方向0〜180度(0度はMD方向に平行)について11.25°刻みで16方向の超音波速度が自動的に測定される。得られた各方向の速度のうち、最大速度(MAX)、最小速度(MIN)から式1で表される異方性指数(Anisotoropy Index:AI)が求められる。下記実施例及び比較例によって得られたフィルムを用いて、以下の測定範囲にてそれぞれ測定を行った。
(AI value)
The propagation velocity V of the ultrasonic pulse was measured using the following SST-2500 (Sonic Sheet Tester) manufactured by Nomura Shoji. When SST-2500 is used, the ultrasonic velocity in 16 directions is automatically measured in 11.25 ° increments from 0 to 180 degrees in the plane direction of the film (0 degrees is parallel to the MD direction). Among the obtained velocities in each direction, the anisotropy index (AI) represented by the formula 1 can be obtained from the maximum velocity (MAX) and the minimum velocity (MIN). Using the films obtained in the following Examples and Comparative Examples, measurements were carried out in the following measurement ranges, respectively.
(式1):AI=(VMAX^2−VMIN^2)/(VMAX^2+VMIN^2)
(式中、VMAX^2はパルス伝播速度の最大値の2乗、VMIN^2はパルス伝播速度の最小値の2乗を示す。)
(Equation 1): AI = (VMAX ^ 2-VMIN ^ 2) / (VMAX ^ 2 + VMIN ^ 2)
(In the equation, VMAX ^ 2 indicates the square of the maximum value of the pulse propagation velocity, and VMIN ^ 2 indicates the square of the minimum value of the pulse propagation velocity.)
フィルム幅方向(TD方向)に製膜幅両端から200mm内側に入った点を2点選び、該2点を結ぶ直線の範囲内で該2点を含む直線上の中央部±200mm以内の1点とさらに任意の2点を選び、少なくともこれらの5点で測定。
AI値は、フィルム幅方向に直線上で少なくとも5点で測定し、その測定点のうち、最も大きいAIの値(AI値MAX)を表に記載した。すなわち、フィルム幅方向の異方性を最も大きく見積もるとAI値MAXとなる(AI値MAXを示すことで、フィルム全幅にわたって、AI値がAI値MAX以下であることがわかる)。AI値MAX(又は全幅にわたるAI値)が大きいと、フィルム熱処理後の片伸びが悪化し、巻き取り時にシワ等の不良が発生する。また、ポリイミドフィルムを用いて得られるフレキシブル金属積層板の金属箔除去前後における寸法変化率がフィルム製膜幅方向においてバラつく。
Select two points that are 200 mm inside from both ends of the film forming width in the film width direction (TD direction), and within the range of the straight line connecting the two points, one point within ± 200 mm of the central part on the straight line including the two points. And select any 2 points and measure at least these 5 points.
The AI value was measured at at least 5 points on a straight line in the film width direction, and the largest AI value (AI value MAX) among the measurement points was shown in the table. That is, the largest estimation of the anisotropy in the film width direction is the AI value MAX (by showing the AI value MAX, it can be seen that the AI value is equal to or less than the AI value MAX over the entire width of the film). If the AI value MAX (or the AI value over the entire width) is large, the one-sided elongation after the film heat treatment deteriorates, and defects such as wrinkles occur during winding. Further, the dimensional change rate of the flexible metal laminated plate obtained by using the polyimide film before and after the removal of the metal foil varies in the film forming width direction.
(熱膨張係数(CTE)及びCTEのフィルム幅方向のバラツキ)
TMA−50(島津製作所製)を使用し、測定温度範囲50〜200℃、昇温速度10℃/分の条件で、以下の測定範囲にて測定した。
(Coefficient of thermal expansion (CTE) and variation of CTE in film width direction)
Using TMA-50 (manufactured by Shimadzu Corporation), measurement was performed in the following measurement range under the conditions of a measurement temperature range of 50 to 200 ° C. and a heating rate of 10 ° C./min.
