JP6763261B2 - Continuous hot-dip galvanized steel sheet and manufacturing method of alloyed hot-dip galvanized steel sheet - Google Patents

Continuous hot-dip galvanized steel sheet and manufacturing method of alloyed hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP6763261B2
JP6763261B2 JP2016186104A JP2016186104A JP6763261B2 JP 6763261 B2 JP6763261 B2 JP 6763261B2 JP 2016186104 A JP2016186104 A JP 2016186104A JP 2016186104 A JP2016186104 A JP 2016186104A JP 6763261 B2 JP6763261 B2 JP 6763261B2
Authority
JP
Japan
Prior art keywords
steel sheet
heating device
hot
heating
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016186104A
Other languages
Japanese (ja)
Other versions
JP2018048389A (en
Inventor
芳明 廣田
芳明 廣田
橋本 茂
茂 橋本
晃一 西沢
晃一 西沢
智史 内田
智史 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016186104A priority Critical patent/JP6763261B2/en
Publication of JP2018048389A publication Critical patent/JP2018048389A/en
Application granted granted Critical
Publication of JP6763261B2 publication Critical patent/JP6763261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼板に溶融亜鉛めっきし、該溶融亜鉛めっきされた鋼板を誘導加熱装置により加熱して溶融亜鉛めっき層を合金化する鋼板の連続溶融亜鉛めっき装置及び合金化溶融亜鉛めっき鋼板の製造方法に関する。 The present invention manufactures a continuous hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet, in which a steel sheet is hot-dip galvanized and the hot-dip galvanized steel sheet is heated by an induction heating device to alloy the hot-dip galvanized layer. Regarding the method.

鋼板に連続的に亜鉛めっきする連続溶融亜鉛めっき装置では、鋼板を溶融亜鉛浴に通した後に加熱して溶融亜鉛めっき層に亜鉛と鉄の合金化層を形成する場合がある。合金化の際の鋼板の加熱は、高周波誘導加熱で行われる場合が多く、誘導加熱方式としてはLF(Longitudinal Flux:平行磁束)方式が採用されている(特許文献1参照)。なお、LF方式では、鋼板の周囲を囲んだ誘導コイルに高周波電流を流して、磁束を鋼板の進行方向断面に貫通させて、この磁束に垂直な鋼板の幅方向断面内に周回する誘導電流を発生させて鋼板を加熱する。 In a continuous hot-dip galvanizing apparatus that continuously zinc-plats a steel sheet, the steel sheet may be passed through a hot-dip zinc bath and then heated to form an alloyed layer of zinc and iron in the hot-dip galvanized layer. The heating of the steel sheet at the time of alloying is often performed by high frequency induction heating, and the LF (Longitudinal Flux: parallel magnetic flux) method is adopted as the induction heating method (see Patent Document 1). In the LF method, a high-frequency current is passed through an induction coil surrounding the steel sheet, the magnetic flux is passed through the cross section in the traveling direction of the steel sheet, and the induced current circulates in the width direction cross section of the steel sheet perpendicular to the magnetic flux. Generate and heat the steel sheet.

特開平6−330276号公報Japanese Unexamined Patent Publication No. 6-330276

しかし、特許文献1に開示のように溶融亜鉛めっき後の合金化時にLF方式の誘導加熱で加熱する場合、鋼板の幅方向で合金化の程度が不均一となることがある。その原因としては以下のものが考えられる。 However, as disclosed in Patent Document 1, when heating is performed by LF induction heating during alloying after hot dip galvanizing, the degree of alloying may be non-uniform in the width direction of the steel sheet. The possible causes are as follows.

図9は、LF方式の誘導加熱で加熱した場合の溶融亜鉛めっき後の鋼板(以下、溶融亜鉛めっき鋼板)の温度分布を示す図である。図において、縦軸は温度、横軸は板幅方向の鋼板の中心からの位置を示し、横軸の±1の部分は鋼板の板幅方向側端である。 FIG. 9 is a diagram showing the temperature distribution of the hot-dip galvanized steel sheet (hereinafter referred to as hot-dip galvanized steel sheet) when heated by the LF method induction heating. In the figure, the vertical axis indicates the temperature, the horizontal axis indicates the position from the center of the steel sheet in the plate width direction, and the portion ± 1 on the horizontal axis is the end of the steel plate in the plate width direction.

LF方式で誘導加熱した直後の溶融亜鉛めっき鋼板は、図9(A)に示すように、全体が合金化温度となっており、また、その板幅方向に関し温度が一定である。
溶融亜鉛めっき鋼板は、通板ライン上を移動するにしたがって、図9(B)に示すように、その全体の温度が下がってゆき、特に、その端部は隣に高温の鋼板のない部分でありまた表裏面に加え端面からも放熱される領域となるため温度も中央部分に比べて大きく下がっている。
そして、通板ライン上で定められている合金化可能な区間の後半部分において、溶融亜鉛鋼板は、図9(C)に示すように、その端部の温度が合金化温度未満となってしまう場合がある。その場合、鋼板の幅方向で合金化の程度が不均一となる問題がある。
As shown in FIG. 9A, the hot-dip galvanized steel sheet immediately after induction heating by the LF method has an alloying temperature as a whole, and the temperature is constant in the plate width direction.
As the hot-dip galvanized steel sheet moves on the sheet passing line, the overall temperature of the hot-dip galvanized steel sheet decreases as shown in FIG. 9 (B), and in particular, the end portion thereof is a portion without a high temperature steel sheet next to it. In addition to the front and back surfaces, the area also dissipates heat from the end faces, so the temperature is significantly lower than in the central part.
Then, in the latter half of the alloyable section defined on the through plate line, the temperature of the end portion of the hot-dip galvanized steel sheet becomes lower than the alloying temperature as shown in FIG. 9 (C). In some cases. In that case, there is a problem that the degree of alloying becomes non-uniform in the width direction of the steel sheet.

また、溶融亜鉛めっき鋼板は溶融亜鉛の表面張力のためにエッジオーバーコートされ、すなわち溶融亜鉛めっき層の厚さが中央部分に比べて端部において厚くなっている。そのため、溶融亜鉛めっき鋼板の端部は、中央部分に比べて温めにくくなっており、加熱直後であっても中央部分に比べて温度が低くなることがある。その場合、溶融亜鉛めっき鋼板の中央部分が合金化温度であってもその端部が合金化温度未満となるときがあり、鋼板の幅方向で合金化の程度が不均一となることがある。 Further, the hot-dip galvanized steel sheet is edge overcoated due to the surface tension of the hot-dip zinc, that is, the thickness of the hot-dip galvanized layer is thicker at the end portion than at the central portion. Therefore, it is difficult to heat the end portion of the hot-dip galvanized steel sheet as compared with the central portion, and the temperature may be lower than that of the central portion even immediately after heating. In that case, even if the central portion of the hot-dip galvanized steel sheet is at the alloying temperature, the end portion may be lower than the alloying temperature, and the degree of alloying may be non-uniform in the width direction of the steel sheet.

本発明は、かかる点に鑑みてなされたものであり、鋼板に溶融亜鉛めっきし、該溶融亜鉛めっきされた鋼板を誘導加熱装置により加熱して溶融亜鉛めっき層を合金化する鋼板の連続溶融亜鉛めっき装置及び合金化溶融亜鉛めっき鋼板の製造方法において、鋼板全体を適切に合金化できるようにすることを目的とする。 The present invention has been made in view of this point, and is a continuous hot-dip galvanized steel sheet in which a steel sheet is hot-dip galvanized and the hot-dip galvanized steel sheet is heated by an induction heating device to alloy the hot-dip galvanized layer. An object of the present invention is to enable the entire steel sheet to be appropriately alloyed in a plating apparatus and a method for manufacturing an alloyed hot-dip galvanized steel sheet.

