JP6764071B2 - Rubber compression test method - Google Patents

Rubber compression test method Download PDF

Info

Publication number
JP6764071B2
JP6764071B2 JP2016220151A JP2016220151A JP6764071B2 JP 6764071 B2 JP6764071 B2 JP 6764071B2 JP 2016220151 A JP2016220151 A JP 2016220151A JP 2016220151 A JP2016220151 A JP 2016220151A JP 6764071 B2 JP6764071 B2 JP 6764071B2
Authority
JP
Japan
Prior art keywords
test piece
compression
film
rubber
pressure plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016220151A
Other languages
Japanese (ja)
Other versions
JP2018077179A (en
Inventor
亮平 林
亮平 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichirin Co Ltd
Original Assignee
Nichirin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichirin Co Ltd filed Critical Nichirin Co Ltd
Priority to JP2016220151A priority Critical patent/JP6764071B2/en
Publication of JP2018077179A publication Critical patent/JP2018077179A/en
Application granted granted Critical
Publication of JP6764071B2 publication Critical patent/JP6764071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ゴムの圧縮試験方法に関する。 The present invention relates to a rubber compression test method.

一般的に、ゴムホースに継手をかしめて接続した部位の接続強度やシール性を解析する場合、ゴムの引張、圧縮、捩じれ等の機械的特性が、物性データとして使用される。 Generally, when analyzing the connection strength and sealing property of a portion connected by crimping a joint to a rubber hose, mechanical properties such as tension, compression, and twist of the rubber are used as physical property data.

ゴムの圧縮特性については、専用の圧縮試験機を用いた圧縮試験で取得できる。しかし、圧縮試験機がない場合は、汎用の引張試験機に、特許文献1、特許文献2で提案されているような圧縮試験用治具を取り付けて、圧縮試験を行うこともある。 The compression characteristics of rubber can be obtained by a compression test using a dedicated compression tester. However, when there is no compression tester, a compression test may be performed by attaching a compression test jig as proposed in Patent Document 1 and Patent Document 2 to a general-purpose tensile tester.

そして、圧縮試験においては、圧縮荷重をかけるにつれて試験片が側方に逃げて膨らむ現象、所謂バルジングを起こすため、圧縮率としては、せいぜい50%までが限界であった。しかし、ブレーキホースのような高圧流体を扱うゴムホースに、継手をかしめて接続した部位の解析では、50%を超えて80%までの圧縮率のデータがなければ、正確な解析は行えない。 In the compression test, the test piece escapes to the side and swells as a compressive load is applied, that is, so-called bulging occurs. Therefore, the compression ratio is limited to 50% at most. However, in the analysis of the portion where the joint is crimped and connected to the rubber hose that handles high-pressure fluid such as a brake hose, accurate analysis cannot be performed unless there is data on the compressibility exceeding 50% and up to 80%.

そこで、引張試験機により、圧縮と等価な一様二軸引張試験が行われているが、試験装置が特殊で高価なため、一般的に使用できるものではなかった。 Therefore, a uniform biaxial tensile test equivalent to compression is performed by a tensile tester, but it has not been generally usable because the test device is special and expensive.

特開平6−33051号公報Japanese Unexamined Patent Publication No. 6-33051 特開2003−185545号公報Japanese Unexamined Patent Publication No. 2003-185545

本発明は、従来の問題点に鑑み、80%の圧縮率まで圧縮変形させることができ、正確な圧縮特性データを取得することができるゴムの圧縮試験方法を提供することを課題とする。 In view of the conventional problems, it is an object of the present invention to provide a compression test method for rubber which can be compressed and deformed up to a compression rate of 80% and can acquire accurate compression characteristic data.

本発明者は、圧縮試験におけるゴム試験片のバルジング現象の原因を究明するために、ゴム試験片を挟持する加圧板に液状物を塗布しない場合と、加圧板に液状物を塗布し、その液状物の動粘度を変化させた場合とにおいて、バルジングの有無を確認するとともに、応力と圧縮率との関係を測定し、図9に示す結果を得た。 In order to investigate the cause of the bulging phenomenon of the rubber test piece in the compression test, the present inventor may not apply the liquid substance to the pressure plate sandwiching the rubber test piece, or may apply the liquid substance to the pressure plate and apply the liquid substance to the pressure plate. The presence or absence of bulging was confirmed when the kinematic viscosity of the object was changed, and the relationship between stress and compressibility was measured, and the results shown in FIG. 9 were obtained.