フィルム幅方向(TD方向)に製膜幅両端から200mm内側に入った点を2点選び、該2点を結ぶ直線の範囲内で該2点を含む直線上の中央部±200mm以内の1点とさらに任意の2点を選び、少なくともこれらの5点で測定した。
そして、各測定点の値から、MD方向のCTE(ppm/℃)及びTD方向のCTE(ppm/℃)をそれぞれ、平均値として得た。
また、各測定点の値のうち、MD方向のCTE(ppm/℃)及びTD方向のCTE(ppm/℃)のそれぞれについて、最大値と最小値との差を幅方向のMD−CTE差(ppm/℃)及び幅方向のTD−CTE差(ppm/℃)とした。
Select two points that are 200 mm inside from both ends of the film forming width in the film width direction (TD direction), and within the range of the straight line connecting the two points, one point within ± 200 mm of the central part on the straight line including the two points. And further, any two points were selected, and at least these five points were measured.
Then, from the values at each measurement point, CTE (ppm / ° C.) in the MD direction and CTE (ppm / ° C.) in the TD direction were obtained as average values.
In addition, among the values at each measurement point, for each of the CTE (ppm / ° C) in the MD direction and the CTE (ppm / ° C) in the TD direction, the difference between the maximum value and the minimum value is the MD-CTE difference in the width direction. ppm / ° C.) and TD-CTE difference in the width direction (ppm / ° C.).
(フィルム幅方向の熱収縮率のバラツキ)
フィルム機械搬送方向(MD方向)に200mm、フィルム幅方向(TD方向)に200mmに切り出し、25℃、60%RHに調整された部屋に2日間放置した後のフィルム寸法(L1)を測定し、続いて200℃、60分間加熱した後、再び25℃、60RH%に調整された部屋に2日間放置した後のフィルム寸法(L2)を測定し、下記式により熱収縮率を求めた。
(Variation of heat shrinkage in the film width direction)
The film size (L1) was measured after cutting out to 200 mm in the film machine transport direction (MD direction) and 200 mm in the film width direction (TD direction) and leaving the film in a room adjusted to 25 ° C. and 60% RH for 2 days. Subsequently, after heating at 200 ° C. for 60 minutes, the film size (L2) after being left in a room adjusted to 25 ° C. and 60 RH% again for 2 days was measured, and the heat shrinkage rate was determined by the following formula.
熱収縮率(%)=−{(L2−L1)/L1}×100
なお、フィルム幅方向の熱収縮率のバラツキは、フィルム幅方向(TD方向)に製膜幅両端から200mm内側に入った点を2点選び、該2点を結ぶ直線の範囲内で該2点を含む直線上の中央部±200mm以内の1点とさらに任意の2点を選び、少なくともこれらの5点のそれぞれを含んで(中心として)切り出したフィルムについて測定し、得られた測定値(熱収縮率)のうち、最大値と最小値との差として求めた。
Heat shrinkage rate (%) =-{(L2-L1) / L1} × 100
For the variation in the heat shrinkage in the film width direction, select two points that are 200 mm inside from both ends of the film forming width in the film width direction (TD direction), and the two points are within the range of the straight line connecting the two points. One point within ± 200 mm of the central part on the straight line including, and any two points were selected, and the film cut out containing at least each of these five points was measured, and the obtained measured value (heat) was obtained. The shrinkage rate) was calculated as the difference between the maximum value and the minimum value.
(フィルム幅方向の寸法変化率のバラツキ)
JIS C6481 5.16に基づいて、試料の接着フィルムの中心及び対角線上に4つの穴を形成し、中心部から各穴のそれぞれの距離を測定した。次に、銅箔を貼り付けて、エッチング工程を実施してフレキシブル金属積層板から金属箔を除去した後に、再びエッチング工程前と同様に、上記4つの穴についてそれぞれの距離を測定した。金属箔除去前における各穴の距離の測定値をD1とし、金属箔除去後における各穴の距離の測定値をD2として、次式によりエッチング前後の寸法変化率(4つの穴における平均値)を求めた。
(Variation of dimensional change rate in the film width direction)
Based on JIS C6481 5.16, four holes were formed on the center and diagonal of the adhesive film of the sample, and the distance of each hole from the center was measured. Next, after the copper foil was attached and the etching step was performed to remove the metal foil from the flexible metal laminated plate, the distances between the four holes were measured again in the same manner as before the etching step. Let D1 be the measured value of the distance of each hole before removing the metal foil, and D2 be the measured value of the distance of each hole after removing the metal foil. I asked.
寸法変化率(%)={(D2−D1)/D1}×100
このような寸法変化率は、フィルム幅方向(TD方向)に製膜幅両端から200mm内側に入った点を2点選び、該2点を結ぶ直線の範囲内で該2点を含む直線上の中央部±200mm以内の1点とさらに任意の2点を選んで、少なくともこれらの5点について測定し、最大値と最小値との差をフィルム幅方向の寸法変化率のバラツキとした。
Dimensional change rate (%) = {(D2-D1) / D1} x 100
For such a dimensional change rate, select two points that are 200 mm inside from both ends of the film forming width in the film width direction (TD direction), and within the range of the straight line connecting the two points, on a straight line including the two points. One point within ± 200 mm of the central portion and two more arbitrary points were selected and measured at least these five points, and the difference between the maximum value and the minimum value was defined as the variation in the dimensional change rate in the film width direction.
なお、金属積層板は、ポリイミドフィルムの片面に接着剤層(熱可塑性ポリイミド層)を積層した後、接着剤層側に圧延銅泊を貼り合わせることで作成した。具体的には、フィルムに、熱可塑性ポリイミドのポリアミック酸溶液[1,3−ビス−(4−アミノフェノキシ)ベンゼンを溶媒ジメチルアセトアミドに加え、溶解するまで撹拌した。その後、4、4’−ジオキシジフタル酸無水物を加え、撹拌を行うことで得られたポリアミック酸溶液]を乾燥後の厚さで2μmになるように塗布し、150℃で10分間、350℃で1分間熱イミド化させた(接着フィルムの作製)。その後、熱可塑性ポリイミド側に銅箔を350℃/30分で貼り合わせ、フレキシブル金属積層板を作製した。 The metal laminate was prepared by laminating an adhesive layer (thermoplastic polyimide layer) on one side of a polyimide film and then laminating a rolled copper anchor on the adhesive layer side. Specifically, a polyamic acid solution of thermoplastic polyimide [1,3-bis- (4-aminophenoxy) benzene was added to the solvent dimethylacetamide, and the mixture was stirred until dissolved. Then, 4,4'-dioxydiphthalic anhydride was added, and the polyamic acid solution obtained by stirring] was applied so as to have a thickness of 2 μm after drying, and the film was applied at 150 ° C. for 10 minutes at 350 ° C. It was thermally imidized for 1 minute (preparation of adhesive film). Then, a copper foil was bonded to the thermoplastic polyimide side at 350 ° C./30 minutes to prepare a flexible metal laminated plate.
(片伸び値)
以下の手順で、図1の(a)に示す片伸び値(mm)を測定した。
ポリイミドフィルムを508mm幅で長さ6.5mの短冊状にスリットする。
この短冊状フィルムを200℃の熱風オーブン中で外力がかからない状態で30分加熱した後、オーブンから取り出す。
サンプルを平らな床面上に広げて、密着させた時の湾曲の弧と弦の最大距離(片伸び値)を測定する。
(One-sided elongation value)
The one-sided elongation value (mm) shown in FIG. 1 (a) was measured by the following procedure.
Slit the polyimide film into strips with a width of 508 mm and a length of 6.5 m.
This strip-shaped film is heated in a hot air oven at 200 ° C. for 30 minutes without applying an external force, and then removed from the oven.
Spread the sample on a flat floor and measure the maximum distance (one-sided elongation) between the curved arc and the string when they are in close contact with each other.
(実施例1〜5)
ピロメリット酸二無水物(PMPA、分子量218.12)/3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA、分子量294.22)/4,4’−ジアミノジフェニルエーテル(DPE、分子量200.24)/パラフェニレンジアミン(PPD、分子量108.14)をモル比65/35/60/40の割合で用意し、DMAC(N,N−ジメチルアセトアミド)中20重量%にして重合し、25℃で3500ポイズであるポリアミド酸溶液を得た。
(Examples 1 to 5)
Piromellitic acid dianhydride (PMPA, molecular weight 218.12) / 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (BPDA, molecular weight 294.22) / 4,4'-diaminodiphenyl ether (DPE) , Molecular weight 200.24) / paraphenylenediamine (PPD, molecular weight 108.14) was prepared at a molar ratio of 65/35/60/40, and polymerized in 20% by weight in DMAC (N, N-dimethylacetamide). Then, a polyamic acid solution having a molecular weight of 3500 at 25 ° C. was obtained.
このポリアミド溶液にβ−ピコリンと無水酢酸をそれぞれポリアミド酸に対するモル比が3.0となるように添加した後、口金から90℃のステンレス製支持体上へ流延し、自己支持性のあるポリイミドゲルフィルムを得た。 After adding β-picoline and acetic anhydride to this polyamide solution so that the molar ratio to the polyamic acid is 3.0, the polyimide is poured from the base onto a stainless steel support at 90 ° C. and has self-supporting properties. A gel film was obtained.
このゲルフィルムを支持体上から剥がし、ニップロールを経て搬送、縦延伸を行った。縦延伸後、フィルムの両端を把持し、横延伸をしながら、テンター内で乾燥した。乾燥後、電気ヒーターを用いて熱処理を実施し、ポリイミドフィルムを得た。 This gel film was peeled off from the support, transported via a nip roll, and vertically stretched. After longitudinal stretching, both ends of the film were grasped, and the film was dried in a tenter while being laterally stretched. After drying, heat treatment was carried out using an electric heater to obtain a polyimide film.
ポリイミドフィルムの厚みは口金吐出速度/支持体回転速度の比を制御することにより変化させ、平均厚さ7.5から38μmのポリイミドフィルムを得た。 The thickness of the polyimide film was changed by controlling the ratio of the base ejection speed / support rotation speed to obtain a polyimide film having an average thickness of 7.5 to 38 μm.
(参考例1)
ピロメリット酸二無水物(PMPA、分子量218.12)/3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA、分子量294.22)/4,4’−ジアミノジフェニルエーテル(DPE、分子量200.24)/パラフェニレンジアミン(PPD、分子量108.14)をモル比75/25/60/40の割合で用意し、DMAC(N,N−ジメチルアセトアミド)中20重量%にして重合し、25℃で3500ポイズであるポリアミド酸溶液を得た。
(Reference example 1)
Piromellitic acid dianhydride (PMPA, molecular weight 218.12) / 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (BPDA, molecular weight 294.22) / 4,4'-diaminodiphenyl ether (DPE) , Molecular weight 200.24) / paraphenylenediamine (PPD, molecular weight 108.14) was prepared at a molar ratio of 75/25/60/40, and polymerized in 20% by weight in DMAC (N, N-dimethylacetamide). Then, a polyamic acid solution having a molecular weight of 3500 at 25 ° C. was obtained.
このポリアミド溶液にβ−ピコリンと無水酢酸をそれぞれポリアミド酸に対するモル比が3.3となるように添加した後、75℃のステンレス製支持体上へ流延し、自己支持性のあるポリイミドゲルフィルムを得た。 After adding β-picoline and acetic anhydride to this polyamide solution so that the molar ratio to the polyamic acid is 3.3, the film is cast on a stainless steel support at 75 ° C. to provide a self-supporting polyimide gel film. Got
このゲルフィルムを支持体上から剥がし、ニップロールを経て搬送、縦延伸を行った。縦延伸後、フィルムの両端を把持し、横延伸をしながら、テンター内で乾燥した。乾燥後、電気ヒーターを用いて熱処理を実施し、ポリイミドフィルムを得た。 This gel film was peeled off from the support, transported via a nip roll, and vertically stretched. After longitudinal stretching, both ends of the film were grasped, and the film was dried in a tenter while being laterally stretched. After drying, heat treatment was carried out using an electric heater to obtain a polyimide film.
(参考例2)
ピロメリット酸二無水物(PMPA、分子量218.12)/3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA、分子量294.22)/4,4’−ジアミノジフェニルエーテル(DPE、分子量200.24)/パラフェニレンジアミン(PPD、分子量108.14)をモル比75/25/60/40の割合で用意し、DMAC(N,N−ジメチルアセトアミド)中20重量%にして重合し、25℃で3500ポイズであるポリアミド酸溶液を得た。
(Reference example 2)
Piromellitic acid dianhydride (PMPA, molecular weight 218.12) / 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (BPDA, molecular weight 294.22) / 4,4'-diaminodiphenyl ether (DPE) , Molecular weight 200.24) / paraphenylenediamine (PPD, molecular weight 108.14) was prepared at a molar ratio of 75/25/60/40, and polymerized in 20% by weight in DMAC (N, N-dimethylacetamide). Then, a polyamic acid solution having a molecular weight of 3500 at 25 ° C. was obtained.
このポリアミド溶液にβ−ピコリンと無水酢酸をそれぞれポリアミド酸に対するモル比が2.8となるように添加した後、75℃のステンレス製支持体上へ流延し、自己支持性のあるポリイミドゲルフィルムを得た。 After adding β-picoline and acetic anhydride to this polyamide solution so that the molar ratio to polyamic acid is 2.8, the film is cast on a stainless steel support at 75 ° C. and has self-supporting polyimide gel film. Got
このゲルフィルムを支持体上から剥がし、ニップロールを経て搬送、縦延伸を行った。縦延伸後、フィルムの両端を把持し、横延伸をしながら、テンター内で乾燥した。乾燥後、電気ヒーターを用いて熱処理を実施し、ポリイミドフィルムを得た。 This gel film was peeled off from the support, transported via a nip roll, and vertically stretched. After longitudinal stretching, both ends of the film were grasped, and the film was dried in a tenter while being laterally stretched. After drying, heat treatment was carried out using an electric heater to obtain a polyimide film.
(参考例3)
ピロメリット酸二無水物(PMPA、分子量218.12)/3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA、分子量294.22)/4,4’−ジアミノジフェニルエーテル(DPE、分子量200.24)/パラフェニレンジアミン(PPD、分子量108.14)をモル比75/25/60/40の割合で用意し、DMAC(N,N−ジメチルアセトアミド)中20重量%にして重合し、25℃で3500ポイズであるポリアミド酸溶液を得た。
(Reference example 3)
Piromellitic acid dianhydride (PMPA, molecular weight 218.12) / 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (BPDA, molecular weight 294.22) / 4,4'-diaminodiphenyl ether (DPE) , Molecular weight 200.24) / paraphenylenediamine (PPD, molecular weight 108.14) was prepared at a molar ratio of 75/25/60/40, and polymerized in 20% by weight in DMAC (N, N-dimethylacetamide). Then, a polyamic acid solution having a molecular weight of 3500 at 25 ° C. was obtained.
このポリアミド溶液にβ−ピコリンと無水酢酸をそれぞれポリアミド酸に対するモル比が2.5となるように添加した後、75℃のステンレス製支持体上へ流延し、自己支持性のあるポリイミドゲルフィルムを得た。 After adding β-picoline and acetic anhydride to this polyamide solution so that the molar ratio to the polyamic acid is 2.5, the film is cast on a stainless steel support at 75 ° C. to provide a self-supporting polyimide gel film. Got
このゲルフィルムを支持体上から剥がし、ニップロールを経て搬送、縦延伸を行った。縦延伸後、フィルムの両端を把持し、横延伸をしながら、テンター内で乾燥した。乾燥後、電気ヒーターを用いて熱処理を実施し、ポリイミドフィルムを得た。 This gel film was peeled off from the support, transported via a nip roll, and vertically stretched. After longitudinal stretching, both ends of the film were grasped, and the film was dried in a tenter while being laterally stretched. After drying, heat treatment was carried out using an electric heater to obtain a polyimide film.
