JP6756115B2 - Graphitization treatment method of amorphous carbon material and products and graphite produced when graphitating - Google Patents
Graphitization treatment method of amorphous carbon material and products and graphite produced when graphitating Download PDFInfo
- Publication number
- JP6756115B2 JP6756115B2 JP2016026211A JP2016026211A JP6756115B2 JP 6756115 B2 JP6756115 B2 JP 6756115B2 JP 2016026211 A JP2016026211 A JP 2016026211A JP 2016026211 A JP2016026211 A JP 2016026211A JP 6756115 B2 JP6756115 B2 JP 6756115B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- graphitization
- amorphous carbon
- carbon material
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005087 graphitization Methods 0.000 title claims description 166
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 123
- 229910002804 graphite Inorganic materials 0.000 title claims description 97
- 239000010439 graphite Substances 0.000 title claims description 97
- 239000002194 amorphous carbon material Substances 0.000 title claims description 88
- 238000000034 method Methods 0.000 title claims description 53
- 239000000047 product Substances 0.000 title description 8
- 239000003054 catalyst Substances 0.000 claims description 144
- 229910052751 metal Inorganic materials 0.000 claims description 102
- 239000002184 metal Substances 0.000 claims description 93
- 238000010438 heat treatment Methods 0.000 claims description 88
- 238000006243 chemical reaction Methods 0.000 claims description 65
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 64
- 239000002245 particle Substances 0.000 claims description 30
- 229910052742 iron Inorganic materials 0.000 claims description 23
- 238000002844 melting Methods 0.000 claims description 21
- 230000008018 melting Effects 0.000 claims description 21
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 17
- 229910052759 nickel Inorganic materials 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 14
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 10
- 238000011084 recovery Methods 0.000 claims description 7
- 239000000155 melt Substances 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 238000012916 structural analysis Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 239000002180 crystalline carbon material Substances 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 description 21
- 238000011156 evaluation Methods 0.000 description 21
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 16
- 239000002994 raw material Substances 0.000 description 14
- 239000010410 layer Substances 0.000 description 13
- 239000007858 starting material Substances 0.000 description 13
- 239000002904 solvent Substances 0.000 description 12
- 239000013078 crystal Substances 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 239000012535 impurity Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910021397 glassy carbon Inorganic materials 0.000 description 6
- 239000005011 phenolic resin Substances 0.000 description 6
- 238000006555 catalytic reaction Methods 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 229910021382 natural graphite Inorganic materials 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 150000002736 metal compounds Chemical group 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 229910052976 metal sulfide Inorganic materials 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011269 tar Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000002140 halogenating effect Effects 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
Description
本発明は、非晶質炭素材の黒鉛化処理方法および黒鉛を回収する際に生成する生成物並びに黒鉛に関するものである。 The present invention relates to products and graphite produced during the recovery of graphitization processing method and graphite amorphous carbon material.
黒鉛は、炭素を層状に結晶したものであり、耐火物原料やリチウム二次電池電極材として、結晶質の黒鉛原料の需要は高まっている。しかしながら、天然に産出する鱗状黒鉛は、枯渇傾向にある。また、天然黒鉛は、不可避的にシリカを含む。そのため、非結晶の、非晶質炭素、樹脂、カーボン原料をもとに、結晶質である黒鉛を合成する試みが行われている。ここで、炭素は昇華点の高い(3642℃)物質であり、高温高圧下(4327℃、10.8MPa)でようやく融解する物質であるため、非晶質炭素等を結晶化させて結晶質である黒鉛を合成するには、高温高圧により非晶質構造を結晶質構造に転換する必要があり、結晶化のための手法の開発は非常に困難である。そのため、1980年代からこれらに比べ比較的低温条件かつ常圧下で非晶質構造の炭素を、結晶化して黒鉛化する反応を実現させる黒鉛化(結晶化)触媒の研究が進められてきた。 Graphite is a layered crystal of carbon, and there is an increasing demand for crystalline graphite raw materials as refractory raw materials and lithium secondary battery electrode materials. However, naturally occurring scaly graphite tends to be depleted. In addition, natural graphite inevitably contains silica. Therefore, attempts have been made to synthesize crystalline graphite based on non-crystalline amorphous carbon, resin, and carbon raw materials. Here, since carbon is a substance having a high sublimation point (3642 ° C.) and is a substance that finally melts under high temperature and high pressure (4327 ° C., 10.8 MPa), amorphous carbon or the like is crystallized to be crystalline. In order to synthesize a certain graphite, it is necessary to convert the amorphous structure into a crystalline structure by high temperature and high pressure, and it is very difficult to develop a method for crystallization. Therefore, since the 1980s, research on a graphitization (crystallization) catalyst that realizes a reaction of crystallizing and graphitizing carbon having an amorphous structure under relatively low temperature conditions and normal pressure has been promoted.
上記黒鉛化触媒を用いた黒鉛化反応プロセスには次のような方法が提案されている。特許文献1では、Si、Fe、Ti、B等の化合物を黒鉛化触媒として用い、材料のバインダー部分を2000℃以上で黒鉛化させ、充放電平均電圧が低く耐用性の高いリチウム二次電池負極材を提供する方法が開示されている。特許文献2では、石油系または石炭系のタールまたはピッチ類、樹脂類の黒鉛前駆体と水溶性遷移金属化合物とアルカリを水中で接触させ、遷移金属酸化物の触媒反応を介して1500℃以上で黒鉛化させる方法が開示されている。また、非特許文献1では、Fe、B等の黒鉛化触媒をフェノール樹脂に添加し1300℃以上で黒鉛化させる方法が報告されている。また、非特許文献2には、一般的な触媒黒鉛化反応がまとめられている。実際に非晶質炭素が黒鉛化したことを確認するには、例えば特許文献3の通り、粉末X線回折、ラマン分光解析を用いて行う。 The following method has been proposed for the graphitization reaction process using the above-mentioned graphitization catalyst. In Patent Document 1, compounds such as Si, Fe, Ti, and B are used as a graphitization catalyst, the binder portion of the material is graphitized at 2000 ° C. or higher, and the negative electrode of a lithium secondary battery having a low average charge / discharge voltage and high durability. A method of providing the material is disclosed. In Patent Document 2, petroleum-based or coal-based tars or pitches, resin graphite precursors, water-soluble transition metal compounds, and alkalis are brought into contact with each other in water, and at 1500 ° C. or higher through a catalytic reaction of transition metal oxides. A method for graphitization is disclosed. Further, Non-Patent Document 1 reports a method of adding a graphitizing catalyst such as Fe or B to a phenol resin to graphitize at 1300 ° C. or higher. Further, Non-Patent Document 2 summarizes general catalytic graphitization reactions. In order to confirm that the amorphous carbon is actually graphitized, for example, as in Patent Document 3, powder X-ray diffraction and Raman spectroscopic analysis are used.
一方、マイクロ波を用いてカーボン粉末を黒鉛化させるプロセスについてもいくつか提案されている。特許文献4では、電気炉加熱の補助としてマイクロ波加熱を用い、カーボン粉末を3200℃以上に昇温させることで黒鉛化を行う方法や、特許文献5では、マイクロ波の共振を応用し、3000℃までカーボン粉末を加熱することで黒鉛化を行う方法が、開示されている。 On the other hand, some processes for graphitizing carbon powder using microwaves have also been proposed. In Patent Document 4, microwave heating is used as an auxiliary for heating the electric furnace, and graphitization is performed by raising the temperature of the carbon powder to 3200 ° C. or higher. In Patent Document 5, microwave resonance is applied to 3000. A method of graphitizing by heating carbon powder to ° C. is disclosed.
上記のような従来の黒鉛化プロセスでは、黒鉛化触媒を用いて黒鉛化反応をより低温の2000℃程度で行う方法や、マイクロ波加熱を適用し電気炉内のカーボン粉末温度を3000℃の高温まで効率的に加熱する方法により非晶質炭素を黒鉛へ結晶化させることが可能であったとされている。 In the conventional graphitization process as described above, the graphitization reaction is carried out at a lower temperature of about 2000 ° C. using a graphitization catalyst, or the carbon powder temperature in the electric furnace is raised to a high temperature of 3000 ° C. by applying microwave heating. It is said that it was possible to crystallize amorphous carbon into graphite by a method of heating efficiently.
また、特許文献6では、カーボン原料を導電性樹脂に分散した際、2800℃で焼成し得られたカーボン原料に残留する金属酸化物や金属硫化物が該樹脂を低分子量化させ、導電性樹脂の劣化を招くため、これらの残留物をハロゲン化させ所定の温度で気化させ除去する方法が提案されている。 Further, in Patent Document 6, when the carbon raw material is dispersed in the conductive resin, the metal oxides and metal sulfides remaining in the carbon raw material obtained by firing at 2800 ° C. reduce the molecular weight of the resin, and the conductive resin. A method of halogenating these residues and vaporizing them at a predetermined temperature to remove them has been proposed.
しかしながら、上記の方法によって製造された黒鉛は、完全な黒鉛構造とならず、非晶質炭素や乱層構造の炭素を含んでしまう。非晶質炭素や乱層構造の炭素を含むと、耐酸化性が劣るため、好ましくない。特に、非特許文献1には、黒鉛化触媒を用いた黒鉛結晶化プロセスを用い、炭素の昇華点(3642℃)や三重点(4327℃)と比べはるかに低温である1000℃〜2000℃の条件で黒鉛結晶化が可能となるという報告もなされている。しかしながら、この方法で製造された黒鉛は、XRDピーク2θが黒鉛結晶を示す26.5°よりずれており、結晶性については不十分なものとなっていた。また、加熱手法としては、熱伝導および熱輻射を用いた外部からの加熱であるために材料全体を高温に上げる必要があり、黒鉛結晶の歩留まりを向上させる点においても不完全な方法であった。 However, the graphite produced by the above method does not have a perfect graphite structure, and contains amorphous carbon and carbon having a multi-layer structure. Amorphous carbon or carbon having a multi-layer structure is not preferable because the oxidation resistance is inferior. In particular, Non-Patent Document 1 uses a graphite crystallization process using a graphitization catalyst, and has a temperature of 1000 ° C to 2000 ° C, which is much lower than the carbon sublimation point (3642 ° C) and triple point (4327 ° C). It has also been reported that graphite crystallization is possible under conditions. However, in the graphite produced by this method, the XRD peak 2θ is deviated from 26.5 ° showing the graphite crystal, and the crystallinity is insufficient. In addition, as a heating method, it is necessary to raise the temperature of the entire material to a high temperature because it is heated from the outside using heat conduction and heat radiation, which is also an incomplete method in terms of improving the yield of graphite crystals. ..
一方、加熱効率向上を狙ったマイクロ波加熱の特許文献4の例では、出発原料を反応容器に付着しないカーボン粉末原料とする必要があり歩留まり低下の可能性が高く生産性が悪い。さらに、特許文献5の例では、共振を利用する場合はマイクロ波密度分布が安定せず3000℃までの加熱において誤差が大きい等の問題があった。 On the other hand, in the example of Patent Document 4 of microwave heating aimed at improving the heating efficiency, it is necessary to use a carbon powder raw material that does not adhere to the reaction vessel as the starting material, and there is a high possibility that the yield will decrease and the productivity will be poor. Further, in the example of Patent Document 5, when resonance is used, there is a problem that the microwave density distribution is not stable and an error is large in heating up to 3000 ° C.
また、黒鉛の応用技術として、導電性樹脂等に用いるカーボン原料として使用することが行われている。従来技術によって製造された黒鉛を、このような用途に適用するには、ハロゲン化等により金属酸化物および金属硫化物などを除去はすることが行われていた。しかしながら、導電性樹脂等に用いるカーボン原料の特性に害となる不純物を完全に除去することは困難であった。 Further, as an applied technique of graphite, it is used as a carbon raw material used for a conductive resin or the like. In order to apply graphite produced by the prior art to such an application, metal oxides and metal sulfides have been removed by halogenation or the like. However, it has been difficult to completely remove impurities that are harmful to the characteristics of the carbon raw material used for the conductive resin and the like.