図9に示すように、液状物なしの場合Dは、圧縮率30%あたりから応力が徐々に増加しはじめ、圧縮率60%を超えたあたりから応力が急激に増加した。動粘度1万mm/sの液状物を塗布した場合Aは、圧縮率60%あたりから応力が徐々に増加しはじめ、圧縮率70%を超えたあたりから応力が急激に増加した。動粘度50万mm/sおよび100万mm/sの液状物を塗布した場合BおよびCは、油膜切れがなく、圧縮率80%まで測定を行うことができた。この結果に基づき、本発明者は、加圧板とゴム試験片との間の液状物の油膜切れをなくし、且つ、摩擦を低減することが、バルジングの発生を回避し、正確な圧縮特性を得られるという知見を得た。 As shown in FIG. 9, in the case of D without a liquid substance, the stress began to gradually increase from around 30% of the compressibility, and the stress rapidly increased from around 60% of the compressibility. When a liquid material having a kinematic viscosity of 10,000 mm 2 / s was applied, the stress of A began to gradually increase from around 60% of the compressibility, and the stress increased sharply from around 70% of the compressibility. When liquids having kinematic viscosities of 500,000 mm 2 / s and 1 million mm 2 / s were applied, B and C had no oil film breakage and could be measured up to a compressibility of 80%. Based on this result, the present inventor can eliminate the oil film breakage of the liquid material between the pressure plate and the rubber test piece and reduce the friction to avoid the occurrence of bulging and obtain accurate compression characteristics. I got the knowledge that it can be done.

本発明は、前知見に基づきなされたもので、対向する一対の加圧板の間にゴム試験片を配置し、前記一対の加圧板を軸方向に移動させて、前記ゴム試験片を圧縮する圧縮試験方法において、前記ゴム試験片の両端面と前記一対の加圧板との間に、前記ゴム試験片より摩擦係数の小さい伸長性を有するフィルムを挟持することを特徴としている。 The present invention has been made based on the previous findings. A compression test in which a rubber test piece is arranged between a pair of pressure plates facing each other, the pair of pressure plates are moved in the axial direction, and the rubber test piece is compressed. The method is characterized in that a film having an extensibility having a coefficient of friction smaller than that of the rubber test piece is sandwiched between both end faces of the rubber test piece and the pair of pressure plates.

これによれば、ゴム試験片と一対の加圧板との間に、伸長性を有するフィルムが存在するので、ゴム試験片の半径方向の変形に十分に追従する。また、ゴム試験片と一対の加圧板との間に存在するフィルムは、ゴム試験片よりも摩擦係数が小さいため、加圧板とフィルムとの間の摩擦力が小さくなり、ゴム試験片は、バルジングを起こすことなく、80%の圧縮率まで変形させることができる。 According to this, since the film having extensibility exists between the rubber test piece and the pair of pressure plates, it sufficiently follows the deformation of the rubber test piece in the radial direction. Further, since the film existing between the rubber test piece and the pair of pressure plates has a smaller friction coefficient than the rubber test piece, the frictional force between the pressure plate and the film becomes smaller, and the rubber test piece is bulging. It can be deformed to a compression coefficient of 80% without causing the above.

前記一対の加圧板に、動粘度50万mm/s以上の液状物を塗布し、前記液状物の上に、前記フィルムを設置することが好ましい。 It is preferable to apply a liquid material having a kinematic viscosity of 500,000 mm 2 / s or more to the pair of pressure plates and place the film on the liquid material.

前記フィルムは、パラフィンフィルムからなり、前記液状物は、シリコンオイルからなることが好ましい。 It is preferable that the film is made of a paraffin film and the liquid material is made of silicone oil.

前記フィルムは、圧縮前の前記ゴム試験片の直径より大きい円形形状を有することが好ましい。 The film preferably has a circular shape larger than the diameter of the rubber test piece before compression.

前記フィルムは、224%以上の伸長性を有することが好ましい。 The film preferably has an extensibility of 224% or more.

本発明によれば、80%の圧縮率まで圧縮変形させることができ、正確な圧縮特性データを取得することができるので、ブレーキホースのような高圧流体を扱うゴムホースに、継手をかしめて接続した部位に対しても、正確な解析を行うことができるという効果を有している。 According to the present invention, compression deformation can be performed up to a compression rate of 80%, and accurate compression characteristic data can be obtained. Therefore, a joint is crimped and connected to a rubber hose that handles a high-pressure fluid such as a brake hose. It also has the effect of being able to perform accurate analysis on the site.

圧縮試験治具を用いた引張試験機の正面図。Front view of a tensile tester using a compression test jig. 図1のII−II線断面図。FIG. 1 is a sectional view taken along line II-II of FIG. 本発明の実施形態の圧縮試験方法の工程を示すフローチャート。The flowchart which shows the process of the compression test method of embodiment of this invention. 図3の圧縮試験方法の各工程における圧縮試験治具の拡大正面図。The enlarged front view of the compression test jig in each step of the compression test method of FIG. 図4に続く圧縮試験方法の各工程における圧縮試験治具の拡大正面図。The enlarged front view of the compression test jig in each step of the compression test method following FIG. 位置決め治具の斜視図。Perspective view of the positioning jig. 本発明の実施形態の圧縮試験方法による圧縮されるゴム試験片の拡大断面図。An enlarged cross-sectional view of a rubber test piece compressed by the compression test method of the embodiment of the present invention. 本発明の実施形態の圧縮試験方法による応力−圧縮率曲線を示す図。The figure which shows the stress-the bulk modulus curve by the compression test method of embodiment of this invention. 従来の圧縮試験方法によるオイルがある場合とない場合との応力−圧縮率曲線を示す図。The figure which shows the stress-compression rate curve with and without oil by a conventional compression test method.

以下、本発明の実施形態を添付図面に従って説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明にかかる圧縮試験方法の実施に使用する圧縮試験用治具1を装着した一軸引張試験装置2を示す。圧縮試験用治具1は、一軸引張試験装置2の固定部3と可動部4との間に装着される。圧縮試験用治具1は、対向する一対の第1加圧板5と第2加圧板6とを有している。 FIG. 1 shows a uniaxial tensile test apparatus 2 equipped with a compression test jig 1 used for carrying out the compression test method according to the present invention. The compression test jig 1 is mounted between the fixed portion 3 and the movable portion 4 of the uniaxial tensile test device 2. The compression test jig 1 has a pair of a first pressure plate 5 and a second pressure plate 6 facing each other.

第1加圧板5は、矩形形状を有するが、下面に円形の加圧部7を有している。第1加圧板5は、4本の連結ロッド8を介して台板9に固定されている。台板9の下面には引張ロッド10が取り付けられ、引張ロッド10の下端はベース板11を介して一軸引張試験装置2の固定部3に取り付けられている。 The first pressure plate 5 has a rectangular shape, but has a circular pressure portion 7 on the lower surface. The first pressure plate 5 is fixed to the base plate 9 via four connecting rods 8. A tension rod 10 is attached to the lower surface of the base plate 9, and the lower end of the tension rod 10 is attached to the fixing portion 3 of the uniaxial tensile test device 2 via the base plate 11.

第2加圧板6は、円形形状を有し、U字形の引張部材12の中央部12aに固定されている。引張部材12は角棒からなり、その中央部12aは、第1加圧板5と台板9との間であって、前方の2本の連結ロッド8と、後方の2本の連結ロッド8との間に挿入されている。引張部材12の両端部12b,12cは連結バー13によって連結されている。連結バー13の上面の中央部は、ロックロッド14を介して、一軸引張試験装置2の可動部4に設けられた支持部材15に取り付けられている。支持部材15に作用する引張荷重は、一軸引張試験装置2の可動部4に設けられたロードセル16によって測定される。 The second pressure plate 6 has a circular shape and is fixed to the central portion 12a of the U-shaped tension member 12. The tension member 12 is made of a square bar, and the central portion 12a thereof is between the first pressure plate 5 and the base plate 9, and includes two front connecting rods 8 and two rear connecting rods 8. It is inserted between. Both ends 12b and 12c of the tension member 12 are connected by a connecting bar 13. The central portion of the upper surface of the connecting bar 13 is attached to the support member 15 provided in the movable portion 4 of the uniaxial tensile test device 2 via the lock rod 14. The tensile load acting on the support member 15 is measured by a load cell 16 provided in the movable portion 4 of the uniaxial tensile test device 2.

図2に示すように、U字形の引張部材12の中央部12aの第2加圧板6の外側にはガイド棒17が立設されている。ガイド棒17は、第1加圧板5をスライド可能に貫通して、上方に突出している。 As shown in FIG. 2, a guide rod 17 is erected on the outside of the second pressure plate 6 at the central portion 12a of the U-shaped tension member 12. The guide rod 17 slidably penetrates the first pressure plate 5 and projects upward.

図1に戻ると、第1加圧板5と第2加圧板6とには、標点18a,18bが取り付けられる。第2加圧板6には、ゴム試験片Sが設置される。一軸引張試験装置2の可動部4を上昇させることで、第2加圧板6が第1加圧板5に接近し、第2加圧板6に載置されたゴム試験片Sが、第1加圧板5と第2加圧板6とによって圧縮される。第1加圧板5と第2加圧板6との近傍には、標点18a,18bの動きを撮影するカメラ19が設置されている。 Returning to FIG. 1, reference points 18a and 18b are attached to the first pressure plate 5 and the second pressure plate 6. A rubber test piece S is installed on the second pressure plate 6. By raising the movable portion 4 of the uniaxial tensile test device 2, the second pressure plate 6 approaches the first pressure plate 5, and the rubber test piece S placed on the second pressure plate 6 becomes the first pressure plate. It is compressed by 5 and the second pressure plate 6. A camera 19 for photographing the movements of the reference points 18a and 18b is installed in the vicinity of the first pressure plate 5 and the second pressure plate 6.