(参考例4)
ピロメリット酸二無水物(PMPA、分子量218.12)/3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA、分子量294.22)/4,4’−ジアミノジフェニルエーテル(DPE、分子量200.24)/パラフェニレンジアミン(PPD、分子量108.14)をモル比65/35/82/18の割合で用意し、DMAC(N,N−ジメチルアセトアミド)中20重量%にして重合し、25℃で3500ポイズであるポリアミド酸溶液を得た。
(Reference example 4)
Piromellitic acid dianhydride (PMPA, molecular weight 218.12) / 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (BPDA, molecular weight 294.22) / 4,4'-diaminodiphenyl ether (DPE) , Molecular weight 200.24) / paraphenylenediamine (PPD, molecular weight 108.14) was prepared at a molar ratio of 65/35/82/18, and polymerized in 20% by weight in DMAC (N, N-dimethylacetamide). Then, a polyamic acid solution having a molecular weight of 3500 at 25 ° C. was obtained.
このポリアミド溶液にβ−ピコリンと無水酢酸をそれぞれポリアミド酸に対するモル比が2.8となるように添加した後、95℃のステンレス製支持体上へ流延し、自己支持性のあるポリイミドゲルフィルムを得た。 After adding β-picoline and acetic anhydride to this polyamide solution so that the molar ratio to the polyamic acid is 2.8, the film is cast on a stainless steel support at 95 ° C. to provide a self-supporting polyimide gel film. Got
このゲルフィルムを支持体上から剥がし、ニップロールを経て搬送、縦延伸を行った。縦延伸後、フィルムの両端を把持し、横延伸をしながら、テンター内で乾燥した。乾燥後、電気ヒーターを用いて熱処理を実施し、ポリイミドフィルムを得た。 This gel film was peeled off from the support, transported via a nip roll, and vertically stretched. After longitudinal stretching, both ends of the film were grasped, and the film was dried in a tenter while being laterally stretched. After drying, heat treatment was carried out using an electric heater to obtain a polyimide film.
ポリイミドの組成、ポリイミドフィルムの作成条件、ポリイミドフィルムの各種物性をまとめたものを下記表1に示す。 Table 1 below summarizes the composition of polyimide, the conditions for producing a polyimide film, and various physical properties of the polyimide film.
上記結果から、本発明のポリイミドフィルムでは、フィルム幅方向の寸法変化のバラツキが小さく、片伸びも少ないことが確認できた。 From the above results, it was confirmed that in the polyimide film of the present invention, the variation in the dimensional change in the film width direction was small and the one-sided elongation was also small.
本発明のポリイミドフィルムは、フレキシブルプリント配線板などに有用である。 The polyimide film of the present invention is useful for flexible printed wiring boards and the like.
1:短冊状フィルム
2:フィルム端部
a:片伸び値
1: Strip-shaped film 2: Film edge a: One-sided elongation value
Claims (9)
AI=(VMAX^2−VMIN^2)/(VMAX^2+VMIN^2)
(式中、VMAX^2はパルス伝播速度の最大値の2乗、VMIN^2はパルス伝播速度の最小値の2乗を示す。)
ただし、上記式において、VMAX及びVMINは、フィルムの面方向0〜180度について11.25°刻みで16方向に測定された超音波速度のうち、それぞれ、最大速度及び最小速度であることを意味し、
AI値が全幅にわたって15以下であることは、フィルム幅方向に製膜幅両端から200mm内側に入った点を2点選び、該2点を結ぶ直線の範囲内で該2点を含む直線上の中央部±200mm以内の1点とさらに任意の2点を選び、これらの5点で測定したAI値が15以下であることを意味する。 Both the coefficient of linear expansion αMD in the transport direction (MD) and the coefficient of linear expansion αTD in the width direction (TD) of the film are 7 ppm / ° C. or less, and are expressed by the following formula when the propagation speed V of the ultrasonic pulse is measured. A polyimide film having an anisotropy index AI value of 15 or less over the entire width.
AI = (VMAX ^ 2-VMIN ^ 2) / (VMAX ^ 2 + VMIN ^ 2)
(In the equation, VMAX ^ 2 indicates the square of the maximum value of the pulse propagation velocity, and VMIN ^ 2 indicates the square of the minimum value of the pulse propagation velocity.)
