JP6759847B2 - Non-aqueous electrolyte solution and non-aqueous electrolyte battery using it - Google Patents

Non-aqueous electrolyte solution and non-aqueous electrolyte battery using it Download PDF

Info

Publication number
JP6759847B2
JP6759847B2 JP2016161083A JP2016161083A JP6759847B2 JP 6759847 B2 JP6759847 B2 JP 6759847B2 JP 2016161083 A JP2016161083 A JP 2016161083A JP 2016161083 A JP2016161083 A JP 2016161083A JP 6759847 B2 JP6759847 B2 JP 6759847B2
Authority
JP
Japan
Prior art keywords
carbonate
aqueous electrolyte
methyl
group
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016161083A
Other languages
Japanese (ja)
Other versions
JP2018029030A (en
Inventor
英司 中澤
英司 中澤
脩平 澤
脩平 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2016161083A priority Critical patent/JP6759847B2/en
Publication of JP2018029030A publication Critical patent/JP2018029030A/en
Application granted granted Critical
Publication of JP6759847B2 publication Critical patent/JP6759847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、非水系電解液及びそれを用いた非水系電解液電池に関するものである。 The present invention relates to a non-aqueous electrolyte solution and a non-aqueous electrolyte battery using the same.

携帯電話機、ノート型パーソナルコンピュータ等の携帯用電子機器の急速な進歩に伴い、その主電源やバックアップ電源に用いられる電池に対する高容量化への要求が高くなっており、ニッケル・カドミウム電池やニッケル・水素電池に比べてエネルギー密度の高いリチウムイオン二次電池等の非水系電解液電池が注目されている。
リチウムイオン二次電池の電解液としては、LiPF、LiBF、LiN(CFSO、LiCF(CFSO等の電解質を、エチレンカーボネート、プロピレンカーボネート等の高誘電率溶媒と、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の低粘度溶媒との混合溶媒に溶解させた非水系電解液が代表例として挙げられる。
With the rapid progress of portable electronic devices such as mobile phones and notebook personal computers, there is an increasing demand for higher capacity batteries used for their main power supply and backup power supply, and nickel-cadmium batteries and nickel-cadmium batteries Non-aqueous electrolyte batteries such as lithium-ion secondary batteries, which have a higher energy density than hydrogen batteries, are attracting attention.
As the electrolytic solution of the lithium ion secondary battery, an electrolyte such as LiPF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiCF 3 (CF 2 ) 3 SO 3 is used, and a high dielectric constant such as ethylene carbonate or propylene carbonate is used. A typical example is a non-aqueous electrolyte solution dissolved in a mixed solvent of a solvent and a low-viscosity solvent such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.

また、リチウムイオン二次電池の負極活物質としては主にリチウムイオンを吸蔵・放出することができる炭素質材料が用いられており、天然黒鉛、人造黒鉛、非晶質炭素等が代表例として挙げられる。更に高容量化を目指してシリコンやスズ等を用いた金属又は合金系の負極も知られている。正極活物質としては主にリチウムイオンを吸蔵・放出することができる遷移金属複合酸化物が用いられており、遷移金属の代表例としてはコバルト、ニッケル、マンガン、鉄等が挙げられる。 Further, as the negative electrode active material of the lithium ion secondary battery, a carbonaceous material capable of occluding and releasing lithium ions is mainly used, and natural graphite, artificial graphite, amorphous carbon and the like are mentioned as typical examples. Be done. Metal or alloy-based negative electrodes using silicon, tin, or the like are also known with the aim of further increasing the capacity. As the positive electrode active material, a transition metal composite oxide capable of occluding and releasing lithium ions is mainly used, and typical examples of the transition metal include cobalt, nickel, manganese, iron and the like.

このような非水系電解液を用いた非水系電解液二次電池では、その非水系電解液の組成によって反応性が異なるため、非水系電解液により電池特性が大きく変わることになる。非水系電解液二次電池の保存特性等の電池特性を改良したり、過充電時の電池の安全性を高めたりするために、非水溶媒や電解質について種々の検討がなされている。 In a non-aqueous electrolyte secondary battery using such a non-aqueous electrolyte, the reactivity differs depending on the composition of the non-aqueous electrolyte, so that the battery characteristics greatly change depending on the non-aqueous electrolyte. Various studies have been conducted on non-aqueous solvents and electrolytes in order to improve battery characteristics such as storage characteristics of non-aqueous electrolyte secondary batteries and to improve battery safety during overcharging.

特許文献1には、コバルト酸リチウムを活物質とする正極と、グラファイトを活物質とする負極と、セパレータと非水系電解液とからなるリチウム二次電池において、電解液中に特定の芳香族エステル化合物を添加することにより、高温保存時のガス発生を改善する検討がなされている。 Patent Document 1 describes a specific aromatic ester in an electrolytic solution in a lithium secondary battery composed of a positive electrode using lithium cobalt oxide as an active material, a negative electrode using graphite as an active material, a separator, and a non-aqueous electrolytic solution. Studies have been made to improve gas generation during high-temperature storage by adding a compound.

特許文献2には、コバルト酸リチウムに代表されるリチウム遷移金属酸化物を活物質とする正極と、炭素を活物質とする負極と、セパレータと非水系電解液とからなるリチウム二次電池において、電解液中に特定の芳香族カルボン酸エステルを添加することにより、初期コンディショニング後のガス量や過充電特性を改善する検討がなされている。 Patent Document 2 describes a lithium secondary battery including a positive electrode using a lithium transition metal oxide typified by lithium cobalt oxide as an active material, a negative electrode using carbon as an active material, a separator, and a non-aqueous electrolyte solution. Studies have been made to improve the amount of gas and overcharge characteristics after initial conditioning by adding a specific aromatic carboxylic acid ester to the electrolytic solution.

特開2003−243026号公報Japanese Unexamined Patent Publication No. 2003-243026 特開2015−159109号公報Japanese Unexamined Patent Publication No. 2015-159109

しかしながら、近年のリチウム非水系電解液二次電池の特性改善への要求はますます高まっている。高温保存特性をはじめとする耐久性能と耐酸化性、容量、抵抗、出力特性などの電池性能がトレードオフの関係になっており、総合的な性能のバランスが悪いという問題があった。 However, in recent years, there has been an increasing demand for improving the characteristics of lithium non-aqueous electrolyte secondary batteries. There is a trade-off between durability such as high-temperature storage characteristics and battery performance such as oxidation resistance, capacity, resistance, and output characteristics, and there is a problem that the overall performance is unbalanced.

特許文献1には、特定の芳香族エステル化合物を含有する電解液を用いると、高温保存時の発生ガス量を抑制できることが明らかにされている。特許文献2には、特定の芳香族カルボン酸エステルを含有する電解液を用いると、初期コンディショニング後のガス量や過充電特性を改善できることが明らかにされている。しかし、近年の電池の高作動電圧化に伴い、特に、満充電・高温保存時のガス抑制の要望がますます高まっている。 Patent Document 1 clarifies that the amount of gas generated during high-temperature storage can be suppressed by using an electrolytic solution containing a specific aromatic ester compound. Patent Document 2 clarifies that the amount of gas and overcharge characteristics after initial conditioning can be improved by using an electrolytic solution containing a specific aromatic carboxylic acid ester. However, with the recent increase in the operating voltage of batteries, there is an increasing demand for gas suppression, especially during full charge and high temperature storage.

本発明は、上述の課題に鑑みてなされたものである。即ち、非水系電解液電池において、満充電・高温保存時のガス発生を抑制し、電気化学的耐酸化性に優れた非水系電解液及び非水系電解液電池を提供することを課題とする。 The present invention has been made in view of the above-mentioned problems. That is, it is an object of the present invention to provide a non-aqueous electrolyte battery and a non-aqueous electrolyte battery which suppress gas generation at the time of full charge and high temperature storage and have excellent electrochemical oxidation resistance in the non-aqueous electrolyte battery.

本発明者らは、鋭意検討を重ねた結果、非水系電解液電池用の非水系電解液であって、該非水系電解液がアルカリ金属塩及び非水系溶媒とともに、特定の化合物を電解液中に含有することを特徴とする非水系電解液を用いることによって、上記課題を解決できることを見出し、本発明の完成に至った。 As a result of diligent studies, the present inventors have conducted a non-aqueous electrolyte solution for a non-aqueous electrolyte battery, and the non-aqueous electrolyte solution contains a specific compound in the electrolytic solution together with an alkali metal salt and a non-aqueous solvent. It has been found that the above problems can be solved by using a non-aqueous electrolyte solution characterized by containing the above-mentioned problem, and the present invention has been completed.

本発明の要旨は、以下に示す通りである。
[1] 非水系電解液電池用の非水系電解液であって、該非水系電解液がアルカリ金属塩及び非水系溶媒とともに、式(A)で表される化合物を含有することを特徴とする非水系電解液。
(式(A)中、R〜Rは、それぞれ独立して水素原子、或いは置換基を有していてもよい炭素数1〜20の炭化水素基を示し、R〜Rの内、少なくとも1つは置換基を有していてもよい炭素数1〜20の炭化水素基を示す。Xは炭素数1〜10の炭化水素基を示す。aは1〜5の整数を示す。)
[2] 前記式(A)中、Xがメチル基である、[1]に記載の非水系電解液。
[3] 前記式(A)中、aは1又は2である、[1]又は[2]に記載の非水系電解液。
[4] 前記式(A)中、R〜Rの内、少なくとも1つは置換基を有していてもよい炭素数6〜20のアリール基である、[1]〜[3]のいずれかに記載の非水系電解液。[5] 前記式(A)で表される化合物の含有量が、非水系電解液の全量に対して0.001質量%以上10質量%以下である、[1]〜[4]のいずれかに記載の非水系電解液。
[6] さらに炭素−炭素不飽和結合を有する環状カーボネート、フッ素原子を有する環状カーボネート、ニトリル化合物、イソシアネート化合物、イソシアヌル酸骨格を有する化合物、フッ素化された塩、環状エーテル化合物、オキサラート塩及び環状スルホン酸エステルからなる群より選ばれる少なくとも1種の化合物を含有する、[1]〜[5]のいずれかに記載の非水系電解液。
[7] 前記非水系溶媒が鎖状カルボン酸エステルを含む、[1]〜[6]のいずれかに記載の非水系電解液。
[8] リチウムイオンを吸蔵及び放出可能な正極と、リチウムイオンを吸蔵及び放出可能な負極と、非水系電解液とを備えた非水系電解液二次電池において、該非水系電解液が、[1]〜[7]のいずれかに記載の非水系電解液である、非水系電解液二次電池。
[9] [8]に記載の非水系電解液二次電池を電源として備える電気自動車。
The gist of the present invention is as shown below.
[1] Non-aqueous electrolyte solution A non-aqueous electrolyte solution for a battery, characterized in that the non-aqueous electrolyte solution contains a compound represented by the formula (A) together with an alkali metal salt and a non-aqueous solvent. Aqueous electrolyte.
(In the formula (A), R 1 to R 3 represent hydrocarbon groups having 1 to 20 carbon atoms which may independently have a hydrogen atom or a substituent, and are among R 1 to R 3 . , At least one represents a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. X represents a hydrocarbon group having 1 to 10 carbon atoms. A represents an integer of 1 to 5. )
[2] The non-aqueous electrolyte solution according to [1], wherein X is a methyl group in the formula (A).
[3] The non-aqueous electrolyte solution according to [1] or [2], wherein a is 1 or 2 in the formula (A).
[4] In the formula (A), at least one of R 1 to R 3 is an aryl group having 6 to 20 carbon atoms which may have a substituent, according to [1] to [3]. The non-aqueous electrolyte solution according to any one. [5] Any of [1] to [4], wherein the content of the compound represented by the formula (A) is 0.001% by mass or more and 10% by mass or less with respect to the total amount of the non-aqueous electrolyte solution. The non-aqueous electrolyte solution described in 1.
[6] Further, a cyclic carbonate having a carbon-carbon unsaturated bond, a cyclic carbonate having a fluorine atom, a nitrile compound, an isocyanate compound, a compound having an isocyanuric acid skeleton, a fluorinated salt, a cyclic ether compound, an oxalate salt and a cyclic sulfone. The non-aqueous electrolyte solution according to any one of [1] to [5], which contains at least one compound selected from the group consisting of acid esters.
[7] The non-aqueous electrolyte solution according to any one of [1] to [6], wherein the non-aqueous solvent contains a chain carboxylic acid ester.
[8] In a non-aqueous electrolyte secondary battery including a positive electrode capable of storing and releasing lithium ions, a negative electrode capable of storing and releasing lithium ions, and a non-aqueous electrolyte solution, the non-aqueous electrolyte solution is [1]. ] To [7], the non-aqueous electrolyte secondary battery, which is the non-aqueous electrolyte solution.
[9] An electric vehicle equipped with the non-aqueous electrolyte secondary battery according to [8] as a power source.

本発明の一実施形態によれば、リチウム非水系電解液二次電池に関して、満充電・高温保存時のガス発生を抑制し、電気化学的耐酸化性に優れた、耐久性及び電気化学的特性のバランスの良い電池を提供することができる。
本発明の一実施形態である非水系電解液を用いて作製された非水系電解液二次電池、及び本発明の一実施形態である非水系電解液二次電池が、満充電・高温保存時のガス発生を抑制し、電気化学的耐酸化性が向上する作用・原理は明確ではないが、以下のように考えられる。ただし、本発明は、以下に記述する作用・原理に限定されるものではない。
According to one embodiment of the present invention, the lithium non-aqueous electrolyte secondary battery suppresses gas generation during full charge and high temperature storage, and has excellent electrochemical oxidation resistance, durability and electrochemical characteristics. It is possible to provide a well-balanced battery.
When the non-aqueous electrolyte secondary battery produced by using the non-aqueous electrolyte solution according to the embodiment of the present invention and the non-aqueous electrolyte secondary battery according to the embodiment of the present invention are fully charged and stored at a high temperature. Although the action / principle of suppressing the generation of gas and improving the electrochemical oxidation resistance is not clear, it is considered as follows. However, the present invention is not limited to the actions / principles described below.

式(A)で表される化合物は、分子内に易酸化性部位である炭化水素基が置換した芳香環を有する。そのため、正極上で上述炭化水素基が酸化反応を受けることによりラジカル種、或いはカチオン種を生成し、正極上に被膜を形成する。この被膜は、絶縁性を有するため電解液の構成成分である塩、溶媒、その他の助剤の酸化反応による分解を抑制する。また、式(A)で表される化合物は、α水素の少なくとも1つが炭化水素基で置換されているため、負極での還元反応性が抑制される。それにより、式(A)で表される化合物が正極表面に濃縮される割合が増加するため、効率的に正極に被膜を形成することができると考える。これにより、高温保存特性の改善効果が高く、正極保護に資すると推定している。 The compound represented by the formula (A) has an aromatic ring in which the hydrocarbon group, which is an easily oxidizing site, is substituted in the molecule. Therefore, the above-mentioned hydrocarbon group undergoes an oxidation reaction on the positive electrode to generate radical species or cation species, and a film is formed on the positive electrode. Since this film has insulating properties, it suppresses decomposition of salts, solvents, and other auxiliaries, which are constituents of the electrolytic solution, due to the oxidation reaction. Further, in the compound represented by the formula (A), since at least one of α-hydrogens is substituted with a hydrocarbon group, the reduction reactivity at the negative electrode is suppressed. As a result, the proportion of the compound represented by the formula (A) concentrated on the surface of the positive electrode increases, and it is considered that a film can be efficiently formed on the positive electrode. It is estimated that this has a high effect of improving the high temperature storage characteristics and contributes to the protection of the positive electrode.

以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments, and can be arbitrarily modified and implemented without departing from the gist of the present invention.

1.非水系電解液
1−1.本発明の非水系電解液
本発明の一実施形態である非水系電解液は、式(A)で表される化合物を含有することを特徴としている。
1. 1. Non-aqueous electrolyte 1-1. Non-Aqueous Electrolyte Solution of the Present Invention The non-aqueous electrolyte solution according to the embodiment of the present invention is characterized by containing a compound represented by the formula (A).

1−1−1.式(A)で表される化合物 1-1-1. Compound represented by formula (A)

式(A)中、R〜Rは、それぞれ独立して水素原子、或いは置換基を有していてもよい炭素数1〜20の炭化水素基を示し、R〜Rの内、少なくとも1つは置換基を有していてもよい炭素数1〜20の炭化水素基を示す。Xは炭素数1〜10の炭化水素基を
示す。aは1〜5の整数を示す。
In the formula (A), R 1 to R 3 represent hydrocarbon groups having 1 to 20 carbon atoms which may independently have hydrogen atoms or substituents, and among R 1 to R 3 , At least one represents a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. X represents a hydrocarbon group having 1 to 10 carbon atoms. a represents an integer of 1 to 5.

ここで、前記置換基としては、シアノ基、イソシアナト基、アシル基(−(C=O)−Ra)、アシルオキシ基(−O(C=O)−Ra)、アルコキシカルボニル基(−(C=O)O−Ra)、スルホニル基(−SO−Ra)、スルホニルオキシ基(−O(SO)−Ra)、アルコキシスルホニル基(−(SO)−O−Ra)、アルコキシカルボニルオキシ基(−O−(C=O)−O−Ra)、エーテル基(−O−Ra)、アクリル基、メタクリル基、ハロゲン(好ましくは、フッ素)、トリフルオロメチル基等が挙げられる。なお、Raは、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、または炭素数2〜10のアルキニル基を示す。なお、これら置換基における炭素は、R、RおよびR3の炭素数1〜20の炭化水素基における炭素の数にカウントしない。 Here, as the substituent, a cyano group, an isocyanato group, an acyl group (-(C = O) -Ra), an acyloxy group (-O (C = O) -Ra), an alkoxycarbonyl group (-(C =)) O) O-Ra), sulfonyl group (-SO 2 -Ra), sulfonyloxy group (-O (SO 2 ) -Ra), alkoxysulfonyl group (-(SO 2 ) -O-Ra), alkoxycarbonyloxy group (-O- (C = O) -O-Ra), ether group (-O-Ra), acrylic group, methacryl group, halogen (preferably fluorine), trifluoromethyl group and the like can be mentioned. In addition, Ra represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkynyl group having 2 to 10 carbon atoms. The carbon in these substituents is not counted in the number of carbons in the hydrocarbon groups having 1 to 20 carbon atoms of R 1 , R 2 and R 3 .

炭化水素基の具体例としては、アルキル基、アルケニル基、アルキニル基、アリール基が挙げられる。中でも好ましくは、アルキル基、アルケニル基、アリール基、より好ましくは、アルキル基、アリール基、特に好ましくは、アルキル基が挙げられる。中でも、炭素数6〜20のアリール基であることが好ましく、炭素数6〜10のアリール基がより好ましい。尚、本発明において、アルキレン基を介して結合したフェニル基もアリール基に含まれ、アルキレン基の炭素数もアリール基の炭素数に含まれる。
上述の炭化水素基であると、式(A)で表される化合物が電解液の分解物と反応し、抵抗が増加しすぎることを抑えることが可能となる。
前記アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、s−ブチル基、i−ブチル基、t−ブチル基、n−ペンチル基、t−アミル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。これらの中でも好ましくは、メチル基、エチル基、i−プロピル基、n−プロピル基、n−ブチル基、n−ペンチル基、ヘキシル基であり、より好ましくは、メチル基、エチル基、i−プロピル基、n−プロピル基、n−ブチル基が挙げられる。化合物を添加することによる電解液粘度の上昇が抑えられることからメチル基、エチル基が最も好ましい。
前記アルケニル基の具体例としては、ビニル基、アリル基、メタリル基、2−ブテニル基、3−メチル−2−ブテニル基、3−ブテニル基、4−ペンテニル基等が挙げられる。これらの中でも好ましくは、ビニル基、アリル基、メタリル基、2−ブテニル基であり、さらに好ましくは、ビニル基、アリル基、メタリル基であり、特に好ましくは、アリル基、メタリル基であり、最も好ましくはアリル基である。上述のアルケニル基であると、立体障害が適切であるためである。
前記アルキニル基の具体例としては、エチニル基、2−プロピニル基、2−ブチニル基、3−ブチニル基、4−ペンチニル基、5−ヘキシニル基等が挙げられる。これらの中でも好ましくは、エチニル基、2−プロピニル基、2−ブチニル基、3−ブチニル基であり、さらに好ましくは、2−プロピニル基、3−ブチニル基であり、特に好ましくは、2‐プロピニル基である。上述のアルキニル基であると、立体障害が適切であるためである。
前記アリール基の具体例としては、フェニル基、アルキレン基を介して結合したフェニル基(たとえばベンジル基、フェネチル基等)、トリル基、キシリル基等が挙げられる。これらの中でも、好ましくは、フェニル基、アルキレン基を介して結合したフェニル基、トリル基であり、さらに好ましくは、フェニル基、アルキレン基を介して結合したフェニル基であり、特に好ましくは、フェニル基である。上述のアリール基であると、立体障害が適切であるためである。
Specific examples of the hydrocarbon group include an alkyl group, an alkenyl group, an alkynyl group, and an aryl group. Among them, an alkyl group, an alkenyl group and an aryl group are preferable, an alkyl group and an aryl group are more preferable, and an alkyl group is particularly preferable. Of these, an aryl group having 6 to 20 carbon atoms is preferable, and an aryl group having 6 to 10 carbon atoms is more preferable. In the present invention, the phenyl group bonded via the alkylene group is also included in the aryl group, and the carbon number of the alkylene group is also included in the carbon number of the aryl group.
With the above-mentioned hydrocarbon group, it is possible to prevent the compound represented by the formula (A) from reacting with the decomposition product of the electrolytic solution and suppressing the resistance from increasing too much.
Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t-butyl group, n-pentyl group, and the like. Examples thereof include t-amyl group, hexyl group, heptyl group, octyl group, nonyl group and decyl group. Of these, methyl group, ethyl group, i-propyl group, n-propyl group, n-butyl group, n-pentyl group and hexyl group are preferable, and methyl group, ethyl group and i-propyl group are more preferable. Examples include a group, an n-propyl group, and an n-butyl group. A methyl group and an ethyl group are most preferable because an increase in the viscosity of the electrolytic solution due to the addition of the compound is suppressed.
Specific examples of the alkenyl group include a vinyl group, an allyl group, a metallicyl group, a 2-butenyl group, a 3-methyl-2-butenyl group, a 3-butenyl group, a 4-pentenyl group and the like. Among these, a vinyl group, an allyl group, a metalyl group, and a 2-butenyl group are preferable, a vinyl group, an allyl group, and a metalyl group are more preferable, and an allyl group and a metalyl group are particularly preferable. It is preferably an allyl group. This is because the above-mentioned alkenyl group is suitable for steric hindrance.
Specific examples of the alkynyl group include an ethynyl group, a 2-propynyl group, a 2-butynyl group, a 3-butynyl group, a 4-pentynyl group, a 5-hexynyl group and the like. Among these, an ethynyl group, a 2-propynyl group, a 2-butynyl group and a 3-butynyl group are preferable, a 2-propynyl group and a 3-butynyl group are more preferable, and a 2-propynyl group is particularly preferable. Is. This is because the above-mentioned alkynyl group is suitable for steric hindrance.
Specific examples of the aryl group include a phenyl group, a phenyl group bonded via an alkylene group (for example, a benzyl group, a phenethyl group, etc.), a tolyl group, a xsilyl group, and the like. Among these, a phenyl group and a tolyl group bonded via a phenyl group and an alkylene group are preferable, and a phenyl group bonded via a phenyl group and an alkylene group are more preferable, and a phenyl group is particularly preferable. Is. This is because the above-mentioned aryl group is suitable for steric hindrance.

式(A)で表される化合物と電極との反応性の観点から、Xはメチル基であることが好ましい。 From the viewpoint of reactivity between the compound represented by the formula (A) and the electrode, X is preferably a methyl group.

式(A)中、aは1又は2であることが好ましい。式(A)で表される化合物が電解液の分解物と反応し、抵抗が増加しすぎることを抑えることが可能となる。 In the formula (A), a is preferably 1 or 2. It is possible to prevent the compound represented by the formula (A) from reacting with the decomposition product of the electrolytic solution and suppressing the resistance from increasing too much.

式(A)で表される化合物の、具体的な例としては以下の構造の化合物が挙げられる。 Specific examples of the compound represented by the formula (A) include compounds having the following structures.

式(A)で表される化合物として、好ましくは、以下の構造の化合物が挙げられる。これらは、正極上に形成される被膜の抵抗を好適に制御することができる。 As the compound represented by the formula (A), a compound having the following structure is preferable. These can suitably control the resistance of the coating film formed on the positive electrode.

式(A)で表される化合物として、より好ましくは、以下の構造の化合物が挙げられる。これらは化合物の分子サイズが好適であり、正極上で効率よく反応することができる。 More preferably, a compound having the following structure can be mentioned as the compound represented by the formula (A). The molecular size of the compound is suitable for these, and they can react efficiently on the positive electrode.

式(A)で表される化合物として、さらに好ましくは、以下の構造の化合物が挙げられる。正極上での酸化反応性を好適に制御することができる。 The compound represented by the formula (A) is more preferably a compound having the following structure. The oxidation reactivity on the positive electrode can be suitably controlled.

式(A)で表される化合物として、特に好ましくは、以下の構造の化合物が挙げられる。これらは正極上での副反応抑制効果が高いため、好ましい。 As the compound represented by the formula (A), a compound having the following structure is particularly preferable. These are preferable because they have a high effect of suppressing side reactions on the positive electrode.

式(A)で表される化合物として、最も好ましくは、以下の構造の化合物が挙げられる。これらの化合物は、正極上で絶縁性被膜を好適に形成することができる。 The compound represented by the formula (A) is most preferably a compound having the following structure. These compounds can suitably form an insulating film on the positive electrode.

非水系電解液全量に対する式(A)で表される化合物の含有量に制限は無く、本発明の効果を奏する限り任意であるが、本発明の非水系電解液の全量に対して、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下の濃度で電解液に配合させる。上記の濃度であれば、電極上での反応頻度及び反応性を好適に調節でき、電池特性を最適にすることが可能となる。式(A)で表される化合物は、単独で用いても、2種以上を併用して用いてもよい。 The content of the compound represented by the formula (A) with respect to the total amount of the non-aqueous electrolyte solution is not limited and is arbitrary as long as the effect of the present invention is exhibited, but is usually 0 with respect to the total amount of the non-aqueous electrolyte solution of the present invention. .001% by mass or more, preferably 0.01% by mass or more, more preferably 0.05% by mass or more, further preferably 0.1% by mass or more, and usually 10% by mass or less, preferably 5% by mass or less. It is blended in the electrolytic solution at a concentration of 4% by mass or less, more preferably 3% by mass or less. With the above concentration, the reaction frequency and reactivity on the electrode can be suitably adjusted, and the battery characteristics can be optimized. The compound represented by the formula (A) may be used alone or in combination of two or more.

式(A)で表される化合物の含有量が上記範囲を満たした場合は、満充電・高温保存時のガス発生を抑制し、電気化学的耐酸化性がより向上する。 When the content of the compound represented by the formula (A) satisfies the above range, gas generation during full charge and high temperature storage is suppressed, and the electrochemical oxidation resistance is further improved.

なお、電解液に、式(A)で表される化合物を配合する方法は、特に制限されない。上記化合物を直接電解液に添加する方法の他に、電池内又は電解液中において上記化合物を発生させる方法が挙げられる。上記化合物を発生させる方法としては、これらの化合物以外の化合物を添加し、電解液等の電池構成要素を酸化、還元、又は加水分解等して発生さ
せる方法が挙げられる。更には、電池を作製して、充放電等の電気的な負荷をかけることによって、発生させる方法も挙げられる。
The method of blending the compound represented by the formula (A) with the electrolytic solution is not particularly limited. In addition to the method of directly adding the compound to the electrolytic solution, a method of generating the compound in a battery or an electrolytic solution can be mentioned. Examples of the method for generating the above compound include a method in which a compound other than these compounds is added and a battery component such as an electrolytic solution is oxidized, reduced, hydrolyzed or the like to be generated. Further, a method of producing a battery and generating it by applying an electric load such as charging / discharging can be mentioned.

1−2.炭素−炭素不飽和結合を有する環状カーボネート、フッ素原子を有する環状カーボネート、ニトリル化合物、イソシアネート化合物、イソシアヌル酸骨格を有する化合物、フッ素化された塩、環状エーテル化合物、オキサラート塩及び環状スルホン酸エステルからなる群より選ばれる少なくとも1種の特定化合物、或いは鎖状カルボン酸エステル
本発明の一実施形態である非水系電解液は、式(A)で表される化合物の他に、炭素−炭素不飽和結合を有する環状カーボネート、フッ素原子を有する環状カーボネート、フッ素原子を有する環状カーボネート、ニトリル化合物、イソシアネート化合物、イソシアヌル酸骨格を有する化合物、フッ素化された塩、環状エーテル化合物、オキサラート塩及び環状スルホン酸エステルからなる群より選ばれる少なくとも1種の特定化合物、或いは鎖状カルボン酸エステルをさらに含有することが、電池特性向上の点から好ましい。
1-2. Consists of cyclic carbonate having a carbon-carbon unsaturated bond, cyclic carbonate having a fluorine atom, nitrile compound, isocyanate compound, compound having an isocyanuric acid skeleton, fluorinated salt, cyclic ether compound, oxalate salt and cyclic sulfonic acid ester. At least one specific compound selected from the group, or a chain carboxylic acid ester The non-aqueous electrolyte solution according to the embodiment of the present invention contains a carbon-carbon unsaturated bond in addition to the compound represented by the formula (A). From cyclic carbonates having, cyclic carbonates having fluorine atoms, cyclic carbonates having fluorine atoms, nitrile compounds, isocyanate compounds, compounds having isocyanuric acid skeletons, fluorinated salts, cyclic ether compounds, oxalate salts and cyclic sulfonic acid esters. It is preferable to further contain at least one specific compound selected from the above group or a chain carboxylic acid ester from the viewpoint of improving battery characteristics.

これらの中でも、電池特性向上の観点から炭素−炭素不飽和結合を有する環状カーボネート、フッ素原子を有する環状カーボネート、ニトリル化合物、環状エーテル化合物、イソシアヌル酸骨格を有する化合物、環状スルホン酸エステル、鎖状カルボン酸エステルがより好ましく、炭素−炭素不飽和結合を有する環状カーボネート、フッ素原子を有する環状カーボネート、ニトリル化合物、環状エーテル化合物、環状スルホン酸エステル、鎖状カルボン酸エステルが更に好ましく、炭素−炭素不飽和結合を有する環状カーボネート、フッ素原子を有する環状カーボネート、ニトリル化合物、鎖状カルボン酸エステルが特に好ましく、炭素−炭素不飽和結合を有する環状カーボネート、フッ素原子を有する環状カーボネートが最も好ましい。 Among these, from the viewpoint of improving battery characteristics, a cyclic carbonate having a carbon-carbon unsaturated bond, a cyclic carbonate having a fluorine atom, a nitrile compound, a cyclic ether compound, a compound having an isocyanuric acid skeleton, a cyclic sulfonic acid ester, and a chain carboxylic compound. Acid esters are more preferred, cyclic carbonates with carbon-carbon unsaturated bonds, cyclic carbonates with fluorine atoms, nitrile compounds, cyclic ether compounds, cyclic sulfonic acid esters, and chain carboxylic acid esters are even more preferred, and carbon-carbon unsaturated. A cyclic carbonate having a bond, a cyclic carbonate having a fluorine atom, a nitrile compound, and a chain carboxylic acid ester are particularly preferable, and a cyclic carbonate having a carbon-carbon unsaturated bond and a cyclic carbonate having a fluorine atom are most preferable.

式(A)で表される化合物は電極の活物質上で酸化反応を受けて、構造内にカチオン(求電子種)を形成する。一方、特定化合物は分子構造中に求電子攻撃受容部位を有しているため、特定化合物と式(A)で表される化合物の酸化生成物と反応することよって複合的な被膜が形成されることが推測される。 The compound represented by the formula (A) undergoes an oxidation reaction on the active material of the electrode to form a cation (electrophile) in the structure. On the other hand, since the specific compound has an electrophilic attack receiving site in its molecular structure, a complex film is formed by reacting with the specific compound and the oxidation product of the compound represented by the formula (A). It is speculated.

上述のとおり、これらの特定化合物と式(A)で表される化合物を非水系電解液に共添加することにより、電極上で互いに反応し、複合的な被膜を形成すると推測される。そのため、それぞれの化合物を単独で非水系電解液に添加した時よりも、正極表面での非水系電解液の酸化反応をより抑制するため、電池特性は向上する。以下、上記の特定化合物について、個別に説明する。 As described above, it is presumed that by co-adding these specific compounds and the compound represented by the formula (A) to the non-aqueous electrolytic solution, they react with each other on the electrodes to form a complex film. Therefore, the oxidation reaction of the non-aqueous electrolyte solution on the positive electrode surface is further suppressed as compared with the case where each compound is added to the non-aqueous electrolyte solution alone, so that the battery characteristics are improved. Hereinafter, the above-mentioned specific compound will be described individually.

1−2−1.炭素−炭素不飽和結合を有する環状カーボネート
本発明の一実施形態である非水系電解液は、式(A)で表される化合物の他に、炭素−炭素不飽和結合を有する環状カーボネートをさらに含有することが電池特性向上の点から好ましい。
炭素−炭素不飽和結合を有する環状カーボネート(以下、「不飽和環状カーボネート」と記載する場合がある)としては、炭素−炭素二重結合又は炭素−炭素三重結合を有する環状カーボネートであれば、特に制限はない。不飽和環状カーボネートとしては、任意の不飽和カーボネートを用いることができる。なお、芳香環を有する環状カーボネートも、不飽和環状カーボネートに包含されることとする。また、不飽和環状カーボネートは、フッ素原子を有していてもよく(フッ素化不飽和カーボネートとも呼ぶ)、その場合、フッ素原子は通常6以下であり、好ましくは4以下であり、1又は2であることが最も好ましい。
1-2-1. Cyclic carbonate having a carbon-carbon unsaturated bond The non-aqueous electrolyte solution according to the embodiment of the present invention further contains a cyclic carbonate having a carbon-carbon unsaturated bond in addition to the compound represented by the formula (A). It is preferable from the viewpoint of improving the battery characteristics.
The cyclic carbonate having a carbon-carbon unsaturated bond (hereinafter, may be referred to as “unsaturated cyclic carbonate”) is particularly a cyclic carbonate having a carbon-carbon double bond or a carbon-carbon triple bond. There is no limit. Any unsaturated carbonate can be used as the unsaturated cyclic carbonate. The cyclic carbonate having an aromatic ring is also included in the unsaturated cyclic carbonate. Further, the unsaturated cyclic carbonate may have a fluorine atom (also referred to as a fluorinated unsaturated carbonate), in which case the fluorine atom is usually 6 or less, preferably 4 or less, and 1 or 2. Most preferably.

不飽和環状カーボネートとしては、ビニレンカーボネート類、芳香環又は炭素−炭素二重結合又は炭素−炭素三重結合を有する置換基で置換されたエチレンカーボネート類、フ
ェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類、カテコールカーボネート類等が挙げられる。
As unsaturated cyclic carbonates, vinylene carbonates, ethylene carbonates substituted with a substituent having an aromatic ring or a carbon-carbon double bond or a carbon-carbon triple bond, phenyl carbonates, vinyl carbonates, allyl carbonates, etc. Examples thereof include catechol carbonates.

前記ビニレンカーボネート類としては、
ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ジビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート等が挙げられる。
As the vinylene carbonates,
Vinylene carbonate, methyl vinylene carbonate, 4,5-dimethylvinylene carbonate, phenylvinylene carbonate, 4,5-diphenylvinylene carbonate, vinyl vinylene carbonate, 4,5-divinyl vinylene carbonate, allyl vinylene carbonate, 4,5-diallyl vinylene carbonate , 4-Fluorovinylene carbonate, 4-fluoro-5-methylvinylene carbonate, 4-fluoro-5-phenylvinylene carbonate, 4-fluoro-5-vinylvinylene carbonate, 4-allyl-5-fluorovinylene carbonate and the like. ..

前記芳香環又は炭素−炭素二重結合又は炭素−炭素三重結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、
ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート、4−メチル−5−エチニルエチレンカーボネート、4−ビニル−5−エチニルエチレンカーボネート、4−アリル−5−エチニルエチレンカーボネート、フェニルエチレンカーボネート、4,5−ジフェニルエチレンカーボネート、4−フェニル−5−ビニルエチレンカーボネート、4−アリル−5−フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−5−ビニルエチレンカーボネート、4,4−ジフルオロ−5−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネート、4−フルオロ−4−フェニルエチレンカーボネート、4−フルオロ−5−フェニルエチレンカーボネート、4,4−ジフルオロ−5−フェニルエチレンカーボネート、4,5−ジフルオロ−4−フェニルエチレンカーボネート等が挙げられる。
Specific examples of the ethylene carbonates substituted with a substituent having an aromatic ring or a carbon-carbon double bond or a carbon-carbon triple bond include.
Vinyl ethylene carbonate, 4,5-divinylethylene carbonate, 4-methyl-5-vinylethylene carbonate, 4-allyl-5-vinylethylene carbonate, ethynylethylene carbonate, 4,5-dietinylethylene carbonate, 4-methyl-5 -Ethynyl ethylene carbonate, 4-vinyl-5-ethynyl ethylene carbonate, 4-allyl-5-ethynyl ethylene carbonate, phenylethylene carbonate, 4,5-diphenylethylene carbonate, 4-phenyl-5-vinylethylene carbonate, 4-allyl -5-phenylethylene carbonate, allylethylene carbonate, 4,5-diallylethylene carbonate, 4-methyl-5-allylethylene carbonate, 4-fluoro-4-vinylethylene carbonate, 4-fluoro-4-allylethylene carbonate, 4 -Fluoro-5-vinylethylene carbonate, 4-fluoro-5-allylethylene carbonate, 4,4-difluoro-5-vinylethylene carbonate, 4,4-difluoro-5-allylethylene carbonate, 4,5-difluoro-4 -Vinyl ethylene carbonate, 4,5-difluoro-4-allylethylene carbonate, 4-fluoro-4,5-divinylethylene carbonate, 4-fluoro-4,5-diallylethylene carbonate, 4,5-difluoro-4,5 -Divinylethylene carbonate, 4,5-difluoro-4,5-diallylethylene carbonate, 4-fluoro-4-phenylethylene carbonate, 4-fluoro-5-phenylethylene carbonate, 4,4-difluoro-5-phenylethylene carbonate , 4,5-Difluoro-4-phenylethylene carbonate and the like.

以上挙げた中でも、好ましい不飽和環状カーボネートとしては、
ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5−ジエチニルエチレンカーボネート、4−メチル−5−エチニルエチレンカーボネート、4−ビニル−5−エチニルエチレンカーボネート、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−5−ビニルエチレンカーボネート、4,4−ジフルオロ−5−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカー
ボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネートが挙げられる。
Among the above, the preferred unsaturated cyclic carbonate is
Vinylene carbonate, methyl vinylene carbonate, 4,5-dimethylvinylene carbonate, vinyl vinylene carbonate, 4,5-vinyl vinylene carbonate, allyl vinylene carbonate, 4,5-diallyl vinylene carbonate, vinyl ethylene carbonate, 4,5-divinyl ethylene carbonate , 4-Methyl-5-vinylethylene carbonate, allylethylene carbonate, 4,5-diallylethylene carbonate, 4-methyl-5-allylethylene carbonate, 4-allyl-5-vinylethylene carbonate, ethynylethylene carbonate, 4,5 -Diethynyl ethylene carbonate, 4-methyl-5-ethynyl ethylene carbonate, 4-vinyl-5-ethynyl ethylene carbonate, 4-fluorovinylene carbonate, 4-fluoro-5-methylvinylene carbonate, 4-fluoro-5-vinylvinylene Carbonate, 4-allyl-5-fluorovinylene carbonate, 4-fluoro-4-vinylethylene carbonate, 4-fluoro-4-allylethylene carbonate, 4-fluoro-5-vinylethylene carbonate, 4-fluoro-5-allylethylene Carbonate, 4,4-difluoro-5-vinylethylene carbonate, 4,4-difluoro-5-allylethylene carbonate, 4,5-difluoro-4-vinylethylene carbonate, 4,5-difluoro-4-allylethylene carbonate, 4-Fluoro-4,5-divinylethylene carbonate, 4-fluoro-4,5-diallylethylene carbonate, 4,5-difluoro-4,5-divinylethylene carbonate, 4,5-difluoro-4,5-diallylethylene Examples include carbonate.

また、ビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネートは特に安定な界面保護被膜を形成するので、特に好ましい。 Further, vinylene carbonate, vinyl ethylene carbonate, and ethynyl ethylene carbonate are particularly preferable because they form a particularly stable interfacial protective film.

不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。前記分子量は、好ましくは、80以上、250以下である。この範囲であれば、非水系電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。不飽和環状カーボネートの分子量は、より好ましくは85以上であり、また、より好ましくは150以下である。 The molecular weight of the unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The molecular weight is preferably 80 or more and 250 or less. Within this range, the solubility of the unsaturated cyclic carbonate in the non-aqueous electrolyte solution can be easily ensured, and the effect of the present invention can be sufficiently exhibited. The molecular weight of the unsaturated cyclic carbonate is more preferably 85 or more, and more preferably 150 or less.

以上説明した不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。 The method for producing the unsaturated cyclic carbonate described above is not particularly limited, and a known method can be arbitrarily selected for production.

非水系電解液において不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、不飽和環状カーボネートの含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。前記含有量は、非水系電解液100質量%中、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.5質量%以上、特に好ましくは1質量%以上であり、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下である。この範囲内であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。 In the non-aqueous electrolyte solution, one type of unsaturated cyclic carbonate may be used alone, or two or more types may be used in any combination and ratio. The content of the unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The content is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably 0.5% by mass or more in 100% by mass of the non-aqueous electrolyte solution. It is particularly preferably 1% by mass or more, and usually 10% by mass or less, preferably 5% by mass or less, and more preferably 3% by mass or less. Within this range, the non-aqueous electrolyte secondary battery tends to exhibit a sufficient effect of improving the cycle characteristics, the high temperature storage characteristics are lowered, the amount of gas generated is increased, and the discharge capacity retention rate is lowered. Easy to avoid the situation.

1−2−2.フッ素原子を有する環状カーボネート
本発明の一実施形態である非水系電解液は、式(A)で表される化合物に加え、フッ素原子を有する環状カーボネートをさらに含有することが電池特性向上の点から好ましい。
特定化合物の一種であるフッ素原子を有する環状カーボネートとしては、炭素数2〜6のアルキレン基を有する環状カーボネートのフッ素化物、及びその誘導体が挙げられる。それらの例としては、エチレンカーボネートのフッ素化物、及びその誘導体が挙げられる。前記エチレンカーボネートのフッ素化物の誘導体としては、例えば、アルキル基(例えば、炭素数1〜4個のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられる。フッ素原子を有する環状カーボネートとしては、フッ素原子を1〜8個有するエチレンカーボネート、及びその誘導体が好ましい。なお、フッ素原子を有し、かつ不飽和結合を有する環状カーボネート(フッ素化不飽和カーボネート)については、上記1−2−1.に記載している。
1-2-2. Cyclic carbonate having a fluorine atom The non-aqueous electrolyte solution according to the embodiment of the present invention further contains a cyclic carbonate having a fluorine atom in addition to the compound represented by the formula (A) from the viewpoint of improving battery characteristics. preferable.
Examples of the cyclic carbonate having a fluorine atom, which is a kind of a specific compound, include a fluoride of a cyclic carbonate having an alkylene group having 2 to 6 carbon atoms and a derivative thereof. Examples thereof include fluorinated products of ethylene carbonate and derivatives thereof. Examples of the derivative of the fluorinated product of ethylene carbonate include a fluorinated product of ethylene carbonate substituted with an alkyl group (for example, an alkyl group having 1 to 4 carbon atoms). As the cyclic carbonate having a fluorine atom, an ethylene carbonate having 1 to 8 fluorine atoms and a derivative thereof are preferable. Regarding the cyclic carbonate (fluorinated unsaturated carbonate) having a fluorine atom and an unsaturated bond, the above 1-2-1. It is described in.

それらの具体例としては、
モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−フルオロ−4−メチルエチレンカーボネート、4,5−ジフルオロ−4−メチルエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネート、4,4−ジフルオロ−5−メチルエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4−(ジフルオロメチル)−エチレンカーボネート、4−(トリフルオロメチル)−エチレンカーボネート、4−(フルオロメチル)−4−フルオロエチレンカーボネート、4−(フルオロメチル)−5−フルオロエチレンカーボネート、4−フルオロ−4,5−ジメチルエチレンカーボネート、4,5−ジフルオロ−4,5−ジメチルエチレンカーボネート、4,4−ジフルオロ−5,5−ジメチルエ
チレンカーボネート等が挙げられる。
As a concrete example of them,
Monofluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4-fluoro-4-methylethylene carbonate, 4,5-difluoro-4-methylethylene carbonate, 4-fluoro-5-methyl Ethylene carbonate, 4,4-difluoro-5-methylethylene carbonate, 4- (fluoromethyl) -ethylene carbonate, 4- (difluoromethyl) -ethylene carbonate, 4- (trifluoromethyl) -ethylene carbonate, 4- (fluoromethyl) Methyl) -4-fluoroethylene carbonate, 4- (fluoromethyl) -5-fluoroethylene carbonate, 4-fluoro-4,5-dimethylethylene carbonate, 4,5-difluoro-4,5-dimethylethylene carbonate, 4, Examples thereof include 4-difluoro-5,5-dimethylethylene carbonate and the like.

これらの中でも、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート及び4,5−ジフルオロエチレンカーボネートよりなる群から選ばれる少なくとも1種が、高イオン伝導性を与え、かつ好適に界面保護被膜を形成する点でより好ましい。 Among these, at least one selected from the group consisting of monofluoroethylene carbonate, 4,4-difluoroethylene carbonate and 4,5-difluoroethylene carbonate imparts high ionic conductivity and preferably forms an interface protection film. It is more preferable in that it does.

フッ素原子を有する環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 As the cyclic carbonate having a fluorine atom, one type may be used alone, or two or more types may be used in combination in any combination and ratio.

本発明の非水系電解液全体に対するフッ素原子を有する環状カーボネートの含有量に制限は無く、本発明の効果を著しく損なわない限り任意である。前記含有量は、非水系電解液100質量%中、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.5質量%以上、特に好ましくは1質量%以上であり、また、通常10質量%以下、好ましくは7質量%以下、より好ましくは5質量%以下、更に好ましくは3質量%以下である。ただし、モノフルオロエチレンカーボネートは溶媒として用いてもよく、その場合は上記の含有量に限定されない。 The content of the cyclic carbonate having a fluorine atom in the entire non-aqueous electrolyte solution of the present invention is not limited and is arbitrary as long as the effect of the present invention is not significantly impaired. The content is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably 0.5% by mass or more in 100% by mass of the non-aqueous electrolyte solution. It is particularly preferably 1% by mass or more, and usually 10% by mass or less, preferably 7% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less. However, monofluoroethylene carbonate may be used as a solvent, and in that case, the content is not limited to the above.

1−2−3.ニトリル化合物
本発明の一実施形態である非水系電解液は、式(A)で表される化合物に加え、ニトリル化合物をさらに含有することが電池特性向上の点から好ましい。
特定化合物の1種であるニトリル化合物は、分子内にシアノ基を有している化合物であれば特にその種類は限定されない。
1-2-3. Nitrile Compound The non-aqueous electrolyte solution according to the embodiment of the present invention preferably contains a nitrile compound in addition to the compound represented by the formula (A) from the viewpoint of improving battery characteristics.
The type of the nitrile compound, which is one of the specific compounds, is not particularly limited as long as it is a compound having a cyano group in the molecule.

ニトリル化合物の具体例としては、例えば、
アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、デカンニトリル、ラウロニトリル、2−メチルブチロニトリル、トリメチルアセトニトリル、ヘキサンニトリル、シクロペンタンカルボニトリル、シクロヘキサンカルボニトリル、アクリロニトリル、メタクリロニトリル、クロトノニトリル、3−メチルクロトノニトリル、2−メチル−2−ブテンニトリル、2−ペンテンニトリル、2−メチル−2−ペンテンニトリル、3−メチル−2−ペンテンニトリル、2−ヘキセンニトリル、フルオロアセトニトリル、ジフルオロアセトニトリル、トリフルオロアセトニトリル、2−フルオロプロピオニトリル、3−フルオロプロピオニトリル、2,2−ジフルオロプロピオニトリル、2,3−ジフルオロプロピオニトリル、3,3−ジフルオロプロピオニトリル、2,2,3−トリフルオロプロピオニトリル、3,3,3−トリフルオロプロピオニトリル、ペンタフルオロプロピオニトリル等のニトリル基を1つ有する化合物;
マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、メチルマロノニトリル、エチルマロノニトリル、イソプロピルマロノニトリル、t−ブチルマロノニトリル、メチルスクシノニトリル、2,2−ジメチルスクシノニトリル、2,3−ジメチルスクシノニトリル、2,3,3−トリメチルスクシノニトリル、2,2,3,3−テトラメチルスクシノニトリル、2,3−ジエチル−2,3−ジメチルスクシノニトリル、2,2−ジエチル−3,3−ジメチルスクシノニトリル、ビシクロヘキシル−1,1−ジカルボニトリル、ビシクロヘキシル−2,2−ジカルボニトリル、ビシクロヘキシル−3,3−ジカルボニトリル、2,5−ジメチル−2,5−ヘキサンジカルボニトリル、2,3−ジイソブチル−2,3−ジメチルスクシノニトリル、2,2−ジイソブチル−3,3−ジメチルスクシノニトリル、2−メチルグルタロニトリル、2,3−ジメチルグルタロニトリル、2,4−ジメチルグルタロニトリル、2,2,3,3−テトラメチルグルタロニトリル、2,2,4,4−テトラメチルグルタロニトリル、
2,2,3,4−テトラメチルグルタロニトリル、2,3,3,4−テトラメチルグルタロニトリル、マレオニトリル、フマロニトリル、1,4−ジシアノペンタン、2,6−ジシアノヘプタン、2,7−ジシアノオクタン、2,8−ジシアノノナン、1,6−ジシアノデカン、1,2−ジジアノベンゼン、1,3−ジシアノベンゼン、1,4−ジシアノベンゼン、3,3’−(エチレンジオキシ)ジプロピオニトリル、3,3’−(エチレンジチオ)ジプロピオニトリル、3,9−ビス(2−シアノエチル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、3,3’−オキシジプロピオニトリル、3,3’−チオジプロピオニトリル等のニトリル基を2つ有する化合物;
シクロヘキサントリカルボニトリル、トリスシアノエチルアミン、トリスシアノエトキシプロパン、トリシアノエチレン、ペンタントリカルボニトリル、1,3,5−ペンタントリカルボニトリル、プロパントリカルボニトリル、1,2,3−プロパントリカルボニトリル、ヘプタントリカルボニトリル等のシアノ基を3つ有する化合物
等が挙げられる。
Specific examples of the nitrile compound include, for example.
Acetonitrile, propionitrile, butyronitrile, isobutyronitrile, valeronitrile, isovaleronitrile, decanenitrile, lauronitrile, 2-methylbutyronitrile, trimethylnitrile, hexanenitrile, cyclopentanecarbonitrile, cyclohexanecarbonitrile, acrylonitrile, Methacronitrile, Crotononitrile, 3-Methylcrotononitrile, 2-Methyl-2-butenenitrile, 2-Pentenenitrile, 2-Methyl-2-Pentenenitrile, 3-Methyl-2-Pentenenitrile, 2-Hexen Nitrile, Fluoroaceton, Difluoroacetonitrile, Trifluoronitrile, 2-Fluoropropionitrile, 3-Fluoropropionitrile, 2,2-difluoropropionitrile, 2,3-difluoropropionitrile, 3,3-difluoropro Compounds having one nitrile group such as pionitrile, 2,2,3-trifluoropropionitrile, 3,3,3-trifluoropropionitrile, pentafluoropropionitrile;
Marononitrile, succinonitrile, glutaronitrile, adiponitrile, pimeronitrile, suberonitrile, azelanitrile, sebaconitrile, undecandinitrile, dodecandinitrile, methylmalononitrile, ethylmalononitrile, isopropylmalononitrile, t-butylmalononitrile, methylsuccinonitrile , 2,2-dimethylsuccinonitrile, 2,3-dimethylsuccinonitrile, 2,3,3-trimethylsuccinonitrile, 2,2,3,3-tetramethylsuccinonitrile, 2,3-diethyl- 2,3-Dimethylsuccinonitrile, 2,2-diethyl-3,3-dimethylsuccinonitrile, bicyclohexyl-1,1-dicarbonitrile, bicyclohexyl-2,2-dicarbonitrile, bicyclohexyl-3 , 3-Dicarbonitrile, 2,5-dimethyl-2,5-hexanedicarbonitrile, 2,3-diisobutyl-2,3-dimethylsuccinonitrile, 2,2-diisobutyl-3,3-dimethylsuccino Nitrile, 2-methylglutaronitrile, 2,3-dimethylglutaronitrile, 2,4-dimethylglutaronitrile, 2,2,3,3-tetramethylglutaronitrile, 2,2,4,4-tetra Methylglutaronitrile,
2,2,3,4-tetramethylglutaronitrile, 2,3,3,4-tetramethylglutaronitrile, maleonitrile, fumaronitrile, 1,4-dicyanopentane, 2,6-dicyanoheptan, 2,7- Dicyanooctane, 2,8-dicyanononane, 1,6-dicyanodecane, 1,2-didianobenzene, 1,3-dicyanobenzene, 1,4-dicyanobenzene, 3,3'-(ethylenedioxy) dipropio Nitrile, 3,3'-(ethylenedithio) dipropionitrile, 3,9-bis (2-cyanoethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane, 3,3'-oxy Compounds having two nitrile groups such as dipropionitrile and 3,3'-thiodipropionitrile;
Cyclohexanetricarbonitrile, triscyanoethylamine, triscyanoethoxypropane, tricyanoethylene, pentanetricarbonitrile, 1,3,5-pentanetricarbonitrile, propantricarbonitrile, 1,2,3-propanetricarbonitrile, Examples thereof include compounds having three cyano groups such as heptanetricarbonitrile.

これらのうち、バレロニトリル、デカンニトリル、ラウロニトリル、クロトノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、フマロニトリル、3,9−ビス(2−シアノエチル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが、非水系電解液の保存特性向上の点から好ましい。また、バレロニトリル、デカンニトリル、ラウロニトリル、クロトノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、3,9−ビス(2−シアノエチル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン等のニトリル化合物が特に好ましい。 Of these, Valeronitrile, Decanenitrile, Lauronitrile, Crotononitrile, Succinonitrile, Glutaronitrile, Adiponitrile, Pimeronitrile, Suberonitrile, Azelanitrile, Sevaconitrile, Undecandinitrile, Dodecandinitrile, Fumaronitrile, 3,9-bis (2-Cyanoethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane is preferable from the viewpoint of improving the storage characteristics of the non-aqueous electrolyte solution. In addition, valeronitrile, decanenitrile, lauronitrile, crotononitrile, succinonitrile, glutaronitrile, adiponitrile, pimeronitrile, 3,9-bis (2-cyanoethyl) -2,4,8,10-tetraoxaspiro [ 5,5] Nitrile compounds such as undecane are particularly preferable.

ニトリル化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。本発明の非水系電解液全体に対するニトリル化合物の含有量に制限は無く、本発明の効果を著しく損なわない限り任意である。前記含有量は、非水系電解液100質量%中、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上であり、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは2質量%以下、最も好ましくは1質量%以下である。上記範囲を満たした場合は、非水系電解液二次電池の出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。 As the nitrile compound, one type may be used alone, or two or more types may be used in combination in any combination and ratio. The content of the nitrile compound in the entire non-aqueous electrolyte solution of the present invention is not limited and is arbitrary as long as the effect of the present invention is not significantly impaired. The content is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and usually 10% by mass or less in 100% by mass of the non-aqueous electrolyte solution. It is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 2% by mass or less, and most preferably 1% by mass or less. When the above range is satisfied, the effects such as output characteristics, load characteristics, low temperature characteristics, cycle characteristics, and high temperature storage characteristics of the non-aqueous electrolyte secondary battery are further improved.

1−2−4.イソシアネート化合物
本発明の一実施形態である非水系電解液は、式(A)で表される化合物に加え、イソシアネート化合物をさらに含有することが電池特性向上の点から好ましい。
特定化合物であるイソシアネート化合物は、分子内にイソシアネート基を有している化合物であれば特にその種類は限定されない。
1-2-4. Isocyanate compound The non-aqueous electrolyte solution according to the embodiment of the present invention preferably contains an isocyanate compound in addition to the compound represented by the formula (A) from the viewpoint of improving battery characteristics.
The type of the isocyanate compound, which is a specific compound, is not particularly limited as long as it is a compound having an isocyanate group in the molecule.

イソシアネート化合物の具体例としては、例えば、
メチルイソシアネート、エチルイソシアネート、プロピルイソシアネート、イソプロピルイソシアネート、ブチルイソシアネート、t−ブチルイソシアネート、ペンチルイソシアネート、ヘキシルイソシアネート、シクロヘキシルイソシアネート、フェニルイソシアネート、フロロフェニルイソシアネートなどの炭化水素系モノイソシアネート化合物;
ビニルイソシアネート、アリルイソシアネート、エチニルイソシアネート、プロピニルイソシアネートなどの炭素−炭素不飽和結合を有するモノイソシアネート化合物;
モノメチレンジイソシアネート、ジメチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチ
レンジイソシアネート、1,3−ジイソシアナトプロパン、1,4−ジイソシアナト−2−ブテン、1,4−ジイソシアナト−2−フルオロブタン、1,4−ジイソシアナト−2,3−ジフルオロブタン、1,5−ジイソシアナト−2−ペンテン、1,5−ジイソシアナト−2−メチルペンタン、1,6−ジイソシアナト−2−ヘキセン、1,6−ジイソシアナト−3−ヘキセン、1,6−ジイソシアナト−3−フルオロヘキサン、1,6−ジイソシアナト−3,4−ジフルオロヘキサン、トルエンジイソシアネート、キシレンジイソシアネート、トリレンジイソシアネート、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソシアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、ジシクロヘキシルメタン−1,1’−ジイソシアネート、ジシクロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、ビシクロ[2.2.1]ヘプタン−2,5−ジイルビス(メチルイソシアネート)、ビシクロ[2.2.1]ヘプタン−2,6−ジイルビス(メチルイソシアネート)、ジイソシアン酸イソホロン、カルボニルジイソシアネート、1,4−ジイソシアナトブタン−1,4−ジオン、1,5−ジイソシアナトペンタン−1,5−ジオン、2,2,4−トリメチルヘキサメチレンジイソシアナート、2,4,4−トリメチルヘキサメチレンジイソシアナートなどの炭化水素系ジイソシアネート化合物;
ジイソシアナトスルホン、(オルト−、メタ−、パラ−)トルエンスルホニルイソシアネート、ベンゼンスルホニルイソシアネート、フルオロスルホニルイソシアネート、フェノキシスルホニルイソシアネート、ペンタフルオロフェノキシスルホニルイソシアネート、メトキシスルホニルイソシアネートなどのイソシアネート化合物;
等が挙げられる。
Specific examples of the isocyanate compound include, for example.
Hydrocarbon-based monoisocyanate compounds such as methyl isocyanate, ethyl isocyanate, propyl isocyanate, isopropyl isocyanate, butyl isocyanate, t-butyl isocyanate, pentyl isocyanate, hexyl isocyanate, cyclohexyl isocyanate, phenyl isocyanate, fluorophenyl isocyanate;
Monoisocyanate compounds with carbon-carbon unsaturated bonds such as vinyl isocyanate, allyl isocyanate, ethynyl isocyanate, propynyl isocyanate;
Monomethylene diisocyanate, dimethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate, decamethylene diisocyanate, dodecamethylene diisocyanate, 1,3-diisocyanate Natopropane, 1,4-diisocyanato-2-butene, 1,4-diisocyanato-2-fluorobutane, 1,4-diisocyanato-2,3-difluorobutane, 1,5-diisocyanato-2-pentene, 1,5 -Diisocyanato-2-methylpentane, 1,6-diisocyanato-2-hexene, 1,6-diisocyanato-3-hexene, 1,6-diisocyanato-3-fluorohexane, 1,6-diisocyanato-3,4-difluoro Hexaneous, toluenediisocyanate, xylenediocyanate, tolylene diisocyanate, 1,2-bis (isocyanatomethyl) cyclohexane, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, 1, 2-Diisocyanatocyclohexane, 1,3-diisocyanatocyclohexane, 1,4-diisocyanatocyclohexane, dicyclohexylmethane-1,1'-diisocyanate, dicyclohexylmethane-2,2'-diisocyanate, dicyclohexylmethane-3, 3'-diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, bicyclo [2.2.1] heptane-2,5-diylbis (methylisocyanate), bicyclo [2.2.1] heptane-2,6-diylbis (Methylisocyanate), isophorone diisocyanate, carbonyl diisocyanate, 1,4-diisocyanatobutane-1,4-dione, 1,5-diisocyanatopentane-1,5-dione, 2,2,4-trimethylhexa Hydrocarbon-based diisocyanate compounds such as methylene diisocyanate and 2,4,4-trimethylhexamethylene diisocyanate;
Isocyanatosulfone, (ortho-, meta-, para-) isocyanate compounds such as toluenesulfonylisocyanate, benzenesulfonylisocyanate, fluorosulfonylisocyanate, phenoxysulfonylisocyanate, pentafluorophenoxysulfonylisocyanate, methoxysulfonylisocyanate;
And so on.

これらのうち、ビニルイソシアネート、アリルイソシアネート、エチニルイソシアネート、プロピニルイソシアネートなどの炭素−炭素不飽和結合を有するモノイソシアネート化合物;
モノメチレンジイソシアネート、ジメチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート、1,3−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−4,4’−ジイソシアネート、ビシクロ[2.2.1]ヘプタン−2,5−ジイルビス(メチルイソシアネート)、ビシクロ[2.2.1]ヘプタン−2,6−ジイルビス(メチルイソシアネート)、ジイソシアン酸イソホロン、2,2,4−トリメチルヘキサメチレンジイソシアナート、2,4,4−トリメチルヘキサメチレンジイソシアナート等の炭化水素系ジイソシアネート化合物;
ジイソシアナトスルホン、(オルト−、メタ−、パラ−)トルエンスルホニルイソシアネート、ベンゼンスルホニルイイソシアネート、フルオロスルホニルイソシアネート、フェノキシスルホニルイソシアネート、ペンタフルオロフェノキシスルホニルイソシアネート、メトキシスルホニルイソシアネートなどのイソシアネート化合物;
が、非水系電解液二次電池のサイクル特性・保存特性向上の点から好ましい。
Of these, monoisocyanate compounds having carbon-carbon unsaturated bonds such as vinyl isocyanate, allyl isocyanate, ethynyl isocyanate, and propynyl isocyanate;
Monomethylene diisocyanate, dimethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate, decamethylene diisocyanate, dodecamethylene diisocyanate, 1,3-bis ( Isocyanatomethyl) cyclohexane, dicyclohexylmethane-4,4'-diisocyanate, bicyclo [2.2.1] heptane-2,5-diylbis (methylisocyanate), bicyclo [2.2.1] heptane-2,6- Hydrocarbon-based diisocyanate compounds such as diylbis (methylisocyanate), isophorone diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate;
Isocyanatosulfone, (ortho-, meta-, para-) toluenesulfonyl isocyanate, benzenesulfonylisocyanate, fluorosulfonylisocyanate, phenoxysulfonylisocyanate, pentafluorophenoxysulfonylisocyanate, methoxysulfonylisocyanate and other isocyanate compounds;
However, it is preferable from the viewpoint of improving the cycle characteristics and storage characteristics of the non-aqueous electrolyte secondary battery.

さらに好ましくは、アリルイソシアネート、ヘキサメチレンジイソシアネート、1,3−ビス(イソシアナトメチル)シクロヘキサン、ジイソシアナトスルホン、(オルト−、メタ−、パラ−)トルエンスルホニルイソシアネートであり、特に好ましくは、ヘキサメチレンジイソシアネート、1,3−ビス(イソシアナトメチル)シクロヘキサン、(オルト−、メタ−、パラ−)トルエンスルホニルイソシアネートであり、最も好ましくは、ヘキサメチレンジイソシアネート、1,3−ビス(イソシアナトメチル)シクロヘキサンである。 More preferably, allyl isocyanate, hexamethylene diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, diisocyanatosulfone, (ortho-, meta-, para-) toluenesulfonyl isocyanate, and particularly preferably hexamethylene. Diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, (ortho-, meta-, para-) toluenesulfonyl isocyanate, most preferably hexamethylene diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane. is there.

また、イソシアネート化合物としては分岐鎖を有するイソシアネート化合物が好ましい。
また、本発明に用いるイソシアネート化合物は、分子内に少なくとも2つのイソシアネート基を有する化合物から誘導される三量体化合物、もしくはそれに多価アルコールを付加した脂肪族ポリイソシアネートであってもよい。そのような脂肪族ポリイソシアネートとして、例えば、式(1−2−1)〜(1−2−4)の基本構造で示されるビウレット、イソシアヌレート、アダクト、及び二官能のタイプの変性ポリイソシアネート等が例示できる(式(1−2−1)〜(1−2−4)中、R及びR’はそれぞれ独立して任意の炭化水素基である)。
Further, as the isocyanate compound, an isocyanate compound having a branched chain is preferable.
Further, the isocyanate compound used in the present invention may be a trimer compound derived from a compound having at least two isocyanate groups in the molecule, or an aliphatic polyisocyanate to which a polyhydric alcohol is added. Such aliphatic polyisocyanates include, for example, biuret, isocyanurate, adduct, and bifunctional type modified polyisocyanates represented by the basic structures of the formulas (1-2-1) to (1-2-4). (In formulas (1-2-1) to (1-2-4), R and R'are independent hydrocarbon groups, respectively).

本発明で用いるイソシアネート化合物のうち、分子内に少なくとも2つのイソシアネート基を有する化合物には、ブロック剤でブロックして保存安定性を高めた、所謂ブロックイソシアネートも含まれる。前記ブロック剤としては、アルコール類、フェノール類、有
機アミン類、オキシム類、ラクタム類を挙げることができ、これらの具体例としては、n−ブタノール、フェノール、トリブチルアミン、ジエチルエタノールアミン、メチルエチルケトキシム、ε−カプロラクタム等を挙げることができる。
Among the isocyanate compounds used in the present invention, the compound having at least two isocyanate groups in the molecule also includes so-called blocked isocyanate, which is blocked with a blocking agent to improve storage stability. Examples of the blocking agent include alcohols, phenols, organic amines, oximes, and lactams, and specific examples thereof include n-butanol, phenol, tributylamine, diethylethanolamine, and methylethylketoxim. ε-caprolactam and the like can be mentioned.

前記分子内に少なくとも2つのイソシアネート基を有する化合物に基づく反応を促進し、より高い効果を得る目的で、ジブチルスズジラウレート等のような金属触媒や、1,8−ジアザビシクロ[5.4.0]ウンデセン−7のようなアミン系触媒等を併用することも好ましい。 A metal catalyst such as dibutyltin dilaurate or 1,8-diazabicyclo [5.4.0] undecene is used for the purpose of promoting a reaction based on a compound having at least two isocyanate groups in the molecule and obtaining a higher effect. It is also preferable to use an amine-based catalyst such as −7 in combination.

以上説明したイソシアネート化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 As the isocyanate compounds described above, one type may be used alone, or two or more types may be used in combination in any combination and ratio.

非水系電解液全体に対するイソシアネート化合物の含有量に制限は無く、本発明の効果を著しく損なわない限り任意である。前記含有量は、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下、特に好ましくは1質量%以下、最も好ましくは0.5質量%以下である。 The content of the isocyanate compound in the entire non-aqueous electrolyte solution is not limited and is arbitrary as long as the effect of the present invention is not significantly impaired. The content is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and usually 10% by mass or less with respect to the non-aqueous electrolyte solution of the present invention. It is preferably 5% by mass or less, more preferably 3% by mass or less, further preferably 2% by mass or less, particularly preferably 1% by mass or less, and most preferably 0.5% by mass or less.

上記範囲を満たした場合は、非水系電解液二次電池の出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。 When the above range is satisfied, the effects such as output characteristics, load characteristics, low temperature characteristics, cycle characteristics, and high temperature storage characteristics of the non-aqueous electrolyte secondary battery are further improved.

1−2−5.イソシアヌル酸骨格を有する化合物
本発明の一実施形態である非水系電解液は、式(A)で表される化合物に加え、イソシアヌル酸骨格を有する化合物をさらに含有することが電池特性向上の点から好ましい。
特定化合物の1種であるイソシアヌル酸骨格を有する化合物としては、式(U)で表される化合物が挙げられる。
1-2-5. A compound having an isocyanuric acid skeleton The non-aqueous electrolyte solution according to the embodiment of the present invention further contains a compound having an isocyanuric acid skeleton in addition to the compound represented by the formula (A) from the viewpoint of improving battery characteristics. preferable.
Examples of the compound having an isocyanuric acid skeleton, which is one of the specific compounds, include a compound represented by the formula (U).

式(U)中、R〜Rは、それぞれ独立して、置換基を有していてもよい炭素数1〜20の有機基である。但し、R〜Rのうち少なくとも1つは炭素−炭素不飽和結合あるいはシアノ基を有する。好ましくは、式(U)中、R〜Rが、それぞれ独立して、置換基を有していてもよい炭素数1〜10の有機基である。より好ましくは、式(U)中、R〜Rのうち少なくとも1つが炭素−炭素不飽和結合を有する有機基である。 In the formula (U), R 7 to R 9 are organic groups having 1 to 20 carbon atoms which may independently have a substituent. However, at least one of R 7 to R 9 has a carbon-carbon unsaturated bond or a cyano group. Preferably, in the formula (U), R 7 to R 9 are organic groups having 1 to 10 carbon atoms which may independently have a substituent. More preferably, in the formula (U), at least one of R 7 to R 9 is an organic group having a carbon-carbon unsaturated bond.

ここで、有機基とは、炭素原子、水素原子、窒素原子、酸素原子、ケイ素原子、硫黄原子及びハロゲン原子からなる群から選ばれる原子で構成された官能基のことを表す。 Here, the organic group represents a functional group composed of an atom selected from the group consisting of a carbon atom, a hydrogen atom, a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom and a halogen atom.

置換基を有していてもよい炭素数1〜20の有機基の具体例としては、炭素数1〜20のアルキル基、アルケニル基、アルキニル基、アリール基、シアノ基、アクリル基、メタクリル基、ビニルスルホニル基、ビニルスルホ基等が挙げられる。 Specific examples of the organic group having 1 to 20 carbon atoms which may have a substituent include an alkyl group having 1 to 20 carbon atoms, an alkenyl group, an alkynyl group, an aryl group, a cyano group, an acrylic group and a methacryl group. Examples thereof include a vinylsulfonyl group and a vinylsulfo group.

ここでいう置換基としては、ハロゲン原子、アルキレン基等が挙げられる。また、前記アルキレン基の一部に不飽和結合などが含まれていてもよい。ハロゲン原子の中でも、フッ素原子が好ましい。 Examples of the substituent here include a halogen atom and an alkylene group. Further, an unsaturated bond or the like may be contained in a part of the alkylene group. Among the halogen atoms, a fluorine atom is preferable.

置換基を有していてもよいアルキル基の具体例としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、s−ブチル基、t−ブチル基等の直鎖状又は分岐鎖状のアルキル基、及びシクロプロピル基、シクロペンチル基、シクロヘキシル基等の環状アルキル基等が挙げられる。 Specific examples of the alkyl group which may have a substituent include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an s-butyl group, a t-butyl group and the like. Examples thereof include a chain-shaped or branched alkyl group, and a cyclic alkyl group such as a cyclopropyl group, a cyclopentyl group, and a cyclohexyl group.

置換基を有していてもよいアルケニル基の具体例としては、ビニル基、アリル基、メタリル基、1−プロペニル基等が挙げられる。 Specific examples of the alkenyl group which may have a substituent include a vinyl group, an allyl group, a metalyl group, a 1-propenyl group and the like.

置換基を有していてもよいアルキニル基の具体例としては、エチニル基、プロパルギル基、1−プロピニル基等が挙げられる。 Specific examples of the alkynyl group which may have a substituent include an ethynyl group, a propargyl group, a 1-propynyl group and the like.

置換基を有していてもよいアリール基の具体例としては、フェニル基、トリル基、ベンジル基、フェネチル基等が挙げられる。 Specific examples of the aryl group which may have a substituent include a phenyl group, a tolyl group, a benzyl group, a phenethyl group and the like.

以上説明した置換基を有していてもよい置換基としてさらに好ましくは、置換基を有していてもよいアルキル基、アルケニル基、アルキニル基、アクリル基、メタクリル基、シアノ基である。 The substituent which may have a substituent described above is more preferably an alkyl group, an alkenyl group, an alkynyl group, an acrylic group, a methacryl group or a cyano group which may have a substituent.

特に好ましくは、置換基を有していてもよいアルキル基、アルケニル基、アクリル基、メタクリル基、シアノ基である。 Particularly preferred are an alkyl group, an alkenyl group, an acrylic group, a methacrylic group, and a cyano group which may have a substituent.

最も好ましくは、置換基を有していてもよいメチル基、エチル基、プロピル基、アリル基、メタリル基である。とりわけ非置換のアリル基及びメタリル基が好ましい。被膜形成能の観点からアリル基が好ましい。 Most preferably, it is a methyl group, an ethyl group, a propyl group, an allyl group, or a metalyl group which may have a substituent. Particularly, an unsubstituted allyl group and a metalyl group are preferable. An allyl group is preferable from the viewpoint of film forming ability.

式(U)で表される化合物の具体的な例としては、以下の構造の化合物が挙げられる。 Specific examples of the compound represented by the formula (U) include compounds having the following structures.

前記式(U)で表される化合物のうち、好ましくは、以下の構造の化合物である。 Among the compounds represented by the formula (U), a compound having the following structure is preferable.

さらに好ましくは、以下の構造の化合物である。 More preferably, it is a compound having the following structure.

特に好ましくは、以下の構造の化合物である。 Particularly preferred is a compound having the following structure.

最も好ましくは、以下の構造の化合物である。 Most preferably, it is a compound having the following structure.

また、これら最も好ましい化合物の中でも、被膜形成能の観点から以下の構造の化合物
が好ましい。
Further, among these most preferable compounds, a compound having the following structure is preferable from the viewpoint of film forming ability.

非水系電解液全体に対する、以上説明したイソシアヌル酸骨格を有する化合物(式(U)で表される化合物)の含有量に制限は無く、本発明の効果を著しく損なわない限り任意である。前記含有量は、本発明の非水系電解液全体に対して、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下、特に好ましくは1質量%以下、最も好ましくは0.5質量%以下である。 The content of the compound having the isocyanuric acid skeleton described above (the compound represented by the formula (U)) in the entire non-aqueous electrolyte solution is not limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The content is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and usually 10% by mass, based on the entire non-aqueous electrolyte solution of the present invention. Hereinafter, it is preferably 5% by mass or less, more preferably 3% by mass or less, further preferably 2% by mass or less, particularly preferably 1% by mass or less, and most preferably 0.5% by mass or less.

上記範囲を満たした場合は、非水系電解液二次電池の出力特性、負荷特性、サイクル特性、高温保存特性、電池膨れ等の効果がより向上する。 When the above range is satisfied, the effects such as output characteristics, load characteristics, cycle characteristics, high temperature storage characteristics, and battery swelling of the non-aqueous electrolyte secondary battery are further improved.

1−2−6.フッ素化された塩
本発明の一実施形態である非水系電解液は、式(A)で表される化合物に加え、フッ素化された塩をさらに含有することが電池特性向上の点から好ましい。
特定の1種である化合物であるフッ素化された塩に特に制限はないが、構造内に脱離性の高いフッ素原子を有しているため、例えば、式(A)で表される化合物が還元反応を受け生成するアニオン(求核種)と好適に反応し、複合的被膜を形成することができることから、ジフルオロリン酸塩、フルオロスルホン酸塩、フルオロホウ素塩及びフルオロイミド塩が好ましい。フッ素原子の脱離性が特に高いこと、求核種との反応が好適に進行することから、フルオロホウ素塩、フルオロスルホン酸塩、ジフルオロリン酸塩がより好ましく、フルオロホウ素塩、ジフルオロリン酸塩が特に好ましい。以下、これらの各種塩について説明する。
1-2-6. Fluorinated salt The non-aqueous electrolyte solution according to the embodiment of the present invention preferably contains a fluorinated salt in addition to the compound represented by the formula (A) from the viewpoint of improving battery characteristics.
The fluorinated salt, which is a specific type of compound, is not particularly limited, but since it has a highly desorbable fluorine atom in its structure, for example, the compound represented by the formula (A) can be used. Difluorophosphates, fluorosulfonates, fluoroboron salts and fluoroimide salts are preferable because they can react suitably with anions (nucleophilic species) generated by the reduction reaction to form a complex film. Fluoroborone salt, fluorosulfonate, and difluorophosphate are more preferable, and fluoroboron salt and difluorophosphate are more preferable because the desorption of fluorine atoms is particularly high and the reaction with the nucleophile proceeds favorably. Especially preferable. Hereinafter, these various salts will be described.

(ジフルオロリン酸塩)
前記ジフルオロリン酸塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、及び、NR13141516(式中、R13〜R16は、各々独立に、水素原子又は炭素数1〜12の有機基を表す。)で表されるアンモニウム等がその例として挙げられる。
(Difluorophosphate)
The counter cation of the difluorophosphate is not particularly limited, but lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, barium, and NR 13 R 14 R 15 R 16 (in the formula, R 13 to R). 16 each independently represents a hydrogen atom or an organic group having 1 to 12 carbon atoms), and examples thereof include ammonium.

上記アンモニウムのR13〜R16で表される炭素数1〜12の有機基としては特に限定はないが、例えば、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR13〜R16が、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、又は窒素原子含有複素環基であることが好ましい。 The organic group having 1 to 12 carbon atoms represented by R 13 to R 16 of the ammonium is not particularly limited, but is substituted with, for example, an alkyl group which may be substituted with a halogen atom, a halogen atom or an alkyl group. Examples thereof include a cycloalkyl group which may be present, an aryl group which may be substituted with a halogen atom or an alkyl group, a nitrogen atom-containing heterocyclic group which may have a substituent and the like. Among them, it is preferable that R 13 to R 16 are independently hydrogen atom, alkyl group, cycloalkyl group, or nitrogen atom-containing heterocyclic group.

ジフルオロリン酸塩の具体例としては、
ジフルオロリン酸リチウム、ジフルオロリン酸ナトリウム、ジフルオロリン酸カリウム等が挙げられ、ジフルオロリン酸リチウムが好ましい。
As a specific example of difluorophosphate,
Examples thereof include lithium difluorophosphate, sodium difluorophosphate, potassium difluorophosphate and the like, and lithium difluorophosphate is preferable.

ジフルオロリン酸塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、ジフルオロリン酸塩の含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。 As the difluorophosphate, one type may be used alone, or two or more types may be used in combination in any combination and ratio. The content of difluorophosphate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired.

ジフルオロリン酸塩の含有量は、非水系電解液100質量%中、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下、最も好ましくは1質量%以下である。 The content of difluorophosphate is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and usually 10% by mass in 100% by mass of the non-aqueous electrolyte solution. % Or less, preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 2% by mass or less, and most preferably 1% by mass or less.

この範囲内であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。 Within this range, the non-aqueous electrolyte secondary battery tends to exhibit a sufficient effect of improving the cycle characteristics, the high temperature storage characteristics are lowered, the amount of gas generated is increased, and the discharge capacity retention rate is lowered. Easy to avoid the situation.

(フルオロスルホン酸塩)
前記フルオロスルホン酸塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、及び、NR13141516(式中、R13〜R16は、各々独立に、水素原子又は炭素数1〜12の有機基を表す。)で表されるアンモニウム等がその例として挙げられる。
(Fluorosulfate)
The counter cation of the fluorosulfonate is not particularly limited, but lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, barium, and NR 13 R 14 R 15 R 16 (in the formula, R 13 to R). 16 each independently represents a hydrogen atom or an organic group having 1 to 12 carbon atoms), and examples thereof include ammonium.

上記アンモニウムのR13〜R16で表される炭素数1〜12の有機基としては特に限定はないが、例えば、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR13〜R16が、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、又は窒素原子含有複素環基であることが好ましい。 The organic group having 1 to 12 carbon atoms represented by R 13 to R 16 of the ammonium is not particularly limited, but is substituted with, for example, an alkyl group which may be substituted with a halogen atom, a halogen atom or an alkyl group. Examples thereof include a cycloalkyl group which may be present, an aryl group which may be substituted with a halogen atom or an alkyl group, a nitrogen atom-containing heterocyclic group which may have a substituent and the like. Among them, it is preferable that R 13 to R 16 are independently hydrogen atom, alkyl group, cycloalkyl group, or nitrogen atom-containing heterocyclic group.

フルオロスルホン酸塩の具体例としては、
フルオロスルホン酸リチウム、フルオロスルホン酸ナトリウム、フルオロスルホン酸カリウム、フルオロスルホン酸ルビジウム、フルオロスルホン酸セシウム等が挙げられ、フルオロスルホン酸リチウムが好ましい。
Specific examples of fluorosulfonates include
Examples thereof include lithium fluorosulfonate, sodium fluorosulfonate, potassium fluorosulfonate, rubidium fluorosulfonate, cesium fluorosulfonate, and lithium fluorosulfonate is preferable.

フルオロスルホン酸塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、フルオロスルホン酸塩の含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。 As the fluorosulfonate, one type may be used alone, or two or more types may be used in combination in any combination and ratio. The content of the fluorosulfonate is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired.

フルオロスルホン酸塩の含有量は、非水系電解液100質量%中、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下、最も好ましくは1質量%以下である。 The content of the fluorosulfonate is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and usually 10% by mass in 100% by mass of the non-aqueous electrolyte solution. % Or less, preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 2% by mass or less, and most preferably 1% by mass or less.

この範囲内であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。 Within this range, the non-aqueous electrolyte secondary battery tends to exhibit a sufficient effect of improving the cycle characteristics, the high temperature storage characteristics are lowered, the amount of gas generated is increased, and the discharge capacity retention rate is lowered. Easy to avoid the situation.

(フルオロホウ素塩)
前記フルオロホウ素塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、及び、NR13141516(式中、R13〜R16は、各々独立に、水素原子又は炭素数1〜12の有機基を表す。)で表されるアンモニウム等がその例として挙げられる
(Fluoroboron salt)
The counter cation of the fluoroboron salt is not particularly limited, but lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, barium, and NR 13 R 14 R 15 R 16 (in the formula, R 13 to R 16). Each independently represents a hydrogen atom or an organic group having 1 to 12 carbon atoms), and examples thereof include ammonium.

上記アンモニウムのR13〜R16で表される炭素数1〜12の有機基としては特に限定はないが、例えば、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR13〜R16が、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、又は窒素原子含有複素環基であることが好ましい。 The organic group having 1 to 12 carbon atoms represented by R 13 to R 16 of the ammonium is not particularly limited, but is substituted with, for example, an alkyl group which may be substituted with a halogen atom, a halogen atom or an alkyl group. Examples thereof include a cycloalkyl group which may be present, an aryl group which may be substituted with a halogen atom or an alkyl group, a nitrogen atom-containing heterocyclic group which may have a substituent and the like. Among them, it is preferable that R 13 to R 16 are independently hydrogen atom, alkyl group, cycloalkyl group, or nitrogen atom-containing heterocyclic group.

フルオロホウ素塩の具体例としては、
LiBF、LiB(CiF2i+1(F)4−j等が挙げられ、LiBFが好ましい。なお、iは1〜10の整数、jは1〜4の整数を示す。
Specific examples of fluoroboron salts include
Examples thereof include LiBF 4 , LiB (CiF 2i + 1 ) j (F) 4-j , and LiBF 4 is preferable. In addition, i represents an integer of 1 to 10, and j represents an integer of 1 to 4.

フルオロホウ素塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、フルオロホウ素塩の含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。 As the fluoroboron salt, one type may be used alone, or two or more types may be used in combination in any combination and ratio. The content of the fluoroboron salt is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired.

フルオロホウ素塩の含有量は、非水系電解液100質量%中、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常3質量%以下、好ましくは1質量%以下、より好ましくは0.8質量%以下、さらに好ましくは0.5質量%以下、最も好ましくは0.3質量%以下である。 The content of the fluoroboron salt is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and usually 3% by mass in 100% by mass of the non-aqueous electrolyte solution. Hereinafter, it is preferably 1% by mass or less, more preferably 0.8% by mass or less, still more preferably 0.5% by mass or less, and most preferably 0.3% by mass or less.

この範囲内であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。 Within this range, the non-aqueous electrolyte secondary battery tends to exhibit a sufficient effect of improving the cycle characteristics, the high temperature storage characteristics are lowered, the amount of gas generated is increased, and the discharge capacity retention rate is lowered. Easy to avoid the situation.

(フルオロイミド塩)
前記フルオロイミド塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、及び、NR13141516(式中、R13〜R16は、各々独立に、水素原子又は炭素数1〜12の有機基を表す。)で表されるアンモニウム等がその例として挙げられる。
(Fluoroimide salt)
The counter cation of the fluoroimide salt is not particularly limited, but lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, barium, and NR 13 R 14 R 15 R 16 (in the formula, R 13 to R 16). Each independently represents a hydrogen atom or an organic group having 1 to 12 carbon atoms.) Ammonium and the like represented by) can be mentioned as an example.

上記アンモニウムのR13〜R16で表される炭素数1〜12の有機基としては特に限定はないが、例えば、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR13〜R16が、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、又は窒素原子含有複素環基であることが好ましい。 The organic group having 1 to 12 carbon atoms represented by R 13 to R 16 of the ammonium is not particularly limited, but is substituted with, for example, an alkyl group which may be substituted with a halogen atom, a halogen atom or an alkyl group. Examples thereof include a cycloalkyl group which may be present, an aryl group which may be substituted with a halogen atom or an alkyl group, a nitrogen atom-containing heterocyclic group which may have a substituent and the like. Among them, it is preferable that R 13 to R 16 are independently hydrogen atom, alkyl group, cycloalkyl group, or nitrogen atom-containing heterocyclic group.

フルオロイミド塩の具体例としては、
LiN(FCO)、LiN(FCO)(FSO)、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiN(CFSO)(CSO)が挙げられ、LiN(FSO、LiN(CFSO、LiN(CSOが好ましい。
Specific examples of fluoroimide salts include
LiN (FCO) 2 , LiN (FCO) (FSO 2 ), LiN (FSO 2 ) 2 , LiN (FSO 2 ) (CF 3 SO 2 ), LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO) 2 ) 2 , Lithium cyclic 1,2-perfluoroethanedisulfonylimide, Lithium cyclic 1,3-perfluoropropanedisulfonylimide, LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , and LiN (C 2 F 5 SO 2 ) 2 are preferable.

フルオロイミド塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、フルオロイミド塩の含有量は、特に制限されず、本発明の効果を
著しく損なわない限り任意である。
As the fluoroimide salt, one type may be used alone, or two or more types may be used in any combination and ratio. The content of the fluoroimide salt is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired.

フルオロイミド塩の含有量は、非水系電解液100質量%中、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下、最も好ましくは1質量%以下である。 The content of the fluoroimide salt is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and usually 10% by mass in 100% by mass of the non-aqueous electrolyte solution. Hereinafter, it is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 2% by mass or less, and most preferably 1% by mass or less.

この範囲内であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。 Within this range, the non-aqueous electrolyte secondary battery tends to exhibit a sufficient effect of improving the cycle characteristics, the high temperature storage characteristics are lowered, the amount of gas generated is increased, and the discharge capacity retention rate is lowered. Easy to avoid the situation.

1−2−7.環状エーテル化合物
本発明の一実施形態である非水系電解液は、式(A)で表される化合物に加え、環状エーテル化合物をさらに含有することが電池特性向上の点から好ましい。
特定化合物の1種である環状エーテル化合物として、酸素原子を分子内に有する脂肪族化合物である環状エーテル化合物および酸素原子を分子内に有する芳香族化合物である環状エーテル化合物が挙げられる。酸化電位が適度であり、常温での副反応量を少なくできるため、酸素原子を分子内に有する脂肪族化合物である環状エーテル化合物が好ましい。
1-2-7. Cyclic Ether Compound The non-aqueous electrolyte solution according to the embodiment of the present invention preferably contains a cyclic ether compound in addition to the compound represented by the formula (A) from the viewpoint of improving battery characteristics.
Examples of the cyclic ether compound which is one kind of the specific compound include a cyclic ether compound which is an aliphatic compound having an oxygen atom in the molecule and a cyclic ether compound which is an aromatic compound having an oxygen atom in the molecule. A cyclic ether compound, which is an aliphatic compound having an oxygen atom in the molecule, is preferable because the oxidation potential is appropriate and the amount of side reaction at room temperature can be reduced.

環状エーテル化合物の具体的な化合物としては以下のものが挙げられる。
エチレンオキシド、プロピレンオキシド、ブチレンオキシド、スチレンオキシド、オキセタン、2−メチルオキセタン、3−メチルオキセタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、2−エチルテトラヒドロフラン、3−メチルテトラヒドロフラン、3−エチルテトラヒドロフラン、2,2−ジメチルテトラヒドロフラン、2,3−ジメチルテトラヒドロフラン、2−ビニルテトラヒドロフラン、3−ビニルテトラヒドロフラン、2−エチニルテトラヒドロフラン、3−エチニルテトラヒドロフラン、2−フェニルテトラヒドロフラン、3−フェニルテトラヒドロフラン、テトラヒドロピラン、2−メチルテトラヒドロピラン、2−エチルテトラヒドロピラン、3−メチルテトラヒドロピラン、3−エチルテトラヒドロピラン、4−メチルテトラヒドロピラン、4−エチルテトラヒドロピラン、2、2−ジメチルテトラヒドロピラン、2,3−ジメチルテトラヒドロピラン、2,4-ジメチルテトラヒドロピラン、3,3−ジメチルテトラヒドロピラン、3,4-ジメチルテトラヒドロピラン、4,4−ジメチルテトラヒドロピラン、2−ビニルテトラヒドロピラン、3−ビニルテトラヒドロピラン、4−ビニルテトラヒドロピラン、2−エチニルテトラヒドロピラン、3−エチニルテトラヒドロピラン、4−エチニルテトラヒドロピラン、2−フェニルテトラヒドロピラン、3−フェニルテトラヒドロピラン、4−フェニルテトラヒドロピラン、ヘキサメチレンオキシド、2−メチルヘキサメチレンオキシド、3−メチルヘキサメチレンオキシド、4−エチルヘキサメチレンオキシド、2−ビニルヘキサメチレンオキシド、3−エチニルヘキサメチレンオキシド、4−フェニルヘキサメチレンオキシド、ヘプタメチレンオキシド、2−メチルヘプタメチレンオキシド、3−メチルヘプタメチレンオキシド、4−エチルヘプタメチレンオキシド、オクタメチレンオキシド、ノナメチレンオキシド、デカメチレンオキシド、1,3−ジオキソラン、2−メトキシ−1,3−ジオキソラン、2−メチル−1,3−ジオキソラン、2,2−ジメチル−1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、2−エトキシ−1,3−ジオキソラン、2−エチル−1,3−ジオキソラン、2,2−ジエチル−1,3−ジオキソラン、4−エチル−1,3−ジオキソラン、2,2,4−トリメチル−1,3−ジオキソラン、2,2,4−トリエチル−1,3−ジオキソラン、1,3−ジオキサン、4−メチル−1,3−ジオキサン、2,4−ジメチル−1,3−ジオキサン、2,2,4−トリメチル−1,3−ジオキサン、4−エチル−1,3−ジオキサン、2,4−ジエチル−1,3−ジオキサン、2,2,4−トリエチル−1,3−ジオキサン、4−フェニル−1,3−ジオキサン、3−メチル−1,3−ジオキサン、5,5−ジメチル−1,3−ジオキ
サン、2,5,5−トリメチル−1,3−ジオキサン、4,6−ジメチル−1,3−ジオキサン、2,5−ジメチル−1,3−ジオキサン、1,4−ジオキサン。
Specific examples of the cyclic ether compound include the following.
Ethylene oxide, propylene oxide, butylene oxide, styrene oxide, oxetane, 2-methyloxetane, 3-methyloxetane, tetrahydrofuran, 2-methyltetrahydrofuran, 2-ethyltetrahydrofuran, 3-methyltetrahydrofuran, 3-ethyltetrahydrofuran, 2,2-dimethyl Tetrahydrofuran, 2,3-dimethyltetrahydrofuran, 2-vinyltetrahydrofuran, 3-vinyltetrahydrofuran, 2-ethynyltetrahydrofuran, 3-ethynyltetrahydrofuran, 2-phenyltetrahydrofuran, 3-phenyltetrahydrofuran, tetrahydropyran, 2-methyltetrahydropiran, 2- Ethyltetrahydropiran, 3-methyltetrahydropyran, 3-ethyltetrahydropiran, 4-methyltetrahydropyran, 4-ethyltetrahydropiran, 2,2-dimethyltetrahydropyran, 2,3-dimethyltetrahydropyran, 2,4-dimethyltetrahydro Piran, 3,3-dimethyltetrahydropirane, 3,4-dimethyltetrahydropirane, 4,4-dimethyltetrahydropirane, 2-vinyltetrahydropirane, 3-vinyltetrahydropirane, 4-vinyltetrahydrofuran, 2-ethynyltetrahydropirane, 3-Etinyltetrahydropirane, 4-ethynyltetrahydropirane, 2-phenyltetrahydropyran, 3-phenyltetrahydropirane, 4-phenyltetrahydropyran, hexamethylene oxide, 2-methylhexamethylene oxide, 3-methylhexamethylene oxide, 4- Ethylhexamethylene oxide, 2-vinylhexamethylene oxide, 3-ethynylhexamethylene oxide, 4-phenylhexamethylene oxide, heptamethylene oxide, 2-methylheptamethylene oxide, 3-methylheptamethylene oxide, 4-ethylheptamethylene oxide , Octamethylene oxide, nonamethylene oxide, decamethylene oxide, 1,3-dioxolane, 2-methoxy-1,3-dioxolane, 2-methyl-1,3-dioxolane, 2,2-dimethyl-1,3-dioxolane , 4-Methyl-1,3-dioxolane, 2-ethoxy-1,3-dioxolane, 2-ethyl-1,3-dioxolane, 2,2-diethyl-1,3-dioxolane, 4-ethyl-1,3 − Dioxolane, 2,2,4-trimethyl-1,3-dio Xoran, 2,2,4-triethyl-1,3-dioxane, 1,3-dioxane, 4-methyl-1,3-dioxane, 2,4-dimethyl-1,3-dioxane, 2,2,4- Trimethyl-1,3-dioxane, 4-ethyl-1,3-dioxane, 2,4-dix-1,3-dioxane, 2,2,4-triethyl-1,3-dioxane, 4-phenyl-1, 3-dioxane, 3-methyl-1,3-dioxane, 5,5-dimethyl-1,3-dioxane, 2,5,5-trimethyl-1,3-dioxane, 4,6-dimethyl-1,3- Dioxane, 2,5-dimethyl-1,3-dioxane, 1,4-dioxane.

これらの中でも、プロピレンオキシド、ブチレンオキシド、スチレンオキシド、オキセタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、2−エチルテトラヒドロフラン、3−メチルテトラヒドロフラン、3−エチルテトラヒドロフラン、2,2−ジメチルテトラヒドロフラン、テトラヒドロピラン、2−メチルテトラヒドロピラン、2−エチルテトラヒドロピラン、3−メチルテトラヒドロピラン、3−エチルテトラヒドロピラン、4−メチルテトラヒドロピラン、4−エチルテトラヒドロピラン、2,2−ジメチルテトラヒドロピラン、ヘキサメチレンオキシド、1,3−ジオキサン、4−メチル−1,3−ジオキサンが好ましく、
プロピレンオキシド、スチレンオキシド、オキセタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、2−エチルテトラヒドロフラン、2,2−ジメチルテトラヒドロフラン、テトラヒドロピラン、2−メチルテトラヒドロピラン、2−エチルテトラヒドロピラン、2,2−ジメチルテトラヒドロピラン、ヘキサメチレンオキシド、1,3−ジオキサン、4−メチル−1,3−ジオキサンが更に好ましく、
オキセタン、テトラヒドロフラン、テトラヒドロピラン、ヘキサメチレンオキシド、1,3−ジオキサン、4−メチル−1,3−ジオキサンが特に好ましく、
テトラヒドロフラン、テトラヒドロピラン、1,3−ジオキサンがより好ましく、
テトラヒドロピランが最も好ましい。
好ましい例で挙げた化合物を用いると、ガス発生の抑制効果が特に大きい為である。
Among these, propylene oxide, butylene oxide, styrene oxide, oxetane, tetrahydrofuran, 2-methyltetrahydrofuran, 2-ethyltetrahydrofuran, 3-methyltetrahydrofuran, 3-ethyltetrahydrofuran, 2,2-dimethyltetrahydropyran, tetrahydropyran, 2-methyl Tetrahydropyran, 2-ethyltetrahydropyran, 3-methyltetrahydropyran, 3-ethyltetrahydropyran, 4-methyltetrahydropyran, 4-ethyltetrahydropyran, 2,2-dimethyltetrahydropyran, hexamethylene oxide, 1,3-dioxane , 4-Methyl-1,3-dioxane is preferred.
Propylene oxide, styrene oxide, oxetane, tetrahydrofuran, 2-methyltetrahydrofuran, 2-ethyltetrahydrofuran, 2,2-dimethyltetrahydrofuran, tetrahydropyran, 2-methyltetrahydropyran, 2-ethyltetrahydropyran, 2,2-dimethyltetrahydropyran, Hexamethylene oxide, 1,3-dioxane, 4-methyl-1,3-dioxane are more preferred.
Oxetane, tetrahydrofuran, tetrahydropyran, hexamethylene oxide, 1,3-dioxane, 4-methyl-1,3-dioxane are particularly preferred.
Tetrahydrofuran, tetrahydropyran, 1,3-dioxane are more preferred.
Tetrahydropyran is most preferred.
This is because the compound mentioned in the preferred example has a particularly large effect of suppressing gas generation.

環状エーテル化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。本発明の非水系電解液全体に対する環状エーテル化合物の含有量に特に制限は無く、本発明の効果を著しく損なわない限り任意である。前記含有量は、非水系電解液100質量%中、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上であり、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは1.5質量%以下、最も好ましくは1.0質量%以下である。上記の含有量で用いることで、ガス発生抑制効果を十分に発揮できると共に、不要な抵抗上昇を抑制することができる。 As the cyclic ether compound, one type may be used alone, or two or more types may be used in combination in any combination and ratio. The content of the cyclic ether compound in the entire non-aqueous electrolyte solution of the present invention is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired. The content is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and usually 10% by mass or less in 100% by mass of the non-aqueous electrolyte solution. It is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1.5% by mass or less, and most preferably 1.0% by mass or less. By using the above content, it is possible to sufficiently exert the gas generation suppressing effect and suppress an unnecessary increase in resistance.

1−2−8.オキサラート塩
本発明の一実施形態である非水系電解液は、式(A)で表される化合物に加え、オキサラート塩をさらに含有することが電池特性向上の点から好ましい。
特定化合物の1種であるオキサラート塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、及び、NR13141516(式中、R13〜R16は、各々独立に、水素原子又は炭素数1〜12の有機基を表す。)で表されるアンモニウム等がその例として挙げられる。
1-2-8. Oxalate salt The non-aqueous electrolyte solution according to the embodiment of the present invention preferably contains an oxalate salt in addition to the compound represented by the formula (A) from the viewpoint of improving battery characteristics.
The counter cation of the oxalate salt, which is one of the specific compounds, is not particularly limited, but lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, barium, and NR 13 R 14 R 15 R 16 (in the formula, Examples of R 13 to R 16 include ammonium represented by a hydrogen atom or an organic group having 1 to 12 carbon atoms, respectively.

上記アンモニウムのR13〜R16で表される炭素数1〜12の有機基としては特に限定はないが、例えば、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR13〜R16が、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、又は窒素原子含有複素環基であることが好ましい。 The organic group having 1 to 12 carbon atoms represented by R 13 to R 16 of the ammonium is not particularly limited, but is substituted with, for example, an alkyl group which may be substituted with a halogen atom, a halogen atom or an alkyl group. Examples thereof include a cycloalkyl group which may be present, an aryl group which may be substituted with a halogen atom or an alkyl group, a nitrogen atom-containing heterocyclic group which may have a substituent and the like. Among them, it is preferable that R 13 to R 16 are independently hydrogen atom, alkyl group, cycloalkyl group, or nitrogen atom-containing heterocyclic group.

オキサラート塩の具体例としては、
リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート、リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)
フォスフェート、リチウムトリス(オキサラト)フォスフェート等が挙げられ、
リチウムビス(オキサラト)ボレート、リチウムジフルオロビス(オキサラト)フォスフェートが好ましい。
As a specific example of the oxalate salt,
Lithium difluorooxalatobolate, lithium bis (oxalate) borate, lithium tetrafluorooxalattophosphate, lithium difluorobis (oxalate)
Phosphate, Lithium Tris (Oxalato) Phosphate, etc.
Lithium bis (oxalate) borate and lithium difluorobis (oxalate) phosphate are preferred.

オキサラート塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、オキサラート塩の含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。 As the oxalate salt, one type may be used alone, or two or more types may be used in combination in any combination and ratio. The content of the oxalate salt is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired.

オキサラート塩の含有量は、非水系電解液100質量%中、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下、最も好ましくは1.5質量%以下である。 The content of the oxalate salt is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and usually 10% by mass or less in 100% by mass of the non-aqueous electrolyte solution. It is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 2% by mass or less, and most preferably 1.5% by mass or less.

この範囲内であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。 Within this range, the non-aqueous electrolyte secondary battery tends to exhibit a sufficient effect of improving the cycle characteristics, the high temperature storage characteristics are lowered, the amount of gas generated is increased, and the discharge capacity retention rate is lowered. Easy to avoid the situation.

1−2−9.環状スルホン酸エステル
本発明の一実施形態である非水系電解液は、式(A)で表される化合物に加え、環状スルホン酸エステルをさらに含有することが電池特性向上の点から好ましい。
特定化合物の1種である環状スルホン酸エステルについては、特にその種類は限定されない。
1-2-9. Cyclic sulfonic acid ester The non-aqueous electrolyte solution according to the embodiment of the present invention preferably further contains a cyclic sulfonic acid ester in addition to the compound represented by the formula (A) from the viewpoint of improving battery characteristics.
The type of cyclic sulfonic acid ester, which is one of the specific compounds, is not particularly limited.

環状スルホン酸エステルの具体例としては、例えば、
1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−メチル−1,3−プロパンスルトン、2−メチル−1,3−プロパンスルトン、3−メチル−1,3−プロパンスルトン、1−プロペン−1,3−スルトン、2−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1−フルオロ−2−プロペン−1,3−スルトン、2−フルオロ−2−プロペン−1,3−スルトン、3−フルオロ−2−プロペン−1,3−スルトン、1−メチル−1−プロペン−1,3−スルトン、2−メチル−1−プロペン−1,3−スルトン、3−メチル−1−プロペン−1,3−スルトン、1−メチル−2−プロペン−1,3−スルトン、2−メチル−2−プロペン−1,3−スルトン、3−メチル−2−プロペン−1,3−スルトン、1,4−ブタンスルトン、1−フルオロ−1,4−ブタンスルトン、2−フルオロ−1,4−ブタンスルトン、3−フルオロ−1,4−ブタンスルトン、4−フルオロ−1,4−ブタンスルトン、1−メチル−1,4−ブタンスルトン、2−メチル−1,4−ブタンスルトン、3−メチル−1,4−ブタンスルトン、4−メチル−1,4−ブタンスルトン、1−ブテン−1,4−スルトン、2−ブテン−1,4−スルトン、3−ブテン−1,4−スルトン、1−フルオロ−1−ブテン−1,4−スルトン、2−フルオロ−1−ブテン−1,4−スルトン、3−フルオロ−1−ブテン−1,4−スルトン、4−フルオロ−1−ブテン−1,4−スルトン、1−フルオロ−2−ブテン−1,4−スルトン、2−フルオロ−2−ブテン−1,4−スルトン、3−フルオロ−2−ブテン−1,4−スルトン、4−フルオロ−2−ブテン−1,4−スルトン、1−フルオロ−3−ブテン−1,4−スルトン、2−フルオロ−3−ブテン−1,4−スルトン、3−フルオロ−3−ブテン−1,4−スルトン、4−フルオロ−3−ブテン−1,4−スルトン、1−メチル−1−ブテン−1,4−スルトン、2−メチル−1−ブテン−1,4−スルトン、3−メチル−1−ブテン−1,4−スルトン、4−メチル−1−ブテン−1,4−スルトン、1−メチル−2−ブテン−1,4−スルトン、2−メチル−2−ブテン−1,4−スルトン、3−メチル−2−ブテン−
1,4−スルトン、4−メチル−2−ブテン−1,4−スルトン、1−メチル−3−ブテン−1,4−スルトン、2−メチル−3−ブテン−1,4−スルトン、3−メチル−3−ブテン−1,4−スルトン、4−メチル−3−ブテン−1,4−スルトン、1,5−ペンタンスルトン、1−フルオロ−1,5−ペンタンスルトン、2−フルオロ−1,5−ペンタンスルトン、3−フルオロ−1,5−ペンタンスルトン、4−フルオロ−1,5−ペンタンスルトン、5−フルオロ−1,5−ペンタンスルトン、1−メチル−1,5−ペンタンスルトン、2−メチル−1,5−ペンタンスルトン、3−メチル−1,5−ペンタンスルトン、4−メチル−1,5−ペンタンスルトン、5−メチル−1,5−ペンタンスルトン、1−ペンテン−1,5−スルトン、2−ペンテン−1,5−スルトン、3−ペンテン−1,5−スルトン、4−ペンテン−1,5−スルトン、1−フルオロ−1−ペンテン−1,5−スルトン、2−フルオロ−1−ペンテン−1,5−スルトン、3−フルオロ−1−ペンテン−1,5−スルトン、4−フルオロ−1−ペンテン−1,5−スルトン、5−フルオロ−1−ペンテン−1,5−スルトン、1−フルオロ−2−ペンテン−1,5−スルトン、2−フルオロ−2−ペンテン−1,5−スルトン、3−フルオロ−2−ペンテン−1,5−スルトン、4−フルオロ−2−ペンテン−1,5−スルトン、5−フルオロ−2−ペンテン−1,5−スルトン、1−フルオロ−3−ペンテン−1,5−スルトン、2−フルオロ−3−ペンテン−1,5−スルトン、3−フルオロ−3−ペンテン−1,5−スルトン、4−フルオロ−3−ペンテン−1,5−スルトン、5−フルオロ−3−ペンテン−1,5−スルトン、1−フルオロ−4−ペンテン−1,5−スルトン、2−フルオロ−4−ペンテン−1,5−スルトン、3−フルオロ−4−ペンテン−1,5−スルトン、4−フルオロ−4−ペンテン−1,5−スルトン、5−フルオロ−4−ペンテン−1,5−スルトン、1−メチル−1−ペンテン−1,5−スルトン、2−メチル−1−ペンテン−1,5−スルトン、3−メチル−1−ペンテン−1,5−スルトン、4−メチル−1−ペンテン−1,5−スルトン、5−メチル−1−ペンテン−1,5−スルトン、1−メチル−2−ペンテン−1,5−スルトン、2−メチル−2−ペンテン−1,5−スルトン、3−メチル−2−ペンテン−1,5−スルトン、4−メチル−2−ペンテン−1,5−スルトン、5−メチル−2−ペンテン−1,5−スルトン、1−メチル−3−ペンテン−1,5−スルトン、2−メチル−3−ペンテン−1,5−スルトン、3−メチル−3−ペンテン−1,5−スルトン、4−メチル−3−ペンテン−1,5−スルトン、5−メチル−3−ペンテン−1,5−スルトン、1−メチル−4−ペンテン−1,5−スルトン、2−メチル−4−ペンテン−1,5−スルトン、3−メチル−4−ペンテン−1,5−スルトン、4−メチル−4−ペンテン−1,5−スルトン、5−メチル−4−ペンテン−1,5−スルトンなどのスルトン化合物;
メチレンスルフェート、エチレンスルフェート、プロピレンスルフェートなどのスルフェート化合物;
メチレンメタンジスルホネート、エチレンメタンジスルホネートなどのジスルホネート化合物;
1,2,3−オキサチアゾリジン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアゾリジン−2,2−ジオキシド、3H−1,2,3−オキサチアゾール−2,2−ジオキシド、5H−1,2,3−オキサチアゾール−2,2−ジオキシド、1,2,4−オキサチアゾリジン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアゾリジン−2,2−ジオキシド、3H−1,2,4−オキサチアゾール−2,2−ジオキシド、5H−1,2,4−オキサチアゾール−2,2−ジオキシド、1,2,5−オキサチアゾリジン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアゾリジン−2,2−ジオキシド、3H−1,2,5−オキサチアゾール−2,2−ジオキシド、5H−1,2,5−オキサチアゾール−2,2−ジオキシド、1,2,3−オキサチアジナン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,3−オキサチアジン−2,2−ジオキシド、1,2,4−オキサチアジナン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、
3,6−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、3,4−ジヒドロ−1,2,4−オキサチアジン−2,2−ジオキシド、1,2,5−オキサチアジナン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、3,6−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、3,4−ジヒドロ−1,2,5−オキサチアジン−2,2−ジオキシド、1,2,6−オキサチアジナン−2,2−ジオキシド、6−メチル−1,2,6−オキサチアジナン−2,2−ジオキシド、5,6−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシド、3,4−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシド、5,6−ジヒドロ−1,2,6−オキサチアジン−2,2−ジオキシドなどの含窒素化合物;
1,2,3−オキサチアホスラン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスラン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスラン−2,2,3−トリオキシド、3−メトキシ−1,2,3−オキサチアホスラン−2,2,3−トリオキシド、1,2,4−オキサチアホスラン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアホスラン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアホスラン−2,2,4−トリオキシド、4−メトキシ−1,2,4−オキサチアホスラン−2,2,4−トリオキシド、1,2,5−オキサチアホスラン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスラン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスラン−2,2,5−トリオキシド、5−メトキシ−1,2,5−オキサチアホスラン−2,2,5−トリオキシド、1,2,3−オキサチアホスフィナン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスフィナン−2,2−ジオキシド、3−メチル−1,2,3−オキサチアホスフィナン−2,2,3−トリオキシド、3−メトキシ−1,2,3−オキサチアホスフィナン−2,2,3−トリオキシド、1,2,4−オキサチアホスフィナン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアホスフィナン−2,2−ジオキシド、4−メチル−1,2,4−オキサチアホスフィナン−2,2,3−トリオキシド、4−メチル−1,5,2,4−ジオキサチアホスフィナン−2,4−ジオキシド、4−メトキシ−1,5,2,4−ジオキサチアホスフィナン−2,4−ジオキシド、3−メトキシ−1,2,4−オキサチアホスフィナン−2,2,3−トリオキシド、1,2,5−オキサチアホスフィナン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスフィナン−2,2−ジオキシド、5−メチル−1,2,5−オキサチアホスフィナン−2,2,3−トリオキシド、5−メトキシ−1,2,5−オキサチアホスフィナン−2,2,3−トリオキシド、1,2,6−オキサチアホスフィナン−2,2−ジオキシド、6−メチル−1,2,6−オキサチアホスフィナン−2,2−ジオキシド、6−メチル−1,2,6−オキサチアホスフィナン−2,2,3−トリオキシド、6−メトキシ−1,2,6−オキサチアホスフィナン−2,2,3−トリオキシドなどの含リン化合物;
が挙げられる。
Specific examples of the cyclic sulfonic acid ester include, for example,
1,3-Propane sultone, 1-fluoro-1,3-propane sultone, 2-fluoro-1,3-propane sultone, 3-fluoro-1,3-propane sultone, 1-methyl-1,3-propane sultone , 2-Methyl-1,3-Propane Sultone, 3-Methyl-1,3-Propane Sultone, 1-Propen-1,3-Sultone, 2-Propen-1,3-Sultone, 1-Fluoro-1-Propen -1,3-sultone, 2-fluoro-1-propen-1,3-sultone, 3-fluoro-1-propen-1,3-sultone, 1-fluoro-2-propen-1,3-sultone, 2 -Fluoro-2-propen-1,3-sultone, 3-fluoro-2-propen-1,3-sultone, 1-methyl-1-propen-1,3-sultone, 2-methyl-1-propen-1 , 3-Sultone, 3-Methyl-1-propen-1,3-Sultone, 1-Methyl-2-Propen-1,3-Sultone, 2-Methyl-2-Propen-1,3-Sultone, 3-Methyl -2-Propen-1,3-sultone, 1,4-butane sultone, 1-fluoro-1,4-butane sultone, 2-fluoro-1,4-butane sultone, 3-fluoro-1,4-butane sultone, 4-fluoro -1,4-Butansultone, 1-Methyl-1,4-Butansultone, 2-Methyl-1,4-Butansultone, 3-Methyl-1,4-Butansultone, 4-Methyl-1,4-Butansultone, 1-Butene -1,4-sultone, 2-butene-1,4-sultone, 3-butene-1,4-sultone, 1-fluoro-1-butene-1,4-sultone, 2-fluoro-1-butene-1 , 4-sultone, 3-fluoro-1-butene-1,4-sultone, 4-fluoro-1-butene-1,4-sultone, 1-fluoro-2-butene-1,4-sultone, 2-fluoro -2-buten-1,4-sultone, 3-fluoro-2-butene-1,4-sultone, 4-fluoro-2-butene-1,4-sultone, 1-fluoro-3-butene-1,4 -Sultone, 2-fluoro-3-butene-1,4-sultone, 3-fluoro-3-butene-1,4-sultone, 4-fluoro-3-butene-1,4-sultone, 1-methyl-1 -Butene-1,4-sultone, 2-methyl-1-butene-1,4-sultone, 3-methyl-1-butene-1,4-sultone, 4-methyl-1-butene-1,4-sultone , 1-Methyl-2-butene-1,4 -Sultone, 2-methyl-2-butene-1,4-sultone, 3-methyl-2-butene-
1,4-Sulton, 4-Methyl-2-butene-1,4-Sulton, 1-Methyl-3-butene-1,4-Sulton, 2-Methyl-3-butene-1,4-Sulton, 3- Methyl-3-butene-1,4-sulton, 4-methyl-3-butene-1,4-sulton, 1,5-pentanesulton, 1-fluoro-1,5-pentanesulton, 2-fluoro-1, 5-Pentane Sulton, 3-Fluoro-1,5-Pentane Sulton, 4-Fluoro-1,5-Pentane Sulton, 5-Fluoro-1,5-Pentane Sulton, 1-Methyl-1,5-Pentane Sulton, 2 -Methyl-1,5-pentanesulton, 3-methyl-1,5-pentanesulton, 4-methyl-1,5-pentanesulton, 5-methyl-1,5-pentanesulton, 1-pentene-1,5 -Pentane, 2-pentane-1,5-sulton, 3-pentane-1,5-sulton, 4-pentane-1,5-sulton, 1-fluoro-1-pentane-1,5-sulton, 2-fluoro -1-Pentane-1,5-sulton, 3-fluoro-1-pentane-1,5-sulton, 4-fluoro-1-pentane-1,5-sulton, 5-fluoro-1-pentane-1,5 -Sulton, 1-fluoro-2-pentane-1,5-sulton, 2-fluoro-2-pentane-1,5-sulton, 3-fluoro-2-pentane-1,5-sulton, 4-fluoro-2 -Pentane-1,5-sulton, 5-fluoro-2-pentane-1,5-sulton, 1-fluoro-3-pentane-1,5-sulton, 2-fluoro-3-pentane-1,5-sulton , 3-Fluoro-3-pentane-1,5-sultone, 4-fluoro-3-pentane-1,5-sulton, 5-fluoro-3-pentane-1,5-sulton, 1-fluoro-4-pentane -1,5-Sulton, 2-Fluoro-4-pentane-1,5-Sulton, 3-Fluoro-4-Pentane-1,5-Sulton, 4-Fluoro-4-Pentane-1,5-Sulton, 5 −Fluoro-4-pentane-1,5-sultone, 1-methyl-1-pentane-1,5-sulton, 2-methyl-1-pentane-1,5-sulton, 3-methyl-1-pentane-1 , 5-Sulton, 4-Methyl-1-pentane-1,5-Sulton, 5-Methyl-1-pentane-1,5-Sulton, 1-Methyl-2-pentane-1,5-Sulton, 2-Methyl -2-Pentane-1,5-Sulton, 3-Methyl-2-pentene-1,5-sultone, 4-methyl-2-pentene-1,5-sultone, 5-methyl-2-pentene-1,5-sultone, 1-methyl-3-pentene- 1,5-sultone, 2-methyl-3-penten-1,5-sultone, 3-methyl-3-penten-1,5-sultone, 4-methyl-3-penten-1,5-sultone, 5- Methyl-3-penten-1,5-sultone, 1-methyl-4-penten-1,5-sultone, 2-methyl-4-penten-1,5-sultone, 3-methyl-4-penten-1, Sultone compounds such as 5-sultone, 4-methyl-4-pentene-1,5-sultone, 5-methyl-4-pentene-1,5-sultone;
Sulfate compounds such as methylene sulphate, ethylene sulphate, propylene sulphate;
Disulfonate compounds such as methylene methane disulfonate and ethylene methane disulfonate;
1,2,3-oxathiazolidine-2,2-dioxide, 3-methyl-1,2,3-oxathiazolidine-2,2-dioxide, 3H-1,2,3-oxathiazole-2,2-dioxide , 5H-1,2,3-oxathiazole-2,2-dioxide, 1,2,4-oxathiazolidine-2,2-dioxide, 4-methyl-1,2,4-oxathiazolidine-2,2- Dioxide, 3H-1,2,4-oxathiazole-2,2-dioxide, 5H-1,2,4-oxathiazole-2,2-dioxide, 1,2,5-oxathiazolidine-2,2-dioxide , 5-Methyl-1,2,5-oxathiazolidine-2,2-dioxide, 3H-1,2,5-oxathiazole-2,2-dioxide, 5H-1,2,5-oxathiazole-2, 2-Dioxide, 1,2,3-oxathiadinane-2,2-dioxide, 3-methyl-1,2,3-oxathiadinane-2,2-dioxide, 5,6-dihydro-1,2,3-oxathiazine- 2,2-Dioxide, 1,2,4-oxathiadinane-2,2-dioxide, 4-methyl-1,2,4-oxathiadinane-2,2-dioxide, 5,6-dihydro-1,2,4- Oxathiazine-2,2-dioxide,
3,6-dihydro-1,2,4-oxathiadin-2,2-dioxide, 3,4-dihydro-1,2,4-oxathiadin-2,2-dioxide, 1,2,5-oxathiadinane-2, 2-Dioxide, 5-Methyl-1,2,5-oxathiadinane-2,2-dioxide, 5,6-dihydro-1,2,5-oxathiazine-2,2-dioxide, 3,6-dihydro-1, 2,5-oxathiazine-2,2-dioxide, 3,4-dihydro-1,2,5-oxathiazine-2,2-dioxide, 1,2,6-oxathiadinane-2,2-dioxide, 6-methyl- 1,2,6-oxathiadinane-2,2-dioxide, 5,6-dihydro-1,2,6-oxathiadin-2,2-dioxide, 3,4-dihydro-1,2,6-oxathiadin-2, Nitrogen-containing compounds such as 2-dioxide, 5,6-dihydro-1,2,6-oxathiazine-2,2-dioxide;
1,2,3-oxathiaphoslan-2,2-dioxide, 3-methyl-1,2,3-oxathiaphosrane-2,2-dioxide, 3-methyl-1,2,3-oxati Aphoslan-2,2,3-trioxide, 3-methoxy-1,2,3-oxathiaphosrane-2,2,3-trioxide, 1,2,4-oxathiaphosrane-2,2-dioxide , 4-Methyl-1,2,4-oxathiaphosrane-2,2-dioxide, 4-methyl-1,2,4-oxathiaphosrane-2,2,4-trioxide, 4-methoxy-1 , 2,4-oxathiaphoslan-2,2,4-trioxide, 1,2,5-oxathiaphosrane-2,2-dioxide, 5-methyl-1,2,5-oxathiaphosrane- 2,2-Dioxide, 5-Methyl-1,2,5-oxathiaphosrane-2,2,5-trioxide, 5-methoxy-1,2,5-oxathiaphosrane-2,2,5- Trioxide, 1,2,3-oxathiaphosphinan-2,2-dioxide, 3-methyl-1,2,3-oxathiaphosphinan-2,2-dioxide, 3-methyl-1,2,3- Oxatiaphosphinan-2,2,3-trioxide, 3-methoxy-1,2,3-oxathiaphosphinan-2,2,3-trioxide, 1,2,4-oxathiaphosphinan-2,2 -Dioxide, 4-methyl-1,2,4-oxathiaphosphinan-2,2-dioxide, 4-methyl-1,2,4-oxathiaphosphinan-2,2,3-trioxide, 4-methyl -1,5,2,4-dioxathiaphosphinan-2,4-dioxide, 4-methoxy-1,5,2,4-dioxathiaphosphinan-2,4-dioxide, 3-methoxy-1 , 2,4-oxathiaphosphinan-2,2,3-trioxide, 1,2,5-oxathiaphosphinan-2,2-dioxide, 5-methyl-1,2,5-oxathiaphosphinan- 2,2-Dioxide, 5-Methyl-1,2,5-oxathiaphosphinan-2,2,3-trioxide, 5-methoxy-1,2,5-oxathiaphosphinan-2,2,3- Trioxide, 1,2,6-oxathiaphosphinan-2,2-dioxide, 6-methyl-1,2,6-oxathiaphosphinan-2,2-dioxide, 6-methyl-1,2,6- Oxatiaphosphinan-2,2,3-trioxide, 6-methoxy-1,2,6-oxatiaphosphinan-2,2 , 3-Trioxide and other phosphorus-containing compounds;
Can be mentioned.

これらのうち、1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1,4−ブタンスルトン、メチレンメタンジスルホネート、エチレンメタンジスルホネートが非水系電解液の保存特性向上の点から好ましく、
1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトンがより好ましい。
Of these, 1,3-propane sultone, 1-fluoro-1,3-propane sultone, 2-fluoro-1,3-propane sultone, 3-fluoro-1,3-propane sultone, 1-propen-1, 3-sultone, 1-fluoro-1-propen-1,3-sultone, 2-fluoro-1-propen-1,3-sultone, 3-fluoro-1-propen-1,3-sultone, 1,4- Butan sultone, methylenemethanedisulfonate, and ethylenemethanedisulfonate are preferable from the viewpoint of improving the storage characteristics of the non-aqueous electrolyte solution.
1,3-Propane sultone, 1-fluoro-1,3-propane sultone, 2-fluoro-1,3-propane sultone, 3-fluoro-1,3-propane sultone, 1-propene-1,3-sultone More preferred.

環状スルホン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。本発明の非水系電解液全体に対する環状スルホン酸エステル
の含有量に特に制限は無く、本発明の効果を著しく損なわない限り任意である。前記含有量は、非水系電解液100質量%中、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上であり、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、特に好ましくは2質量%以下、最も好ましくは1質量%以下である。上記範囲を満たした場合は、非水系電解液二次電池の出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。
One type of cyclic sulfonic acid ester may be used alone, or two or more types may be used in combination in any combination and ratio. The content of the cyclic sulfonic acid ester in the entire non-aqueous electrolyte solution of the present invention is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired. The content is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and usually 10% by mass or less in 100% by mass of the non-aqueous electrolyte solution. It is preferably 5% by mass or less, more preferably 3% by mass or less, particularly preferably 2% by mass or less, and most preferably 1% by mass or less. When the above range is satisfied, the effects such as output characteristics, load characteristics, low temperature characteristics, cycle characteristics, and high temperature storage characteristics of the non-aqueous electrolyte secondary battery are further improved.

1−2−10.鎖状カルボン酸エステル
本発明の一実施形態である非水系電解液は、式(A)で表される化合物に加え、溶媒として鎖状カルボン酸エステルをさらに含有することが電池特性向上の点から好ましい。
上記鎖状カルボン酸エステルとしては、炭素数が3〜7のものが好ましい。具体的には、
酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸イソプロピル、酢酸−n−ブチル、酢酸イソブチル、酢酸−t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、プロピオン酸−n−ブチル、プロピオン酸イソブチル、プロピオン酸−t−ブチル、酪酸メチル、酪酸エチル、酪酸−n−プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸−n−プロピル、イソ酪酸イソプロピル等が挙げられる。
1-2-10. Chain carboxylic acid ester The non-aqueous electrolyte solution according to the embodiment of the present invention further contains a chain carboxylic acid ester as a solvent in addition to the compound represented by the formula (A) from the viewpoint of improving battery characteristics. preferable.
The chain carboxylic acid ester preferably has 3 to 7 carbon atoms. In particular,
Methyl acetate, ethyl acetate, -n-propyl acetate, isopropyl acetate, -n-butyl acetate, isobutyl acetate, -t-butyl acetate, methyl propionate, ethyl propionate, -n-propyl propionate, isopropyl propionate, propion Acid-n-butyl, isobutyl propionate, -t-butyl propionate, methyl butyrate, ethyl butyrate, -n-propyl butyrate, isopropyl butyrate, methyl isobutyrate, ethyl isobutyrate, -n-propyl isobutyrate, isopropyl butyrate And so on.

中でも、酢酸エチル、酢酸−n−プロピル、酢酸−n−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル等が、粘度低下によるイオン伝導度の向上の点から好ましい。 Among them, ethyl acetate, n-propyl acetate, n-butyl acetate, methyl propionate, ethyl propionate, -n-propyl propionate, isopropyl propionate, methyl butyrate, ethyl butyrate and the like have ionic conductivity due to a decrease in viscosity. It is preferable from the viewpoint of improvement of.

鎖状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 As the chain carboxylic acid ester, one type may be used alone, or two or more types may be used in combination in any combination and ratio.

鎖状カルボン酸エステルの含有量は、通常、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上である。このように下限を設定することで、非水系電解液の電気伝導率を改善し、非水系電解液二次電池の大電流放電特性を向上させやすくなる。また、鎖状カルボン酸エステルの含有量は、非水溶媒100体積%中、好ましくは80体積%以下、より好ましくは70体積%以下、特に好ましくは50体積%以下、最も好ましくは30体積%以下である。このように上限を設定することで、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性、サイクル特性を良好な範囲としやすくなる。 The content of the chain carboxylic acid ester is usually 5% by volume or more, more preferably 10% by volume or more in 100% by volume of the non-aqueous solvent. By setting the lower limit in this way, it becomes easy to improve the electric conductivity of the non-aqueous electrolyte solution and improve the large current discharge characteristics of the non-aqueous electrolyte secondary battery. The content of the chain carboxylic acid ester is preferably 80% by volume or less, more preferably 70% by volume or less, particularly preferably 50% by volume or less, and most preferably 30% by volume or less in 100% by volume of the non-aqueous solvent. Is. By setting the upper limit in this way, an increase in the negative electrode resistance can be suppressed, and the large current discharge characteristics and cycle characteristics of the non-aqueous electrolyte secondary battery can be easily set in a good range.

1−3.電解質
<アルカリ金属塩>
電解質としては、アルカリ金属塩が使用されるが、通常、リチウム塩が用いられる。リチウム塩としては、この用途に用いることが知られているものであれば特に制限がなく、任意のものを用いることができ、具体的には以下のものが挙げられる。
1-3. Electrolyte <Alkali metal salt>
Alkali metal salts are used as the electrolyte, but lithium salts are usually used. The lithium salt is not particularly limited as long as it is known to be used for this purpose, and any lithium salt can be used, and specific examples thereof include the following.

例えば、LiPF、LiBF、LiClO、LiAlF、LiSbF、LiTaF、LiWF等の無機リチウム塩;
LiWOF等のタングステン酸リチウム類;
HCOLi、CHCOLi、CHFCOLi、CHFCOLi、CFCOLi、CFCHCOLi、CFCFCOLi、CFCFCFCOLi、CFCFCFCFCOLi等のカルボン酸リチウム塩類;
FSOLi、CHSOLi、CHFSO3Li、CHFSOLi、CFSOLi、CFCFSOLi、CFCFCFSOLi、CFCFCFCFSOLi等のスルホン酸リチウム塩類;
For example, LiPF 6, LiBF 4, LiClO 4, LiAlF 4, LiSbF 6, inorganic lithium salts LiTaF 6, LiWF 7 and the like;
Lithium tungstates such as LiWOF 5 ;
HCO 2 Li, CH 3 CO 2 Li, CH 2 FCO 2 Li, CHF 2 CO 2 Li, CF 3 CO 2 Li, CF 3 CH 2 CO 2 Li, CF 3 CF 2 CO 2 Li, CF 3 CF 2 CF 2 Lithium carboxylic acid salts such as CO 2 Li, CF 3 CF 2 CF 2 CF 2 CO 2 Li;
FSO 3 Li, CH 3 SO 3 Li, CH 2 FSO 3 Li, CHF 2 SO 3 Li, CF 3 SO 3 Li, CF 3 CF 2 SO 3 Li, CF 3 CF 2 CF 2 SO 3 Li, CF 3 CF 2 CF 2 Lithium sulfonic acid salts such as CF 2 SO 3 Li;

LiN(FCO)、LiN(FCO)(FSO)、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiN(CFSO)(CSO)等のリチウムイミド塩類;
LiC(FSO、LiC(CFSO、LiC(CSO等のリチウムメチド塩類;
リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート等のリチウムオキサラトボレート塩類;
リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェート等のリチウムオキサラトフォスフェート塩類;
その他、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBFCF、LiBF、LiBF、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩類;等が挙げられる。
LiN (FCO) 2 , LiN (FCO) (FSO 2 ), LiN (FSO 2 ) 2 , LiN (FSO 2 ) (CF 3 SO 2 ), LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO) 2 ) 2 , Lithium imide salts such as lithium cyclic 1,2-perfluoroethanedisulfonylimide, lithium cyclic 1,3-perfluoropropanedisulfonylimide, LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) ;
Lithiummethide salts such as LiC (FSO 2 ) 3 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 ;
Lithium oxalatoborate salts such as lithium difluorooxalate borate and lithium bis (oxalate) borate;
Lithium oxalat phosphate salts such as lithium tetrafluorooxalat phosphate, lithium difluorobis (oxalat) phosphate, lithium tris (oxalat) phosphate;
In addition, LiPF 4 (CF 3 ) 2 , LiPF 4 (C 2 F 5 ) 2 , LiPF 4 (CF 3 SO 2 ) 2 , LiPF 4 (C 2 F 5 SO 2 ) 2 , LiBF 3 CF 3 , LiBF 3 C 2 F 5 , LiBF 3 C 3 F 7 , LiBF 2 (CF 3 ) 2 , LiBF 2 (C 2 F 5 ) 2 , LiBF 2 (CF 3 SO 2 ) 2 , LiBF 2 (C 2 F 5 SO 2 ) 2 Fluorine-containing organic lithium salts such as; and the like.

中でも、LiPF、LiBF、LiSbF、LiTaF、FSOLi、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO)2、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBFCF、LiBF、LiPF(CF、LiPF(C等が出力特性やハイレート充放電特性、高温保存特性、サイクル特性等を向上させる効果がある点から特に好ましい。 Among them, LiPF 6 , LiBF 4 , LiSbF 6 , LiTaF 6 , FSO 3 Li, CF 3 SO 3 Li, LiN (FSO 2 ) 2 , LiN (FSO 2 ) (CF 3 SO 2 ), LiN (CF 3 SO 2 ) 2, LiN (C 2 F 5 SO 2 ) 2 , Lithium cyclic 1,2-perfluoroethanedisulfonylimide, Lithium cyclic 1,3-perfluoropropanedisulfonylimide, LiC (FSO 2 ) 3 , LiC (CF 3) SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , Lithium bisoxalatoborate, Lithium difluorooxalatobolate, Lithium tetrafluorooxalat phosphate, Lithium difluorobisoxalatphosphate, LiBF 3 CF 3 , LiBF 3 C 2 F 5 , LiPF 3 (CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3, etc. are particularly preferable because they have the effect of improving output characteristics, high-rate charge / discharge characteristics, high-temperature storage characteristics, cycle characteristics, and the like.

これらのリチウム塩は単独で用いても、2種以上を併用してもよい。2種以上を併用する場合の好ましい一例は、LiPFとLiBF、LiPFとLiN(FSOや、LiPFとFSOLi等の併用であり、負荷特性やサイクル特性を向上させる効果がある。
この場合、非水系電解液全体100質量%に対するLiBF4或いはFSOLiの濃度は含有量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常、0.01質量%以上、好ましくは0.1質量%以上であり、また、通常30質量%以下、好ましくは20質量%以下である。
These lithium salts may be used alone or in combination of two or more. A preferable example of the combined use of two or more types is the combined use of LiPF 6 and LiBF 4 , LiPF 6 and LiN (FSO 2 ) 2 , LiPF 6 and FSO 3 Li, etc., and has the effect of improving load characteristics and cycle characteristics. There is.
In this case, the concentration of LiBF4 or FSO 3 Li for a non-aqueous electrolyte entire 100 wt% is not limited to the content, is optional unless significantly impairing the effects of the present invention, for non-aqueous electrolyte solution of the present invention It is usually 0.01% by mass or more, preferably 0.1% by mass or more, and usually 30% by mass or less, preferably 20% by mass or less.

また、他の一例は、無機リチウム塩と有機リチウム塩との併用であり、この両者の併用は、高温保存による劣化を抑制する効果がある。有機リチウム塩としては、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBFCF、LiBF、LiPF(CF、LiPF(C等であるのが好ましい。この場合には、非水系電解液全体100質量%に対する有機リチウム塩の割合は、好ましくは0.1質量%以上、特に好ましくは0.5質量%以上であ
り、また、好ましくは30質量%以下、特に好ましくは20質量%以下である。
Another example is the combined use of an inorganic lithium salt and an organic lithium salt, and the combined use of both has an effect of suppressing deterioration due to high temperature storage. Organolithium salts include CF 3 SO 3 Li, LiN (FSO 2 ) 2 , LiN (FSO 2 ) (CF 3 SO 2 ), LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , Lithium Cyclic 1,2-Perfluoroethanedisulfonylimide, Lithium Cyclic 1,3-Perfluoropropanedisulfonylimide, LiC (FSO 2 ) 3 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO) 2 ) 3 , Lithium bisoxalatoborate, Lithium difluorooxalatobolate, Lithium tetrafluorooxalatophosphate, Lithium difluorobisoxarat phosphate, LiBF 3 CF 3 , LiBF 3 C 2 F 5 , LiPF 3 (CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3, etc. are preferable. In this case, the ratio of the organolithium salt to 100% by mass of the entire non-aqueous electrolyte solution is preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, and preferably 30% by mass or less. , Particularly preferably 20% by mass or less.

非水系電解液中のこれらのリチウム塩の濃度は、本発明の効果を損なわない限り、その含有量は特に制限されないが、電解液の電気伝導率を良好な範囲とし、良好な電池性能を確保する点から、非水系電解液中のリチウムの総モル濃度は、好ましくは0.3mol/L以上、より好ましくは0.4mol/L以上、さらに好ましくは0.5mol/L以上であり、また、好ましくは3mol/L以下、より好ましくは2.5mol/L以下、さらに好ましくは2.0mol/L以下である。
リチウムの総モル濃度が上記範囲内にあることにより、電解液の電気伝導率が十分となり、また、粘度上昇による電気伝導度の低下、それに起因する電池性能の低下を防ぐ。
The concentration of these lithium salts in the non-aqueous electrolyte solution is not particularly limited as long as the effect of the present invention is not impaired, but the electrical conductivity of the electrolyte solution is kept in a good range to ensure good battery performance. From this point of view, the total molar concentration of lithium in the non-aqueous electrolyte solution is preferably 0.3 mol / L or more, more preferably 0.4 mol / L or more, still more preferably 0.5 mol / L or more, and also. It is preferably 3 mol / L or less, more preferably 2.5 mol / L or less, still more preferably 2.0 mol / L or less.
When the total molar concentration of lithium is within the above range, the electric conductivity of the electrolytic solution becomes sufficient, and the decrease in electric conductivity due to the increase in viscosity and the resulting decrease in battery performance are prevented.

1−4.非水溶媒
本発明における非水溶媒について特に制限はなく、公知の有機溶媒を用いることが可能である。これらを例示すると、フッ素原子を有さない環状カーボネート、鎖状カーボネート、環状カルボン酸エステル、エーテル化合物、スルホン系化合物、鎖状カルボン酸エステル等が挙げられる。以下、これら溶媒について説明する。なお、鎖状カルボン酸エステルについては、1−2−10.で説明している。
1-4. Non-aqueous solvent The non-aqueous solvent in the present invention is not particularly limited, and known organic solvents can be used. Examples thereof include cyclic carbonates having no fluorine atom, chain carbonates, cyclic carboxylic acid esters, ether compounds, sulfone compounds, and chain carboxylic acid esters. Hereinafter, these solvents will be described. For chain carboxylic acid ester, see 1-2-10. It is explained in.

<フッ素原子を有さない環状カーボネート>
フッ素原子を有さない環状カーボネートとしては、炭素数2〜4のアルキレン基を有する環状カーボネートが挙げられる。
炭素数2〜4のアルキレン基を有する、フッ素原子を有さない環状カーボネートの具体的な例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートが挙げられる。中でも、エチレンカーボネートとプロピレンカーボネートがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
<Cyclic carbonate without fluorine atom>
Examples of the cyclic carbonate having no fluorine atom include cyclic carbonate having an alkylene group having 2 to 4 carbon atoms.
Specific examples of the cyclic carbonate having no fluorine atom and having an alkylene group having 2 to 4 carbon atoms include ethylene carbonate, propylene carbonate and butylene carbonate. Of these, ethylene carbonate and propylene carbonate are particularly preferable from the viewpoint of improving battery characteristics resulting from an improvement in the degree of lithium ion dissociation.

フッ素原子を有さない環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
フッ素原子を有さない環状カーボネートの含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、1種を単独で用いる場合の含有量は、非水溶媒100体積%中、5体積%以上、より好ましくは10体積%以上である。この範囲とすることで、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液電池の大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなる。また、95体積%以下、より好ましくは90体積%以下、さらに好ましくは85体積%以下である。この範囲とすることで、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液電池の負荷特性を良好な範囲としやすくなる。
As the cyclic carbonate having no fluorine atom, one type may be used alone, or two or more types may be used in combination in any combination and ratio.
The content of the cyclic carbonate having no fluorine atom is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired, but the content when one of them is used alone is 100% by volume of a non-aqueous solvent. Medium, 5% by volume or more, more preferably 10% by volume or more. By setting this range, the decrease in electrical conductivity due to the decrease in the dielectric constant of the non-aqueous electrolyte solution is avoided, and the large current discharge characteristics, stability with respect to the negative electrode, and cycle characteristics of the non-aqueous electrolyte battery are in a good range. It becomes easy to do. Further, it is 95% by volume or less, more preferably 90% by volume or less, still more preferably 85% by volume or less. By setting this range, the viscosity of the non-aqueous electrolyte solution can be set to an appropriate range, the decrease in ionic conductivity can be suppressed, and the load characteristics of the non-aqueous electrolyte battery can be easily set to a good range.

<鎖状カーボネート>
鎖状カーボネートとしては、炭素数3〜7の鎖状カーボネートが好ましく、炭素数3〜7のジアルキルカーボネートがより好ましい。
鎖状カーボネートの具体例としては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、n−ブチルメチルカーボネート、イソブチルメチルカーボネート、t−ブチルメチルカーボネート、エチル−n−プロピルカーボネート、n−ブチルエチルカーボネート、イソブチルエチルカーボネート、t−ブチルエチルカーボネート等が挙げられる。
<Chain carbonate>
As the chain carbonate, a chain carbonate having 3 to 7 carbon atoms is preferable, and a dialkyl carbonate having 3 to 7 carbon atoms is more preferable.
Specific examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propylisopropyl carbonate, ethylmethyl carbonate, methyl-n-propyl carbonate, n-butylmethyl carbonate, and isobutylmethyl. Examples thereof include carbonate, t-butylmethyl carbonate, ethyl-n-propyl carbonate, n-butylethyl carbonate, isobutylethyl carbonate, t-butylethyl carbonate and the like.

中でも、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネートが好ましく、特に好ましくはジメチ
ルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。
また、フッ素原子を有する鎖状カーボネート類(以下、「フッ素化鎖状カーボネート」と記載する場合がある)も好適に用いることができる。
Among them, dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propylisopropyl carbonate, ethylmethyl carbonate and methyl-n-propyl carbonate are preferable, and dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate are particularly preferable. is there.
In addition, chain carbonates having a fluorine atom (hereinafter, may be referred to as "fluorinated chain carbonate") can also be preferably used.

フッ素化鎖状カーボネートが有するフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましくは4以下である。フッ素化鎖状カーボネートが複数のフッ素原子を有する場合、それらは互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。
フッ素化鎖状カーボネートとしては、フッ素化ジメチルカーボネート及びその誘導体、フッ素化エチルメチルカーボネート及びその誘導体、フッ素化ジエチルカーボネート及びその誘導体等が挙げられる。
The number of fluorine atoms contained in the fluorinated chain carbonate is not particularly limited as long as it is 1 or more, but is usually 6 or less, preferably 4 or less. When the fluorinated chain carbonate has a plurality of fluorine atoms, they may be bonded to the same carbon or different carbons.
Examples of the fluorinated chain carbonate include fluorinated dimethyl carbonate and its derivatives, fluorinated ethyl methyl carbonate and its derivatives, fluorinated diethyl carbonate and its derivatives, and the like.

フッ素化ジメチルカーボネート及びその誘導体としては、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ビス(ジフルオロメチル)カーボネート、ビス(トリフルオロメチル)カーボネート等が挙げられる。
フッ素化エチルメチルカーボネート及びその誘導体としては、2−フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2−ジフルオロエチルメチルカーボネート、2−フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート、2,2−ジフルオロエチルフルオロメチルカーボネート、2−フルオロエチルジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。
Examples of the fluorinated dimethyl carbonate and its derivatives include fluoromethylmethyl carbonate, difluoromethylmethyl carbonate, trifluoromethylmethyl carbonate, bis (fluoromethyl) carbonate, bis (difluoromethyl) carbonate, bis (trifluoromethyl) carbonate and the like. Be done.
Examples of fluorinated ethyl methyl carbonate and its derivatives include 2-fluoroethyl methyl carbonate, ethyl fluoromethyl carbonate, 2,2-difluoroethyl methyl carbonate, 2-fluoroethyl fluoromethyl carbonate, ethyl difluoromethyl carbonate, 2,2,2. -Trifluoroethyl methyl carbonate, 2,2-difluoroethyl fluoromethyl carbonate, 2-fluoroethyl difluoromethyl carbonate, ethyl trifluoromethyl carbonate and the like can be mentioned.

フッ素化ジエチルカーボネート及びその誘導体としては、エチル−(2−フルオロエチル)カーボネート、エチル−(2,2−ジフルオロエチル)カーボネート、ビス(2−フルオロエチル)カーボネート、エチル−(2,2,2−トリフルオロエチル)カーボネート、2,2−ジフルオロエチル−2’−フルオロエチルカーボネート、ビス(2,2−ジフルオロエチル)カーボネート、2,2,2−トリフルオロエチル−2’−フルオロエチルカーボネート、2,2,2−トリフルオロエチル−2’,2’−ジフルオロエチルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート等が挙げられる。 Examples of the fluorinated diethyl carbonate and its derivatives include ethyl- (2-fluoroethyl) carbonate, ethyl- (2,2-difluoroethyl) carbonate, bis (2-fluoroethyl) carbonate, and ethyl- (2,2,2-). Trifluoroethyl) carbonate, 2,2-difluoroethyl-2'-fluoroethyl carbonate, bis (2,2-difluoroethyl) carbonate, 2,2,2-trifluoroethyl-2'-fluoroethyl carbonate, 2, Examples thereof include 2,2-trifluoroethyl-2', 2'-difluoroethyl carbonate and bis (2,2,2-trifluoroethyl) carbonate.

鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
鎖状カーボネートの含有量は、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上である。このように下限を設定することにより、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液電池の大電流放電特性を良好な範囲としやすくなる。また、鎖状カーボネートは、非水溶媒100体積%中、90体積%以下、より好ましくは85体積%以下、特に好ましくは80体積%以下であることが好ましい。このように上限を設定することにより、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液電池の大電流放電特性を良好な範囲としやすくなる。
As the chain carbonate, one type may be used alone, or two or more types may be used in combination in any combination and ratio.
The content of the chain carbonate is preferably 5% by volume or more, more preferably 10% by volume or more, still more preferably 15% by volume or more in 100% by volume of the non-aqueous solvent. By setting the lower limit in this way, the viscosity of the non-aqueous electrolyte solution can be set in an appropriate range, the decrease in ionic conductivity can be suppressed, and the large current discharge characteristics of the non-aqueous electrolyte battery can be easily set in a good range. The chain carbonate is 90% by volume or less, more preferably 85% by volume or less, and particularly preferably 80% by volume or less in 100% by volume of the non-aqueous solvent. By setting the upper limit in this way, it is easy to avoid a decrease in electrical conductivity due to a decrease in the dielectric constant of the non-aqueous electrolyte solution and to easily set the large current discharge characteristic of the non-aqueous electrolyte battery in a good range.

<環状カルボン酸エステル>
環状カルボン酸エステル(ラクトン)としては、炭素数が3〜12のものが好ましい。
具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
<Cyclic carboxylic acid ester>
The cyclic carboxylic acid ester (lactone) preferably has 3 to 12 carbon atoms.
Specific examples thereof include gamma-butyrolactone, gamma valerolactone, gamma caprolactone, and epsilon caprolactone. Of these, gamma-butyrolactone is particularly preferable from the viewpoint of improving battery characteristics resulting from an improvement in the degree of lithium ion dissociation.

環状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
環状カルボン酸エステルの含有量は、通常、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上である。この範囲であれば、非水系電解液の電気伝導率を改善し、非水系電解液電池の大電流放電特性を向上させやすくなる。また、環状カルボン酸エステルの含有量は、好ましくは50体積%以下、より好ましくは40体積%以下である。このように上限を設定することにより、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。
As the cyclic carboxylic acid ester, one type may be used alone, or two or more types may be used in combination in any combination and ratio.
The content of the cyclic carboxylic acid ester is usually 5% by volume or more, more preferably 10% by volume or more in 100% by volume of the non-aqueous solvent. Within this range, the electric conductivity of the non-aqueous electrolyte solution can be improved, and the large current discharge characteristics of the non-aqueous electrolyte battery can be easily improved. The content of the cyclic carboxylic acid ester is preferably 50% by volume or less, more preferably 40% by volume or less. By setting the upper limit in this way, the viscosity of the non-aqueous electrolyte is set within an appropriate range, the decrease in electrical conductivity is avoided, the increase in negative electrode resistance is suppressed, and the large current discharge of the non-aqueous electrolyte secondary battery is performed. It becomes easy to set the characteristics in a good range.

<エーテル系化合物>
エーテル系化合物としては、一部の水素がフッ素にて置換されていてもよい炭素数3〜10の鎖状エーテル、及び炭素数3〜6の環状エーテルが好ましい。
炭素数3〜10の鎖状エーテルとしては、
ジエチルエーテル、ジ(2−フルオロエチル)エーテル、ジ(2,2−ジフルオロエチル)エーテル、ジ(2,2,2−トリフルオロエチル)エーテル、エチル(2−フルオロエチル)エーテル、エチル(2,2,2−トリフルオロエチル)エーテル、エチル(1,1,2,2−テトラフルオロエチル)エーテル、(2−フルオロエチル)(2,2,2−トリフルオロエチル)エーテル、(2−フルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、(2,2,2−トリフルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、エチル−n−プロピルエーテル、エチル(3−フルオロ−n−プロピル)エーテル、エチル(3,3,3−トリフルオロ−n−プロピル)エーテル、エチル(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、エチル(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2−フルオロエチル−n−プロピルエーテル、(2−フルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2−フルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2,2,2−トリフルオロエチル−n−プロピルエーテル、(2,2,2−トリフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、1,1,2,2−テトラフルオロエチル−n−プロピルエーテル、(1,1,2,2−テトラフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−プロピルエーテル、(n−プロピル)(3−フルオロ−n−プロピル)エーテル、(n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3−フルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3,3,3−トリフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,3,3−テトラフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3,3−ペンタフルオロ−n−プロピル)エー
テル、ジ−n−ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、メトキシ(2−フルオロエトキシ)メタン、メトキシ(2,2,2−トリフルオロエトキシ)メタン、メトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジエトキシメタン、エトキシ(2−フルオロエトキシ)メタン、エトキシ(2,2,2−トリフルオロエトキシ)メタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(2−フルオロエトキシ)メタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)メタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(2,2,2−トリフルオロエトキシ)メタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(1,1,2,2−テトラフルオロエトキシ)メタン、ジメトキシエタン、メトキシエトキシエタン、メトキシ(2−フルオロエトキシ)エタン、メトキシ(2,2,2−トリフルオロエトキシ)エタン、メトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジエトキシエタン、エトキシ(2−フルオロエトキシ)エタン、エトキシ(2,2,2−トリフルオロエトキシ)エタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2−フルオロエトキシ)エタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)エタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2,2,2−トリフルオロエトキシ)エタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(1,1,2,2−テトラフルオロエトキシ)エタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル等が挙げられる。
<Ether compounds>
As the ether-based compound, a chain ether having 3 to 10 carbon atoms in which a part of hydrogen may be substituted with fluorine and a cyclic ether having 3 to 6 carbon atoms are preferable.
As a chain ether having 3 to 10 carbon atoms,
Diethyl ether, di (2-fluoroethyl) ether, di (2,2-difluoroethyl) ether, di (2,2,2-trifluoroethyl) ether, ethyl (2-fluoroethyl) ether, ethyl (2,2) 2,2-Trifluoroethyl) ether, ethyl (1,1,2,2-tetrafluoroethyl) ether, (2-fluoroethyl) (2,2,2-trifluoroethyl) ether, (2-fluoroethyl) ) (1,1,2,2-Tetrafluoroethyl) ether, (2,2,2-trifluoroethyl) (1,1,2,2-tetrafluoroethyl) ether, ethyl-n-propyl ether, ethyl (3-Fluoro-n-propyl) ether, ethyl (3,3,3-trifluoro-n-propyl) ether, ethyl (2,2,3,3-tetrafluoro-n-propyl) ether, ethyl (2) , 2,3,3,3-pentafluoro-n-propyl) ether, 2-fluoroethyl-n-propyl ether, (2-fluoroethyl) (3-fluoro-n-propyl) ether, (2-fluoroethyl) ) (3,3,3-trifluoro-n-propyl) ether, (2-fluoroethyl) (2,2,3,3-tetrafluoro-n-propyl) ether, (2-fluoroethyl) (2, 2,3,3,3-pentafluoro-n-propyl) ether, 2,2,2-trifluoroethyl-n-propyl ether, (2,2,2-trifluoroethyl) (3-fluoro-n-) (Propyl) ether, (2,2,2-trifluoroethyl) (3,3,3-trifluoro-n-propyl) ether, (2,2,2-trifluoroethyl) (2,2,3,3) -Tetrafluoro-n-propyl) ether, (2,2,2-trifluoroethyl) (2,2,3,3,3-pentafluoro-n-propyl) ether, 1,1,2,2-tetra Fluoroethyl-n-propyl ether, (1,1,2,2-tetrafluoroethyl) (3-fluoro-n-propyl) ether, (1,1,2,2-tetrafluoroethyl) (3,3) 3-Trifluoro-n-propyl) ether, (1,1,2,2-tetrafluoroethyl) (2,2,3,3-tetrafluoro-n-propyl) ether, (1,1,2,2) -Tetrafluoroethyl) (2,2,3,3,3-pentafluoro-n-propyl) ether, di-n-propyl ether, (n-propyl) (3-fluoro) Ron-propyl) ether, (n-propyl) (3,3,3-trifluoro-n-propyl) ether, (n-propyl) (2,2,3,3-tetrafluoro-n-propyl) Ether, (n-propyl) (2,2,3,3,3-pentafluoro-n-propyl) ether, di (3-fluoro-n-propyl) ether, (3-fluoro-n-propyl) (3 , 3,3-Trifluoro-n-propyl) ether, (3-fluoro-n-propyl) (2,2,3,3-tetrafluoro-n-propyl) ether, (3-fluoro-n-propyl) (2,2,3,3,3-pentafluoro-n-propyl) ether, di (3,3,3-trifluoro-n-propyl) ether, (3,3,3-trifluoro-n-propyl) ) (2,2,3,3-tetrafluoro-n-propyl) ether, (3,3,3-trifluoro-n-propyl) (2,2,3,3,3-pentafluoro-n-propyl) ) Ether, di (2,2,3,3-tetrafluoro-n-propyl) ether, (2,2,3,3-tetrafluoro-n-propyl) (2,2,3,3,3-penta) Fluoro-n-propyl) ether, di (2,2,3,3,3-pentafluoro-n-propyl) ether, di-n-butyl ether, dimethoxymethane, methoxyethoxymethane, methoxy (2-fluoroethoxy) methane , Methoxy (2,2,2-trifluoroethoxy) methane, methoxy (1,1,2,2-tetrafluoroethoxy) methane, diethoxymethane, ethoxy (2-fluoroethoxy) methane, ethoxy (2,2) 2-Trifluoroethoxy) methane, ethoxy (1,1,2,2-tetrafluoroethoxy) methane, di (2-fluoroethoxy) methane, (2-fluoroethoxy) (2,2,2-trifluoroethoxy) Methane, (2-fluoroethoxy) (1,1,2,2-tetrafluoroethoxy) methane, di (2,2,2-trifluoroethoxy) methane, (2,2,2-trifluoroethoxy) (1) , 1,2,2-tetrafluoroethoxy) methane, di (1,1,2,2-tetrafluoroethoxy) methane, dimethoxyethane, methoxyethoxy ethane, methoxy (2-fluoroethoxy) ethane, methoxy (2,2) , 2-Trifluoroethoxy) ether, methoxy (1,1,2,2-tetrafluoroethoxy) ether, diethoxyethane, ether Toxi (2-fluoroethoxy) ethane, ethoxy (2,2,2-trifluoroethoxy) ethane, ethoxy (1,1,2,2-tetrafluoroethoxy) ethane, di (2-fluoroethoxy) ethane, (2) -Fluoroethoxy) (2,2,2-trifluoroethoxy) ethane, (2-fluoroethoxy) (1,1,2,2-tetrafluoroethoxy) ethane, di (2,2,2-trifluoroethoxy) Ethane, (2,2,2-trifluoroethoxy) (1,1,2,2-tetrafluoroethoxy) ethane, di (1,1,2,2-tetrafluoroethoxy) ethane, ethylene glycol di-n- Examples thereof include propyl ether, ethylene glycol di-n-butyl ether and diethylene glycol dimethyl ether.

炭素数3〜6の環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチルテトラヒドロフラン、1,3−ジオキサン、2−メチル−1,3−ジオキサン、4−メチル−1,3−ジオキサン、1,4−ジオキサン等、及びこれらのフッ素化化合物が挙げられる。
中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離性を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
Examples of the cyclic ether having 3 to 6 carbon atoms include tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, 1,3-dioxane, 2-methyl-1,3-dioxane, 4-methyl-1,3-dioxane, and 1 , 4-Dioxane and the like, and fluorinated compounds thereof.
Among them, dimethoxymethane, diethoxymethane, ethoxymethoxymethane, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, and diethylene glycol dimethyl ether have high solvability to lithium ions and improve ionic dissociation. Dimethoxymethane, diethoxymethane, and ethoxymethoxymethane are preferable in terms of points, and particularly preferably because they have low viscosity and give high ionic conductivity.

エーテル系化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
エーテル系化合物の含有量は、通常、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上、また、好ましくは70体積%以下、より好ましくは60体積%以下、さらに好ましくは50体積%以下である。
As the ether compound, one kind may be used alone, or two or more kinds may be used in any combination and ratio.
The content of the ether compound is usually 5% by volume or more, more preferably 10% by volume or more, still more preferably 15% by volume or more, and preferably 70% by volume or less in 100% by volume of the non-aqueous solvent. It is more preferably 60% by volume or less, still more preferably 50% by volume or less.

この範囲であれば、鎖状エーテルのリチウムイオン解離度の向上と粘度低下に由来するイオン伝導度の向上効果を確保しやすく、負極活物質が炭素質材料の場合、鎖状エーテルがリチウムイオンと共に共挿入されて容量が低下するといった事態を回避しやすい。 Within this range, it is easy to secure the effect of improving the lithium ion dissociation degree of the chain ether and the ionic conductivity due to the decrease in viscosity. When the negative electrode active material is a carbonaceous material, the chain ether is combined with lithium ions. It is easy to avoid the situation where the capacity is reduced due to co-insertion.

<スルホン系化合物>
スルホン系化合物としては、炭素数3〜6の環状スルホン、及び炭素数2〜6の鎖状スルホンが好ましい。1分子中のスルホニル基の数は、1又は2であることが好ましい。
<Sulfone compounds>
As the sulfone compound, a cyclic sulfone having 3 to 6 carbon atoms and a chain sulfone having 2 to 6 carbon atoms are preferable. The number of sulfonyl groups in one molecule is preferably 1 or 2.

炭素数3〜6の環状スルホンとしては、
モノスルホン化合物であるトリメチレンスルホン類、テトラメチレンスルホン類、ヘキサメチレンスルホン類;
ジスルホン化合物であるトリメチレンジスルホン類、テトラメチレンジスルホン類、ヘキサメチレンジスルホン類等が挙げられる。
As a cyclic sulfone having 3 to 6 carbon atoms,
Trimethylene sulfones, tetramethylene sulfones, hexamethylene sulfones, which are monosulfone compounds;
Examples thereof include trimethylene disulfones, tetramethylene disulfones, hexamethylene disulfones, etc., which are disulfone compounds.

中でも誘電率と粘性の観点から、テトラメチレンスルホン類、テトラメチレンジスルホン類、ヘキサメチレンスルホン類、ヘキサメチレンジスルホン類がより好ましく、テトラメチレンスルホン類(スルホラン類)が特に好ましい。
スルホラン類としては、スルホラン及び/又はスルホラン誘導体(以下、スルホランも含めて「スルホラン類」と記載する場合がある)が好ましい。スルホラン誘導体としては、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子やアルキル基で置換されたものが好ましい。
Among them, tetramethylene sulfones, tetramethylene disulfones, hexamethylene sulfones, and hexamethylene disulfones are more preferable, and tetramethylene sulfones (sulfolanes) are particularly preferable, from the viewpoint of dielectric constant and viscosity.
As the sulfolanes, sulfolanes and / or sulfolane derivatives (hereinafter, sulfolanes may also be referred to as "sulfolanes") are preferable. As the sulfolane derivative, one in which one or more hydrogen atoms bonded on the carbon atom constituting the sulfolane ring are substituted with a fluorine atom or an alkyl group is preferable.

中でも、2−メチルスルホラン、3−メチルスルホラン、2−フルオロスルホラン、3−フルオロスルホラン、2,2−ジフルオロスルホラン、2,3−ジフルオロスルホラン、2,4−ジフルオロスルホラン、2,5−ジフルオロスルホラン、3,4−ジフルオロスルホラン、2−フルオロ−3−メチルスルホラン、2−フルオロ−2−メチルスルホラン、3−フルオロ−3−メチルスルホラン、3−フルオロ−2−メチルスルホラン、4−フルオロ−3−メチルスルホラン、4−フルオロ−2−メチルスルホラン、5−フルオロ−3−メチルスルホラン、5−フルオロ−2−メチルスルホラン、2−フルオロメチルスルホラン、3−フルオロメチルスルホラン、2−ジフルオロメチルスルホラン、3−ジフルオロメチルスルホラン、2−トリフルオロメチルスルホラン、3−トリフルオロメチルスルホラン、2−フルオロ−3−(トリフルオロメチル)スルホラン、3−フルオロ−3−(トリフルオロメチル)スルホラン、4−フルオロ−3−(トリフルオロメチル)スルホラン、5−フルオロ−3−(トリフルオロメチル)スルホラン等が、イオン伝導度が高く、入出力特性が高い点で好ましい。 Among them, 2-methylsulfolane, 3-methylsulfolane, 2-fluorosulfolane, 3-fluorosulfolane, 2,2-difluorosulfolane, 2,3-difluorosulfolane, 2,4-difluorosulfolane, 2,5-difluorosulfolane, 3,4-Difluorosulfolane, 2-fluoro-3-methylsulfolane, 2-fluoro-2-methylsulfolane, 3-fluoro-3-methylsulfolane, 3-fluoro-2-methylsulfolane, 4-fluoro-3-methyl Sulfolane, 4-fluoro-2-methyl sulfolane, 5-fluoro-3-methyl sulfolane, 5-fluoro-2-methyl sulfolane, 2-fluoromethyl sulfolane, 3-fluoromethyl sulfolane, 2-difluoromethyl sulfolane, 3-difluoro Methyl sulfolane, 2-trifluoromethyl sulfolane, 3-trifluoromethyl sulfolane, 2-fluoro-3- (trifluoromethyl) sulfolane, 3-fluoro-3- (trifluoromethyl) sulfolane, 4-fluoro-3- ( Trifluoromethyl) sulfolane, 5-fluoro-3- (trifluoromethyl) sulfolane and the like are preferable because they have high ionic conductivity and high input / output characteristics.

また、炭素数2〜6の鎖状スルホンとしては、
ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、n−プロピルエチルスルホン、ジ−n−プロピルスルホン、イソプロピルメチルスルホン、イソプロピルエチルスルホン、ジイソプロピルスルホン、n−ブチルメチルスルホン、n−ブチルエチルスルホン、t−ブチルメチルスルホン、t−ブチルエチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、パーフルオロエチルメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、ジ(トリフルオロエチル)スルホン、パーフルオロジエチルスルホン、フルオロメチル−n−プロピルスルホン、ジフルオロメチル−n−プロピルスルホン、トリフルオロメチル−n−プロピルスルホン、フルオロメチルイソプロピルスルホン、ジフルオロメチルイソプロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−プロピルスルホン、トリフルオロエチルイソプロピルスルホン、ペンタフルオロエチル−n−プロピルスルホン、ペンタフルオロエチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、ペンタフルオロエチル−n−ブチルスルホン、ペンタフルオロエチル−t−ブチルスルホン等が挙げられる。
Further, as a chain sulfone having 2 to 6 carbon atoms,
Dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, n-propyl methyl sulfone, n-propyl ethyl sulfone, di-n-propyl sulfone, isopropyl methyl sulfone, isopropyl ethyl sulfone, diisopropyl sulfone, n-butyl methyl sulfone, n-butyl ethyl Sulfone, t-butylmethylsulfone, t-butylethylsulfone, monofluoromethylmethylsulfone, difluoromethylmethylsulfone, trifluoromethylmethylsulfone, monofluoroethylmethylsulfone, difluoroethylmethylsulfone, trifluoroethylmethylsulfone, pentafluoro Ethylmethyl sulfone, ethyl monofluoromethyl sulfone, ethyl difluoromethyl sulfone, ethyl trifluoromethyl sulfone, perfluoroethyl methyl sulfone, ethyl trifluoroethyl sulfone, ethyl pentafluoroethyl sulfone, di (trifluoroethyl) sulfone, perfluorodiethyl Sulfone, Fluoromethyl-n-propyl sulfone, Difluoromethyl-n-propyl sulfone, Trifluoromethyl-n-propyl sulfone, Fluoromethyl isopropyl sulfone, Difluoromethyl isopropyl sulfone, Trifluoromethyl isopropyl sulfone, Trifluoroethyl-n-propyl Sulfone, trifluoroethyl isopropyl sulfone, pentafluoroethyl-n-propyl sulfone, pentafluoroethyl isopropyl sulfone, trifluoroethyl-n-butyl sulfone, trifluoroethyl-t-butyl sulfone, pentafluoroethyl-n-butyl sulfone, Examples thereof include pentafluoroethyl-t-butyl sulfone.

中でも、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、イソプロピルメチルスルホン、n−ブチルメチルスルホン、t−ブチルメチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチ
ルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、トリフルオロメチル−n−プロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、トリフルオロメチル−n−ブチルスルホン、トリフルオロメチル−t−ブチルスルホン等がイオン伝導度が高く、入出力特性が高い点で好ましい。
Among them, dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, n-propyl methyl sulfone, isopropyl methyl sulfone, n-butyl methyl sulfone, t-butyl methyl sulfone, monofluoromethyl methyl sulfone, difluoromethyl methyl sulfone, trifluoromethyl methyl sulfone. , Monofluoroethyl methyl sulfone, difluoroethyl methyl sulfone, trifluoroethyl methyl sulfone, pentafluoroethyl methyl sulfone, ethyl monofluoromethyl sulfone, ethyl difluoromethyl sulfone, ethyl trifluoromethyl sulfone, ethyl trifluoroethyl sulfone, ethyl pentafluoro Ethyl sulfone, trifluoromethyl-n-propyl sulfone, trifluoromethyl isopropyl sulfone, trifluoroethyl-n-butyl sulfone, trifluoroethyl-t-butyl sulfone, trifluoromethyl-n-butyl sulfone, trifluoromethyl-t -Butyl sulfone or the like is preferable because it has high ionic conductivity and high input / output characteristics.

スルホン系化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
スルホン系化合物の含有量は、通常、非水溶媒100体積%中、好ましくは0.3体積%以上、より好ましくは1体積%以上、さらに好ましくは5体積%以上であり、また、好ましくは40体積%以下、より好ましくは35体積%以下、さらに好ましくは30体積%以下である。
この範囲であれば、サイクル特性や保存特性等の耐久性の向上効果が得られやすく、また、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避することができ、非水系電解液電池の充放電を高電流密度で行う場合に、充放電容量維持率が低下するといった事態を回避しやすい。
As the sulfone compound, one type may be used alone, or two or more types may be used in combination in any combination and ratio.
The content of the sulfone compound is usually 0.3% by volume or more, more preferably 1% by volume or more, still more preferably 5% by volume or more, and preferably 40% by volume in 100% by volume of the non-aqueous solvent. By volume or less, more preferably 35% by volume or less, still more preferably 30% by volume or less.
Within this range, it is easy to obtain the effect of improving durability such as cycle characteristics and storage characteristics, and the viscosity of the non-aqueous electrolyte solution can be set within an appropriate range to avoid a decrease in electrical conductivity. When charging / discharging an aqueous electrolyte battery with a high current density, it is easy to avoid a situation in which the charge / discharge capacity retention rate decreases.

<フッ素原子を有する環状カーボネートを非水溶媒として用いる場合>
フッ素原子を有する環状カーボネートは、非水系電解液において、1−2−2.で示す通り、助剤としても用いることができ、非水溶媒としても用いることができる。
本発明において、フッ素原子を有する環状カーボネートを非水溶媒として用いる場合は、フッ素原子を有する環状カーボネート以外の非水溶媒として、上記例示した非水溶媒の1種を、フッ素原子を有する環状カーボネートと組み合わせて用いてもよく、2種以上を、フッ素原子を有する環状カーボネートと組み合わせて併用してもよい。
<When using a cyclic carbonate having a fluorine atom as a non-aqueous solvent>
Cyclic carbonate having a fluorine atom is used in a non-aqueous electrolyte solution in 1-2-2. As shown in, it can also be used as an auxiliary agent and can also be used as a non-aqueous solvent.
In the present invention, when a cyclic carbonate having a fluorine atom is used as a non-aqueous solvent, one of the above-exemplified non-aqueous solvents is referred to as a cyclic carbonate having a fluorine atom as a non-aqueous solvent other than the cyclic carbonate having a fluorine atom. It may be used in combination, or two or more kinds may be used in combination with a cyclic carbonate having a fluorine atom.

例えば、非水溶媒の好ましい組合せの一つとして、フッ素原子を有する環状カーボネートと鎖状カーボネートを主体とする組合せが挙げられる。中でも、非水溶媒に占めるフッ素原子を有する環状カーボネートと鎖状カーボネートとの合計が、好ましくは60体積%以上、より好ましくは80体積%以上、更に好ましくは90体積%以上であり、かつフッ素原子を有する環状カーボネートと鎖状カーボネートとの合計に対するフッ素原子を有する環状カーボネートの割合が3体積%以上、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上であり、また通常60体積%以下、好ましくは50体積%以下、より好ましくは40体積%以下、さらに好ましくは35体積%以下、特に好ましくは30体積%以下、最も好ましくは20体積%以下である。 For example, one of the preferable combinations of the non-aqueous solvent is a combination mainly composed of a cyclic carbonate having a fluorine atom and a chain carbonate. Among them, the total of the cyclic carbonate having a fluorine atom and the chain carbonate in the non-aqueous solvent is preferably 60% by volume or more, more preferably 80% by volume or more, still more preferably 90% by volume or more, and the fluorine atom. The ratio of the cyclic carbonate having a fluorine atom to the total of the cyclic carbonate having and the chain carbonate is 3% by volume or more, preferably 5% by volume or more, more preferably 10% by volume or more, still more preferably 15% by volume or more. In addition, it is usually 60% by volume or less, preferably 50% by volume or less, more preferably 40% by volume or less, further preferably 35% by volume or less, particularly preferably 30% by volume or less, and most preferably 20% by volume or less.

これらの非水溶媒の組み合わせを用いると、これを用いて作製された電池のサイクル特性と高温保存特性(特に、高温保存後の残存容量及び高負荷放電容量)のバランスが良くなることがある。
例えば、フッ素原子を有する環状カーボネートと鎖状カーボネートの好ましい組み合わせの具体例としては、
モノフルオロエチレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。
When a combination of these non-aqueous solvents is used, the balance between the cycle characteristics and the high temperature storage characteristics (particularly, the residual capacity after high temperature storage and the high load discharge capacity) of the battery produced by using the combination may be improved.
For example, as a specific example of a preferable combination of a cyclic carbonate having a fluorine atom and a chain carbonate,
Monofluoroethylene carbonate and dimethyl carbonate, monofluoroethylene carbonate and diethyl carbonate, monofluoroethylene carbonate and ethyl methyl carbonate, monofluoroethylene carbonate and dimethyl carbonate and diethyl carbonate, monofluoroethylene carbonate and dimethyl carbonate and ethyl methyl carbonate, monofluoro Examples thereof include ethylene carbonate, diethyl carbonate and ethyl methyl carbonate, monofluoroethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate.

フッ素原子を有する環状カーボネートと鎖状カーボネートとの組み合わせの中で、鎖状
カーボネートとして対称鎖状アルキルカーボネート類を含有するものが更に好ましく、特に、モノフルオロエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートといったモノフルオロエチレンカーボネートと対称鎖状カーボネート類と非対称鎖状カーボネート類を含有するものが、サイクル特性と大電流放電特性のバランスが良いので好ましい。中でも、対称鎖状カーボネート類がジメチルカーボネートであることが好ましく、又、鎖状カーボネートのアルキル基は炭素数1〜2が好ましい。
Among the combinations of the cyclic carbonate having a fluorine atom and the chain carbonate, those containing symmetric chain alkyl carbonates as the chain carbonate are more preferable, and in particular, monofluoroethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and mono. Cycle characteristics include monofluoroethylene carbonates such as fluoroethylene carbonate, diethyl carbonate and ethyl methyl carbonate, monofluoroethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, symmetrical chain carbonates and asymmetric chain carbonates. It is preferable because it has a good balance between high-current discharge characteristics. Among them, the symmetrical chain carbonates are preferably dimethyl carbonates, and the alkyl group of the chain carbonates is preferably 1 to 2 carbon atoms.

これらのフッ素原子を有する環状カーボネートと鎖状カーボネート類との組み合わせに、更にフッ素原子を有さない環状カーボネートを加えた組み合わせも、好ましい組み合わせとして挙げられる。中でも、非水溶媒に占めるフッ素原子を有する環状カーボネートとフッ素原子を有さない環状カーボネートとの合計が、好ましくは10体積%以上、より好ましくは15体積%以上、さらに好ましくは20体積%以上であり、また、好ましくは50体積%以下、より好ましくは40体積%以下、さらに好ましくは30体積%以下であり、かつフッ素原子を有する環状カーボネートとフッ素原子を有さない環状カーボネートとの合計に対するフッ素原子を有する環状カーボネートの割合が1体積%以上、好ましくは3体積%以上、より好ましくは5体積%以上、さらに好ましくは10体積%以上、特に好ましくは20体積%以上であり、また、好ましくは95体積%以下、より好ましくは85体積%以下、さらに好ましくは75体積%以下、特に好ましくは60体積%以下のものである。 A combination of these cyclic carbonates having a fluorine atom and chain carbonates and a cyclic carbonate having no fluorine atom is also mentioned as a preferable combination. Among them, the total of the cyclic carbonate having a fluorine atom and the cyclic carbonate having no fluorine atom in the non-aqueous solvent is preferably 10% by volume or more, more preferably 15% by volume or more, still more preferably 20% by volume or more. Yes, and preferably 50% by volume or less, more preferably 40% by volume or less, still more preferably 30% by volume or less, and fluorine with respect to the total of the cyclic carbonate having a fluorine atom and the cyclic carbonate having no fluorine atom. The ratio of the cyclic carbonate having an atom is 1% by volume or more, preferably 3% by volume or more, more preferably 5% by volume or more, further preferably 10% by volume or more, particularly preferably 20% by volume or more, and preferably. It is 95% by volume or less, more preferably 85% by volume or less, still more preferably 75% by volume or less, and particularly preferably 60% by volume or less.

この濃度範囲でフッ素原子を有さない環状カーボネートを含有すると、負極に安定な保護被膜を形成しつつ、電解液の電気伝導度を維持できる。
フッ素原子を有する環状カーボネートとフッ素原子を有さない環状カーボネートと鎖状カーボネートの好ましい組み合わせの具体例としては、
モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、モノフルオロエチレンカーボネートとエチレンカー
ボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。
When a cyclic carbonate having no fluorine atom is contained in this concentration range, the electric conductivity of the electrolytic solution can be maintained while forming a stable protective film on the negative electrode.
Specific examples of a preferable combination of a cyclic carbonate having a fluorine atom, a cyclic carbonate having no fluorine atom, and a chain carbonate include
Monofluoroethylene carbonate, ethylene carbonate and dimethyl carbonate, monofluoroethylene carbonate, ethylene carbonate and diethyl carbonate, monofluoroethylene carbonate, ethylene carbonate and ethylmethyl carbonate, monofluoroethylene carbonate, ethylene carbonate, dimethyl carbonate and diethyl carbonate, monofluoro Ethylene carbonate, ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate, monofluoroethylene carbonate, ethylene carbonate, diethyl carbonate and ethyl methyl carbonate, monofluoroethylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, monofluoroethylene carbonate And propylene carbonate and dimethyl carbonate, monofluoroethylene carbonate and propylene carbonate and diethyl carbonate, monofluoroethylene carbonate and propylene carbonate and ethylmethyl carbonate, monofluoroethylene carbonate and propylene carbonate and dimethyl carbonate and diethyl carbonate, monofluoroethylene carbonate and propylene. Carbonate, dimethyl carbonate and ethylmethyl carbonate, monofluoroethylene carbonate, propylene carbonate, diethyl carbonate and ethylmethyl carbonate, monofluoroethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate, monofluoroethylene carbonate and ethylene carbonate Propropylene carbonate and dimethyl carbonate, monofluoroethylene carbonate, ethylene carbonate, propylene carbonate and diethyl carbonate, monofluoroethylene carbonate, ethylene carbonate, propylene carbonate and ethylmethyl carbonate, monofluoroethylene carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate and diethyl. Carbonate, monofluoroethylene carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate and ethylmethyl carbonate, monofluoroethylene carbonate, ethylene carbonate and propylene carbonate Examples thereof include diethyl carbonate and ethyl methyl carbonate, monofluoroethylene carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate.

フッ素原子を有する環状カーボネートとフッ素原子を有さない環状カーボネートと鎖状カーボネートとの組み合わせの中で、鎖状カーボネートとして非対称鎖状アルキルカーボネート類を含有するものがさらに好ましく、特に、
モノフルオロエチレンカーボネートとエチレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート、モノフルオロエチレンカーボネートとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート
といったモノフルオロエチレンカーボネートと非対称鎖状カーボネート類を含有するものが、サイクル特性と大電流放電特性のバランスが良いので好ましい。中でも、非対称鎖状カーボネート類がエチルメチルカーボネートであるのが好ましく、又、鎖状カーボネートのアルキル基は炭素数1〜2が好ましい。
Among the combinations of the cyclic carbonate having a fluorine atom, the cyclic carbonate having no fluorine atom, and the chain carbonate, those containing asymmetric chain alkyl carbonates as the chain carbonate are more preferable, and in particular,
Monofluoroethylene carbonate, ethylene carbonate and ethylmethyl carbonate, monofluoroethylene carbonate, propylene carbonate and ethylmethyl carbonate, monofluoroethylene carbonate, ethylene carbonate, dimethyl carbonate and ethylmethyl carbonate, monofluoroethylene carbonate, propylene carbonate and dimethyl carbonate Ethylmethyl carbonate, monofluoroethylene carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate and ethylmethyl carbonate, monofluoroethylene carbonate, ethylene carbonate, diethyl carbonate and ethylmethyl carbonate, monofluoroethylene carbonate, propylene carbonate, diethyl carbonate and ethylmethyl Carbonate, monofluoroethylene carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate and ethylmethyl carbonate, monofluoroethylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate, monofluoroethylene carbonate, propylene carbonate, dimethyl carbonate and diethyl. Those containing monofluoroethylene carbonate and asymmetric chain carbonates such as carbonate and ethylmethyl carbonate, monofluoroethylene carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate have cycle characteristics and large current discharge characteristics. It is preferable because it has a good balance. Among them, the asymmetric chain carbonates are preferably ethyl methyl carbonates, and the alkyl groups of the chain carbonates are preferably 1 to 2 carbon atoms.

非水溶媒中にエチルメチルカーボネートを含有する場合は、全非水溶媒中に占めるエチルメチルカーボネートの割合が、好ましくは10体積%以上、より好ましくは20体積%以上、さらに好ましくは25体積%以上、特に好ましくは30体積%以上であり、また、好ましくは95体積%以下、より好ましくは90体積%以下、さらに好ましくは85体積%以下、特に好ましくは80体積%以下となる範囲で含有させると、電池の負荷特性が向上することがある。
上記フッ素原子を有する環状カーボネートと鎖状カーボネートを主体とする組合せにおいては、上記フッ素原子を有さない環状カーボネート以外にも、環状カルボン酸エステル類、鎖状カルボン酸エステル類、環状エーテル類、鎖状エーテル類、含硫黄有機溶媒、含燐有機溶媒、含フッ素芳香族溶媒等、他の溶媒を混合してもよい。
When ethyl methyl carbonate is contained in the non-aqueous solvent, the ratio of ethyl methyl carbonate in the total non-aqueous solvent is preferably 10% by volume or more, more preferably 20% by volume or more, still more preferably 25% by volume or more. It is particularly preferably contained in an amount of 30% by volume or more, preferably 95% by volume or less, more preferably 90% by volume or less, further preferably 85% by volume or less, and particularly preferably 80% by volume or less. , The load characteristics of the battery may be improved.
In the combination mainly composed of the cyclic carbonate having a fluorine atom and the chain carbonate, in addition to the cyclic carbonate having no fluorine atom, cyclic carboxylic acid esters, chain carboxylic acid esters, cyclic ethers, and chains Other solvents such as ethers, sulfur-containing organic solvent, phosphorus-containing organic solvent, and fluorine-containing aromatic solvent may be mixed.

<フッ素原子を有する環状カーボネートを助剤として用いる場合、またはフッ素原子を有する環状カーボネートを用いない場合>
本発明において、フッ素原子を有する環状カーボネートを助剤として用いる場合は、フッ素原子を有する環状カーボネート以外の非水溶媒として、上記例示した非水溶媒1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。また、フッ素原子を有する環状カーボネートを用いない場合、上記例示した非水溶媒1種を単独で用いればよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 例えば、非水溶媒の好ましい組合せの一つとして、フッ素原子を有さない環状カーボネートと鎖状カーボネートを主体とする組合せ、フッ素原子を有さない鎖状カーボネートと鎖状カルボン酸
エステルを主体とする組み合わせが挙げられる。
<When using a cyclic carbonate having a fluorine atom as an auxiliary agent, or when not using a cyclic carbonate having a fluorine atom>
In the present invention, when the cyclic carbonate having a fluorine atom is used as an auxiliary agent, one kind of the above-exemplified non-aqueous solvent may be used alone or two or more kinds as a non-aqueous solvent other than the cyclic carbonate having a fluorine atom. May be used in any combination and ratio. When the cyclic carbonate having a fluorine atom is not used, one of the above-exemplified non-aqueous solvents may be used alone, or two or more of them may be used in any combination and ratio. For example, as one of the preferable combinations of the non-aqueous solvent, a combination containing a cyclic carbonate having no fluorine atom and a chain carbonate as a main component, and a chain carbonate having no fluorine atom and a chain carboxylic acid ester as a main component. There are combinations.

中でも、非水溶媒に占めるフッ素原子を有さない環状カーボネートと鎖状カーボネートとの合計が、好ましくは70体積%以上、より好ましくは80体積%以上、さらに好ましくは90体積%以上であり、また、好ましくは 100体積%以下、より好ましくは 95体積%以下、さらに好ましくは 90体積%以下であり、かつフッ素原子を有さない環状カーボネートと鎖状カーボネートとの合計に対するフッ素原子を有さない環状カーボネートの割合が好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上であり、また、好ましくは50体積%以下、より好ましくは35体積%以下、さらに好ましくは30体積%以下、特に好ましくは25体積%以下である。
これらの非水溶媒の組み合わせを用いると、これを用いて作製された電池のサイクル特性と高温保存特性(特に、高温保存後の残存容量及び高負荷放電容量)のバランスが良くなることがある。
Among them, the total of the cyclic carbonate having no fluorine atom and the chain carbonate in the non-aqueous solvent is preferably 70% by volume or more, more preferably 80% by volume or more, still more preferably 90% by volume or more, and , Preferably 100% by volume or less, more preferably 95% by volume or less, still more preferably 90% by volume or less, and no fluorine atom-free cyclic relative to the total of the fluorine atom-free cyclic carbonate and the chain carbonate. The proportion of carbonate is preferably 5% by volume or more, more preferably 10% by volume or more, further preferably 15% by volume or more, and preferably 50% by volume or less, more preferably 35% by volume or less, still more preferably 30%. By volume or less, particularly preferably 25% by volume or less.
When a combination of these non-aqueous solvents is used, the balance between the cycle characteristics and the high temperature storage characteristics (particularly, the residual capacity after high temperature storage and the high load discharge capacity) of the battery produced by using the combination may be improved.

例えば、フッ素原子を有さない環状カーボネートと鎖状カーボネートの好ましい組み合わせの具体例としては、
エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとジエチルカーボネート、エチレンカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート、プロピレンカーボネートとエチルメチルカーボネート、プロピレンカーボネートとエチルメチルカーボネートとジエチルカーボネート、プロピレンカーボネートとエチルメチルカーボネートとジメチルカーボネート等が挙げられる。
For example, as a specific example of a preferable combination of a cyclic carbonate having no fluorine atom and a chain carbonate,
Ethylene carbonate and dimethyl carbonate, ethylene carbonate and diethyl carbonate, ethylene carbonate and ethyl methyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and ethyl methyl carbonate, ethylene carbonate and diethyl carbonate and ethyl methyl carbonate, ethylene carbonate And dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, propylene carbonate and ethyl methyl carbonate, propylene carbonate and ethyl methyl carbonate and diethyl carbonate, propylene carbonate, ethyl methyl carbonate and dimethyl carbonate and the like.

フッ素原子を有さない環状カーボネートと鎖状カーボネートとの組み合わせの中で、鎖状カーボネートとして非対称鎖状アルキルカーボネート類を含有するものがさらに好ましく、特に、エチレンカーボネートとエチルメチルカーボネート、プロピレンカーボネートとエチルメチルカーボネート、エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネート、エチレンカーボネートとエチルメチルカーボネートとジエチルカーボネート、プロピレンカーボネートとエチルメチルカーボネートとジメチルカーボネート、プロピレンカーボネートとエチルメチルカーボネートとジエチルカーボネートといったものがサイクル特性と大電流放電特性のバランスが良いので好ましい。 Among the combinations of cyclic carbonate and chain carbonate having no fluorine atom, those containing asymmetric chain alkyl carbonates as chain carbonate are more preferable, and in particular, ethylene carbonate and ethyl methyl carbonate and propylene carbonate and ethyl are particularly preferable. Methyl carbonate, ethylene carbonate and ethyl methyl carbonate and dimethyl carbonate, ethylene carbonate and ethyl methyl carbonate and diethyl carbonate, propylene carbonate and ethyl methyl carbonate and dimethyl carbonate, propylene carbonate and ethyl methyl carbonate and diethyl carbonate have cycle characteristics and high current. It is preferable because it has a good balance of discharge characteristics.

中でも、非対称鎖状カーボネート類がエチルメチルカーボネートであるのが好ましく、又、鎖状カーボネートのアルキル基は炭素数1〜2が好ましい。
非水溶媒中に、例えばジメチルカーボネート、ジエチルカーボネート及びエチルメチルカーボネートの少なくとも2種を含有する場合は、全非水溶媒中に占めるジメチルカーボネートとジエチルカーボネート、又はジメチルカーボネートとエチルメチルカーボネート、又はエチルメチルカーボネートとジエチルカーボネート、又はジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートの合計の割合が、好ましくは10体積%以上、より好ましくは20体積%以上、さらに好ましくは25体積%以上、特に好ましくは30体積%以上であり、また、好ましくは90体積%以下、より好ましくは80体積%以下、さらに好ましくは75体積%以下、特に好ましくは、70体積%以下となる範囲で含有させると、電池の負荷特性が向上することがある。
Among them, the asymmetric chain carbonates are preferably ethyl methyl carbonates, and the alkyl groups of the chain carbonates are preferably 1 to 2 carbon atoms.
When at least two kinds of dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate are contained in the non-aqueous solvent, for example, dimethyl carbonate and diethyl carbonate, or dimethyl carbonate and ethyl methyl carbonate, or ethyl methyl in the total non-aqueous solvent. The total ratio of carbonate and diethyl carbonate, or dimethyl carbonate and diethyl carbonate and ethyl methyl carbonate is preferably 10% by volume or more, more preferably 20% by volume or more, still more preferably 25% by volume or more, and particularly preferably 30% by volume. If it is contained in the above range, preferably 90% by volume or less, more preferably 80% by volume or less, further preferably 75% by volume or less, and particularly preferably 70% by volume or less, the load characteristics of the battery are improved. May improve.

例えば、ジメチルカーボネートとエチルメチルカーボネートを含有し、ジメチルカーボネートの含有割合をエチルメチルカーボネートの含有割合よりも多くすることにより、電解液の電気伝導度を維持できながら、高温保存後の電池特性が向上することがあり好まし
い。
全非水溶媒中に占めるジメチルカーボネートのエチルメチルカーボネートに対する体積比(ジメチルカーボネート/エチルメチルカーボネート)は、電解液の電気伝導度の向上と保存後の電池特性を向上させる点で、1.1以上が好ましく、1.5以上がより好ましく、2.5以上がさらに好ましい。上記体積比(ジメチルカーボネート/エチルメチルカーボネート)は、電池特性を向上の点で、40以下が好ましく、20以下がより好ましく、10以下がさらに好ましく、8以下が特に好ましい。
For example, by containing dimethyl carbonate and ethyl methyl carbonate and increasing the content of dimethyl carbonate higher than the content of ethyl methyl carbonate, the electrical conductivity of the electrolytic solution can be maintained and the battery characteristics after high temperature storage are improved. May be preferable.
The volume ratio of dimethyl carbonate to ethyl methyl carbonate (dimethyl carbonate / ethyl methyl carbonate) in the total non-aqueous solvent is 1.1 or more in terms of improving the electrical conductivity of the electrolytic solution and improving the battery characteristics after storage. Is preferable, 1.5 or more is more preferable, and 2.5 or more is further preferable. The volume ratio (dimethyl carbonate / ethyl methyl carbonate) is preferably 40 or less, more preferably 20 or less, further preferably 10 or less, and particularly preferably 8 or less in terms of improving battery characteristics.

上記フッ素原子を有さない環状カーボネートと鎖状カーボネートを主体とする組合せにおいては、環状カルボン酸エステル類、鎖状カルボン酸エステル類、環状エーテル類、鎖状エーテル類、含硫黄有機溶媒、含燐有機溶媒、芳香族含フッ素溶媒等、他の溶媒を混合してもよい。
なお、本明細書において、非水溶媒の体積は25℃での測定値であるが、エチレンカーボネートのように25℃で固体のものは融点での測定値を用いる。
In the above-mentioned combination mainly containing cyclic carbonate and chain carbonate having no fluorine atom, cyclic carboxylic acid esters, chain carboxylic acid esters, cyclic ethers, chain ethers, sulfur-containing organic solvents, and phosphorus-containing compounds are used. Other solvents such as an organic solvent and an aromatic fluorine-containing solvent may be mixed.
In the present specification, the volume of the non-aqueous solvent is a measured value at 25 ° C., but for a solid at 25 ° C. such as ethylene carbonate, the measured value at the melting point is used.

1−5.助剤
本発明の非水系電解液電池において、一般式(A)で表される化合物、炭素−炭素不飽和結合を有する環状カーボネート、フッ素原子を有する環状カーボネート、ニトリル化合物、イソシアネート化合物、イソシアヌル酸骨格を有する化合物、フッ素化された塩、環状エーテル化合物、オキサラート塩、環状スルホン酸エステル、鎖状カルボン酸エステル以外に、目的に応じて適宜助剤を用いてもよい。助剤としては、以下に示される酸無水物化合物、フッ素化不飽和環状カーボネート、三重結合を有する化合物、その他の助剤、等が挙げられる。
1-5. Auxiliary agent In the non-aqueous electrolyte battery of the present invention, a compound represented by the general formula (A), a cyclic carbonate having a carbon-carbon unsaturated bond, a cyclic carbonate having a fluorine atom, a nitrile compound, an isocyanate compound, and an isocyanuric acid skeleton. In addition to the compound having the above, the fluorinated salt, the cyclic ether compound, the oxalate salt, the cyclic sulfonic acid ester, and the chain carboxylic acid ester, an auxiliary agent may be appropriately used depending on the intended purpose. Examples of the auxiliary agent include the acid anhydride compounds shown below, fluorinated unsaturated cyclic carbonates, compounds having a triple bond, and other auxiliary agents.

1−5−1.酸無水物化合物
酸無水物化合物としては、カルボン酸無水物、硫酸無水物、硝酸無水物、スルホン酸無水物、リン酸無水物、亜リン酸無水物であることや、環状酸無水物、鎖状酸無水物であることなどの限定を受けず、酸無水物化合物であるならば特にその構造は限定されないものとする。
1-5-1. Acid anhydride compounds The acid anhydride compounds include carboxylic acid anhydrides, sulfuric acid anhydrides, nitrate anhydrides, sulfonic acid anhydrides, phosphoric anhydrides, phosphite anhydrides, cyclic acid anhydrides, and chains. It is not limited to being an acid anhydride, and its structure is not particularly limited as long as it is an acid anhydride compound.

酸無水物化合物の具体例としては、例えば、
無水マロン酸、無水コハク酸、無水グルタル酸、無水アジピン酸、無水マレイン酸、無水シトラコン酸、2、3−ジメチルマレイン酸無水物、無水グルタコン酸、無水イタコン酸、無水フタル酸、無水フェニルマレイン酸、2、3−ジフェニルマレイン酸無水物、シクロヘキサン−1,2−ジカルボン酸無水物、4−シクロヘキセン−1,2−ジカルボン酸無水物、3,4,5,6−テトラヒドロフタル酸無水物、4,4’−オキシジフタル酸無水物、5−ノルボルネン−2,3−ジカルボン酸無水物、メチル−5−ノルボルネン−2,3−ジカルボン酸無水物、フェニルコハク酸無水物、2−フェニルグルタル酸無水物、アリルコハク酸無水物、2−ブテン−11−イルコハク酸無水物、(2-メチル-2-プロペニル)コハク酸無水物、テトラフルオロコハク酸無水物、ジアセチル−酒石酸無水物、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、メタクリル酸無水物、アクリル酸無水物、クロトン酸無水物、メタンスルホン酸無水物、トリフルオロメタンスルホン酸無水物、ノナフルオロブタンスルホン酸無水物、無水酢酸等が挙げられる。
Specific examples of the acid anhydride compound include, for example,
Malonic anhydride, succinic anhydride, glutaric anhydride, adipic anhydride, maleic anhydride, citraconic anhydride, 2,3-dimethylmaleic anhydride, glutaconic anhydride, itaconic anhydride, phthalic anhydride, phenylmaleic anhydride. 2,3-Diphenylmaleic anhydride, cyclohexane-1,2-dicarboxylic acid anhydride, 4-cyclohexene-1,2-dicarboxylic acid anhydride, 3,4,5,6-tetrahydrophthalic acid anhydride, 4 , 4'-Oxydiphthalic anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride, methyl-5-norbornen-2,3-dicarboxylic acid anhydride, phenylsuccinic anhydride, 2-phenylglutaric acid anhydride , Allyl succinic anhydride, 2-butene-11-yl succinic anhydride, (2-methyl-2-propenyl) succinic anhydride, tetrafluorosuccinic anhydride, diacetyl-tartrate anhydride, bicyclo [2.2. 2] Oct-7-ene-2,3,5,6-tetracarboxylic hydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid Examples thereof include anhydrides, methacrylic acid anhydrides, acrylic acid anhydrides, crotonic acid anhydrides, methanesulfonic anhydrides, trifluoromethanesulfonic anhydrides, nonafluorobutanesulfonic anhydrides, and acetic anhydride.

これらのうち、
無水コハク酸、無水マレイン酸、無水シトラコン酸、無水フェニルマレイン酸、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−
ジカルボン酸無水物、アリルコハク無水物、無水酢酸、メタクリル酸無水物、アクリル酸無水物、メタンスルホン酸無水物が特に好ましい。
酸無水物化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
Of these
Succinic anhydride, maleic anhydride, citraconic anhydride, phenylmaleic anhydride, bicyclo [2.2.2] octo-7-ene-2,3,5,6-tetracarboxylic dianhydride, 5- (2) , 5-Dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-
Dicarboxylic acid anhydrides, allyl succinic anhydrides, acetic anhydride, methacrylic anhydrides, acrylic anhydrides, and methanesulfonic anhydrides are particularly preferred.
One type of acid anhydride compound may be used alone, or two or more types may be used in combination in any combination and ratio.

本発明の非水系電解液全体に対する酸無水物化合物の含有量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下、特に好ましくは1質量%以下、最も好ましくは0.5質量%以下の濃度で含有させる。
上記範囲を満たした場合は、出力特性、負荷特性、サイクル特性、高温保存特性等の効果がより向上する。
The content of the acid anhydride compound in the entire non-aqueous electrolyte solution of the present invention is not limited and is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.001 with respect to the non-aqueous electrolyte solution of the present invention. Mass% or more, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and usually 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 2 It is contained in a concentration of mass% or less, particularly preferably 1% by mass or less, and most preferably 0.5% by mass or less.
When the above range is satisfied, the effects such as output characteristics, load characteristics, cycle characteristics, and high temperature storage characteristics are further improved.

1−5−2.フッ素化不飽和環状カーボネート
フッ素化環状カーボネートとして、不飽和結合とフッ素原子とを有する環状カーボネート(以下、「フッ素化不飽和環状カーボネート」と記載する場合がある)を用いることも好ましい。フッ素化不飽和環状カーボネートが有するフッ素原子の数は1以上であれば、特に制限されない。中でもフッ素原子が通常6以下、好ましくは4以下であり、1又は2のものが最も好ましい。
1-5-2. Fluorinated unsaturated cyclic carbonate As the fluorinated cyclic carbonate, it is also preferable to use a cyclic carbonate having an unsaturated bond and a fluorine atom (hereinafter, may be referred to as “fluorinated unsaturated cyclic carbonate”). The number of fluorine atoms contained in the fluorinated unsaturated cyclic carbonate is not particularly limited as long as it is 1 or more. Among them, the number of fluorine atoms is usually 6 or less, preferably 4 or less, and 1 or 2 is most preferable.

フッ素化不飽和環状カーボネートとしては、フッ素化ビニレンカーボネート誘導体、芳香環又は炭素−炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体等が挙げられる。
フッ素化ビニレンカーボネート誘導体としては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート等が挙げられる。
Examples of the fluorinated unsaturated cyclic carbonate include a fluorinated vinylene carbonate derivative, a fluorinated ethylene carbonate derivative substituted with an aromatic ring or a substituent having a carbon-carbon double bond, and the like.
Examples of the fluorinated vinylene carbonate derivative include 4-fluorovinylene carbonate, 4-fluoro-5-methylvinylene carbonate, 4-fluoro-5-phenylvinylene carbonate, 4-allyl-5-fluorovinylene carbonate, and 4-fluoro-5-. Examples include vinyl vinylene carbonate and the like.

芳香環又は炭素−炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体としては、
4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネート、4−フルオロ−4−フェニルエチレンカーボネート、4−フルオロ−5−フェニルエチレンカーボネート、4,4−ジフルオロ−5−フェニルエチレンカーボネート、4,5−ジフルオロ−4−フェニルエチレンカーボネート等が挙げられる。
As a fluorinated ethylene carbonate derivative substituted with a substituent having an aromatic ring or a carbon-carbon double bond,
4-Fluoro-4-vinylethylene carbonate, 4-fluoro-4-allylethylene carbonate, 4-fluoro-5-vinylethylene carbonate, 4-fluoro-5-allylethylene carbonate, 4,4-difluoro-4-vinylethylene Carbonate, 4,4-difluoro-4-allylethylene carbonate, 4,5-difluoro-4-vinylethylene carbonate, 4,5-difluoro-4-allylethylene carbonate, 4-fluoro-4,5-divinylethylene carbonate, 4-Fluoro-4,5-diallylethylene carbonate, 4,5-difluoro-4,5-divinylethylene carbonate, 4,5-difluoro-4,5-diallylethylene carbonate, 4-fluoro-4-phenylethylene carbonate, Examples thereof include 4-fluoro-5-phenylethylene carbonate, 4,4-difluoro-5-phenylethylene carbonate, and 4,5-difluoro-4-phenylethylene carbonate.

中でも、好ましいフッ素化不飽和環状カーボネートとしては、
4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフルオロ
−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。
Among them, as a preferable fluorinated unsaturated cyclic carbonate,
4-Fluorovinylene carbonate, 4-fluoro-5-methylvinylene carbonate, 4-fluoro-5-vinylvinylene carbonate, 4-allyl-5-fluorovinylene carbonate, 4-fluoro-4-vinylethylene carbonate, 4-fluoro- 4-allylethylene carbonate, 4-fluoro-5-vinylethylene carbonate, 4-fluoro-5-allylethylene carbonate, 4,4-difluoro-4-vinylethylene carbonate, 4,4-difluoro-4-allylethylene carbonate, 4,5-Difluoro-4-vinylethylene carbonate, 4,5-difluoro-4-allylethylene carbonate, 4-fluoro-4,5-divinylethylene carbonate, 4-fluoro-4,5-diallylethylene carbonate, 4, 5-Difluoro-4,5-divinylethylene carbonate and 4,5-difluoro-4,5-diallylethylene carbonate are more preferably used because they form a stable interface protection film.

フッ素化不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、また、250以下である。この範囲であれば、非水系電解液に対するフッ素化環状カーボネートの溶解性を確保しやすく、本発明の効果が発現されやすい。
フッ素化不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。分子量は、より好ましくは100以上であり、また、より好ましくは200以下である。
The molecular weight of the fluorinated unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The molecular weight is preferably 50 or more and 250 or less. Within this range, it is easy to secure the solubility of the fluorinated cyclic carbonate in the non-aqueous electrolyte solution, and the effect of the present invention is likely to be exhibited.
The method for producing the fluorinated unsaturated cyclic carbonate is not particularly limited, and a known method can be arbitrarily selected for production. The molecular weight is more preferably 100 or more, and more preferably 200 or less.

フッ素化不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。また、フッ素化不飽和環状カーボネートの含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。
フッ素化不飽和環状カーボネートの含有量は、通常、非水系電解液100質量%中、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上であり、また、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下、特に好ましくは2質量%以下である。
この範囲内であれば、非水系電解液電池は十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
As the fluorinated unsaturated cyclic carbonate, one type may be used alone, or two or more types may be used in combination in any combination and ratio. The content of the fluorinated unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired.
The content of the fluorinated unsaturated cyclic carbonate is usually 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably 0.5% by mass or more in 100% by mass of the non-aqueous electrolyte solution. It is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less, and particularly preferably 2% by mass or less.
Within this range, the non-aqueous electrolyte battery tends to exhibit a sufficient effect of improving the cycle characteristics, the high temperature storage characteristics are lowered, the amount of gas generated is increased, and the discharge capacity retention rate is lowered. Easy to avoid.

1−5−3.三重結合を有する化合物
三重結合を有する化合物としては、分子内に三重結合を1つ以上有している化合物であれば特にその種類は限定されない。
三重結合を有する化合物の具体例としては、例えば、以下の化合物が挙げられる。
1−ペンチン、2−ペンチン、1−ヘキシン、2−ヘキシン、3−ヘキシン、1−ヘプチン、2−ヘプチン、3−ヘプチン、1−オクチン、2−オクチン、3−オクチン、4−オクチン、1−ノニン、2−ノニン、3−ノニン、4−ノニン、1−ドデシン、2−ドデシン、3−ドデシン、4−ドデシン、5−ドデシン、フェニルアセチレン、1−フェニル−1−プロピン、1−フェニル−2−プロピン、1−フェニル−1−ブチン、4−フェニル−1−ブチン、4−フェニル−1−ブチン、1−フェニル−1−ペンチン、5−フェニル−1−ペンチン、1−フェニル−1−ヘキシン、6−フェニル−1−ヘキシン、ジフェニルアセチレン、4−エチニルトルエン、ジシクロヘキシルアセチレン等の炭化水素化合物;
1-5-3. Compound having triple bond The type of the compound having a triple bond is not particularly limited as long as it is a compound having one or more triple bonds in the molecule.
Specific examples of the compound having a triple bond include the following compounds.
1-Pentin, 2-Pentin, 1-Hexyne, 2-Hexyne, 3-Hexyne, 1-Heptyne, 2-Heptyne, 3-Heptyne, 1-Octyne, 2-Octyne, 3-Octyne, 4-Octyne, 1- Nonin, 2-nonin, 3-nonin, 4-nonin, 1-dodecine, 2-dodecine, 3-dodecine, 4-dodecine, 5-dodecine, phenylacetylene, 1-phenyl-1-propyne, 1-phenyl-2 -Propyne, 1-phenyl-1-butyne, 4-phenyl-1-butyne, 4-phenyl-1-butyne, 1-phenyl-1-pentin, 5-phenyl-1-pentin, 1-phenyl-1-hexyne , 6-Phenyl-1-hexyne, diphenylacetylene, 4-ethynyltoluene, dicyclohexylacetylene and other hydrocarbon compounds;

2−プロピニルメチルカーボネート、2−プロピニルエチルカーボネート、2−プロピニルプロピルカーボネート、2−プロピニルブチルカーボネート、2−プロピニルフェニルカーボネート、2−プロピニルシクロヘキシルカーボネート、ジ−2−プロピニルカーボネート、1−メチル−2−プロピニルメチルカーボネート、1、1−ジメチル−2−プロピニルメチルカーボネート、2−ブチニルメチルカーボネート、3−ブチニルメチルカーボネート、2−ペンチニルメチルカーボネート、3−ペンチニルメチルカーボネート、4−ペンチニルメチルカーボネート等のモノカーボネート;
2−ブチン−1,4−ジオール ジメチルジカーボネート、2−ブチン−1,4−ジオール ジエチルジカーボネート、2−ブチン−1,4−ジオール ジプロピルジカーボネート、2−ブチン−1,4−ジオール ジブチルジカーボネート、2−ブチン−1,4−ジオール ジフェニルジカーボネート、2−ブチン−1,4−ジオール ジシクロヘキシ
ルジカーボネート等のジカーボネート;
2-Propinyl methyl carbonate, 2-propynyl ethyl carbonate, 2-propynyl propyl carbonate, 2-propynyl butyl carbonate, 2-propynylphenyl carbonate, 2-propynyl cyclohexyl carbonate, di-2-propynyl carbonate, 1-methyl-2-propynyl Methyl carbonate, 1,1-dimethyl-2-propynyl methyl carbonate, 2-butynyl methyl carbonate, 3-butynyl methyl carbonate, 2-pentynyl methyl carbonate, 3-pentynyl methyl carbonate, 4-pentynyl methyl carbonate, etc. Monocarbonate;
2-Butin-1,4-diol dimethyldicarbonate, 2-butyne-1,4-diol diethyldicarbonate, 2-butyne-1,4-diol dipropyldicarbonate, 2-butyne-1,4-diol dibutyl Dicarbonates such as dicarbonate, 2-butyne-1,4-diol diphenyldicarbonate, 2-butyne-1,4-diol dicyclohexyldicarbonate;

酢酸2−プロピニル、プロピオン酸2−プロピニル、酪酸2−プロピニル、安息香酸2−プロピニル、シクロヘキシルカルボン酸2−プロピニル、酢酸1、1−ジメチル−2−プロピニル、プロピオン酸1、1−ジメチル−2−プロピニル、酪酸1、1−ジメチル−2−プロピニル、安息香酸1、1−ジメチル−2−プロピニル、シクロヘキシルカルボン酸1、1−ジメチル−2−プロピニル、酢酸2−ブチニル、酢酸3−ブチニル、酢酸2−ペンチニル、酢酸3−ペンチニル、酢酸4−ペンチニル、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ビニル、アクリル酸2−プロペニル、アクリル酸2−ブテニル、アクリル酸3−ブテニル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ビニル、メタクリル酸2−プロペニル、メタクリル酸2−ブテニル、メタクリル酸3−ブテニル、2−プロピン酸メチル、2−プロピン酸エチル、2−プロピン酸プロピル、2−プロピン酸ビニル、2−プロピン酸2−プロペニル、2−プロピン酸2−ブテニル、2−プロピン酸3−ブテニル、2−ブチン酸メチル、2−ブチン酸エチル、2−ブチン酸プロピル、2−ブチン酸ビニル、2−ブチン酸2−プロペニル、2−ブチン酸2−ブテニル、2−ブチン酸3−ブテニル、3−ブチン酸メチル、3−ブチン酸エチル、3−ブチン酸プロピル、3−ブチン酸ビニル、3−ブチン酸2−プロペニル、3−ブチン酸2−ブテニル、3−ブチン酸3−ブテニル、2−ペンチン酸メチル、2−ペンチン酸エチル、2−ペンチン酸プロピル、2−ペンチン酸ビニル、2−ペンチン酸2−プロペニル、2−ペンチン酸2−ブテニル、2−ペンチン酸3−ブテニル、3−ペンチン酸メチル、3−ペンチン酸エチル、3−ペンチン酸プロピル、3−ペンチン酸ビニル、3−ペンチン酸2−プロペニル、3−ペンチン酸2−ブテニル、3−ペンチン酸3−ブテニル、4−ペンチン酸メチル、4−ペンチン酸エチル、4−ペンチン酸プロピル、4−ペンチン酸ビニル、4−ペンチン酸2−プロペニル、4−ペンチン酸2−ブテニル、4−ペンチン酸3−ブテニル等のモノカルボン酸エステル;
2−ブチン−1,4−ジオール ジアセテート、2−ブチン−1,4−ジオール ジプロピオネート、2−ブチン−1,4−ジオール ジブチレート、2−ブチン−1,4−ジオール ジベンゾエート、2−ブチン−1,4−ジオール ジシクロヘキサンカルボキシレート等のジカルボン酸エステル;
2-Propinyl acetate, 2-Propinyl propionate, 2-Propinyl butyrate, 2-Propinyl benzoate, 2-Propinyl cyclohexylcarboxylic acid, 1,1-dimethyl-2-propynyl acetate, 1,1-dimethyl-2-Propionic acid Propinyl, butyric acid 1,1-dimethyl-2-propynyl, benzoate 1,1-dimethyl-2-propynyl, cyclohexylcarboxylic acid 1,1-dimethyl-2-propynyl, 2-butynyl acetate, 3-butynyl acetate, 2 acetate -Pentinyl, 3-pentynyl acetate, 4-pentynyl acetate, methyl acrylate, ethyl acrylate, propyl acrylate, vinyl acrylate, 2-propenyl acrylate, 2-butenyl acrylate, 3-butenyl acrylate, methyl methacrylate , Ethyl methacrylate, propyl methacrylate, vinyl methacrylate, 2-propenyl methacrylate, 2-butenyl methacrylate, 3-butenyl methacrylate, methyl 2-propate, ethyl 2-propate, propyl 2-propate, 2 -Vinyl propate, 2-propenyl 2-propenyl, 2-butenyl 2-propate, 3-butenyl 2-propate, methyl 2-butanoate, ethyl 2-butanoate, propyl 2-butinate, 2-butin Vinyl acid acid, 2-propenyl 2-propenyl, 2-butenyl 2-butenyl, 3-butenyl 2-butenyl, methyl 3-butanoate, ethyl 3-butanoate, propyl 3-butanoate, vinyl 3-butane , 2-propenyl 3-butanoate, 2-butenyl 3-butenyl, 3-butenyl 3-butenyl, methyl 2-pentate, ethyl 2-pentate, propyl 2-pentate, vinyl 2-pentate, 2 -2-propenyl pentate, 2-butenyl 2-pentinate, 3-butenyl 2-pentanoate, methyl 3-pentate, ethyl 3-pentate, propyl 3-pentate, vinyl 3-pentinate, 3-pentyne 2-propenyl acid, 2-butenyl 3-pentate, 3-butenyl 3-pentate, methyl 4-pentate, ethyl 4-pentate, propyl 4-pentate, vinyl 4-pentate, 2-pentanoate 2 -Monocarboxylic acid esters such as propenyl, 2-butenyl 4-pentanoate, 3-butenyl 4-pentanoate;
2-Butin-1,4-diol diacetate, 2-butyne-1,4-diol dipropionate, 2-butyne-1,4-diol dibutyrate, 2-butyne-1,4-diol dibenzoate, 2-butyne Dicarboxylic acid esters such as -1,4-diol dicyclohexanecarboxylate;

シュウ酸メチル 2−プロピニル、シュウ酸エチル 2−プロピニル、シュウ酸プロピル 2−プロピニル、シュウ酸2−プロピニル ビニル、シュウ酸アリル 2−プロピニル、シュウ酸ジ−2−プロピニル、シュウ酸2−ブチニル メチル、シュウ酸2−ブチニル エチル、シュウ酸2−ブチニルプロピル、シュウ酸2−ブチニル ビニル、シュウ酸アリル 2−ブチニル、シュウ酸 ジ−2−ブチニル、シュウ酸3−ブチニル メチル、シュウ酸3−ブチニル エチル、シュウ酸3−ブチニルプロピル、シュウ酸3−ブチニル
ビニル、シュウ酸アリル 3−ブチニル、シュウ酸ジ−3−ブチニル等のシュウ酸ジエステル;
Methyl oxalate 2-propinyl, ethyl oxalate 2-propynyl, propyl oxalate 2-propynyl, 2-propynyl oxalate vinyl, allyl oxalate 2-propinyl, di-2-propinyl oxalate, methyl 2-butynyl oxalate, 2-Butynyl ethyl oxalate, 2-butynylpropyl oxalate, 2-butynyl vinyl oxalate, allyl 2-butynyl oxalate, di-2-butynyl oxalate, 3-butynyl oxalate methyl, 3-butynyl oxalate ethyl , Oxalic acid diesters such as 3-butynylpropyl oxalate, 3-butynyl vinyl oxalate, allyl 3-butynyl oxalate, di-3-butynyl oxalate;

メチル(2−プロピニル)(ビニル)ホスフィンオキシド、ジビニル(2−プロピニル)ホスフィンオキシド、ジ(2−プロピニル)(ビニル)ホスフィンオキシド、ジ(2−プロペニル)2(−プロピニル)ホスフィンオキシド、ジ(2−プロピニル)(2−プロペニル)ホスフィンオキシド、ジ(3−ブテニル)(2−プロピニル)ホスフィンオキシド、及びジ(2−プロピニル)(3−ブテニル)ホスフィンオキシド等のホスフィンオキシド; Methyl (2-propynyl) (vinyl) phosphine oxide, divinyl (2-propynyl) phosphine oxide, di (2-propynyl) (vinyl) phosphine oxide, di (2-propenyl) 2 (-propynyl) phosphine oxide, di (2) Phosphine oxides such as −propynyl) (2-propenyl) phosphine oxide, di (3-butenyl) (2-propynyl) phosphine oxide, and di (2-propynyl) (3-butenyl) phosphine oxide;

メチル(2−プロペニル)ホスフィン酸2−プロピニル、2−ブテニル(メチル)ホスフィン酸2−プロピニル、ジ(2−プロペニル)ホスフィン酸2−プロピニル、ジ(3−ブテニル)ホスフィン酸2−プロピニル、メチル(2−プロペニル)ホスフィン酸1,1−ジメチル−2−プロピニル、2−ブテニル(メチル)ホスフィン酸1,1−ジメチル−
2−プロピニル、ジ(2−プロペニル)ホスフィン酸1,1−ジメチル−2−プロピニル、及びジ(3−ブテニル)ホスフィン酸1,1−ジメチル−2−プロピニル、メチル(2−プロピニル)ホスフィン酸2−プロペニル、メチル(2−プロピニル)ホスフィン酸3−ブテニル、ジ(2−プロピニル)ホスフィン酸2−プロペニル、ジ(2−プロピニル)ホスフィン酸3−ブテニル、2−プロピニル(2−プロペニル)ホスフィン酸2−プロペニル、及び2−プロピニル(2−プロペニル)ホスフィン酸3−ブテニル等のホスフィン酸エステル;
2-propynyl methyl (2-propenyl) phosphinic acid, 2-propynyl 2-butenyl (methyl) phosphinic acid, 2-propynyl di (2-propenyl) phosphinic acid, 2-propynyl di (3-butenyl) phosphinate, methyl ( 2-propenyl) phosphinic acid 1,1-dimethyl-2-propynyl, 2-butenyl (methyl) phosphinic acid 1,1-dimethyl-
2-Propinyl, di (2-propenyl) phosphinic acid 1,1-dimethyl-2-propynyl, and di (3-butenyl) phosphinic acid 1,1-dimethyl-2-propynyl, methyl (2-propynyl) phosphinic acid 2 -Propenyl, methyl (2-propynyl) phosphinic acid 3-butenyl, di (2-propynyl) phosphinic acid 2-propenyl, di (2-propynyl) phosphinic acid 3-butenyl, 2-propynyl (2-propenyl) phosphinic acid 2 -Phosphinic acid esters such as propenyl and 2-propynyl (2-propenyl) phosphinic acid 3-butenyl;

2−プロペニルホスホン酸メチル 2−プロピニル、2−ブテニルホスホン酸メチル(2−プロピニル)、2−プロペニルホスホン酸(2−プロピニル)(2−プロペニル)、3−ブテニルホスホン酸(3−ブテニル)(2−プロピニル)、2−プロペニルホスホン酸(1,1−ジメチル−2−プロピニル)(メチル)、2−ブテニルホスホン酸(1,1−ジメチル−2−プロピニル)(メチル)、2−プロペニルホスホン酸(1,1−ジメチル−2−プロピニル)(2−プロペニル)、及び3−ブテニルホスホン酸(3−ブテニル)(1,1−ジメチル−2−プロピニル)、メチルホスホン酸(2−プロピニル)(2−プロペニル)、メチルホスホン酸(3−ブテニル)(2−プロピニル)、メチルホスホン酸(1,1−ジメチル−2−プロピニル)(2−プロペニル)、メチルホスホン酸(3−ブテニル)(1,1−ジメチル−2−プロピニル)、エチルホスホン酸(2−プロピニル)(2−プロペニル)、エチルホスホン酸(3−ブテニル)(2−プロピニル)、エチルホスホン酸(1,1−ジメチル−2−プロピニル)(2−プロペニル)、及びエチルホスホン酸(3−ブテニル)(1,1−ジメチル−2−プロピニル)等のホスホン酸エステル; Methyl 2-propenyl phosphonate 2-propynyl, methyl 2-butenyl phosphonate (2-propynyl), 2-propenyl phosphonic acid (2-propynyl) (2-propenyl), 3-butenyl phosphonic acid (3-butenyl) (2-propynyl) ), 2-Propenylphosphonic acid (1,1-dimethyl-2-propynyl) (methyl), 2-butenylphosphonic acid (1,1-dimethyl-2-propinyl) (methyl), 2-propenylphosphonic acid (1,1) -Dimethyl-2-propynyl) (2-propenyl), and 3-butenylphosphonic acid (3-butenyl) (1,1-dimethyl-2-propynyl), methylphosphonic acid (2-propynyl) (2-propenyl), methylphosphonic acid (3-Butenyl) (2-propynyl), methylphosphonic acid (1,1-dimethyl-2-propynyl) (2-propenyl), methylphosphonic acid (3-butenyl) (1,1-dimethyl-2-propynyl), ethyl Phosphonate (2-propynyl) (2-propenyl), ethylphosphonic acid (3-butenyl) (2-propynyl), ethylphosphonic acid (1,1-dimethyl-2-propynyl) (2-propenyl), and ethylphosphon Phosphonate esters such as acid (3-butenyl) (1,1-dimethyl-2-propynyl);

リン酸(メチル)(2−プロペニル)(2−プロピニル)、リン酸(エチル)(2−プロペニル)(2−プロピニル)、リン酸(2−ブテニル)(メチル)(2−プロピニル)、リン酸(2−ブテニル)(エチル)(2−プロピニル)、リン酸(1,1−ジメチル−2−プロピニル)(メチル)(2−プロペニル)、リン酸(1,1−ジメチル−2−プロピニル)(エチル)(2−プロペニル)、リン酸(2−ブテニル)(1,1−ジメチル−2−プロピニル)(メチル)、及びリン酸(2−ブテニル)(エチル)(1,1−ジメチル−2−プロピニル)等のリン酸エステル;
これらのうち、アルキニルオキシ基を有する化合物は、電解液中でより安定に負極被膜を形成するため好ましい。
Phosphoric acid (methyl) (2-propenyl) (2-propynyl), phosphoric acid (ethyl) (2-propenyl) (2-propynyl), phosphoric acid (2-butenyl) (methyl) (2-propynyl), phosphoric acid (2-Butenyl) (Ethyl) (2-Propinyl), Phosphate (1,1-dimethyl-2-Propinyl) (Methyl) (2-Propenyl), Phosphate (1,1-dimethyl-2-Propinyl) ( Ethyl) (2-propenyl), phosphate (2-butenyl) (1,1-dimethyl-2-propynyl) (methyl), and phosphate (2-butenyl) (ethyl) (1,1-dimethyl-2- Phosphate esters such as propynyl);
Of these, a compound having an alkynyloxy group is preferable because it forms a negative electrode film more stably in the electrolytic solution.

さらに、
2−プロピニルメチルカーボネート、ジ−2−プロピニルカーボネート、2−ブチン−1,4−ジオール ジメチルジカーボネート、酢酸2−プロピニル、2−ブチン−1,4−ジオール ジアセテート、シュウ酸メチル 2−プロピニル、シュウ酸ジ−2−プロピニル
等の化合物が保存特性向上の点から特に好ましい。
further,
2-propynylmethyl carbonate, di-2-propynyl carbonate, 2-butyne-1,4-diol dimethyldicarbonate, 2-propynyl acetate, 2-butyne-1,4-diol diacetate, methyl 2-propynyl oxalate, Compounds such as di-2-propynyl oxalate are particularly preferable from the viewpoint of improving storage characteristics.

上記三重結合を有する化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。本発明の非水系電解液全体に対する三重結合を有する化合物の含有量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは1質量%以下の濃度で含有させる。上記範囲を満たした場合は、出力特性、負荷特性、サイクル特性、高温保存特性等の効果がより向上する。 As the compound having a triple bond, one type may be used alone, or two or more types may be used in combination in any combination and ratio. The content of the compound having a triple bond with respect to the entire non-aqueous electrolyte solution of the present invention is not limited and is arbitrary as long as the effect of the present invention is not significantly impaired. Contained at a concentration of 01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and usually 5% by mass or less, preferably 3% by mass or less, more preferably 1% by mass or less. Let me. When the above range is satisfied, the effects such as output characteristics, load characteristics, cycle characteristics, and high temperature storage characteristics are further improved.

1−5−4.その他の助剤
その他の助剤としては、上記助剤以外の公知の助剤を用いることができる。その他の助
剤としては、
エリスリタンカーボネート、スピロ−ビス−ジメチレンカーボネート、メトキシエチル−メチルカーボネート等のカーボネート化合物;
2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ジビニル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;
エチレンサルファイト、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、ジフェニルスルホン、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド、ビニルスルホン酸メチル、ビニルスルホン酸エチル、ビニルスルホン酸アリル、ビニルスルホン酸プロパルギル、アリルスルホン酸メチル、アリルスルホン酸エチル、アリルスルホン酸アリル、アリルスルホン酸プロパルギル、1,2−ビス(ビニルスルホニロキシ)エタン、メチル硫酸リチウム、エチル硫酸リチウム、プロパルギル硫酸リチウム等の含硫黄化合物;
1-5-4. Other Auxiliary Agents As the other auxiliary agents, known auxiliary agents other than the above auxiliary agents can be used. Other auxiliaries include
Carbonate compounds such as erythritan carbonate, spiro-bis-dimethylene carbonate, methoxyethyl-methyl carbonate;
Spiro compounds such as 2,4,8,10-tetraoxaspiro [5.5] undecane, 3,9-divinyl-2,4,8,10-tetraoxaspiro [5.5] undecane;
Ethylene sulphite, methyl fluorosulfonate, ethyl fluorosulfonate, methyl methane sulfonate, ethyl methane sulfonate, busulfan, sulfolene, diphenyl sulfone, N, N-dimethylmethane sulfonamide, N, N-diethyl methanesulfonamide, vinyl Methyl sulfonate, ethyl vinyl sulfonate, allyl vinyl sulfonate, propargyl vinyl sulfonate, methyl allyl sulfonate, ethyl allyl sulfonate, allyl allyl sulfonate, propargyl allyl sulfonate, 1,2-bis (vinyl sulfonate) Sulfonate compounds such as ethane, lithium methylsulfate, lithium ethylsulfate, lithium propargylsulfate;

1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン及びN−メチルスクシンイミド等の含窒素化合物;
亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、メチルホスホン酸ジメチル、エチルホスホン酸ジエチル、ビニルホスホン酸ジメチル、ビニルホスホン酸ジエチル、ジメチルホスフィン酸メチル、ジエチルホスフィン酸エチル、トリメチルホスフィンオキシド、トリエチルホスフィンオキシド
等の含燐化合物;
Nitrogen-containing compounds such as 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone and N-methylsuccinimide;
Trimethyl phosphate, triethyl phosphate, triphenyl phosphate, trimethyl phosphate, triethyl phosphate, triphenyl phosphate, dimethyl methylphosphonate, diethyl ethylphosphonate, dimethyl vinylphosphonate, diethyl vinylphosphonate, dimethylphosphine Phosphorus-containing compounds such as methyl phosphate, ethyl diethylphosphine, trimethylphosphine oxide, triethylphosphine oxide;

ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物;
フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物;
2−プロピニル 2−(ジエトキシホスホリル)アセテート、1−メチル−2−プロピニル 2−(ジエトキシホスホリル)アセテート、1,1−ジメチル−2−プロピニル 2−(ジエトキシホスホリル)アセテート、ペンタフルオロフェニルメタンスルホネート、ペンタフルオロフェニルトリフルオロメタンスルホネート、酢酸ペンタフルオロフェニル、トリフルオロ酢酸ペンタフルオロフェニル、メチルペンタフルオロフェニルカーボネート、2−(メタンスルホニルオキシ)プロピオン酸2−プロピニル、2−(メタンスルホニルオキシ)プロピオン酸2−メチル、2−(メタンスルホニルオキシ)プロピオン酸2−エチル、メタンスルホニルオキシ酢酸2−プロピニル、メタンスルホニルオキシ酢酸2−メチル、メタンスルホニルオキシ酢酸エチル、リチウム エチル メチルオキシカルボニルホスホネート、リチウム エチル エチルオキシカルボニルホスホネート、リチウム エチル 2−プロピニルオキシカルボニルホスホネート、リチウム エチル 1−メチル−2−プロピニルオキシカルボニルホスホネート、リチウム エチル 1,1−ジメチル−2−プロピニルオキシカルボニルホスホネート、リチウム メチル スルフェート、リチウム エチル スルフェート、リチウム 2−プロピニル スルフェート、リチウム 1−メチル−2−プロピニル スルフェート、リチウム 1,1−ジメチル−2−プロピニル スルフェート、リチウム 2,2,2−トリフルオロエチル スルフェート、メチル トリメチルシリル スルフェート、エチル トリメチルシリル スルフェート、2−プロピニル トリメチルシリル スルフェート、ジリチウム エチレン ジスルフェート、2−ブチン−1,4−ジイル ジメタンスルホネート、2−ブチン−1,4−ジイル ジエタンスルホネート、2−ブチン−1,4−ジイル ジホルメート、2−ブチン−1,4−ジイル ジアセテート、2−ブチン−1,4−ジイル ジプロピオネート、4−ヘキサジイン−1,6−ジイル ジメタンスルホネート、2−プロピニル メタンスルホネート、1−メチル−2−プロピニル メタンスルホネート、1,1−ジメチル−2−プ
ロピニル メタンスルホネート、2−プロピニル エタンスルホネート、2−プロピニル
ビニルスルホネート、メチル 2−プロピニル カーボネート、エチル 2−プロピニル カーボネート、ビス(2−プロピニル) カーボネート、メチル 2−プロピニル オキサレート、エチル 2−プロピニル オキサレート、ビス(2−プロピニル) オキサレート、2−プロピニル アセテート、2−プロピニル ホルメート、2−プロピニル
メタクリレート、ジ(2−プロピニル) グルタレート、2,2−ジオキシド−1,2−オキサチオラン−4−イル アセテート、2,2−ジオキシド−1,2−オキサチオラン−4−イル プロピオネート、5−メチル−1,2−オキサチオラン−4−オン 2,2−ジオキシド、5、5−ジメチル−1,2−オキサチオラン−4−オン 2,2−ジオキシド、2−イソシアナトエチル アクリレート、2−イソシアナトエチル メタクリレート、2−イソシアナトエチル クロトネート、2−(2−イソシアナトエトキシ)エチル アクリレート、2−(2−イソシアナトエトキシ)エチル メタクリレート、2−(2−イソシアナトエトキシ)エチル クロトネート、2−アリルコハク酸無水物、2−(1−ペンテン−3−イル)コハク酸無水物、2−(1−ヘキセン−3−イル)コハク酸無水物、2−(1−ヘプテン−3−イル)コハク酸無水物、2−(1−オクテン−3−イル)コハク酸無水物、2−(1−ノネン−3−イル)コハク酸無水物、2−(3−ブテン−2−イル)コハク酸無水物、2−(2−メチルアリル)コハク酸無水物、2−(3−メチル−3−ブテン−2−イル)コハク酸無水物
等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。
Hydrocarbon compounds such as heptane, octane, nonane, decane, cycloheptane;
Fluoro-containing aromatic compounds such as fluorobenzene, difluorobenzene, hexafluorobenzene and benzotrifluoride;
2-Propinyl 2- (diethoxyphosphoryl) acetate, 1-methyl-2-propynyl 2- (diethoxyphosphoryl) acetate, 1,1-dimethyl-2-propynyl 2- (diethoxyphosphoryl) acetate, pentafluorophenylmethane Sulfonate, pentafluorophenyl trifluoromethanesulfonate, pentafluorophenyl acetate, pentafluorophenyl trifluoroacetate, methylpentafluorophenyl carbonate, 2-propynyl 2- (methanesulfonyloxy) propionic acid, 2- (methanesulfonyloxy) propionic acid 2 -Methyl, 2-ethyl 2- (methanesulfonyloxy) propionate, 2-propynyl methanesulfonyloxyacetic acid, 2-methylmethanesulfonyloxyacetate, ethyl methanesulfonyloxyacetate, lithium ethyl methyloxycarbonylphosphonate, lithium ethyl ethyloxycarbonyl Phosphonate, Lithium Ethyl 2-Propinyloxycarbonylphosphonate, Lithium Ethyl 1-Methyl-2-Propinyloxycarbonylphosphonate, Lithium Ethyl 1,1-dimethyl-2-Propinyloxycarbonylphosphonate, Lithium Methyl Sulfate, Lithium Ethyl Sulfate, Lithium 2- Propinyl sulphate, lithium 1-methyl-2-propynyl sulphate, lithium 1,1-dimethyl-2-propynyl sulphate, lithium 2,2,2-trifluoroethyl sulphate, methyl trimethylsilyl sulphate, ethyl trimethylsilyl sulphate, 2-propynyl trimethylsilyl sulphate , Dilithium ethylene disulfate, 2-butin-1,4-diyl dimethanesulfonate, 2-butin-1,4-diyldiethanesulfonate, 2-butin-1,4-diyldiformate, 2-butin-1,4- Diyl diacetate, 2-butine-1,4-diyl dipropionate, 4-hexadiine-1,6-diyl dimethanesulfonate, 2-propynyl methanesulfonate, 1-methyl-2-propynyl methanesulfonate, 1,1-dimethyl- 2-Propinyl Methane Sulphonate, 2-Propinyl Ethane Sulfonate, 2-Propinyl Vinyl Sulfonate, Methyl 2-Propinyl Carbonate, Ethyl 2-Propinyl Carbonide, bis (2-propynyl) carbonate, methyl 2-propynyl oxalate, ethyl 2-propynyl oxalate, bis (2-propynyl) oxalate, 2-propynyl acetate, 2-propynyl formate, 2-propynyl methacrylate, di (2-propynyl) ) Glutarate, 2,2-dioxide-1,2-oxathiolan-4-yl acetate, 2,2-dioxide-1,2-oxathiolan-4-yl propionate, 5-methyl-1,2-oxathiolan-4-one 2,2-Dioxide, 5,5-dimethyl-1,2-oxathiolane-4-one 2,2-dioxide, 2-isocyanatoethyl acrylate, 2-isocyanatoethyl methacrylate, 2-isocyanatoethyl crotonate, 2- (2-Isocyanatoethoxy) ethyl acrylate, 2- (2-isocyanatoethoxy) ethyl methacrylate, 2- (2-isocyanatoethoxy) ethyl crotonate, 2-allyl succinate anhydride, 2- (1-pentene-3-3) Il) Succinic anhydride, 2- (1-hexene-3-yl) succinic anhydride, 2- (1-hepten-3-yl) succinic anhydride, 2- (1-octene-3-yl) Succinic anhydride, 2- (1-nonen-3-yl) succinic anhydride, 2- (3-buten-2-yl) succinic anhydride, 2- (2-methylallyl) succinic anhydride, 2 -(3-Methyl-3-buten-2-yl) succinic anhydride and the like can be mentioned. These may be used alone or in combination of two or more. By adding these auxiliaries, the capacity retention characteristics and cycle characteristics after high temperature storage can be improved.

その他の助剤の含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。その他の助剤は、非水系電解液100質量%中、好ましくは、0.01質量%以上であり、また、5質量%以下である。この範囲であれば、その他助剤の効果が十分に発現させやすく、満充電・高温保存時のガス発生を抑制し、電気化学的耐酸化性や高負荷放電特性等の電池の特性が低下するといった事態も回避しやすい。 The content of the other auxiliary agent is not particularly limited and is arbitrary as long as the effect of the present invention is not significantly impaired. The other auxiliary agent is preferably 0.01% by mass or more and 5% by mass or less in 100% by mass of the non-aqueous electrolyte solution. Within this range, the effects of other auxiliaries are likely to be fully exhibited, gas generation during full charge and high temperature storage is suppressed, and battery characteristics such as electrochemical oxidation resistance and high load discharge characteristics are deteriorated. It is easy to avoid such a situation.

以上、上述の非水系電解液は、本発明に記載の非水系電解液電池の内部に存在するものも含まれる。
具体的には、リチウム塩や溶媒、助剤等の非水系電解液の構成要素を別途合成し、実質的に単離されたものから非水系電解液を調製し、下記に記載する方法にて別途組み立てた電池内に注液して得た非水系電解液電池内の非水系電解液である場合や、本発明の非水系電解液の構成要素を個別に電池内に入れておき、電池内にて混合させることにより本発明の非水系電解液と同じ組成を得る場合、更には、本発明の非水系電解液を構成する化合物を該非水系電解液電池内で発生させて、本発明の非水系電解液と同じ組成を得る場合も含まれるものとする。
As described above, the above-mentioned non-aqueous electrolyte solution includes those existing inside the non-aqueous electrolyte battery described in the present invention.
Specifically, the components of the non-aqueous electrolyte solution such as lithium salt, solvent, and auxiliary agent are separately synthesized, and the non-aqueous electrolyte solution is prepared from the substantially isolated one, and the method described below is used. Non-aqueous electrolyte solution obtained by injecting liquid into a separately assembled battery When it is a non-aqueous electrolyte solution in a battery, or when the components of the non-aqueous electrolyte solution of the present invention are individually put in the battery, the inside of the battery When the same composition as the non-aqueous electrolyte solution of the present invention is obtained by mixing in, further, the compound constituting the non-aqueous electrolyte solution of the present invention is generated in the non-aqueous electrolyte battery to generate the non-aqueous electrolyte battery of the present invention. The case where the same composition as the aqueous electrolytic solution is obtained is also included.

2.電池構成
本発明の一実施形態である非水系電解液は、非水系電解液電池の中でも二次電池用、例えばリチウム二次電池用の電解液として用いるのに好適である。以下、本発明の非水系電解液を用いた非水系電解液電池について説明する。
本発明の一実施形態である非水系電解液電池は、公知の構造を採ることができ、典型的には、イオン(例えば、リチウムイオン)を吸蔵・放出可能な負極及び正極と、上記の本発明の非水系電解液とを備える。
2. 2. Battery configuration The non-aqueous electrolyte solution according to the embodiment of the present invention is suitable for use as an electrolytic solution for a secondary battery, for example, a lithium secondary battery among non-aqueous electrolyte batteries. Hereinafter, the non-aqueous electrolyte battery using the non-aqueous electrolyte battery of the present invention will be described.
The non-aqueous electrolyte battery according to an embodiment of the present invention can adopt a known structure, and typically includes a negative electrode and a positive electrode capable of occluding and releasing ions (for example, lithium ions), and the above-mentioned book. The non-aqueous electrolyte solution of the present invention is provided.

2−1.負極
以下に負極に使用される負極活物質について述べる。負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。具体例としては、炭素質材料、Liと合金可能な金属粒子と黒鉛粒子とを含有する負極活物質等が挙げられ
る。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
2-1. Negative electrode The negative electrode active material used for the negative electrode will be described below. The negative electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. Specific examples include a carbonaceous material, a negative electrode active material containing metal particles that can be alloyed with Li and graphite particles, and the like. One of these may be used alone, or two or more thereof may be arbitrarily combined and used in combination.

<負極活物質>
負極活物質としては、炭素質材料、Liと合金可能な金属粒子と黒鉛粒子とを含有する負極活物質等が挙げられる。
炭素質材料としては、(1)天然黒鉛、(2)人造黒鉛、(3)非晶質炭素、(4)炭素被覆黒鉛、(5)黒鉛被覆黒鉛、(6)樹脂被覆黒鉛等が挙げられる。
<Negative electrode active material>
Examples of the negative electrode active material include a carbonaceous material, a negative electrode active material containing metal particles capable of alloying with Li and graphite particles, and the like.
Examples of the carbonaceous material include (1) natural graphite, (2) artificial graphite, (3) amorphous carbon, (4) carbon-coated graphite, (5) graphite-coated graphite, and (6) resin-coated graphite. ..

(1)天然黒鉛としては、鱗状黒鉛、鱗片状黒鉛、土壌黒鉛及び/又はこれらの黒鉛を原料に球形化や緻密化等の処理を施した黒鉛粒子等が挙げられる。これらの中でも、粒子の充填性や充放電レート特性の観点から、球形化処理を施した球状もしくは楕円体状の黒鉛が特に好ましい。
球形化処理に用いる装置としては、例えば、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し粒子に与える装置を用いることができる。
具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された炭素材に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、球形化処理を行なう装置が好ましい。また、炭素材を循環させることによって機械的作用を繰り返して与える機構を有するものであるのが好ましい。
(1) Examples of natural graphite include scaly graphite, scaly graphite, soil graphite, and / or graphite particles obtained by subjecting these graphites to spheroidization, densification, or the like. Among these, spherical or ellipsoidal graphite that has been subjected to a spheroidizing treatment is particularly preferable from the viewpoint of particle packing property and charge / discharge rate characteristics.
As the device used for the spheroidizing process, for example, a device that repeatedly applies mechanical actions such as compression, friction, and shearing force including the interaction of particles mainly with impact force to the particles can be used.
Specifically, it has a rotor with a large number of blades installed inside the casing, and by rotating the rotor at high speed, mechanical actions such as impact compression, friction, and shearing force are applied to the carbon material introduced inside. , And a device that performs the spheroidizing process is preferable. Further, it is preferable that the carbon material has a mechanism for repeatedly giving a mechanical action by circulating the carbon material.

例えば前述の装置を用いて球形化処理する場合は、回転するローターの周速度を30〜100m/秒にするのが好ましく、40〜100m/秒にするのがより好ましく、50〜100m/秒にするのが更に好ましい。また、処理は、単に炭素質物を通過させるだけでも可能であるが、30秒以上装置内を循環又は滞留させて処理するのが好ましく、1分以上装置内を循環又は滞留させて処理するのがより好ましい。 For example, in the case of sphericalizing using the above-mentioned device, the peripheral speed of the rotating rotor is preferably 30 to 100 m / sec, more preferably 40 to 100 m / sec, and 50 to 100 m / sec. It is more preferable to do so. Further, although the treatment can be carried out simply by passing a carbonaceous material, it is preferable to circulate or retain in the apparatus for 30 seconds or more, and to circulate or retain in the apparatus for 1 minute or more. More preferred.

(2)人造黒鉛としては、コールタールピッチ、石炭系重質油、常圧残油、石油系重質油、芳香族炭化水素、窒素含有環状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルブチラール、天然高分子、ポリフェニレンサイルファイド、ポリフェニレンオキシド、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂等の有機化合物を、通常2500℃以上、通常3200℃以下の範囲の温度で黒鉛化し、必要に応じて粉砕及び/又は分級して製造されたものが挙げられる。この際、ケイ素含有化合物やホウ素含有化合物等を黒鉛化触媒として用いることもできる。また、ピッチの熱処理過程で分離したメソカーボンマイクロビーズを黒鉛化して得た人造黒鉛が挙げられる。更に一次粒子からなる造粒粒子の人造黒鉛も挙げられる。例えば、メソカーボンマイクロビーズや、コークス等の黒鉛化可能な炭素質材料粉体とタール、ピッチ等の黒鉛化可能なバインダーと黒鉛化触媒を混合し、黒鉛化し、必要に応じて粉砕することで得られる、扁平状の粒子を複数、配向面が非平行となるように集合又は結合した黒鉛粒子が挙げられる。 (2) As artificial graphite, coal tar pitch, coal-based heavy oil, atmospheric residual oil, petroleum-based heavy oil, aromatic hydrocarbons, nitrogen-containing cyclic compounds, sulfur-containing cyclic compounds, polyphenylene, polyvinyl chloride, etc. Organic compounds such as polyvinyl alcohol, polyacrylonitrile, polyvinyl butyral, natural polymers, polyphenylene silfide, polyphenylene oxide, furfuryl alcohol resin, phenol-formaldehyde resin, and imide resin are usually used in the range of 2500 ° C or higher and usually 3200 ° C or lower. Examples thereof include those produced by graphitization at temperature, crushing and / or classifying as necessary. At this time, a silicon-containing compound, a boron-containing compound, or the like can also be used as a graphitization catalyst. In addition, artificial graphite obtained by graphitizing mesocarbon microbeads separated in a pitch heat treatment process can be mentioned. Further, artificial graphite of granulated particles composed of primary particles can also be mentioned. For example, by mixing mesocarbon microbeads, graphitizable carbon material powder such as coke with graphitizable binder such as tar and pitch, and graphitizing catalyst, graphitizing and pulverizing if necessary. Examples thereof include graphite particles obtained by assembling or bonding a plurality of flat particles so that the orientation planes are non-parallel.

(3)非晶質炭素としては、タール、ピッチ等の易黒鉛化性炭素前駆体を原料に用い、黒鉛化しない温度領域(400〜2200℃の範囲)で1回以上熱処理した非晶質炭素粒子や、樹脂等の難黒鉛化性炭素前駆体を原料に用いて熱処理した非晶質炭素粒子が挙げられる。
(4)炭素被覆黒鉛としては、天然黒鉛及び/又は人造黒鉛と、タール、ピッチや樹脂等の有機化合物である炭素前駆体を混合し、400〜2300℃の範囲で1回以上熱処理し得られる天然黒鉛及び/又は人造黒鉛を核黒鉛とし、非晶質炭素が核黒鉛を被覆している炭素黒鉛複合体が挙げられる。複合の形態は、表面全体又は一部を被覆しても、複数の一次粒子を前記炭素前駆体起源の炭素をバインダーとして複合させたものであってもよい。また、天然黒鉛及び/又は人造黒鉛にベンゼン、トルエン、メタン、プロパン、芳香族
系の揮発分等の炭化水素系ガス等を高温で反応させ、黒鉛表面に炭素を堆積(CVD)させることでも炭素黒鉛複合体を得ることもできる。
(3) As the amorphous carbon, an amorphous carbon which uses an easily graphitizable carbon precursor such as tar or pitch as a raw material and is heat-treated at least once in a temperature range (range of 400 to 2200 ° C.) where graphitization does not occur. Examples thereof include amorphous carbon particles that have been heat-treated using particles or a non-graphitizable carbon precursor such as a resin as a raw material.
(4) The carbon-coated graphite can be obtained by mixing natural graphite and / or artificial graphite with a carbon precursor which is an organic compound such as tar, pitch or resin, and heat-treating it once or more in the range of 400 to 2300 ° C. Examples thereof include a carbon graphite composite in which natural graphite and / or artificial graphite is used as nuclear graphite and amorphous carbon is coated on the nuclear graphite. The form of the composite may be a coating of the entire surface or a part thereof, or a composite of a plurality of primary particles using carbon derived from the carbon precursor as a binder. Carbon can also be deposited (CVD) on the graphite surface by reacting natural graphite and / or artificial graphite with hydrocarbon gases such as benzene, toluene, methane, propane, and aromatic volatiles at high temperatures. Graphite composites can also be obtained.

(5)黒鉛被覆黒鉛としては、天然黒鉛及び/又は人造黒鉛と、タール、ピッチや樹脂等の易黒鉛化性の有機化合物の炭素前駆体を混合し、2400〜3200℃程度の範囲で1回以上熱処理し得られる天然黒鉛及び/又は人造黒鉛を核黒鉛とし、黒鉛化物が核黒鉛の表面全体又は一部を被覆している黒鉛被覆黒鉛が挙げられる。
(6)樹脂被覆黒鉛としては、天然黒鉛及び/又は人造黒鉛と、樹脂等を混合、400℃未満の温度で乾燥し得られる天然黒鉛及び/又は人造黒鉛を核黒鉛とし、樹脂等が核黒鉛を被覆している樹脂被覆黒鉛が挙げられる。
(5) As the graphite-coated graphite, natural graphite and / or artificial graphite is mixed with a carbon precursor of an easily graphitizable organic compound such as tar, pitch or resin, and once in the range of about 2400 to 3200 ° C. Examples thereof include graphite-coated graphite in which natural graphite and / or artificial graphite obtained by the above heat treatment is used as nuclear graphite, and graphite is coated on the entire or a part of the surface of the nuclear graphite.
(6) As the resin-coated graphite, natural graphite and / or artificial graphite obtained by mixing natural graphite and / or artificial graphite and a resin or the like and drying at a temperature of less than 400 ° C. is used as nuclear graphite, and the resin or the like is nuclear graphite. Examples thereof include resin-coated graphite coating the above.

また、(1)〜(6)の炭素質材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記(2)〜(5)に用いられるタール、ピッチや樹脂等の有機化合物としては、石炭系重質油、直流系重質油、分解系石油重質油、芳香族炭化水素、N環化合物、S環化合物、ポリフェニレン、有機合成高分子、天然高分子、熱可塑性樹脂及び熱硬化性樹脂からなる群より選ばれた炭化可能な有機化合物等が挙げられる。また、原料有機化合物は混合時の粘度を調整するため、低分子有機溶媒に溶解させて用いてもよい。
Further, as the carbonaceous materials (1) to (6), one type may be used alone, or two or more types may be used in combination in any combination and ratio.
Examples of the organic compounds such as tar, pitch and resin used in (2) to (5) above include coal-based heavy oil, DC-based heavy oil, decomposition-based petroleum heavy oil, aromatic hydrocarbons, and N-ring compounds. , S-ring compounds, polyphenylenes, synthetic organic polymers, natural polymers, thermoplastic resins, thermosetting resins and the like, which are carbonizable organic compounds selected from the group. Further, the raw material organic compound may be used by being dissolved in a low molecular weight organic solvent in order to adjust the viscosity at the time of mixing.

また、核黒鉛の原料となる天然黒鉛及び/又は人造黒鉛としては、球形化処理を施した天然黒鉛が好ましい。
負極活物質として用いられる合金系材料としては、リチウムを吸蔵・放出可能であれば、リチウム単体、リチウム合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の化合物のいずれであってもよく、特に制限されない。リチウム合金を形成する単体金属及び合金としては、13族及び14族の金属・半金属元素(即ち炭素を除く)を含む材料であることが好ましく、より好ましくはアルミニウム、ケイ素及びスズの単体金属及びこれら原子を含む合金又は化合物である。これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
Further, as the natural graphite and / or the artificial graphite which is a raw material of the nuclear graphite, the natural graphite which has been subjected to the spheroidizing treatment is preferable.
As an alloy-based material used as a negative electrode active material, if lithium can be occluded and released, lithium alone, a single metal and alloy forming a lithium alloy, or their oxides, carbides, nitrides, silicides, and sulfides. It may be either a substance or a compound such as a phosphate, and is not particularly limited. The elemental metal and alloy forming the lithium alloy are preferably materials containing group 13 and group 14 metal / semi-metal elements (that is, excluding carbon), and more preferably elemental metals of aluminum, silicon and tin. An alloy or compound containing these atoms. One of these may be used alone, or two or more thereof may be used in any combination and ratio.

<炭素質材料の物性>
負極活物質として炭素質材料を用いる場合、以下の物性を有するものであることが望ましい。
(X線パラメータ)
炭素質材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、通常0.335nm以上であり、また、通常0.360nm以下であり、0.350nm以下が好ましく、0.345nm以下がさらに好ましい。また、学振法によるX線回折で求めた炭素質材料の結晶子サイズ(Lc)は、1.0nm以上であることが好ましく、中でも1.5nm以上であることがさらに好ましい。
<Physical properties of carbonaceous materials>
When a carbonaceous material is used as the negative electrode active material, it is desirable that it has the following physical properties.
(X-ray parameters)
The d value (interlayer distance) of the lattice planes (002 planes) determined by X-ray diffraction of carbonaceous materials is usually 0.335 nm or more, and usually 0.360 nm or less, 0.350 nm. The following is preferable, and 0.345 nm or less is more preferable. The crystallite size (Lc) of the carbonaceous material determined by X-ray diffraction by the Gakushin method is preferably 1.0 nm or more, and more preferably 1.5 nm or more.

(体積基準平均粒径)
炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)であり、通常1μm以上であり、3μm以上が好ましく、5μm以上がさらに好ましく、7μm以上が特に好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましく、25μm以下が特に好ましい。
(Volume-based average particle size)
The volume-based average particle size of the carbonaceous material is the volume-based average particle size (median diameter) determined by the laser diffraction / scattering method, and is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and 7 μm. The above is particularly preferable, and usually 100 μm or less, 50 μm or less is preferable, 40 μm or less is more preferable, 30 μm or less is further preferable, and 25 μm or less is particularly preferable.

体積基準平均粒径が上記範囲を下回ると、不可逆容量が増大して、初期の電池容量の損失を招くことになる場合がある。また、上記範囲を上回ると、塗布により電極を作製する際に、不均一な塗面になりやすく、電池製作工程上望ましくない場合がある。
体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(例えば、堀場製作所社製LA−700)を用いて行なう。該測定で求められるメジアン径を、本発明の炭素質材料の体積基準平均粒径と定義する。
If the volume-based average particle size falls below the above range, the irreversible capacity may increase, resulting in a loss of initial battery capacity. On the other hand, if it exceeds the above range, a non-uniform coating surface is likely to occur when the electrode is produced by coating, which may not be desirable in the battery manufacturing process.
The volume-based average particle size is measured by dispersing carbon powder in a 0.2 mass% aqueous solution (about 10 mL) of polyoxyethylene (20) sorbitan monolaurate, which is a surfactant, and laser diffraction / scattering particle size distribution. This is performed using a meter (for example, LA-700 manufactured by HORIBA, Ltd.). The median diameter obtained by the measurement is defined as the volume-based average particle diameter of the carbonaceous material of the present invention.

(ラマンR値)
炭素質材料のラマンR値は、レーザーラマンスペクトル法を用いて測定した値であり、通常0.01以上であり、0.03以上が好ましく、0.1以上がさらに好ましく、また、通常1.5以下であり、1.2以下が好ましく、1以下がさらに好ましく、0.5以下が特に好ましい。
(Raman R value)
The Raman R value of the carbonaceous material is a value measured by laser Raman spectroscopy, and is usually 0.01 or more, preferably 0.03 or more, more preferably 0.1 or more, and usually 1. It is 5 or less, preferably 1.2 or less, more preferably 1 or less, and particularly preferably 0.5 or less.

ラマンR値が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。即ち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。
一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
If the Raman R value is less than the above range, the crystallinity of the particle surface becomes too high, and the number of sites where Li enters between layers may decrease due to charging and discharging. That is, the charge acceptability may decrease. Further, when the negative electrode is densified by pressing after being applied to the current collector, the crystals tend to be oriented in the direction parallel to the electrode plate, which may lead to deterioration of the load characteristics.
On the other hand, if it exceeds the above range, the crystallinity of the particle surface is lowered, the reactivity with the non-aqueous electrolyte solution is increased, and the efficiency may be lowered and the gas generation may be increased.

ラマンスペクトルの測定は、ラマン分光器(例えば、日本分光社製ラマン分光器)を用いて、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光(若しくは半導体レーザー光)を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。得られるラマンスペクトルについて、1580cm−1付近のピークPAの強度Iと、1360cm−1付近のピークPBの強度Iとを測定し、その強度比R(R=I/I)を算出する。該測定で算出されるラマンR値を、本発明の炭素質材料のラマンR値と定義する。 To measure the Raman spectrum, a Raman spectroscope (for example, a Raman spectroscope manufactured by Nippon Spectroscopy Co., Ltd.) is used to naturally drop the sample into the measurement cell and fill it, and then the surface of the sample in the cell is filled with an argon ion laser beam (or semiconductor). This is performed by rotating the cell in a plane perpendicular to the laser beam while irradiating the cell (laser beam). The resulting Raman spectrum, calculates the intensity I A of the peak PA around 1580 cm -1, and measuring the intensity I B of a peak PB around 1360 cm -1, the intensity ratio R of the (R = I B / I A) To do. The Raman R value calculated by the measurement is defined as the Raman R value of the carbonaceous material of the present invention.

また、上記のラマン測定条件は、次の通りである。
・レーザー波長 :Arイオンレーザー514.5nm(半導体レーザー532nm)
・測定範囲 :1100cm−1〜1730cm−1
・ラマンR値 :バックグラウンド処理、
・スムージング処理 :単純平均、コンボリューション5ポイント
The Raman measurement conditions described above are as follows.
-Laser wavelength: Ar ion laser 514.5 nm (semiconductor laser 532 nm)
-Measurement range: 1100 cm -1 to 1730 cm -1
・ Raman R value: Background processing,
・ Smoothing processing: Simple average, convolution 5 points

(BET比表面積)
炭素質材料のBET比表面積は、BET法を用いて測定した比表面積の値であり、通常0.1m・g−1以上であり、0.7m・g−1以上が好ましく、1.0m・g−1以上がさらに好ましく、1.5m・g−1以上が特に好ましく、また、通常100m・g−1以下であり、25m・g−1以下が好ましく、15m・g−1以下がさらに好ましく、10m・g−1以下が特に好ましい。
(BET specific surface area)
BET specific surface area of the carbonaceous material is a value of the measured specific surface area using the BET method is usually 0.1 m 2 · g -1 or more, 0.7 m 2 · g -1 or more, 1. 0 m 2 · g -1 or more, and particularly preferably 1.5 m 2 · g -1 or more, generally not more than 100 m 2 · g -1, preferably 25 m 2 · g -1 or less, 15 m 2 · g -1 more preferably less, 10 m 2 · g -1 or less are especially preferred.

BET比表面積の値がこの範囲を下回ると、負極材料として用いた場合の充電時にリチウムの受け入れ性が悪くなりやすく、リチウムが電極表面で析出しやすくなり、安定性が低下する可能性がある。一方、この範囲を上回ると、負極材料として用いた時に非水系電解液との反応性が増加し、ガス発生が多くなりやすく、好ましい電池が得られにくい場合がある。
BET法による比表面積の測定は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。
If the value of the BET specific surface area is less than this range, the acceptability of lithium tends to deteriorate during charging when used as a negative electrode material, and lithium tends to precipitate on the electrode surface, which may reduce stability. On the other hand, if it exceeds this range, the reactivity with the non-aqueous electrolyte solution increases when used as the negative electrode material, gas generation tends to increase, and it may be difficult to obtain a preferable battery.
To measure the specific surface area by the BET method, a surface area meter (for example, a fully automatic surface area measuring device manufactured by Okura Riken) is used to pre-dry the sample at 350 ° C. for 15 minutes under nitrogen flow, and then to atmospheric pressure. This is performed by the nitrogen adsorption BET 1-point method by the gas flow method using a nitrogen helium mixed gas accurately adjusted so that the relative pressure value of nitrogen is 0.3.

(円形度)
炭素質材料の球形の程度として円形度を測定した場合、以下の範囲に収まることが好ましい。なお、円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
炭素質材料の粒径が3〜40μmの範囲にある粒子の円形度は1に近いほど望ましく、また、0.1以上が好ましく、中でも0.5以上が好ましく、0.8以上がより好ましく、0.85以上がさらに好ましく、0.9以上が特に好ましい。高電流密度充放電特性は、円形度が大きいほど向上する。従って、円形度が上記範囲を下回ると、負極活物質の充填性が低下し、粒子間の抵抗が増大して、短時間高電流密度充放電特性が低下する場合がある。
(Circularity)
When the circularity is measured as the degree of sphere of the carbonaceous material, it is preferably within the following range. The circularity is defined by "circularity = (peripheral length of a corresponding circle having the same area as the projected particle shape) / (actual peripheral length of the projected particle shape)", and is theoretical when the circularity is 1. Become a true sphere.
The circularity of the particles in which the particle size of the carbonaceous material is in the range of 3 to 40 μm is preferably closer to 1, and preferably 0.1 or more, particularly 0.5 or more, more preferably 0.8 or more. 0.85 or more is more preferable, and 0.9 or more is particularly preferable. The high current density charge / discharge characteristics improve as the circularity increases. Therefore, when the circularity is less than the above range, the filling property of the negative electrode active material is lowered, the resistance between the particles is increased, and the high current density charge / discharge characteristics for a short time may be lowered.

円形度の測定は、フロー式粒子像分析装置(例えば、シスメックス社製FPIA)を用いて行う。試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定する。 The circularity is measured using a flow-type particle image analyzer (for example, FPIA manufactured by Sysmex Corporation). About 0.2 g of the sample was dispersed in a 0.2 mass% aqueous solution (about 50 mL) of polyoxyethylene (20) sorbitan monolaurate as a surfactant, and ultrasonic waves of 28 kHz were irradiated at an output of 60 W for 1 minute. , The detection range is specified as 0.6 to 400 μm, and the measurement is performed on particles having a particle size in the range of 3 to 40 μm.

円形度を向上させる方法は、特に制限されないが、球形化処理を施して球形にしたものが、電極体にしたときの粒子間空隙の形状が整うので好ましい。球形化処理の例としては、せん断力、圧縮力を与えることによって機械的に球形に近づける方法、複数の微粒子をバインダーもしくは、粒子自身の有する付着力によって造粒する機械的・物理的処理方法等が挙げられる。 The method for improving the circularity is not particularly limited, but a spherical shape obtained by subjecting it to a spherical shape is preferable because the shape of the interparticle voids when the electrode body is formed is adjusted. Examples of spheroidizing treatment include a method of mechanically approaching a sphere by applying shearing force and compressive force, and a mechanical / physical treatment method of granulating a plurality of fine particles by the adhesive force of the binder or the particles themselves. Can be mentioned.

(タップ密度)
炭素質材料のタップ密度は、通常0.1g・cm−3以上であり、0.5g・cm−3以上が好ましく、0.7g・cm−3以上がさらに好ましく、1g・cm−3以上が特に好ましく、また、2g・cm−3以下が好ましく、1.8g・cm−3以下がさらに好ましく、1.6g・cm−3以下が特に好ましい。タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、高容量の電池を得ることができない場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい場合がある。
(Tap density)
The tap density of the carbonaceous material is usually 0.1 g · cm -3 or more, preferably 0.5 g · cm -3 or more, more preferably 0.7 g · cm -3 or more, and 1 g · cm -3 or more. It is particularly preferable, 2 g · cm -3 or less is preferable, 1.8 g · cm -3 or less is further preferable, and 1.6 g · cm -3 or less is particularly preferable. If the tap density is lower than the above range, it may be difficult to increase the filling density when used as a negative electrode, and a high-capacity battery may not be obtained. On the other hand, if it exceeds the above range, the voids between the particles in the electrode become too small, it becomes difficult to secure the conductivity between the particles, and it may be difficult to obtain preferable battery characteristics.

タップ密度の測定は、目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量からタップ密度を算出する。 To measure the tap density, pass through a sieve with a mesh size of 300 μm, drop the sample into a tapping cell of 20 cm 3 to fill the sample up to the upper end surface of the cell, and then use a powder density measuring device (for example, manufactured by Seishin Enterprise Co., Ltd.). Using a tap denser), tapping with a stroke length of 10 mm is performed 1000 times, and the tap density is calculated from the volume at that time and the mass of the sample.

(配向比)
炭素質材料の配向比は、通常0.005以上であり、0.01以上が好ましく、0.015以上がさらに好ましく、また、通常0.67以下である。配向比が、上記範囲を下回ると、高密度充放電特性が低下する場合がある。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
配向比は、試料を加圧成型してからX線回折により測定する。試料0.47gを直径17mmの成型機に充填し58.8MN・m−2で圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表される比を算出する。
(Orientation ratio)
The orientation ratio of the carbonaceous material is usually 0.005 or more, preferably 0.01 or more, more preferably 0.015 or more, and usually 0.67 or less. If the orientation ratio is less than the above range, the high-density charge / discharge characteristics may deteriorate. The upper limit of the above range is the theoretical upper limit of the orientation ratio of the carbonaceous material.
The orientation ratio is measured by X-ray diffraction after pressure molding the sample. A molded product obtained by filling 0.47 g of a sample into a molding machine having a diameter of 17 mm and compressing it at 58.8 MN · m- 2 was set using clay so as to be flush with the surface of the sample holder for measurement. Measure X-ray diffraction. From the peak intensities of (110) diffraction and (004) diffraction of the obtained carbon, the ratio represented by (110) diffraction peak intensity / (004) diffraction peak intensity is calculated.

X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :
発散スリット=0.5度
受光スリット=0.15mm
散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
The X-ray diffraction measurement conditions are as follows. In addition, "2θ" indicates a diffraction angle.
・ Target: Cu (Kα ray) graphite monochromator ・ Slit:
Divergence slit = 0.5 degrees Light receiving slit = 0.15 mm
Scattering slit = 0.5 degrees ・ Measurement range and step angle / measurement time:
(110) Surface: 75 degrees ≤ 2θ ≤ 80 degrees 1 degree / 60 seconds (004) Surface: 52 degrees ≤ 2θ ≤ 57 degrees 1 degree / 60 seconds

(アスペクト比(粉))
炭素質材料のアスペクト比は、通常1以上、また、通常10以下であり、8以下が好ましく、5以下がさらに好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、炭素質材料のアスペクト比の理論下限値である。
(Aspect ratio (powder))
The aspect ratio of the carbonaceous material is usually 1 or more, usually 10 or less, preferably 8 or less, and even more preferably 5 or less. If the aspect ratio exceeds the above range, streaks or a uniform coated surface cannot be obtained at the time of electrode plate formation, and the high current density charge / discharge characteristics may deteriorate. The lower limit of the above range is the theoretical lower limit of the aspect ratio of the carbonaceous material.

アスペクト比の測定は、炭素質材料の粒子を走査型電子顕微鏡で拡大観察して行う。厚さ50μm以下の金属の端面に固定した任意の50個の黒鉛粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の炭素質材料粒子の最長となる径Aと、それと直交する最短となる径Bを測定し、A/Bの平均値を求める。 The aspect ratio is measured by magnifying and observing the particles of the carbonaceous material with a scanning electron microscope. Arbitrary 50 graphite particles fixed to the end face of a metal having a thickness of 50 μm or less are selected, and the stage on which the sample is fixed is rotated and tilted for each of them, and the carbonaceous material particles are observed three-dimensionally. The longest diameter A and the shortest diameter B orthogonal to the diameter A are measured, and the average value of A / B is obtained.

(被覆率)
負極活物質は、炭素質物又は黒鉛質物で被覆されていでもよい。この中でも非晶質炭素質物で被覆されていることがリチウムイオンの受入性の点から好ましく、この被覆率は、通常0.5%以上30%以下、好ましくは1%以上25%以下、より好ましくは、2%以上20%以下である。この含有率が大きすぎると負極活物質の非晶質炭素部分が多くなり、電池を組んだ際の可逆容量が小さくなる傾向がある。含有率が小さすぎると、核となる黒鉛粒子に対して非晶質炭素部位が均一にコートされないとともに強固な造粒がなされず、焼成後に粉砕した際、粒径が小さくなりすぎる傾向がある。
なお、最終的に得られる負極活物質の有機化合物由来の炭化物の含有率(被覆率)は、負極活物質の量と、有機化合物の量及びJIS K 2270に準拠したミクロ法により測定される残炭率により、下記式で算出することができる。
式:有機化合物由来の炭化物の被覆率(%)=(有機化合物の質量×残炭率×100)/{負極活物質の質量+(有機化合物の質量×残炭率)}
(Coverage)
The negative electrode active material may be coated with a carbonaceous material or a graphite material. Of these, coating with an amorphous carbonaceous material is preferable from the viewpoint of lithium ion acceptability, and the coverage is usually 0.5% or more and 30% or less, preferably 1% or more and 25% or less, more preferably. Is 2% or more and 20% or less. If this content is too large, the amorphous carbon portion of the negative electrode active material increases, and the lossless capacity when the battery is assembled tends to decrease. If the content is too small, the amorphous carbon moiety is not uniformly coated on the core graphite particles and strong granulation is not performed, and the particle size tends to be too small when pulverized after firing.
The final obtained content (coverage) of carbides derived from the organic compound of the negative electrode active material is the amount of the negative electrode active material, the amount of the organic compound, and the balance measured by the micro method based on JIS K 2270. It can be calculated by the following formula from the coal ratio.
Formula: Coverage of carbides derived from organic compounds (%) = (mass of organic compounds x residual coal ratio x 100) / {mass of negative electrode active material + (mass of organic compounds x residual carbon ratio)}

(内部間隙率)
負極活物質の内部間隙率は通常1%以上、好ましくは3%以上、より好ましく5%以上、更に好ましくは7%以上である。また通常50%未満、好ましくは40%以下、より好ましくは30%以下、更に好ましくは20%以下である。この内部間隙率が小さすぎると粒子内の液量が少なくなり、充放電特性が悪化する傾向があり、内部間隙率が大きすぎると、電極にした場合に粒子間間隙が少なく、電解液の拡散が不十分になる傾向がある。また、この空隙には、非晶質炭素や黒鉛質物、樹脂等、Liと合金化可能な金属粒子の膨張、収縮を緩衝するような物質が、空隙中に存在又は空隙がこられにより満たされていてもよい。
(Internal porosity)
The internal porosity of the negative electrode active material is usually 1% or more, preferably 3% or more, more preferably 5% or more, still more preferably 7% or more. Further, it is usually less than 50%, preferably 40% or less, more preferably 30% or less, still more preferably 20% or less. If the internal porosity is too small, the amount of liquid in the particles will be small and the charge / discharge characteristics will tend to deteriorate. If the internal porosity is too large, the interparticle gap will be small when the electrode is used, and the electrolytic solution will diffuse. Tends to be inadequate. Further, the voids are filled with substances such as amorphous carbon, a graphite material, and a resin that buffer the expansion and contraction of metal particles that can be alloyed with Li, or the voids are filled with the voids. May be.

<Liと合金可能な金属粒子と黒鉛粒子とを含有する負極活物質>。
本明細書において、Liと合金化可能な金属粒子と黒鉛粒子を含有する負極活物質とは、Liと合金化可能な金属粒子と黒鉛粒子が互いに独立した粒子の状態で混合されている混合物でもよいし、Liと合金化可能な金属粒子が黒鉛粒子の表面又は内部に存在している複合体でもよい。本明細書において、複合体(複合粒子ともいう)とは、特に、Liと合金化可能な金属粒子及び炭素質物が含まれている粒子であれば特に制限はないが、好ましくは、Liと合金化可能な金属粒子及び炭素質物が物理的及び/又は化学的な結合によ
って一体化した粒子である。より好ましい形態としては、Liと合金化可能な金属粒子及び炭素質物が、少なくとも複合粒子表面及びバルク内部の何れにも存在する程度に各々の固体成分が粒子内で分散して存在している状態にあり、それらを物理的及び/又は化学的な結合によって一体化させるために、炭素質物が存在しているような形態である。更に具体的な好ましい形態は、Liと合金化可能な金属粒子と黒鉛粒子から少なくとも構成される複合材であって、黒鉛粒子、好ましくは、天然黒鉛が曲面を有する折り畳まれた構造を持つ粒子内に、該曲面を有する折り畳まれた構造内の間隙にLiと合金化可能な金属粒子が存在していることを特徴とする負極活物質である。また、間隙は空隙であってもよいし、非晶質炭素や黒鉛質物、樹脂等、Liと合金化可能な金属粒子の膨張、収縮を緩衝するような物質が、間隙中に存在していてもよい。
<Negative electrode active material containing metal particles and graphite particles that can be alloyed with Li>.
In the present specification, the negative electrode active material containing Li and alloyable metal particles and graphite particles may be a mixture in which Li and alloyable metal particles and graphite particles are mixed in the state of mutually independent particles. Alternatively, it may be a composite in which metal particles that can be alloyed with Li are present on the surface or inside of the graphite particles. In the present specification, the composite (also referred to as composite particles) is not particularly limited as long as it is a particle containing metal particles and carbonaceous substances that can be alloyed with Li, but is preferably an alloy with Li. It is a particle in which convertible metal particles and carbonaceous substances are integrated by physical and / or chemical bonds. In a more preferable form, each solid component is dispersed in the particles to the extent that the metal particles and carbonaceous substances that can be alloyed with Li are present at least on the surface of the composite particle and inside the bulk. In the form in which carbonaceous materials are present in order to unite them by physical and / or chemical bonds. A more specific preferred form is a composite material composed of at least Li and alloyable metal particles and graphite particles, in which graphite particles, preferably natural graphite, have a curved structure and have a folded structure. In addition, it is a negative electrode active material characterized in that metal particles that can be alloyed with Li are present in the gaps in the folded structure having the curved surface. Further, the gap may be a void, and a substance such as amorphous carbon, a graphitic substance, or a resin that buffers the expansion and contraction of metal particles that can be alloyed with Li is present in the gap. May be good.

・Liと合金化可能な金属粒子
金属粒子が、Liと合金化可能な金属粒子であることを確認するための手法としては、X線回折による金属粒子相の同定、電子顕微鏡による粒子構造の観察及び元素分析、蛍光X線による元素分析等が挙げられる。
Liと合金化可能な金属粒子は、従来公知のいずれのものも使用可能であるが、容量とサイクル寿命の点から、金属粒子は、例えば、Fe、Co、Sb、Bi、Pb、Ni、Ag、Si、Sn、Al、Zr、Cr、P、S、V、Mn、As、Nb、Mo、Cu、Zn、Ge、In、Ti及びWからなる群から選ばれる金属又はその化合物であることが好ましい。また、2種以上の金属からなる合金を使用しても良く、金属粒子が、2種以上の金属元素により形成された合金粒子であってもよい。これらの中でも、Si、Sn、As、Sb、Al、Zn及びWからなる群から選ばれる金属又はその金属化合物が好ましい。
金属化合物として、金属酸化物、金属窒化物、金属炭化物等が挙げられる。また、2種以上の金属からなる合金を使用してもよい。
-Metal particles that can be alloyed with Li As a method for confirming that the metal particles are metal particles that can be alloyed with Li, identification of the metal particle phase by X-ray diffraction and observation of the particle structure by an electron microscope And elemental analysis, elemental analysis by fluorescent X-ray, and the like.
As the metal particles that can be alloyed with Li, any conventionally known metal particles can be used, but from the viewpoint of capacity and cycle life, the metal particles are, for example, Fe, Co, Sb, Bi, Pb, Ni, Ag. , Si, Sn, Al, Zr, Cr, P, S, V, Mn, As, Nb, Mo, Cu, Zn, Ge, In, Ti and W may be a metal or a compound thereof selected from the group. preferable. Further, an alloy composed of two or more kinds of metals may be used, and the metal particles may be alloy particles formed by two or more kinds of metal elements. Among these, a metal selected from the group consisting of Si, Sn, As, Sb, Al, Zn and W or a metal compound thereof is preferable.
Examples of the metal compound include metal oxides, metal nitrides, metal carbides and the like. Further, an alloy composed of two or more kinds of metals may be used.

Liと合金可能な金属粒子の中でも、Si又はSi金属化合物が好ましい。Si金属化合物は、Si金属酸化物であることが好ましい。Si又はSi金属化合物は、高容量化の点で、好ましい。本明細書では、Si又はSi金属化合物を総称してSi化合物と呼ぶ。Si化合物としては、具体的には、SiO,SiN,SiC、SiZ(Z=C、N)等が挙げられる。Si化合物は、好ましくは、Si金属酸化物であり、Si金属酸化物は、一般式で表すとSiOである。この一般式SiOは、二酸化Si(SiO)と金属Si(Si)とを原料として得られるが、そのxの値は通常0≦x<2である。SiOxは、黒鉛と比較して理論容量が大きく、更に非晶質SiあるいはナノサイズのSi結晶は、リチウムイオン等のアルカリイオンの出入りがしやすく、高容量を得ることが可能となる。
Si金属酸化物は、具体的には、SiOと表されるものであり、xは0≦x<2であり、より好ましくは、0.2以上、1.8以下、更に好ましくは、0.4以上、1.6以下、特に好ましくは、0.6以上、1,4以下であり、X=0がとりわけ好ましい。この範囲であれば、高容量であると同時に、Liと酸素との結合による不可逆容量を低減させることが可能となる。
Among the metal particles that can be alloyed with Li, Si or Si metal compounds are preferable. The Si metal compound is preferably a Si metal oxide. Si or a Si metal compound is preferable in terms of increasing the capacity. In the present specification, Si or Si metal compounds are collectively referred to as Si compounds. The Si compound, specifically, SiO x, SiN x, SiC x, SiZ x O y (Z = C, N) , and the like. The Si compound is preferably a Si metal oxide, and the Si metal oxide is SiO x in the general formula. This general formula SiO x is obtained by using silicon dioxide (SiO 2 ) and metal Si (Si) as raw materials, and the value of x is usually 0 ≦ x <2. SiOx has a larger theoretical capacity than graphite, and amorphous Si or nano-sized Si crystals allow alkaline ions such as lithium ions to easily enter and exit, making it possible to obtain a high capacity.
The Si metal oxide is specifically represented as SiO x , where x is 0 ≦ x <2, more preferably 0.2 or more and 1.8 or less, still more preferably 0. It is .4 or more and 1.6 or less, particularly preferably 0.6 or more and 1,4 or less, and X = 0 is particularly preferable. Within this range, it is possible to reduce the irreversible capacity due to the combination of Li and oxygen at the same time as having a high capacity.

・Liと合金化可能な金属粒子の平均粒子径(d50)
Liと合金化可能な金属粒子の平均粒子径(d50)は、サイクル寿命の観点から、通常0.01μm以上、好ましくは0.05μm以上、より好ましくは0.1μm以上、更に好ましくは0.3μm以上であり、通常10μm以下、好ましくは9μm以下、より好ましくは8μm以下である。平均粒子径(d50)が前記範囲内であると、充放電に伴う体積膨張が低減され、充放電容量を維持しつつ、良好なサイクル特性を得ることができる。
平均粒子径(d50)は、レーザー回折・散乱式粒度分布測定方法等で求められる。
-Average particle diameter (d50) of metal particles that can be alloyed with Li
The average particle size (d50) of the metal particles that can be alloyed with Li is usually 0.01 μm or more, preferably 0.05 μm or more, more preferably 0.1 μm or more, still more preferably 0.3 μm, from the viewpoint of cycle life. It is usually 10 μm or less, preferably 9 μm or less, and more preferably 8 μm or less. When the average particle size (d50) is within the above range, volume expansion due to charge / discharge is reduced, and good cycle characteristics can be obtained while maintaining charge / discharge capacity.
The average particle size (d50) is determined by a laser diffraction / scattering particle size distribution measuring method or the like.

・Liと合金化可能な金属粒子のBET法比表面積
Liと合金化可能な金属粒子のBET法により比表面積は通常0.5〜60m/g、1〜40m/gであることが好ましい。Liと合金化可能な金属粒子のBET法による比表面積が前記範囲内であると、電池の充放電効率及び放電容量が高く、高速充放電においてリチウムの出し入れが速く、レート特性に優れるので好ましい。
· Li and specific surface area by the BET method of BET specific surface area of Li can be alloyed metal particles capable of alloying metal particles normally 0.5~60m 2 / g, is preferably 1~40m 2 / g .. When the specific surface area of the metal particles that can be alloyed with Li by the BET method is within the above range, the charge / discharge efficiency and discharge capacity of the battery are high, lithium is taken in and out quickly in high-speed charge / discharge, and the rate characteristics are excellent, which is preferable.

・Liと合金化可能な金属粒子の含有酸素量
Liと合金化可能な金属粒子の含有酸素量は、特に制限はないが、通常0.01〜8質量%、0.05〜5質量%であることが好ましい。粒子内の酸素分布状態は、表面近傍に存在、粒子内部に存在、粒子内一様に存在していてもかまわないが、特に表面近傍に存在していることが好ましい。Liと合金化可能な金属粒子の含有酸素量が前記範囲内であると、SiとOの強い結合により、充放電に伴う体積膨張が抑制され、サイクル特性に優れるので好ましい。
-Oxygen content of metal particles that can be alloyed with Li The oxygen content of metal particles that can be alloyed with Li is not particularly limited, but is usually 0.01 to 8% by mass or 0.05 to 5% by mass. It is preferable to have. The oxygen distribution state in the particle may be present near the surface, inside the particle, or uniformly in the particle, but it is particularly preferable that the oxygen is present near the surface. When the amount of oxygen contained in the metal particles that can be alloyed with Li is within the above range, volume expansion due to charging and discharging is suppressed due to the strong bond between Si and O, which is preferable because the cycle characteristics are excellent.

・Liと合金化可能な金属粒子の含有割合
Liと合金化可能な金属粒子と黒鉛粒子の合計に対するLiと合金化可能な金属粒子の含有割合は、通常1質量%以上、好ましくは2質量%以上である。また、通常99質量%以下、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下、より更に好ましくは25質量%以下、より更に好ましくは20質量%以下、特に好ましくは15質量%以下、最も好ましくは10質量%以下である。この範囲であると、式(A)で表される化合物から成る被膜が好適にLiと合金化可能な金属粒子を被覆し、且つ、黒鉛粒子との密着性を高めることが可能となる点で好ましい。
-Content ratio of metal particles that can be alloyed with Li The content ratio of metal particles that can be alloyed with Li with respect to the total of metal particles that can be alloyed with Li and graphite particles is usually 1% by mass or more, preferably 2% by mass. That is all. Further, it is usually 99% by mass or less, preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, still more preferably 25% by mass or less, still more preferably 20% by mass or less, particularly. It is preferably 15% by mass or less, and most preferably 10% by mass or less. Within this range, the coating film made of the compound represented by the formula (A) can preferably coat the metal particles that can be alloyed with Li, and can improve the adhesion to the graphite particles. preferable.

<負極の構成と作製法>
負極は、公知のいずれの方法を用いて製造することが可能である。具体的に、負極の製造方法としては、例えば、上述の負極活物質に結着剤や導電材等を加えたものをそのままロール成型してシート電極とする方法や、圧縮成形してペレット電極とする方法も挙げられるが、通常は負極用の集電体(以下「負極集電体」という場合がある。)上に塗布法、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法が用いられる。この場合、上述の負極活物質に結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、これを負極集電体に塗布、乾燥した後にプレスして高密度化することにより、負極集電体上に負極活物質層を形成する。
また、合金系材料を用いる場合には、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法も用いられる。
<Construction and manufacturing method of negative electrode>
The negative electrode can be manufactured by any known method. Specifically, as a method for manufacturing a negative electrode, for example, a method in which a binder, a conductive material, or the like is added to the above-mentioned negative electrode active material is directly rolled to form a sheet electrode, or a pellet electrode is compression-molded. However, usually, the above-mentioned negative electrode is subjected to a coating method, a vapor deposition method, a sputtering method, a plating method, or the like on a current collector for a negative electrode (hereinafter, may be referred to as a “negative electrode current collector”). A method of forming a thin film layer (negative electrode active material layer) containing an active material is used. In this case, a binder, a thickener, a conductive material, a solvent, etc. are added to the above-mentioned negative electrode active material to form a slurry, which is applied to the negative electrode current collector, dried, and then pressed to increase the density. , A negative electrode active material layer is formed on the negative electrode current collector.
Further, when an alloy-based material is used, a method of forming a thin film layer (negative electrode active material layer) containing the above-mentioned negative electrode active material by a method such as a vapor deposition method, a sputtering method, or a plating method is also used.

負極集電体の材質としては、鋼、銅合金、ニッケル、ニッケル合金、ステンレス等が挙げられる。これらのうち、薄膜に加工し易いという点及びコストの点から、銅箔が好ましい。
負極集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚過ぎると、電池全体の容量が低下し過ぎることがあり、逆に薄過ぎると取り扱いが困難になることがある。
Examples of the material of the negative electrode current collector include steel, copper alloy, nickel, nickel alloy, stainless steel and the like. Of these, copper foil is preferable from the viewpoint of easy processing into a thin film and cost.
The thickness of the negative electrode current collector is usually 1 μm or more, preferably 5 μm or more, and usually 100 μm or less, preferably 50 μm or less. If the thickness of the negative electrode current collector is too thick, the capacity of the entire battery may be reduced too much, and conversely, if it is too thin, handling may be difficult.

なお、表面に形成される負極活物質層との結着効果を向上させるため、これら負極集電体の表面は、予め粗面化処理しておくことが好ましい。表面の粗面化方法としては、ブラスト処理、粗面ロールによる圧延、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線等を備えたワイヤーブラシ等で集電体表面を研磨する機械的研磨法、電解研磨法、化学研磨法等が挙げられる。 In addition, in order to improve the binding effect with the negative electrode active material layer formed on the surface, it is preferable that the surface of these negative electrode current collectors is roughened in advance. Surface roughening methods include blasting, rolling with a rough surface roll, polishing cloth with abrasive particles fixed, a grindstone, emeri buff, a wire brush equipped with a steel wire, etc. to polish the surface of the current collector. Specific polishing method, electrolytic polishing method, chemical polishing method and the like can be mentioned.

また、負極集電体の質量を低減させて電池の質量当たりのエネルギー密度を向上させるために、エキスパンドメタルやパンチングメタルのような穴あきタイプの負極集電体を使
用することもできる。このタイプの負極集電体は、その開口率を変更することで、質量も自在に変更可能である。また、このタイプの負極集電体の両面に負極活物質層を形成させた場合、この穴を通してのリベット効果により、負極活物質層の剥離が更に起こり難くなる。しかし、開口率があまりに高くなった場合には、負極活物質層と負極集電体との接触面積が小さくなるため、かえって接着強度は低くなることがある。
Further, in order to reduce the mass of the negative electrode current collector and improve the energy density per mass of the battery, a perforated type negative electrode current collector such as expanded metal or punching metal can also be used. The mass of this type of negative electrode current collector can be freely changed by changing the aperture ratio. Further, when the negative electrode active material layers are formed on both sides of this type of negative electrode current collector, the negative electrode active material layer is less likely to be peeled off due to the rivet effect through the holes. However, when the aperture ratio becomes too high, the contact area between the negative electrode active material layer and the negative electrode current collector becomes small, so that the adhesive strength may be rather low.

負極活物質層を形成するためのスラリーは、通常は負極材に対して結着剤、増粘剤等を加えて作製される。なお、本明細書における「負極材」とは、負極活物質と導電材とを合わせた材料を指すものとする。
負極材中における負極活物質の含有量は、通常70質量%以上、特に75質量%以上、また、通常97質量%以下、特に95質量%以下であることが好ましい。負極活物質の含有量が少な過ぎると、得られる負極を用いた二次電池の容量が不足する傾向があり、多過ぎると相対的に導電剤の含有量が不足することにより、負極としての電気伝導性を確保しづらい傾向にある。なお、二以上の負極活物質を併用する場合には、負極活物質の合計量が上記範囲を満たすようにすればよい。
The slurry for forming the negative electrode active material layer is usually prepared by adding a binder, a thickener, or the like to the negative electrode material. The term "negative electrode material" as used herein refers to a material in which the negative electrode active material and the conductive material are combined.
The content of the negative electrode active material in the negative electrode material is usually 70% by mass or more, particularly preferably 75% by mass or more, and usually 97% by mass or less, particularly preferably 95% by mass or less. If the content of the negative electrode active material is too small, the capacity of the secondary battery using the obtained negative electrode tends to be insufficient, and if it is too large, the content of the conductive agent is relatively insufficient, resulting in electricity as the negative electrode. It tends to be difficult to secure conductivity. When two or more negative electrode active materials are used in combination, the total amount of the negative electrode active materials may satisfy the above range.

負極に用いられる導電材としては、銅やニッケル等の金属材料;黒鉛、カーボンブラック等の炭素材料等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。特に、導電材として炭素材料を用いると、炭素材料が活物質としても作用するため好ましい。負極材中における導電材の含有量は、通常3質量%以上、特に5質量%以上、また、通常30質量%以下、特に25質量%以下であることが好ましい。導電材の含有量が少な過ぎると導電性が不足する傾向があり、多過ぎると相対的に負極活物質等の含有量が不足することにより、電池容量や強度が低下する傾向となる。なお、二以上の導電材を併用する場合には、導電材の合計量が上記範囲を満たすようにすればよい。 Examples of the conductive material used for the negative electrode include metal materials such as copper and nickel; carbon materials such as graphite and carbon black. One of these may be used alone, or two or more thereof may be used in any combination and ratio. In particular, it is preferable to use a carbon material as the conductive material because the carbon material also acts as an active material. The content of the conductive material in the negative electrode material is usually 3% by mass or more, particularly preferably 5% by mass or more, and usually 30% by mass or less, particularly preferably 25% by mass or less. If the content of the conductive material is too small, the conductivity tends to be insufficient, and if it is too large, the content of the negative electrode active material or the like is relatively insufficient, so that the battery capacity and strength tend to decrease. When two or more conductive materials are used in combination, the total amount of the conductive materials may satisfy the above range.

負極に用いられる結着剤としては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、スチレン・ブタジエンゴム・イソプレンゴム、ブタジエンゴム、エチレン・アクリル酸共重合体、エチレン・メタクリル酸共重合体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。結着剤の含有量は、負極材100質量部に対して通常0.5質量部以上、特に1質量部以上、また、通常10質量部以下、特に8質量部以下であることが好ましい。結着剤の含有量が少な過ぎると得られる負極の強度が不足する傾向があり、多過ぎると相対的に負極活物質等の含有量が不足することにより、電池容量や導電性が不足する傾向となる。なお、二以上の結着剤を併用する場合には、結着剤の合計量が上記範囲を満たすようにすればよい。 As the binder used for the negative electrode, any binder can be used as long as it is a material that is safe for the solvent and electrolytic solution used in the production of the electrode. For example, polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, styrene / butadiene rubber / isoprene rubber, butadiene rubber, ethylene / acrylic acid copolymer, ethylene / methacrylic acid copolymer and the like can be mentioned. One of these may be used alone, or two or more thereof may be used in any combination and ratio. The content of the binder is usually 0.5 parts by mass or more, particularly 1 part by mass or more, and usually 10 parts by mass or less, particularly preferably 8 parts by mass or less, based on 100 parts by mass of the negative electrode material. If the content of the binder is too small, the strength of the obtained negative electrode tends to be insufficient, and if it is too large, the content of the negative electrode active material etc. is relatively insufficient, so that the battery capacity and conductivity tend to be insufficient. It becomes. When two or more binders are used in combination, the total amount of the binders may satisfy the above range.

負極に用いられる増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。増粘剤は必要に応じて使用すればよいが、使用する場合には、負極活物質層中における増粘剤の含有量が通常0.5質量%以上、5質量%以下の範囲で用いることが好ましい。 Examples of the thickener used for the negative electrode include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein and the like. One of these may be used alone, or two or more thereof may be used in any combination and ratio. The thickener may be used as needed, but when it is used, the content of the thickener in the negative electrode active material layer is usually in the range of 0.5% by mass or more and 5% by mass or less. Is preferable.

負極活物質層を形成するためのスラリーは、上記負極活物質に、必要に応じて導電剤や結着剤、増粘剤を混合して、水系溶媒又は有機溶媒を分散媒として用いて調製される。水系溶媒としては、通常、水が用いられるが、これにエタノール等のアルコール類、N−メチルピロリドン等の環状アミド類等の有機溶媒を、水に対して30質量%以下の範囲で併用することもできる。また、有機溶媒としては、通常、N−メチルピロリドン等の環状ア
ミド類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の直鎖状アミド類、アニソール、トルエン、キシレン等の芳香族炭化水素類、ブタノール、シクロヘキサノール等のアルコール類が挙げられ、中でも、N−メチルピロリドン等の環状アミド類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の直鎖状アミド類等が好ましい。なお、これらは何れか1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
The slurry for forming the negative electrode active material layer is prepared by mixing the negative electrode active material with a conductive agent, a binder, and a thickener as necessary, and using an aqueous solvent or an organic solvent as a dispersion medium. To. Water is usually used as the aqueous solvent, but alcohols such as ethanol and organic solvents such as cyclic amides such as N-methylpyrrolidone are used in combination with water in a range of 30% by mass or less. You can also. The organic solvent is usually cyclic amides such as N-methylpyrrolidone, linear amides such as N, N-dimethylformamide and N, N-dimethylacetamide, and aromatic carbides such as anisole, toluene and xylene. Examples thereof include alcohols such as hydrogens, butanol and cyclohexanol, and among them, cyclic amides such as N-methylpyrrolidone and linear amides such as N, N-dimethylformamide and N, N-dimethylacetamide are preferable. .. Any one of these may be used alone, or two or more thereof may be used in any combination and ratio.

得られたスラリーを上述の負極集電体上に塗布し、乾燥した後、プレスすることにより、負極活物質層が形成される。塗布の手法は特に制限されず、それ自体既知の方法を用いることができる。乾燥の手法も特に制限されず、自然乾燥、加熱乾燥、減圧乾燥等の公知の手法を用いることができる。 The obtained slurry is applied onto the above-mentioned negative electrode current collector, dried, and then pressed to form a negative electrode active material layer. The method of application is not particularly limited, and a method known per se can be used. The drying method is not particularly limited, and known methods such as natural drying, heat drying, and vacuum drying can be used.

(電極密度)
負極活物質を電極化した際の電極構造は特に制限されないが、集電体上に存在している負極活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がさらに好ましく、1.3g・cm−3以上が特に好ましく、また、2.2g・cm−3以下が好ましく、2.1g・cm−3以下がより好ましく、2.0g・cm−3以下がさらに好ましく、1.9g・cm−3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
(Electrode density)
The electrode structure when the negative electrode active material is converted into an electrode is not particularly limited, but the density of the negative electrode active material existing on the current collector is preferably 1 g · cm -3 or more, and 1.2 g · cm -3 or more. Is more preferable, 1.3 g · cm -3 or more is particularly preferable, 2.2 g · cm -3 or less is preferable, 2.1 g · cm -3 or less is more preferable, and 2.0 g · cm -3 or less is more preferable. More preferably, 1.9 g · cm -3 or less is particularly preferable. If the density of the negative electrode active material existing on the current collector exceeds the above range, the negative electrode active material particles are destroyed, the initial irreversible capacity increases, and the non-aqueous system near the current collector / negative electrode active material interface High current density charge / discharge characteristics may deteriorate due to a decrease in the permeability of the electrolytic solution. Further, if it falls below the above range, the conductivity between the negative electrode active materials may decrease, the battery resistance may increase, and the capacity per unit volume may decrease.

2−2.正極
<正極活物質>
以下に正極に使用される正極活物質(リチウム遷移金属系化合物)について述べる。
〈リチウム遷移金属系化合物〉
リチウム遷移金属系化合物とは、Liイオンを脱離、挿入することが可能な構造を有する化合物であり、例えば、硫化物やリン酸塩化合物、リチウム遷移金属複合酸化物等が挙げられる。硫化物としては、TiSやMoS等の二次元層状構造をもつ化合物や、一般式MeMo(MeはPb,Ag,Cuをはじめとする各種遷移金属)で表される強固な三次元骨格構造を有するシュブレル化合物等が挙げられる。リン酸塩化合物としては、オリビン構造に属するものが挙げられ、一般的にはLiMePO(Meは少なくとも1種以上の遷移金属)で表され、具体的にはLiFePO、LiCoPO、LiNiPO、LiMnPO等が挙げられる。リチウム遷移金属複合酸化物としては、三次元的拡散が可能なスピネル構造や、リチウムイオンの二次元的拡散を可能にする層状構造に属するものが挙げられる。スピネル構造を有するものは、一般的にLiMe(Meは少なくとも1種以上の遷移金属)と表され、具体的にはLiMn、LiCoMnO、LiNi0.5Mn1.5、LiCoVO等が挙げられる。層状構造を有するものは、一般的にLiMeO(Meは少なくとも1種以上の遷移金属)と表される。具体的にはLiCoO、LiNiO、LiNi1−xCo、LiNi1−x−yCoMn、LiNi0.5Mn0.5、Li1.2Cr0.4Mn0.4、Li1.2Cr0.4Ti0.4、LiMnO等が挙げられる。
2-2. Positive electrode <Positive electrode active material>
The positive electrode active material (lithium transition metal compound) used for the positive electrode will be described below.
<Lithium transition metal compound>
The lithium transition metal compound is a compound having a structure capable of desorbing and inserting Li ions, and examples thereof include sulfides, phosphate compounds, and lithium transition metal composite oxides. As the sulfide, a compound having a two-dimensional layered structure such as TiS 2 or MoS 2 or a strong substance represented by the general formula Me x Mo 6 S 8 (Me is various transition metals including Pb, Ag, Cu). Examples thereof include a sulphide compound having a three-dimensional skeletal structure. Examples of the phosphate compound include those belonging to the olivine structure, which are generally represented by LiMePO 4 (Me is at least one transition metal), and specifically, LiFePO 4 , LiCoPO 4 , LiNiPO 4 , Examples thereof include LiMnPO 4 . Examples of the lithium transition metal composite oxide include those belonging to a spinel structure capable of three-dimensional diffusion and a layered structure capable of two-dimensional diffusion of lithium ions. Those having a spinel structure are generally represented as LiMe 2 O 4 (Me is at least one transition metal), and specifically LiMn 2 O 4 , LiCo MnO 4 , LiNi 0.5 Mn 1.5 O. 4 , LiCoVO 4, etc. can be mentioned. Those having a layered structure are generally represented as LiMeO 2 (Me is at least one transition metal). Specifically, LiCoO 2 , LiNiO 2 , LiNi 1-x Co x O 2 , LiNi 1-x-y Co x Mn y O 2 , LiNi 0.5 Mn 0.5 O 2 , Li 1.2 Cr 0. 4 Mn 0.4 O 2, Li 1.2 Cr 0.4 Ti 0.4 O 2, LiMnO 2 , and the like.

〈組成〉
また、リチウム遷移金属系化合物 は、例えば、下記組成式(F)又は(G)で示されるリチウム遷移金属系化合物であることが挙げられる。
1)下記組成式(F)で示されるリチウム遷移金属系化合物である場合
Li1+xMO …(F)
ただし、xは通常0以上、0.5以下である。Mは、Ni及びMn、或いは、Ni、M
n及びCoから構成される元素であり、Mn/Niモル比は通常0.1以上、5以下である。Ni/Mモル比は通常0以上、0.5以下である。Co/Mモル比は通常0以上、0.5以下である。なお、xで表されるLiのリッチ分は、遷移金属サイトMに置換している場合もある。
<composition>
Further, the lithium transition metal compound may be, for example, a lithium transition metal compound represented by the following composition formula (F) or (G).
1) When it is a lithium transition metal compound represented by the following composition formula (F)
Li 1 + x MO 2 ... (F)
However, x is usually 0 or more and 0.5 or less. M is Ni and Mn, or Ni, M.
It is an element composed of n and Co, and the Mn / Ni molar ratio is usually 0.1 or more and 5 or less. The Ni / M molar ratio is usually 0 or more and 0.5 or less. The Co / M molar ratio is usually 0 or more and 0.5 or less. The rich portion of Li represented by x may be replaced with the transition metal site M.

なお、上記組成式(F)においては、酸素量の原子比は便宜上2と記載しているが、多少の不定比性があってもよい。また、上記組成式中のxは、リチウム遷移金属系化合物の製造段階での仕込み組成である。通常、市場に出回る電池は、電池を組み立てた後に、エージングを行っている。そのため、充放電に伴い、正極のLi量は欠損している場合がある。その場合、組成分析上、3Vまで放電した場合のxが−0.65以上、1以下に測定されることがある。 In the above composition formula (F), the atomic ratio of the amount of oxygen is described as 2 for convenience, but there may be some non-stoichiometric ratio. Further, x in the above composition formula is a charged composition at the production stage of the lithium transition metal compound. Batteries on the market are usually aged after the batteries are assembled. Therefore, the amount of Li in the positive electrode may be missing due to charging and discharging. In that case, in composition analysis, x when discharged to 3 V may be measured to be −0.65 or more and 1 or less.

また、リチウム遷移金属系化合物は、正極活物質の結晶性を高めるために酸素含有ガス雰囲気下で高温焼成を行って焼成されたものが電池特性に優れる。
さらに、組成式(F)で示されるリチウム遷移金属系化合物は、組成式(F’)のとおり、213層と呼ばれるLiMOとの固溶体であってもよい。
αLiMO・(1−α)LiM’O・・・(F’)
組成式(F’)中、αは、0<α<1を満たす数である。
Further, the lithium transition metal compound is excellent in battery characteristics when it is fired by high-temperature firing in an oxygen-containing gas atmosphere in order to enhance the crystallinity of the positive electrode active material.
Further, the lithium transition metal compound represented by the composition formula (F) may be a solid solution with Li 2 MO 3 called a 213 layer as shown in the composition formula (F').
αLi 2 MO 3・ (1-α) LiM'O 2 ... (F')
In the composition formula (F'), α is a number satisfying 0 <α <1.

Mは、平均酸化数が4+である少なくとも1種の金属元素であり、具体的には、Mn、Zr、Ti、Ru、Re及びPtからなる群より選択される少なくとも1種の金属元素である。
M’は、平均酸化数が3+である少なくとも1種の金属元素であり、好ましくは、V、Mn、Fe、Co及びNiからなる群より選択される少なくとも1種の金属元素であり、より好ましくは、Mn、Co及びNiからなる群より選択される少なくとも1種の金属元素である。
M is at least one metal element having an average oxidation number of 4+, and specifically, M is at least one metal element selected from the group consisting of Mn, Zr, Ti, Ru, Re and Pt. ..
M'is at least one metal element having an average oxidation number of 3+, preferably at least one metal element selected from the group consisting of V, Mn, Fe, Co and Ni, and more preferably. Is at least one metal element selected from the group consisting of Mn, Co and Ni.

2)組成式(G)で表されるリチウム遷移金属系化合物である場合。
Li[LiMn2−b−a]O4+δ・・・(G)
ただし、Mは、Ni、Cr、Fe、Co、Cu、Zr、Al及びMgから選ばれる遷移金属のうちの少なくとも1種から構成される元素である。
組成式(G)中、bの値は通常0.4以上、0.6以下である。
bの値がこの範囲であれば、リチウム遷移金属系化合物における単位質量当たりのエネルギー密度が高い。
2) When it is a lithium transition metal compound represented by the composition formula (G).
Li [Li a M b Mn 2-ba ] O 4 + δ ... (G)
However, M is an element composed of at least one of transition metals selected from Ni, Cr, Fe, Co, Cu, Zr, Al and Mg.
In the composition formula (G), the value of b is usually 0.4 or more and 0.6 or less.
When the value of b is in this range, the energy density per unit mass of the lithium transition metal compound is high.

また、組成式(G)中、aの値は通常0以上、0.3以下である。また、上記組成式(G)中のaは、リチウム遷移金属系化合物の製造段階での仕込み組成である。通常、市場に出回る電池は、電池を組み立てた後に、エージングを行っている。そのため、充放電に伴い、正極のLi量は欠損している場合がある。その場合、組成分析上、3Vまで放電した場合のaが−0.65以上、1以下に測定されることがある。 Further, in the composition formula (G), the value of a is usually 0 or more and 0.3 or less. Further, a in the composition formula (G) is a charged composition at the production stage of the lithium transition metal compound. Batteries on the market are usually aged after the batteries are assembled. Therefore, the amount of Li in the positive electrode may be missing due to charging and discharging. In that case, in composition analysis, a when discharged to 3 V may be measured to be −0.65 or more and 1 or less.

aの値がこの範囲であれば、リチウム遷移金属系化合物における単位質量当たりのエネルギー密度を大きく損なわず、かつ、良好な負荷特性が得られる。
さらに、組成式(G)中、δの値は通常±0.5の範囲である。
δの値がこの範囲であれば、結晶構造としての安定性が高く、このリチウム遷移金属系化合物を用いて作製した電極を有する電池のサイクル特性や高温保存が良好である。
When the value of a is in this range, the energy density per unit mass of the lithium transition metal compound is not significantly impaired, and good load characteristics can be obtained.
Further, in the composition formula (G), the value of δ is usually in the range of ± 0.5.
When the value of δ is in this range, the stability as a crystal structure is high, and the cycle characteristics and high-temperature storage of a battery having an electrode manufactured by using this lithium transition metal compound are good.

ここでリチウム遷移金属系化合物の組成であるリチウムニッケルマンガン系複合酸化物におけるリチウム組成の化学的な意味について、以下により詳細に説明する。
上記リチウム遷移金属系化合物の組成式のa,bを求めるには、各遷移金属とリチウム
を誘導結合プラズマ発光分光分析装置(ICP−AES)で分析して、Li/Ni/Mnの比を求める事で計算される。
Here, the chemical meaning of the lithium composition in the lithium nickel-manganese-based composite oxide, which is the composition of the lithium transition metal-based compound, will be described in more detail below.
To obtain the composition formulas a and b of the lithium transition metal compound, each transition metal and lithium are analyzed by an inductively coupled plasma emission spectrophotometer (ICP-AES) to obtain the ratio of Li / Ni / Mn. It is calculated by the thing.

構造的視点では、aに係るリチウムは、同じ遷移金属サイトに置換されて入っていると考えられる。ここで、aに係るリチウムによって、電荷中性の原理によりMとマンガンの平均価数が3.5価より大きくなる。
また、上記リチウム遷移金属系化合物は、フッ素置換されていてもよく、LiMn4−x2xと表記される。
From a structural point of view, it is considered that lithium related to a is replaced with the same transition metal site. Here, due to the lithium related to a, the average valence of M and manganese becomes larger than 3.5 valence due to the principle of charge neutrality.
Further, the lithium transition metal compound may be fluorine-substituted, and is described as LiMn 2 O 4-x F 2x .

〈ブレンド〉
上記の組成のリチウム遷移金属系化合物の具体例としては、例えば、Li1+xNi0.5Mn0.5、Li1+xNi0.85Co0.10Al0.05、Li1+xNi0.33Mn0.33Co0.33、Li1+xNi0.45Mn0.45Co0.1、Li1+xMn1.8Al0.2、Li1+xM1.5Ni0.5等が挙げられる。これらのリチウム遷移金属系化合物は、1種を単独で用いてもよく、二種以上をブレンドして用いてもよい。
<blend>
Specific examples of the lithium transition metal-based compound having the above composition include, for example, Li 1 + x Ni 0.5 Mn 0.5 O 2 , Li 1 + x Ni 0.85 Co 0.10 Al 0.05 O 2 , Li 1 + x Ni. 0.33 Mn 0.33 Co 0.33 O 2 , Li 1 + x Ni 0.45 Mn 0.45 Co 0.1 O 2 , Li 1 + x Mn 1.8 Al 0.2 O 4 , Li 1 + xM n 1.5 Examples include Ni 0.5 O 4 and the like. One of these lithium transition metal compounds may be used alone, or two or more thereof may be blended and used.

〈異元素導入〉
また、リチウム遷移金属系化合物は、異元素が導入されてもよい。異元素としては、B,Na,Mg,Al,K,Ca,Ti,V,Cr,Fe,Cu,Zn,Sr,Y,Zr,Nb,Ru,Rh,Pd,Ag,In,Sb,Te,Ba,Ta,Mo,W,Re,Os,Ir,Pt,Au,Pb,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Bi,N,F,S,Cl,Br,I,As,Ge,P,Pb,Sb,Si及びSnの何れか1種以上の中から選択される。これらの異元素は、リチウム遷移金属系化合物の結晶構造内に取り込まれていてもよく、あるいは、リチウム遷移金属系化合物の結晶構造内に取り込まれず、その粒子表面や結晶粒界等に単体もしくは化合物として偏在していてもよい。
<Introduction of different elements>
Further, a foreign element may be introduced into the lithium transition metal compound. As different elements, B, Na, Mg, Al, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Sr, Y, Zr, Nb, Ru, Rh, Pd, Ag, In, Sb, Te , Ba, Ta, Mo, W, Re, Os, Ir, Pt, Au, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi , N, F, S, Cl, Br, I, As, Ge, P, Pb, Sb, Si and Sn are selected from any one or more. These different elements may be incorporated into the crystal structure of the lithium transition metal-based compound, or may not be incorporated into the crystal structure of the lithium transition metal-based compound, and may be a simple substance or a compound on the particle surface or grain boundaries thereof. It may be unevenly distributed.

[リチウム二次電池用正極]
リチウム二次電池用正極は、上述のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体及び結着剤を含有する正極活物質層を集電体上に形成してなるものである。
正極活物質層は、通常、正極材料と結着剤と更に必要に応じて用いられる導電材及び増粘剤等を、乾式で混合してシート状にしたものを正極集電体に圧着するか、或いはこれらの材料を液体媒体中に溶解又は分散させてスラリー状にして、正極集電体に塗布、乾燥することにより作成される。
[Positive electrode for lithium secondary battery]
The positive electrode for a lithium secondary battery is formed by forming a positive electrode active material layer containing the above-mentioned lithium transition metal compound powder for a positive electrode material for a lithium secondary battery and a binder on a current collector.
For the positive electrode active material layer, is the positive electrode material, the binder, and the conductive material and the thickener used as needed mixed in a dry manner to form a sheet, which is then pressure-bonded to the positive electrode current collector? Alternatively, these materials are dissolved or dispersed in a liquid medium to form a slurry, which is applied to a positive electrode current collector and dried.

正極集電体の材質としては、通常、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料が用いられる。また、形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。なお、薄膜は適宜メッシュ状に形成してもよい。 As the material of the positive electrode current collector, a metal material such as aluminum, stainless steel, nickel plating, titanium, or tantalum, or a carbon material such as carbon cloth or carbon paper is usually used. As for the shape, in the case of metal material, metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, foam metal, etc., and in the case of carbon material, carbon plate, carbon thin film, carbon column. And so on. The thin film may be formed in a mesh shape as appropriate.

正極集電体として薄膜を使用する場合、その厚さは任意であるが、通常1μm以上、100mm以下の範囲が好適である。上記範囲よりも薄いと、集電体として必要な強度が不足する可能性がある一方で、上記範囲よりも厚いと、取り扱い性が損なわれる可能性がある。
正極活物質層の製造に用いる結着剤としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して安定な材料であればよいが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香
族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子、SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子、スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレンスチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子、シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子、アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用してもよい。
When a thin film is used as the positive electrode current collector, its thickness is arbitrary, but it is usually preferably in the range of 1 μm or more and 100 mm or less. If it is thinner than the above range, the strength required for the current collector may be insufficient, while if it is thicker than the above range, the handleability may be impaired.
The binder used in the production of the positive electrode active material layer is not particularly limited, and in the case of the coating method, any material that is stable to the liquid medium used in the production of the electrode may be used. Resin-based polymers such as polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, cellulose, nitrocellulose, SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluororubber, isoprene rubber, butadiene rubber, ethylene -Rubber polymer such as propylene rubber, styrene-butadiene-styrene block copolymer and its hydrogen additive, EPDM (ethylene-propylene-diene ternary copolymer), styrene-ethylene-butadiene-ethylene copolymer, Thermoplastic elastomeric polymers such as styrene / isoprene styrene block copolymer and its hydrogenated additives, syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / vinyl acetate copolymer, propylene / α-olefin Soft resinous polymers such as polymers, fluoropolymers such as polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymer, and alkali metal ions (particularly lithium ions) Examples thereof include a polymer composition having ionic conductivity. In addition, as these substances, 1 type may be used alone, and 2 or more types may be used together in arbitrary combinations and ratios.

正極活物質層中の結着剤の割合は、通常0.1質量%以上、80質量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう可能性がある一方で、高すぎると、電池容量や導電性の低下につながる可能性がある。
正極活物質層には、通常、導電性を高めるために導電材を含有させる。その種類に特に制限はないが、具体例としては、銅、ニッケル等の金属材料や、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素材料等を挙げることができる。なお、これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用してもよい。正極活物質層中の導電材の割合は、通常0.01質量%以上、50質量%以下である。導電材の割合が低すぎると導電性が不十分になることがあり、逆に高すぎると電池容量が低下することがある。
The proportion of the binder in the positive electrode active material layer is usually 0.1% by mass or more and 80% by mass or less. If the proportion of the binder is too low, the positive electrode active material cannot be sufficiently retained and the mechanical strength of the positive electrode may be insufficient, which may deteriorate the battery performance such as cycle characteristics. On the other hand, if it is too high, It may lead to a decrease in battery capacity and conductivity.
The positive electrode active material layer usually contains a conductive material in order to increase conductivity. The type is not particularly limited, but specific examples include metallic materials such as copper and nickel, graphite such as natural graphite and artificial graphite (graphite), carbon black such as acetylene black, and amorphous carbon such as needle coke. Carbon materials and the like can be mentioned. In addition, as these substances, 1 type may be used alone, and 2 or more types may be used together in arbitrary combinations and ratios. The ratio of the conductive material in the positive electrode active material layer is usually 0.01% by mass or more and 50% by mass or less. If the proportion of the conductive material is too low, the conductivity may be insufficient, and conversely, if it is too high, the battery capacity may decrease.

スラリーを形成するための液体媒体としては、正極材料であるリチウム遷移金属系化合物粉体、結着剤、並びに必要に応じて使用される導電材及び増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。水系溶媒の例としては水、アルコール等が挙げられ、有機系溶媒の例としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセタミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等を挙げることができる。特に水系溶媒を用いる場合、増粘剤に併せて分散剤を加え、SBR等のラテックスを用いてスラリー化する。なお、これらの溶媒は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用してもよい。 As the liquid medium for forming the slurry, a lithium transition metal compound powder as a positive electrode material, a binder, and a conductive material and a thickener used as needed can be dissolved or dispersed. As long as it is a solvent, the type thereof is not particularly limited, and either an aqueous solvent or an organic solvent may be used. Examples of aqueous solvents include water, alcohol and the like, and examples of organic solvents include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylethylketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N. , N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran (THF), toluene, acetone, dimethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane, etc. be able to. In particular, when an aqueous solvent is used, a dispersant is added together with the thickener, and a latex such as SBR is used to make a slurry. In addition, as these solvents, 1 type may be used alone, and 2 or more types may be used together in arbitrary combinations and ratios.

正極活物質層中の正極材料としてのリチウム遷移金属系化合物粉体の含有割合は、通常10質量%以上、99.9質量%以下である。正極活物質層中のリチウム遷移金属系化合物粉体の割合が多すぎると正極の強度が不足する傾向にあり、少なすぎると容量の面で不十分となることがある。
また、正極活物質層の厚さは、通常10〜200μm程度である。
The content ratio of the lithium transition metal compound powder as the positive electrode material in the positive electrode active material layer is usually 10% by mass or more and 99.9% by mass or less. If the proportion of the lithium transition metal compound powder in the positive electrode active material layer is too large, the strength of the positive electrode tends to be insufficient, and if it is too small, the capacity may be insufficient.
The thickness of the positive electrode active material layer is usually about 10 to 200 μm.

正極のプレス後の電極密度としては、通常、2.2g/cm以上、4.2g/cm以下である。
なお、塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるた
めに、ローラープレス等により圧密化することが好ましい。
かくして、リチウム二次電池用正極が調製できる。
The electrode density of the positive electrode after pressing is usually 2.2 g / cm 3 or more and 4.2 g / cm 3 or less.
The positive electrode active material layer obtained by coating and drying is preferably compacted by a roller press or the like in order to increase the packing density of the positive electrode active material.
Thus, a positive electrode for a lithium secondary battery can be prepared.

2−3.セパレータ
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、本発明の一実施形態である非水系電解液は、通常はこのセパレータに含浸させて用いる。
セパレータの材料や形状については特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
2-3. Separator A separator is usually interposed between the positive electrode and the negative electrode to prevent a short circuit. In this case, the non-aqueous electrolyte solution according to the embodiment of the present invention is usually used by impregnating the separator.
The material and shape of the separator are not particularly limited, and any known separator can be used as long as the effects of the present invention are not significantly impaired. Among them, resins, glass fibers, inorganic substances and the like formed of a material stable to non-aqueous electrolytic solutions are used, and it is preferable to use a porous sheet or a non-woven fabric-like material having excellent liquid retention properties.

樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。中でも好ましくはガラスフィルター、ポリオレフィンであり、さらに好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 As the material of the resin and the glass fiber separator, for example, polyolefins such as polyethylene and polypropylene, aromatic polyamides, polytetrafluoroethylene, polyether sulfone, glass filters and the like can be used. Of these, glass filters and polyolefins are preferable, and polyolefins are more preferable. One of these materials may be used alone, or two or more of these materials may be used in any combination and ratio.

セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、10μm以上がさらに好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がさらに好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、非水系電解液二次電池全体としてのエネルギー密度が低下する場合がある。 The thickness of the separator is arbitrary, but is usually 1 μm or more, preferably 5 μm or more, further preferably 10 μm or more, and usually 50 μm or less, preferably 40 μm or less, further preferably 30 μm or less. If the separator is too thin than the above range, the insulating property and mechanical strength may decrease. Further, if it is too thick than the above range, not only the battery performance such as rate characteristics may be deteriorated, but also the energy density of the non-aqueous electrolyte secondary battery as a whole may be lowered.

さらに、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上がさらに好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下がさらに好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。 Further, when a porous material such as a porous sheet or a non-woven fabric is used as the separator, the porosity of the separator is arbitrary, but is usually 20% or more, preferably 35% or more, still more preferably 45% or more. Further, it is usually 90% or less, preferably 85% or less, and more preferably 75% or less. If the porosity is too small than the above range, the film resistance tends to increase and the rate characteristics tend to deteriorate. On the other hand, if it is larger than the above range, the mechanical strength of the separator tends to decrease and the insulating property tends to decrease.

また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状もしくは繊維形状のものが用いられる。
The average pore size of the separator is also arbitrary, but is usually 0.5 μm or less, preferably 0.2 μm or less, and usually 0.05 μm or more. If the average pore diameter exceeds the above range, a short circuit is likely to occur. Further, if it falls below the above range, the film resistance may increase and the rate characteristics may deteriorate.
On the other hand, as the inorganic material, for example, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used, and those having a particle shape or a fiber shape are used. Used.

形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着材を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着材として多孔層を形成させることが挙げられる。 As the form, a thin film such as a non-woven fabric, a woven cloth, or a microporous film is used. As the thin film shape, a thin film having a pore diameter of 0.01 to 1 μm and a thickness of 5 to 50 μm is preferably used. In addition to the above-mentioned independent thin film shape, a separator obtained by forming a composite porous layer containing the above-mentioned inorganic particles on the surface layer of the positive electrode and / or the negative electrode by using a resin binder can be used. For example, alumina particles having a 90% particle size of less than 1 μm are formed on both sides of the positive electrode by using a fluororesin as a binder to form a porous layer.

セパレータの非電解液二次電池における特性を、ガーレ値で把握することができる。ガーレ値とは、フィルム厚さ方向の空気の通り抜け難さを示し、100mlの空気が該フィルムを通過するのに必要な秒数で表されるため、数値が小さい方が通り抜け易く、数値が
大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方がフィルムの厚さ方向の連通性が良いことを意味し、その数値が大きい方がフィルムの厚さ方向の連通性が悪いことを意味する。連通性とは、フィルム厚さ方向の孔のつながり度合いである。本発明のセパレータのガーレ値が低ければ、様々な用途に使用することが出来る。例えば非水系リチウム二次電池のセパレータとして使用した場合、ガーレ値が低いということは、リチウムイオンの移動が容易であることを意味し、電池性能に優れるため好ましい。セパレータのガーレ値は、任意ではあるが、好ましくは10〜1000秒/100mlであり、より好ましくは15〜800秒/100mlであり、更に好ましくは20〜500秒/100mlである。ガーレ値が1000秒/100ml以下であれば、実質的には電気抵抗が低く、セパレータとしては好ましい。
The characteristics of the separator in the non-electrolyte liquid secondary battery can be grasped by the galley value. The gullet value indicates the difficulty of passing air in the film thickness direction, and is represented by the number of seconds required for 100 ml of air to pass through the film. Therefore, the smaller the value, the easier it is to pass through, and the larger the value. It means that it is harder to pass through. That is, the smaller the value, the better the communication in the thickness direction of the film, and the larger the value, the poorer the communication in the thickness direction of the film. The communication property is the degree of connection of holes in the film thickness direction. If the galley value of the separator of the present invention is low, it can be used for various purposes. For example, when used as a separator for a non-aqueous lithium secondary battery, a low galley value means that lithium ions can be easily transferred, which is preferable because the battery performance is excellent. The galley value of the separator is arbitrary, but is preferably 10 to 1000 seconds / 100 ml, more preferably 15 to 800 seconds / 100 ml, and even more preferably 20 to 500 seconds / 100 ml. When the galley value is 1000 seconds / 100 ml or less, the electrical resistance is substantially low, which is preferable as a separator.

2−4.電池設計
<電極群>
電極群は、上記の正極と負極とを上記のセパレータを介してなる積層構造のもの、及び上記の正極と負極とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
2-4. Battery design <Electrode group>
The electrode group may be either a laminated structure in which the positive electrode and the negative electrode are formed via the separator, or a structure in which the positive electrode and the negative electrode are spirally wound via the separator. The ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as the electrode group occupancy rate) is usually 40% or more, preferably 50% or more, and usually 90% or less, preferably 80% or less. ..

電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。 When the electrode group occupancy rate is less than the above range, the battery capacity becomes small. Further, if it exceeds the above range, the void space is small, and the internal pressure rises due to the expansion of the member due to the high temperature of the battery and the increase of the vapor pressure of the liquid component of the electrolyte, and the charge / discharge repetition performance as a battery. In some cases, various characteristics such as high temperature storage may be deteriorated, and a gas discharge valve that releases internal pressure to the outside may operate.

<保護素子>
保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等を使用することができる。上記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
<Protective element>
As a protective element, PTC (Positive Temperature Coafficient) whose resistance increases when abnormal heat generation or excessive current flows, thermal fuse, thermistor, and current flowing in the circuit due to a sudden rise in battery internal pressure or internal temperature during abnormal heat generation are cut off. A valve (current cutoff valve) or the like can be used. It is preferable to select the protective element under conditions that do not operate under normal use with a high current, and it is more preferable to design the protective element so as not to cause abnormal heat generation or thermal runaway even without the protective element.

<外装体>
本発明の一実施形態である非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体(外装ケース)内に収納して構成される。この外装体に制限は無く、本発明の効果を著しく損なわない限り公知のものを任意に採用することができる。
<Exterior body>
The non-aqueous electrolyte secondary battery according to the embodiment of the present invention is usually configured by accommodating the above-mentioned non-aqueous electrolyte, negative electrode, positive electrode, separator and the like in an exterior body (exterior case). There is no limitation on this exterior body, and a known one can be arbitrarily adopted as long as the effect of the present invention is not significantly impaired.

外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に限定されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金、ニッケル、チタン等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。 The material of the outer case is not particularly limited as long as it is a substance stable to the non-aqueous electrolyte solution used. Specifically, a nickel-plated steel plate, stainless steel, aluminum or aluminum alloy, magnesium alloy, metals such as nickel and titanium, or a laminated film (laminated film) of resin and aluminum foil is used. From the viewpoint of weight reduction, aluminum or aluminum alloy metal or laminated film is preferably used.

上記金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、又は、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹
脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
In the outer case using the above metals, the metals are welded together by laser welding, resistance welding, or ultrasonic welding to form a sealed and sealed structure, or the above metals are used to caulk the structure via a resin gasket. There are things to do. Examples of the outer case using the above-mentioned laminated film include a case in which resin layers are heat-sealed to form a sealed and sealed structure. In order to improve the sealing property, a resin different from the resin used for the laminate film may be interposed between the resin layers. In particular, when the resin layer is heat-sealed via the current collector terminal to form a closed structure, the metal and the resin are bonded to each other. Therefore, a resin having a polar group or a modification in which a polar group is introduced as an intervening resin is introduced. Resin is preferably used.

また、外装ケースの形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。 Further, the shape of the outer case is also arbitrary, and may be any of, for example, a cylindrical type, a square shape, a laminated type, a coin type, and a large size.

以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
実施例及び比較例に使用した化合物を以下に示す。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
The compounds used in Examples and Comparative Examples are shown below.

化合物1 Compound 1

化合物2 Compound 2

化合物3 Compound 3

化合物4 Compound 4

化合物5 Compound 5

化合物6 Compound 6

化合物7 Compound 7

化合物8 Compound 8

化合物9 Compound 9

化合物10 Compound 10

化合物11 Compound 11

化合物12 Compound 12

<実施例1−1、比較例1−1〜1−5>
[非水系電解液の調製]
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)との混合物(体積比3:4:3)に、十分に乾燥させたLiPFを1.2モル/L(非水系電解液中の濃度として)溶解させ、さらに、化合物9、化合物10をそれぞれ2.0質量%ずつ添加して電解液を調製した(これを基準電解液1と呼ぶ)。基準電解液1全体に対して、下記表1に記載の割合で添加剤を加えて電解液を調製した。ただし、比較例1−1は基準電解液1そのものである。なお、表中の「含有量(質量%)」は、非水系電解液100質量%中の濃度である。
<Example 1-1, Comparative Examples 1-1-1-5>
[Preparation of non-aqueous electrolyte solution]
Under a dry argon atmosphere, 1.2 mol / mol of fully dried LiPF 6 was added to a mixture (volume ratio 3: 4: 3) of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC). L (as the concentration in the non-aqueous electrolyte solution) was dissolved, and 2.0% by mass of each of Compound 9 and Compound 10 was added to prepare an electrolytic solution (this is referred to as reference electrolytic solution 1). Additives were added to the whole reference electrolyte 1 at the ratio shown in Table 1 below to prepare an electrolyte. However, Comparative Example 1-1 is the reference electrolyte 1 itself. The "content (% by mass)" in the table is the concentration in 100% by mass of the non-aqueous electrolyte solution.

[正極の作製]
正極活物質としてコバルト酸リチウム(LiCoO)97質量%と、導電材としてアセチレンブラック1.5質量%と、結着材としてポリフッ化ビニリデン(PVdF)1.5質量%とを、N−メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。これを厚さ21μmのアルミニウム箔の両面に均一に塗布、乾燥した後、プレスして正極とした。
[Preparation of positive electrode]
97% by mass of lithium cobalt oxide (LiCoO 2 ) as a positive electrode active material, 1.5% by mass of acetylene black as a conductive material, and 1.5% by mass of polyvinylidene fluoride (PVdF) as a binder, N-methylpyrrolidone. It was mixed with a disperser in a solvent to form a slurry. This was uniformly applied to both sides of an aluminum foil having a thickness of 21 μm, dried, and then pressed to obtain a positive electrode.

[負極の作製]
負極活物質として天然黒鉛粉末、増粘剤、バインダーとしてそれぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)、及び、スチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)、ディスパーザーで混合してスラリー化した。このスラリーを厚さ12μmの銅箔の片面に均一に塗布、乾燥した後、プレスして負極とした。なお、乾燥後の負極において、天然黒鉛:カルボキシメチルセルロースナトリウム:スチレンブタジエンゴム=98:1:1の質量比となるように作製した。
[Preparation of negative electrode]
Natural graphite powder as the negative electrode active material, thickener, aqueous dispersion of sodium carboxymethyl cellulose (concentration of sodium carboxymethyl cellulose 1% by mass) as binder, and aqueous dispersion of styrene-butadiene rubber (styrene-butadiene rubber), respectively. The concentration was 50% by mass), and the mixture was mixed with a disperser to form a slurry. This slurry was uniformly applied to one side of a copper foil having a thickness of 12 μm, dried, and then pressed to obtain a negative electrode. In the negative electrode after drying, the mass ratio was such that natural graphite: sodium carboxymethyl cellulose: styrene butadiene rubber = 98: 1: 1.

[非水系電解液電池(ラミネート型)の製造]
上記の正極、負極、及びポリオレフィン製セパレータを、負極、セパレータ、正極、セパレータ、負極の順に積層した。こうして得られた電池要素をアルミニウムラミネートフィルムで包み込み、後述する電解液を注入した後で真空封止し、シート状の非水系電解液二次電池を作製した。
[Manufacturing of non-aqueous electrolyte batteries (laminated type)]
The above positive electrode, negative electrode, and polyolefin separator were laminated in the order of negative electrode, separator, positive electrode, separator, and negative electrode. The battery element thus obtained was wrapped in an aluminum laminate film, injected with an electrolytic solution described later, and then vacuum-sealed to prepare a sheet-shaped non-aqueous electrolyte secondary battery.

<非水系電解液二次電池の評価>
[初期コンディショニング]
25℃の恒温槽中、ラミネート型セルの非水系電解液二次電池を0.05Cに相当する電流で6時間定電流充電した後、0.2Cで3.0Vまで放電した。0.2Cで4.1VまでCC−CV充電を行った。その後、45℃、72時間の条件でエージングを実施した。その後、0.2Cで3.0Vまで放電し、非水系電解液二次電池を安定させた。さらに、0.2Cで4.4VまでCC−CV充電を行った後、0.2Cで3.0Vまで放電し、初期コンディショニングを行った。
<Evaluation of non-aqueous electrolyte secondary battery>
[Initial conditioning]
In a constant temperature bath at 25 ° C., the non-aqueous electrolyte secondary battery of the laminated cell was charged with a constant current for 6 hours at a current corresponding to 0.05 C, and then discharged to 3.0 V at 0.2 C. CC-CV charging was performed at 0.2 C to 4.1 V. Then, aging was carried out under the conditions of 45 ° C. and 72 hours. Then, it was discharged to 3.0V at 0.2C to stabilize the non-aqueous electrolyte secondary battery. Further, CC-CV charging was performed at 0.2 C to 4.4 V, and then discharged to 3.0 V at 0.2 C for initial conditioning.

<非水系電解液二次電池の評価>
[充電保存試験]
初期容量評価後のセルを再度、0.2Cで4.4VまでCC−CV充電を行った後、85℃、6時間の条件で高温保存を行った。電池を十分に冷却させた後、エタノール浴中に浸して体積を測定し、保存試験前後の体積変化から発生ガス量を求め、これを「充電保存ガス量」とした。
下記表1に、比較例1−1で規格化した、充電保存ガス量を示す。
<Evaluation of non-aqueous electrolyte secondary battery>
[Charge storage test]
The cell after the initial capacity evaluation was again charged with CC-CV at 0.2 C to 4.4 V, and then stored at a high temperature at 85 ° C. for 6 hours. After the battery was sufficiently cooled, the battery was immersed in an ethanol bath to measure the volume, and the amount of generated gas was determined from the volume change before and after the storage test, and this was defined as the "charge storage gas amount".
Table 1 below shows the amount of charge storage gas standardized in Comparative Example 1-1.

表1から明らかなように、本発明の式(A)で表される化合物を含む非水系電解液を用いた場合(実施例1−1)、式(A)で表される化合物を含有していない比較例1−1よりも充電保存ガスを抑制する。また、表1により、比較例1−2〜1−5のような式(A)で表される化合物以外の芳香族エステル化合物を添加した非水系電解液を用いると、充電保存ガスは増大あるいは、充電保存ガスの抑制効果が小さいことが示されている。これより、非水系電解液に式(A)で表される化合物を添加した非水系電解液を用いることで充電後、高温保存時の電池膨れが改善されることがわかる。 As is clear from Table 1, when a non-aqueous electrolyte solution containing the compound represented by the formula (A) of the present invention is used (Example 1-1), the compound represented by the formula (A) is contained. The charge storage gas is suppressed more than in Comparative Example 1-1 which is not used. Further, according to Table 1, when a non-aqueous electrolyte solution to which an aromatic ester compound other than the compound represented by the formula (A) as in Comparative Examples 1-2 to 1-5 is added, the charge storage gas is increased or the charge storage gas is increased. , It has been shown that the effect of suppressing the charge storage gas is small. From this, it can be seen that the battery swelling during high temperature storage after charging is improved by using the non-aqueous electrolyte solution in which the compound represented by the formula (A) is added to the non-aqueous electrolyte solution.

<実施例2−1〜2−2、比較例2−1〜2−8>
[非水系電解液の調製]
乾燥アルゴン雰囲気下、EC、EMCとの混合物(体積容量比3:7)に、十分に乾燥させたLiPFを1.0モル/L(非水系電解液中の濃度として)溶解させ、電解液を調製した(これを基準電解液2と呼ぶ)。基準電解液2全体に対して、下記表2に記載の割合で添加剤を加えて電解液を調製した。
[電気化学的耐酸化性の評価]
作用極として白金を、参照極と対極として金属リチウムを準備し、上記電解液に浸漬させることで三極式の電気化学セルを構成した。室温において、作用極の電位を自然電位から掃引速度5mV/sにて、参照極の電位に対し6.0V(Li/Li+基準)まで掃引し、その後自然電位まで掃引速度5mV/sにて掃引する測定を繰り返した。1サイクル目、2サイクル目における自然電位から5.5V(Li/Li+基準)までの電気量を求め、この比(2サイクル目の電気量/1サイクル目の電気量)を「(2サイクル/1サイクル)電気量比」とした。
下記表2に、(2サイクル/1サイクル)電気量比を示す。
<Examples 2-1 to 2-2, Comparative Examples 2-1 to 2-8>
[Preparation of non-aqueous electrolyte solution]
Under a dry argon atmosphere, 1.0 mol / L (as a concentration in a non-aqueous electrolyte solution) of sufficiently dried LiPF 6 is dissolved in a mixture of EC and EMC (volume volume ratio 3: 7) to dissolve the electrolyte solution. (This is called the reference electrolyte 2). Additives were added to the whole reference electrolyte 2 at the ratio shown in Table 2 below to prepare an electrolyte.
[Evaluation of electrochemical oxidation resistance]
Platinum was prepared as the working electrode and metallic lithium was prepared as the counter electrode to the reference electrode, and the cells were immersed in the electrolytic solution to form a tripolar electrochemical cell. At room temperature, the potential of the working electrode is swept from the natural potential at a sweep rate of 5 mV / s to 6.0 V (Li / Li + reference) with respect to the potential of the reference electrode, and then swept to the natural potential at a sweep rate of 5 mV / s. The measurement was repeated. The amount of electricity from the natural potential in the first cycle and the second cycle to 5.5V (Li / Li + reference) is obtained, and this ratio (the amount of electricity in the second cycle / the amount of electricity in the first cycle) is set to "(2 cycles /). 1 cycle) Electricity ratio ”.
Table 2 below shows the (2 cycle / 1 cycle) electricity ratio.

表2から明らかなように、本発明の式(A)で表される化合物を含む非水系電解液を用いた場合(実施例2−1〜2−2)、式(A)で表される化合物以外の芳香族カルボン酸エステル化合物を含有している比較例2−1〜2−8よりも(2サイクル/1サイクル)電気量比が抑制されている。電気量比の値は、小さい程2サイクル目の電気量が少なく、電解液の分解反応が抑制されていることを示す。このことから、式(A)で表される化合物を添加した非水系電解液を用いることで、電極上に絶縁性の被膜を形成し、その後の非水系電解液の分解反応を効果的に抑制していることが分かる。 As is clear from Table 2, when a non-aqueous electrolyte solution containing the compound represented by the formula (A) of the present invention is used (Examples 2-1 to 2-2), it is represented by the formula (A). The electricity content ratio is suppressed (2 cycles / 1 cycle) as compared with Comparative Examples 2-1 to 2-8 containing an aromatic carboxylic acid ester compound other than the compound. The smaller the value of the electricity amount ratio, the smaller the amount of electricity in the second cycle, indicating that the decomposition reaction of the electrolytic solution is suppressed. From this, by using a non-aqueous electrolyte solution to which the compound represented by the formula (A) is added, an insulating film is formed on the electrode, and the subsequent decomposition reaction of the non-aqueous electrolyte solution is effectively suppressed. You can see that it is doing.

<実施例3−1、比較例3−1〜3−4>
[非水系電解液の調製]
乾燥アルゴン雰囲気下、EC、プロピオン酸エチル(EP)の混合物(体積容量比3:7)に、十分に乾燥させたLiPFを1.0モル/L(非水系電解液中の濃度として)溶解させ、電解液を調製した(これを基準電解液3と呼ぶ)。基準電解液2、基準電解液3全体に対して、下記表3に記載の割合で添加剤をそれぞれ加えて電解液2’(EMC溶媒)、電解液3(EP溶媒)を調製した。
[電気化学的耐酸化性の評価]
作用極として白金を、参照極と対極として金属リチウムを準備し、上記電解液に浸漬させることで三極式の電気化学セルを構成した。室温において、作用極の電位を自然電位から掃引速度5mV/sにて、参照極の電位に対し6.0V(Li/Li+基準)まで掃引し、その後自然電位まで掃引速度5mV/sにて掃引する測定を行った。基準電解液2及び3における1サイクル目の電気量を求め、この比(1サイクル目の電解液3(EP溶媒)電気量/1サイクル目の電解液2’(EMC溶媒)電気量)を「(EP溶媒/EMC溶媒)電気量比」とした。
下記表3に、(EP溶媒/EMC溶媒)電気量比を示す。
<Example 3-1 and Comparative Examples 3-1 to 3-4>
[Preparation of non-aqueous electrolyte solution]
Under a dry argon atmosphere, 1.0 mol / L (as a concentration in a non-aqueous electrolyte solution) of sufficiently dried LiPF 6 is dissolved in a mixture of EC and ethyl propionate (EP) (volume volume ratio 3: 7). To prepare an electrolytic solution (this is called a reference electrolytic solution 3). Additives were added to the reference electrolyte 2 and the reference electrolyte 3 at the ratios shown in Table 3 below to prepare electrolyte 2'(EMC solvent) and electrolyte 3 (EP solvent), respectively.
[Evaluation of electrochemical oxidation resistance]
Platinum was prepared as the working electrode and metallic lithium was prepared as the counter electrode to the reference electrode, and the cells were immersed in the electrolytic solution to form a tripolar electrochemical cell. At room temperature, the potential of the working electrode is swept from the natural potential at a sweep rate of 5 mV / s to 6.0 V (Li / Li + reference) with respect to the potential of the reference electrode, and then swept to the natural potential at a sweep rate of 5 mV / s. The measurement was performed. The amount of electricity in the first cycle of the reference electrolytes 2 and 3 was obtained, and this ratio (the amount of electricity in the electrolyte 3 (EP solvent) in the first cycle / the amount of electricity in the electrolyte 2'(EMC solvent) in the first cycle) was set to ". (EP solvent / EMC solvent) electrical quantity ratio ”.
Table 3 below shows the (EP solvent / EMC solvent) electrical ratio.

表3から明らかなように、本発明の式(A)で表される化合物を含む非水系電解液を用いた場合(実施例3−1)、(EP溶媒/EMC溶媒)電気量比が1より非常に小さく、抑制されていることが示されている。一方で、式(A)で表される化合物を含有していない比較例3−1、および比較例3−2〜3−4のような式(A)で表される化合物以外の芳香族カルボン酸エステル化合物を含む非水系電解液を用いた場合は(EP溶媒/EMC溶媒)電気量比が1より大きく増加していることから、EP溶媒系ではEMC溶媒系よりも電解液の分解がより進行していることが分かる。このことから、式(A)で表される化合物はEP溶媒系において非水系電解液の分解反応を効果的に抑制していることが分かる。 As is clear from Table 3, when a non-aqueous electrolyte solution containing the compound represented by the formula (A) of the present invention is used (Example 3-1), the (EP solvent / EMC solvent) electrical ratio is 1. It has been shown to be much smaller and suppressed. On the other hand, aromatic carboxylics other than the compounds represented by the formula (A) such as Comparative Example 3-1 and Comparative Examples 3-2-3-4 which do not contain the compound represented by the formula (A). When a non-aqueous electrolytic solution containing an acid ester compound was used (EP solvent / EMC solvent), the electrical quantity ratio increased more than 1, so that the EP solvent system decomposed the electrolytic solution more than the EMC solvent system. You can see that it is in progress. From this, it can be seen that the compound represented by the formula (A) effectively suppresses the decomposition reaction of the non-aqueous electrolyte solution in the EP solvent system.

本発明の非水系電解液によれば、耐久性と容量、抵抗、出力特性などの性能につき、総合的な性能のバランスがよい、特に、満充電・高温保存時のガス発生を抑制し、電気化学的耐酸化性に優れた、耐久性能と電気化学的特性のバランスのよい電池を提供することができる。そのため、非水系電解液二次電池が用いられる電子機器等のあらゆる分野において好適に利用できる。
本発明の非水系電解液及び非水系電解液二次電池の用途は特に限定されず、公知の各種の用途に用いることが可能である。その用途の具体例としては、ラップトップコンピュータ、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンタ、携帯オーディオプレーヤー、小型ビデオカメラ、液晶テレビ、ハンディクリーナー、トランシーバ、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ等を挙げることができる。
According to the non-aqueous electrolyte solution of the present invention, there is a good balance of overall performance in terms of durability, capacity, resistance, output characteristics, etc., in particular, gas generation during full charge and high temperature storage is suppressed, and electricity is obtained. It is possible to provide a battery having excellent chemical oxidation resistance and a good balance between durability and electrochemical characteristics. Therefore, it can be suitably used in all fields such as electronic devices in which a non-aqueous electrolyte secondary battery is used.
The use of the non-aqueous electrolyte solution and the non-aqueous electrolyte solution secondary battery of the present invention is not particularly limited, and can be used for various known applications. Specific examples of its use are laptop computers, electronic book players, mobile phones, mobile faxes, mobile copies, mobile printers, portable audio players, small video cameras, LCD TVs, handy cleaners, transceivers, electronic notebooks, calculators, and memories. Cards, portable tape recorders, radios, backup power supplies, automobiles, bikes, motorized bicycles, bicycles, lighting equipment, toys, game equipment, watches, power tools, strobes, cameras, etc. can be mentioned.

Claims (7)

非水系電解液二次電池用の非水系電解液であって、該非水系電解液がアルカリ金属塩及び非水系溶媒とともに、式(A)で表される化合物を含有することを特徴とする非水系電解液二次電池用非水系電解液。

(式(A)中、R〜Rは、それぞれ独立して水素原子、或いは置換基を有していてもよい炭素数1〜20の炭化水素基を示し、R〜Rの内、少なくとも1つは置換基を有していてもよい炭素数6〜20のアリール基を示す。Xはメチル基を示す。aは1〜5の整数を示す。)
A nonaqueous electrolytic solution for a nonaqueous electrolyte secondary battery, non-aqueous non-aqueous electrolytic solution of with an alkali metal salt and a non-aqueous solvent, characterized by containing a compound represented by the formula (A) Electrolyte A non-aqueous electrolyte for secondary batteries .

(In the formula (A), R 1 to R 3 represent hydrocarbon groups having 1 to 20 carbon atoms which may independently have a hydrogen atom or a substituent, and are among R 1 to R 3 . , At least one represents an aryl group having 6 to 20 carbon atoms which may have a substituent. X represents a methyl group. A represents an integer of 1 to 5.)
前記式(A)中、aは1又は2である、請求項1に記載の非水系電解液二次電池用非水系電解液。 The non-aqueous electrolyte solution according to claim 1, wherein a is 1 or 2 in the formula (A). The non-aqueous electrolyte solution for a secondary battery . 前記式(A)で表される化合物の含有量が、非水系電解液の全量に対して0.001質量%以上10質量%以下である、請求項1又は2に記載の非水系電解液二次電池用非水系電解液。 2. The non-aqueous electrolyte solution according to claim 1 or 2, wherein the content of the compound represented by the formula (A) is 0.001% by mass or more and 10% by mass or less with respect to the total amount of the non-aqueous electrolyte solution. Non-aqueous electrolyte for next battery . さらに炭素−炭素不飽和結合を有する環状カーボネート、フッ素原子を有する環状カーボネート、ニトリル化合物、イソシアネート化合物、イソシアヌル酸骨格を有する化合物、フッ素化された塩、環状エーテル化合物、オキサラート塩及び環状スルホン酸エステル
からなる群より選ばれる少なくとも1種の化合物を含有する、請求項1乃至3のいずれか一項に記載の非水系電解液二次電池用非水系電解液。
Further from cyclic carbonates having a carbon-carbon unsaturated bond, cyclic carbonates having a fluorine atom, nitrile compounds, isocyanate compounds, compounds having an isocyanuric acid skeleton, fluorinated salts, cyclic ether compounds, oxalate salts and cyclic sulfonic acid esters. The non-aqueous electrolyte solution according to any one of claims 1 to 3, which contains at least one compound selected from the above group. Non-aqueous electrolyte solution for a secondary battery .
前記非水系溶媒が鎖状カルボン酸エステルを含む、請求項1乃至4のいずれか一項に記載の非水系電解液二次電池用非水系電解液。 The non -aqueous electrolyte solution according to any one of claims 1 to 4, wherein the non-aqueous solvent contains a chain carboxylic acid ester. The non-aqueous electrolyte solution for a secondary battery . リチウムイオンを吸蔵及び放出可能な正極と、リチウムイオンを吸蔵及び放出可能な負極と、非水系電解液とを備えた非水系電解液二次電池において、該非水系電解液が、請求項1乃至5のいずれか1項に記載の非水系電解液二次電池用非水系電解液である、非水系電解液二次電池。 In a non-aqueous electrolyte secondary battery including a positive electrode capable of storing and releasing lithium ions, a negative electrode capable of storing and releasing lithium ions, and a non-aqueous electrolyte solution, the non-aqueous electrolyte solution is claimed 1 to 5. The non-aqueous electrolyte secondary battery, which is the non-aqueous electrolyte for the non-aqueous electrolyte secondary battery according to any one of the above items. 請求項6に記載の非水系電解液二次電池を電源として備える電気自動車。 An electric vehicle equipped with the non-aqueous electrolyte secondary battery according to claim 6 as a power source.
JP2016161083A 2016-08-19 2016-08-19 Non-aqueous electrolyte solution and non-aqueous electrolyte battery using it Active JP6759847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016161083A JP6759847B2 (en) 2016-08-19 2016-08-19 Non-aqueous electrolyte solution and non-aqueous electrolyte battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016161083A JP6759847B2 (en) 2016-08-19 2016-08-19 Non-aqueous electrolyte solution and non-aqueous electrolyte battery using it

Publications (2)

Publication Number Publication Date
JP2018029030A JP2018029030A (en) 2018-02-22
JP6759847B2 true JP6759847B2 (en) 2020-09-23

Family

ID=61248497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016161083A Active JP6759847B2 (en) 2016-08-19 2016-08-19 Non-aqueous electrolyte solution and non-aqueous electrolyte battery using it

Country Status (1)

Country Link
JP (1) JP6759847B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115259182B (en) * 2022-08-18 2024-04-19 上海如鲲新材料股份有限公司 Method for preparing fluorosulfonate solution by adopting fluorosulfonate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2963898B1 (en) * 1998-07-31 1999-10-18 三洋電機株式会社 Electrolyte for non-aqueous battery and secondary battery using this electrolyte
ES2370479T3 (en) * 2000-08-11 2011-12-16 Ube Industries, Ltd. NON-WATER ELECTROLYTIC SOLUTION AND LITHIUM SECONDARY BATTERY.
JP4940501B2 (en) * 2001-03-21 2012-05-30 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP5286718B2 (en) * 2007-08-01 2013-09-11 宇部興産株式会社 Non-aqueous electrolyte for phenyl ester and lithium secondary battery, and lithium secondary battery using the same
JP5589264B2 (en) * 2008-06-06 2014-09-17 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JP2018029030A (en) 2018-02-22

Similar Documents

Publication Publication Date Title
JP6926293B2 (en) Non-aqueous electrolyte solution and non-aqueous electrolyte solution secondary battery using it
JP6906476B2 (en) Non-aqueous electrolyte solution and non-aqueous electrolyte battery using it
JP6624243B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
EP3185347B1 (en) Non-aqueous electrolyte secondary battery
JP2020021747A (en) Nonaqueous electrolytic solution and nonaqueous electrolyte secondary battery using the same
JP5903931B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP6589718B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP6693200B2 (en) Non-aqueous electrolyte solution and non-aqueous electrolyte battery using the same
JP6648505B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP6500541B2 (en) Nonaqueous Electrolyte and Nonaqueous Electrolyte Battery Using the Same
JP6638251B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP7062112B2 (en) Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery using it
JP6756250B2 (en) Non-aqueous electrolyte solution and non-aqueous electrolyte battery using it
JP6690261B2 (en) Non-aqueous electrolyte solution and non-aqueous electrolyte battery using the same
JP6657658B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP6759847B2 (en) Non-aqueous electrolyte solution and non-aqueous electrolyte battery using it
JP6729167B2 (en) Non-aqueous electrolyte solution and non-aqueous electrolyte battery using the same
JP6658079B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP6668878B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP6601262B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP6851527B2 (en) Non-aqueous electrolyte solution and non-aqueous electrolyte battery using it

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R151 Written notification of patent or utility model registration

Ref document number: 6759847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350