ロードセル16の荷重測定信号とカメラ19の画像信号とは、制御装置20に入力される。制御装置20は、ロードセル16からの信号に基づいて求められる荷重と、カメラ19からの撮影画像の画像解析によって求められる標点18a,18b間の変位とにより、応力と圧縮率とを算出し、必要に応じて応力−圧縮率曲線を作成する。 The load measurement signal of the load cell 16 and the image signal of the camera 19 are input to the control device 20. The control device 20 calculates the stress and the compressibility from the load obtained based on the signal from the load cell 16 and the displacement between the reference points 18a and 18b obtained by image analysis of the captured image from the camera 19. Create a stress-bulk modulus curve as needed.

次に、以上の構成を有する圧縮試験用治具1を装着した一軸引張試験装置2を使用する圧縮試験方法を、図3のフローチャートに沿って説明する。 Next, a compression test method using the uniaxial tensile test device 2 equipped with the compression test jig 1 having the above configuration will be described with reference to the flowchart of FIG.

一軸引張試験装置2に圧縮試験用治具1を装着した後、ステップS11では、図4(a)に示すように、第1加圧板5と第2加圧板6との加圧面に、液状物としてシリコンオイル21を塗布する。シリコンオイル21の動粘度は、50万mm/s以上が好ましく、100万mm/s以上がより好ましい。シリコンオイル21は、加圧面のほぼ全面に油膜切れを起こさない程度にムラなく塗布する。液状物としては、シリコンオイルのほか、グリース、液状ポリマー(例えばポリブテン)、液状ゴム(例えば液状ポリイソプレンゴム)等を使用できる。 After mounting the compression test jig 1 on the uniaxial tensile test device 2, in step S11, as shown in FIG. 4A, a liquid substance is formed on the pressure surfaces of the first pressure plate 5 and the second pressure plate 6. Silicone oil 21 is applied as a The kinematic viscosity of the silicon oil 21 is preferably at least 500,000 mm 2 / s, more preferably at least 1 million mm 2 / s. The silicone oil 21 is evenly applied to almost the entire surface of the pressurized surface to the extent that the oil film does not run out. As the liquid material, in addition to silicone oil, grease, liquid polymer (for example, polybutene), liquid rubber (for example, liquid polyisoprene rubber) and the like can be used.

ステップS12では、第1加圧板5と第2加圧板6とに塗布したシリコンオイル21の上に、パラフィンフィルム22を設置する。パラフィンフィルム22としては、パラフィルム(登録商標)が好ましい。パラフィンフィルム22は、円形に切断し、図4(b)に示すように、接着性のある面22a(離型紙を剥がした面)を上にし、接着性のない面22bをシリコンオイル21の上に貼り付ける。パラフィンフィルム22の径は、圧縮前のゴム試験片Sの直径よりも、大きくしておくことが好ましい。パラフィンフィルムは、パラフィルム(登録商標)のほか、パラフィンフィルム(ラボピタ:登録商標)、ポリウレタンフィルム(タフグレイス:登録商標)、高性能プラスチックフィルム(ポリグレイス:登録商標)、直鎖状低密度ポリエチレンフィルム(ストレッチフィルム)等を使用できる。 In step S12, the paraffin film 22 is placed on the silicon oil 21 applied to the first pressure plate 5 and the second pressure plate 6. As the paraffin film 22, parafilm (registered trademark) is preferable. The paraffin film 22 is cut into a circle, and as shown in FIG. 4 (b), the adhesive surface 22a (the surface from which the release paper is peeled off) is facing up, and the non-adhesive surface 22b is placed on the silicone oil 21. Paste in. The diameter of the paraffin film 22 is preferably larger than the diameter of the rubber test piece S before compression. In addition to Parafilm (registered trademark), paraffin film includes paraffin film (Labopita: registered trademark), polyurethane film (Tough Grace: registered trademark), high-performance plastic film (Polygrace: registered trademark), and linear low-density polyethylene. A film (stretch film) or the like can be used.

パラフィンフィルム22は、使用するゴム試験片Sより摩擦係数の小さいものが好ましい。ゴム試験片Sより摩擦係数が大きいと、パラフィンフィルム22と加圧板5、6との間の摩擦が、より大きくなり、ゴム試験片Sの端面の変形が遅れて、バルジングが、より生じやすくなるからである。 The paraffin film 22 preferably has a coefficient of friction smaller than that of the rubber test piece S used. When the friction coefficient is larger than that of the rubber test piece S, the friction between the paraffin film 22 and the pressure plates 5 and 6 becomes larger, the deformation of the end face of the rubber test piece S is delayed, and bulging is more likely to occur. Because.

ゴム試験片Sの高さが0.2(圧縮率80%)になると、体積の変化がないとすれば、ゴム試験片Sの径は√5(2.236)倍になる。よって、パラフィンフィルム22がゴム試験片Sの径の変位に追従するように、パラフィンフィルム22の伸長性は224%以上が好ましい。 When the height of the rubber test piece S is 0.2 (compression rate 80%), the diameter of the rubber test piece S is √5 (2.236) times larger if there is no change in volume. Therefore, the extensibility of the paraffin film 22 is preferably 224% or more so that the paraffin film 22 follows the displacement of the diameter of the rubber test piece S.

ステップS13では、第2加圧板6に設置したパラフィンフィルム22の上にゴム試験片Sを設置する。ゴム試験片Sは、特性データを求めようとするゴム材料からなり、径12.5mm、高さ12.5mmである。ゴム試験片Sは、図4(c)に示すように、位置決め治具23を用いてパラフィンフィルム22の中央に設置することが好ましい。位置決め治具23としては、図6に示すように、門型の枠24と、該枠24の中央部に固定した扇形のガイド板25とからなり、ガイド板25の先端にゴム試験片Sが係合する半円の切欠き25aを設け、枠24の両脚部が第2加圧板6の外周面に当接したときに、半円の切欠き25aの中心が第2加圧板6の中心すなわち、パラフィンフィルム22の中心に位置するように構成されている。 In step S13, the rubber test piece S is installed on the paraffin film 22 installed on the second pressure plate 6. The rubber test piece S is made of a rubber material for which characteristic data is to be obtained, and has a diameter of 12.5 mm and a height of 12.5 mm. As shown in FIG. 4C, the rubber test piece S is preferably installed in the center of the paraffin film 22 by using the positioning jig 23. As shown in FIG. 6, the positioning jig 23 includes a gate-shaped frame 24 and a fan-shaped guide plate 25 fixed to the central portion of the frame 24, and a rubber test piece S is attached to the tip of the guide plate 25. An engaging semicircular notch 25a is provided, and when both legs of the frame 24 abut on the outer peripheral surface of the second pressure plate 6, the center of the semicircular notch 25a is the center of the second pressure plate 6, that is, , Is configured to be located in the center of the paraffin film 22.

次に、ステップS14において、ゴム試験片Sが動かないように初期荷重を付与する。このとき、瞬間最大荷重が10N以下になるようにする。瞬間最大荷重は、圧縮率を一定以上与えないと、応力緩和によりゼロに戻る荷重である。具体的には、まず、図5(a)に示すように、手動操作でゆっくりと荷重を増加させ、一度荷重が10Nに到達した後、ゴム試験片Sがどれだけ変位しても、追加荷重を与えずにゼロリセットを行う。 Next, in step S14, an initial load is applied so that the rubber test piece S does not move. At this time, the maximum instantaneous load is set to 10 N or less. The instantaneous maximum load is a load that returns to zero due to stress relaxation unless a certain compressibility is applied. Specifically, first, as shown in FIG. 5A, the load is slowly increased by manual operation, and once the load reaches 10 N, no matter how much the rubber test piece S is displaced, an additional load is applied. Perform a zero reset without giving.

ステップS15で、カメラ19を録画モードにし、ステップS16で荷重を付加し、測定を開始する。図5(b)に示すように、10mm/minで荷重を付加し、ゴム試験片Sを圧縮する。ステップS18で、荷重及び変位を測定する。荷重は、ロードセル16の信号に基づいて求め、変位は、カメラ19により撮像した画像の解析によって、標点18a,18b間の距離から求める。得られた変位と荷重の値から、圧縮率(変位/初期長さ)と応力(荷重/初期断面積)とを算出し、応力−圧縮率曲線を作成する。 In step S15, the camera 19 is put into the recording mode, the load is applied in step S16, and the measurement is started. As shown in FIG. 5B, a load is applied at 10 mm / min to compress the rubber test piece S. In step S18, the load and displacement are measured. The load is determined based on the signal of the load cell 16, and the displacement is determined from the distance between the reference points 18a and 18b by analyzing the image captured by the camera 19. From the obtained displacement and load values, the compressibility (displacement / initial length) and stress (load / initial cross-sectional area) are calculated, and a stress-compression rate curve is created.

測定中、ゴム試験片Sのバルジング又は滑りが発生していないかを、目視により確認する。ステップS18で、バルジング又は滑りが発生していると判断した場合は、ステップS19で、そのときの圧縮率を制御装置20に記録する。 During the measurement, visually check whether the rubber test piece S is bulging or slipping. If it is determined in step S18 that bulging or slipping has occurred, the compression rate at that time is recorded in the control device 20 in step S19.

また、測定中、応力−圧縮率曲線が低下していないかを確認する。ステップS20で、応力−圧縮率曲線が低下していれば、ステップS22で荷重を除去し、測定を中止する。 Also, during the measurement, check whether the stress-compression rate curve has decreased. If the stress-compression rate curve is reduced in step S20, the load is removed in step S22 and the measurement is stopped.

ステップS20で、応力−圧縮率曲線が低下していなければ、ステップS21で、所定の圧縮率に到達したか否かを判断する。ステップS21で、所定の圧縮率に到達していなければ、ステップS16に戻り、荷重付加を継続し、測定を続行する。 If the stress-compression rate curve has not decreased in step S20, it is determined in step S21 whether or not a predetermined compressibility has been reached. If the predetermined compression ratio has not been reached in step S21, the process returns to step S16, load application is continued, and measurement is continued.

ステップS21で、所定の圧縮率に到達していれば、ステップS22で荷重を除去し、測定を終了する。そして、ステップS23で、ゴム試験片S及びパラフィンフィルム22を回収する。ステップS24で、次のゴム試験片Sの有無を確認し、ゴム試験片Sが残っていれば、ステップS11に戻り、同一の手順で繰り返して、次のゴム試験片Sの測定を行う。ゴム試験片Sが残っていなければ、測定を完了する。 If the predetermined compression ratio is reached in step S21, the load is removed in step S22, and the measurement ends. Then, in step S23, the rubber test piece S and the paraffin film 22 are collected. In step S24, the presence or absence of the next rubber test piece S is confirmed, and if the rubber test piece S remains, the process returns to step S11, and the same procedure is repeated to measure the next rubber test piece S. If the rubber test piece S does not remain, the measurement is completed.

図7は、測定荷重を付加している間のゴム試験片Sの状況を示す。ゴム試験片Sと一対の第1加圧板5,第2加圧板6との間には、シリコンオイル21とパラフィンフィルム22とが存在する。パラフィンフィルム22は、224%以上の伸長性があるため、ゴム試験片Sの半径方向の変形に十分に追従する。また、パラフィンフィルム22は、ゴム試験片Sよりも摩擦係数が小さいため、加圧板5、6とパラフィンフィルム22との間の摩擦力は小さい。これにより、ゴム試験片Sは、バルジングを起こすことがなく、80%の圧縮率まで圧縮変形させることができる。 FIG. 7 shows the situation of the rubber test piece S while applying the measurement load. Silicone oil 21 and paraffin film 22 are present between the rubber test piece S and the pair of first pressure plates 5 and 2. Since the paraffin film 22 has an extensibility of 224% or more, it sufficiently follows the deformation of the rubber test piece S in the radial direction. Further, since the paraffin film 22 has a smaller friction coefficient than the rubber test piece S, the frictional force between the pressure plates 5 and 6 and the paraffin film 22 is small. As a result, the rubber test piece S can be compressively deformed to a compressibility of 80% without causing bulging.

また、パラフィンフィルム22と一対の第1加圧板5,第2加圧板6との間にシリコンオイル21が存在するので、パラフィンフィルム22と第1加圧板5,第2加圧板6との間の摩擦力が小さくなっており、シリコンオイル22の油膜切れがなく、ゴム試験片Sのバルジングの発生をさらに防止することができる。 Further, since the silicon oil 21 exists between the paraffin film 22 and the pair of the first pressure plates 5 and the second pressure plates 6, the silicon oil 21 is between the paraffin film 22 and the first pressure plates 5 and the second pressure plates 6. The frictional force is small, the oil film of the silicon oil 22 does not run out, and the occurrence of bulging of the rubber test piece S can be further prevented.

ゴム試験片として、径12.5mm、高さ12.5mmのEPDMゴム(摩擦係数:0.5)からなる試験片を用い、図1に示す圧縮試験用治具1を装着した一軸引張試験装置2を用いて、次のケースについて圧縮試験を行った。
ケース1:ゴム試験片と加圧板の間にパラフィンフィルムがある
ケース2:ゴム試験片と加圧板の間にパラフィンフィルムがない
パラフィンフィルムとして、パラフィルム(登録商標)を用いた。シリコンオイルは、信越シリコーン(KF−96H−50万cs、100万cs)を用い、加圧面に油膜切れを起こさない程度にムラなく塗布した。パラフィルム(登録商標)は、0.4の摩擦係数と、350%の伸長性とを有するものを用いた。
A uniaxial tensile test device using a test piece made of EPDM rubber (coefficient of friction: 0.5) having a diameter of 12.5 mm and a height of 12.5 mm as a rubber test piece and equipped with the compression test jig 1 shown in FIG. A compression test was performed on the following cases using 2.
Case 1: There is a paraffin film between the rubber test piece and the pressure plate Case 2: There is no paraffin film between the rubber test piece and the pressure plate Parafilm (registered trademark) was used as the paraffin film. As the silicone oil, Shin-Etsu Silicone (KF-96H-500,000 cs, 1 million cs) was used and applied evenly to the pressured surface to the extent that the oil film did not run out. A parafilm (registered trademark) having a friction coefficient of 0.4 and an extensibility of 350% was used.

この結果、図8に示すように、ゴム試験片と加圧板との間にパラフィンフィルムがないケース2では、シリコンオイルの油膜切れが生じ、バルジングを起こして、圧縮率75%以上で応力が増大した。一方、ゴム試験片と加圧板との間にパラフィンフィルムがあるケース1では、シリコンオイルの油膜切れや、バルジングが生じず、圧縮率75%以上でも応力が増大することはなく、80%の圧縮率でも正確な応力データを得ることができた。 As a result, as shown in FIG. 8, in the case 2 where there is no paraffin film between the rubber test piece and the pressure plate, the oil film of the silicone oil is cut off, bulging occurs, and the stress increases at a compressibility of 75% or more. did. On the other hand, in Case 1 where there is a paraffin film between the rubber test piece and the pressure plate, the silicone oil does not run out of oil film or bulging, and the stress does not increase even when the compressibility is 75% or more, and the compression is 80%. Accurate stress data could be obtained even with the bulk modulus.

1…圧縮試験用治具
2…一軸引張試験装置
3…固定部
4…可動部
5…第1加圧板
6…第2加圧板
7…加圧部
8…連結ロッド
9…台板
10…引張ロッド
11…ベース板
12…引張部材
13…連結バー
14…ロックロッド
15…支持部材
16…ロードセル
17…ガイド棒
18a,18b…標点
19…カメラ
20…制御装置
21…シリコンオイル
22…パラフィンフィルム
23…位置決め治具
24…枠
25…ガイド板
25a…切欠き
S…ゴム試験片

1 ... Compression test jig 2 ... Uniaxial tensile test device 3 ... Fixed part 4 ... Movable part 5 ... 1st pressure plate 6 ... 2nd pressure plate 7 ... Pressurization part 8 ... Connecting rod 9 ... Base plate 10 ... Tensile rod 11 ... Base plate 12 ... Tensile member 13 ... Connecting bar 14 ... Lock rod 15 ... Support member 16 ... Load cell 17 ... Guide rods 18a, 18b ... Reference point 19 ... Camera 20 ... Control device 21 ... Silicon oil 22 ... Paraffin film 23 ... Positioning jig 24 ... Frame 25 ... Guide plate 25a ... Notch S ... Rubber test piece

Claims (5)

対向する一対の加圧板の間にゴム試験片を配置し、前記一対の加圧板を軸方向に移動させて、前記ゴム試験片を圧縮する圧縮試験方法において、
前記ゴム試験片の両端面と前記一対の加圧板との間に、前記ゴム試験片より摩擦係数の小さい伸長性を有するフィルムを挟持することを特徴とする圧縮試験方法。
In a compression test method in which a rubber test piece is arranged between a pair of pressure plates facing each other and the pair of pressure plates are moved in the axial direction to compress the rubber test piece.
A compression test method comprising sandwiching a film having an extensibility having a friction coefficient smaller than that of the rubber test piece between both end faces of the rubber test piece and the pair of pressure plates.
前記一対の加圧板に、動粘度50万mm/s以上の液状物をそれぞれ塗布し、前記液状物の上に、前記フィルムをそれぞれ設置することを特徴とする請求項1に記載の圧縮試験方法。 The compression test according to claim 1, wherein a liquid material having a kinematic viscosity of 500,000 mm 2 / s or more is applied to each of the pair of pressure plates, and the film is placed on the liquid material. Method. 前記フィルムは、パラフィンフィルムからなり、前記液状物は、シリコンオイルからなることを特徴とする請求項1又は2に記載の圧縮試験方法。 The compression test method according to claim 1 or 2, wherein the film is made of a paraffin film, and the liquid material is made of silicon oil. 前記フィルムは、圧縮前の前記ゴム試験片の直径より大きい円形形状を有することを特徴とする請求項1から3のいずれかに記載の圧縮試験方法。 The compression test method according to any one of claims 1 to 3, wherein the film has a circular shape larger than the diameter of the rubber test piece before compression. 前記フィルムは、224%以上の伸長性を有することを特徴とする請求項1から4のいずれかに記載の圧縮試験方法。

The compression test method according to any one of claims 1 to 4, wherein the film has an extensibility of 224% or more.

JP2016220151A 2016-11-11 2016-11-11 Rubber compression test method Active JP6764071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016220151A JP6764071B2 (en) 2016-11-11 2016-11-11 Rubber compression test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016220151A JP6764071B2 (en) 2016-11-11 2016-11-11 Rubber compression test method

Publications (2)

Publication Number Publication Date
JP2018077179A JP2018077179A (en) 2018-05-17
JP6764071B2 true JP6764071B2 (en) 2020-09-30

Family

ID=62150522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016220151A Active JP6764071B2 (en) 2016-11-11 2016-11-11 Rubber compression test method

Country Status (1)

Country Link
JP (1) JP6764071B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031308B (en) * 2019-05-07 2020-08-04 清华大学 Compression height-adjustable's rubber compression permanent deformation utensil
CN110261224A (en) * 2019-06-28 2019-09-20 上海众力投资发展有限公司 A kind of rubber modulus detection system and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022429B1 (en) * 1968-09-05 1975-07-30
JPH0663948B2 (en) * 1986-04-10 1994-08-22 大同特殊鋼株式会社 Compression test method
JPH0816644B2 (en) * 1992-07-30 1996-02-21 日本金属工業株式会社 Material deformation resistance measurement method
JPH07333127A (en) * 1994-06-13 1995-12-22 Daido Steel Co Ltd Hardness estimating method for cold-worked part
JPH08338796A (en) * 1995-06-14 1996-12-24 Fuji P S:Kk Convenient method and system for triaxial compression test
JP3773005B2 (en) * 1996-12-26 2006-05-10 株式会社フジタ Plane strain compression test equipment
JP2001183271A (en) * 1999-12-28 2001-07-06 Kiso Jiban Consultants Kk Method and apparatus for ultrasonic friction reducing type ground investigation test
US9383346B2 (en) * 2015-03-17 2016-07-05 Ramesh Chandra Gupta Expandable jacket and its calibration device for triaxial tests on soils

Also Published As

Publication number Publication date
JP2018077179A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
Sasso et al. Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods
JP6764071B2 (en) Rubber compression test method
US4567758A (en) Apparatus for testing the bond strength of materials
US20210372896A1 (en) Method and means for testing the strength of a bonding between two specimen elements
Sanborn et al. Poisson's ratio of a hyperelastic foam under quasi-static and dynamic loading
KR101447507B1 (en) Horizontality and verticality shear test apparatus and method for gouge
Bernardi et al. The effect of clamping conditions on tearing energy estimation for highly stretchable materials
Zimmermann et al. The mechanical behaviour of rubber under hydrostatic compression and the effect on the results of finite element analyses
KR101506908B1 (en) Anti-bucking device of a sheet metal specimen in fatigue testiung machine
DE10252211B4 (en) Method and device for testing the unimpeded relaxation behavior of a compressed viscoelastic foam
US10024772B1 (en) Device and method for applying internal pressure to a hollow cylinder
KR20160001975A (en) Strength test method of specimen
Warfield et al. Single specimen determination of Young's and bulk moduli
CN101131341B (en) Overload safeguard for tensometer
Briassoulis et al. Measuring strains of LDPE films: the strain gauge problems
JP6408397B2 (en) PC steel bar unit tightening force measuring device
Woo et al. Design of mechanical testing specimens for rubber material using finite element analysis
RU2607301C1 (en) Device for determining compression strength of composite materials (versions)
Crocker et al. Methods for obtaining volumetric coefficients for hyperelastic modelling of the flexible adhesives.
JP3364840B2 (en) Method and apparatus for checking the solidity of a vertically fixed post
Morales Determining if Force and/or Material Testing is Right for your Application
KR102148786B1 (en) An indentation tester fixing equipment
Houhou et al. Durability of concrete/FRP bonded assemblies subjected to hydrothermal coupled creep ageing mechanisms: Experimental and numerical investigations
Wu et al. Elimination of the friction effects in unconfined compression tests of biomaterials and soft tissues
RU2748460C1 (en) Device for testing sample of material for compression under conditions of hydrostatic pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R150 Certificate of patent or registration of utility model

Ref document number: 6764071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150