However, in the above formula, VMAX and VMIN mean that they are the maximum speed and the minimum speed, respectively, among the ultrasonic speeds measured in 16 directions in 11.25 ° increments with respect to the plane direction of the film from 0 to 180 degrees. And
If the AI value is 15 or less over the entire width, select two points that are 200 mm inside from both ends of the film forming width in the film width direction, and within the range of the straight line connecting the two points, on the straight line including the two points. It means that the AI value measured at these 5 points is 15 or less by selecting 1 point within ± 200 mm of the central part and 2 points arbitrarily.
ただし、フィルム幅方向の線膨張係数の差は、フィルム幅方向に製膜幅両端から200mm内側に入った点を2点選び、該2点を結ぶ直線の範囲内で該2点を含む直線上の中央部±200mm以内の1点とさらに任意の2点を選び、これら5点で線膨張係数を測定し、得られた測定値のうち、最大値と最小値との差として得られる。 The polyimide film according to claim 1, wherein the film-forming width is 1000 mm or more, and the difference in linear expansion coefficient of αMD in the film width direction is 2 ppm / ° C. or less.
However, for the difference in the linear expansion coefficient in the film width direction, select two points that are 200 mm inward from both ends of the film forming width in the film width direction, and within the range of the straight line connecting the two points, on a straight line including the two points. The linear expansion coefficient is measured at one point within ± 200 mm of the central portion of the above and an arbitrary two points, and is obtained as the difference between the maximum value and the minimum value among the obtained measured values.
ただし、フィルム幅方向の線膨張係数の差は、フィルム幅方向に製膜幅両端から200mm内側に入った点を2点選び、該2点を結ぶ直線の範囲内で該2点を含む直線上の中央部±200mm以内の1点とさらに任意の2点を選び、これら5点で線膨張係数を測定し、得られた測定値のうち、最大値と最小値との差として得られる。 The polyimide film according to claim 1 or 2, wherein the film-forming width is 1000 mm or more, and the difference in linear expansion coefficient of αTD in the film width direction is 2 ppm / ° C. or less.
However, for the difference in the linear expansion coefficient in the film width direction, select two points that are 200 mm inward from both ends of the film forming width in the film width direction, and within the range of the straight line connecting the two points, on a straight line including the two points. The linear expansion coefficient is measured at one point within ± 200 mm of the central portion of the above and an arbitrary two points, and is obtained as the difference between the maximum value and the minimum value among the obtained measured values.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016195260A JP6765272B2 (en) | 2016-09-30 | 2016-09-30 | Polyimide film |
TW106132181A TWI741030B (en) | 2016-09-30 | 2017-09-20 | Polyimide film |
KR1020170126892A KR102432657B1 (en) | 2016-09-30 | 2017-09-29 | Polyimide film |
CN201710910771.8A CN107880546A (en) | 2016-09-30 | 2017-09-29 | Polyimide film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016195260A JP6765272B2 (en) | 2016-09-30 | 2016-09-30 | Polyimide film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018058923A JP2018058923A (en) | 2018-04-12 |
JP6765272B2 true JP6765272B2 (en) | 2020-10-07 |
Family
ID=61781103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016195260A Active JP6765272B2 (en) | 2016-09-30 | 2016-09-30 | Polyimide film |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6765272B2 (en) |
KR (1) | KR102432657B1 (en) |
CN (1) | CN107880546A (en) |
TW (1) | TWI741030B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102445910B1 (en) * | 2020-11-24 | 2022-09-22 | 피아이첨단소재 주식회사 | Polyimide film with high dimensional stability and manufacturing method thereof |
JP2022151287A (en) | 2021-03-26 | 2022-10-07 | 富士フイルムビジネスイノベーション株式会社 | Polyimide precursor film, and method for producing polyimide film |
KR102634466B1 (en) * | 2021-08-20 | 2024-02-06 | 에스케이마이크로웍스 주식회사 | Polyamide-imide-based film, preparation method thereof, and cover window and display device comprising same |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002047360A (en) * | 2000-04-21 | 2002-02-12 | Toray Ind Inc | Polyphenylene sulfide film and method of preparing the same and circuit board produced from the same |
KR101166277B1 (en) * | 2004-03-03 | 2012-07-17 | 가부시키가이샤 가네카 | Organic Insulating Film with Controlled Molecule Orientation, Adhesive Film Using the Organic Insulating Film, Flexible Metal-Plated Stacked Board, Multilayer Flexible Metal-Plated Stacked Board, Coverlay Film, Tape for TAB and Base Tape for COF |
US8445099B2 (en) * | 2009-11-30 | 2013-05-21 | E. I. Du Pont De Nemours And Company | Polyimide film |
JP5754692B2 (en) * | 2012-03-13 | 2015-07-29 | 東レ・デュポン株式会社 | Method for producing polyimide film |
TWI580712B (en) * | 2012-06-08 | 2017-05-01 | 東麗 杜邦股份有限公司 | Polyimide film |
JP6325265B2 (en) * | 2013-03-07 | 2018-05-16 | 東レ・デュポン株式会社 | Polyimide film and manufacturing method thereof |
JP6134213B2 (en) * | 2013-06-26 | 2017-05-24 | 東レ・デュポン株式会社 | Polyimide film |
JP6148556B2 (en) * | 2013-07-22 | 2017-06-14 | 東レ・デュポン株式会社 | Polyimide film |
JP6370609B2 (en) * | 2014-05-29 | 2018-08-08 | 東レ・デュポン株式会社 | Polyimide film |
JP2016132744A (en) * | 2015-01-21 | 2016-07-25 | 東レ・デュポン株式会社 | Polyimide film |
-
2016
- 2016-09-30 JP JP2016195260A patent/JP6765272B2/en active Active
-
2017
- 2017-09-20 TW TW106132181A patent/TWI741030B/en active
- 2017-09-29 KR KR1020170126892A patent/KR102432657B1/en active IP Right Grant
- 2017-09-29 CN CN201710910771.8A patent/CN107880546A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN107880546A (en) | 2018-04-06 |
TW201817784A (en) | 2018-05-16 |
KR102432657B1 (en) | 2022-08-16 |
JP2018058923A (en) | 2018-04-12 |
KR20180036601A (en) | 2018-04-09 |
TWI741030B (en) | 2021-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI408200B (en) | Novel polyimide film, adhesive film obtained using the same, and flexible metal laminated laminate | |
JP6971580B2 (en) | Multilayer polyimide film and flexible metal-clad laminate | |
KR100958466B1 (en) | Novel polyimide film and use thereof | |
KR101550005B1 (en) | Multilayer polyimide film, laminate and metal-clad laminate | |
JP6134213B2 (en) | Polyimide film | |
US8298366B2 (en) | Adhesive sheet and copper-clad laminate | |
JP2006188025A (en) | Copper-clad laminate | |
JP6765272B2 (en) | Polyimide film | |
JP5254752B2 (en) | Multilayer polyimide film | |
KR20080044330A (en) | Heat resistant adhesive sheet | |
JP2007169494A (en) | Aromatic polyimide film, cover-lay film and flexible laminated plate | |
JP4901509B2 (en) | Multilayer film of polyimide precursor solution, multilayer polyimide film, single-sided metal-clad laminate, and method for producing multilayer polyimide film | |
JP6523736B2 (en) | Polyimide film | |
JP5868753B2 (en) | Polyimide film | |
JP2012143992A (en) | Multilayer polyimide film and flexible metal foil-clad laminate using the same | |
JP4257587B2 (en) | Flexible metal foil laminate | |
JP2021008560A (en) | Polyimide film | |
JP6603021B2 (en) | Polyimide film | |
JP2020152765A (en) | Polyimide film and method for producing the same | |
JP5069844B2 (en) | Method for producing insulating film for printed wiring board, polyimide / copper laminate and printed wiring board | |
JP2023182523A (en) | polyimide laminated film | |
TW201829561A (en) | Polyimide film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190614 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200915 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6765272 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |