JP6758041B2 - Viaduct with damping power generation device and vibration damping power generation device - Google Patents

Viaduct with damping power generation device and vibration damping power generation device Download PDF

Info

Publication number
JP6758041B2
JP6758041B2 JP2015222504A JP2015222504A JP6758041B2 JP 6758041 B2 JP6758041 B2 JP 6758041B2 JP 2015222504 A JP2015222504 A JP 2015222504A JP 2015222504 A JP2015222504 A JP 2015222504A JP 6758041 B2 JP6758041 B2 JP 6758041B2
Authority
JP
Japan
Prior art keywords
vibration
additional mass
mass body
power generation
vibration damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015222504A
Other languages
Japanese (ja)
Other versions
JP2017089559A (en
Inventor
栄一 佐々木
栄一 佐々木
晃一 竹谷
晃一 竹谷
寿一 長船
寿一 長船
啓史 岩吹
啓史 岩吹
洋平 有田
洋平 有田
藤嗣 片岡
藤嗣 片岡
加藤 久雄
久雄 加藤
宏一 洞
宏一 洞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Tokkyokiki Corp
Original Assignee
Tokyo Institute of Technology NUC
Tokkyokiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, Tokkyokiki Corp filed Critical Tokyo Institute of Technology NUC
Priority to JP2015222504A priority Critical patent/JP6758041B2/en
Publication of JP2017089559A publication Critical patent/JP2017089559A/en
Application granted granted Critical
Publication of JP6758041B2 publication Critical patent/JP6758041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、制振発電装置および制振発電装置を備えた高架橋に関する。 The present invention relates to a vibration damping power generation device and a viaduct equipped with a vibration damping power generation device.

橋梁の損傷を早期に発見するため、ワイヤレスセンサなどを用いた橋梁のヘルスモニタリングシステムが重要視されているが、システムの長期的な運用を図るためには、外部からの送電等に頼ることのないシステムへの長期的な電源供給が課題になっている。その解決方法の1つとして注目されているのが、近年様々な分野で研究開発が進められている環境発電(Energy Harvesting)である。
即ち、橋梁の振動を利用した環境発電によって、従来の課題となっているモニタリングシステムへの電源供給を行う他、発電エネルギーをバッテリーに蓄電することで様々な応用も期待することができる。
しかし、橋梁における固有振動数は一般に数Hz〜10数Hz程度の低周波帯域であるため、この低周波振動を利用して簡単には発電エネルギーを取り出せない問題がある。
Bridge health monitoring systems that use wireless sensors are regarded as important in order to detect damage to bridges at an early stage, but in order to ensure long-term operation of the system, it is necessary to rely on external power transmission. Long-term power supply to missing systems has become an issue. Energy harvesting, which has been researched and developed in various fields in recent years, is attracting attention as one of the solutions.
That is, in addition to supplying power to the monitoring system, which has been a conventional issue, by energy harvesting using the vibration of the bridge, various applications can be expected by storing the generated energy in the battery.
However, since the natural frequency of a bridge is generally in a low frequency band of about several Hz to several several Hz, there is a problem that generated energy cannot be easily extracted by utilizing this low frequency vibration.

このため従来、橋梁等に設ける振動発電装置の一例として、橋梁の振動に共振して上下運動する錘体を基台上に弾性支持し、この錘体に連動して上下移動する被駆動体と、この被駆動体の上下方向の運動を回転運動に変換する変換機構と、前記変換した回転運動の回転数を倍増する回転数倍増機構と発電機を1つの基台上に設けた振動発電装置が知られている(特許文献1参照)。 For this reason, conventionally, as an example of a vibration power generator provided on a bridge or the like, a weight body that resonates with the vibration of the bridge and moves up and down is elastically supported on a base, and a driven body that moves up and down in conjunction with the weight body. A vibration power generator in which a conversion mechanism that converts the vertical motion of the driven body into a rotational motion, a rotational speed doubling mechanism that doubles the rotational speed of the converted rotational motion, and a generator are provided on one base. Is known (see Patent Document 1).

特開2012−207646号公報Japanese Unexamined Patent Publication No. 2012-207646

先の特許文献1に記載されている振動発電装置は、車両の通行に伴って橋梁に生じる振動のエネルギーを電気エネルギーに変換することができる新規な振動発電装置であった。
ところが、橋梁に生じる振動の振幅は数mm〜10数mm程度のレベルであり、しかも数Hz〜10数Hz程度の低周波数であるので、上下移動する被駆動体の移動距離として数mm〜10数mmを確保できたとしても、これから得られる回転運動エネルギーは大きなものではなく、発電機を充分には回転できないので、モニタリングシステムへの電源供給やバッテリーへの蓄電能力を確保することは難しかった。
The vibration power generation device described in Patent Document 1 above is a novel vibration power generation device capable of converting the energy of vibration generated in a bridge due to the passage of a vehicle into electrical energy.
However, the amplitude of the vibration generated in the bridge is on the level of several mm to several mm, and the frequency is as low as several Hz to several Hz. Therefore, the moving distance of the driven body that moves up and down is several mm to 10 mm. Even if a few mm can be secured, the rotational kinetic energy that can be obtained from this is not large, and the generator cannot be rotated sufficiently, so it was difficult to secure the power supply to the monitoring system and the storage capacity of the battery. ..

ところで、本願出願人は、橋梁の劣化や騒音の原因である橋梁の振動を制御するため、同調質量ダンパー(TMD:Tuned Mass Damper)を備えた制振装置について研究を行っている。
この同調質量ダンパーは、通過車両による振動が伝播された場合、制振装置にコイルばねを介して設けたダイナミックマスが揺れ始め、ダイナミックマスが橋梁の固有振動数と同調し、それによって生じた反力で橋梁の振動を制振する装置である。
この同調質量ダンパーを設けた制振装置を橋梁に対し設置する場合、前述の環境発電に利用することを想定し研究開発を行った結果、制振作用を備えたまま発電に供することができる構造を発案することができ、本願発明に到達した。
例えば、発電機は磁石とコイルの相対運動において速度に比例した磁気的反力を発生するが、その減衰係数が同調質量ダンパーの最適同調のための減衰係数に相当すれば、制振して発電するための効率がよいことになる。しかしながら、発電機の発電に伴う減衰係数は発電機固有に決まっており、同調質量ダンパーの最適同調の減衰係数に合わせることは容易ではない。
By the way, the applicant of the present application is conducting research on a vibration damping device equipped with a Tuned Mass Damper (TMD) in order to control the vibration of the bridge, which is a cause of deterioration and noise of the bridge.
In this tuned mass damper, when the vibration from a passing vehicle is propagated, the dynamic mass provided in the vibration damping device via the coil spring begins to sway, and the dynamic mass tunes with the natural frequency of the bridge, resulting in anti-vibration. It is a device that suppresses the vibration of the bridge by force.
When a vibration damping device equipped with this tuning mass damper is installed on a bridge, as a result of research and development assuming that it will be used for the above-mentioned energy harvesting, a structure that can be used for power generation while having a vibration damping effect. Was able to be proposed, and the present invention was reached.
For example, a generator generates a magnetic reaction force proportional to the velocity in the relative motion of a magnet and a coil, but if the damping coefficient corresponds to the damping coefficient for optimum tuning of the tuning mass damper, vibration damping is performed to generate power. It will be efficient to do. However, the damping coefficient associated with the power generation of the generator is determined unique to the generator, and it is not easy to match the damping coefficient with the optimum tuning of the tuning mass damper.

本発明は、前記課題を解決するためになされたものであり、その目的は、高架橋を制振すると同時に、高架橋の振動を利用して発電し、発電エネルギーの蓄電も可能とする制振発電装置およびそれを備えた高架橋の提供を目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is a vibration-damping power generation device capable of suppressing the viaduct and at the same time generating power by utilizing the vibration of the viaduct and storing the generated energy. And the purpose is to provide a viaduct equipped with it.

(1)本発明は、構造物に生じた振動のエネルギーを電気エネルギーに変換するとともに前記構造物の制振を行う制振発電装置であって、制振対象とする構造物に設置される基台と、該基台上に第1の弾性体を介し上下に振動自在に支持された第1の付加質量体と、前記第1の付加質量体の上に第2の弾性体を介し上下に振動自在に支持された第2の付加質量体と、前記第1の付加質量体と前記第2の付加質量体の上下振動による相対移動により上下方向に振動されるピストン、該ピストンに取り付けられインナーヨークの外周に沿って複数の磁石を有する磁極部、前記ピストンをその軸方向に移動自在に収容するシリンダー、該シリンダーの内部に前記磁極部を囲むように設けられたアウターヨークにコイルを巻き付けて構成された起電コイルを具備してなるリニア発電機とを有し、前記アウターヨークにおいて前記磁極部側の部分は前記起電コイルの中心軸を含む断面に沿ってC字型に形成されており、前記シリンダーが前記第1の付加質量体と前記第2の付加質量体のどちらか一方に一体化されて上下振動自在に支持されるとともに、前記ピストンが前記第2の付加質量体と前記第1の付加質量体のどちらか他方に接続されて上下振動自在に支持されるとともに、前記第1の付加質量体が、質量板と、基板と、周壁板と、複数枚の板を積層した積層板と、底板を重ねて構成され、前記質量板と前記基板の中央部を貫通して前記周壁板の底部に達する収容部が形成され、該収容部に、前記ピストンを上向きとして前記質量板と前記基板と前記周壁板を上下に貫通し、前記積層板の上に位置するように前記シリンダーが固定され、前記質量板とその下に重ねられた前記基板と前記周壁板と前記積層板と前記底板を上下に貫通する連結ボルトによりこれらが一体化され、前記第1の付加質量体として振動自在に支持され、前記ピストンの上端部が前記第2の付加質量体に接続され、前記基台上に、前記第1の付加質量体の外周部を上下に貫通して前記第1の付加質量体の上下振動位置の上限と下限を規定するストッパー部材が立設され、前記第1の付加質量体上に、前記第2の付加質量体の外周部を上下に貫通して前記第2の付加質量体の上下振動位置の上限と下限を規定するストッパー部材が立設されたことを特徴とする。 (1) The present invention is a vibration-damping power generation device that converts the energy of vibration generated in a structure into electric energy and suppresses the vibration of the structure, and is a group installed in the structure to be vibration-controlled. A table, a first additional mass body oscillating up and down on the base via a first elastic body, and an additional mass body up and down on the first additional mass body via a second elastic body. A second additional mass body that is oscillatingly supported , a piston that vibrates in the vertical direction due to relative movement of the first additional mass body and the second additional mass body due to vertical vibration, and an inner attached to the piston. A coil is wound around a magnetic pole portion having a plurality of magnets along the outer circumference of the yoke, a cylinder for accommodating the piston so as to be movable in the axial direction, and an outer yoke provided inside the cylinder so as to surround the magnetic pole portion. It has a linear generator including a configured electromotive coil, and a portion of the outer yoke on the magnetic pole side is formed in a C shape along a cross section including a central axis of the electromotive coil. The cylinder is integrated with either the first additional mass body or the second additional mass body and is supported so as to vibrate vertically, and the piston is the second additional mass body and the said. The first additional mass body is connected to either one of the first additional mass bodies and is supported so as to be able to vibrate up and down, and the first additional mass body is obtained by laminating a mass plate, a substrate, a peripheral wall plate, and a plurality of plates. A laminated plate and a bottom plate are laminated to form an accommodating portion that penetrates the central portion of the mass plate and the substrate and reaches the bottom of the peripheral wall plate, and the accommodating portion is formed with the mass plate with the piston facing upward. The cylinder is fixed so as to be located on the laminated plate by vertically penetrating the substrate and the peripheral wall plate, and the mass plate, the substrate laminated under the mass plate, the peripheral wall plate, and the laminated plate. These are integrated by connecting bolts that penetrate the bottom plate up and down, and are oscillatedly supported as the first additional mass body, and the upper end portion of the piston is connected to the second additional mass body to form the base. A stopper member is erected above the first additional mass body so as to vertically penetrate the outer peripheral portion of the first additional mass body and define the upper and lower limits of the vertical vibration position of the first additional mass body. A stopper member is erected on the body so as to vertically penetrate the outer peripheral portion of the second additional mass body and define the upper and lower limits of the vertical vibration position of the second additional mass body. ..

高架橋などの構造物の振動を受けて第1の付加質量体または第2の付加質量体が上下に相対振動し、これらに連動してリニア発電機のシリンダー内の起電コイルに対しピストンに備えた磁石が上下に相対振動する。起電コイルの内部を上下に磁石が相対振動するので、起電コイルに電流が生じて発電エネルギーの取り出しができる。構造物の振動を受けて個々に上下に振動する第1の付加質量体または第2の付加質量体のそれぞれにシリンダーかピストンを支持させているので、構造物の振動に応じてシリンダーとピストンの両方が個々に振動し、両者の上下振動でもって相対振動できる結果、構造物の振動を利用した発電ができる。
構造物の振動と第1の付加質量体または第2の付加質量体の振動との関係から制振することができる。この制振内容については特開2006−077812号に公開されている通りである。第1の付加質量体と第2の付加質量体の相対運動により、リニア発電機の起電コイルの内部を磁石が振動し発電する。その際に受ける磁気的反力によるダンパー作用によってダブルマス制振装置に必要な減衰を得ることができる。
The first additional mass body or the second additional mass body vibrates up and down relative to the vibration of the structure such as the viaduct, and in conjunction with these, the piston is prepared for the electromotive coil in the cylinder of the linear generator. The magnet vibrates up and down. Since the magnet vibrates up and down inside the electromotive coil, a current is generated in the electromotive coil and the generated energy can be taken out. Since the cylinder or piston is supported by each of the first additional mass body or the second additional mass body that vibrates up and down individually in response to the vibration of the structure, the cylinder and the piston are supported by the vibration of the structure. Both vibrate individually, and as a result of being able to vibrate relative to each other by the vertical vibration of both, it is possible to generate power using the vibration of the structure.
Vibration can be suppressed from the relationship between the vibration of the structure and the vibration of the first additional mass body or the second additional mass body. The content of this vibration damping is as published in Japanese Patent Application Laid-Open No. 2006-077812. The relative motion of the first additional mass body and the second additional mass body causes the magnet to vibrate inside the electromotive coil of the linear generator to generate electricity. The damping required for the double-mass vibration damping device can be obtained by the damper action due to the magnetic reaction force received at that time.

第1の付加質量体とともにリニア発電機のシリンダーが基台上で振動するが、通常の振動を超える大きな振動、例えば地震発生時などのように大きな振動が生じると、第1の付加質量体とシリンダーが基台に衝突するおそれがある。これらの衝突をストッパー部材が阻止する。また、リニア発電機において、シリンダー側の起電コイルに対しピストン側の磁石の可動域が狭い構造の場合、ストッパー部材がストロークの大きなピストンの移動を抑え、リニア発電機を保護する。 The cylinder of the linear generator vibrates on the base together with the first additional mass body, but when a large vibration exceeding the normal vibration, for example, when an earthquake occurs, the cylinder of the linear generator vibrates with the first additional mass body. The cylinder may collide with the base. The stopper member prevents these collisions. Further, in the linear generator, when the movable range of the magnet on the piston side is narrower than that of the electromotive coil on the cylinder side, the stopper member suppresses the movement of the piston having a large stroke and protects the linear generator.

(2)本発明の高架橋は、複数の桁橋が直列配置されてなる高架橋の制振発電構造であって、前記桁橋が橋軸直交方向に所定間隔をあけて配置された一対の主桁と、前記一対の主桁の間に橋軸方向に間隔をあけて複数配置された主横桁と、前記一対の主桁の上面に載置された床版を備えてなり、前記橋軸方向に離間した複数の主横桁の間に前記橋軸方向に離間させて対になる支持横桁を前記主桁に支持させて設け、前記支持横桁に、付加質量体と弾性部材と減衰機構を備えたシングルダイナミックマス型の制振装置、および、2つの可動質量体と弾性部材とリニア発電機を備えた(1)に記載のダブルダイナミックマス型の制振発電装置を設置したことを特徴とする。
先の(1)に記載の制振発電装置を備えた構成であるならば、高架橋の制振作用とともに効率のよい環境発電が可能となり、高架橋のヘルスモニタリングシステムなどに適用されるワイヤレスセンサなどの電子部品の電源として利用することができる。
また、発電した電気をバッテリーに蓄えておくならば、交通量の少ない時期のモニタリンスシステム用の電源として、あるは別用途の電源として安定的な電源の確保ができる。
(2) The high bridge of the present invention is a vibration-damping power generation structure of a high bridge in which a plurality of girder bridges are arranged in series, and a pair of main girders in which the girder bridges are arranged at predetermined intervals in a direction orthogonal to the bridge axis. A plurality of main cross girders arranged between the pair of main girders at intervals in the bridge axis direction, and a floor slab placed on the upper surface of the pair of main girders are provided, and the bridge axis direction. A pair of supporting cross girders separated in the bridge axis direction are provided so as to be supported by the main girder between a plurality of main cross girders separated from each other, and an additional mass body, an elastic member, and a damping mechanism are provided on the supporting cross girder. It is characterized by installing a single dynamic mass type vibration damping device equipped with a single dynamic mass type vibration damping device and a double dynamic mass type vibration damping power generating device according to (1) equipped with two movable mass bodies, an elastic member and a linear generator. And.
If the configuration is equipped with the vibration damping power generation device described in (1) above, efficient environmental power generation is possible along with the vibration damping action of the viaduct, and wireless sensors and the like applied to the health monitoring system of the viaduct can be used. It can be used as a power source for electronic components.
Further, if the generated electricity is stored in the battery, a stable power source can be secured as a power source for the monitor rinse system during a period of low traffic or as a power source for another purpose.

床版の上を走行する車輌により高架橋に振動が発生し、この振動によってシングルダイナミックマス型の制振装置およびダブルダイナミックマス型の制振発電装置の第1の付加質量体が上下に振動する。それぞれの第1の付加質量体は、高架橋の振動に応じて同期振動し、その反力により高架橋の振動を抑制し、制振する。このため、高架橋の制振ができる。
制振装置において第1の付加質量体が受けた振動は、減衰機構が減衰させる。また、制振発電装置において第1の付加質量体と第2の付加質量体が受けた振動は、リニア発電機の起電コイルの内部を磁石が振動し、発電する際に受ける磁気的反力による減衰作用によって減衰される。
A vehicle traveling on the floor slab causes vibration in the viaduct, and this vibration causes the first additional mass body of the single dynamic mass type vibration damping device and the double dynamic mass type vibration damping power generator to vibrate up and down. Each of the first additional mass bodies vibrates synchronously in response to the vibration of the viaduct, and the reaction force suppresses the vibration of the viaduct to suppress the vibration. Therefore, the viaduct can be damped.
The damping mechanism damps the vibration received by the first additional mass body in the vibration damping device. Further, the vibration received by the first additional mass body and the second additional mass body in the vibration damping power generator causes the magnet to vibrate inside the electromotive coil of the linear generator, and the magnetic reaction force received when generating power. It is damped by the damping action of.

(3)本発明の高架橋において、前記桁橋を構成する横桁の一部に前記シングルダイナミックマス型の制振装置と前記ダブルダイナミックマス型の制振発電装置を設置することができる。
(4)本発明の高架橋において、高架橋の振動の節に当たる位置に支持横桁を設け、該支持横桁に前記シングルダイナミックマス型の制振装置と前記ダブルダイナミックマス型の制振発電装置を設置したことが好ましい。
(3) In the viaduct of the present invention, the single dynamic mass type vibration damping device and the double dynamic mass type vibration damping power generation device can be installed on a part of the cross girders constituting the girder bridge.
(4) In the viaduct of the present invention, a support cross girder is provided at a position corresponding to the vibration node of the viaduct, and the single dynamic mass type vibration damping device and the double dynamic mass type vibration damping power generation device are installed on the support cross girder. It is preferable that

本発明によれば、高架橋などの構造物の振動を受けて第1の付加質量体または第2の付加質量体が上下に相対振動し、これらに連動してリニア発電機のシリンダー内の起電コイルに対しピストンに備えた磁石が上下に相対振動する。起電コイルの内部を上下に磁石が相対振動するので、起電コイルに電流が生じて発電ができる。構造物の振動を受けて個々に上下に振動する第1の付加質量体または第2の付加質量体のそれぞれにシリンダーかピストンが支持されているので、構造物の振動に応じてシリンダーとピストンの両方が個々に振動し、両者の上下振動でもって確実に相対振動できる結果、構造物の振動を有効に利用した発電ができる。 According to the present invention, the first additional mass body or the second additional mass body vibrates up and down relative to each other in response to the vibration of a structure such as a viaduct, and in conjunction with these, the electromotive force in the cylinder of the linear generator is generated. The magnet provided in the piston vibrates up and down relative to the coil. Since the magnet vibrates up and down inside the electromotive coil, a current is generated in the electromotive coil to generate electricity. Since the cylinder or piston is supported by each of the first additional mass body or the second additional mass body that vibrates up and down individually in response to the vibration of the structure, the cylinder and piston are supported according to the vibration of the structure. Both vibrate individually, and as a result of reliable relative vibration due to the vertical vibration of both, it is possible to generate power by effectively utilizing the vibration of the structure.

本発明によれば、構造物の振動と第1の付加質量体と第2の付加質量体の振動との関係から制振することができる。また、第1の付加質量体と第2の付加質量体の相対運動により、リニア発電機の起電コイルの内部を磁石が振動し発電する。その際に受ける磁気的反力によるダンパー作用によってダブルマス制振装置に必要な減衰を得ることができる。 According to the present invention, vibration can be suppressed from the relationship between the vibration of the structure and the vibration of the first additional mass body and the second additional mass body. Further, the relative motion of the first additional mass body and the second additional mass body causes the magnet to vibrate inside the electromotive coil of the linear generator to generate electricity. The damping required for the double-mass vibration damping device can be obtained by the damper action due to the magnetic reaction force received at that time.

図10は、ダブルマス制振装置の場合の発電量の等高線図であり、横軸は構造物の固有振動数に対する加振振動数の比を表し、縦軸は発電装置の磁気的反力によるダンパー作用の減衰係数を第2の付加質量体の減衰比として表したものである。また、図11は、図10と同じ縦軸、横軸における構造物の応答変位の等高線図である。
図10に示すように本発明に係る制振発電装置は、縦軸の減衰比が0.5から4.0程度まで大きく変化しても発電量はそれほど変化していない。つまり、発電装置の仕様による発電時のダンパー作用の強さを幅広く設定できるので、幅広い仕様の発電装置を橋梁に用いることができる。このときの制振効果は、図11の構造物の応答変位の等高線図に示す通り、発電装置の仕様によって大きく変化していない。
従って、本発明の制振発電装置は、広い範囲の減衰比に対応させて設置することができ、数Hz程度の低周波数の固有振動数を示す橋梁等の構造物であっても発電用と制振用の両方の用途として適用することができる。
FIG. 10 is a contour diagram of the amount of power generated in the case of a double-mass vibration damping device. The horizontal axis represents the ratio of the vibration frequency to the natural frequency of the structure, and the vertical axis represents the damper due to the magnetic reaction force of the power generation device. The damping coefficient of action is expressed as the damping ratio of the second added mass body. Further, FIG. 11 is a contour diagram of the response displacement of the structure on the same vertical axis and horizontal axis as in FIG.
As shown in FIG. 10, in the vibration damping power generation device according to the present invention, the amount of power generation does not change so much even if the damping ratio on the vertical axis changes significantly from about 0.5 to about 4.0. That is, since the strength of the damper action at the time of power generation can be set widely according to the specifications of the power generation device, the power generation device having a wide range of specifications can be used for the bridge. The damping effect at this time does not change significantly depending on the specifications of the power generation device, as shown in the contour diagram of the response displacement of the structure in FIG.
Therefore, the vibration damping power generation device of the present invention can be installed corresponding to a wide range of damping ratios, and even a structure such as a bridge showing a low frequency natural frequency of about several Hz can be used for power generation. It can be applied for both vibration damping applications.

本発明に係る制振発電装置と制振装置が設置される高架橋の一例を示す側面図。The side view which shows an example of the vibration-damping power generation apparatus which concerns on this invention, and the viaduct in which the damping apparatus is installed. 同高架橋の構造概要と制振発電装置および制振装置の設置位置の一例を示す説明図。An explanatory view showing an outline of the structure of the viaduct and an example of the installation position of the vibration damping power generation device and the vibration damping device. 同高架橋に備えられるシングルダイナミックマス型の制振装置の一例に振動が付加された状態を示す構成図。A block diagram showing a state in which vibration is added to an example of a single dynamic mass type vibration damping device provided in the viaduct. 同制振装置の構成図。The block diagram of the vibration damping device. 同高架橋に備えられるダブルダイナミックマス型制振装置の一例を示す側面図。A side view showing an example of a double dynamic mass type vibration damping device provided in the viaduct. 同ダブルダイナミック型制振発電装置の一例を示す平面図。The plan view which shows an example of the double dynamic type vibration damping power generator. 同ダブルダイナミック型制振発電装置の一例にカバー部材を備えた状態を示す側面略図。The side view which shows the state which provided the cover member as an example of the double dynamic type vibration damping power generation device. 同ダブルダイナミック型制振発電装置の動作原理について説明する図。The figure explaining the operating principle of the double dynamic type vibration damping power generation apparatus. 同ダブルダイナミック型制振発電装置の解析モデルの一例を示す図。The figure which shows an example of the analysis model of the double dynamic type vibration damping power generation apparatus. 同ダブルダイナミック型制振発電装置により得られる二質点系の減衰率と発電電力スペクトルの等高線図。Contour diagram of the damping factor and generated power spectrum of the two-mass system obtained by the double dynamic vibration damping power generator. 同ダブルダイナミック型制振発電装置により得られる二質点系の減衰率と変位振幅比の等高線図。Contour diagram of the damping factor and displacement amplitude ratio of the two-mass system obtained by the double dynamic vibration damping power generator. 実施例においてシングルダイナミック型制振装置とダブルダイナミック型制振発電装置を取り付けた高架橋の一例を示す説明図。The explanatory view which shows an example of the viaduct which attached the single dynamic type vibration damping device and the double dynamic type vibration damping power generation device in an Example. 同ダブルダイナミック型制振発電装置により実際に得られた発電エネルギー波形を示すグラフ。A graph showing the power generation energy waveform actually obtained by the double dynamic vibration damping power generation device. 同ダブルダイナミック型制振発電装置により最大の発電量を得たときの加速度波形の一例を示すグラフ。The graph which shows an example of the acceleration waveform when the maximum amount of power generation was obtained by the double dynamic type vibration damping power generation device. 図14に示す波形が得られた際の第1の付加質量体の加速度波形と第2の付加質量体の加速度波形の一例を示すグラフ。The graph which shows an example of the acceleration waveform of the 1st additional mass body and the acceleration waveform of the 2nd additional mass body when the waveform shown in FIG. 14 is obtained.

<第1実施形態>
以下、本発明に係る制振発電装置とそれを備えた高架橋の一実施形態について図面を参照しながら説明するが、本発明は以下に説明する実施形態に制限されるものではない。
また、以下の各図に示す構造は、本発明の特徴をわかりやすくするため、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際の構成と同じであるとは限らない。
図1、図2は本発明に係る制振発電装置を備えた高架橋の一例を示す構成図、図3、図4は同高架橋に設置される制振装置の一例を示し、図5〜図7は同高架橋に設置される制振発電装置の一例を示す。
<First Embodiment>
Hereinafter, an embodiment of the vibration damping power generation device according to the present invention and the viaduct provided therewith will be described with reference to the drawings, but the present invention is not limited to the embodiments described below.
In addition, the structure shown in each of the following figures may be shown by enlarging the main part in order to make the features of the present invention easy to understand, and the dimensional ratio of each component is the same as the actual configuration. Is not always the case.
1 and 2 are configuration diagrams showing an example of a viaduct provided with a vibration damping power generation device according to the present invention, and FIGS. 3 and 4 show an example of a vibration damping device installed in the viaduct, and FIGS. Shows an example of a vibration damping power generation device installed on the viaduct.

図1、図2に示す高架橋1は、渓谷などに設置されたトラス梁構造の一例を示すもので、この高架橋(構造物)1は、高低差のある地盤Gに立設されたそれぞれ高さの異なる橋脚2、3、4、5によって鉛直に支持された構造を有している。
この例の高架橋1は、橋軸方向に沿う左右両端側の主桁10が上弦材6と下弦材7を複数のウェブ材8を介し接合したトラス構造とされている。
また、図2に示すように高架橋1を平面視した場合の概略構造として、上り側の高架橋1Aと下り側の高架橋1Bが並列され、高架橋1A、1Bがそれぞれ幅方向左右に位置する主桁10、10と、それらの間に主桁10に平行に架設された副桁11と、これらの間に複数配置された複数の横桁12と、横桁12間に架設されたウェブ材13を主体として構成されている。また、図2では略しているが、主桁10、10の上には床版が設置され、この床版の上面側が車輌走行用の車道とされている。主桁10、副桁11、横桁12、ウェブ材13はいずれもH型鋼あるいはI形鋼などの鋼材から構成されている。
The viaduct 1 shown in FIGS. 1 and 2 shows an example of a truss beam structure installed in a valley or the like, and the viaduct (structure) 1 is erected on the ground G having a height difference. It has a structure vertically supported by different piers 2, 3, 4, and 5.
The viaduct 1 of this example has a truss structure in which the main girders 10 on the left and right ends along the bridge axis direction join the upper chord member 6 and the lower chord member 7 via a plurality of web members 8.
Further, as shown in FIG. 2, as a schematic structure when the viaduct 1 is viewed in a plan view, the viaduct 1A on the upstream side and the viaduct 1B on the downstream side are arranged in parallel, and the viaducts 1A and 1B are located on the left and right sides in the width direction, respectively. Mainly composed of 10 and a sub-girder 11 erected in parallel with the main girder 10 between them, a plurality of cross girders 12 arranged between them, and a web material 13 erected between the cross girders 12. It is configured as. Further, although omitted in FIG. 2, a floor slab is installed on the main girders 10 and 10, and the upper surface side of the floor slab is used as a roadway for traveling the vehicle. The main girder 10, the sub-girder 11, the cross girder 12, and the web material 13 are all made of steel such as H-shaped steel or I-shaped steel.

高架橋1Aにおいて主桁10、10の間の適切な位置に支持横桁15、15が所定の間隔をあけて主桁10、10に対し直角に溶接やボルト止めなどの接合手段により固定され、これら支持横桁15、15に支持されて高架橋1Aの幅方向に2基のダイナミックマス型の制振装置16と1基のダイナミックマス型の制振発電装置17が設置されている。また、高架橋1Bにおいても同等の位置に支持横桁15、15が固定され、これらに支持されて2基の制振装置16と1基の制振発電装置17が設置されている。高架橋1A、1Bにおいて図2に示す構造では橋脚間の距離の約1/4の位置に制振装置16と制振発電装置17が位置するように支持横桁15、15が配置されている。
制振装置16と制振発電装置17の設置個数は特に制限されず目的とする制振効果と発電効果に合致するような設置個数を選択すればよい。この実施形態では2基の制振装置16と1基の制振発電装置17をセットとして高架橋1A、1Bの幅方向にそれぞれ設置した例を示している。
In the viaduct 1A, the supporting cross girders 15 and 15 are fixed at appropriate positions between the main girders 10 and 10 at a predetermined interval by joining means such as welding or bolting at right angles to the main girders 10 and 10. Two dynamic mass type vibration damping devices 16 and one dynamic mass type vibration damping power generation device 17 are installed in the width direction of the viaduct 1A supported by the support cross beams 15 and 15. Further, in the viaduct 1B, the support cross girders 15 and 15 are fixed at the same positions, and two vibration damping devices 16 and one vibration damping power generation device 17 are installed supported by these. In the structure shown in FIG. 2 in the viaducts 1A and 1B, the support cross girders 15 and 15 are arranged so that the vibration damping device 16 and the vibration damping power generation device 17 are located at a position of about 1/4 of the distance between the piers.
The number of vibration damping devices 16 and vibration damping power generation devices 17 to be installed is not particularly limited, and the number of installations that matches the target vibration damping effect and power generation effect may be selected. In this embodiment, an example is shown in which two vibration damping devices 16 and one vibration damping power generation device 17 are installed as a set in the width directions of the viaducts 1A and 1B, respectively.

制振装置16は一例として図3、図4に示すようにH型鋼材などを組み付けて構成した矩形枠状の金属製のベース基台20の上に立設された4つの支持軸21によって上下移動自在に矩形板状の第1の付加質量体22が支持されている。第1の付加質量体22の中央部側には錘体22Aが一体化され、第1の付加質量体22の各コーナー部分を貫通するように支持軸21が設けられている。
各支持軸21において第1の付加質量体22の下側には下部コイルばね(弾性体)23が設けられ、各支持軸21において付加質量体22の上側には抜け止め板25により抜け止めされて上部コイルばね(弾性体)26が設けられている。付加質量体22はその上下をコイルばね23、26により挟まれて弾性支持されているので、付加質量体22に高架橋1A、1Bの振動が伝達されると付加質量体22は上下のコイルばねのばね力に抗しつつ支持軸21に沿って上下に振動できるように構成されている。この例の制振装置16は質量体として第1の付加質量体22のみを有するのでシングルダイナミック型と称することができる。
As an example, the vibration damping device 16 is moved up and down by four support shafts 21 erected on a rectangular frame-shaped metal base base 20 formed by assembling H-shaped steel materials as shown in FIGS. 3 and 4. A rectangular plate-shaped first additional mass body 22 is movably supported. A weight body 22A is integrated on the central portion side of the first additional mass body 22, and a support shaft 21 is provided so as to penetrate each corner portion of the first additional mass body 22.
A lower coil spring (elastic body) 23 is provided on the lower side of the first additional mass body 22 in each support shaft 21, and is prevented from coming off by a retaining plate 25 on the upper side of the additional mass body 22 in each support shaft 21. An upper coil spring (elastic body) 26 is provided. Since the additional mass body 22 is elastically supported by being sandwiched between the coil springs 23 and 26 above and below the additional mass body 22, when the vibrations of the hyperbridges 1A and 1B are transmitted to the additional mass body 22, the additional mass body 22 becomes the upper and lower coil springs. It is configured to be able to vibrate up and down along the support shaft 21 while resisting the spring force. Since the vibration damping device 16 of this example has only the first additional mass body 22 as a mass body, it can be called a single dynamic type.

付加質量体22の外側であってベース基台10のコーナー部分にオイルダンパー(減衰機構)28が設けられている。このオイルダンパー28は、オイルを収容したシリンダー28Aに対しピストン28Bが摺動自在に挿入され、シリンダー28Aの内部にオリフィスを伴うオイルの流路が構成されている。シリンダー28Aに対しピストン28Bが相対摺動する際、オリフィスを通過するオイルの粘性抵抗により減衰作用が発揮され、付加質量体22を振動させるエネルギーの一部が熱エネルギーに変換されて吸収される。
制振装置16において、錐体22Aを備えた第1の付加質量体22に作用した上下方向への振動エネルギーにより、第1の付加質量体22はコイルばね23、26の弾性力に抗して上下に振動するが、第1の付加質量体22は高架橋1Aあるいは高架橋1Bの固有振動と同期して振動するので高架橋1A、1Bの振動を減衰するとともに、オイルダンパー28の作用によって前記振動エネルギーは熱エネルギーに変換されて消費される。
なお、図3、図4に符号29で示すものは、付加質量体22の上下移動量を規制するストッパー部材である。このストッパー部材29には第1の付加質量体22の上方に間隔をあけて位置する上部規制板29aと第1の付加質量体22の下方に間隔をあけて位置する下部規制板29bが設けられている。
An oil damper (damping mechanism) 28 is provided at a corner portion of the base base 10 on the outside of the additional mass body 22. In the oil damper 28, the piston 28B is slidably inserted into the cylinder 28A containing the oil, and an oil flow path with an orifice is formed inside the cylinder 28A. When the piston 28B slides relative to the cylinder 28A, a damping action is exerted by the viscous resistance of the oil passing through the orifice, and a part of the energy for vibrating the additional mass body 22 is converted into thermal energy and absorbed.
In the vibration damping device 16, the first additional mass body 22 resists the elastic force of the coil springs 23 and 26 due to the vibration energy in the vertical direction acting on the first additional mass body 22 provided with the cone 22A. Although it vibrates up and down, the first additional mass body 22 vibrates in synchronization with the natural vibration of the hyperbridge 1A or the hyperbridge 1B, so that the vibration of the hyperbridges 1A and 1B is attenuated, and the vibration energy is reduced by the action of the oil damper 28. It is converted into heat energy and consumed.
In addition, what is indicated by reference numeral 29 in FIGS. 3 and 4 is a stopper member that regulates the amount of vertical movement of the additional mass body 22. The stopper member 29 is provided with an upper regulation plate 29a located above the first additional mass body 22 at intervals and a lower regulation plate 29b located at intervals below the first additional mass body 22. ing.

制振装置16は、隣接する一対の支持横桁15、15の間に支持プレート30を溶接などの接合方法により橋渡し状に接合し、この支持プレート30の上にベース基台20をボルト止めするなどの手段により取り付けられている。
図2に示す構造は制振装置16、16と制振発電装置17を高架橋1Aの幅方向に合計3基設置した例であるため、支持プレート30は高架橋1Aの幅方向ほぼ全長に延在する長方形状に形成されている。図2の例では支持プレート30の上であって、副桁11、11の位置より若干外側の位置、即ち副桁11の設置位置より若干主桁10側よりの位置にそれぞれ制振装置16が設けられている。また、制振発電装置17は2基設けられた制振装置16のうち、一方の制振装置16に近い位置に設置されている。
The vibration damping device 16 joins the support plates 30 between the pair of adjacent support cross girders 15 and 15 in a bridging manner by a joining method such as welding, and bolts the base base 20 onto the support plates 30. It is attached by means such as.
Since the structure shown in FIG. 2 is an example in which a total of three vibration damping devices 16 and 16 and a vibration damping power generation device 17 are installed in the width direction of the viaduct 1A, the support plate 30 extends almost the entire length in the width direction of the viaduct 1A. It is formed in a rectangular shape. In the example of FIG. 2, the vibration damping device 16 is located on the support plate 30 slightly outside the positions of the sub-girders 11 and 11, that is, at a position slightly from the main girder 10 side of the installation position of the sub-girder 11. It is provided. Further, the vibration damping power generation device 17 is installed at a position closer to one of the vibration damping devices 16 provided.

制振発電装置17は、一例として図5〜図7に示すように矩形板状の金属製のベース基台35の上に第1の付加質量体36と第2の付加質量体37とリニア発電機38を備えた構成とされている。
ベース基台35は図6に示す平面視横長の板状体からなり、ベース基台35の4つの角部にそれぞれ取付ボルト挿通用の取付孔35aが形成されている。前述の支持プレート30の上にこれらの取付孔35aを利用してベース基台35をボルト止めすることが可能となる。
ベース基台35上においてこれら取付孔35aより内側の部分に第1の付加質量体36が支持されている。第1の付加質量体36は、基板40の上に板状の第1の質量板41と第2の質量板42を積み重ね、基板40の中央底部側に収容部43aを備えた周壁板43と複数枚の積層板45と底板46が重ねて一体化されている。図5、図7に示すように上から順に第2の質量板42、第1の質量板41、基板40、周壁板43、積層板45、底板46を上下に貫通するように連結ボルト47が設けられ、これらが一体化されている。また、第2の質量板42、第1の質量板41、基板40の中央部を貫通して周壁板43の底部側に達する収容部43aが形成され、この収容部43aに以下に説明するリニア発電機38が搭載されている。
As an example, the vibration damping power generation device 17 has a first additional mass body 36, a second additional mass body 37, and linear power generation on a rectangular plate-shaped metal base base 35 as shown in FIGS. 5 to 7. It is configured to be equipped with a machine 38.
The base base 35 is formed of a horizontally long plate-like body in a plan view shown in FIG. 6, and mounting holes 35a for inserting mounting bolts are formed at each of the four corners of the base base 35. It is possible to bolt the base base 35 onto the support plate 30 described above by using these mounting holes 35a.
On the base base 35, the first additional mass body 36 is supported in a portion inside the mounting holes 35a. The first additional mass body 36 includes a peripheral wall plate 43 in which a plate-shaped first mass plate 41 and a second mass plate 42 are stacked on the substrate 40, and an accommodating portion 43a is provided on the central bottom side of the substrate 40. A plurality of laminated plates 45 and a bottom plate 46 are overlapped and integrated. As shown in FIGS. 5 and 7, the connecting bolt 47 vertically penetrates the second mass plate 42, the first mass plate 41, the substrate 40, the peripheral wall plate 43, the laminated plate 45, and the bottom plate 46 in this order from the top. They are provided and these are integrated. Further, an accommodating portion 43a that penetrates the central portion of the second mass plate 42, the first mass plate 41, and the substrate 40 and reaches the bottom side of the peripheral wall plate 43 is formed, and the accommodating portion 43a described below is linear. The generator 38 is mounted.

リニア発電機38はシリンダー50に対し上下に移動自在にピストン51が設けられ、シリンダー50内のピストン51の一部に円環状に配置された永久磁石からなる磁極部52が形成され、シリンダー50の内部において磁極部52の周囲側に起電コイル53が設けられている。ピストン51の上端部は第2の付加質量体の底部に連結されている。なお、ピストン51において磁極部52を構成する部分にインナーヨークが構成され、このインナーヨークの外周に沿って板状の永久磁石を複数配置することで磁極部52が構成されている。また、シリンダー50の内壁部分には図示略のアウターヨークが設けられ、このアウターヨークにコイルを巻き付けることで起電コイル53が構成されている。
リニア発電機38において、ピストン51が上下方向に振動すると、起電コイル53の内側において永久磁石からなる磁極部52が上下移動するので電磁誘導により起電コイル53に沿って電流が流れ、発電ができるようになっている。
The linear generator 38 is provided with a piston 51 that can move up and down with respect to the cylinder 50, and a magnetic pole portion 52 made of a permanent magnet arranged in an annular shape is formed in a part of the piston 51 in the cylinder 50. Inside, an electromotive coil 53 is provided on the peripheral side of the magnetic pole portion 52. The upper end of the piston 51 is connected to the bottom of the second additional mass body. An inner yoke is formed in the portion of the piston 51 that constitutes the magnetic pole portion 52, and the magnetic pole portion 52 is formed by arranging a plurality of plate-shaped permanent magnets along the outer circumference of the inner yoke. Further, an outer yoke (not shown) is provided on the inner wall portion of the cylinder 50, and the electromotive coil 53 is configured by winding a coil around the outer yoke.
In the linear generator 38, when the piston 51 vibrates in the vertical direction, the magnetic pole portion 52 made of a permanent magnet moves up and down inside the electromotive coil 53, so that a current flows along the electromotive coil 53 by electromagnetic induction to generate electricity. You can do it.

なお、起電コイル53を装着するアウターヨークにおいて起電コイル53を囲む部分は起電コイル53の中心軸を含む断面に沿って断面C字型に形成されていて、磁極部52側に隣接するアウターヨークの磁極先端側に磁束が集中しやすい構造とされている。この磁束が集中しやすい領域を永久磁石を備えた磁極部52が通過することでリニア発電機38は効率良く発電ができるように構成されている。このため、リニア発電機38はピストン51の移動ストロークが例えば10mm(±5mm)程度で効率良く発電可能であり、ピストン51の上下方向の振動に伴い磁極部52が上述の領域を通過することで効率良く発電ができる。 In the outer yoke on which the electromotive coil 53 is mounted, the portion surrounding the electromotive coil 53 is formed in a C-shaped cross section along the cross section including the central axis of the electromotive coil 53, and is adjacent to the magnetic flux portion 52 side. The structure is such that magnetic flux tends to concentrate on the tip side of the magnetic pole of the outer yoke. The linear generator 38 is configured to be able to generate electricity efficiently by passing the magnetic pole portion 52 provided with the permanent magnet through the region where the magnetic flux is likely to concentrate. Therefore, the linear generator 38 can efficiently generate electricity when the moving stroke of the piston 51 is, for example, about 10 mm (± 5 mm), and the magnetic pole portion 52 passes through the above-mentioned region as the piston 51 vibrates in the vertical direction. It can generate electricity efficiently.

第1の付加質量体36はそのコーナー部分4箇所を上下に貫通する支持軸55により軸支されている。各支持軸55において第1の付加質量体36の底部側に配置された下部コイルばね(弾性体)56と各支持軸55において第1の付加質量体36の上部側に配置された上部コイルばね(弾性体)57により第1の付加質量体36を吊り持ち支持することで第1の付加質量体36が上下方向に振動できるように弾性支持されている。なお、下部コイルばね56の下端がベース基台35に望む部分と下部コイルばね56の上端が基板40に望む部分にはそれぞればね受け座金58が設けられ、上部コイルばね57の下端が第2の質量板42に望む部分と上部コイルばね57の上端側にばね受け座金59が設けられている。 The first additional mass body 36 is pivotally supported by a support shaft 55 that vertically penetrates four corner portions thereof. A lower coil spring (elastic body) 56 arranged on the bottom side of the first additional mass body 36 on each support shaft 55 and an upper coil spring arranged on the upper side of the first additional mass body 36 on each support shaft 55. By suspending and supporting the first additional mass body 36 by the (elastic body) 57, the first additional mass body 36 is elastically supported so that it can vibrate in the vertical direction. A spring receiving seat 58 is provided at a portion where the lower end of the lower coil spring 56 is desired for the base base 35 and a portion where the upper end of the lower coil spring 56 is desired for the substrate 40, and the lower end of the upper coil spring 57 is the second. A spring receiving seat 59 is provided on the desired portion of the mass plate 42 and on the upper end side of the upper coil spring 57.

第1の付加質量体36の基板40において支持軸設置位置の外側に延出部40aが形成され、これらの延出部40aを上下に貫通するようにストッパー部材60が設けられている。このストッパー部材60は、ベース基台35上に立設され、延出部40aに形成されている透孔を貫通するとともに、延出部40aの上方に間隔をあけて位置された上部規制部材61と、延出部40aの下方に間隔をあけて配置された下部規制部材62を有している。
これらの規制部材61、62は基板40の上下振動の際の上限位置と下限位置を規制する。
In the substrate 40 of the first additional mass body 36, an extension portion 40a is formed outside the support shaft installation position, and a stopper member 60 is provided so as to vertically penetrate the extension portions 40a. The stopper member 60 is erected on the base base 35, penetrates a through hole formed in the extension portion 40a, and is positioned above the extension portion 40a at intervals of the upper regulation member 61. And a lower regulation member 62 arranged below the extension portion 40a at intervals.
These regulating members 61 and 62 regulate the upper limit position and the lower limit position when the substrate 40 vibrates up and down.

次に、第1の付加質量体36の上に2本の支持軸63が立設され、これらの支持軸63に両側を支持された状態で第2の付加質量体37が上下に振動自在に支持されている。
支持軸63、63は図6に示すように平面視リニア発電機38の左右を挟む位置であって、それぞれ支持軸55、55の近傍に立設され、第2の付加質量体37の両端部分を支持軸63が支持している。
第2の付加質量体37は、図6に示すように平面視帯板状に形成され、下から順に第1の質量板37aと第2の質量板37bと第3の質量板37cが積層された構造とされている。支持軸63はこれらを上下に貫通するように設けられ、各支持軸63において第2の付加質量体37の底部側に配置された下部コイルばね(弾性体)66と各支持軸63において第2の付加質量体37の上部側に配置された上部コイルばね(弾性体)67により第2の付加質量体37を吊り持ち支持することで第2の付加質量体37が上下方向に振動できるように弾性支持されている。なお、下部コイルばね66の下端が第2の質量板42に望む部分と下部コイルばね66の上端が第1の質量板37aに望む部分にはそれぞればね受け座金68が設けられ、上部コイルばね67の下端が第3の質量板37cに望む部分と上部コイルばね67の上端側の部分にばね受け座金69が設けられている。
Next, two support shafts 63 are erected on the first additional mass body 36, and the second additional mass body 37 can vibrate up and down in a state where both sides are supported by these support shafts 63. It is supported.
As shown in FIG. 6, the support shafts 63 and 63 are positioned so as to sandwich the left and right sides of the plan view linear generator 38, and are erected in the vicinity of the support shafts 55 and 55, respectively, and both end portions of the second additional mass body 37. Is supported by the support shaft 63.
The second additional mass body 37 is formed in the shape of a plan view strip as shown in FIG. 6, and the first mass plate 37a, the second mass plate 37b, and the third mass plate 37c are laminated in this order from the bottom. It is said to have a structure. The support shaft 63 is provided so as to pass through them vertically, and the lower coil spring (elastic body) 66 arranged on the bottom side of the second additional mass body 37 in each support shaft 63 and the second support shaft 63 in each support shaft 63. By suspending and supporting the second additional mass body 37 by the upper coil spring (elastic body) 67 arranged on the upper side of the additional mass body 37, the second additional mass body 37 can vibrate in the vertical direction. It is elastically supported. A spring receiving washer 68 is provided at a portion where the lower end of the lower coil spring 66 is desired for the second mass plate 42 and a portion where the upper end of the lower coil spring 66 is desired for the first mass plate 37a, respectively, and the upper coil spring 67 is provided. A spring receiving washer 69 is provided at a portion where the lower end of the third mass plate 37c is desired and a portion on the upper end side of the upper coil spring 67.

第2の付加質量体37の両端側は支持軸55、55の間の領域まで延出され、この延出部分を上下に貫通するようにストッパー部材70が設けられている。このストッパー部材70は、第2の質量板42上に立設され、第2の付加質量体37を貫通するとともに、第2の付加質量体37の上方に間隔をあけて位置された上部規制部材71と、第2の付加質量体37の下方に間隔をあけて配置された図示略の下部規制部材を有している。
これらの規制部材は第2の付加質量体37の上下振動の際の上限位置と下限位置を規制する。
Both ends of the second additional mass body 37 extend to a region between the support shafts 55 and 55, and a stopper member 70 is provided so as to vertically penetrate the extending portion. The stopper member 70 is erected on the second mass plate 42, penetrates the second additional mass body 37, and is an upper restricting member located above the second additional mass body 37 at intervals. It has 71 and a lower regulating member (not shown) arranged below the second additional mass body 37 at intervals.
These regulating members regulate the upper limit position and the lower limit position when the second additional mass body 37 vibrates up and down.

図7において符号80で示すものは、制振発電装置17のカバー部材であり、このカバー部材80はベース基台30の取付孔35aを形成した部分に図7に示すように立設される支柱81によって支持される。また、支柱81の上端部にリングナット82が取り付けられていて、これらのリングナット82を介し制振発電装置17の全体を吊り持ち移動することができる。これらのリングナット82は制振発電装置17の設置移動時に有用となる。
なお、図面では略しているが、リニア発電機38のベース基台35上には蓄電池を備えた蓄電装置が設置されていて、リニア発電機38が発電した電気エネルギーを蓄電池に蓄電できるように構成されている。
この蓄電装置への蓄電量の変化をモニタリングできる装置を設け、発電した電力を利用して高架橋1のヘルスモニタリングが可能なシステムを構築することができる。また、このモニタリングシステムからの情報を送信する通信機を設け、この通信機から送信することで遠隔地における高架橋1のモニタリングが可能となる。
あるいは、蓄電装置への蓄電量の変化をモニタリングすることで蓄電量が所定時間無い場合や蓄電量が異常に多い場合等に異常と見なしてヘルスモニタリングが可能となる。
In FIG. 7, reference numeral 80 indicates a cover member of the vibration damping power generation device 17, and the cover member 80 is a support column erected as shown in FIG. 7 in a portion of the base base 30 where the mounting hole 35a is formed. Supported by 81. Further, a ring nut 82 is attached to the upper end of the support column 81, and the entire vibration damping power generation device 17 can be suspended and moved via these ring nuts 82. These ring nuts 82 are useful when the vibration damping power generation device 17 is installed and moved.
Although omitted in the drawings, a power storage device equipped with a storage battery is installed on the base base 35 of the linear generator 38 so that the electric energy generated by the linear generator 38 can be stored in the storage battery. Has been done.
It is possible to construct a system capable of monitoring the change in the amount of electricity stored in the electricity storage device and using the generated electric power to monitor the health of the viaduct 1. In addition, a communication device for transmitting information from this monitoring system is provided, and by transmitting from this communication device, it is possible to monitor the viaduct 1 at a remote location.
Alternatively, by monitoring the change in the amount of electricity stored in the power storage device, health monitoring can be performed by regarding it as abnormal when the amount of electricity stored does not exist for a predetermined time or when the amount of electricity stored is abnormally large.

高架橋1において床版の上を車輌が走行すると床版が振動する。この振動は主桁10、10、上弦材6、ウェブ材8などを介し支持横桁15に伝達される。
支持横桁15、15に伝達された振動は、支持プレート30を介し制振装置16と制振発電装置17に伝達される。制振装置16に伝達された振動により第1の付加質量体22がコイルばね23、26の弾性力に抗して上下に振動し、高架橋1の固有周期と同調し、それによって生じた反力により高架橋1を制振する。また、オイルダンパー28が作動して第1の付加質量体22の振動エネルギーを熱エネルギーに変換して振動エネルギーを減衰する。このため、高架橋1を効率良く制振することができ、特に2〜15Hz程度の低周波音を低減できる。
When the vehicle runs on the floor slab in the viaduct 1, the floor slab vibrates. This vibration is transmitted to the support cross girder 15 via the main girders 10, 10, the upper chord member 6, the web member 8, and the like.
The vibration transmitted to the support cross girders 15 and 15 is transmitted to the vibration damping device 16 and the vibration damping power generation device 17 via the support plate 30. Due to the vibration transmitted to the vibration damping device 16, the first additional mass body 22 vibrates up and down against the elastic force of the coil springs 23 and 26, synchronizes with the natural period of the viaduct 1, and the reaction force generated thereby. The viaduct 1 is damped by. Further, the oil damper 28 operates to convert the vibration energy of the first additional mass body 22 into heat energy and attenuate the vibration energy. Therefore, the viaduct 1 can be efficiently damped, and particularly low frequency sound of about 2 to 15 Hz can be reduced.

また、制振発電装置17に伝達された振動により第1の付加質量体36がコイルばね56、57の弾性力に抗して上下に振動し、高架橋1の固有周期と同調し、それによって生じた反力により高架橋1の振動を抑制する。また、制振発電装置17において第1の付加質量体36の振動に応じて第2の付加質量体37も振動する。第1の付加質量体36と第2の付加質量体37の相対移動に応じ、リニア発電機38のシリンダー50に対しピストン51が相対振動するので、起電コイル53の内側において永久磁石を備えた磁極部52が振動する結果、起電コイル53に電流が流れて発電がなされる。
また、起電コイル53の内側で永久磁石を備えた磁極52が振動する際、磁気的反発力から減衰機能が発揮され、第1の付加質量体22の振動エネルギーを減衰する。このため、制振発電装置17によっても高架橋1を効率良く制振することができ、特に2〜15Hz程度の低周波音を低減できる。
Further, the vibration transmitted to the vibration damping power generation device 17 causes the first additional mass body 36 to vibrate up and down against the elastic force of the coil springs 56 and 57, and synchronizes with the natural period of the viaduct 1, which is generated. The reaction force suppresses the vibration of the viaduct 1. Further, in the vibration damping power generation device 17, the second additional mass body 37 also vibrates in response to the vibration of the first additional mass body 36. Since the piston 51 vibrates relative to the cylinder 50 of the linear generator 38 in response to the relative movement of the first additional mass body 36 and the second additional mass body 37, a permanent magnet is provided inside the electromotive coil 53. As a result of the magnetic pole portion 52 vibrating, a current flows through the electromotive coil 53 to generate electricity.
Further, when the magnetic pole 52 provided with the permanent magnet vibrates inside the electromotive coil 53, the damping function is exhibited from the magnetic repulsive force, and the vibration energy of the first additional mass body 22 is attenuated. For this reason, the viaduct 1 can be efficiently damped by the vibration damping power generation device 17, and in particular, low frequency sound of about 2 to 15 Hz can be reduced.

以上説明のように、制振装置16、16と制振発電装置17を備えた高架橋1であるならば、高架橋1が制振されているので、近隣地域に低周波振動の影響を与え難い。よって、高架橋1が居住地区に隣接して設置されていた場合であっても、近隣の建築物に低周波振動による騒音などの悪影響を与えることがない。
また、高架橋1にその状態をモニターする各種センサ機器を備える場合、制振発電装置17のリニア発電機38が発電した電気エネルギーを利用することが可能となり、道路用の送電網に頼ることなく車輌の走行に伴い振動を利用した環境発電による電気エネルギーで各種センサ機器の電源を確保することができる。
As described above, in the case of the viaduct 1 provided with the vibration damping devices 16 and 16 and the vibration damping power generation device 17, since the viaduct 1 is vibration-damped, it is difficult to affect the neighboring area by low-frequency vibration. Therefore, even if the viaduct 1 is installed adjacent to the residential area, it does not adversely affect the neighboring buildings such as noise due to low frequency vibration.
Further, when the high bridge 1 is equipped with various sensor devices for monitoring the state, it is possible to use the electric energy generated by the linear generator 38 of the vibration damping power generation device 17, and the vehicle does not rely on the power grid for the road. It is possible to secure the power supply for various sensor devices with electric energy generated by environmental power generation using vibration as the vehicle travels.

なお、上述の実施形態においては、第1の付加質量体36側にリニア発電機38のシリンダー50を取り付け、第2の付加質量体37側にピストン51を接続したが、リニア発電機38は上下逆に設置してもよい。よって、第2の付加質量体37側にリニア発電機38のシリンダー50を取り付け、第1の付加質量体36側にピストン51を接続してリニア発電機38を設置してもよい。 In the above-described embodiment, the cylinder 50 of the linear generator 38 is attached to the first additional mass body 36 side, and the piston 51 is connected to the second additional mass body 37 side, but the linear generator 38 moves up and down. It may be installed in reverse. Therefore, the cylinder 50 of the linear generator 38 may be attached to the side of the second additional mass body 37, and the piston 51 may be connected to the side of the first additional mass body 36 to install the linear generator 38.

また、図4に示す構造のシングルマス構造の制振装置16においてリニア発電機38を搭載し、発電機として構成することもできる。その場合、オイルダンパー28の代わりにリニア発電機38を設け、リニア発電機38の起電コイル53の内部を磁極部52が振動し、発電する際の磁気的反力によるダンパー作用を制振力として用いる。
この構造においても先のリニア発電機38の構造と同様に、構造物の制振とともに振動発電を行うことができる。
Further, the linear generator 38 can be mounted on the vibration damping device 16 having a single mass structure shown in FIG. 4 to be configured as a generator. In that case, a linear generator 38 is provided instead of the oil damper 28, and the magnetic pole portion 52 vibrates inside the electromotive coil 53 of the linear generator 38 to suppress the damper action due to the magnetic reaction force when generating power. Used as.
In this structure as well, similar to the structure of the linear generator 38 described above, vibration power generation can be performed together with vibration damping of the structure.

図8は第1の付加質量体と第2の付加質量体を備えた二質点系の同調質量系発電デバイスのモデル解析に用いる解析モデルを示し、図9はリニア発電機部分の等価回路を示す。
この解析モデルは、バネ常数κのバネと減衰定数Cのダンパーで支持された高架橋の等価質量をMと設定し、バネ、電磁誘導型のリニア発電装置および2つの質量である第1の付加質量体mと第2の付加質量体mで構成された二質点系同調質量系に発電デバイスが付加された状態を示す。
質量Mの高架橋に調和外力F=Fsinωtが作用した時、発電電力と高架橋変位の伝達関数を求める。
FIG. 8 shows an analysis model used for model analysis of a two-mass system tuned mass power generation device including a first additional mass body and a second additional mass body, and FIG. 9 shows an equivalent circuit of a linear generator portion. ..
The analytical model, the spring and the equivalent mass of the supported viaduct in damper damping constant C M of the spring constant κ is set to M, the spring, the first addition of a linear generator and two mass electromagnetic induction type It shows a state in which a power generation device is added to a two-mass system-tuned mass system composed of a mass body m 1 and a second additional mass body m 2 .
When a harmonized external force F = F 0 sinωt acts on the viaduct of mass M, the transfer function of the generated power and the viaduct displacement is obtained.

Feは図8に示す電磁誘導式発電装置を用いたリニア発電装置の回路による減衰力であり、発電装置の誘導起電力定数をκemf[Vs/m]とすると、発電による減衰率はFe=κemfIで表される。一般性を持たせるため、無次元量ξe=κ emf/{2(mκ1/2(r+R)}を発電による減衰比とする。
静的変位F/κに対する定常振動状態の橋梁変位振幅の比を変位振幅比、振動系の仕事率F (K/M)1/2に対する発電電力振幅の比を発電電力比と定義する。
以上定義した場合の加振力の振動比λと減衰率ξに対する発電電力比と変位振幅比の解析結果を図10と図11に示す。
Fe is the damping force due to the circuit of the linear power generation device using the electromagnetic induction power generation device shown in FIG. 8. If the induced electromotive force constant of the power generation device is κemf [Vs / m], the attenuation rate due to power generation is Fe = κemfI. It is represented by. In order to have generality, the dimensionless quantity ξe = κ 2 emf / {2 (m 2 κ 2 ) 1/2 (r + R)} is used as the attenuation ratio due to power generation.
The ratio of the displacement amplitude ratio of the bridge displacement amplitude of the steady oscillation state to static displacement F 0 / kappa, defined as the generated power ratio the ratio of generated power amplitude for work rate F 0 2 (K / M) 1/2 of the oscillation system To do.
The analysis results of the generated power ratio and the displacement amplitude ratio with respect to the vibration ratio λ of the exciting force and the damping rate ξ under the above definitions are shown in FIGS. 10 and 11.

振動数比はλ=ω/(κ/M)1/2で示される無次元量である。ここでは、第1の付加質量体の高架橋(橋梁)に対する質量比μ1=m1/Mは0.001(1%)としている。
図10は、ダブルマス制振装置の場合の発電量の等高線図であり、横軸は構造物の固有振動数に対する加振振動数の比を表し、縦軸は発電装置の磁気的反力によるダンパー作用の減衰係数を第2の付加質量体の減衰比として表したものである。また、図11は、図10と同じ縦軸、横軸における構造物の応答変位の等高線図である。
The frequency ratio is a dimensionless quantity represented by λ = ω / (κ / M) 1/2 . Here, the mass ratio μ1 = m1 / M of the first additional mass to the viaduct (bridge) is 0.001 (1%).
FIG. 10 is a contour diagram of the amount of power generated in the case of a double-mass vibration damping device. The horizontal axis represents the ratio of the vibration frequency to the natural frequency of the structure, and the vertical axis represents the damper due to the magnetic reaction force of the power generation device. The damping coefficient of action is expressed as the damping ratio of the second added mass body. Further, FIG. 11 is a contour diagram of the response displacement of the structure on the same vertical axis and horizontal axis as in FIG.

図10の中央よりの小さな○印は、発電電力比の極大値の位置を示しており、破線はそのときの減衰率ξeを示している。図11の下側の小さな○印は振幅比の極大値の最小値を示しており。細線はそのときの減衰率ξeを示している。
これらの結果から、大きな発電電力比スペクトルを与える減衰率ξeと、小さな振幅比スペクトルを与えるξeは一致しないことがわかる。即ち、二質点同調質量系デバイスにおいて、高架橋の振動抑制を目的とした設定と高架橋の振動発電を目的とした設定ではパラメーターの設定値が異なることを示している。
A small circle from the center of FIG. 10 indicates the position of the maximum value of the generated power ratio, and the broken line indicates the attenuation rate ξe at that time. The small circle at the bottom of FIG. 11 indicates the minimum value of the maximum amplitude ratio. The thin line shows the damping factor ξe at that time.
From these results, it can be seen that the attenuation factor ξe, which gives a large power generation ratio spectrum, and the ξe, which gives a small amplitude ratio spectrum, do not match. That is, in the two-mass tuning mass system device, it is shown that the set values of the parameters are different between the setting for suppressing the vibration of the viaduct and the setting for the vibration power generation of the viaduct.

しかし、図10に示すように本発明に係る制振発電装置は、縦軸の減衰比が0.5から4.0程度まで大きく変化しても発電量はそれほど変化していない。つまり、発電装置の仕様による発電時のダンパー作用の強さを幅広く設定できるので、幅広い仕様の発電装置を橋梁に用いることができる。このときの制振効果は、図11の構造物の応答変位の等高線図に示す通り、発電装置の仕様によって大きく変化していない。
従って、本発明の制振発電装置は、広い範囲の減衰比に対応させて設置することができ、数Hz程度の低周波数の固有振動数を示す橋梁等の構造物であっても発電用と制振用の両方の用途として適用することができる。
また、先の実施形態では、1つの高架橋1に対し3基の制振装置を設ける場合、全て制振発電装置とするのではなく、1基のみ制振発電装置として残り2基を制振装置とした例を望ましい例として示している。
以上の解析結果を踏まえ、パラメーターの設定について検討する。
However, as shown in FIG. 10, in the vibration damping power generation device according to the present invention, the amount of power generation does not change so much even if the damping ratio on the vertical axis changes significantly from about 0.5 to about 4.0. That is, since the strength of the damper action at the time of power generation can be set widely according to the specifications of the power generation device, the power generation device having a wide range of specifications can be used for the bridge. The damping effect at this time does not change significantly depending on the specifications of the power generation device, as shown in the contour diagram of the response displacement of the structure in FIG.
Therefore, the vibration damping power generation device of the present invention can be installed corresponding to a wide range of damping ratios, and even a structure such as a bridge showing a low frequency natural frequency of about several Hz can be used for power generation. It can be applied for both vibration damping applications.
Further, in the above embodiment, when three vibration damping devices are provided for one viaduct 1, not all of them are vibration damping power generation devices, but only one is used as a vibration damping power generation device and the remaining two are vibration damping devices. Is shown as a desirable example.
Based on the above analysis results, the parameter settings will be examined.

高架橋における対象振動に対する発電エネルギーを最大とする制振発電装置のパラメーターを決定するため、図8に示した高架橋−制振発電装置のモデルに自動車交通による等価加振力Fを解析モデルに加え、発電エネルギーを算出した。
等価加振力は大型車が単独で通過したと思われる代表的な加速度波形から算出した。
用いた制振発電装置の第1の付加質量体の質量を104kg、対象モードの高架橋等価質量233トンの約0.045%である。高架橋の発電対象振動モードの減衰率はバンドパスフィルターを通して得られる加速度の自由減衰波形より算出した。
制振発電装置の機械的な減衰率はハーフパワー法により同定した値を用いる。対象としたパラメーターは第1の付加質量体と第2の付加質量体の振動数f1、f2と発電による減衰率ξeである。これら3つのパラメーターを変化させ、繰り返し計算によって最大の発電エネルギーとなるパラメーターを決定した。
In order to determine the parameters of the vibration-damping power generation device that maximizes the generated energy for the target vibration in the high bridge, the equivalent vibration-damping force F due to automobile traffic is added to the analysis model of the high-bridge-vibration-damping power generation device model shown in FIG. The generated energy was calculated.
The equivalent excitation force was calculated from a typical acceleration waveform that seems to have passed by a large vehicle alone.
The mass of the first additional mass of the vibration damping power generator used is 104 kg, which is about 0.045% of the viaduct equivalent mass of 233 tons in the target mode. The damping factor of the vibration mode for power generation of the viaduct was calculated from the free damping waveform of the acceleration obtained through the bandpass filter.
Mechanical damping rate of the damping power generator uses the value identified by the half power method. The target parameters are the frequencies f1 and f2 of the first additional mass body and the second additional mass body, and the damping factor ξe due to power generation. These three parameters were changed, and the parameter that became the maximum generated energy was determined by iterative calculation.

主なパラメーターを以下に示す。
第1付加質量体の質量104kg、第2付加質量体の質量31kg、第1付加質量体の固有振動数f=6.92Hz、第2付加質量体の固有振動数f=10.2Hz、第1付加質量体の減衰率ξ=0.009、第2付加質量体の減衰率ξ=0.009、発電による減衰率ξe=2038Ns/m。
これらのパラメーター設定に従い、図12に示すように高架橋1A、1Bのそれぞれの径間の中央位置に支持横桁を設置し、支持横桁間に当初1基の制振発電装置を設置し、試験したところ、リニア発電機のストロークの10mm(±5mm)を超えるストロークが第1付加質量と第2付加質量から与えられることがわかった。
The main parameters are shown below.
The mass of the first additional mass body is 104 kg, the mass of the second additional mass body is 31 kg, the natural frequency of the first additional mass body is f 1 = 6.92 Hz, the natural frequency of the second additional mass body is f 2 = 10.2 Hz, The attenuation rate of the first additional mass body is ξ 1 = 0.009, the attenuation rate of the second additional mass body is ξ 2 = 0.009, and the attenuation rate due to power generation is ξe = 2038 Ns / m.
According to these parameter settings, as shown in FIG. 12, a support cross girder is installed at the center position between the spans of the viaducts 1A and 1B, and initially one vibration damping power generator is installed between the support cross girders for testing. As a result, it was found that a stroke exceeding 10 mm (± 5 mm) of the stroke of the linear generator was given by the first additional mass and the second additional mass.

そこで、図1に示す構造の高架橋(中央高速道路、池ヶ谷橋三径間連続トラス橋の下り車線側)に実際に制振発電装置を取り付ける場合、2基の制振装置と1基の制振発電装置を組として高架橋に設置し、設置位置として、第1径間の1/4L地点の横桁に対しH型鋼を介し取り付け、24時間の発電実験を行った。発電対象振動数を6.1Hzとした。
2基の制振装置と1基の制振発電装置を組として高架橋に設置すると、1基の場合より個々の装置のストローク量を少なくすることができ、1/4L地点に設置することで、高架橋の振動の節の位置であって振幅のより小さい位置に設置することができると推定し試験に供した。
取り付け後、第1付加質量体の1〜8Hzの振動数域において第1の付加質量体と第2の付加質量体が同位相で振動することを確認できた。
Therefore, when an anti-vibration power generator is actually installed on the viaduct having the structure shown in FIG. The power generation device was installed on the viaduct as a set, and as the installation position, it was attached to the cross girder at the 1/4 L point of the first span via H-shaped steel, and a power generation experiment was conducted for 24 hours. The frequency to be generated was set to 6.1 Hz.
If two vibration control devices and one vibration control power generation device are installed as a set on the viaduct, the stroke amount of each device can be reduced compared to the case of one unit, and by installing it at the 1 / 4L point, It was presumed that it could be installed at the position of the vibration node of the viaduct and at a position with a smaller amplitude, and was used for the test.
After mounting, it was confirmed that the first additional mass body and the second additional mass body vibrate in the same phase in the frequency range of 1 to 8 Hz of the first additional mass body.

図13に24時間計測した結果、10分間毎の発電エネルギーの遷移を実線で示し、60分移動平均を鎖線で示す。発電エネルギーは、交通状態により大きく変化するが、いずれにおいても充分な発電エネルギーを取り出し得ることが判明した。
例えば、一般市販のワイヤレス電圧ロガーにおいて消費電力約1.6mW、記録間隔1分のタイプであれば、2台分をまかなえる量の発電ができている。また、ワイヤレスの3軸加速度センサ、消費電力100mW、サンプリングレート130あるいは280Hzであるならば、約5時間毎に10分間の計測が可能な発電量である。
As a result of measuring for 24 hours in FIG. 13, the transition of the generated energy every 10 minutes is shown by a solid line, and the 60-minute moving average is shown by a chain line. It has been found that the generated energy varies greatly depending on the traffic conditions, but sufficient generated energy can be extracted in any case.
For example, a general commercially available wireless voltage logger with a power consumption of about 1.6 mW and a recording interval of 1 minute can generate enough power to cover two units. Further, if the wireless 3-axis acceleration sensor has a power consumption of 100 mW and a sampling rate of 130 or 280 Hz, the amount of power generated can be measured for 10 minutes approximately every 5 hours.

図14は図13に示すように24時間の発電を行っている間、最大発電電力を得たときの振動発電機取り付け位置での加速度波形を示している。
このときの瞬間最大値は3.2W、加速度は瞬間的に200galを超えていた。また、この他の発電においても通常の大型車輌が通行した際に平均的に100gal程度が記録されているので、高架橋のヘルスモニタリングシステム用として優れた発電効果を得られることがわかった。
As shown in FIG. 13, FIG. 14 shows an acceleration waveform at the vibration power generator mounting position when the maximum generated power is obtained during power generation for 24 hours.
At this time, the maximum instantaneous value was 3.2 W, and the acceleration momentarily exceeded 200 gal. Also, in other power generation, about 100 gal is recorded on average when a normal large vehicle passes through, so it was found that an excellent power generation effect can be obtained for a viaduct health monitoring system.

図15は、図14で示した加速度波形と同時に計測した振動発電機の第1付加質量体の加速度波形及び発電電圧波形を用いて、高架橋と制振発電装置のエネルギー遷移を対比して示す。振動モードによって高架橋等価質量が異なるため、エネルギーの量比は1−3次振動モード(1次3Hz:394トン、2次6Hz:148トン、3次9Hz:123トン)の合計から求めた。
高架橋と振動発電機からなるシステムに与えられた合計エネルギーは98.3Jで振動発電機はそのうちの3.3Jを電気エネルギーに変換したこととなる(エネルギー変換効率3.4%)。振動発電機が吸収したエネルギーは、減衰エネルギー(3.0J)と発電エネルギー(3.3J)の合計で表され、システムに与えられたエネルギーのうち、6.3J(6.4%)を振動発電機が吸収したこととなる。
FIG. 15 shows the energy transitions of the high bridge and the vibration-damping power generator in comparison with each other by using the acceleration waveform and the generated voltage waveform of the first additional mass body of the vibration power generator measured at the same time as the acceleration waveform shown in FIG. Since the viaduct equivalent mass differs depending on the vibration mode, the energy quantity ratio was obtained from the total of the 1st to 3rd order vibration modes (1st order 3Hz: 394 tons, 2nd order 6Hz: 148 tons, 3rd order 9Hz: 123 tons).
The total energy given to the system consisting of the high bridge and the vibration power generator is 98.3J, which means that the vibration power generator has converted 3.3J into electrical energy (energy conversion efficiency 3.4%). The energy absorbed by the vibration power generator is represented by the total of the decay energy (3.0J) and the generated energy (3.3J), and 6.3J (6.4%) of the energy given to the system is vibrated. It means that the generator has absorbed it.

1、1A、1B…高架橋(構造物)、15…支持横桁、16…制振装置、17…制振発電装置、20…ベース基台、22…第1の付加質量体、35…ベース基台、36…第1の付加質量体、37…第2の付加質量体、38…リニア発電機、50…シリンダー、51…ピストン、52…磁極部、53…起電コイル、55…支持軸、56…下部コイルばね(弾性体)、57…上部コイルばね(弾性体)、60…ストッパー部材、63…支持軸、66…下部コイルばね(弾性体)、67…上部コイルばね(弾性体)。

1, 1A, 1B ... High bridge (structure), 15 ... Support cross girder, 16 ... Vibration damping device, 17 ... Vibration damping power generator, 20 ... Base base, 22 ... First additional mass body, 35 ... Base group Platform, 36 ... 1st additional mass body, 37 ... 2nd additional mass body, 38 ... linear generator, 50 ... cylinder, 51 ... piston, 52 ... magnetic pole, 53 ... electromotive coil, 55 ... support shaft, 56 ... Lower coil spring (elastic body), 57 ... Upper coil spring (elastic body), 60 ... Stopper member, 63 ... Support shaft, 66 ... Lower coil spring (elastic body), 67 ... Upper coil spring (elastic body).

Claims (4)

構造物に生じた振動のエネルギーを電気エネルギーに変換するとともに前記構造物の制振を行う制振発電装置であって、
制振対象とする構造物に設置される基台と、
該基台上に第1の弾性体を介し上下に振動自在に支持された第1の付加質量体と、
前記第1の付加質量体の上に第2の弾性体を介し上下に振動自在に支持された第2の付加質量体と、
前記第1の付加質量体と前記第2の付加質量体の上下振動による相対移動により上下方向に振動されるピストン、該ピストンに取り付けられインナーヨークの外周に沿って複数の磁石を有する磁極部、前記ピストンをその軸方向に移動自在に収容するシリンダー、該シリンダーの内部に前記磁極部を囲むように設けられたアウターヨークにコイルを巻き付けて構成された起電コイルを具備してなるリニア発電機とを有し、
前記アウターヨークにおいて前記磁極部側の部分は前記起電コイルの中心軸を含む断面に沿ってC字型に形成されており、
前記シリンダーが前記第1の付加質量体と前記第2の付加質量体のどちらか一方に一体化されて上下振動自在に支持されるとともに、前記ピストンが前記第2の付加質量体と前記第1の付加質量体のどちらか他方に接続されて上下振動自在に支持されるとともに、
前記第1の付加質量体が、質量板と、基板と、周壁板と、複数枚の板を積層した積層板と、底板を重ねて構成され、前記質量板と前記基板の中央部を貫通して前記周壁板の底部に達する収容部が形成され、該収容部に、前記ピストンを上向きとして前記質量板と前記基板と前記周壁板を上下に貫通し、前記積層板の上に位置するように前記シリンダーが固定され、前記質量板とその下に重ねられた前記基板と前記周壁板と前記積層板と前記底板を上下に貫通する連結ボルトによりこれらが一体化され、前記第1の付加質量体として振動自在に支持され、前記ピストンの上端部が前記第2の付加質量体に接続され、
前記基台上に、前記第1の付加質量体の外周部を上下に貫通して前記第1の付加質量体の上下振動位置の上限と下限を規定するストッパー部材が立設され、
前記第1の付加質量体上に、前記第2の付加質量体の外周部を上下に貫通して前記第2の付加質量体の上下振動位置の上限と下限を規定するストッパー部材が立設されたことを特徴とする制振発電装置。
A vibration-damping power generator that converts the energy of vibration generated in a structure into electrical energy and also controls the vibration of the structure.
The base installed on the structure to be vibration-damped and
A first additional mass body oscillating up and down on the base via a first elastic body,
A second additional mass body oscillated up and down via a second elastic body on the first additional mass body,
A piston that vibrates in the vertical direction due to relative movement of the first additional mass body and the second additional mass body due to vertical vibration, and a magnetic pole portion attached to the piston and having a plurality of magnets along the outer circumference of the inner yoke. A linear generator including a cylinder for accommodating the piston so as to be movable in the axial direction, and an electromotive coil configured by winding a coil around an outer yoke provided inside the cylinder so as to surround the magnetic pole portion. And have
In the outer yoke, the portion on the magnetic pole side is formed in a C shape along a cross section including the central axis of the electromotive coil.
The cylinder is integrated with either the first additional mass body or the second additional mass body and is supported so as to be able to vibrate up and down, and the piston is supported by the second additional mass body and the first additional mass body . It is connected to either one of the additional mass bodies of
The first additional mass body is formed by stacking a mass plate, a substrate, a peripheral wall plate, a laminated plate in which a plurality of plates are laminated, and a bottom plate, and penetrates the mass plate and the central portion of the substrate. A housing portion that reaches the bottom of the peripheral wall plate is formed, and the mass plate, the substrate, and the peripheral wall plate are vertically penetrated in the housing portion with the piston facing upward so as to be located on the laminated plate. The cylinder is fixed, and these are integrated by a connecting bolt that vertically penetrates the mass plate, the substrate, the peripheral wall plate, the laminated plate, and the bottom plate stacked under the mass plate, and the first additional mass body is formed. The upper end of the piston is connected to the second additional mass body.
On the base, a stopper member is erected so as to vertically penetrate the outer peripheral portion of the first additional mass body and define the upper and lower limits of the vertical vibration position of the first additional mass body.
On the first additional mass body, a stopper member is erected so as to vertically penetrate the outer peripheral portion of the second additional mass body and define the upper limit and the lower limit of the vertical vibration position of the second additional mass body. A vibration-damping power generator that is characterized by this.
複数の桁橋が直列配置されてなる高架橋の制振発電構造であって、
前記桁橋が橋軸直交方向に所定間隔をあけて配置された一対の主桁と、前記一対の主桁の間に橋軸方向に間隔をあけて複数配置された主横桁と、前記一対の主桁の上面に載置された床版を備えてなり、
前記橋軸方向に離間した複数の主横桁の間に前記橋軸方向に離間させて対になる支持横桁を前記主桁に支持させて設け、前記支持横桁に、付加質量体と弾性部材と減衰機構を備えたシングルダイナミックマス型の制振装置、および、2つの可動質量体と弾性部材とリニア発電機を備えた請求項1に記載のダブルダイナミックマス型の制振発電装置を設置したことを特徴とする制振発電装置を備えた高架橋。
It is a vibration-damping power generation structure of a viaduct in which multiple girder bridges are arranged in series.
A pair of main girders in which the girder bridges are arranged at predetermined intervals in the direction orthogonal to the bridge axis, a plurality of main cross girders arranged between the pair of main girders at intervals in the bridge axis direction, and the pair. It is equipped with a floor slab placed on the upper surface of the main girder of the bridge.
Between a plurality of main cross girders separated in the bridge axis direction, a pair of supporting cross girders separated in the bridge axis direction are provided so as to be supported by the main girder, and the supporting cross girder is elastically connected to an additional mass body. A single dynamic mass type vibration damping device including a member and a damping mechanism, and a double dynamic mass type vibration damping power generating device according to claim 1 provided with two movable mass bodies, an elastic member and a linear generator are installed. A high bridge equipped with a vibration-damping power generator.
前記桁橋を構成する横桁の一部に前記シングルダイナミックマス型の制振装置と前記ダブルダイナミックマス型の制振発電装置を設置したことを特徴とする請求項に記載の制振発電装置を備えた高架橋。 The vibration damping power generation device according to claim 2 , wherein the single dynamic mass type vibration damping device and the double dynamic mass type vibration damping power generation device are installed in a part of the cross girder constituting the girder bridge. Viaduct with. 高架橋の振動の節に当たる位置に前記支持横桁を設け、該支持横桁に前記シングルダイナミックマス型の制振装置と前記ダブルダイナミックマス型の制振発電装置を設置したことを特徴とする請求項に記載の制振発電装置を備えた高架橋。 The claim is characterized in that the support cross girder is provided at a position corresponding to the vibration node of the viaduct, and the single dynamic mass type vibration damping device and the double dynamic mass type vibration damping power generation device are installed on the support cross girder. Viaduct equipped with the vibration damping power generation device according to 2 .
JP2015222504A 2015-11-12 2015-11-12 Viaduct with damping power generation device and vibration damping power generation device Active JP6758041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015222504A JP6758041B2 (en) 2015-11-12 2015-11-12 Viaduct with damping power generation device and vibration damping power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015222504A JP6758041B2 (en) 2015-11-12 2015-11-12 Viaduct with damping power generation device and vibration damping power generation device

Publications (2)

Publication Number Publication Date
JP2017089559A JP2017089559A (en) 2017-05-25
JP6758041B2 true JP6758041B2 (en) 2020-09-23

Family

ID=58767555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015222504A Active JP6758041B2 (en) 2015-11-12 2015-11-12 Viaduct with damping power generation device and vibration damping power generation device

Country Status (1)

Country Link
JP (1) JP6758041B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6633928B2 (en) * 2016-02-03 2020-01-22 Toyo Tire株式会社 Power generation system
JP6958832B2 (en) * 2017-06-26 2021-11-02 学校法人五島育英会 Detection system and detection method
DE102018132249A1 (en) 2017-12-25 2019-06-27 Futaba Corporation Vibrational energy generator
CN109989336B (en) * 2019-04-26 2020-10-09 重庆大学 Wind-resistant shock-absorbing bridge suspender for vibration isolation by using magnetic suspension technology
JP2022189467A (en) * 2021-06-11 2022-12-22 株式会社鷺宮製作所 Vibration-powered generation unit, design method for vibration-powered generation unit, and program for vibration-powered generation unit

Also Published As

Publication number Publication date
JP2017089559A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6758041B2 (en) Viaduct with damping power generation device and vibration damping power generation device
Iqbal et al. Hybrid vibration and wind energy harvesting using combined piezoelectric and electromagnetic conversion for bridge health monitoring applications
JP5705440B2 (en) Power generation device, power generation system, structure, and method for designing power generation device
EP1932230B1 (en) Generator for converting mechanical vibrational energy into electrical enegery
US7489045B1 (en) Energy generating expansion joint
CN100507305C (en) Magnetic flowing deformation elastomer frequency shift type attenuator and control method
Hou et al. Multi-frequency energy harvesting method for vehicle induced vibration of rail transit continuous rigid bridges
JP2009529310A (en) Electromechanical generator and method for converting mechanical vibrational energy into electrical energy
Dhote et al. Modeling and experimental parametric study of a tri-leg compliant orthoplanar spring based multi-mode piezoelectric energy harvester
CA2778950A1 (en) Nonlinear oscillator for vibration energy harvesting
JP5697876B2 (en) Power generator
JP5958121B2 (en) Vibration power generator
CN108797311A (en) A kind of eddy current tuned mass damper and design method for cable way bridge
JP5207353B2 (en) Vibration control method and vibration control apparatus
CN112580227A (en) Horizontal shock absorber and method for determining medium mass of damping liquid in horizontal shock absorber
De Roeck et al. A versatile active mass damper for structural vibration control
JP5478279B2 (en) Anti-vibration table and power generation system
JP4855378B2 (en) Damping device, damping method and damping program
JP2008248629A (en) Active damper for building structure
JP2014011843A (en) Vibration power generator and design method thereof
Moutinho et al. Implementation of an Active Mass Damper to Control Vibrations in a" Lively" Footbridge
JP4687092B2 (en) Dynamic vibration absorber and dynamic vibration absorber using the same
JP2008223282A (en) Active damper for building structure and active damping method for building structure
JP2002130362A (en) Electrokinetic type vibration suppression device for structure
JP2021014905A (en) Vibration damping device and vibration damping structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151113

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20151211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160309

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160510

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200901

R150 Certificate of patent or registration of utility model

Ref document number: 6758041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350