前記の目的を達成するため、本発明は、鋼板に溶融亜鉛めっきし、該溶融亜鉛めっきされた鋼板を誘導加熱装置により加熱して溶融亜鉛めっき層を合金化する鋼板の連続溶融亜鉛めっき装置であって、前記誘導加熱装置は、その加熱範囲を鋼板全幅とするものが通板方向に沿って複数設けられ、複数の前記誘導加熱装置のうち、少なくとも最下流のものは、垂直磁束方式で加熱を行うTF(Transverse Flux)加加熱装置であり、少なくとも1つのものは、平行磁束方式で加熱を行うLF加熱装置であり、鋼板の幅方向の温度分布を測定する幅方向温度計が、前記TF加熱装置の上流または下流に設けられており、さらに、前記誘導加熱装置を制御する制御装置を備え、該制御装置は、前記幅方向温度計での測定結果に基づいて、(a)鋼板の板幅方向端部のみ温度調整が必要な場合には、前記TF加熱装置の加熱量を増減させ、(b)鋼板の板幅方向中央部のみ温度調整が必要な場合には、前記LF加熱装置の加熱量を増減させ、(c)鋼板の板幅方向中央部から端部にかけた全幅の温度調整が必要な場合には、前記TF加熱装置での加熱量および前記LF加熱装置での加熱量のいずれも増減させる、ことを特徴としている。 In order to achieve the above object, the present invention is a continuous hot-dip galvanizing device for a steel sheet in which a steel sheet is hot-dip galvanized and the hot-dip galvanized steel sheet is heated by an induction heating device to alloy the hot-dip galvanized layer. Therefore , a plurality of the induction heating devices having a heating range of the entire width of the steel sheet are provided along the plate passing direction, and at least the most downstream of the plurality of induction heating devices is heated by the vertical magnetic flux method. A TF (Transverse Flux) heating device that performs heating , at least one is an LF heating device that heats by a parallel magnetic flux method, and a width direction thermometer that measures the temperature distribution in the width direction of a steel sheet is the TF. It is provided upstream or downstream of the heating device, and further includes a control device that controls the induction heating device, and the control device is (a) a plate of a steel plate based on the measurement result of the width direction thermometer. When temperature adjustment is required only at the end in the width direction, the heating amount of the TF heating device is increased or decreased. (B) When temperature adjustment is required only at the center of the steel plate in the width direction, the LF heating device is used. When it is necessary to increase or decrease the amount of heating and (c) adjust the temperature of the entire width of the steel sheet from the center to the end in the plate width direction, the amount of heating by the TF heating device and the amount of heating by the LF heating device Both are characterized by increasing or decreasing .

前記複数の誘導加熱装置のうち最下流前記TF加熱装置は、適用できる板幅の異なる複数のTF加熱装置からなり、前記適用できる板幅に応じていずれか1つに切り替えて用いられるものであることが好ましい。 Downstream of the TF heating device of the plurality of induction heating apparatus is made different from a plurality of TF heating device having a plate width which can be applied, those used by switching to one in accordance with the plate width which can be the application Is preferable.

前記誘導加熱装置のうち少なくとも最上流のものは、平行磁束方式で加熱を行う前記LF加熱装置であることが好ましい。 Of the induction heating devices, at least the most upstream one is preferably the LF heating device that heats by a parallel magnetic flux method.

前記制御装置は、鋼板の板幅方向中央部から端部にかけた全幅の温度調整が必要な場合には、前記TF加熱装置での加熱量と前記LF加熱装置での加熱量の比を制御指標に用いることが好ましい。 Wherein the control device, if the temperature adjustment of the total width obtained by multiplying the ends of the plate width direction central portion of the steel sheet is required, controlling the ratio of the heating quantity of the heating quantity and the LF heating device in the TF heating device indicator It is preferable to use it for.

前記TF加熱装置は、誘導コイルにより発生した磁束を集中させる磁性体コアを有し、該磁性体コアは、鋼板の幅方向に移動自在に設けられており、前記制御装置は、前記磁性体コアの鋼板幅方向位置を調整することにより前記TF加熱装置の制御を行うようにしてもよい。 The TF heating device has a magnetic core that concentrates the magnetic flux generated by the induction coil, the magnetic core is provided so as to be movable in the width direction of the steel plate, and the control device is the magnetic core. The TF heating device may be controlled by adjusting the position of the steel plate in the width direction.

前記TF加熱装置は、前記磁性体コアにより集中された磁束を遮蔽する遮蔽板を有し、前記制御装置は、前記遮蔽板の位置を調整することにより前記TF加熱装置の制御を行うようにしてもよい。 The TF heating device has a shielding plate that shields the magnetic flux concentrated by the magnetic core, and the control device controls the TF heating device by adjusting the position of the shielding plate. May be good.

前記TF加熱装置は、誘導コイルにより発生した磁束を集中させる磁性体コアと、該磁性体コアにより集中された磁束を遮蔽する遮蔽板と、を有し、前記制御装置は、前記遮蔽板の位置を調整することにより前記TF加熱装置の制御を行うようにしてもよい。 The TF heating device has a magnetic core that concentrates the magnetic flux generated by the induction coil and a shielding plate that shields the magnetic flux concentrated by the magnetic core, and the control device has a position of the shielding plate. The TF heating device may be controlled by adjusting the above.

前記制御装置は、前記誘導加熱装置を通過した鋼板の合金化分布の測定結果に基づいて、前記誘導加熱装置の制御を行うようにしてもよい。 The control device may control the induction heating device based on the measurement result of the alloying distribution of the steel sheet that has passed through the induction heating device.

別な観点による本発明によれば、鋼板に溶融亜鉛めっきし、該溶融亜鉛めっきされた鋼板を誘導加熱装置により加熱して溶融亜鉛めっき層を合金化する、上記連続溶融亜鉛めっき装置を用いた、合金化溶融亜鉛めっき鋼板の製造方法であって、記幅方向温度計での測定結果に基づき、前記誘導加熱装置通過後の前記鋼板の板幅方向端部の温度が該板幅方向端部以外の温度より高温となるように、前記誘導加熱装置を制御することを特徴としている。 According to the present invention from another viewpoint , the above-mentioned continuous hot-dip galvanizing apparatus is used, in which a steel sheet is hot-dip galvanized and the hot-dip galvanized steel sheet is heated by an induction heating apparatus to alloy the hot-dip galvanized layer . a method for manufacturing a galvannealed steel sheet, before SL on the basis of the measurement result of the width direction thermometer, the induction heating device temperature the plate widthwise end of the plate width direction end portion of the steel sheet after passing It is characterized in that the induction heating device is controlled so that the temperature becomes higher than the temperature other than the portion.

前記幅方向温度計での測定結果に基づき、温度不足部分が合金化温度以上に加熱されるよう前記誘導加熱装置を制御することが好ましい。
It is preferable to control the induction heating device so that the temperature shortage portion is heated to the alloying temperature or higher based on the measurement result by the width direction thermometer.

前記誘導加熱装置を通過した鋼板の合金化分布の測定結果に基づいて、前記誘導加熱装置の制御を行うことが好ましい。 It is preferable to control the induction heating device based on the measurement result of the alloying distribution of the steel sheet that has passed through the induction heating device.

本発明の鋼板の連続溶融亜鉛めっき装置及び合金化溶融亜鉛めっき鋼板の製造方法によれば、鋼板全体を適切に合金化することができる。 According to the continuous hot-dip galvanizing apparatus for steel sheets and the method for producing alloyed hot-dip galvanized steel sheets of the present invention, the entire steel sheet can be appropriately alloyed.

本発明の第1の実施形態に係る鋼板の連続溶融亜鉛めっき装置の概略を示す図である。It is a figure which shows the outline of the continuous hot dip galvanizing apparatus of the steel sheet which concerns on 1st Embodiment of this invention. 図1のLF加熱装置の概略を示す図である。It is a figure which shows the outline of the LF heating apparatus of FIG. 図1のTF加熱装置の概略を示す図である。It is a figure which shows the outline of the TF heating apparatus of FIG. 図1の合金化加熱装置で加熱した溶融亜鉛めっき鋼板の温度分布を示す図である。It is a figure which shows the temperature distribution of the hot-dip galvanized steel sheet heated by the alloying heating apparatus of FIG. 本発明の第2の実施形態に係る鋼板の連続溶融亜鉛めっき装置の概略を示す図である。It is a figure which shows the outline of the continuous hot dip galvanizing apparatus of the steel sheet which concerns on 2nd Embodiment of this invention. 本発明の第3の実施形態に係るTF加熱装置の概略を示す図である。It is a figure which shows the outline of the TF heating apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4の実施形態に係るTF加熱装置の概略を示す図である。It is a figure which shows the outline of the TF heating apparatus which concerns on 4th Embodiment of this invention. 本発明の第6の実施形態に係る鋼板の連続溶融亜鉛めっき装置の概略を示す図である。It is a figure which shows the outline of the continuous hot dip galvanizing apparatus of the steel sheet which concerns on 6th Embodiment of this invention. 従来の誘導加熱で加熱した場合の溶融亜鉛めっき鋼板の温度分布を示す図である。It is a figure which shows the temperature distribution of the hot-dip galvanized steel sheet at the time of heating by the conventional induction heating.

以下、本発明の実施の形態について図面を参照して説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る鋼板の連続溶融亜鉛めっき装置の概略を示す図である。
図の連続溶融亜鉛めっき装置1は、鋼板Hに溶融亜鉛めっきし、溶融亜鉛めっき層を合金化することにより、鋼板Hの溶接性、耐食性、プレス性等を良好にするものである。
(First Embodiment)
FIG. 1 is a diagram showing an outline of a continuous hot-dip galvanizing apparatus for a steel sheet according to the first embodiment of the present invention.
The continuous hot-dip galvanizing apparatus 1 in the figure improves the weldability, corrosion resistance, pressability, etc. of the steel sheet H by hot-dip galvanizing the steel sheet H and alloying the hot-dip galvanized layer.

図1の連続溶融亜鉛めっき装置1では、鋼板Hは、不図示の連続焼鈍炉で焼鈍された後、外気によって酸化されるのを防止するために設けられるダクト状のスナウト11内を通って溶融亜鉛めっき浴2に導入される。
溶融亜鉛めっき浴2に導入された鋼板Hは、該浴2内に設けられたシンクロール3により、上向きに方向転換され、サポートロール4で反りが矯正された後、溶融亜鉛めっき浴2から引き出される。
そして、溶融亜鉛めっきされた鋼板Hは、その両面に向けてガスワイピングノズル5からワイピングガスが吹き付けられ、めっき付着量が調整される。
In the continuous hot-dip galvanizing apparatus 1 of FIG. 1, the steel plate H is annealed in a continuous annealing furnace (not shown) and then melted through a duct-shaped snout 11 provided to prevent oxidation by the outside air. It is introduced into the galvanizing bath 2.
The steel plate H introduced into the hot-dip galvanizing bath 2 is turned upward by the sink roll 3 provided in the bath 2, and after the warp is corrected by the support roll 4, it is pulled out from the hot-dip galvanizing bath 2. Is done.
Then, the hot-dip galvanized steel sheet H is sprayed with wiping gas from the gas wiping nozzle 5 toward both sides thereof, and the amount of plating adhesion is adjusted.

めっき付着量が調整された鋼板Hは、該鋼板Hの振動を抑制する制振装置6を通過する。制振装置6は、鋼板Hの振動を抑制する機能の他に、合金化加熱装置7に対する鋼板Hの角度を規定する機能を有してもよい。
制振装置6による振動の抑制や角度の規定のための方式としては、高温ガス(例えば450℃以上)を鋼板Hの端部に吹き付ける方式が考えられる。また、電磁力のピンチ力による方式であってもよい。
さらに、例えば450℃以上に加熱したローラが鋼板Hの端部に当接することにより、鋼板Hの振動を抑制し鋼板Hの角度を規定する方式であってもよい。なお、ローラなどが当接することにより鋼板Hの溶融亜鉛めっき層は変形するが、鋼板Hが合金化加熱装置7を通板されている間において、溶融亜鉛めっき層の粘度が低くなるため、溶融亜鉛めっき層の変形部分は変形前の状態に戻る。
The steel sheet H whose plating adhesion amount has been adjusted passes through the vibration damping device 6 that suppresses the vibration of the steel sheet H. In addition to the function of suppressing the vibration of the steel plate H, the vibration damping device 6 may have a function of defining the angle of the steel plate H with respect to the alloying heating device 7.
As a method for suppressing vibration and defining an angle by the vibration damping device 6, a method of spraying a high temperature gas (for example, 450 ° C. or higher) on the end portion of the steel sheet H can be considered. Further, the method may be based on a pinch force of electromagnetic force.
Further, for example, a method may be used in which a roller heated to 450 ° C. or higher comes into contact with the end portion of the steel sheet H to suppress the vibration of the steel sheet H and define the angle of the steel sheet H. The hot-dip galvanized layer of the steel sheet H is deformed by the contact with the rollers or the like, but the hot-dip galvanized layer is molten while the steel sheet H is passed through the alloying heating device 7. The deformed portion of the zinc plating layer returns to the state before deformation.

なお、上述の制振装置6を設けずに、ガスワイピングノズル5からのワイピングガスにより鋼板Hのねじれ振動の抑制を行ってもよい。
また、制振装置6を設けずに、サポートロール4のインターメッシュ量(ロール押し込み量)を調整して、鋼板Hのねじれ振動の抑制を行ってもよい。
The torsional vibration of the steel plate H may be suppressed by the wiping gas from the gas wiping nozzle 5 without providing the vibration damping device 6 described above.
Further, the torsional vibration of the steel plate H may be suppressed by adjusting the intermesh amount (roll pushing amount) of the support roll 4 without providing the vibration damping device 6.

制振装置6を通過後、鋼板Hは、合金化加熱装置7にて加熱され例えば550±10℃まで昇温され、鋼板Hが上部ロール8に至るまでの間に鋼板Hの溶融亜鉛めっき層が合金化される。合金化加熱装置7は、複数の誘導加熱装置を有し、本実施形態では、LF加熱装置7aを上流側に有し、TF加熱装置7bを下流側に有する。
合金化された鋼板Hは、不図示の冷却装置により冷却された後、上部ロール8により通板方向が変換される。
After passing through the vibration damping device 6, the steel sheet H is heated by the alloying heating device 7 and heated to, for example, 550 ± 10 ° C., and the hot-dip galvanized layer of the steel sheet H is reached before the steel sheet H reaches the upper roll 8. Is alloyed. The alloying heating device 7 has a plurality of induction heating devices, and in the present embodiment, the LF heating device 7a is on the upstream side and the TF heating device 7b is on the downstream side.
The alloyed steel plate H is cooled by a cooling device (not shown), and then the plate passing direction is changed by the upper roll 8.

また、連続溶融亜鉛めっき装置1は、不図示の制御装置を備える。制御装置は、例えばコンピュータであり、プログラム格納部及びデータ格納部を有している。プログラム格納部には、連続溶融亜鉛めっき装置1における各種処理を制御するプログラムや、駆動系の動作を制御するプログラムなどが格納されている。データ格納部には、連続溶融亜鉛めっき装置1における各種処理に必要な各種データが格納されている。この制御装置は、合金化加熱装置7も制御し、LF加熱装置7aでの加熱量とTF加熱装置7bでの加熱量の比を制御指標に用いる等して合金化加熱装置7の制御を行う。 Further, the continuous hot-dip galvanizing device 1 includes a control device (not shown). The control device is, for example, a computer, and has a program storage unit and a data storage unit. The program storage unit stores a program for controlling various processes in the continuous hot-dip galvanizing apparatus 1, a program for controlling the operation of the drive system, and the like. Various data necessary for various processes in the continuous hot-dip galvanizing apparatus 1 are stored in the data storage unit. This control device also controls the alloying heating device 7, and controls the alloying heating device 7 by using the ratio of the heating amount in the LF heating device 7a and the heating amount in the TF heating device 7b as a control index. ..

なお、前記データや前記プログラムは、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどのコンピュータに読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御装置にインストールされたものであってもよい。 The data and the program can be stored in a computer-readable storage medium such as a computer-readable hard disk (HD), flexible disk (FD), compact disk (CD), magnet optical desk (MO), or memory card. It may have been recorded and installed in the control device from the storage medium.

図2は、LF加熱装置7aの概略を示す図である。図3は、TF加熱装置7bの概略を示す図であり、図3(A)はTF加熱装置7bを鋼板面に垂直な方向から視た模式正面図、図3(B)は図3(A)のA−A断面を示す模式断面図である。 FIG. 2 is a diagram showing an outline of the LF heating device 7a. FIG. 3 is a diagram showing an outline of the TF heating device 7b, FIG. 3A is a schematic front view of the TF heating device 7b viewed from a direction perpendicular to the steel plate surface, and FIG. 3B is FIG. 3A. It is a schematic cross-sectional view which shows the AA cross section of).

LF加熱装置7aは、図2に示すように、通板されている鋼板Hの周囲を囲む誘導コイル7cを有する。
誘導コイル7cは、銅などの導体で構成されており、高周波電源7dに接続されている。LF加熱装置7aでは、誘導コイル7cによって発生する磁束M1が、鋼板Hの通板方向断面(鋼板の通板方向に直交した断面)の誘導コイルに近い表層を集中的に貫通する。この磁束M1に垂直な鋼板Hの通板方向断面内に周回する誘導電流が発生し、該誘導電流により鋼板Hを加熱する。つまり、LF加熱装置7aは、LF(平行磁束)方式の誘導加熱で鋼板Hを加熱する。
このLF加熱装置7aによる加熱では、鋼板断面を周回する環状電流により加熱されるので鋼板の温度分布が板幅方向に比較的均一になりやすい。
As shown in FIG. 2, the LF heating device 7a has an induction coil 7c that surrounds the steel plate H through which the plate is passed.
The induction coil 7c is made of a conductor such as copper and is connected to the high frequency power supply 7d. In the LF heating device 7a, the magnetic flux M1 generated by the induction coil 7c intensively penetrates the surface layer of the steel plate H in the cross section in the plate-passing direction (cross section orthogonal to the plate-passing direction of the steel plate) close to the induction coil. An induced current is generated in the cross section of the steel plate H perpendicular to the magnetic flux M1 in the plate-passing direction, and the induced current heats the steel plate H. That is, the LF heating device 7a heats the steel sheet H by induction heating of the LF (parallel magnetic flux) method.
In the heating by the LF heating device 7a, the temperature distribution of the steel sheet tends to be relatively uniform in the plate width direction because it is heated by the annular current that goes around the cross section of the steel sheet.

TF加熱装置7bは、例えば図3(A)に示すように、鋼板の表面側、裏面側でそれぞれ、半円部と直線部からなる陸上競技の半周分のトラック状の誘導コイル7eと、該誘導コイル7e上に板幅方向に並べられて固定された4つの磁性体コア7fとを有する。図3(B)に示すように、誘導コイル7eと磁性体コア7fの組は鋼板の表面側、裏面側で1組ずつ、表裏面併せて2組あり、各組は互いに鋼板Hを挟んで対向するように設けられている。また、誘導コイル7eは、その半円部が、鋼板幅の外側となるように、また、鋼板の表面側と裏面側とで互いに逆側の鋼板幅側になるように設けられるとともに、誘導コイル7eの半円部とは鋼板Hを跨いで反対側の2つの直線部の端部には不図示の高周波電源が接続される。
磁性体コア7fは、フェライト、積層した電磁鋼板、アモルファス合金等の強磁性体から成るコアで構成されている。
As shown in FIG. 3A, for example, the TF heating device 7b includes a track-shaped induction coil 7e for half a circumference of athletics composed of a semicircular portion and a straight portion on the front surface side and the back surface side of the steel plate, respectively. It has four magnetic cores 7f arranged and fixed in the plate width direction on the induction coil 7e. As shown in FIG. 3B, there are two sets of the induction coil 7e and the magnetic core 7f on the front side and the back side of the steel plate, and two sets on the front and back sides, and each set sandwiches the steel plate H with each other. It is provided so as to face each other. Further, the induction coil 7e is provided so that the semicircular portion thereof is outside the width of the steel plate, and the front side and the back surface side of the steel plate are on the width side of the steel plate opposite to each other. A high-frequency power supply (not shown) is connected to the ends of the two straight portions on the opposite sides of the steel plate H from the semicircular portion of 7e.
The magnetic core 7f is composed of a core made of a ferromagnetic material such as ferrite, a laminated electromagnetic steel plate, and an amorphous alloy.

誘導コイル7eは、銅などの導体で構成されており、不図示の高周波電源に接続されている。誘導コイル7eによって発生する磁束M2は、磁性体コア7fを通り、鋼板Hを厚さ方向に貫通し、対向する磁性体コア7fへ向かう。TF加熱装置7bでは、この磁束M2に垂直な誘導電流が鋼板Hの板面内に発生し、該誘導電流により鋼板Hを加熱する。つまり、TF加熱装置7bは、TF(Transverse Flux:垂直磁束)方式の誘導加熱で鋼板Hを加熱する。
このTF加熱装置7bによる加熱では、被加熱材の磁性、板厚などに関係なく加熱することができ、また、鋼板の板幅方向に関し、中央部分も端部も加熱することができるが、端部の温度の方が中央部分に比べて高くなる。
The induction coil 7e is made of a conductor such as copper and is connected to a high frequency power supply (not shown). The magnetic flux M2 generated by the induction coil 7e passes through the magnetic core 7f, penetrates the steel plate H in the thickness direction, and heads toward the opposing magnetic core 7f. In the TF heating device 7b, an induced current perpendicular to the magnetic flux M2 is generated in the plate surface of the steel plate H, and the induced current heats the steel plate H. That is, the TF heating device 7b heats the steel sheet H by TF (Transverse Flux: vertical magnetic flux) induction heating.
In the heating by the TF heating device 7b, it is possible to heat regardless of the magnetism, the plate thickness, etc. of the material to be heated, and it is possible to heat both the central portion and the end portion in the plate width direction of the steel plate, but the edges The temperature of the part is higher than that of the central part.

図4は、LF加熱装置7a及びTF加熱装置7bを有する合金化加熱装置7で加熱した溶融亜鉛めっき後の鋼板H(以下、溶融亜鉛めっき鋼板H)の温度分布を示す図である。図において、縦軸は温度、横軸は板幅方向の溶融亜鉛めっき鋼板Hの中心からの位置を示し、横軸の±1の部分は上記鋼板Hの板幅方向側端であり、一点鎖線で囲まれた部分は合金化温度範囲を示す。 FIG. 4 is a diagram showing the temperature distribution of the hot-dip galvanized steel sheet H (hereinafter, hot-dip galvanized steel sheet H) heated by the alloying heating device 7 having the LF heating device 7a and the TF heating device 7b. In the figure, the vertical axis indicates the temperature, the horizontal axis indicates the position from the center of the hot-dip galvanized steel sheet H in the plate width direction, and the portion ± 1 on the horizontal axis is the end of the steel plate H on the plate width direction. The part surrounded by indicates the alloying temperature range.

合金化加熱装置7で誘導加熱した直後の溶融亜鉛めっき鋼板は、図4(A)に示すように、全体が合金化温度となっている。また、合金化加熱装置7ではLF加熱装置7aだけでなくTF加熱装置7bでも加熱しているため、溶融亜鉛めっき鋼板Hの板幅方向の端部の温度は、合金化加熱装置7で誘導加熱した直後では、中央部分に比べて高温とすることができる。 As shown in FIG. 4A, the hot-dip galvanized steel sheet immediately after induction heating by the alloying heating device 7 has an alloying temperature as a whole. Further, since the alloying heating device 7 is heated not only by the LF heating device 7a but also by the TF heating device 7b, the temperature of the end portion of the hot-dip galvanized steel sheet H in the plate width direction is induced and heated by the alloying heating device 7. Immediately after this, the temperature can be higher than that of the central portion.

溶融亜鉛めっき鋼板Hは、通板ライン上を移動するにしたがって温度が下がってゆき、その際の温度低下率は板幅方向の端部が中央部分に比べて大きい。しかし、前述のように溶融亜鉛めっき鋼板Hの板幅方向の端部の温度を高温としている。そのため、合金化加熱装置7と上部ロール8との中間付近であっても上部ロール8の上流側近傍であっても、すなわち、通板ライン上で定められている合金化可能な区間の中間部分付近であっても最終部分であっても、例えば、それぞれ図4(B)及び図4(C)に示すように、その端部の温度が合金化温度未満とならない。したがって、合金化加熱装置7を備える連続溶融亜鉛めっき装置1では、溶融亜鉛めっき鋼板Hの全体を適切に合金化することができる。 The temperature of the hot-dip galvanized steel sheet H decreases as it moves on the plate passing line, and the temperature decrease rate at that time is larger at the end portion in the plate width direction than at the central portion. However, as described above, the temperature of the end portion of the hot-dip galvanized steel sheet H in the plate width direction is set to a high temperature. Therefore, whether it is near the middle between the alloying heating device 7 and the upper roll 8 or near the upstream side of the upper roll 8, that is, the intermediate portion of the alloyable section defined on the through plate line. Regardless of whether it is in the vicinity or in the final part, for example, as shown in FIGS. 4 (B) and 4 (C), the temperature at the end thereof does not fall below the alloying temperature. Therefore, in the continuous hot-dip galvanizing apparatus 1 provided with the alloying heating apparatus 7, the entire hot-dip galvanized steel sheet H can be appropriately alloyed.

また、本実施形態の連続溶融亜鉛めっき装置1では、TF加熱装置7bだけではなく、LF加熱装置7aをも備える構成である。したがって、LF加熱装置7aのみを備える既存の連続溶融亜鉛めっき装置にTF加熱装置7bを組み込むことで本実施形態に係る連続溶融亜鉛めっき装置1を構成することができる。 Further, the continuous hot-dip galvanizing apparatus 1 of the present embodiment is configured to include not only the TF heating apparatus 7b but also the LF heating apparatus 7a. Therefore, the continuous hot-dip galvanizing apparatus 1 according to the present embodiment can be configured by incorporating the TF heating apparatus 7b into the existing continuous hot-dip galvanizing apparatus having only the LF heating apparatus 7a.

なお、本例は、LF加熱装置7a、TF加熱装置7bを1つずつ備える構成であるが、これら加熱装置7a、7bの両方またはいずれかを複数備える構成であってもよい。TF方式の誘導加熱装置は、一般に板幅制限があるため、鋼板の一般的なサイズである600mm幅前後から1800mm前後程度の変化に1台で対応するのは難しい。そこで、適用できる板幅の異なる2〜3台のTF誘導加熱装置を設置することで、狭い鋼板から広い鋼板までをLF方式では困難な所望の温度分布で自由に加熱することが可能になる。あるいは、加熱速度、加熱出力/加熱温度分布を制限しながら加熱することが可能であるため、めっきの表面性状を制御しながら加熱することも可能になる。
また、本例は、TF加熱装置7bがLF加熱装置7aより通板方向下流側に設けられているが、LF加熱装置7aより通板方向上流側に設けられていてもよい。
In this example, the LF heating device 7a and the TF heating device 7b are provided one by one, but a configuration in which both or a plurality of these heating devices 7a and 7b are provided may be provided. Since the TF type induction heating device generally has a limited plate width, it is difficult for one unit to cope with a change of about 600 mm width to about 1800 mm, which is a general size of a steel plate. Therefore, by installing two or three TF induction heating devices having different applicable plate widths, it is possible to freely heat a narrow steel plate to a wide steel plate with a desired temperature distribution, which is difficult with the LF method. Alternatively, since it is possible to heat while limiting the heating rate and the heating output / heating temperature distribution, it is also possible to heat while controlling the surface texture of the plating.
Further, in this example, the TF heating device 7b is provided on the downstream side in the plate-passing direction from the LF heating device 7a, but may be provided on the upstream side in the plate-passing direction from the LF heating device 7a.

(第2の実施形態)
図5は、本発明の第2の実施形態に係る鋼板の連続溶融亜鉛めっき装置の概略を示す図である。
図5の連続溶融亜鉛めっき装置1は、第1の実施形態の同装置の構成に加えて、幅方向温度計9を備える。
(Second Embodiment)
FIG. 5 is a diagram showing an outline of a continuous hot-dip galvanizing apparatus for a steel sheet according to a second embodiment of the present invention.
The continuous hot-dip galvanizing apparatus 1 of FIG. 5 includes a width direction thermometer 9 in addition to the configuration of the apparatus of the first embodiment.

幅方向温度計9は、鋼板Hの板幅方向の温度分布を測定するものであり、TF加熱装置7bの下流側に設けられている。
本実施形態の連続溶融亜鉛めっき装置1は、制御装置が、幅方向温度計9での測定結果に基づき合金化加熱装置7を制御する。
The width direction thermometer 9 measures the temperature distribution of the steel plate H in the plate width direction, and is provided on the downstream side of the TF heating device 7b.
In the continuous hot-dip galvanizing device 1 of the present embodiment, the control device controls the alloying heating device 7 based on the measurement result of the width direction thermometer 9.

具体的には、例えば制御装置は、幅方向温度計9での測定の結果、溶融亜鉛めっき鋼板Hの温度が全体的に所望の温度より低ければLF加熱装置7aとTF加熱装置7bの両方の出力が上がるように制御し、全体的に所望の温度より高ければ両方の出力を下がるように制御する。 Specifically, for example, in the control device, if the temperature of the hot-dip galvanized steel sheet H is lower than the desired temperature as a result of measurement with the width direction thermometer 9, both the LF heating device 7a and the TF heating device 7b The output is controlled to increase, and if the temperature is higher than the desired temperature as a whole, both outputs are controlled to decrease.

溶融亜鉛めっき鋼板Hの板幅方向端部のみ所望の温度より低ければ、制御装置はTF加熱装置7bのみ出力が上がるように制御してもよい。
また、溶融亜鉛めっき鋼板Hの板幅方向端部以外の部分の温度が所望の温度より低ければ、制御装置はLF加熱装置7aのみ出力が上がるように制御してもよい。
本例では、幅方向温度計9は、TF加熱装置7bの下流側に設けられているが、加熱前の温度を測定するために該加熱装置7bの上流側に設けられていてもよい。なお、幅方向温度計9は、TF加熱装置7bの上流側に設けられる場合、TF加熱装置7bとLF加熱装置7aとの間に設けられていてもよい。
If only the end portion of the hot-dip galvanized steel sheet H in the plate width direction is lower than the desired temperature, the control device may control so that the output is increased only by the TF heating device 7b.
Further, if the temperature of the portion of the hot-dip galvanized steel sheet H other than the end portion in the plate width direction is lower than the desired temperature, the control device may control so that the output is increased only by the LF heating device 7a.
In this example, the width direction thermometer 9 is provided on the downstream side of the TF heating device 7b, but may be provided on the upstream side of the heating device 7b in order to measure the temperature before heating. When the width direction thermometer 9 is provided on the upstream side of the TF heating device 7b, it may be provided between the TF heating device 7b and the LF heating device 7a.

(第3の実施形態)
本発明の第3の実施形態に係る鋼板の連続溶融亜鉛めっき装置は、第1及び第2の実施形態に係る同装置と、TF加熱装置の構成が異なる。
図6は、本発明の第3の実施形態に係るTF加熱装置の概略鋼板に垂直な方向から視た模式正面図で示す図であり、図6(A)は広幅材処理時の磁性体コアの配置を示す模式正面図であり、図6(B)は狭幅材処理時の磁性体コアの配置を示す模式正面図である。
図3のTF加熱装置7bの磁性体コア7fは板幅方向に関し鋼板Hに対する位置は固定であった。この場合、一般にTF加熱では、鋼板端部の温度が高くなりすぎることがある。
(Third Embodiment)
The continuous hot-dip galvanizing apparatus for steel sheets according to the third embodiment of the present invention has a different configuration of the TF heating apparatus from the apparatus according to the first and second embodiments.
FIG. 6 is a schematic front view of the TF heating device according to the third embodiment of the present invention as viewed from a direction perpendicular to the schematic steel plate, and FIG. 6 (A) is a magnetic core during wide material processing. 6 (B) is a schematic front view showing the arrangement of magnetic cores during narrow material processing.
The position of the magnetic core 7f of the TF heating device 7b in FIG. 3 with respect to the steel plate H in the plate width direction was fixed. In this case, in general, TF heating may cause the temperature of the end portion of the steel sheet to become too high.

それに対し、第3の実施形態に係る連続溶融亜鉛めっき装置では、TF加熱装置7bの磁性体コア7fは、図6(A)に示すように、鋼板Hの板幅方向に関し移動自在に設けられている。
そして、第3の実施形態に係る連続溶融亜鉛めっき装置では、制御装置が、磁性体コア7fの板幅方向の位置を調整し、鋼板Fを通過する磁束の磁束密度を調整する。これにより、TF加熱装置7bでの板幅方向に関する加熱分布を調整することができ、鋼板Hの端部が高くなりすぎるのを防ぐことができる。
On the other hand, in the continuous hot-dip galvanizing apparatus according to the third embodiment, the magnetic core 7f of the TF heating apparatus 7b is provided so as to be movable in the plate width direction of the steel plate H as shown in FIG. 6 (A). ing.
Then, in the continuous hot-dip galvanizing apparatus according to the third embodiment, the control apparatus adjusts the position of the magnetic core 7f in the plate width direction and adjusts the magnetic flux density of the magnetic flux passing through the steel plate F. Thereby, the heating distribution in the plate width direction in the TF heating device 7b can be adjusted, and the end portion of the steel plate H can be prevented from becoming too high.

また、磁性体コア7fが板幅方向に関し移動自在であるため、図6(A)のような広幅材だけでなく、図6(B)に示すように、磁性体コア7fの板幅方向の間隔を狭めることで、狭幅材も処理することができる。
なお、磁性体コア7fは、鋼板Hの表側と裏側の両方に設けられているが、板幅方向に移動可能に構成されているのは表側のものと裏側ものいずれか一方であってもよいし、両方であってもよい。
Further, since the magnetic core 7f is movable in the plate width direction, not only the wide material as shown in FIG. 6 (A) but also the magnetic core 7f in the plate width direction as shown in FIG. 6 (B). By narrowing the interval, narrow-width materials can also be processed.
The magnetic core 7f is provided on both the front side and the back side of the steel plate H, but one of the front side and the back side may be configured to be movable in the plate width direction. However, it may be both.

(第4の実施形態)
本発明の第4の実施形態に係る鋼板の連続溶融亜鉛めっき装置は、第1及び第2の実施形態に係る同装置と、TF加熱装置の構成が異なる。
図7は、本発明の第4の実施形態に係るTF加熱装置の概略を示す図であり、図7(A)はTF加熱装置を鋼板に垂直な方向から視た模式正面図、図7(B)は通板方向から視た側面図である。
TF加熱装置7bは、図7に示すように、鋼板Hの板幅方向に出没自在な磁気遮蔽板7gを有する。この磁気遮蔽板7gは、非磁性金属などである例えば銅から成り、磁性体コア7fによる磁束を遮蔽することができる。磁気遮蔽板7gは、板幅方向だけでなく通板方向にも出没自在であってもよく、通板方向にのみ出没自在であってもよい。
(Fourth Embodiment)
The continuous hot-dip galvanizing apparatus for steel sheets according to the fourth embodiment of the present invention has a different configuration of the TF heating apparatus from the apparatus according to the first and second embodiments.
FIG. 7 is a diagram showing an outline of a TF heating device according to a fourth embodiment of the present invention, and FIG. 7A is a schematic front view of the TF heating device viewed from a direction perpendicular to a steel plate, FIG. 7 (A). B) is a side view seen from the through plate direction.
As shown in FIG. 7, the TF heating device 7b has a magnetic shielding plate 7g that can freely appear and disappear in the plate width direction of the steel plate H. The magnetic shielding plate 7g is made of, for example, copper, which is a non-magnetic metal or the like, and can shield the magnetic flux generated by the magnetic core 7f. The magnetic shielding plate 7g may appear and disappear not only in the plate width direction but also in the plate passing direction, and may appear and disappear only in the plate passing direction.

そして、第4の実施形態に係る鋼板の連続溶融亜鉛めっき装置では、制御装置が、磁気遮蔽板7gの位置を調整することによりTF加熱装置7bを制御する。より具体的には、第4の実施形態に係る連続溶融亜鉛めっき装置では、制御装置が、磁気遮蔽板7gを板幅方向及び/または通板方向に移動させ、磁性体コア7fと溶融亜鉛めっき鋼板Hとの間に介在する遮蔽板7gの面積を調整し、上記鋼板Hを通過する磁束を調整する。これにより、TF加熱装置7bでの板幅方向に関する加熱分布を効果的に調整することができる。特に、TF式誘導加熱は、鋼板端部が過加熱になるため、磁気遮蔽板による磁束制御は、板端部の温度を制御するのに有効である。 Then, in the continuous hot-dip galvanizing apparatus for steel sheets according to the fourth embodiment, the control apparatus controls the TF heating apparatus 7b by adjusting the position of the magnetic shielding plate 7g. More specifically, in the continuous hot-dip galvanizing apparatus according to the fourth embodiment, the control device moves the magnetic shielding plate 7g in the plate width direction and / or the plate passing direction, and the magnetic core 7f and the hot-dip galvanizing. The area of the shielding plate 7g interposed between the steel plate H is adjusted, and the magnetic flux passing through the steel plate H is adjusted. Thereby, the heating distribution in the plate width direction in the TF heating device 7b can be effectively adjusted. In particular, in the TF type induction heating, the end portion of the steel plate is overheated, so that the magnetic flux control by the magnetic shielding plate is effective in controlling the temperature of the plate end portion.

(第5の実施形態)
本発明の第5の実施形態に係る連続溶融亜鉛めっき装置は、第1の実施形態に係る同装置と異なり、制御装置が、合金化加熱装置で加熱される前の鋼板の情報に基づいて、TF加熱装置での加熱量とLF加熱装置での加熱量の比を決定する。具体的には、例えば、幅方向温度計を合金化加熱装置の上流側に設け、上記鋼板の情報として幅方向温度計の測定結果の情報を取得し、溶融亜鉛めっき鋼板Hの板幅方向中央部と板幅方向端部の温度差が所定値以上である場合、TF加熱装置での加熱量が大きくなるように上記比を決定する。
(Fifth Embodiment)
The continuous hot-dip galvanizing apparatus according to the fifth embodiment of the present invention is different from the apparatus according to the first embodiment, based on the information of the steel sheet before the control apparatus is heated by the alloying heating apparatus. The ratio of the heating amount in the TF heating device to the heating amount in the LF heating device is determined. Specifically, for example, a width direction thermometer is provided on the upstream side of the alloying heating device, information on the measurement result of the width direction thermometer is acquired as the information of the steel sheet, and the center of the molten zinc plated steel sheet H in the width direction. When the temperature difference between the portion and the end portion in the plate width direction is equal to or greater than a predetermined value, the above ratio is determined so that the amount of heating by the TF heating device becomes large.

このように本実施形態に係る連続溶融亜鉛めっき装置では、合金化加熱装置で加熱される前の鋼板の情報に基づいて、溶融亜鉛めっき鋼板を適切に加熱し合金化させることができる。 As described above, in the continuous hot-dip galvanizing apparatus according to the present embodiment, the hot-dip galvanized steel sheet can be appropriately heated and alloyed based on the information of the steel sheet before being heated by the alloying heating apparatus.

(第6の実施形態)
図8は、本発明の第5の実施形態に係る鋼板の連続溶融亜鉛めっき装置の概略を示す図である。
図8の連続溶融亜鉛めっき装置1は、第1の実施形態の同装置の構成に加えて、合金化度計10を備える。
(Sixth Embodiment)
FIG. 8 is a diagram showing an outline of a continuous hot-dip galvanizing apparatus for a steel sheet according to a fifth embodiment of the present invention.
The continuous hot-dip galvanizing apparatus 1 of FIG. 8 includes an alloying degree meter 10 in addition to the configuration of the apparatus of the first embodiment.

合金化度計10は、溶融亜鉛めっき鋼板Hの合金化度を測定するものであり、より具体的には、単色X線を用いて該鋼板Hの板幅方向の合金化度の分布を測定するものである。この合金化度計10は、TF加熱装置7bの下流側であって合金化可能な区間の最終部分すなわち上部ロール8の上流側近傍に設けられていることが好ましい。
本実施形態の連続溶融亜鉛めっき装置1は、制御装置が、合金化度計10での測定結果に基づいて合金化加熱装置7を制御する。
The alloying degree meter 10 measures the alloying degree of the hot-dip galvanized steel sheet H, and more specifically, measures the distribution of the alloying degree of the steel sheet H in the plate width direction using monochromatic X-rays. To do. It is preferable that the alloying degree meter 10 is provided on the downstream side of the TF heating device 7b and near the final portion of the alloyable section, that is, near the upstream side of the upper roll 8.
In the continuous hot-dip galvanizing device 1 of the present embodiment, the control device controls the alloying heating device 7 based on the measurement result of the alloying degree meter 10.

具体的には、例えば、合金化度計10での測定の結果、合金化不足部分があれば当該部分がより加熱されるように制御装置は合金化加熱装置7を制御する。過合金部分があれば当該部分の加熱の度合が小さくなるよう制御装置は合金化加熱装置7を制御する。合合金化不足部分や過合金部分が鋼板Hの板幅方向端部であれば、例えば、TF加熱装置7bの出力を増減させることにより当該部分の加熱度合を変化させることができる。また、合金化不足部分や過合金部分が鋼板Hの板幅方向端部以外の部分であれば、例えば、TF加熱装置7bを第3の実施形態と同様に構成すれば、当該部分の加熱度合を変化させることができる。 Specifically, for example, as a result of measurement with the alloying degree meter 10, the control device controls the alloying heating device 7 so that if there is an alloying insufficient portion, the portion is heated more. If there is an overalloy portion, the control device controls the alloying heating device 7 so that the degree of heating of the portion becomes small. If the insufficiently alloyed portion or the overalloyed portion is the end portion of the steel plate H in the plate width direction, the degree of heating of the portion can be changed by increasing or decreasing the output of the TF heating device 7b, for example. Further, if the under-alloyed portion or the over-alloyed portion is a portion other than the end portion in the plate width direction of the steel plate H, for example, if the TF heating device 7b is configured in the same manner as in the third embodiment, the degree of heating of the portion is increased. Can be changed.

合金化度の取得方法は、合金化度計10で取得する方法に限られず、例えば可視光を照射してその反射率を測定し該測定結果に基づいて合金化度を取得する方法であってもよい。また、溶融亜鉛めっき鋼板Hの表面を撮像装置で撮像し該撮像結果を画像解析し合金化度を取得する方法であってもよい。 The method of acquiring the degree of alloying is not limited to the method of acquiring with the degree of alloying meter 10, for example, a method of irradiating visible light to measure the reflectance and acquiring the degree of alloying based on the measurement result. May be good. Alternatively, a method may be used in which the surface of the hot-dip galvanized steel sheet H is imaged with an imaging device and the imaging result is image-analyzed to obtain the degree of alloying.

本出願が開示する実施形態は適宜組み合わせることができる。 The embodiments disclosed in this application can be combined as appropriate.

本発明は、鋼板の溶融亜鉛めっき層を誘導加熱で合金化する技術に有用である。 The present invention is useful in a technique for alloying a hot-dip galvanized layer of a steel sheet by induction heating.

1…連続溶融亜鉛めっき装置
2…連続溶融亜鉛めっき浴
3…シンクロール
4…サポートロール
5…ガスワイピングノズル
6…制振装置
7…合金化加熱装置
7a…LF加熱装置
7b…TF加熱装置
7c…誘導コイル
7d…高周波電源
7e…誘導コイル
7f…磁性体コア
7g…磁気遮蔽板
8…上部ロール
9…幅方向温度計
10…合金化度計
11…スナウト
1 ... Continuous hot-dip galvanizing device 2 ... Continuous hot-dip galvanizing bath 3 ... Sink roll 4 ... Support roll 5 ... Gas wiping nozzle 6 ... Vibration damping device 7 ... Alloy heating device 7a ... LF heating device 7b ... TF heating device 7c ... Induction coil 7d ... High frequency power supply 7e ... Induction coil 7f ... Magnetic core 7g ... Magnetic shielding plate 8 ... Upper roll 9 ... Width thermometer 10 ... Alloying degree meter 11 ... Snout

Claims (11)

鋼板に溶融亜鉛めっきし、該溶融亜鉛めっきされた鋼板を誘導加熱装置により加熱して溶融亜鉛めっき層を合金化する鋼板の連続溶融亜鉛めっき装置であって、
前記誘導加熱装置は、その加熱範囲を鋼板全幅とするものが通板方向に沿って複数設けられ、
複数の前記誘導加熱装置のうち、少なくとも最下流のものは、垂直磁束方式で加熱を行うTF加熱装置であり、少なくとも1つのものは、平行磁束方式で加熱を行うLF加熱装置であり、
鋼板の幅方向の温度分布を測定する幅方向温度計が、前記TF加熱装置の上流または下流に設けられており、
さらに、前記誘導加熱装置を制御する制御装置を備え、
該制御装置は、前記幅方向温度計での測定結果に基づいて、
(a)鋼板の板幅方向端部のみ温度調整が必要な場合には、前記TF加熱装置の加熱量を増減させ、
(b)鋼板の板幅方向中央部のみ温度調整が必要な場合には、前記LF加熱装置の加熱量を増減させ、
(c)鋼板の板幅方向中央部から端部にかけた全幅の温度調整が必要な場合には、前記TF加熱装置での加熱量および前記LF加熱装置での加熱量のいずれも増減させる、ことを特徴とする鋼板の連続溶融亜鉛めっき装置。
A continuous hot-dip galvanizing device for a steel sheet in which a steel sheet is hot-dip galvanized and the hot-dip galvanized steel sheet is heated by an induction heating device to alloy the hot-dip galvanized layer.
A plurality of the induction heating devices having a heating range of the entire width of the steel sheet are provided along the plate passing direction.
Of the plurality of induction heating devices , at least the most downstream one is a TF heating device that heats by a vertical magnetic flux method , and at least one is an LF heating device that heats by a parallel magnetic flux method.
A width direction thermometer for measuring the temperature distribution in the width direction of the steel sheet is provided upstream or downstream of the TF heating device.
Further, a control device for controlling the induction heating device is provided.
The control device is based on the measurement result of the width direction thermometer.
(A) When it is necessary to adjust the temperature only at the end portion of the steel plate in the plate width direction, increase or decrease the heating amount of the TF heating device.
(B) When it is necessary to adjust the temperature only in the central portion of the steel plate in the plate width direction, increase or decrease the heating amount of the LF heating device.
(C) When it is necessary to adjust the temperature of the entire width of the steel sheet from the center to the end in the plate width direction, increase or decrease both the heating amount of the TF heating device and the heating amount of the LF heating device. A continuous hot-dip galvanizing device for steel sheets.
前記複数の誘導加熱装置のうち最下流前記TF加熱装置は、適用できる板幅の異なる複数のTF加熱装置からなり、前記適用できる板幅に応じていずれか1つに切り替えて用いられるものである、ことを特徴とする請求項1に記載の鋼板の連続溶融亜鉛めっき装置。 Downstream of the TF heating device of the plurality of induction heating apparatus is made different from a plurality of TF heating device having a plate width which can be applied, those used by switching to one in accordance with the plate width which can be the application The continuous hot-dip galvanizing apparatus for a steel sheet according to claim 1, wherein the steel sheet is continuously hot-dip galvanized. 前記誘導加熱装置のうち少なくとも最上流のものは、前記LF加熱装置である、ことを特徴とする請求項1または2に記載の鋼板の連続溶融亜鉛めっき装置。 The continuous hot-dip galvanizing apparatus for a steel sheet according to claim 1 or 2, wherein at least the most upstream of the induction heating apparatus is the LF heating apparatus. 前記制御装置は、鋼板の板幅方向中央部から端部にかけた全幅の温度調整が必要な場合には、前記TF加熱装置での加熱量と前記LF加熱装置での加熱量の比を制御指標に用いる、ことを特徴とする請求項1〜のいずれか1項に記載の鋼板の連続溶融亜鉛めっき装置。 Wherein the control device, if the temperature adjustment of the total width obtained by multiplying the ends of the plate width direction central portion of the steel sheet is required, controlling the ratio of the heating quantity of the heating quantity and the LF heating device in the TF heating device indicator The continuous hot-dip galvanizing apparatus for a steel sheet according to any one of claims 1 to 3 , wherein the device is used in the above-mentioned. 前記TF加熱装置は、誘導コイルにより発生した磁束を集中させる磁性体コアを有し、該磁性体コアは、鋼板の幅方向に移動自在に設けられており、
前記制御装置は、前記磁性体コアの鋼板幅方向位置を調整することにより前記TF加熱装置の制御を行う、ことを特徴とする請求項1〜のいずれか1項に記載の鋼板の連続溶融亜鉛めっき装置。
The TF heating device has a magnetic core that concentrates the magnetic flux generated by the induction coil, and the magnetic core is provided so as to be movable in the width direction of the steel sheet.
The continuous melting of the steel sheet according to any one of claims 1 to 4 , wherein the control device controls the TF heating device by adjusting the position of the magnetic core in the width direction of the steel sheet. Zinc plating equipment.
前記TF加熱装置は、前記磁性体コアにより集中された磁束を遮蔽する遮蔽板を有し、
前記制御装置は、前記遮蔽板の位置を調整することにより前記TF加熱装置の制御を行う、ことを特徴とする請求項5に記載の鋼板の連続溶融亜鉛めっき装置。
The TF heating device has a shielding plate that shields the magnetic flux concentrated by the magnetic core.
The continuous hot-dip galvanizing device for a steel sheet according to claim 5, wherein the control device controls the TF heating device by adjusting the position of the shielding plate.
前記TF加熱装置は、誘導コイルにより発生した磁束を集中させる磁性体コアと、該磁性体コアにより集中された磁束を遮蔽する遮蔽板と、を有し、
前記制御装置は、前記遮蔽板の位置を調整することにより前記TF加熱装置の制御を行う、ことを特徴とする請求項1〜のいずれか1項に記載の鋼板の連続溶融亜鉛めっき装置。
The TF heating device has a magnetic core that concentrates the magnetic flux generated by the induction coil, and a shielding plate that shields the magnetic flux concentrated by the magnetic core.
The continuous hot-dip galvanizing device for a steel sheet according to any one of claims 1 to 4 , wherein the control device controls the TF heating device by adjusting the position of the shielding plate.
前記制御装置は、前記誘導加熱装置を通過した鋼板の合金化分布の測定結果に基づいて、前記誘導加熱装置の制御を行う、ことを特徴とする請求項1〜7のいずれか1項に記載の鋼板の連続溶融亜鉛めっき装置。 The invention according to any one of claims 1 to 7 , wherein the control device controls the induction heating device based on the measurement result of the alloying distribution of the steel sheet that has passed through the induction heating device. Continuous hot dip galvanizing equipment for steel sheets. 鋼板に溶融亜鉛めっきし、該溶融亜鉛めっきされた鋼板を誘導加熱装置により加熱して溶融亜鉛めっき層を合金化する、請求項1〜8のいずれか1項に記載の鋼板の連続溶融亜鉛めっき装置を用いた、合金化溶融亜鉛めっき鋼板の製造方法であって、
記幅方向温度計での測定結果に基づき、前記誘導加熱装置通過後の前記鋼板の板幅方向端部の温度が該板幅方向端部以外の温度より高温となるように、前記誘導加熱装置を制御することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
The continuous hot-dip galvanizing of a steel sheet according to any one of claims 1 to 8 , wherein the steel sheet is hot-dip galvanized and the hot-dip galvanized steel sheet is heated by an induction heating device to alloy the hot-dip galvanized layer. A method for manufacturing an alloyed hot-dip galvanized steel sheet using an apparatus .
Based on the measurement result of the previous SL widthwise thermometer, as the temperature of the plate width direction end portion of the steel sheet after the induction heating apparatus through which a high temperature than the temperature outside the plate width direction end portion, the induction heating A method for manufacturing an alloyed hot-dip zinc-plated steel sheet, which comprises controlling an apparatus.
前記幅方向温度計での測定結果に基づき、温度不足部分が合金化温度以上に加熱されるよう前記誘導加熱装置を制御する、請求項に合金化溶融亜鉛めっき鋼板の製造方法。 The method for producing an alloyed hot-dip galvanized steel sheet according to claim 9 , wherein the induction heating device is controlled so that the insufficient temperature portion is heated to the alloying temperature or higher based on the measurement result by the width direction thermometer. 前記誘導加熱装置を通過した鋼板の合金化分布の測定結果に基づいて、前記誘導加熱装置の制御を行う、ことを特徴とする請求項9または10に記載の合金化溶融亜鉛めっき鋼板の製造方法。 The method for producing an alloyed hot-dip galvanized steel sheet according to claim 9 or 10 , wherein the induction heating device is controlled based on the measurement result of the alloying distribution of the steel sheet that has passed through the induction heating device. ..
JP2016186104A 2016-09-23 2016-09-23 Continuous hot-dip galvanized steel sheet and manufacturing method of alloyed hot-dip galvanized steel sheet Active JP6763261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016186104A JP6763261B2 (en) 2016-09-23 2016-09-23 Continuous hot-dip galvanized steel sheet and manufacturing method of alloyed hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016186104A JP6763261B2 (en) 2016-09-23 2016-09-23 Continuous hot-dip galvanized steel sheet and manufacturing method of alloyed hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2018048389A JP2018048389A (en) 2018-03-29
JP6763261B2 true JP6763261B2 (en) 2020-09-30

Family

ID=61767365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016186104A Active JP6763261B2 (en) 2016-09-23 2016-09-23 Continuous hot-dip galvanized steel sheet and manufacturing method of alloyed hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP6763261B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115466916B (en) * 2022-09-20 2023-08-01 哈尔滨工业大学(威海) Ultrasonic galvanizing device and galvanizing process thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254146A (en) * 1989-03-27 1990-10-12 Nkk Corp Induction heating device, induction heating-type alloying furnace, and alloying method
FR3014449B1 (en) * 2013-12-06 2020-12-04 Fives Celes POST-GALVANIZING ANCURING SECTION CONTAINING A TRANSVERSE-FLOW INDUCER HEATING UNIT

Also Published As

Publication number Publication date
JP2018048389A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP5114671B2 (en) Induction heating apparatus and induction heating method for metal plate
KR101102609B1 (en) Induction heating device
JPS6298588A (en) Electromagnetic induction heater
KR101981407B1 (en) Induction heating device for metal strip
JP6763261B2 (en) Continuous hot-dip galvanized steel sheet and manufacturing method of alloyed hot-dip galvanized steel sheet
US10876194B2 (en) Metal strip stabilization apparatus and method for manufacturing hot-dip coated metal strip using same
WO2015094482A1 (en) Transverse flux strip heating dc edge saturation
JP5042909B2 (en) Induction heating apparatus and induction heating method for metal plate
CN105829569A (en) Continuous processing line for processing a non-magnetic metal strip including a galvannealing section and method for induction heating of said strip in said galvannealing section
KR101819303B1 (en) Apparatus for induction heating material and endless rolling method of thesame
JP7134591B2 (en) Continuous hot-dip galvanizing method and continuous hot-dip galvanizing equipment
JP6790660B2 (en) Alloying method of hot-dip galvanized layer
KR101252640B1 (en) Induction heating apparatus and method
JP5263433B2 (en) Metal strip stabilizer and hot-plated metal strip manufacturing method
JP6812999B2 (en) Induction heating device for metal strips, manufacturing method for metal strips, and manufacturing method for alloyed hot-dip galvanized steel sheets
JP4525105B2 (en) Metal strip control device and manufacturing method of hot dip metal strip
JP2004124191A (en) Device for damping vibration of metal strip, and method for manufacturing metal strip
JP5644141B2 (en) Metal band damping and position correcting apparatus, and hot-dip plated metal band manufacturing method using the apparatus
JP5830604B2 (en) Steel plate stabilizer
JP6880980B2 (en) Induction heating device and induction heating method
JP6187577B2 (en) Metal strip stabilizer and hot-plated metal strip manufacturing method
JP2995141B2 (en) Induction heating device for metal plate
JP2003187951A (en) Heating device of metal belt plate having excellent uniform heating in width direction
JP2556217B2 (en) Method for preventing vibration and plate warpage of continuously passing steel plates
WO2024024117A1 (en) Induction heating device for metal sheet, processing equipment for metal sheet, and induction heating method for metal sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200824

R151 Written notification of patent or utility model registration

Ref document number: 6763261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151