いずれにしても、上記従来技術は、完全に黒鉛を結晶化させるには、不十分であり、結晶化黒鉛以外の黒鉛を含んでおり、原料全体を高温にするため、黒鉛化試料を常温まで冷却する時間がかかることや、炉内や試料容器、断熱材中の残留酸素と反応し、炭素分や黒鉛化した炭素が容易に発火しうること等の問題があった。 In any case, the above-mentioned prior art is insufficient to completely crystallize graphite, contains graphite other than crystallized graphite, and raises the temperature of the entire raw material, so that the graphitized sample is brought to room temperature. There are problems such as the time required for cooling and the fact that carbon and graphitized carbon can easily ignite by reacting with residual oxygen in the furnace, sample container, and heat insulating material.
(1)非晶質炭素材料に、黒鉛化触媒を添加して、分散させ、前記黒鉛化触媒を分散させた非晶質炭素材料にマイクロ波を照射して加熱する黒鉛化処理方法であって、
前記黒鉛化触媒が、Fe、Ni、Coから選ばれる少なくとも1種の元素を含む金属の単体であり、
前記黒鉛化触媒の平均粒子径が、200[μm]以下であり、
前記黒鉛化触媒の非晶質炭素材料に対する添加割合が、質量比で5%以上15%以下であり、
前記非晶質炭素材料を、1000℃以上1620℃以下の加熱により黒鉛化反応させる、
ことを特徴とする、非晶質炭素材の黒鉛化処理方法。
(2)前記黒鉛化反応において、前記黒鉛化触媒を分散させた非晶質炭素材料を、前記黒鉛化触媒を構成する金属が溶融する温度以上に加熱しないことを特徴とする、(1)に記載の非晶質炭素材の黒鉛化処理方法。
(3)前記黒鉛化触媒が金属Feであることを特徴とする、(1)又は(2)に記載の非晶質炭素材の黒鉛化処理方法。
(4)黒鉛化反応終了後、前記黒鉛化触媒を分散させた非晶質炭素材料を、前記黒鉛化触媒を構成する金属元素が溶融する温度以上に加熱し、該金属を溶融凝集させ、該金属量の95%以上を分離回収することを特徴とする、(1)〜(3)のいずれかひとつに記載の非晶質炭素材の黒鉛化処理方法。
(5)非晶質炭素材料に、黒鉛化触媒を質量比で5%以上15%以下の割合で添加して、前記非晶質炭素材料に前記触媒を分散させ、前記触媒を分散させた非晶質炭素材料にマイクロ波を照射して、1000℃以上加熱し、かつ前記黒鉛化触媒を構成する金属が溶融する温度以上に加熱せずに黒鉛化処理する方法において、黒鉛を回収する際に生成する生成物であって、
前記黒鉛化触媒が、Fe、Ni、Coから選ばれる少なくとも1種の元素を含む金属の単体であり、
前記生成物は、黒鉛化反応によって生成した黒鉛と、前記金属とが別相に分離して生成した組織を有する混合物であり、
前記金属が粒径1μm以下となっていることを特徴とする、黒鉛を回収する際に生成する生成物。
(6)黒鉛相と、金属相が前記黒鉛相から別相に分離して含まれる黒鉛であって、
前記黒鉛相は、XRDによる構造解析により得られる最大ピークが2θ=26.5±0.02°で、前記最大ピークの半価幅が、0.2°以下であり、
前記金属相は、Fe、Ni、Coから選ばれる少なくとも1種の元素を含み、粒径が1μm以下である、
ことを特徴とする黒鉛。
(7)非晶質炭素材料に、黒鉛化触媒を添加して、分散させ、前記黒鉛化触媒を分散させた非晶質炭素材料にマイクロ波を照射して加熱する黒鉛化処理方法であって、
前記黒鉛化触媒が、Fe、Ni、Coから選ばれる少なくとも1種の元素を含む金属の単体又は化合物であり、
前記黒鉛化触媒の平均粒子径が、200[μm]以下であり、
前記黒鉛化触媒の非晶質炭素材料に対する添加割合が、質量比で5%以上15%以下であり、
前記非晶質炭素材料を、1000℃以上に加熱して黒鉛化反応させ、
黒鉛化反応終了後、前記黒鉛化触媒を分散させた非晶質炭素材料を、前記黒鉛化触媒を構成する金属元素が溶融する温度以上に加熱し、該金属を溶融凝集させ、該金属量の95%以上を分離回収することを特徴とする、非晶質炭素材の黒鉛化処理方法。
(8)前記黒鉛化反応において、前記黒鉛化触媒を分散させた非晶質炭素材料を、前記黒鉛化触媒を構成する金属が溶融する温度未満に加熱することを特徴とする、(7)に記載の非晶質炭素材の黒鉛化処理方法。
(9)前記黒鉛化触媒が金属Fe又は酸化鉄であることを特徴とする、(7)又は(8)に記載の非晶質炭素材の黒鉛化処理方法。
(1) A graphitization treatment method in which a graphitization catalyst is added to an amorphous carbon material and dispersed, and the amorphous carbon material in which the graphitization catalyst is dispersed is irradiated with microwaves and heated. ,
The graphitizing catalyst is a simple substance of a metal containing at least one element selected from Fe, Ni, and Co.
The average particle size of the graphitizing catalyst is 200 [μm] or less.
The addition ratio of the graphitizing catalyst to the amorphous carbon material is 5% or more and 15% or less in terms of mass ratio.
The amorphous carbon material, thereby graphitized reaction by heating of 1000 ° C. or higher 1620 ° C. or less,
A method for graphitizing an amorphous carbon material, which is characterized by the above.
(2) In the graphitization reaction, the amorphous carbon material in which the graphitization catalyst is dispersed is not heated to a temperature higher than the temperature at which the metal constituting the graphitization catalyst is melted, according to (1). The method for graphitizing an amorphous carbon material according to the above method.
(3) The method for graphitizing an amorphous carbon material according to (1) or (2), wherein the graphitizing catalyst is metal Fe.
(4) After the completion of the graphitization reaction, the amorphous carbon material in which the graphitization catalyst is dispersed is heated to a temperature higher than the temperature at which the metal elements constituting the graphitization catalyst are melted, and the metal is melt-aggregated. The method for graphitizing an amorphous carbon material according to any one of (1) to (3), which comprises separating and recovering 95% or more of the amount of metal.
(5) A graphitizing catalyst was added to the amorphous carbon material at a ratio of 5% or more and 15% or less in terms of mass ratio, the catalyst was dispersed in the amorphous carbon material, and the catalyst was dispersed. When recovering graphite in a method of irradiating a crystalline carbon material with microwaves , heating it at 1000 ° C. or higher, and performing a graphitization treatment without heating it above a temperature at which the metal constituting the graphite catalyst melts. The product to be produced
The graphitizing catalyst is a simple substance of a metal containing at least one element selected from Fe, Ni, and Co.
The product is a mixture having a structure formed by separating the graphite produced by the graphitization reaction and the metal into different phases.
A product produced when graphite is recovered, characterized in that the metal has a particle size of 1 μm or less.
(6) Graphite in which the graphite phase and the metal phase are separated from the graphite phase into separate phases.
In the graphite phase, the maximum peak obtained by structural analysis by XRD is 2θ = 26.5 ± 0.02 °, and the half-value width of the maximum peak is 0.2 ° or less.
The metal phase contains at least one element selected from Fe, Ni, and Co, and has a particle size of 1 μm or less.
Graphite characterized by that.
(7) A graphitization treatment method in which a graphitization catalyst is added to an amorphous carbon material and dispersed, and the amorphous carbon material in which the graphitization catalyst is dispersed is irradiated with microwaves and heated. ,
The graphitizing catalyst is a simple substance or compound of a metal containing at least one element selected from Fe, Ni, and Co.
The average particle size of the graphitizing catalyst is 200 [μm] or less.
The addition ratio of the graphitizing catalyst to the amorphous carbon material is 5% or more and 15% or less in terms of mass ratio.
The amorphous carbon material is heated to 1000 ° C. or higher to cause a graphitization reaction.
After completion of the graphitization reaction, the amorphous carbon material in which the graphitization catalyst is dispersed is heated to a temperature higher than the temperature at which the metal elements constituting the graphitization catalyst are melted, and the metal is melt-aggregated to obtain the amount of the metal. A method for graphitizing an amorphous carbon material, which comprises separating and recovering 95% or more.
(8) In the graphitization reaction, the amorphous carbon material in which the graphitization catalyst is dispersed is heated to a temperature lower than the temperature at which the metal constituting the graphitization catalyst is melted, according to (7). The method for graphitizing an amorphous carbon material according to the above method.
(9) The method for graphitizing an amorphous carbon material according to (7) or (8), wherein the graphitizing catalyst is metallic Fe or iron oxide.
本発明により、原料に不純物を含まない人工的な方法で黒鉛を製造できることから、天然黒鉛のようなシリカ等を含まず、非晶質炭素や乱層構造の炭素を残存させることなく黒鉛化された人造黒鉛を提供することができる。また、黒鉛化触媒をマイクロ波により選択加熱し、触媒反応がおこる触媒表面近傍を黒鉛化反応に必要な温度とすることで、全体としては低温での加熱で、短時間で、黒鉛化することができる。更に材料を均一に加熱することができるため、材料内部に未反応物を残留させることなく歩留まり良く黒鉛化反応を起こすことができる。また、黒鉛化触媒が金属化合物であっても、反応途中に金属化するため、温度を当該金属の融点以上に到達させることで、金属化した黒鉛化触媒を加熱後分離回収することができる。また、非晶質炭素分や黒鉛化した炭素が発火する温度以下で処理が可能である。 According to the present invention, since graphite can be produced by an artificial method that does not contain impurities in the raw material, it is graphitized without containing silica or the like like natural graphite and without leaving amorphous carbon or carbon having a disordered layer structure. Artificial graphite can be provided. In addition, by selectively heating the graphitization catalyst with microwaves and setting the temperature near the surface of the catalyst where the catalytic reaction occurs to the temperature required for the graphitization reaction, graphitization can be performed in a short time by heating at a low temperature as a whole. Can be done. Further, since the material can be heated uniformly, the graphitization reaction can be carried out with good yield without leaving unreacted substances inside the material. Further, even if the graphitization catalyst is a metal compound, it is metallized during the reaction, so that the metallized graphitization catalyst can be separated and recovered after heating by raising the temperature to a temperature equal to or higher than the melting point of the metal. In addition, treatment is possible at temperatures below the temperature at which amorphous carbon and graphitized carbon ignite.
以下に、本発明の好適な実施の形態について詳細に説明する。
本発明は、非晶質炭素材料に、黒鉛化触媒を添加して分散させ、マイクロ波を照射して加熱することにより、黒鉛化処理を行う。
本発明においては、マイクロ波を用いることで、黒鉛化触媒が、非晶質炭素材料よりも、優先的に加熱されることが重要である。黒鉛化触媒が、マイクロ波により選択的、優先的に強加熱された場合、黒鉛化触媒自体が高温となっても、非晶質炭素材料全体は従来のように2000〜3000℃等の高温になることはない。そして、黒鉛化触媒自体が黒鉛化温度以上に加熱されれば、黒鉛化触媒表面に接触している界面部分の非晶質炭素材料は、黒鉛化触媒からの熱伝導による加熱と触媒の効果により黒鉛化することができる。黒鉛化触媒から非晶質炭素材料への熱伝導により低下した黒鉛化触媒の熱量は、マイクロ波加熱を続ける限り常に補充することができる。すなわち、黒鉛化反応の反応場である黒鉛化触媒と非晶質炭素材料の接触界面近傍は、常に黒鉛化に必要な温度に加熱することができる。
また、黒鉛化触媒は、非晶質炭素材料中に均一に分散していることから、マイクロ波加熱を行った場合、非晶質炭素材料の内部に分散している粒子も、表面近傍に分散している粒子も、各々の黒鉛化触媒粒子が均等に加熱される。すなわち、内部の黒鉛化触媒も各熱源として働くために、内部からも均等に加熱されて、非晶質炭素材料全体を均一に黒鉛化することができる。
Hereinafter, preferred embodiments of the present invention will be described in detail.
In the present invention, a graphitization treatment is performed by adding a graphitization catalyst to an amorphous carbon material, dispersing it, irradiating it with microwaves, and heating it.
In the present invention, it is important that the graphitized catalyst is heated preferentially over the amorphous carbon material by using microwaves. When the graphitizing catalyst is selectively and preferentially strongly heated by microwaves, even if the graphitizing catalyst itself becomes high in temperature, the entire amorphous carbon material becomes as high as 2000 to 3000 ° C. as in the past. It will never be. Then, when the graphitizing catalyst itself is heated to the graphitization temperature or higher, the amorphous carbon material at the interface portion in contact with the surface of the graphitizing catalyst is heated by heat conduction from the graphitizing catalyst and the effect of the catalyst. It can be graphitized. The calorific value of the graphitizing catalyst, which is reduced by heat conduction from the graphitizing catalyst to the amorphous carbon material, can always be replenished as long as microwave heating is continued. That is, the vicinity of the contact interface between the graphitization catalyst and the amorphous carbon material, which is the reaction field of the graphitization reaction, can always be heated to the temperature required for graphitization.
In addition, since the graphitizing catalyst is uniformly dispersed in the amorphous carbon material, when microwave heating is performed, the particles dispersed inside the amorphous carbon material are also dispersed in the vicinity of the surface. As for the particles, each graphitization catalyst particle is heated evenly. That is, since the internal graphitization catalyst also acts as each heat source, it can be uniformly heated from the inside to uniformly graphitize the entire amorphous carbon material.
本発明において、非晶質炭素材料とは、黒鉛以外の炭素源を有する原料をいう。代表的には、グラッシーカーボン、ピッチ、タール又はフェノール樹脂等の炭素含有樹脂を用いることが好ましい。 In the present invention, the amorphous carbon material refers to a raw material having a carbon source other than graphite. Typically, it is preferable to use a carbon-containing resin such as glassy carbon, pitch, tar or phenol resin.
非晶質炭素材料への触媒の分散は、非晶質炭素材料が樹脂の場合は溶剤に溶かし、非晶質炭素材料がグラッシーカーボン等の場合は溶剤に分散させ、さらに触媒を混合することにより行う。溶剤には、エチレングリコール、エタノール、水等を用いることができる。溶剤への非晶質炭素材料添加量は特に規定しないが、15〜45質量%程度を推奨する。 Dispersion of the catalyst in the amorphous carbon material is performed by dissolving the catalyst in a solvent when the amorphous carbon material is a resin, dispersing it in a solvent when the amorphous carbon material is glassy carbon or the like, and further mixing the catalyst. Do. As the solvent, ethylene glycol, ethanol, water or the like can be used. The amount of the amorphous carbon material added to the solvent is not particularly specified, but about 15 to 45% by mass is recommended.
本発明の黒鉛化触媒は、Fe、Ni、Coから選ばれる少なくとも1種の元素を含む金属から構成される単体又はその化合物であることを要件としている。これら元素はマイクロ波吸収特性に優れ、黒鉛化触媒自体を効率よく加熱できる。そして非晶質炭素材料よりもマイクロ波に加熱され易い。 The graphitization catalyst of the present invention is required to be a simple substance composed of a metal containing at least one element selected from Fe, Ni, and Co, or a compound thereof. These elements have excellent microwave absorption characteristics and can efficiently heat the graphitization catalyst itself. And it is more easily heated by microwaves than the amorphous carbon material.
マイクロ波吸収特性を示す指標の一つとして、下記式1で表される表皮深さδがある。
δ=(2ρ/ωμ)0.5 (式1)
ここで、ρ:電気抵抗率[Ω・m]、ω:2πf[f(Hz)]、μ:透磁率[H/m]、f:マイクロ波周波数[Hz]
As one of the indexes showing the microwave absorption characteristics, there is a skin depth δ represented by the following formula 1.
δ = (2ρ / ωμ) 0.5 (Equation 1)
Here, ρ: electrical resistivity [Ω · m], ω: 2πf [f (Hz)], μ: magnetic permeability [H / m], f: microwave frequency [Hz].
表1に、実際に使用されるマイクロ波の周波数f=2.45[GHz]の場合の、上記金属の表皮深さを示す。マイクロ波が吸収されるには、表皮深さδが小さい方が良い。また低温で処理するには融点が低い方が好ましい。以上のことから、上記の黒鉛化触媒反応特性を有する元素のうち、本発明のマイクロ波加熱による黒鉛化反応においては、表皮深さが小さく、融点が比較的低いFe、Ni、Coを用いた黒鉛化触媒を用いる。またこれらの合金でも利用できる。 Table 1 shows the skin depth of the metal when the microwave frequency f = 2.45 [GHz] actually used. In order for microwaves to be absorbed, the skin depth δ should be small. Further, it is preferable that the melting point is low for processing at a low temperature. From the above, among the elements having the above-mentioned graphitization catalytic reaction characteristics, Fe, Ni, and Co having a small skin depth and a relatively low melting point were used in the graphitization reaction by microwave heating of the present invention. A graphitization catalyst is used. It can also be used with these alloys.
触媒として前記金属の化合物を適用することもでき、該黒鉛化触媒をマイクロ波により選択的に加熱できる。例えばFe、Ni、Coの炭化物、硫化物、酸化物、ホウ化物、窒化物が利用可能である。当該触媒が選択的に温度上昇し、C、S、O、B、Nが脱離し、最終的には金属単体となって黒鉛化が進行する。よっていずれの金属化合物についても、マイクロ波による選択加熱により、金属元素のみから構成される状態を経て、触媒反応が起きるため、反応開始前に添加される黒鉛化触媒としてはC、S、O、B、Nいずれの元素を含む化合物であっても金属のみから構成される化合物であってもよい。 The metal compound can also be applied as a catalyst, and the graphitization catalyst can be selectively heated by microwaves. For example, carbides, sulfides, oxides, borides and nitrides of Fe, Ni and Co can be used. The temperature of the catalyst selectively rises, C, S, O, B, and N are desorbed, and finally the catalyst becomes a simple substance and graphitization proceeds. Therefore, for any of the metal compounds, a catalytic reaction occurs by selective heating with microwaves through a state composed of only metal elements. Therefore, C, S, O, etc. are used as the graphitization catalysts added before the start of the reaction. It may be a compound containing any of the elements B and N, or a compound composed only of a metal.
さらにその中でも、黒鉛化触媒能を有する金属元素としては金属Fe、又は酸化鉄を用いることがより好ましい。Feは最もCと親和性がよく、C溶解度も高いため、好ましい。酸化鉄は、マイクロ波により誘電加熱により加熱されやすい。また、酸化鉄は、加熱により分解し、金属鉄を生成する。金属鉄が生成すると、金属鉄が上述のように触媒として働くために、Feを触媒として添加した場合と同様に好ましい。 Further, among them, it is more preferable to use metal Fe or iron oxide as the metal element having graphitization catalytic ability. Fe has the best affinity for C and has high C solubility, and is therefore preferable. Iron oxide is easily heated by dielectric heating by microwaves. In addition, iron oxide is decomposed by heating to produce metallic iron. When metallic iron is produced, metallic iron acts as a catalyst as described above, which is preferable as in the case where Fe is added as a catalyst.
本発明に用いる黒鉛化触媒粒子の平均粒子径は、200μm以下とする。平均粒子径はレーザーマイクロトラック法により測定した、体積基準累積粒度分布D50値とする。またこの時、D10/D50>0.5かつD50/D90>0.5となる粒度分布が好ましい。発明者らが鋭意検討した結果、平均粒子径が200μmを超えると、黒鉛化反応前に金属粒子の溶融凝集が起こって、マイクロ波吸収能が低下し、試料を黒鉛化反応が起きる温度まで加熱できない。 The average particle size of the graphitized catalyst particles used in the present invention is 200 μm or less. The average particle size is the volume-based cumulative particle size distribution D50 value measured by the laser microtrack method. At this time, a particle size distribution in which D10 / D50> 0.5 and D50 / D90> 0.5 is preferable. As a result of diligent studies by the inventors, when the average particle size exceeds 200 μm, metal particles are melt-aggregated before the graphitization reaction, the microwave absorption capacity is reduced, and the sample is heated to a temperature at which the graphitization reaction occurs. Can not.
本発明の触媒の添加量は、非晶質炭素材料に対し質量比で5〜15%である。5%未満であると、非晶質炭素材料中の分散量が少なく、非晶質炭素材料を十分黒鉛化できない。15%を超えると、触媒が溶融凝集してマイクロ波吸収能が低下し、試料を黒鉛化反応が起きる温度まで加熱できなくなる。 The amount of the catalyst added in the present invention is 5 to 15% by mass with respect to the amorphous carbon material. If it is less than 5%, the amount of dispersion in the amorphous carbon material is small, and the amorphous carbon material cannot be sufficiently graphitized. If it exceeds 15%, the catalyst melts and aggregates, the microwave absorption capacity decreases, and the sample cannot be heated to a temperature at which a graphitization reaction occurs.
本発明は、マイクロ波照射によって、非晶質炭素材料の温度を1000℃以上に昇温して行う。1000℃未満では、黒鉛化反応が十分に進行しないため、黒鉛結晶性が悪く、良好な特性を有する黒鉛が得られない。1000℃以上であれば、黒鉛化が十分に進行し、黒鉛結晶性が良く、良好な特性を有する黒鉛が得られる。
発明者は非晶質炭素材料の加熱温度を、1000℃以上にすれば、黒鉛化触媒を構成する金属の少なくとも一部が溶融し、黒鉛化反応場として好ましい液体の存続が可能になることによって、より黒鉛化が促進されることを見出した。従って、黒鉛化触媒が、Fe、Ni、Coから選ばれる少なくとも1種の元素を含む金属から構成される単体又は化合物であるときには、1000℃以上が必要である。
The present invention is carried out by raising the temperature of the amorphous carbon material to 1000 ° C. or higher by microwave irradiation. If the temperature is lower than 1000 ° C., the graphitization reaction does not proceed sufficiently, so that the graphite crystallinity is poor and graphite having good characteristics cannot be obtained. If the temperature is 1000 ° C. or higher, graphitization proceeds sufficiently, and graphite having good graphite crystallinity and good characteristics can be obtained.
The inventor found that when the heating temperature of the amorphous carbon material was set to 1000 ° C. or higher, at least a part of the metal constituting the graphitization catalyst was melted, and a liquid preferable as a graphitization reaction field could survive. , Found that graphitization is promoted more. Therefore, when the graphitizing catalyst is a simple substance or a compound composed of a metal containing at least one element selected from Fe, Ni, and Co, 1000 ° C. or higher is required.
ここで、非晶質炭素材料の温度は、マイクロ波加熱では触媒が局所的に加熱されるところ、触媒表面や反応が起こっている場所の温度を直接測定できないため、例えば内径5〜10mmの太さの保護管を試料と接触させて、前記保護管内からの輻射光を放射温度計によって測定する。 Here, the temperature of the amorphous carbon material is thick, for example, with an inner diameter of 5 to 10 mm, because the temperature of the catalyst surface or the place where the reaction is occurring cannot be directly measured when the catalyst is locally heated by microwave heating. The protective tube is brought into contact with the sample, and the radiant light from the inside of the protective tube is measured by a radiation thermometer.
本発明の製造方法により、黒鉛化反応を進行させると、生成物は、完全に黒鉛化した黒鉛と、黒鉛化触媒を構成する金属が別相に分離した組織となる。この際に、200μm以下のミクロンオーダーの大きさで添加した黒鉛化触媒が、反応終了後の組織においては、サブミクロンオーダーの大きさに微細化された金属となっていることが見いだされた。これは、黒鉛化反応後に、非晶質炭素材料全体を黒鉛化触媒を構成する金属の溶融する温度以上まで加熱せずに冷却した場合に観察された。そしてこのように加熱制御された際に、非常に結晶性のよい黒鉛が得られた。
微細化される理由ついては必ずしも明確ではないが、黒鉛化触媒を構成する金属が溶融し(化合物の場合は金属化した後に溶融し)、溶融した金属は揮発して非晶質炭素材料中に拡散し、冷却時に拡散先で凝結することにより、金属が微細に分散することが考えられる。この際に、拡散した溶融金属に炭素が溶解して、金属炭化物の生成を経て、黒鉛として析出することにより、非晶質炭素材料が均一に効率よく黒鉛化されるということが考えられる。
このような特異な現象は従来技術では得られず、黒鉛化触媒が約粒径1μm以下という、サブミクロンオーダーに微細化され、非晶質炭素材料全体に均一に分散したことにより、材料の全体にわたって黒鉛化が十分に進行したものと推定される。
When the graphitization reaction is allowed to proceed by the production method of the present invention, the product becomes a structure in which completely graphitized graphite and the metal constituting the graphitization catalyst are separated into separate phases. At this time, it was found that the graphitizing catalyst added in a size of 200 μm or less on the order of microns was a metal refined to a size on the order of submicrons in the structure after completion of the reaction. This was observed when the entire amorphous carbon material was cooled without heating to a temperature higher than the melting temperature of the metal constituting the graphitization catalyst after the graphitization reaction. Then, when the heating was controlled in this way, graphite having very good crystallinity was obtained.
The reason for the miniaturization is not always clear, but the metals that make up the graphitization catalyst melt (in the case of compounds, they melt after metallization), and the melted metal volatilizes and diffuses into the amorphous carbon material. However, it is conceivable that the metal is finely dispersed by condensing at the diffusion destination during cooling. At this time, it is considered that carbon is dissolved in the diffused molten metal, and the metal carbide is generated and then precipitated as graphite, so that the amorphous carbon material is uniformly and efficiently graphitized.
Such a peculiar phenomenon cannot be obtained by the prior art, and the graphitizing catalyst is miniaturized to the submicron order of about 1 μm or less in particle size and uniformly dispersed in the entire amorphous carbon material. It is presumed that graphitization has progressed sufficiently over the period.
前記微細粒の粒径は、光学顕微鏡観察を行い、画像解析により金属部分を球形近似したときの粒径であって、その分布は平均が1μm以下、標準偏差0.5μm未満である。本発明の反応生成物は、黒鉛化反応終了時には、このように、黒鉛化した黒鉛相と、Fe、Ni、Coから選ばれる少なくとも1種の元素を含む金属相とが、金属相の大きさが1μ以下の微細に分散した混合した組織として得られる。黒鉛相のみを取り出す場合は、後述するように、黒鉛相と金属相を機械的に分離すればよい。本発明の黒鉛化により生成した金属と黒鉛を分離する前の生成物を黒鉛化生成物と呼ぶことにする。 The particle size of the fine particles is the particle size when the metal portion is approximately spherically approximated by image analysis after observation with an optical microscope, and the distribution has an average of 1 μm or less and a standard deviation of less than 0.5 μm. In the reaction product of the present invention, at the end of the graphitization reaction, the graphitized graphite phase and the metal phase containing at least one element selected from Fe, Ni, and Co are the size of the metal phase. Is obtained as a finely dispersed mixed structure of 1 μm or less. When only the graphite phase is taken out, the graphite phase and the metal phase may be mechanically separated as described later. The product before separating the metal and graphite produced by the graphitization of the present invention will be referred to as a graphitization product.
ところで、非晶質炭素材料を分散させた溶剤内に黒鉛化触媒を添加した際、これらの触媒が沈殿し、溶剤内で不均一に分散した状態となった場合、試料が不均一に加熱される恐れがある。しかし本発明であれば、最初の触媒の分散状態に関わらず、触媒の金属は加熱過程で微細化して、非晶質炭素材料内に均一に分散するので、黒鉛化反応後、試料の部位に関わらず、均一に黒鉛化させることが可能である。従来の電気炉加熱等では、不均一な触媒添加は、生成する黒鉛の不均質にそのまま反映される。したがって、本発明のマイクロ波加熱での黒鉛合成は電気炉加熱の場合よりも非常に歩留まりは高く、ほぼ100%合成可能である。 By the way, when a graphitization catalyst is added to a solvent in which an amorphous carbon material is dispersed, if these catalysts are precipitated and become non-uniformly dispersed in the solvent, the sample is heated non-uniformly. There is a risk of However, in the present invention, regardless of the initial dispersion state of the catalyst, the metal of the catalyst becomes finer in the heating process and is uniformly dispersed in the amorphous carbon material. Therefore, after the graphitization reaction, the metal is dispersed in the sample site. Regardless, it is possible to uniformly graphitize. In the conventional electric furnace heating or the like, the non-homogeneous addition of the catalyst is directly reflected in the heterogeneity of the produced graphite. Therefore, the graphite synthesis by microwave heating of the present invention has a much higher yield than the case of electric furnace heating, and can be synthesized almost 100%.
ところが、黒鉛化処理の段階において、非晶質炭素材料全体を黒鉛化触媒を構成する金属の溶融する温度以上まで加熱すると、金属が溶融凝集してしまい、十分な黒鉛化反応をさせることができない場合もある。 However, if the entire amorphous carbon material is heated to a temperature higher than the melting temperature of the metal constituting the graphitization catalyst at the stage of the graphitization treatment, the metal melts and aggregates, and a sufficient graphitization reaction cannot be carried out. In some cases.
そこで本発明では、非晶質炭素材料の黒鉛化処理温度の上限は、黒鉛化触媒を構成する金属元素が溶融する温度未満が好ましい。ここで、本発明の黒鉛化触媒はFe、Ni、Coから選ばれる少なくとも1種の元素を含んでおり、各金属の融点は表1に記載されるが、黒鉛化反応過程で金属には各種成分が溶解するために、当該金属は必ずしも純粋元素の融点で溶融が始まるわけではないので、本発明の黒鉛化処理温度の上限は、金属が液体状態になる温度(融点)未満とする。また、加熱温度を増加させると、投入する熱量が増大し、電力等のエネルギーコストが増大し、装置を高耐熱化する必要等が生じ、設備コストが増大するため、より低いほうが好ましい。 Therefore, in the present invention, the upper limit of the graphitization treatment temperature of the amorphous carbon material is preferably lower than the temperature at which the metal elements constituting the graphitization catalyst are melted. Here, the graphitization catalyst of the present invention contains at least one element selected from Fe, Ni, and Co, and the melting points of each metal are shown in Table 1, but various metals are used in the graphitization reaction process. Since the metal does not necessarily start melting at the melting point of the pure element in order to dissolve the components, the upper limit of the graphitization treatment temperature of the present invention is set to be lower than the temperature at which the metal becomes liquid (melting point). Further, when the heating temperature is increased, the amount of heat input increases, the energy cost such as electric power increases, the device needs to be made highly heat resistant, and the equipment cost increases. Therefore, the lower the temperature is preferable.
電気炉加熱等の外部からの輻射加熱では、非晶質炭素材料を介して黒鉛化触媒が加熱されるので、反応場である黒鉛化触媒と非晶質炭素材料の界面付近を、黒鉛化温度にまで加熱するとなると、必要以上に非晶質炭素材料全体を高温に加熱しなければならないので熱効率も生産効率も悪い。また、材料全体について黒鉛化反応が進行する温度となると、黒鉛化触媒が互いに凝集する懸念がある。黒鉛化触媒が凝集すると、触媒と材料の接触界面面積が減少し、触媒効果が得られる部分が減少する。一方、本発明の方法では、非晶質炭素材料の加熱温度を、黒鉛化触媒が凝集しない温度に保持しつつ、反応場の温度を黒鉛化が十分進行する温度に上げることができる。
即ち、マイクロ波加熱により、黒鉛化触媒は、選択加熱されて黒鉛化反応が進行する一方、材料の温度を黒鉛化触媒に含まれる金属の融点以下に保持しておけば、離散した黒鉛化触媒粒子が互いに凝集することがない。
In radiant heating from the outside such as heating in an electric furnace, the graphitization catalyst is heated through the amorphous carbon material, so the graphitization temperature is located near the interface between the graphitization catalyst and the amorphous carbon material, which is the reaction field. If it is heated to the above level, the entire amorphous carbon material must be heated to a high temperature more than necessary, resulting in poor thermal efficiency and production efficiency. Further, at a temperature at which the graphitization reaction proceeds for the entire material, there is a concern that the graphitization catalysts may aggregate with each other. When the graphitizing catalyst aggregates, the contact interface area between the catalyst and the material decreases, and the part where the catalytic effect can be obtained decreases. On the other hand, in the method of the present invention, the temperature of the reaction field can be raised to a temperature at which graphitization proceeds sufficiently while maintaining the heating temperature of the amorphous carbon material at a temperature at which the graphitization catalyst does not aggregate.
That is, while the graphitization catalyst is selectively heated by microwave heating and the graphitization reaction proceeds, if the temperature of the material is kept below the melting point of the metal contained in the graphitization catalyst, the graphitization catalyst is discrete. The particles do not aggregate with each other.
本発明では、黒鉛化反応が十分進行した後には、黒鉛化触媒を分散させた非晶質炭素材料全体の温度を、触媒を構成する金属元素の溶融する温度以上に加熱させることで、触媒金属を溶融凝集させ、反応終了後に、冷却固化させて、触媒に含まれる金属を容易に分離回収することができる。その結果、添加した触媒に含まれる金属量の95%以上を分離回収することができる。 In the present invention, after the graphitization reaction has sufficiently proceeded, the catalyst metal is heated by heating the temperature of the entire amorphous carbon material in which the graphitization catalyst is dispersed to a temperature higher than the temperature at which the metal elements constituting the catalyst are melted. Is melt-aggregated, and after the reaction is completed, it is cooled and solidified so that the metal contained in the catalyst can be easily separated and recovered. As a result, 95% or more of the amount of metal contained in the added catalyst can be separated and recovered.
本発明では、黒鉛化触媒に用いる化合物は、上記の通り、黒鉛化反応後は金属として残存する。そこで、材料全体温度を黒鉛化触媒を構成する金属元素の溶融温度以上に加熱することで、黒鉛化反応後、これらの金属を凝集させ回収することが可能である。発明者らが鋭意検討した結果、高温加熱によって完全に再凝集させることは困難であり、一部はサブミクロンオーダーで分散したままであるものの、その殆どを、篩分級できる程度の粒径にまで再凝集させることができる。この方法により、添加した金属量質量比換算で少なくとも95%は回収可能であることを確認している。金属の回収方法は、例えば次の通りである。得られた黒鉛化材料を直径10〜20mmのジルコニアボールあるいはアルミナボールで充填した容器内に投入し、100rpmでボールミル粉砕後、得られた試料を106[μm]の篩で分離し回収する。この際、篩上には、金属が残留することにより分離できる。 In the present invention, the compound used for the graphitization catalyst remains as a metal after the graphitization reaction as described above. Therefore, by heating the entire material temperature to a temperature equal to or higher than the melting temperature of the metal elements constituting the graphitization catalyst, it is possible to agglomerate and recover these metals after the graphitization reaction. As a result of diligent studies by the inventors, it is difficult to completely reaggregate by high-temperature heating, and although some of them remain dispersed on the submicron order, most of them have a particle size that can be sieved. It can be reaggregated. By this method, it has been confirmed that at least 95% of the added metal amount / mass ratio can be recovered. The metal recovery method is as follows, for example. The obtained graphitized material is put into a container filled with zirconia balls or alumina balls having a diameter of 10 to 20 mm, pulverized by a ball mill at 100 rpm, and the obtained sample is separated by a sieve of 106 [μm] and recovered. At this time, the metal can be separated by remaining on the sieve.
本発明は、揮発物質を排気しながら加熱を行うことが好ましい。非晶質炭素材料として樹脂などを原料とした場合、触媒として金属の化合物を採用した場合には、加熱の際に金属酸化物および金属硫化物などが発生する。揮発物質を排気しながら加熱を行うことにより、金属酸化物および金属硫化物などを、生成した黒鉛内部に残留させることなく、歩留まり良く黒鉛化反応を起こすことができる。また、試料から発生したエチレングリコール等沸点が加熱装置内温度よりも高い揮発分は、装置の断熱層内壁に付着し、揮発分付着部分がマイクロ波を吸収し、試料の加熱を妨げる。揮発物質を排気しながら加熱を行うことにより、揮発分の内壁への付着を防止できるため、試料への加熱が妨げられず、マイクロ波加熱を効率よく行うことができる。沸点が加熱装置内温度よりも高い揮発物質が非晶質炭素材料に含まれない場合は、特に排気は重要ではない。また揮発物質が、非晶質炭素材料へのマイクロ波入射を遮蔽することなく加熱できるのであれば、特に排気は重要ではない。 In the present invention, it is preferable to perform heating while exhausting volatile substances. When a resin or the like is used as the amorphous carbon material and a metal compound is used as the catalyst, metal oxides and metal sulfides are generated during heating. By heating while exhausting the volatile substances, the graphitization reaction can be carried out with good yield without leaving metal oxides, metal sulfides and the like inside the generated graphite. Further, volatile matter generated from the sample such as ethylene glycol having a boiling point higher than the temperature inside the heating device adheres to the inner wall of the heat insulating layer of the device, and the volatile matter adhering portion absorbs microwaves and hinders the heating of the sample. By heating while exhausting the volatile substance, it is possible to prevent the volatile matter from adhering to the inner wall, so that the heating of the sample is not hindered and the microwave heating can be efficiently performed. Exhaust is not particularly important if the amorphous carbon material does not contain volatiles whose boiling point is higher than the temperature inside the heating device. Exhaust is not particularly important as long as the volatile material can be heated without blocking the exposure of microwaves to the amorphous carbon material.
次に、マイクロ波加熱方法について説明する。
本発明に用いるマイクロ波は、周波数2.45GHzである。当該周波数は、本発明の非晶質炭素材料や溶媒の加熱及び乾燥、また金属触媒粒子の加熱に好適である。しかしながら、金属触媒表面を溶融して黒鉛化反応を行える温度に加熱できるならば、周波数は限定されない。
Next, the microwave heating method will be described.
The microwave used in the present invention has a frequency of 2.45 GHz. The frequency is suitable for heating and drying the amorphous carbon material and solvent of the present invention, and for heating metal catalyst particles. However, the frequency is not limited as long as the surface of the metal catalyst can be melted and heated to a temperature at which the graphitization reaction can be carried out.
図1に、本発明のマイクロ波加熱による黒鉛製造方法に用いる装置の例を示す。マイクロ波は、マイクロ波発振機11から導波管12を介しアプリケータ14内へ照射される。アプリケータ内は、N2、Ar等の不活性ガス(15)によって不活性ガス気流雰囲気とする。導波管12の形状は、EIAJ規格に準拠し、2.45GHz帯マイクロ波の場合は、WRJ−2、WRI−22あるいはWRI−26を選択する。アプリケータ14の形状は、アプリケータ内でマイクロ波を均一に分散させるため、内寸400mm以上のものが望ましい。マイクロ波入射エネルギーおよび反射エネルギーはパワーモニター(13)で測定する。マイクロ波を用いることで、試料のみを効率よく加熱できるが、開放状態では試料表面からの抜熱が大きく、加熱効率が低下する。本発明では、試料容器16の外周に断熱層17を設置することにより試料からの抜熱を抑え加熱効率を向上させる。 FIG. 1 shows an example of an apparatus used in the method for producing graphite by microwave heating of the present invention. The microwave is irradiated from the microwave oscillator 11 into the applicator 14 via the waveguide 12. The applicator, N 2, an inert gas such as Ar (15) an inert gas stream atmosphere. The shape of the waveguide 12 conforms to the EIAJ standard, and in the case of 2.45 GHz band microwave, WRJ-2, WRI-22 or WRI-26 is selected. The shape of the applicator 14 is preferably an internal dimension of 400 mm or more in order to uniformly disperse microwaves in the applicator. Microwave incident energy and reflected energy are measured by a power monitor (13). By using microwaves, only the sample can be heated efficiently, but in the open state, the heat removed from the sample surface is large and the heating efficiency is lowered. In the present invention, by installing the heat insulating layer 17 on the outer periphery of the sample container 16, heat removal from the sample is suppressed and the heating efficiency is improved.
図2に試料設置図を示す。本発明の黒鉛化触媒を分散した非晶質炭素材料を効率よく加熱するには、アプリケータ14(図1参照)内ガス流入速度は揮発分発生速度以上に設定することが好ましい。したがって、試料重量は揮発分含有量に応じて設定する。アプリケータ内温度が300K程度であるとして、溶媒エチレングリコールを60%含む試料の場合、試料100gでは30L程度揮発分が発生する。下記に示す試料加熱条件では、20〜30分程度で試料温度がエチレングリコールの沸点に到達するため、揮発分発生速度は少なくとも1.0〜1.5[L/min]となる。アプリケータ内ガス流入速度はこの速度以上の値、すなわち1.5[L/min]に設定する必要がある。試料201は、試料容器202に充填され、更に外部坩堝203に収納される。試料容器202と外部坩堝203との間には、Al2O3、SiO2、MgO、CaO等あるいはその化合物からなる酸化物の微粉を充填して断熱層204を設け、更に外部坩堝203の外側にはセラミックファイバー状の断熱層205を設ける。酸化物微粉断熱層204および外部坩堝203はセラミックファイバー状の断熱層としてもよい。 FIG. 2 shows a sample installation diagram. In order to efficiently heat the amorphous carbon material in which the graphitization catalyst of the present invention is dispersed, it is preferable to set the gas inflow rate in the applicator 14 (see FIG. 1) to be equal to or higher than the volatile matter generation rate. Therefore, the sample weight is set according to the volatile content. Assuming that the temperature inside the applicator is about 300 K, in the case of a sample containing 60% of the solvent ethylene glycol, about 30 L of volatile matter is generated in 100 g of the sample. Under the sample heating conditions shown below, the sample temperature reaches the boiling point of ethylene glycol in about 20 to 30 minutes, so that the volatile matter generation rate is at least 1.0 to 1.5 [L / min]. The gas inflow speed in the applicator needs to be set to a value higher than this speed, that is, 1.5 [L / min]. The sample 201 is filled in the sample container 202 and further stored in the external crucible 203. A heat insulating layer 204 is provided between the sample container 202 and the outer crucible 203 by filling fine powder of an oxide composed of Al 2 O 3 , SiO 2 , MgO, CaO or a compound thereof, and further outside the outer crucible 203. Is provided with a ceramic fiber-like heat insulating layer 205. The oxide fine powder heat insulating layer 204 and the outer crucible 203 may be a ceramic fiber-like heat insulating layer.
本発明のマイクロ波加熱処理は、試料温度をモニタリングし、マイクロ波照射出力を制御して行う。図2に示すように、試料温度は、試料201中にセラミック保護管206を挿入し、マイクロ波によって加熱された試料からの伝熱で加熱される保護管の内部からの輻射熱を放射温度計207で検知し、測温する。試料の平均温度が測定できれば、この方法に限定されない。 The microwave heat treatment of the present invention is performed by monitoring the sample temperature and controlling the microwave irradiation output. As shown in FIG. 2, the sample temperature is determined by inserting a ceramic protective tube 206 into the sample 201 and radiating heat from the inside of the protective tube heated by heat transfer from the sample heated by the microwave. Detect with and measure the temperature. If the average temperature of the sample can be measured, the method is not limited to this method.
初期出力は試料を安定的に昇温させるため、発明者らの検討により、(入射出力)−(反射出力)のエネルギーが3[W/g]以上供給できるような値を推奨する。 In order to raise the temperature of the sample stably, the initial output is recommended to be a value that can supply energy of (incident output)-(reflection output) of 3 [W / g] or more based on the study by the inventors.
本発明のマイクロ波加熱では、試料温度をモニタリングしながら、照射出力を制御して行う。黒鉛化処理開始時の加熱制御については、照射出力増加により、試料温度の昇温速度を高めることが可能であるが、発明者らの検討により、溶剤の存在する条件下で急激に試料を昇温させた際、爆発の恐れがあるため、試料温度が500℃以下では、マイクロ波出力の上限値を、(照射出力)/(試料重量)=10[W/g]とすることを推奨する。 In the microwave heating of the present invention, the irradiation output is controlled while monitoring the sample temperature. Regarding the heating control at the start of the graphitization treatment, it is possible to increase the rate of temperature rise of the sample temperature by increasing the irradiation output, but according to the study by the inventors, the sample is rapidly raised in the presence of a solvent. Since there is a risk of explosion when warmed, it is recommended that the upper limit of microwave output be (irradiation output) / (sample weight) = 10 [W / g] when the sample temperature is 500 ° C or less. ..
本発明のマイクロ波照射は、試料温度をモニタリングしながら、非晶質炭素からの揮発分発生が完了し、温度1000℃以上の、非晶質炭素が十分結晶化される温度までとする。非晶質炭素が十分結晶化されるとは、溶剤の揮発や、黒鉛化反応により、昇温速度の停滞現象が観察された後、マイクロ波の照射出力を上げることなく再度昇温が見られた状態とする。
黒鉛化触媒のみが選択的に加熱され、その熱によって周囲の非晶質炭素材料等が昇温する過程においては、溶媒等の揮発や不純物の分解も起こる。この際マイクロ波照射出力が一定であると、昇温速度が開始時より低下したり、停滞する。この現象の起こる温度域は、出発物質により異なるものの、概ね800℃までである。このような現象が完了した後においては、引き続き一定出力で加熱を行うこともできるし、出力を上げて昇温速度を速めることも可能であり、いずれの場合であっても、1000℃以上に昇温すれば、黒鉛化処理を完了させることができる。
In the microwave irradiation of the present invention, while monitoring the sample temperature, the generation of volatile components from the amorphous carbon is completed, and the temperature is 1000 ° C. or higher, up to a temperature at which the amorphous carbon is sufficiently crystallized. Amorphous carbon is sufficiently crystallized when the temperature rise is observed again without increasing the microwave irradiation output after the stagnation phenomenon of the temperature rise rate is observed due to the volatilization of the solvent and the graphitization reaction. It is in a state of being.
In the process in which only the graphitization catalyst is selectively heated and the temperature of the surrounding amorphous carbon material or the like is raised by the heat, volatilization of the solvent or the like and decomposition of impurities also occur. At this time, if the microwave irradiation output is constant, the heating rate becomes slower or stagnant than at the start. The temperature range in which this phenomenon occurs varies depending on the starting material, but is generally up to 800 ° C. After such a phenomenon is completed, it is possible to continue heating at a constant output, or it is possible to increase the output to increase the heating rate. In any case, the temperature reaches 1000 ° C. or higher. If the temperature is raised, the graphitization treatment can be completed.
揮発分発生、不純物分解に際しても、照射したマイクロ波エネルギーがそれらの反応エネルギーに消費されるため、試料の昇温速度が著しく低下する。不純物の蒸発・分解温度は出発物質により異なるが、200〜300℃の温度範囲にて試料の昇温速度が一度低下し、マイクロ波の照射出力を上げることなく再度昇温が開始された際、その温度での出発原料からの分解が終了したと判定する。昇温速度を上げ到達温度を高くするためマイクロ波照射出力を高める際は、上記黒鉛化反応温度、不純物分解温度以上の温度で行う。 Even when volatile components are generated and impurities are decomposed, the irradiated microwave energy is consumed by those reaction energies, so that the rate of temperature rise of the sample is significantly reduced. The evaporation / decomposition temperature of impurities varies depending on the starting material, but when the temperature rise rate of the sample drops once in the temperature range of 200 to 300 ° C. and the temperature rise is started again without increasing the microwave irradiation output. It is determined that the decomposition from the starting material at that temperature is completed. When increasing the microwave irradiation output in order to increase the heating rate and the reached temperature, the temperature is equal to or higher than the graphitization reaction temperature and the impurity decomposition temperature.
揮発分発生、不純物分解が終了し、900〜950℃程度に昇温できれば、その後は照射出力増加により、試料温度をより高温の1000℃以上まで到達させることができる。好ましくは、試料温度をモニタリングしながら、最大でも触媒を構成する金属が溶融する温度未満であるよう制御する。黒鉛化が不十分の状態で、試料温度を当該金属の溶融温度以上に上げると、金属の凝集により、以降の黒鉛化反応が十分進まなくなる。当該金属の溶融温度以上に上げない範囲では、試料温度は高い方が、より結晶性を向上させることができる。 If the generation of volatile components and the decomposition of impurities are completed and the temperature can be raised to about 900 to 950 ° C, then the sample temperature can be reached to a higher temperature of 1000 ° C or higher by increasing the irradiation output. Preferably, while monitoring the sample temperature, the temperature is controlled so that the metal constituting the catalyst is at most below the melting temperature. If the sample temperature is raised above the melting temperature of the metal in a state of insufficient graphitization, the subsequent graphitization reaction will not proceed sufficiently due to the aggregation of the metal. The higher the sample temperature, the more the crystallinity can be improved as long as the temperature is not raised above the melting temperature of the metal.
一方、黒鉛化反応が十分進行した後には、黒鉛化触媒を分散させた非晶質炭素材料全体の温度を、触媒を構成する金属元素の溶融する温度以上に加熱させることで、触媒金属を溶融凝集させ、反応終了後に、冷却固化させて、触媒に含まれる金属を容易に分離回収することができる。その結果、添加した触媒に含まれる金属量の95%以上を分離回収することができる。黒鉛化反応が十分進行するように実施するには、本発明の実施例の加熱温度と時間を参考に決定した条件から、適宜XRDにより黒鉛化を確認しながら、加熱条件を決定することで、実施することができる。 On the other hand, after the graphitization reaction has sufficiently proceeded, the catalyst metal is melted by heating the temperature of the entire amorphous carbon material in which the graphitization catalyst is dispersed to a temperature higher than the melting temperature of the metal elements constituting the catalyst. The metal contained in the catalyst can be easily separated and recovered by aggregating and cooling and solidifying after the reaction is completed. As a result, 95% or more of the amount of metal contained in the added catalyst can be separated and recovered. In order to carry out the graphitization reaction so that the graphitization reaction proceeds sufficiently, the heating conditions are determined by appropriately confirming graphitization by XRD from the conditions determined with reference to the heating temperature and time of the examples of the present invention. Can be carried out.
本発明の上記黒鉛化方法により、黒鉛化反応終了時には、黒鉛化した黒鉛相と、Fe、Ni、Coから選ばれる少なくとも1種の元素を含む金属相とが、金属相の大きさが1μm以下の微細に分散した混合した組織として得られる。黒鉛相のみを取り出す場合は、後述するように、黒鉛相と金属相を機械的に分離すればよい。また、黒鉛化した黒鉛相は、XRDによる構造解析により得られる最大ピークのピーク位置が2θ=26.5±0.02°、最大ピークの半価幅が、0.2°以下である。最大ピーク位置と最大ピークの半価幅については次に詳述する。 By the above-mentioned graphitization method of the present invention, at the end of the graphitization reaction, the size of the metal phase of the graphitized graphite phase and the metal phase containing at least one element selected from Fe, Ni, and Co is 1 μm or less. It is obtained as a finely dispersed mixed structure of graphite. When only the graphite phase is taken out, the graphite phase and the metal phase may be mechanically separated as described later. Further, in the graphitized graphite phase, the peak position of the maximum peak obtained by structural analysis by XRD is 2θ = 26.5 ± 0.02 °, and the half-value width of the maximum peak is 0.2 ° or less. The maximum peak position and the half price range of the maximum peak will be described in detail below.
本発明の人造黒鉛は、天然黒鉛と異なり、原料にそもそもSiを含まないことから、天然黒鉛に不可避に含まれるシリカを実質含まないものとすることができる。また、従来の人造黒鉛では完全な黒鉛化が不可能であったところ、XRDによる構造解析により得られる最大ピークのピーク位置が2θ=26.5±0.02°からずれないものであり、前記最大ピークの半価幅が、0.2以下であるという、非常に結晶性の高い黒鉛とすることができた。結晶性は、XRDのピークがシャープであればあるほど、X線の乱れが少なく、所定の構造の結晶が多いことを示している。逆に、ブロード(幅広)のピークは、特定結晶構造以外が混合していることを示している。本発明では、結晶性の程度の指標として、半価幅が0.2以下と規定した。半価幅はピーク高さが半分となる強度位置の、波形の幅を測定した数値である。 Unlike natural graphite, the artificial graphite of the present invention does not contain Si in the raw material, so that it can be substantially free of silica which is inevitably contained in natural graphite. Further, where complete graphitization was not possible with conventional artificial graphite, the peak position of the maximum peak obtained by structural analysis by XRD does not deviate from 2θ = 26.5 ± 0.02 °. It was possible to obtain graphite having extremely high crystallinity, in which the half-value range of the maximum peak was 0.2 or less. The crystallinity indicates that the sharper the peak of XRD, the less turbulence of X-rays and the more crystals having a predetermined structure. On the contrary, the broad peak indicates that a mixture other than the specific crystal structure is mixed. In the present invention, the half price range is defined as 0.2 or less as an index of the degree of crystallinity. The half-value width is a numerical value obtained by measuring the width of the waveform at the intensity position where the peak height is halved.
本発明における黒鉛の結晶化度の評価は、CuのKα線を用いた粉末X線回折(以下、XRD)を用いて行う。図3にXRDピーク解析図を示す。非特許文献2によれば、黒鉛の層間ピークは2θ=26°および26.5°が存在するが、結晶性の高いORDER STATEと呼ばれる相に相当する結晶ピークは2θ=26.5°のピークであるため、黒鉛化反応後の結晶性は、2θ=26.5°近傍の黒鉛[002]方向ピークのピーク半値幅(以下、FWHM)33を測定した。
発明者らの検討により半価幅が0.2°以下のとき、耐酸化性に優れた黒鉛結晶であることを確認しており、非晶質炭素が黒鉛化していると判断した。
The crystallinity of graphite in the present invention is evaluated by using powder X-ray diffraction (hereinafter, XRD) using Kα rays of Cu. FIG. 3 shows an XRD peak analysis diagram. According to Non-Patent Document 2, the interlayer peaks of graphite have 2θ = 26 ° and 26.5 °, but the crystal peak corresponding to the phase called ORDER STATE with high crystallinity is the peak of 2θ = 26.5 °. Therefore, for the crystallinity after the graphitization reaction, the peak half width (hereinafter, FWHM) 33 of the peak in the graphite [002] direction near 2θ = 26.5 ° was measured.
According to the study by the inventors, it was confirmed that the graphite crystal had excellent oxidation resistance when the half-value width was 0.2 ° or less, and it was judged that the amorphous carbon was graphitized.
表2に本発明の発明例1〜8および比較例1〜7の黒鉛化処理条件を一覧する。
非晶質炭素としてフェノール樹脂を用いた。フェノール樹脂は、非晶質炭素材料の中でも、グラッシーカーボン等を材料とするよりも黒鉛化しにくいので、フェノール樹脂が黒鉛化できれば、おおむね非晶質炭素材料は、黒鉛化できるといえる。エチレングリコールにフェノール樹脂を混合後、発明例1では、平均粒径100μmのFeを添加して分散させた試料150g(質量比%で、非晶質炭素:エチレングリコール:金属Fe=45:55:5)を出発原料とした。発明例1に用いた黒鉛化触媒は、フェライト(α相)単相の金属Feである。温度測定方法、黒鉛化評価方法は上述の通りである。発明例2〜8、比較例1〜7については、表2に示した条件で行った。
Table 2 lists the graphitization treatment conditions of Invention Examples 1 to 8 and Comparative Examples 1 to 7 of the present invention.
Phenolic resin was used as the amorphous carbon. Among the amorphous carbon materials, the phenol resin is more difficult to graphitize than the material such as glassy carbon. Therefore, if the phenol resin can be graphitized, it can be said that the amorphous carbon material can be graphitized. In Invention Example 1, after mixing ethylene glycol with a phenol resin, 150 g of a sample in which Fe having an average particle size of 100 μm was added and dispersed (amorphous carbon: ethylene glycol: metal Fe = 45: 55: by mass ratio%). 5) was used as a starting material. The graphitization catalyst used in Invention Example 1 is a ferrite (α-phase) single-phase metal Fe. The temperature measurement method and graphitization evaluation method are as described above. Inventive Examples 2 to 8 and Comparative Examples 1 to 7 were carried out under the conditions shown in Table 2.
黒鉛化処理は、図1および図2に図示された装置を用い、マイクロ波(2.45GHz)照射を行った。
図4に、発明例1における、マイクロ波照射中の試料内部温度51、マイクロ波入射エネルギー52、マイクロ波反射エネルギー53の測定結果を示す。マイクロ波照射出力を初期0.8kW一定にして処理したところ、試料温度は溶媒揮発物質の揮発(54)後、黒鉛化反応による昇温停滞(55)を経て、試料が再び昇温し、マイクロ波照射開始からおよそ90分後に温度900℃に到達した。次いで照射出力を1.5[kW]に上げ、照射開始から150[min]後、1500℃まで試料温度が到達したところで、マイクロ波照射を停止した。試料を不活性ガス気流中で室温まで冷却して回収し、XRDで結晶性を評価した。
For the graphitization treatment, microwave (2.45 GHz) irradiation was performed using the apparatus shown in FIGS. 1 and 2.
FIG. 4 shows the measurement results of the sample internal temperature 51, the microwave incident energy 52, and the microwave reflected energy 53 during microwave irradiation in the first invention example. When the microwave irradiation output was initially constant at 0.8 kW, the sample temperature rose again after the solvent volatile substance volatilized (54) and then stagnated due to the graphitization reaction (55). The temperature reached 900 ° C. about 90 minutes after the start of wave irradiation. Next, the irradiation output was increased to 1.5 [kW], and after 150 [min] from the start of irradiation, when the sample temperature reached 1500 ° C., microwave irradiation was stopped. The sample was cooled to room temperature in an inert gas stream and recovered, and the crystallinity was evaluated by XRD.
図5に、発明例1における、XRD評価結果を示す。金属触媒として用いたFe相、および、黒鉛相の生成が確認された。黒鉛の半価幅は0.18と算出され、十分な結晶度が確認できた。また、坩堝内部の試料に対し5点から採取したXRD評価結果から、いずれの採取箇所においても半価幅が0.2以下であることが確認され、本発明例1の手法により、半価幅が0.2以下の黒鉛結晶がほぼ100%であることが確認された。また、電子顕微鏡による表面観察により、測定部のすべてが黒鉛化していることも合わせて確認した。電子顕微鏡では、輝度により黒鉛を識別できる。輝度は、触媒由来の金属が最も高く、その他の黒鉛化していない部分は最も低い。黒鉛はその中間的な輝度を示す。 FIG. 5 shows the XRD evaluation results in Invention Example 1. The formation of the Fe phase and the graphite phase used as the metal catalyst was confirmed. The half-value width of graphite was calculated to be 0.18, and sufficient crystallinity was confirmed. In addition, from the XRD evaluation results collected from 5 points on the sample inside the crucible, it was confirmed that the half-value range was 0.2 or less at any of the collection points, and the half-value range was confirmed by the method of Example 1 of the present invention. It was confirmed that the graphite crystals having a value of 0.2 or less were almost 100%. It was also confirmed by observing the surface with an electron microscope that all of the measuring parts were graphitized. In an electron microscope, graphite can be identified by its brightness. The brightness is highest for catalyst-derived metals and lowest for other non-graphitized parts. Graphite exhibits an intermediate brightness.
発明例2は、黒鉛化触媒であるFeの添加量を5%とした以外は、発明例1と同様の条件で出発原料を調整し、発明例1と同様の加熱条件で黒鉛化を行った例である。得られた試料のXRD評価結果は、図5と同様であった。発明例1と同様、2θ=26.5°に鋭い黒鉛002ピークが観察され、半価幅が0.2と結晶性がよい黒鉛試料が得られていることが確認された。 In Invention Example 2, the starting material was adjusted under the same conditions as in Invention Example 1 except that the amount of Fe, which is a graphitization catalyst, was set to 5%, and graphitization was performed under the same heating conditions as in Invention Example 1. This is an example. The XRD evaluation result of the obtained sample was the same as that in FIG. Similar to Invention Example 1, a sharp graphite 002 peak was observed at 2θ = 26.5 °, and it was confirmed that a graphite sample having a half value width of 0.2 and good crystallinity was obtained.
発明例3は、黒鉛化触媒であるFeの添加量を15%とした以外は、発明例1と同様の条件で出発原料を調整し、到達温度が1600℃となった以外、発明例1と同様の加熱条件で黒鉛化を行った例である。得られた試料のXRD評価結果は、図5とほぼ同様であった。2θ=26.5°に鋭い黒鉛002ピークが観察され、半価幅が0.15と結晶性がよい黒鉛試料が得られていることが確認された。 Inventive Example 3 is the same as Invention Example 1 except that the starting material was adjusted under the same conditions as in Invention Example 1 except that the amount of Fe, which is a graphitization catalyst, was added to 15%, and the ultimate temperature was 1600 ° C. This is an example of graphitization under the same heating conditions. The XRD evaluation result of the obtained sample was almost the same as that in FIG. A sharp graphite 002 peak was observed at 2θ = 26.5 °, and it was confirmed that a graphite sample having a half value width of 0.15 and good crystallinity was obtained.
発明例4は、発明例1と同様の条件で出発原料を調整し、加熱条件は、マイクロ波照射条件を800[W]×90[min]照射した後、出力を段階的に上げ、1600℃に到達後、1600±20℃の範囲に試料温度が保持されるように出力を調整して、128分間の処理を行った例である。このときの試料温度履歴を図6に示す。得られた試料のXRD評価結果は、図5とほぼ同様であった。2θ=26.5°に鋭い黒鉛002ピークが観察され半価幅が0.1と結晶性がよい黒鉛試料が得られていることが確認された。 In Invention Example 4, the starting material is adjusted under the same conditions as in Invention Example 1, and the heating condition is 1600 ° C. after irradiating the microwave irradiation condition with 800 [W] × 90 [min] and then gradually increasing the output. In this example, the output was adjusted so that the sample temperature was maintained in the range of 1600 ± 20 ° C., and the treatment was performed for 128 minutes. The sample temperature history at this time is shown in FIG. The XRD evaluation result of the obtained sample was almost the same as that in FIG. A sharp graphite 002 peak was observed at 2θ = 26.5 °, and it was confirmed that a graphite sample having good crystallinity with a half-value width of 0.1 was obtained.
また発明例3、発明例4では、1000℃以上まで加熱して黒鉛化反応を促進させた後、金属Feの融点(1538℃)以上に昇温させた結果、金属Feの凝集が見られた。この凝集した金属Feの分離回収を行った。金属Feの回収方法は以下のように行った。すなわち、得られた黒鉛化材料をφ150×200mmの容器内に投入し、直径20mmのアルミナボールを用いて、100rpmでボールミル粉砕後、得られた試料を106[μm]の篩で分離し回収した。金属Fe回収率を発明例1と比較した結果を表3に示す。発明例3の回収率は98%であり、Feの融点以上に加熱した結果、金属Feを回収できることが確認された。また発明例4も、Feの融点以上に試料温度を加熱保持した結果、回収率は99%以上回収できた。一方、発明例1は、温度が1500℃と、鉄の融点未満としたため、鉄は微細粒のまま分散しており、回収率が低かった。 Further, in Invention Example 3 and Invention Example 4, as a result of heating to 1000 ° C. or higher to accelerate the graphitization reaction and then raising the temperature to the melting point (1538 ° C.) or higher of the metal Fe, aggregation of the metal Fe was observed. .. The aggregated metal Fe was separated and recovered. The method for recovering the metal Fe was as follows. That is, the obtained graphitized material was put into a container having a diameter of 150 × 200 mm, pulverized by a ball mill at 100 rpm using an alumina ball having a diameter of 20 mm, and then the obtained sample was separated by a sieve of 106 [μm] and recovered. .. Table 3 shows the results of comparing the metal Fe recovery rate with that of Invention Example 1. The recovery rate of Invention Example 3 was 98%, and it was confirmed that the metal Fe could be recovered as a result of heating above the melting point of Fe. Further, in Invention Example 4, as a result of heating and holding the sample temperature above the melting point of Fe, the recovery rate was 99% or more. On the other hand, in Invention Example 1, since the temperature was 1500 ° C., which was lower than the melting point of iron, iron was dispersed as fine particles, and the recovery rate was low.
発明例5は、黒鉛化触媒であるFeの平均粒径を200μmとした以外は、発明例1と同様の条件で出発原料を調整し、加熱条件は、マイクロ波照射条件を800[W]一定として、到達温度1200[℃]の条件で、黒鉛化を行った例である。得られた試料のXRD評価結果は、図5と同様であった。2θ=26.5°近傍の26.48°に鋭い黒鉛002ピークが観察され、半価幅が0.2と結晶性がよい黒鉛試料が得られていることが確認された。触媒のFeは、1μm以下の微細粒として分散していた。 In Invention Example 5, the starting material was adjusted under the same conditions as in Invention Example 1 except that the average particle size of Fe, which is a graphitization catalyst, was set to 200 μm, and the heating condition was a constant microwave irradiation condition of 800 [W]. This is an example of graphitization under the condition of reaching temperature of 1200 [° C.]. The XRD evaluation result of the obtained sample was the same as that in FIG. A sharp graphite 002 peak was observed at 26.48 ° near 2θ = 26.5 °, and it was confirmed that a graphite sample with a half-value width of 0.2 and good crystallinity was obtained. Fe of the catalyst was dispersed as fine particles of 1 μm or less.
発明例6は、発明例1と同様の条件で出発原料を調整し、加熱条件は、マイクロ波照射条件を800[W]一定として、到達温度1050[℃]の処理を行った。図7に試料温度履歴を示す。得られた試料のXRD評価結果は、図5と同様であった。2θ=26.5°近傍の26.48°に鋭い黒鉛002ピークが観察され、半価幅が0.2と結晶性がよい黒鉛試料が得られていることが確認された。本例は、停滞期が観察されなかったが、到達温度を1000℃以上とすれば、十分な黒鉛化が可能である。 In Invention Example 6, the starting material was adjusted under the same conditions as in Invention Example 1, and the heating conditions were treated at an ultimate temperature of 1050 [° C.] with the microwave irradiation condition being constant at 800 [W]. FIG. 7 shows the sample temperature history. The XRD evaluation result of the obtained sample was the same as that in FIG. A sharp graphite 002 peak was observed at 26.48 ° near 2θ = 26.5 °, and it was confirmed that a graphite sample with a half-value width of 0.2 and good crystallinity was obtained. In this example, no stagnation period was observed, but sufficient graphitization is possible if the ultimate temperature is 1000 ° C. or higher.
発明例7は、黒鉛化触媒であるFeの平均粒径を4[μm]とした以外は、発明例1と同様の条件で出発原料を調整し、加熱条件は、マイクロ波照射条件を800[W]一定とし、黒鉛化を行った例である。到達温度は1000[℃]、得られた試料のXRD評価結果は、図5と同様であった。2θ=26.5°近傍の26.48°に鋭い黒鉛002ピークが観察され、半価幅が0.2と結晶性がよい黒鉛試料が得られていることが確認された。 In Invention Example 7, the starting material was adjusted under the same conditions as in Invention Example 1 except that the average particle size of Fe, which is a graphitization catalyst, was 4 [μm], and the heating condition was 800 [microwave irradiation condition. W] This is an example in which graphitization is performed while keeping the value constant. The reached temperature was 1000 [° C.], and the XRD evaluation result of the obtained sample was the same as that in FIG. A sharp graphite 002 peak was observed at 26.48 ° near 2θ = 26.5 °, and it was confirmed that a graphite sample with a half-value width of 0.2 and good crystallinity was obtained.
発明例8は、黒鉛化触媒を粒径0.07[μm]のFe2O3とした以外は、発明例1と同様の条件で出発原料を調整し、加熱条件は、マイクロ波加熱条件800[W]×90[min]+1500[W]×60[min]の下、黒鉛化を行った例である。到達温度は1460[℃]、得られた試料のXRD評価結果を図8に示す。添加したFe2O3相は確認されず、Fe源は全てフェライト相(αFe)として検出された。2θ=26.5°近傍の26.49°に鋭い黒鉛002ピークが観察され、半価幅が0.16と結晶性のよい黒鉛試料が得られていることが確認された。マイクロ波でFe2O3が誘電加熱によって選択加熱され、酸素が分離され、金属鉄による黒鉛化触媒反応が進行したものと推測される。 In Invention Example 8, the starting material was adjusted under the same conditions as in Invention Example 1 except that the graphitizing catalyst was Fe 2 O 3 having a particle size of 0.07 [μm], and the heating condition was microwave heating condition 800. This is an example of graphitization under [W] × 90 [min] + 1500 [W] × 60 [min]. The ultimate temperature is 1460 [° C.], and the XRD evaluation results of the obtained sample are shown in FIG. The added Fe 2 O 3 phase was not confirmed, and all Fe sources were detected as ferrite phases (αFe). A sharp graphite 002 peak was observed at 26.49 ° near 2θ = 26.5 °, and it was confirmed that a graphite sample with a half-value width of 0.16 and good crystallinity was obtained. It is presumed that Fe 2 O 3 was selectively heated by dielectric heating with microwaves, oxygen was separated, and the graphitization catalytic reaction with metallic iron proceeded.
比較例1は、黒鉛化触媒を添加せず、その他は発明例6と同条件で、マイクロ波加熱処理を行った。試料到達温度は最高800℃であった。得られた試料のXRD評価結果を図9に示す。2θ=26.5°近傍に黒鉛002ピークは検出されず、黒鉛化が確認されなかった。 In Comparative Example 1, microwave heat treatment was performed under the same conditions as in Invention Example 6 without adding a graphitization catalyst. The maximum temperature reached for the sample was 800 ° C. The XRD evaluation result of the obtained sample is shown in FIG. No graphite 002 peak was detected near 2θ = 26.5 °, and graphitization was not confirmed.
比較例2〜4では、加熱源としてマイクロ波の替わりに電気炉を用い、試料最高温度はそれぞれ800℃、1000℃、1500℃とし、N2ガス雰囲気下で保持時間10時間加熱することで、黒鉛化処理を行った。その他は発明例6と同条件である。この時の昇温速度は600[K/hr]とした。得られた試料のXRD評価結果を図10、11、12にそれぞれ示す。2θ=26.5°近傍に観察されるピークは、それぞれ、2θ=26.0°、2θ=26.0°、2θ=26.1°と結晶性が悪かった。また、上記のピークの半価幅はそれぞれ2.5、2.1、2.2であり、殆ど黒鉛化されていないことが確認された。 In Comparative Example 2-4, using an electric furnace instead of microwave as a heating source, 800 ° C. respectively samples the maximum temperature, 1000 ° C., and 1500 ° C., by heating holding time 10 hours under N 2 gas atmosphere, Graphitization treatment was performed. Others are the same conditions as in Invention Example 6. The temperature rising rate at this time was 600 [K / hr]. The XRD evaluation results of the obtained sample are shown in FIGS. 10, 11 and 12, respectively. The peaks observed near 2θ = 26.5 ° had poor crystallinity, 2θ = 26.0 °, 2θ = 26.0 °, and 2θ = 26.1 °, respectively. In addition, the half-value range of the above peaks was 2.5, 2.1, and 2.2, respectively, and it was confirmed that they were hardly graphitized.
また、電気炉で処理した試料は、いずれも2θ=26°と2θ=26.5°の混成ピークが観察され、乱層構造(2θ=26°)と黒鉛結晶(2θ=26.5°)が混在していることが確認された。一方、発明例1の黒鉛002ピークは、乱層構造を含まない黒鉛結晶であった。従って、従来の電気炉処理に比べ、本発明のマイクロ波加熱処理では短期間で従来なかった結晶性の高い黒鉛が得られる。 In addition, in all the samples treated in the electric furnace, hybrid peaks of 2θ = 26 ° and 2θ = 26.5 ° were observed, and a mixed layer structure (2θ = 26 °) and graphite crystals (2θ = 26.5 °) were observed. Was confirmed to be mixed. On the other hand, the graphite 002 peak of Invention Example 1 was a graphite crystal containing no disordered layer structure. Therefore, as compared with the conventional electric furnace treatment, the microwave heat treatment of the present invention can obtain graphite having high crystallinity which has not been conventionally obtained in a short period of time.
比較例5は、発明例6と同条件でマイクロ波を照射し、800[℃]到達後マイクロ波照射を停止した例である。得られた試料のXRD評価結果を図13に示す。2θ=26.5°近傍の26.4°に黒鉛002ピークが観察されたが、半価幅が2.5と十分な結晶性は得られていなかった。また発明例1および2には観察されなかった、セメンタイト(Fe3C)相のピークが検出された。セメンタイト相が残留している場合、マイクロ波加熱による黒鉛化反応が十分に進んでいないことが確認された。 Comparative Example 5 is an example in which microwave irradiation was performed under the same conditions as in Invention Example 6 and the microwave irradiation was stopped after reaching 800 [° C.]. The XRD evaluation result of the obtained sample is shown in FIG. A graphite 002 peak was observed at 26.4 ° near 2θ = 26.5 °, but the half-value width was 2.5, and sufficient crystallinity was not obtained. Further the invention Examples 1 and 2 were not observed, the peak of cementite (Fe 3 C) phase was detected. When the cementite phase remained, it was confirmed that the graphitization reaction by microwave heating did not proceed sufficiently.
比較例6では、平均粒径250μmの金属Feを用い、その他は発明例6と同条件で、マイクロ波加熱処理を行った。比較例6における試料内部温度、マイクロ波入射/反射エネルギー測定結果を図14に示した。当該処理では、処理途中でマイクロ波反射エネルギーが強まり、1000℃以上まで昇温できず、黒鉛化処理ができなかった。回収した試料の外観を図15に示すが、溶融凝集したFe粒子となっていることが確認された。金属Feの溶融凝集によってマイクロ波が反射され、試料を加熱できなくなったものと考えられる。 In Comparative Example 6, a metal Fe having an average particle size of 250 μm was used, and microwave heat treatment was performed under the same conditions as in Invention Example 6. FIG. 14 shows the sample internal temperature and microwave incident / reflected energy measurement results in Comparative Example 6. In this treatment, the microwave reflection energy became stronger during the treatment, the temperature could not be raised to 1000 ° C. or higher, and the graphitization treatment could not be performed. The appearance of the recovered sample is shown in FIG. 15, and it was confirmed that the Fe particles were melt-aggregated. It is considered that the microwave was reflected by the melt aggregation of the metal Fe, and the sample could not be heated.
比較例7は、金属Feの添加量を20質量%とし、その他は発明例6と同条件で、マイクロ波加熱処理を行った。得られた試料の外観を図16に示す。Fe粒子の溶融凝集が確認され、また当該条件によるマイクロ波加熱では、Feの溶融凝集後マイクロ波反射エネルギーが強まり、出発原料中の揮発分が完全に揮発する前に昇温が停止し、黒鉛化が起こらないことが確認された。 In Comparative Example 7, the amount of the metal Fe added was 20% by mass, and the microwave heat treatment was performed under the same conditions as in Invention Example 6. The appearance of the obtained sample is shown in FIG. It was confirmed that the Fe particles were melt-aggregated, and when microwave heating was performed under the conditions, the microwave reflection energy after the melt-aggregation of Fe was strengthened, and the temperature rise stopped before the volatile components in the starting material were completely volatilized. It was confirmed that the conversion did not occur.
また、グラッシーカーボンを非晶質炭素材料に利用し、図17に示す加熱温度履歴で黒鉛化反応を行ったところ、図18に示すように結晶性のよい黒鉛が生成していることが確認できた。 Further, when glassy carbon was used as an amorphous carbon material and the graphitization reaction was carried out based on the heating temperature history shown in FIG. 17, it was confirmed that graphite having good crystallinity was produced as shown in FIG. It was.
また、発明例4の成分分析を行った結果、表4に示したように、天然黒鉛、熱分解黒鉛に比して、不純物を含まない黒鉛が製造できたことが確認できた。 Further, as a result of component analysis of Invention Example 4, as shown in Table 4, it was confirmed that graphite containing no impurities could be produced as compared with natural graphite and pyrolyzed graphite.
*2:特開2001−240404号公報 ジャパンマテックス参照
* 2: See JP-A-2001-240404, Japan Matex.
本発明により、不純物を含まず結晶性のよい黒鉛が提供できた。また、処理時間が短く、装置温度も低く抑えられる非晶質炭素材の黒鉛化処理方法が提供できたので、熱効率、エネルギー効率を高く、装置負担が少なく黒鉛が生産できるという産業上の利用性を有する。 According to the present invention, graphite having good crystallinity without impurities can be provided. In addition, since we were able to provide a graphitization treatment method for amorphous carbon materials that has a short treatment time and a low equipment temperature, it has high thermal efficiency and energy efficiency, and is industrially usable because it can produce graphite with less equipment burden. Has.
11:マイクロ波発振機導波管
12:導波管
13:パワーモニター
14:アプリケータ
15:流入不活性ガス
16:試料
17:断熱材
18:排気口
201:試料
202:試料容器
203:外部坩堝
204:酸化物微粉断熱層
205:セラミックファイバー断熱層
206:セラミック保護管
207:放射温度計
208:容器
209:空隙
31:ピーク高さ
32:ピーク半値
33:ピーク半値幅(FWHM)
51:試料内部温度
52:マイクロ波入射エネルギー
53:マイクロ波反射エネルギー
54:揮発物質揮発時の温度変化
55:黒鉛化反応による昇温停滞
11: Microwave oscillator waveguide 12: Waveguide 13: Power monitor 14: Applicator 15: Inflow inert gas 16: Sample 17: Insulation material 18: Exhaust port 201: Sample 202: Sample container 203: External crucible 204: Oxide fine powder heat insulating layer 205: Ceramic fiber heat insulating layer 206: Ceramic protective tube 207: Radiation waveguide 208: Container 209: Void 31: Peak height 32: Peak half price 33: Peak half price width (FWHM)
51: Sample internal temperature 52: Microwave incident energy 53: Microwave reflected energy 54: Temperature change during volatilization of volatile substances 55: Temperature stagnation due to graphitization reaction
Claims (9)
前記黒鉛化触媒が、Fe、Ni、Coから選ばれる少なくとも1種の元素を含む金属の単体であり、
前記黒鉛化触媒の平均粒子径が、200[μm]以下であり、
前記黒鉛化触媒の非晶質炭素材料に対する添加割合が、質量比で5%以上15%以下であり、
前記非晶質炭素材料を、1000℃以上1620℃以下の加熱により黒鉛化反応させる、
ことを特徴とする、非晶質炭素材の黒鉛化処理方法。 A graphitization treatment method in which a graphitization catalyst is added to an amorphous carbon material and dispersed, and the amorphous carbon material in which the graphitization catalyst is dispersed is heated by irradiating microwaves.
The graphitizing catalyst is a simple substance of a metal containing at least one element selected from Fe, Ni, and Co.
The average particle size of the graphitizing catalyst is 200 [μm] or less.
The addition ratio of the graphitizing catalyst to the amorphous carbon material is 5% or more and 15% or less in terms of mass ratio.
The amorphous carbon material, thereby graphitized reaction by heating of 1000 ° C. or higher 1620 ° C. or less,
A method for graphitizing an amorphous carbon material, which is characterized by the above.
前記黒鉛化触媒が、Fe、Ni、Coから選ばれる少なくとも1種の元素を含む金属の単体であり、
前記生成物は、黒鉛化反応によって生成した黒鉛と、前記金属とが別相に分離して生成した組織を有する混合物であり、
前記金属が粒径1μm以下となっていることを特徴とする、黒鉛を回収する際に生成する生成物。 A graphitizing catalyst was added to the amorphous carbon material at a ratio of 5% or more and 15% or less in terms of mass ratio, the catalyst was dispersed in the amorphous carbon material, and the catalyst was dispersed in the amorphous carbon. material is irradiated with microwaves to, and heated to above 1000 ° C., and a method of metal constituting the graphitization catalyst is graphitized without heating above the temperature of melting, produced during the recovery of graphite It ’s a product,
The graphitizing catalyst is a simple substance of a metal containing at least one element selected from Fe, Ni, and Co.
The product is a mixture having a structure formed by separating the graphite produced by the graphitization reaction and the metal into different phases.
A product produced when graphite is recovered, characterized in that the metal has a particle size of 1 μm or less.
前記黒鉛相は、XRDによる構造解析により得られる最大ピークが2θ=26.5±0.02°で、前記最大ピークの半価幅が、0.2°以下であり、
前記金属相は、Fe、Ni、Coから選ばれる少なくとも1種の元素を含み、粒径が1μm以下である、
ことを特徴とする黒鉛。 Graphite in which the graphite phase and the metal phase are separated from the graphite phase into separate phases.
In the graphite phase, the maximum peak obtained by structural analysis by XRD is 2θ = 26.5 ± 0.02 °, and the half-value width of the maximum peak is 0.2 ° or less.
The metal phase contains at least one element selected from Fe, Ni, and Co, and has a particle size of 1 μm or less.
Graphite characterized by that.
前記黒鉛化触媒が、Fe、Ni、Coから選ばれる少なくとも1種の元素を含む金属の単体又は化合物であり、
前記黒鉛化触媒の平均粒子径が、200[μm]以下であり、
前記黒鉛化触媒の非晶質炭素材料に対する添加割合が、質量比で5%以上15%以下であり、
前記非晶質炭素材料を、1000℃以上に加熱して黒鉛化反応させ、
黒鉛化反応終了後、前記黒鉛化触媒を分散させた非晶質炭素材料を、前記黒鉛化触媒を構成する金属元素が溶融する温度以上に加熱し、該金属を溶融凝集させ、該金属量の95%以上を分離回収することを特徴とする、非晶質炭素材の黒鉛化処理方法。 A graphitization treatment method in which a graphitization catalyst is added to an amorphous carbon material and dispersed, and the amorphous carbon material in which the graphitization catalyst is dispersed is heated by irradiating microwaves.
The graphitizing catalyst is a simple substance or compound of a metal containing at least one element selected from Fe, Ni, and Co.
The average particle size of the graphitizing catalyst is 200 [μm] or less.
The addition ratio of the graphitizing catalyst to the amorphous carbon material is 5% or more and 15% or less in terms of mass ratio.
The amorphous carbon material is heated to 1000 ° C. or higher to cause a graphitization reaction.
After completion of the graphitization reaction, the amorphous carbon material in which the graphitization catalyst is dispersed is heated to a temperature higher than the temperature at which the metal elements constituting the graphitization catalyst are melted, and the metal is melt-aggregated to obtain the amount of the metal. A method for graphitizing an amorphous carbon material, which comprises separating and recovering 95% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016026211A JP6756115B2 (en) | 2016-02-15 | 2016-02-15 | Graphitization treatment method of amorphous carbon material and products and graphite produced when graphitating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016026211A JP6756115B2 (en) | 2016-02-15 | 2016-02-15 | Graphitization treatment method of amorphous carbon material and products and graphite produced when graphitating |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017145151A JP2017145151A (en) | 2017-08-24 |
JP6756115B2 true JP6756115B2 (en) | 2020-09-16 |
Family
ID=59681499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016026211A Active JP6756115B2 (en) | 2016-02-15 | 2016-02-15 | Graphitization treatment method of amorphous carbon material and products and graphite produced when graphitating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6756115B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4374992A3 (en) | 2021-03-15 | 2024-08-28 | K.K. Sun Metalon | Method for producing cohesive solid |
CN116040622A (en) * | 2022-12-28 | 2023-05-02 | 湖北亿纬动力有限公司 | Method for graphitizing amorphous carbon |
CN117263178B (en) * | 2023-09-28 | 2024-07-02 | 昆明理工大学 | Method for preparing high-quality graphite by catalytic graphitization of waste cathode carbon |
-
2016
- 2016-02-15 JP JP2016026211A patent/JP6756115B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017145151A (en) | 2017-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103209923B (en) | Single-crystal silicon carbide manufacture silicon carbide powder and manufacture method thereof | |
Flores-Gonzalez et al. | Preparing nanometer scaled Tb-doped Y2O3 luminescent powders by the polyol method | |
CN105246826B (en) | The manufacture method of silicon carbide powder and single-crystal silicon carbide | |
JP6756115B2 (en) | Graphitization treatment method of amorphous carbon material and products and graphite produced when graphitating | |
WO1983004188A1 (en) | Process for manufacturing metal carbides and their precursors | |
KR20000058189A (en) | Production process of material for lithium-ion secondary batteries, material obtained by the process, and batteries | |
KR101290659B1 (en) | Preparation method of silicon oxide powder using thermal plasma, and the silicon oxide powder thereby | |
WO2021181905A1 (en) | Method for producing impregnated pitch | |
JP2015074565A (en) | Spherical silicon carbide powder and method for producing the same | |
JP2020090428A (en) | Production method and production apparatus of silicon | |
WO2019218506A1 (en) | Amorphous carbon material, and preparation method and use | |
Vallance et al. | Probing the microwave interaction mechanisms and reaction pathways in the energy-efficient, ultra-rapid synthesis of tungsten carbide | |
JP2000313609A (en) | Material for lithium ion secondary battery, its production and battery | |
Berger et al. | Nanoprocesses in polymer‐derived Si–O–C ceramics: Electronmicroscopic observations and reaction kinetics | |
KR101532516B1 (en) | A method of producing graphite material | |
Murray | Low temperature synthesis of boron carbide using a polymer precursor powder route | |
JP7467371B2 (en) | Method for producing Al4SiC4 composition or Al4SiC4 powder | |
TW201609536A (en) | Novel process and product | |
JPH09157022A (en) | Production of graphite and lithium secondary cell | |
US11518679B2 (en) | Composition of matter for the production of high purity, high density graphite | |
JP2004059332A (en) | Graphite material for pulling single crystal, and its production method | |
JP4827616B2 (en) | Diamond manufacturing method | |
KR101437874B1 (en) | Method of Making Graphite using Microwave | |
CN101885478A (en) | Microwave synthesis method for aluminum nitride powder | |
TW202248123A (en) | Composition of matter for the production of graphite powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181003 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190618 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200728 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200810 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6756115 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |