JP6755178B2 - Particle manipulation device and particle classification method using the device - Google Patents

Particle manipulation device and particle classification method using the device Download PDF

Info

Publication number
JP6755178B2
JP6755178B2 JP2016532960A JP2016532960A JP6755178B2 JP 6755178 B2 JP6755178 B2 JP 6755178B2 JP 2016532960 A JP2016532960 A JP 2016532960A JP 2016532960 A JP2016532960 A JP 2016532960A JP 6755178 B2 JP6755178 B2 JP 6755178B2
Authority
JP
Japan
Prior art keywords
particles
flow path
fluid
particle
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016532960A
Other languages
Japanese (ja)
Other versions
JPWO2016006642A1 (en
Inventor
拓 小原
拓 小原
片山 晃治
晃治 片山
桐谷 英昭
英昭 桐谷
和樹 飯嶋
和樹 飯嶋
俊薫 豊嶋
俊薫 豊嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tosoh Corp
Original Assignee
Tohoku University NUC
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Tosoh Corp filed Critical Tohoku University NUC
Publication of JPWO2016006642A1 publication Critical patent/JPWO2016006642A1/en
Application granted granted Critical
Publication of JP6755178B2 publication Critical patent/JP6755178B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating

Description

本発明は、流体中に含まれる粒子の操作装置及び前記装置を用いた流体中に含まれる粒子を操作する方法に関するものである。 The present invention relates to a device for manipulating particles contained in a fluid and a method for manipulating particles contained in a fluid using the device.

無機物、有機物、金属などから構成された固形物を様々な産業分野に材料として適用する場合、例えば1次原料としては粉末での供給、また粉末を球状粒子に成形するか、他の形状に成形して製品として供給されている。これらの素材(固形物)は最終製品の性能を向上させるべく物性等を吟味して設計されている。また、最終製品として球状粒子が適用される例も数多く存在し、例えば粉砕用ボール(アルミナ、ジルコニア、シリカ等)、液晶用スペーサー(樹脂、シリカ等)、クロマトグラフィー用分離材、その他吸着剤などが挙げられる。このような粒子製品は一般的に形状、サイズ、密度が均一なものが最終形態としての製品の特徴に大きく影響し、より均一な粒子が求められているのが現状である。 When a solid substance composed of an inorganic substance, an organic substance, a metal, etc. is applied as a material to various industrial fields, for example, it is supplied as a powder as a primary raw material, and the powder is formed into spherical particles or formed into another shape. It is supplied as a product. These materials (solids) are designed by examining their physical properties in order to improve the performance of the final product. In addition, there are many examples in which spherical particles are applied as final products, such as crushing balls (alumina, zirconia, silica, etc.), liquid crystal spacers (resin, silica, etc.), chromatographic separators, and other adsorbents. Can be mentioned. In general, such particle products having a uniform shape, size, and density greatly affect the characteristics of the product as a final form, and the current situation is that more uniform particles are required.

このような粒子の製造法としては、最初から均一な粒子を製造する技術を開発する方法(特許文献1,2)と、均一ではない分布がある粒子から必要なサイズ、密度、形状のものを取り出す方法(特許文献3,4)の2つが存在する。前者は比較的に新しい技術であり製造設備の更新が必要であるが、後者については現行設備に追加することが可能なため比較的容易に製造プロセスに取り込まれやすい。後者の技術として数十μm以上の粒子であれば、例えばフィルター分離法(篩分級も含む)、重力分級法、遠心分離法、サイクロン分離法、などが存在する。 As a method for producing such particles, a method for developing a technique for producing uniform particles from the beginning (Patent Documents 1 and 2) and a method for producing particles having a non-uniform distribution with a required size, density, and shape are used. There are two methods of taking out (Patent Documents 3 and 4). The former is a relatively new technology and requires renewal of manufacturing equipment, but the latter can be added to the current equipment and is relatively easy to incorporate into the manufacturing process. As the latter technique, for particles of several tens of μm or more, for example, a filter separation method (including sieve classification), a gravity classification method, a centrifugation method, a cyclone separation method, and the like exist.

上記に挙げた分離、または分級法は数十μm以下の粒子、特に10μm以下の粒子分離は極めて難しいこと、また一般的にはバッチ式のプロセスであり連続的に分離することが困難であった。バッチ式のプロセスでは分離収率により1回の処理量が決まるため比較的に大きな設備(元原料のストック容器、供給設備、不必要な製品の回収容器)が必要となる。例えば、篩分級法は大量処理に向いているが篩の目のサイズを徐々変える必要があるため、バッチ式プロセスとなる。重力分級法も、基本的には篩分級法と同様バッチプロセスであり、粒子サイズが小さくなるにつれ処理するのに膨大な時間がかかる。遠心分離法やサイクロン分離法は高速処理に適するものの、大型装置が必要であり、連続プロセスには不向きである。 The separation or classification method mentioned above is extremely difficult to separate particles of several tens of μm or less, especially particles of 10 μm or less, and it is generally a batch process and it is difficult to continuously separate them. .. In the batch process, the amount of processing at one time is determined by the separation yield, so relatively large equipment (stock container for raw materials, supply equipment, collection container for unnecessary products) is required. For example, the sieve classification method is suitable for mass processing, but it is a batch process because it is necessary to gradually change the size of the sieve mesh. The gravity classification method is basically a batch process similar to the sieve classification method, and it takes an enormous amount of time to process as the particle size becomes smaller. Centrifugation and cyclone separation are suitable for high-speed processing, but require large equipment and are not suitable for continuous processes.

しかし、連続的に分級ができれば元原料の仕込み量及び製造量を極限まで小さくすることが可能である。また、医療関係においても抗原抗体反応を用い検査する際に粒子に吸着した蛍光物質と反応していない成分を分離するためにB/F分離と呼ばれる工程が存在し、このような微少量の検体検査にも粒子分離が利用されている。しかしここで用いられている粒子分離の多くが磁性粒子を用いて磁石による粒子分離と洗浄を行うため、本工程分の時間がかかる課題が存在している。 However, if the classification can be performed continuously, it is possible to reduce the amount of the original raw material charged and the amount of production to the utmost limit. Also, in the medical field, there is a step called B / F separation in order to separate the components that have not reacted with the fluorescent substance adsorbed on the particles when inspecting using the antigen-antibody reaction, and such a very small amount of sample Particle separation is also used for inspection. However, most of the particle separations used here use magnetic particles to separate and clean the particles with a magnet, so there is a problem that it takes time for this step.

また、更に微細な粒子(DNA、ワクチン等)を分離する技術としてはブラウニアラチェットという微細加工した鈎状の突起を規則的にならべ粒子のブラウン振動を使って主流となる流動軌跡から目的のサイズのDNAあるいはワクチンを分流(分離)するという技術も存在する(非特許文献1)。ただしこの方法は、分離モードとしてブラウン振動による分流形成であるため、分離速度が遅く、主となる流動形成は電気泳動という形態で実施されており、分離に時間がかかること、特に径1μm以上の粒子に対しては分離に長大な時間を要し、その間の乱れの影響を受けることなどにより、実用に耐えないことが課題として存在した。 In addition, as a technique for separating finer particles (DNA, vaccine, etc.), a brownia ratchet, which is a finely processed hook-shaped protrusion, is regularly arranged and the brown vibration of the particles is used to obtain the desired size from the mainstream flow trajectory. There is also a technique for separating (separating) the DNA or vaccine of the above (Non-Patent Document 1). However, since this method is a split flow formation by Brownian motion as the separation mode, the separation rate is slow, and the main flow formation is performed in the form of electrophoresis, which takes time for separation, especially with a diameter of 1 μm or more. It takes a long time to separate particles, and there is a problem that they cannot be put into practical use due to the influence of turbulence during that period.

また細胞を大きさに基づいて分離又は分級する方法としては、フローサイトメーターを用いて、前方散乱光を測定することにより細胞の大きさを測定する方法が知られている。フローサイトメーターは、大量の粒子から大まかに目的物を分離することが可能であるが、細胞の形状や屈折率の影響のため少量を正確に分離することは困難であり、また衝撃に弱い目的物は破壊される可能性がある。 Further, as a method of separating or classifying cells based on their size, a method of measuring the cell size by measuring forward scattered light using a flow cytometer is known. The flow cytometer can roughly separate the target substance from a large amount of particles, but it is difficult to accurately separate a small amount due to the influence of the cell shape and refractive index, and the purpose is vulnerable to impact. Things can be destroyed.

様々な大きさを有する粒子の中から特定の大きさの粒子を分離する技術及び装置が存在しており、例えば篩分級法、重力分級法、遠心分離法、電気泳動法などが挙げられるが、それぞれバッチ式処理には適しているものの、連続的な分級処理には不向きであった。 There are techniques and devices for separating particles of a specific size from particles of various sizes, and examples thereof include a sieve classification method, a gravity classification method, a centrifugation method, and an electrophoresis method. Although each is suitable for batch processing, it is not suitable for continuous classification processing.

特許第3746766号Patent No. 3746766 特許第4032128号Patent No. 4032128 特許第4760330号Patent No. 4760330 特許第4462058号Patent No. 4462058 WO2004/008132号WO2004 / 008132

D0387A Vol.96,NO.23 Proceedings of the National Academy of Sciences of the United States of America PAGE.13165-13169 1999D0387A Vol.96, NO.23 Proceedings of the National Academy of Sciences of the United States of America PAGE.13165-13169 1999

本発明の第一の課題は、流体中に含まれる粒子の操作を可能にする粒子操作装置、及び粒子操作方法の開発である。流体中に含まれる様々な性質を有する粒子の中から特定の性質の粒子の操作を可能にする粒子操作装置及び粒子操作方法が求められている。本発明の第二の課題は、粒子を含む流体から当該粒子を操作する装置であって、小型化が可能な装置であり、かつ前記粒子の操作により前記粒子の分級が可能な装置を提供することにある。 A first object of the present invention is the development of a particle manipulation device and a particle manipulation method that enable manipulation of particles contained in a fluid. There is a demand for a particle manipulation device and a particle manipulation method that enable manipulation of particles having specific properties from among particles having various properties contained in a fluid. A second object of the present invention is to provide a device for manipulating the particles from a fluid containing the particles, which can be miniaturized, and which can classify the particles by manipulating the particles. There is.

本発明者らは上記第一の課題を鑑み、様々な性質を有する粒子を含有する流体に対して、往復する流動を適用した場合に、粒子の大きさ、形状、質量、密度などに応じた粒子固有の移動度で移動することに着目し、流体中に含まれる粒子を、往復する流動により操作する装置及び方法の発明に至った。 In view of the first problem, the present inventors have applied reciprocating flow to a fluid containing particles having various properties, and the size, shape, mass, density, etc. of the particles have been adjusted. Focusing on the movement with the mobility peculiar to the particles, we have invented a device and a method for manipulating the particles contained in the fluid by reciprocating flow.

したがって、第一の観点において、本発明は以下のものに関する:
[1] 粒子を含む流体の流路、及び
往復する流動を発生させる1又は複数の加減圧手段
を含む粒子操作装置であって、流体中の粒子が、前記往復する流動の1の方向に、粒子固有の移動度で移動することにより、粒子の移動、分離、又は分級を可能にする、前記粒子操作装置。
[2] 往復する流動が、周期的な流動である、項目1に記載の粒子操作装置。
[3] 前記周期的な流動における流体の変位量を示す波形が、非線対称波形を有する、項目2に記載の粒子操作装置。
[4] 前記流路が、上面基板部材と、下面基板部材と、側面部材との間に形成される、項目1〜3のいずれか1項に記載の粒子操作装置。
[5] 前記上面基板部材、前記下面基板部材、及び前記側面部材からなる群から選ばれる1以上の部材に対し、前記加減圧手段が配置される、項目4に記載の粒子操作装置。
[6] 前記流路が、1又は複数の流体導入口と、1又は複数の流体排出口とを備える、項目1〜5に記載の粒子操作装置。
[7] 前記往復する流動の方向に対して交わる方向に、前記流体導入口から前記流体排出口への流れを形成維持できるように前記流体導入口及び前記流体排出口が配置される、項目6に記載の粒子操作装置。
[8] 粒子を含む流体に往復する流動を適用する工程;及び
当該粒子を、当該往復する流動の1の方向に、粒子固有の移動度で移動させる工程
を含む、粒子操作方法。
[9] 前記往復する流動が、周期的な流動である、項目8記載の粒子操作方法。
[10] 前記周期的な流動における流体の変位量を示す波形が、非線対称波形を有する、項目9に記載の粒子操作方法。
[11] 前記方法が、移動した粒子を取得する工程を含み、粒子の分級又は分離を可能にする、項目8〜10のいずれか一項に記載の粒子操作方法。
[12] 前記往復する流動の方向に対して平行に、前記流体導入口から前記流体排出口への流れを形成維持できるように前記流体導入口及び前記流体排出口が配置される、項目6に記載の粒子操作装置。
Therefore, in the first aspect, the present invention relates to:
[1] A particle manipulation device including a flow path of a fluid containing particles and one or a plurality of pressurizing and depressurizing means for generating a reciprocating flow, in which particles in the fluid move in one direction of the reciprocating flow. The particle manipulation device that enables the movement, separation, or classification of particles by moving with the mobility peculiar to the particles.
[2] The particle manipulation device according to item 1, wherein the reciprocating flow is a periodic flow.
[3] The particle manipulation device according to item 2, wherein the waveform indicating the displacement amount of the fluid in the periodic flow has a non-axisymmetric waveform.
[4] The particle manipulation device according to any one of items 1 to 3, wherein the flow path is formed between the upper surface substrate member, the lower surface substrate member, and the side surface member.
[5] The particle manipulation device according to item 4, wherein the pressurizing / depressurizing means is arranged on one or more members selected from the group consisting of the upper surface substrate member, the lower surface substrate member, and the side surface member.
[6] The particle manipulation device according to item 1 to 5, wherein the flow path includes one or more fluid inlets and one or more fluid outlets.
[7] Item 6 in which the fluid introduction port and the fluid discharge port are arranged so that the flow from the fluid introduction port to the fluid discharge port can be formed and maintained in a direction intersecting the direction of the reciprocating flow. The particle manipulation device according to.
[8] A particle manipulation method comprising a step of applying a reciprocating flow to a fluid containing particles; and a step of moving the particles in one direction of the reciprocating flow with a particle-specific mobility.
[9] The particle manipulation method according to item 8, wherein the reciprocating flow is a periodic flow.
[10] The particle manipulation method according to item 9, wherein the waveform indicating the displacement amount of the fluid in the periodic flow has a non-axisymmetric waveform.
[11] The particle manipulation method according to any one of items 8 to 10, wherein the method includes a step of acquiring the transferred particles and enables classification or separation of the particles.
[12] Item 6 in which the fluid introduction port and the fluid discharge port are arranged so that the flow from the fluid introduction port to the fluid discharge port can be formed and maintained parallel to the direction of the reciprocating flow. The described particle manipulation device.

さらに上記第二の課題を解決するために、本発明者らは鋭意検討を重ねた結果、第二の観点における以下の発明に到達した。
すなわち第二の観点の本発明の第一の態様は、
粒子を含む流体の流路と、往復する流動を発生させる1または複数の加減圧手段とを備えた、粒子操作装置であって、
前記加減圧手段が、前記流路における前記流体の導入方向に対し交わる方向に往復する流動を発生させる手段であり、
前記往復する流動における流体の変位量を示す波形が非線対称波形を有し、
かつ前記流路に1又は複数の凹凸部を設けた、前記粒子操作装置である。
Further, as a result of diligent studies in order to solve the second problem, the present inventors have reached the following invention from the second viewpoint.
That is, the first aspect of the present invention from the second aspect is
A particle manipulation device comprising a flow path of a fluid containing particles and one or more pressurizing / depressurizing means for generating reciprocating flow.
The pressurizing / depressurizing means is a means for generating a reciprocating flow in a direction intersecting the introduction direction of the fluid in the flow path.
The waveform indicating the displacement amount of the fluid in the reciprocating flow has a non-axisymmetric waveform.
The particle manipulation device is provided with one or more uneven portions in the flow path.

また第二の観点の本発明の第二の態様は、前記流路が、上部基板部材と、下部基板部材と、側面部材との間に形成された、第一の態様に記載の粒子操作装置である。 The second aspect of the present invention according to the second aspect is the particle manipulation apparatus according to the first aspect, wherein the flow path is formed between the upper substrate member, the lower substrate member, and the side surface member. Is.

また第二の観点の本発明の第三の態様は、前記凹凸部は、上部基板部材及び下部基板部材のいずれか一方又は両方に配置され、前記流路における流体の導入方向に対して平行方向に延在する、前記第二の態様に記載の粒子操作装置である。 Further, in the third aspect of the present invention from the second aspect, the uneven portion is arranged on either one or both of the upper substrate member and the lower substrate member, and is in a direction parallel to the introduction direction of the fluid in the flow path. The particle manipulation device according to the second aspect, which extends to the above.

また第二の観点の本発明の第四の態様は、流路に設ける凹凸部が直線状に延在する、前記三の態様に記載の粒子操作装置である。 The fourth aspect of the present invention from the second aspect is the particle manipulation device according to the third aspect, wherein the uneven portion provided in the flow path extends linearly.

また第二の観点の本発明の第五の態様は、直線状に延在する凹凸部の断面が非線対称形状を有する、前記第四の態様に記載の粒子操作装置である。 The fifth aspect of the present invention from the second aspect is the particle manipulation device according to the fourth aspect, wherein the cross section of the uneven portion extending linearly has a non-axisymmetric shape.

また第二の観点の本発明の第六の態様は、加減圧手段が、前記流路における前記流体の導入方向に対し垂直方向に往復する流動を発生させる手段である、前記第一から第五の態様のいずれかに記載の粒子操作装置である。 A sixth aspect of the present invention from the second aspect is the first to fifth means in which the pressurizing / depressurizing means is a means for generating a flow reciprocating in a direction perpendicular to the introduction direction of the fluid in the flow path. The particle manipulation device according to any one of the above embodiments.

また第二の観点の本発明の第七の態様は、粒子を含む流体の流路に粒子排出口を複数設け、かつ粒子を含む流体の導入方向に対し前記粒子排出口を垂直方向に設けた、前記第一から第六の態様のいずれかに記載の粒子操作装置である。 Further, in the seventh aspect of the present invention from the second aspect, a plurality of particle discharge ports are provided in the flow path of the fluid containing particles, and the particle discharge ports are provided in the direction perpendicular to the introduction direction of the fluid containing particles. , The particle manipulation device according to any one of the first to sixth aspects.

また第二の観点の本発明の第八の態様は、各粒子排出口から径の異なる粒子が排出される、前記第七の態様に記載の粒子操作装置である。 The eighth aspect of the present invention from the second aspect is the particle manipulation device according to the seventh aspect, wherein particles having different diameters are discharged from each particle discharge port.

さらに第二の観点の本発明の第九の態様は、前記第一から第八の態様のいずれかに記載の粒子操作装置を用いた、流体中に含まれる粒子を分級する方法である。 A ninth aspect of the present invention from the second aspect is a method of classifying particles contained in a fluid using the particle manipulation device according to any one of the first to eighth aspects.

さらに第二の観点の本発明の第十の態様は、
粒子を含む流体の流路と、往復する流動を発生させる1または複数の加減圧手段とを備えた、粒子操作装置であって、
前記加減圧手段が、前記流路における前記流体の導入方向に対し平行方向に往復する流動を発生させる手段であり、
前記往復する流動における流体の変位量を示す波形が非線対称波形を有し、
かつ前記流路に1又は複数の凹凸部を設けた、前記粒子操作装置である。
A tenth aspect of the present invention of the second aspect is
A particle manipulation device comprising a flow path of a fluid containing particles and one or more pressurizing / depressurizing means for generating reciprocating flow.
The pressurizing / depressurizing means is a means for generating a flow reciprocating in a direction parallel to the introduction direction of the fluid in the flow path.
The waveform indicating the displacement amount of the fluid in the reciprocating flow has a non-axisymmetric waveform.
The particle manipulation device is provided with one or more uneven portions in the flow path.

また第二の観点の本発明の第十一の態様は、前記流路が、上部基板部材と、下部基板部材と、側面部材との間に形成された、第十の態様に記載の粒子操作装置である。 The eleventh aspect of the present invention according to the second aspect is the particle manipulation according to the tenth aspect, wherein the flow path is formed between the upper substrate member, the lower substrate member, and the side surface member. It is a device.

また第二の観点の本発明の第十二の態様は、前記凹凸部は、上部基板部材及び下部基板部材のいずれか一方又は両方に配置され、前記流路における流体の導入方向に対して交わる方向に延在する、前記第十一の態様に記載の粒子操作装置である。 Further, in the twelfth aspect of the present invention from the second aspect, the uneven portion is arranged on either one or both of the upper substrate member and the lower substrate member, and intersects with the introduction direction of the fluid in the flow path. The particle manipulation device according to the eleventh aspect, which extends in the direction.

第一の観点の本発明により、流路に対して交わる方向又は平行に往復する流動を与えることで、流体中に含まれる粒子を、固有の移動度で移動をさせることができ、粒子を分級することが可能になる。
また、第二の観点の本発明は、粒子を含む流体の流路と、往復する流動を発生させる1または複数の加減圧手段とを備えた、粒子操作装置において、前記加減圧手段が前記流路における前記流体の導入方向に対し交わる方向又は平行に往復する流動を発生させる手段であり、前記往復する流動における流体の変位量を示す波形が非線対称波形を有し、かつ前記流路に1又は複数の凹凸部を設けたことを特徴としている。第二の観点の本発明の粒子操作装置により、流体中に含まれる粒子を連続的に分級することもできる。また第二の観点の本発明の粒子操作装置は装置構成が簡素なため、小型化も容易である。
According to the present invention of the first aspect, particles contained in a fluid can be moved with a unique mobility by giving a reciprocating flow in a direction intersecting or parallel to the flow path, and the particles can be classified. It becomes possible to do.
Further, according to the second aspect of the present invention, in a particle manipulation device including a flow path of a fluid containing particles and one or a plurality of pressurizing / depressurizing means for generating a reciprocating flow, the pressurizing / depressurizing means is the flow. It is a means for generating a reciprocating flow in a direction intersecting or parallel to the introduction direction of the fluid in the path, and the waveform indicating the displacement amount of the fluid in the reciprocating flow has a non-axisymmetric waveform and is in the flow path. It is characterized in that one or a plurality of uneven portions are provided. The particle manipulation device of the present invention of the second aspect can also continuously classify the particles contained in the fluid. Further, since the particle manipulation device of the present invention from the second viewpoint has a simple device configuration, it can be easily miniaturized.

図1は、第一の観点の本発明の粒子操作装置の側面図である。FIG. 1 is a side view of the particle manipulation device of the present invention from the first aspect. 図2Aは、流路構造体の側面を模式的に示した図である。図2Bは、複数の導入口及び排出口を備える流路構造体の下面基板、側面部材、上面部材の斜視図である。FIG. 2A is a diagram schematically showing a side surface of the flow path structure. FIG. 2B is a perspective view of a lower surface substrate, a side surface member, and an upper surface member of a flow path structure having a plurality of inlets and outlets. 図3Aは、流路が振動部材により変形されることにより生じる液体の流れを模式的に示す図である。図3Bは、振動部材9L及び9Rに対して印可する電圧を示している。図3Cは、電圧を印可した場合の圧電素子の伸縮を示す図である。FIG. 3A is a diagram schematically showing the flow of liquid generated by the flow path being deformed by the vibrating member. FIG. 3B shows the voltage applied to the vibrating members 9L and 9R. FIG. 3C is a diagram showing expansion and contraction of the piezoelectric element when a voltage is applied. 図4Aは、流路構造体の側面を模式的に示した図である。図4Bは、流路構造体を構成する側面部材の上面図である。側面部材は、厚さ11mmのシリコーンゴムシートがくり抜かれたものであり、くり抜かれた部分が、上面基板と下面基板とに挟まれて流路を構成する。FIG. 4A is a diagram schematically showing a side surface of the flow path structure. FIG. 4B is a top view of the side member constituting the flow path structure. The side surface member is a hollowed out silicone rubber sheet having a thickness of 11 mm, and the hollowed out portion is sandwiched between the upper surface substrate and the lower surface substrate to form a flow path. 図5Aは、図4の流路構造体において、1の流体導入口に対し、複数の流体排出口を設け、流体排出口を粒子取得口とした流路構造体を構成する側面部材の上面図である。図5Bは、流路構造体を含む第一の観点の本発明の粒子操作装置の写真である。FIG. 5A is a top view of a side member of the flow path structure of FIG. 4, which comprises a flow path structure in which a plurality of fluid discharge ports are provided for one fluid introduction port and the fluid discharge port is used as a particle acquisition port. Is. FIG. 5B is a photograph of the particle manipulation device of the present invention from the first aspect including the flow path structure. 図6は、粒子の移動速度の算出法を示す。高速カメラでの観察ビデオの1フレームの画像それぞれに対し2値化処理を施し、封入した粒子を検出する。FIG. 6 shows a method for calculating the moving speed of particles. Each frame of the image observed by the high-speed camera is binarized to detect the enclosed particles. 図7は、印可電圧の波形を変形させた場合における粒子の移動度を示す。図7Aは、正の変形(0°、30°、60°、120°、及び150°)を有する波形の電圧を印可した場合における移動度を示し、図7Bは、負の変形(−0°、−30°、−60°、−120°、及び−150°)を有する波形の電圧を印可した場合における移動度を示す。FIG. 7 shows the mobility of particles when the waveform of the applied voltage is deformed. FIG. 7A shows the mobility when a voltage of a waveform having a positive deformation (0 °, 30 °, 60 °, 120 °, and 150 °) is applied, and FIG. 7B shows a negative deformation (-0 °). , -30 °, -60 °, -120 °, and -150 °), and the mobility when a voltage of a waveform is applied. 図8は、正の変形を有する波形を印可した場合における移動度を示しており、180°の変形を有する波形(ノコギリ波)を印可した場合に、ほかの波形の場合とは異なり、逆方向に移動したことを示す。FIG. 8 shows the mobility when a waveform having a positive deformation is applied, and when a waveform having a deformation of 180 ° (sawtooth wave) is applied, the direction is opposite to that of other waveforms. Indicates that it has moved to. 図9は、粒子を分散させる溶媒をエタノールからフィコールに置換した場合における移動度の変化を示す。FIG. 9 shows the change in mobility when the solvent for dispersing the particles is replaced with Ficoll from ethanol. 図10Aは、流路構造体の側面を模式的に示した図である。図10Bは、流路構造体を構成する側面部材の上面図である。側面部材は、厚さ11mmのシリコーンゴムシートがくり抜かれたものであり、くり抜かれた部分が、上面基板と下面基板とに挟まれて流路を構成する。FIG. 10A is a diagram schematically showing a side surface of the flow path structure. FIG. 10B is a top view of the side member constituting the flow path structure. The side surface member is a hollowed out silicone rubber sheet having a thickness of 11 mm, and the hollowed out portion is sandwiched between the upper surface substrate and the lower surface substrate to form a flow path. 図11Aは、細胞分離用の流路構造体の写真である。図11Bは、流路の拡大図であり、癌細胞と血液細胞が分離されたことを示す図である。FIG. 11A is a photograph of a flow path structure for cell separation. FIG. 11B is an enlarged view of the flow path, showing that cancer cells and blood cells have been separated. 図12は、第一の観点の本発明の粒子操作装置の別の態様の側面図である。FIG. 12 is a side view of another aspect of the particle manipulation device of the present invention from the first aspect. 図13は、第一の観点の本発明の粒子操作装置のさらに別の態様の側面図である。FIG. 13 is a side view of still another aspect of the particle manipulation device of the present invention from the first aspect. 図14は、バッチ単位での粒子の分離/測定が可能な第一の観点の本発明の粒子操作装置の原理図である。FIG. 14 is a principle diagram of the particle manipulation device of the present invention from the first viewpoint capable of separating / measuring particles in batch units. 図15は、バッチ単位での粒子の分離/測定が可能な第一の観点の本発明の粒子操作装置の一態様を示す構成図である。FIG. 15 is a configuration diagram showing one aspect of the particle manipulation device of the present invention from the first viewpoint, which enables separation / measurement of particles in batch units. 第二の観点の本発明の粒子操作装置の一例を示した図(側面図)。The figure which showed an example of the particle manipulation apparatus of this invention of the 2nd viewpoint (side view). 図16に示す粒子操作装置を構成する流路構造体のうち、下部基板部材の上面図。Top view of a lower substrate member among the flow path structures constituting the particle manipulation device shown in FIG. 図16に示す粒子操作装置を構成する流路構造体のうち、上部基板部材の上面図。Top view of an upper substrate member among the flow path structures constituting the particle manipulation device shown in FIG. 図16に示す粒子操作装置を構成する流路構造体のうち、側面部材の上面図。Top view of side member of the flow path structure constituting the particle manipulation device shown in FIG. 図16に示す粒子操作装置において、圧電素子の伸張/収縮による流動発生を示した模式図。FIG. 6 is a schematic view showing flow generation due to expansion / contraction of a piezoelectric element in the particle manipulation device shown in FIG. 実施例6で作製した粒子操作装置を構成する流路構造体のうち、側面部材の上面図。The top view of the side surface member among the flow path structures constituting the particle manipulation apparatus produced in Example 6. 実施例6における粒子の移動を示した模式図。The schematic diagram which showed the movement of the particle in Example 6. 実施例7の結果を示した図。黒丸または黒四角がφ200μmの粒子の結果であり、白丸および白四角がφ80μmの粒子の結果である。The figure which showed the result of Example 7. Black circles or black squares are the result of particles of φ200 μm, and white circles and white squares are the result of particles of φ80 μm. 実施例8の結果を示した図。黒丸または白丸がφ200μmの粒子の結果であり、白四角および白四角がφ80μmの粒子の結果であり、黒三角および白三角がφ40μmの粒子の結果である。The figure which showed the result of Example 8. Black circles or white circles are the result of particles of φ200 μm, white and white squares are the result of particles of φ80 μm, and black and white triangles are the result of particles of φ40 μm. 比較例1における粒子の移動を示した模式図。The schematic diagram which showed the movement of the particle in the comparative example 1. FIG. 第二の観点の本発明の粒子操作装置で、連続分級を可能にする流路構造体の下部基板部材、上部基板部材、及び側面部材の一例を示した図。The figure which showed an example of the lower substrate member, the upper substrate member, and the side surface member of the flow path structure which enables continuous classification in the particle manipulation apparatus of this invention of the 2nd viewpoint.

第一の観点の本発明は、粒子を含む流体の流路、及び往復する流動を発生させる1又は複数の加減圧手段を含む粒子操作装置に関する。第二の観点の本発明は、粒子を含む流体の流路と、前記流路における前記流体の導入方向に対し交わる方向に往復する流動を発生させる加減圧手段とを備えた、粒子操作装置に関する。両観点において、本発明の粒子操作装置は、粒子固有の性質、例えば、以下のものに限定されるものではないがサイズ、密度、形状、及び質量などに応じて粒子を移動させる装置である。本発明の粒子操作装置は、往復する流動を発生させることにより流路に含まれる流体中の粒子が、往復する流動のうちの1の方向に、粒子固有の移動度で移動することに基づいており、それにより粒子の操作、すなわち移動、分離、又は分級が可能になる。粒子固有の移動度は、様々な条件によって変化することから、条件として例えば流体、流路長、粒子取得口の位置、流体の変位量を示す波形などを適宜選択することにより、所望の粒子群を取得することが可能になる。 The present invention of the first aspect relates to a particle manipulation device including a flow path of a fluid containing particles and one or more pressurizing and depressurizing means for generating reciprocating flow. The present invention of the second aspect relates to a particle manipulation device including a flow path of a fluid containing particles and a pressurizing / depressurizing means for generating a flow reciprocating in a direction intersecting the introduction direction of the fluid in the flow path. .. In both respects, the particle manipulation device of the present invention is a device that moves particles according to particle-specific properties, such as, but not limited to, size, density, shape, mass, and the like. The particle manipulation device of the present invention is based on the fact that particles in a fluid contained in a flow path move in one direction of the reciprocating flow by generating a reciprocating flow with a mobility peculiar to the particles. It allows the particles to be manipulated, i.e. move, separate, or classify. Since the mobility peculiar to particles changes depending on various conditions, a desired particle group can be selected as conditions such as a fluid, a flow path length, a position of a particle acquisition port, and a waveform indicating a displacement amount of the fluid. Will be able to be obtained.

本発明において移動、分離、又は分級される粒子は、流体中に不溶性の物質であれば特に限定されず、例えばビーズ、粉砕用ボール、液晶用スペーサー、クロマトグラフィー用の分離剤、吸着剤などの工業材料をはじめ、細胞、DNA、ワクチン、ウイルス、コロイド、ミセルなどの研究用や医療用材料も挙げられる。本発明は、流体の往復する流動により分離を行なうことから、静電荷や誘電特性に依存しない分離が可能であり、壊れやすい粒子、例えば細胞、液滴、気泡、分離基材、触媒、医薬品顆粒、カプセルなどの分離により適している。 The particles to be transferred, separated, or classified in the present invention are not particularly limited as long as they are substances insoluble in the fluid, such as beads, crushing balls, liquid crystal spacers, chromatographic separating agents, and adsorbents. In addition to industrial materials, research and medical materials such as cells, DNA, vaccines, viruses, colloids, and micelles are also included. In the present invention, since separation is performed by the reciprocating flow of a fluid, separation is possible regardless of electrostatic charge or dielectric properties, and fragile particles such as cells, droplets, bubbles, separation substrate, catalyst, and pharmaceutical granules can be separated. , Capsules, etc. are more suitable for separation.

移動、分離、又は分級される細胞としては、任意の細胞が挙げられるが、例えば血液中の細胞や、培養細胞が移動、分離、又は分級に供される。血液中の細胞は、血球として、赤血球、白血球及び血小板に大きく分けられるが、それ以外の細胞、例えば癌細胞などが存在することもある。赤血球の大きさは、直径7〜8μm、厚さ2μm程であり血球の大部分を占めている。白血球は、単球、リンパ球(T細胞、B細胞、ナチュラルキラー細胞など)、好中球、好酸球、好塩基球を含んでおり、その大きさも細胞種に応じて6〜30μm程である。血小板は、1〜4μm程である。その一方で、血液やリンパ液の流れに乗って循環し、離れた臓器に転移を引き起こす血中循環腫瘍細胞(CTC)の大きさは、20μm〜200μmと血球にくらべかなり大きいことが知られている。しかしながら、血液中に存在するCTCの割合は極めて低く、血液10ml当たり数個から数十個程度しか存在しておらずその検出及び分離は困難であった。本発明では、大きさに応じて、細胞を分離することも可能であり、血液中に存在する細胞群から、CTCを検出及び分離するのに有効である。また、培養細胞を分離する場合、例えば幹細胞から分化誘導を行った際に、分化した所望の細胞群を大きさに応じて分離して取得することもできる。 Examples of cells to be migrated, separated or classified include arbitrary cells, and for example, cells in blood and cultured cells are subjected to migration, separation or classification. Cells in blood are roughly classified into red blood cells, white blood cells and platelets as blood cells, but other cells such as cancer cells may also be present. The size of red blood cells is about 7 to 8 μm in diameter and about 2 μm in thickness, and occupies most of the blood cells. White blood cells include monocytes, lymphocytes (T cells, B cells, natural killer cells, etc.), neutrophils, eosinophils, and basophils, and their size is about 6 to 30 μm depending on the cell type. is there. Platelets are about 1 to 4 μm. On the other hand, it is known that the size of circulating tumor cells (CTC) in blood, which circulates along the flow of blood and lymph and causes metastasis to distant organs, is 20 μm to 200 μm, which is considerably larger than that of blood cells. .. However, the proportion of CTC present in blood is extremely low, and only a few to several tens of CTCs are present per 10 ml of blood, and its detection and separation are difficult. In the present invention, it is also possible to separate cells according to their size, which is effective for detecting and separating CTC from a group of cells existing in blood. In addition, when the cultured cells are separated, for example, when differentiation is induced from stem cells, a desired differentiated cell group can be separated and obtained according to the size.

上述のとおり、第一の観点において、本発明は以下の粒子操作装置を提供する:
[1] 粒子を含む流体の流路、及び
往復する流動を発生させる1又は複数の加減圧手段
を含む粒子操作装置であって、流体中の粒子が、前記往復する流動の1の方向に、粒子固有の移動度で移動することにより、粒子の移動、分離、又は分級を可能にする、前記粒子操作装置。
As mentioned above, in the first aspect, the present invention provides the following particle manipulation devices:
[1] A particle manipulation device including a flow path of a fluid containing particles and one or a plurality of pressurizing and depressurizing means for generating a reciprocating flow, in which particles in the fluid move in one direction of the reciprocating flow. The particle manipulation device that enables the movement, separation, or classification of particles by moving with the mobility peculiar to the particles.

第一の観点の本発明において流路には、流体導入口と流体排出口が備えられており、流体導入口から流体排出口に対して流体を流すことができる。その流体が流れる方向を主流方向と定義し、流れを主流と定義する。分級する間、流体排出口に栓をし、さらに好ましくは流体導入口にも栓をして、流体を流路に留めることができる。液体を流路に留めて本発明の粒子操作装置を作動させると、バッチ単位で粒子を操作することができる。バッチ単位の処理により分級された粒子を取得するため、複数の粒子取得口を設けてもよい。一方で、流体導入口から流体排出口に対して、流体を連続的に流している状態で本発明の粒子操作装置を作動させることができ、それにより連続的に粒子を分級することができる。流路の流体排出口を粒子取得口としてもよいし、流体排出口とは別に粒子取得口を形成することができる。粒子取得口の大きさは、液体排出口の大きさと同一又は異なってもよいが、主流の流れを乱さないようにする観点から、流体排出口の大きさの1/2、より好ましくは1/5であり、さらに好ましくは1/10である。面状の流路を形成する場合、主流の乱れを軽減する観点から複数の流体導入口及び複数の流体排出口を設けることもできる。連続的に粒子を分級する場合、往復する流動は、主流方向に対し交わる方向に適用される。主流方向に交わる方向とは、往復する流動の方向と、主流方向とが、平行にならないことをいう。したがって、往復する流動の方向は、主流方向と、任意の角度となる方向、より好ましくは、主流方向に対し直交する方向に適用される。連続的な分級を可能とする粒子操作装置は、バッチ式の粒子操作装置と比較して装置構成を小さくすることができる点でより好ましい。
バッチ単位で粒子を分級する場合は、往復する流動を、主流方向に対し平行に適用してもよい。流体導入口から一定の流速で送液し、静止した後、往復する流動を、主流方向に対し平行に加えることでクロマトグラフィーと同様な粒子の分級が可能となる。前記態様は、従来の方法では分級が困難な、数十μm以下の粒子においても分級及び測定が容易となる点で好ましい。
In the present invention of the first aspect, the flow path is provided with a fluid introduction port and a fluid discharge port, and a fluid can flow from the fluid introduction port to the fluid discharge port. The direction in which the fluid flows is defined as the mainstream direction, and the flow is defined as the mainstream. During the classification, the fluid outlet can be plugged, and more preferably the fluid inlet can be plugged to keep the fluid in the flow path. By keeping the liquid in the flow path and operating the particle manipulation device of the present invention, the particles can be manipulated in batch units. In order to acquire the particles classified by the batch unit processing, a plurality of particle acquisition ports may be provided. On the other hand, the particle manipulation device of the present invention can be operated in a state where the fluid is continuously flowing from the fluid introduction port to the fluid discharge port, whereby the particles can be continuously classified. The fluid discharge port of the flow path may be used as the particle acquisition port, or the particle acquisition port may be formed separately from the fluid discharge port. The size of the particle acquisition port may be the same as or different from the size of the liquid discharge port, but from the viewpoint of not disturbing the mainstream flow, 1/2, more preferably 1 / of the size of the fluid discharge port. It is 5, and more preferably 1/10. When forming a planar flow path, a plurality of fluid introduction ports and a plurality of fluid discharge ports may be provided from the viewpoint of reducing turbulence in the mainstream. When classifying particles continuously, the reciprocating flow is applied in the direction intersecting the mainstream direction. The direction intersecting the mainstream direction means that the reciprocating flow direction and the mainstream direction are not parallel to each other. Therefore, the reciprocating flow direction is applied to the mainstream direction and a direction at an arbitrary angle, more preferably a direction orthogonal to the mainstream direction. A particle manipulation device that enables continuous classification is more preferable in that the device configuration can be reduced as compared with a batch type particle manipulation device.
When classifying particles in batch units, the reciprocating flow may be applied parallel to the mainstream direction. Particles can be classified in the same manner as in chromatography by feeding the liquid from the fluid inlet at a constant flow rate, allowing it to stand still, and then applying a reciprocating flow parallel to the mainstream direction. The above aspect is preferable in that even particles having a size of several tens of μm or less, which are difficult to classify by a conventional method, can be easily classified and measured.

流路の形状は、管状、面状など任意の形状であってよい。バッチ単位で粒子を操作する場合には、管状の流路が用いられてもよい。その一方で、分級された粒子を連続的に取得する観点では、面状に流路を形成し、主流を形成しつつかかる流路に対し複数の粒子取得口を備えることが好ましい。かかる面状に形成された流路は、例えば上面基板部材と、下面基板部材と、さらに側面部材との間に形成されてもよい。面状に形成された流路は、往復する流動による分離能を高めるため、往復する流動を分岐させる形状や、ある範囲の固有の移動度で移動した粒子を集めるような形状であってもよい。上面基板部材と下面基板部材は、剛性の平板であれば任意のものを使用することができるが、粒子を観察する観点から、透明な部材、好ましくはガラス板、ポリカーボネート板などが用いられる。上面基板部材と下面基板部材は、任意の形状であってよいが、同一形状が好ましく、例えば四角形である。側面部材は、剛性であってもよいし、柔軟性又は伸縮性の部材であってもよい。振動部材を適用して、往復する流動を発生させる観点から、柔軟性又は伸縮性の部材が好ましく、例えばシリコーンゴム、フッ素系ゴム、PDMS、エラストマー樹脂、高分子ゲル、ウレタン樹脂などが用いられる。側面部材は、上面基板部材と、下面基板部材により挟まれて、流路を形成する。したがって、流路からの流体の漏出を軽減する観点から、側面部材は、板状の部材の中央部を、適切な形にくり抜いて形成されることが好ましい。 The shape of the flow path may be any shape such as tubular and planar. When manipulating particles in batch units, tubular channels may be used. On the other hand, from the viewpoint of continuously acquiring the classified particles, it is preferable to form the flow path in a planar shape and to provide a plurality of particle acquisition ports for the flow path while forming the mainstream. The flow path formed in such a planar shape may be formed between, for example, an upper surface substrate member, a lower surface substrate member, and further a side surface member. The planarly formed flow path may have a shape that branches the reciprocating flow or a shape that collects particles that have moved with a certain range of unique mobility in order to enhance the separation ability due to the reciprocating flow. .. As the upper surface substrate member and the lower surface substrate member, any rigid flat plate can be used, but from the viewpoint of observing particles, a transparent member, preferably a glass plate, a polycarbonate plate, or the like is used. The upper surface substrate member and the lower surface substrate member may have any shape, but the same shape is preferable, for example, a quadrangle. The side surface member may be a rigid member or a flexible or stretchable member. From the viewpoint of applying a vibrating member to generate a reciprocating flow, a flexible or stretchable member is preferable, and for example, silicone rubber, fluororubber, PDMS, elastomer resin, polymer gel, urethane resin and the like are used. The side surface member is sandwiched between the upper surface substrate member and the lower surface substrate member to form a flow path. Therefore, from the viewpoint of reducing the leakage of fluid from the flow path, the side surface member is preferably formed by hollowing out the central portion of the plate-shaped member into an appropriate shape.

流路の長さは、求められる粒子の分離能や、分離しようとする粒子の性質及び/又は流路を流れる流体の性質及び流速に応じて適宜選択することができる。例えば、粒径200μm程度の粒子を連続分級する場合、高い分離能を達成する観点から長さは、5cm以上のものが用いられるし、10cm以上の長さが用いられてもよい。さらに工業スケールで分級を行う場合、30cm以上であってよい。一方、剛性の上面基板部材および下面基板部材を用いる観点から、10cm以下が好ましく、より好ましくは5cm以下である。その一方で、分級装置を小型化する観点や、分離時間を低減する観点から、1cm以下のものが用いられてもよいが、これらの数値に限定されることを意図するものではない。また、バッチ単位で分級又は測定を行なう場合は分離時間の長さと分離能力とが比例することから、流路の長さは送液及び往復する流動を生成可能な範囲で適宜選択することが好ましい。 The length of the flow path can be appropriately selected depending on the required separation ability of the particles, the properties of the particles to be separated and / or the properties of the fluid flowing through the flow path and the flow velocity. For example, when particles having a particle size of about 200 μm are continuously classified, those having a length of 5 cm or more are used from the viewpoint of achieving high resolution, and particles having a length of 10 cm or more may be used. Further, when classifying on an industrial scale, it may be 30 cm or more. On the other hand, from the viewpoint of using the rigid upper surface substrate member and the lower surface substrate member, it is preferably 10 cm or less, more preferably 5 cm or less. On the other hand, from the viewpoint of downsizing the classifier and reducing the separation time, one having a size of 1 cm or less may be used, but it is not intended to be limited to these numerical values. In addition, when classifying or measuring in batch units, the length of the separation time is proportional to the separation capacity, so it is preferable to appropriately select the length of the flow path within the range in which liquid feeding and reciprocating flow can be generated. ..

流体導入口については、流体を導入することができれば特に限定がないが、1つ又は複数の流体導入口が形成されてもよい。流体導入口は、送液チューブを介して、送液ポンプに繋がれていてもよい。面状に形成された流路を用いる場合、主流の乱れを低減する観点から、複数の流体導入口を設けることが好ましい。複数の流体導入口を設ける場合、その全てから分離すべき粒子が導入されてもよいが、流体導入口からの流路に対して交わる方向への移動度により粒子を分級する観点から、粒子が導入される流体導入口は一部であることが好ましく、さらに好ましくは1カ所であり、その他の流体導入口からは粒子を含まない流体のみが導入されることが好ましい。面状の流路が形成される場合、流体導入口は、上面基板部材、下面基板部材、及び/又は側面部材のいずれか1以上に形成されてもよく、例えば上面基板部材上に導入口を設けることもできる。 The fluid inlet is not particularly limited as long as the fluid can be introduced, but one or more fluid inlets may be formed. The fluid inlet may be connected to the liquid feed pump via a liquid feed tube. When a planar formed flow path is used, it is preferable to provide a plurality of fluid inlets from the viewpoint of reducing turbulence in the mainstream. When a plurality of fluid introduction ports are provided, particles to be separated may be introduced from all of them, but from the viewpoint of classifying the particles according to the mobility in the direction of intersection with the flow path from the fluid introduction port, the particles are introduced. The fluid introduction port to be introduced is preferably a part, more preferably one place, and it is preferable that only the fluid containing no particles is introduced from the other fluid introduction ports. When the planar flow path is formed, the fluid introduction port may be formed in any one or more of the upper surface substrate member, the lower surface substrate member, and / or the side surface member, for example, the introduction port may be formed on the upper surface substrate member. It can also be provided.

流体排出口については、流体を排出することができれば特に限定がないが、1つ又は複数の排出口が形成されてもよい。流体排出口は、排液チューブを介して、排液タンク又は吸引ポンプに繋がれていてもよいし、分離された粒子の通過を検出可能な検出装置または粒子径サイズの検出装置が繋がれてもよい、また、粒子取得口として機能してもよく、その場合粒子取得チューブを介して又は直接粒子を含む液体が分取される。面状に形成された流路を用いる場合、主流の乱れを低減する観点から、複数の流体導入口を設け、同数又は異なる数の流体排出口を設けることできる。上面基板部材、下面基板部材、及び側面部材との間に面状の流路が形成される場合、流体排出口は、上面基板部材、下面基板部材、及び側面部材のいずれか1以上に形成されてもよく下面基板部材又は側面部材、特に下面基板部材に設けることもできる。 The fluid discharge port is not particularly limited as long as the fluid can be discharged, but one or more discharge ports may be formed. The fluid discharge port may be connected to a drain tank or a suction pump via a drain tube, or a detector capable of detecting the passage of separated particles or a particle size size detector is connected. It may also function as a particle acquisition port, in which case the liquid containing the particles is fractionated through or directly through the particle acquisition tube. When the flow path formed in a planar shape is used, a plurality of fluid inlets may be provided, and the same number or different number of fluid discharge ports may be provided from the viewpoint of reducing the turbulence of the mainstream. When a planar flow path is formed between the upper surface substrate member, the lower surface substrate member, and the side surface member, the fluid discharge port is formed in any one or more of the upper surface substrate member, the lower surface substrate member, and the side surface member. It may be provided on the lower surface substrate member or the side surface member, particularly on the lower surface substrate member.

第一の観点の本発明の粒子操作装置は、主流方向に対し交わる方向又は平行に往復する流動を発生させる加減圧手段を含む。かかる加減圧手段は、例えばアクチュエーターや圧電素子などの振動手段を用いてもよいし、ポンプなどの液流又は気流発生手段を用いてもよいし、粒子を分離する流路とは別に往復する流動の発生装置を設置してもよい。流路と一体化された振動手段を用いる場合、振動手段により流路を変形させることにより、往復する流動が形成する。流路が、上面基板部材、下面基板部材、及び/又は側面部材により構成される場合には、上面基板部材、下面基板部材、及び/又は側面部材のいずれか1以上に振動手段が設けられる。上面基板部材、下面基板部材、及び/又は側面部材にかかる手段が設けられた場合、それぞれの部材のたわみなどの変形により、往復する流動が形成されてもよい。さらに好ましい態様では、側面部材に伸縮性部材を用い、さらに上面基板部材又は下面基板部材に振動手段を設けることにより、いずれかの基板部材の側面端を上下に振動させることで、往復する液流が発生する。好ましい態様では、上面基板部材の1の側面端を上下に振動させることで、又は2以上の側面端を2以上の振動手段により上下に交互に振動させることで、往復する液流を発生させることができる。2以上の振動手段が用いられる場合、振動数は同一であっても、異なってもよい。ポンプなどの液流又は気流発生手段を用いる場合、例えば片側の側面部材に、複数のポンプ接続孔を配置し、当該接続孔がポンプに接続されて、正圧と負圧を交互に与えてもよい。別の態様では両側の側面部材に、それぞれ複数のポンプ接続孔を配置し、当該接続孔がポンプに接続されて正圧を交互に付与してもよい。一方の側面部材に配置された複数のポンプ接続孔は、1のポンプに接続されていてもよいし、複数のポンプに接続されていてもよい。 The particle manipulation device of the present invention according to the first aspect includes a pressurizing / depressurizing means for generating a flow reciprocating in a direction intersecting or parallel to a mainstream direction. As the pressurizing / depressurizing means, for example, a vibrating means such as an actuator or a piezoelectric element may be used, a liquid flow or an air flow generating means such as a pump may be used, or a flow reciprocating separately from the flow path for separating particles. A generator may be installed. When the vibrating means integrated with the flow path is used, the reciprocating flow is formed by deforming the flow path by the vibrating means. When the flow path is composed of the upper surface substrate member, the lower surface substrate member, and / or the side surface member, the vibration means is provided on any one or more of the upper surface substrate member, the lower surface substrate member, and / or the side surface member. When means for the upper surface substrate member, the lower surface substrate member, and / or the side surface member are provided, a reciprocating flow may be formed by deformation of each member such as deflection. In a more preferred embodiment, a stretchable member is used as the side surface member, and a vibrating means is provided on the upper surface substrate member or the lower surface substrate member to vibrate the side surface end of any of the substrate members up and down to reciprocate the liquid flow. Occurs. In a preferred embodiment, a reciprocating liquid flow is generated by vibrating one side end of the top substrate member up and down, or by alternately vibrating two or more side ends up and down by two or more vibrating means. Can be done. When two or more vibrating means are used, the frequencies may be the same or different. When a liquid flow or air flow generating means such as a pump is used, for example, even if a plurality of pump connection holes are arranged on one side surface member and the connection holes are connected to the pump to alternately apply positive pressure and negative pressure. Good. In another aspect, a plurality of pump connection holes may be arranged on the side surface members on both sides, and the connection holes may be connected to the pump to alternately apply positive pressure. The plurality of pump connection holes arranged on one side member may be connected to one pump or may be connected to a plurality of pumps.

加減圧手段により発生される往復する流動は、周期的な流動であることが好ましい。このような周期的な流動における流体の変位量を示す波形が、非線対称波形を有することが好ましい。1の態様では、これらの往復する流動は、振動手段の駆動信号として、往復する波形を有する駆動信号を用いることにより発生することができる。したがって、流体の変位量を示す波形は、そのまま振動手段の駆動信号の波形に相当してもよい。往復する波形を有する駆動信号とは、電圧又は電流のどちらであってもよい。このような信号は、短時間に急峻な変化をするパルスであってもよいし、連続した変化をする連続波であってもよい。分離能の再現性を担保する観点から、このような波形は、周期的であることが好ましい。駆動信号の波形に応じて、往復する流動が生じるため、駆動信号を周期的とすると、往復する流動も周期的になる。このような周期的な波形としては、任意の波形を挙げることができ、点対称の波形、非点対称の波形、線対称の波形、又は非線対称の波形であってもよい。点対称とは、信号強度が0となる点からみて波形が対称となっていることをいう。また、線対称とは、最短繰り返し周期の半周期毎に信号が極性反転して繰り返すことをいい、線対称の場合には、時間軸に対して正の信号値と負の信号値が対称となっている。点対称でありかつ線対称である波形も存在する一方で、点対称のみの波形、又は線対称のみの波形も存在する。点対称であり、かつ線対称である波形として、例えば正弦波、矩形波、三角波が挙げられる。点対称であるが、非線対称である波形として、例えばノコギリ波が挙げられる。しかしながら、これらの例示に限定されることはなく、定義に含まれる任意の合成波を包含するものとする。粒子を移動させる観点から、往復する流動が、非線対称波形であることが好ましい。 The reciprocating flow generated by the pressurizing / depressurizing means is preferably a periodic flow. It is preferable that the waveform showing the displacement amount of the fluid in such a periodic flow has a non-axisymmetric waveform. In one aspect, these reciprocating flows can be generated by using a drive signal having a reciprocating waveform as the drive signal of the vibrating means. Therefore, the waveform indicating the displacement amount of the fluid may directly correspond to the waveform of the drive signal of the vibrating means. The drive signal having a reciprocating waveform may be either a voltage or a current. Such a signal may be a pulse that changes sharply in a short time, or may be a continuous wave that changes continuously. From the viewpoint of ensuring the reproducibility of the resolution, such a waveform is preferably periodic. Since a reciprocating flow is generated according to the waveform of the drive signal, if the drive signal is periodic, the reciprocating flow is also periodic. As such a periodic waveform, any waveform can be mentioned, and it may be a point-symmetrical waveform, a non-point-symmetrical waveform, a line-symmetrical waveform, or a non-line-symmetrical waveform. Point symmetry means that the waveform is symmetric with respect to the point where the signal strength becomes 0. In addition, line symmetry means that the signal is reversed in polarity every half cycle of the shortest repetition period, and in the case of line symmetry, the positive signal value and the negative signal value are symmetric with respect to the time axis. It has become. While some waveforms are point-symmetrical and line-symmetrical, there are also point-symmetrical and line-symmetrical waveforms. Examples of waveforms that are point-symmetrical and line-symmetrical include sine waves, square waves, and triangular waves. An example of a waveform that is point-symmetrical but non-axisymmetric is a sawtooth wave. However, it is not limited to these examples, and includes any synthetic waves included in the definition. From the viewpoint of moving particles, it is preferable that the reciprocating flow has a non-axisymmetric waveform.

第一の観点の本発明において流路を流れる流体としては、液体又は気体が挙げられるが、より高い分離能を達成する観点では液体が好ましい。液体を用いる場合、分離する粒子に応じて任意の液体を選択することができる。分離する粒子が、工業材料である場合には、製造の際に用いられた溶媒をそのまま用いてもよいし、水などの安価かつ無害な溶媒によって置換して粒子操作装置に供してもよい。分離する粒子が、細胞やウイルス、抗体などの生物材料の場合、元々これらの粒子が分散していた液体を使用することが好ましく、特に細胞を用いる場合には、細胞の生存を担保する観点から、培養培地、血液、血漿、生理食塩水(PBS、TBSなど)を用いることができる。これらの液体に対しては、任意の賦形剤、例えばpH調製剤、安定剤、増粘剤、保存剤、抗生物質などを用いることができる。分離能を高める観点から、粒子のサイズ、密度、形状に応じて、適切な粘性の液体を選択することができる。流体として気体を用いる場合には、往復する流動を発生させる手段として、振動手段を用いる他に、圧力発生手段を用いることが好ましいこともある。 In the present invention of the first aspect, the fluid flowing through the flow path includes a liquid or a gas, but a liquid is preferable from the viewpoint of achieving higher separability. When a liquid is used, any liquid can be selected depending on the particles to be separated. When the particles to be separated are industrial materials, the solvent used in the production may be used as it is, or the particles may be replaced with an inexpensive and harmless solvent such as water and used in the particle manipulation apparatus. When the particles to be separated are biological materials such as cells, viruses, and antibodies, it is preferable to use a liquid in which these particles are originally dispersed, and especially when cells are used, from the viewpoint of ensuring the survival of the cells. , Culture medium, blood, plasma, physiological saline (PBS, TBS, etc.) can be used. For these liquids, any excipients such as pH adjusters, stabilizers, thickeners, preservatives, antibiotics and the like can be used. From the viewpoint of enhancing the separability, a liquid having an appropriate viscosity can be selected according to the size, density and shape of the particles. When a gas is used as the fluid, it may be preferable to use a pressure generating means in addition to using a vibrating means as a means for generating a reciprocating flow.

以下に、第一の観点の本発明を図面に示す実施形態に基づいて詳細に説明する。第一の観点の本発明における粒子操作装置は、例えば下記の流路構造体2、及び往復液流発生装置1、及び送液ポンプ3により実現される(図1)。さらに粒子の分離が適切に行われていることを確認するために、粒子観測装置7,8を設置してもよい。第一の観点の本発明の粒子操作装置で用いられる周期的に往復する液流26、27の形成する方法についても以下に詳細に説明する。 Hereinafter, the present invention of the first aspect will be described in detail based on the embodiments shown in the drawings. The particle manipulation device of the present invention according to the first aspect is realized by, for example, the following flow path structure 2, the reciprocating liquid flow generator 1, and the liquid feed pump 3 (FIG. 1). Further, particle observation devices 7 and 8 may be installed to confirm that the particles are properly separated. The method of forming the periodic reciprocating liquid flows 26 and 27 used in the particle manipulation apparatus of the present invention from the first aspect will also be described in detail below.

流路構造体
一の態様では、流路構造体2は、上面基板部材18と、下面基板部材20と、側面部材19により形成される(図2A)。上面基板部材18又は下面基板部材20のいずれかに導入口22と、排出口23を設け、導入口22から排出口23への方向を流路方向又は主流方向と呼ぶ(図2)。上面基板部材18又は下面基板部材20の任意の場所に粒子取得口25を配置することができる(図2)。上面基板部材18の非流路面に、振動部材接着点21を配置する(図2B)。振動部材接着点21は、複数設けられてもよく、好ましくは2つである。好ましくは2つの振動部材接着点21を結ぶ直線は、主流方向に対し交わっていればよく、好ましくは垂直になるように2つの振動部材接着点21が配置される。さらに好ましくは、2つの振動部材接着点21は、上面基板部材18の重心を挟んで均等な位置に配置される。側面部材19としては、流路を形成できれば任意の部材であってよいが、好ましくは伸縮性のある部材を用いることができる。側面部材19は、流路24となる部分をくりぬいたゴムシートであってもよいし、下面基板部材の面上に設けたゴムパッキンであってもよい。下面基板部材20上に側面部材19を載せ、さらに上面基板部材18を載せることにより、これらの部材に挟まれた領域に、第一の観点の本発明の流路24が形成される。
In the aspect of the flow path structure 1, the flow path structure 2 is formed by the upper surface substrate member 18, the lower surface substrate member 20, and the side surface member 19 (FIG. 2A). An introduction port 22 and an discharge port 23 are provided in either the upper surface substrate member 18 or the lower surface substrate member 20, and the direction from the introduction port 22 to the discharge port 23 is referred to as a flow path direction or a mainstream direction (FIG. 2). The particle acquisition port 25 can be arranged at any position on the upper surface substrate member 18 or the lower surface substrate member 20 (FIG. 2). The vibrating member bonding point 21 is arranged on the non-flow path surface of the upper surface substrate member 18 (FIG. 2B). A plurality of vibrating member bonding points 21 may be provided, preferably two. The straight line connecting the two vibrating member bonding points 21 may preferably intersect with respect to the mainstream direction, and the two vibrating member bonding points 21 are preferably arranged so as to be perpendicular to each other. More preferably, the two vibrating member bonding points 21 are arranged at equal positions with the center of gravity of the upper surface substrate member 18 interposed therebetween. The side surface member 19 may be any member as long as it can form a flow path, but a stretchable member can be preferably used. The side surface member 19 may be a rubber sheet in which a portion serving as a flow path 24 is hollowed out, or may be a rubber packing provided on the surface of the lower surface substrate member. By placing the side surface member 19 on the lower surface substrate member 20 and further mounting the upper surface substrate member 18, the flow path 24 of the present invention from the first aspect is formed in the region sandwiched between these members.

振動流形成装置
往復液流発生装置1は、前記流路構造体2を保持する機構を備えた基板ホルダー11、及び振動部材9L、9Rを具備してよい(図1)。振動部材9L、9Rは、振動部材駆動信号出力13L,13Rを介して、振動部材9L、9Rを駆動する振動部材駆動電源12L、12Rに接続され得る。かかる振動部材駆動電源12L、12Rは、波形出力16L、16Rを介してさらに波形発生装置15に接続されてよい。振動部材は1つであってもよいが、複数の振動部材を配置することもできる。例えば2の振動部材を用いる場合、その振動の波形は、同期していてもよいし、同期していなくてもよい。時間軸に対して線対称の波形を用いることもできる(図3)。
また、往復液流発生装置1のうち振動部材9L、9Rは、当該振動部材で振動されるダイヤフラム流路30が粒子分離流路31の導入口、排出口に接続され、粒子分離流路31
内で往復液流を生成できれば、粒子分離流路31と別に配置してもよい(図12)。さらに振動部材を粒子分離流路31とは別に配置する場合、一つの振動部材9Lのみを配置してもよい(図13)。なお図12および13に示す往復液流発生装置1において、ダイヤフラム流路30に設置された導入/排出口47、および粒子分離流路31に接続された導入/排出口48には、往復液流の形成を阻害しないように流れの方向を制限するチェックバルブ、または振動部材9Lに同期した電動バルブを設置することが好ましい。
The vibrating flow forming device reciprocating liquid flow generating device 1 may include a substrate holder 11 having a mechanism for holding the flow path structure 2, and vibrating members 9L and 9R (FIG. 1). The vibrating members 9L and 9R can be connected to the vibrating member driving power supplies 12L and 12R that drive the vibrating members 9L and 9R via the vibrating member driving signal outputs 13L and 13R. The vibrating member drive power supplies 12L and 12R may be further connected to the waveform generator 15 via the waveform outputs 16L and 16R. The number of vibrating members may be one, but a plurality of vibrating members may be arranged. For example, when the vibration member of 2 is used, the vibration waveforms may or may not be synchronized. A waveform that is line-symmetrical with respect to the time axis can also be used (Fig. 3).
Further, in the vibrating members 9L and 9R of the reciprocating liquid flow generator 1, the diaphragm flow path 30 vibrated by the vibrating member is connected to the introduction port and the discharge port of the particle separation flow path 31, and the particle separation flow path 31
If a reciprocating liquid flow can be generated inside, the particles may be arranged separately from the particle separation flow path 31 (FIG. 12). Further, when the vibrating member is arranged separately from the particle separation flow path 31, only one vibrating member 9L may be arranged (FIG. 13). In the reciprocating liquid flow generator 1 shown in FIGS. 12 and 13, the reciprocating liquid flow is connected to the introduction / discharge port 47 installed in the diaphragm flow path 30 and the introduction / discharge port 48 connected to the particle separation flow path 31. It is preferable to install a check valve that limits the flow direction so as not to hinder the formation of the particles, or an electric valve that is synchronized with the vibrating member 9L.

粒子観測装置
前記流路構造体中央部を観測可能なズームレンズ8、カメラ7から構成される粒子観測装置を振動流形成装置に設置することができる(図1)。これにより、粒子の動きをモニターすることができ、適切な振動数、流速などを設定することができる。
Particle observation device A particle observation device including a zoom lens 8 and a camera 7 capable of observing the central portion of the flow path structure can be installed in the vibration flow forming device (FIG. 1). As a result, the movement of particles can be monitored, and an appropriate frequency, flow velocity, etc. can be set.

往復する液流の形成方法
往復する液流26、27は、振動部材9L、9Rが、上面基板部材を押し上げと押し下げを行うことにより生じる(図3A)。
なお、粒子分離流路31内に振動流が形成されるように接続されていれば、図12及び13に示すように、振動部材9L、9R及び上面基板部分を押し上げと押し下げを行うダイヤフラム流路30が粒子分離流路31から分離されている状態でもよい。
Method for Forming Reciprocating Liquid Flows The reciprocating liquid flows 26 and 27 are generated when the vibrating members 9L and 9R push up and down the upper surface substrate member (FIG. 3A).
If the particle separation flow path 31 is connected so as to form a vibration flow, as shown in FIGS. 12 and 13, a diaphragm flow path that pushes up and down the vibrating members 9L, 9R and the upper surface substrate portion. 30 may be separated from the particle separation flow path 31.

振動部材の駆動方法
往復する液流の形成法としては、振動部材9L、9Rとして圧電素子を用い、振動部材駆動電源12L、12Rとしてピエゾドライバーを用いることができる。振動部材9Lに振動部材駆動電源12Lの出力駆動部材駆動信号出力13L、振動部材9Rに振動部材駆動電源13Rの出力駆動部材駆動信号出力8Rを接続する。また振動部材駆動電源12L、12Rの入力振動部材駆動元信号入力14L、14Rには波形信号生成器15の波形出力16L,16Rを接続する(図1)。
往復する液流の形成においては波形信号生成器15の波形出力16L,16Rの波形は180度位相をずらすか、あるいは信号を反転することによりピエゾ素子の伸張、収縮を交互に駆動することができ、それにより往復する液流を形成してよい(図3)。
この波形信号生成器15の波形出力16Lは振動部材駆動電源12Lの振動部材駆動元信号入力14Lへ、波形信号生成器15の波形出力16Rは振動部材駆動電源12Rの振動部材駆動元信号入力14Rへ接続する。波形信号生成器15の出力波形は任意に生成でき、例えば、点対称若しくは非点対称及び/又は線対称若しくは非線対称の波形であってもよい。代表的には正弦波、三角波、方形波、台形波、ノコギリ波である。波形信号生成器の出力波形が、流路内の往復する液流の波形となる。より高い分離能を得る観点から、非線対称波形であるノコギリ波が好ましい。
Method of driving the vibrating member As a method of forming a reciprocating liquid flow, a piezoelectric element can be used as the vibrating members 9L and 9R, and a piezo driver can be used as the vibrating member driving power supplies 12L and 12R. The output drive member drive signal output 13L of the vibration member drive power supply 12L is connected to the vibration member 9L, and the output drive member drive signal output 8R of the vibration member drive power supply 13R is connected to the vibration member 9R. Further, the waveform outputs 16L and 16R of the waveform signal generator 15 are connected to the input vibration member drive source signal inputs 14L and 14R of the vibration member drive power supplies 12L and 12R (FIG. 1).
In the formation of the reciprocating liquid flow, the waveforms of the waveform outputs 16L and 16R of the waveform signal generator 15 can be alternately driven to expand and contract the piezo element by shifting the phase by 180 degrees or inverting the signal. , It may form a reciprocating liquid flow (Fig. 3).
The waveform output 16L of the waveform signal generator 15 goes to the vibration member drive source signal input 14L of the vibration member drive power supply 12L, and the waveform output 16R of the waveform signal generator 15 goes to the vibration member drive source signal input 14R of the vibration member drive power supply 12R. Connecting. The output waveform of the waveform signal generator 15 can be arbitrarily generated, and may be, for example, a point-symmetrical or non-point-symmetrical waveform and / or a line-symmetrical or non-line-symmetrical waveform. Typical examples are sine wave, triangle wave, square wave, trapezoidal wave, and sawtooth wave. The output waveform of the waveform signal generator becomes the waveform of the reciprocating liquid flow in the flow path. From the viewpoint of obtaining higher resolution, a sawtooth wave having a non-axisymmetric waveform is preferable.

粒子の導入・排出方法
流路構造体2の内、上面基板部材18又は下面基板部材20に直径1mm貫通穴を形成することで、導入口22及び/又は排出口23を設置する(図2B)。この貫通穴に外形1mmハトメを接着剤で固定化し、このハトメと送液ポンプ3を送液チューブ5で連結し、粒子28の導入・排出を行う(図1)。主流方向に交わる方向に移動した粒子28の採取を行う場合は、排出口に加えて、さらに粒子取得口25である貫通穴を、下面基板部材20又は上面基板部材18に追加するのが望ましい(図2B、図5)。
Particle introduction / discharge method The introduction port 22 and / or the discharge port 23 are installed by forming a through hole having a diameter of 1 mm in the upper surface substrate member 18 or the lower surface substrate member 20 in the flow path structure 2 (FIG. 2B). .. An eyelet having an outer diameter of 1 mm is fixed to this through hole with an adhesive, and the eyelet and the liquid feed pump 3 are connected by a liquid feed tube 5 to introduce and discharge particles 28 (FIG. 1). When collecting the particles 28 that have moved in the direction intersecting the mainstream direction, it is desirable to add a through hole, which is a particle acquisition port 25, to the lower surface substrate member 20 or the upper surface substrate member 18 in addition to the discharge port ( 2B, 5).

粒子の観察方法
振動流による粒子の移動状況の観察及び測定は図1のカメラ5及びズームレンズ6により実施してよい。カメラ5は粒子の振動まで観察する場合は高速カメラ(朋栄製 VFC−1000)、低速にて観測する場合はソニー製CCDカメラ(XCD−V50)を状況により切り換えて使用するのが望ましい。粒子を観測するためには、上面基板部材18は透明な部材、例えばガラスやポリカーボネートでできていることが好ましい。
Particle Observation Method Observation and measurement of the movement state of particles due to the oscillating flow may be carried out by the camera 5 and the zoom lens 6 of FIG. It is desirable that the camera 5 be used by switching between a high-speed camera (VFC-1000 manufactured by Tomoei) when observing the vibration of particles and a CCD camera (XCD-V50) manufactured by Sony when observing at low speed. In order to observe the particles, the upper surface substrate member 18 is preferably made of a transparent member, for example, glass or polycarbonate.

粒子の移動速度の算出法
カメラ5の高速カメラでの観察ビデオの1フレームの画像それぞれに対し2値化処理を施し、封入した粒子を検出する。検出した粒子の重心に対し位置を計測(図6)するソフトウェアをLabVIEW(商品名)にて作製した。これらの情報を時間的な変化としてデータ化することで粒子の移動軌跡を計測する。
Calculation method of moving speed of particles Binarization processing is performed on each image of one frame of the observation video by the high-speed camera of the camera 5, and the enclosed particles are detected. Software for measuring the position of the detected particle with respect to the center of gravity (FIG. 6) was produced by LabVIEW (trade name). By converting this information into data as a change over time, the movement trajectory of the particles is measured.

上述のとおり、第二の観点において、本発明は以下の粒子操作装置を提供する:
粒子を含む流体の流路と、往復する流動を発生させる1または複数の加減圧手段とを備えた、粒子操作装置であって、
前記加減圧手段が、前記流路における前記流体の導入方向に対し交わる方向又は平行に往復する流動を発生させる手段であり、
前記往復する流動における流体の変位量を示す波形が非線対称波形を有し、
かつ前記流路に1又は複数の凹凸部を設けた、前記粒子操作装置。
As mentioned above, in the second aspect, the present invention provides the following particle manipulation devices:
A particle manipulation device comprising a flow path of a fluid containing particles and one or more pressurizing / depressurizing means for generating reciprocating flow.
The pressurizing / depressurizing means is a means for generating a reciprocating flow in a direction intersecting or parallel to the introduction direction of the fluid in the flow path.
The waveform indicating the displacement amount of the fluid in the reciprocating flow has a non-axisymmetric waveform.
The particle manipulation device, which is provided with one or more uneven portions in the flow path.

第二の観点の本発明の粒子操作装置を用いた、流体中に含まれる粒子の分級操作の一態様として、粒子を含む流体の流路の排出口側を閉じ、さらに好ましくは導入口側も閉じて、粒子を含む流体を流路に留めた後、前記流路に対して交わる方向又は平行に往復する流動を発生させることで、バッチ単位で粒子を移動/分級させる操作がある。粒子を含む流体の流路が複数の排出口を設けている場合、前述したバッチ単位の操作後、排出口を開けることで、各排出口から径の異なる(分級された)粒子を回収することができる。本発明の粒子操作装置を用いた、流体中に含まれる粒子の分級操作の別の態様として、粒子を含む流体を流路の導入口側から連続的に導入し、前記流路に対して交わる方向又は平行に往復する流動を連続的に発生させることで、流体中に含まれる粒子を連続的に分級することができる。連続的な分級を可能とすることで、バッチ単位で操作する場合と比較し、粒子操作装置の装置構成を小さくすることができる。 As one aspect of the classification operation of the particles contained in the fluid using the particle manipulation device of the present invention of the second aspect, the discharge port side of the flow path of the fluid containing the particles is closed, and more preferably the introduction port side is also closed. After closing and retaining the fluid containing the particles in the flow path, there is an operation of moving / classifying the particles in batch units by generating a flow that reciprocates in the direction or parallel to the flow path. When the flow path of the fluid containing particles is provided with multiple discharge ports, particles having different diameters (classified) can be collected from each discharge port by opening the discharge port after the above-mentioned batch unit operation. Can be done. As another embodiment of the classification operation of the particles contained in the fluid using the particle manipulation device of the present invention, the fluid containing the particles is continuously introduced from the introduction port side of the flow path and intersects the flow path. By continuously generating a flow that reciprocates in a direction or in parallel, particles contained in the fluid can be continuously classified. By enabling continuous classification, the device configuration of the particle manipulation device can be reduced as compared with the case of operating in batch units.

粒子の排出口は流体の排出口と共通の排出口としてもよいし、異なる排出口としてもよい。粒子の排出口を流体の排出口と異なる排出口として設ける場合、流体中に含まれる粒子の流路の流れを乱さないようにする観点から、流体排出口の径に対し1/2以下の径とするとよく、1/5以下の径とするとより好ましく、1/10以下の径とするとさらに好ましい。粒子を含む流体の流路が面状の場合、当該流路の流れの乱れを軽減する観点から、複数の流体導入口と複数の流体排出口を設けるとよい。 The particle outlet may be the same outlet as the fluid outlet, or may be a different outlet. When the particle discharge port is provided as a discharge port different from the fluid discharge port, the diameter is 1/2 or less of the diameter of the fluid discharge port from the viewpoint of not disturbing the flow of the flow path of the particles contained in the fluid. It is preferable that the diameter is 1/5 or less, and more preferably 1/10 or less. When the flow path of the fluid containing particles is planar, it is preferable to provide a plurality of fluid introduction ports and a plurality of fluid discharge ports from the viewpoint of reducing the turbulence of the flow of the flow path.

第二の観点の本発明の粒子操作装置に備える、粒子を含む流体の流路の形状に制限はなく、管状であってもよいし、面状であってもよい。ただし第二の観点の本発明の粒子操作装置が、流体中に含まれる粒子を連続的に分級する装置の場合、面状の流路とし、粒子の排出口を複数設けると好ましい。面状の流路の一例として、上部基板部材と下部基板部材と側面部材との間に形成された流路があげられる。面状に形成された流路は、往復する流動による分離能を高めるため、往復する流動を分岐させる形状や、ある範囲の固有の移動度で移動した(分級された)粒子を集めるような形状としてもよい。上部基板部材および下部基板部材は、剛性の平板であれば任意のものを使用することができるが、粒子を観察する観点から、ガラス板、ポリカーボネート板等の透明な材料で作製すると好ましい。上部基板部材と下部基板部材は、任意の形状であってよいが、同一形状(例えば、互いに同じ四角形)とすると好ましい。側面部材は、剛性の部材であってもよいし、柔軟性または伸縮性の部材であってもよいが、柔軟性または伸縮性の部材を側面部材として用いると、上部基板部材および下部基板部材を上下方向に振動させることで往復する流動を発生できる点で好ましい。柔軟性または伸縮性の部材の一例として、シリコーンゴム、フッ素系ゴム、PDMS、エラストマー樹脂、高分子ゲル、ウレタン樹脂が例示できる。側面部材は、上部基板部材と下部基板部材により挟まれることで、流路を形成する。したがって側面部材は、流路からの流体の漏出を軽減する観点から、板状の部材の中央部を、適切な形にくり抜くことで作製すると好ましい。 The shape of the flow path of the fluid containing the particles provided in the particle manipulation device of the present invention according to the second aspect is not limited, and may be tubular or planar. However, when the particle manipulation device of the present invention from the second aspect is a device for continuously classifying particles contained in a fluid, it is preferable to provide a planar flow path and a plurality of particle discharge ports. As an example of the planar flow path, there is a flow path formed between the upper substrate member, the lower substrate member, and the side surface member. The planar flow path has a shape that branches the reciprocating flow and a shape that collects particles that have moved (classified) with a certain range of unique mobility in order to enhance the separation ability due to the reciprocating flow. May be. As the upper substrate member and the lower substrate member, any rigid flat plate can be used, but from the viewpoint of observing particles, it is preferable to use a transparent material such as a glass plate or a polycarbonate plate. The upper substrate member and the lower substrate member may have any shape, but it is preferable that they have the same shape (for example, the same quadrangle as each other). The side surface member may be a rigid member or a flexible or stretchable member, but when the flexible or stretchable member is used as the side surface member, the upper substrate member and the lower substrate member are used. It is preferable in that a reciprocating flow can be generated by vibrating in the vertical direction. As an example of the flexible or stretchable member, silicone rubber, fluororubber, PDMS, elastomer resin, polymer gel, urethane resin can be exemplified. The side surface member forms a flow path by being sandwiched between the upper substrate member and the lower substrate member. Therefore, from the viewpoint of reducing the leakage of fluid from the flow path, the side surface member is preferably manufactured by hollowing out the central portion of the plate-shaped member into an appropriate shape.

第二の観点の本発明の粒子操作装置に備える、粒子を含む流体の流路の長さは、必要とされる粒子の分離能や、分離しようとする粒子の性質および/または流路を流れる流体の性質ならびに流速に応じて、適宜選択すればよい。例えば、粒径200μm程度の粒子を高分離能で分級する場合、長さは5cm以上とするとよく、10cm以上としてもよい。工業スケールで分級を行なう場合は、30cm以上の長さとしてもよい。上部基板部材および下部基板部材の剛性を維持する観点からは、長さを10cm以下とするとよく、5cm以下とするとより好ましい。粒子操作装置の小型化や、分離時間の短縮を目的とする場合は、長さ1cm以下としてもよい。 The length of the flow path of the fluid containing the particles provided in the particle manipulation device of the present invention of the second aspect determines the required separation ability of the particles, the nature of the particles to be separated, and / or the flow path. It may be appropriately selected according to the properties of the fluid and the flow velocity. For example, when classifying particles having a particle size of about 200 μm with high resolution, the length may be 5 cm or more, and may be 10 cm or more. When classifying on an industrial scale, the length may be 30 cm or more. From the viewpoint of maintaining the rigidity of the upper substrate member and the lower substrate member, the length is preferably 10 cm or less, and more preferably 5 cm or less. If the purpose is to reduce the size of the particle manipulation device or shorten the separation time, the length may be 1 cm or less.

第二の観点の本発明の粒子操作装置に備える、粒子を含む流体の流路の導入口は、前記流体を導入できれば特に限定はなく、導入口の数は1つであってもよいし、複数であってもよい。また流路の導入口は、送液チューブを介して送液ポンプに繋がれていてもよい。粒子を含む流体の流路が面状に形成されている場合、前記流路の流れの乱れを低減する観点から、導入口を複数設けると好ましい。導入口を複数設ける場合、全ての導入口から分離すべき粒子を含む流体を導入してもよいが、前記流路における前記流体の導入方向に対し交わる方向に往復する流動により前記粒子を移動/分級する観点から、粒子を含む流体を導入する導入口は複数あるうちの一部とすると好ましく、さらに1箇所に限定すると好ましい。なお粒子を含む流体を導入する導入口以外の導入口には、溶媒のみを導入すればよい。粒子を含む流体の流路を面状に形成する場合、導入口は、上部基板部材、下部基板部材、側面部材のいずれか1部材以上に形成すればよく、例えば、上部基板部材に導入口を設ける態様が例示できる。 The introduction port of the flow path of the fluid containing particles provided in the particle manipulation device of the second aspect of the present invention is not particularly limited as long as the fluid can be introduced, and the number of introduction ports may be one. There may be more than one. Further, the inlet of the flow path may be connected to the liquid feed pump via the liquid feed tube. When the flow path of the fluid containing particles is formed in a planar shape, it is preferable to provide a plurality of introduction ports from the viewpoint of reducing the turbulence of the flow of the flow path. When a plurality of introduction ports are provided, a fluid containing particles to be separated may be introduced from all the introduction ports, but the particles are moved / reciprocated by a flow reciprocating in a direction intersecting the introduction direction of the fluid in the flow path. From the viewpoint of classification, it is preferable that the introduction port for introducing the fluid containing particles is a part of a plurality of introduction ports, and it is preferable that the introduction port is further limited to one place. It is only necessary to introduce the solvent into the introduction port other than the introduction port into which the fluid containing particles is introduced. When the flow path of the fluid containing particles is formed in a planar shape, the introduction port may be formed in any one or more of the upper substrate member, the lower substrate member, and the side surface member. For example, the introduction port may be formed in the upper substrate member. An embodiment of the provision can be exemplified.

第二の観点の本発明の粒子操作装置に備える、粒子を含む流体の排出口は、前記流体を排出することができれば特に限定はなく、排出口の数は1つであってもよいし、複数であってもよい。また流体の排出口は、排液チューブを介して、排液タンクまたは吸引ポンプに繋がれていてもよいし、粒子の排出口と併用する場合は、粒子取得チューブを介して、または直接排出口から、粒子を含む流体を回収してもよい。粒子を含む流体の流路が面状に形成されている場合、前記流路の流れの乱れを低減する観点から、排出口も導入口と同様、複数設けると好ましい。排出口の設置数は導入口と同数としてもよいし、異なる数としてもよい。粒子を含む流体の流路を面状に形成する場合、排出口は、上部基板部材、下部基板部材、側面部材のいずれか1部材以上に形成すればよく、例えば、下部基板部材に排出口を設ける態様が例示できる(図26)。 The discharge port of the fluid containing the particles provided in the particle manipulation device of the second aspect of the present invention is not particularly limited as long as the fluid can be discharged, and the number of discharge ports may be one. There may be more than one. The fluid outlet may be connected to the drain tank or suction pump via a drain tube, or when used in combination with a particle outlet, via a particle acquisition tube or directly. The fluid containing the particles may be recovered from the water. When the flow path of the fluid containing particles is formed in a planar shape, it is preferable to provide a plurality of discharge ports as well as the introduction port from the viewpoint of reducing the turbulence of the flow of the flow path. The number of outlets installed may be the same as the number of inlets, or may be different. When the flow path of the fluid containing particles is formed in a planar shape, the discharge port may be formed on any one or more of the upper substrate member, the lower substrate member, and the side surface member. For example, the discharge port may be formed on the lower substrate member. An embodiment of the provision can be exemplified (Fig. 26).

第二の観点の本発明の粒子操作装置に備える、粒子を含む流体の流路における前記流体の導入方向に対し交わる方向又は平行に往復する流動を発生させることで、前記粒子を移動させる加減圧手段の一例として、アクチュエーターや圧電素子等の振動手段や、ポンプ等の液流発生手段を用いて往復する流動を発生させて、前記粒子を移動させる手段があげられる。粒子を含む流体の流路が上部基板部材、下部基板部材および側面部材で構成され、かつ振動手段を用いて往復する流動を発生させる場合、前述した部材のいずれか1以上の部材に振動手段を設け、当該振動手段で各部材を変形させることで往復する流動を発生させればよい。特に側面部材が柔軟性または伸縮性の部材である場合は、上部基板部材または下部基板部材に振動手段を設け、当該振動手段を設けた部材の側面端を上下に振動させることで、往復する流動を発生させればよい。好ましい態様では、上部基板部材の1の側面端を上下に振動させることで、または2以上の側面端を2以上の振動手段で上下に交互に振動させることで、往復する流動を発生させることができる。複数の振動手段を設ける場合、振動数は同一であっても、異なってもよい。ポンプ等の液流または気流発生手段を用いて往復する流動を発生させる場合、例えば、一方の側面部材に複数のポンプ接続孔を配置し、当該接続孔がポンプに接続された状態で正圧と負圧を交互に与えることで流動を発生させばよい。また両側の側面部材に、それぞれ複数のポンプ接続孔を配置し、当該接続孔がポンプに接続された状態で正圧を交互に与えることで流動を発生させてもよい。一方の側面部材に配置された複数のポンプ接続孔は、1つのポンプに接続されていてもよいし、複数のポンプに接続されていてもよい。なお前記加減圧手段により発生させる往復する流動の方向は、粒子を含む流体の流路における前記流体の導入方向に対し交わる方向としても平行方向としてもよいが、前記流体の導入方向に対し交わる方向とする場合は垂直とすると好ましい。 Acceleration / depressurization for moving the particles by generating a flow reciprocating in a direction intersecting with or parallel to the introduction direction of the fluid in the flow path of the fluid containing the particles provided in the particle manipulation device of the second aspect of the present invention. As an example of the means, there is a means for moving the particles by generating a reciprocating flow by using a vibrating means such as an actuator or a piezoelectric element or a liquid flow generating means such as a pump. When the flow path of the fluid containing particles is composed of an upper substrate member, a lower substrate member and a side surface member, and a reciprocating flow is generated by using a vibrating means, the vibrating means is applied to any one or more of the above-mentioned members. It may be provided and a reciprocating flow may be generated by deforming each member by the vibrating means. In particular, when the side surface member is a flexible or stretchable member, a vibrating means is provided on the upper substrate member or the lower substrate member, and the side surface end of the member provided with the vibrating means is vibrated up and down to reciprocate the flow. Should be generated. In a preferred embodiment, reciprocating flow can be generated by vibrating one side edge of the upper substrate member up and down, or by alternately vibrating two or more side edges up and down by two or more vibrating means. it can. When a plurality of vibrating means are provided, the frequencies may be the same or different. When generating a reciprocating flow using a liquid flow or an air flow generating means such as a pump, for example, a plurality of pump connection holes are arranged on one side member, and a positive pressure is applied with the connection holes connected to the pump. Flow may be generated by alternately applying negative pressure. Further, a plurality of pump connection holes may be arranged on the side surface members on both sides, and the flow may be generated by alternately applying positive pressure while the connection holes are connected to the pump. A plurality of pump connection holes arranged on one side member may be connected to one pump or may be connected to a plurality of pumps. The direction of the reciprocating flow generated by the pressurizing / depressurizing means may be a direction intersecting or parallel to the introduction direction of the fluid in the flow path of the fluid containing particles, but a direction intersecting the introduction direction of the fluid. In the case of, it is preferable to make it vertical.

前述した方法により形成された往復する流動は、周期的な流動であると好ましい。振動手段で流動を発生させる際は、往復する波形を有する駆動信号を振動手段の駆動信号として用いることで発生させることができる。したがって、流体の変位量を示す波形は、そのまま振動手段の駆動信号の波形に相当するといえる。往復する波形を有する駆動信号とは、電圧、電流のいずれかであってもよい。前記駆動信号は、短時間に急峻な変化をするパルスであってもよいし、連続した変化をする連続波であってもよい。分離能の再現性を担保する観点から、このような波形は、周期的であることが好ましい。駆動信号の波形に応じて、往復する流動が発生するため、駆動信号を周期的とすると、往復する流動も周期的になる。第二の観点の本発明の粒子操作装置では、往復する流動の波形をノコギリ型波等の非線対称の波形を有した波形としており、当該波形とすることで流動の進行方向の切替わり前後での速度が異なるため、流体中に含まれる粒子を効率的に移動させることができる。ここで線対称とは、最短繰り返し周期の半周期毎に信号が極性反転して繰り返すことをいい、線対称の場合は時間軸に対して正の信号値と負の信号値が対称となっている。なお本発明の粒子操作装置で用いる往復する流動の波形は、非線対称の波形を有していればよく、その他(正弦波、三角波、矩形波等)の波との合成波であってもよい。 The reciprocating flow formed by the method described above is preferably a periodic flow. When the flow is generated by the vibrating means, it can be generated by using a drive signal having a reciprocating waveform as the drive signal of the vibrating means. Therefore, it can be said that the waveform indicating the displacement amount of the fluid directly corresponds to the waveform of the drive signal of the vibrating means. The drive signal having a reciprocating waveform may be either a voltage or a current. The drive signal may be a pulse that changes sharply in a short time, or may be a continuous wave that changes continuously. From the viewpoint of ensuring the reproducibility of the resolution, such a waveform is preferably periodic. Since a reciprocating flow is generated according to the waveform of the drive signal, if the drive signal is periodic, the reciprocating flow is also periodic. In the particle manipulation device of the present invention from the second viewpoint, the reciprocating flow waveform is a waveform having a non-axisymmetric waveform such as a sawtooth type wave, and by using this waveform, before and after switching the traveling direction of the flow. Since the speeds are different, the particles contained in the fluid can be moved efficiently. Here, line symmetry means that the signal is reversed in polarity every half cycle of the shortest repetition period, and in the case of line symmetry, the positive signal value and the negative signal value are symmetric with respect to the time axis. There is. The reciprocating flow waveform used in the particle manipulation device of the present invention may have a non-axisymmetric waveform, and may be a composite wave with other waves (sine wave, triangular wave, square wave, etc.). Good.

第二の観点の本発明の粒子操作装置で導入する流体としては、液体または気体があげられるが、より高い分離能を達成できる点では液体が好ましい。液体を用いる場合、分離する粒子に応じて適宜選択することができる。分離する粒子が工業材料の場合、製造時に用いた溶媒をそのまま導入液体として用いてもよいし、水等の安価かつ無害な溶媒で置換した液体を用いてもよい。分離する粒子が、細胞、ウイルス、抗体等の生物材料の場合、当該生物材料が分散していた溶媒を用いると好ましく、特に細胞を用いる場合には、細胞の生存を担保する観点から、培養培地、血液、血漿、生理食塩水(PBS(Phosphate Buffered Saline)、TBS(Tris Buffered Saline)等)を溶媒として用いるとよい。これらの液体に対しては、任意の賦形剤、例えばpH調製剤、安定剤、増粘剤、保存剤、抗生物質等をさらに含んでもよい。分離能を高める観点から、粒子のサイズ、密度、形状に応じて、適切な粘性の液体を選択してもよい。 Examples of the fluid to be introduced in the particle manipulation apparatus of the second aspect of the present invention include liquids and gases, but liquids are preferable in that higher resolution can be achieved. When a liquid is used, it can be appropriately selected depending on the particles to be separated. When the particles to be separated are industrial materials, the solvent used at the time of production may be used as it is as the introduction liquid, or a liquid replaced with an inexpensive and harmless solvent such as water may be used. When the particles to be separated are biological materials such as cells, viruses, and antibodies, it is preferable to use a solvent in which the biological materials are dispersed, and particularly when cells are used, a culture medium is used from the viewpoint of ensuring cell survival. , Blood, plasma, physiological saline (PBS (Phosphate Buffered Saline), TBS (Tris Buffered Saline), etc.) may be used as a solvent. These liquids may further contain any excipients such as pH adjusters, stabilizers, thickeners, preservatives, antibiotics and the like. From the viewpoint of enhancing the separability, a liquid having an appropriate viscosity may be selected according to the size, density and shape of the particles.

第二の観点の本発明の粒子操作装置は、粒子を含む流体の流路に1又は複数の凹凸部を設けていることを特徴としている。本発明において、凹凸部は、凸部のみで構成されていてもよいし、凹部のみで構成されていてもよく、また凹部と凸部の組合せにより構成されてもよい。凹凸部の形状に特に限定はなく、例えば、円錐形、円柱形、角錐形、角柱形があげられる。さらに凹凸部は、一の方向に直線状又は曲線状に延在していてもよい。凹凸部が延在する場合、その断面は、任意の形状であってよく、例えば点対称、非点対称、線対称、又は非線対称の形状であってもよい。中でも、粒子を含む流体の流路に設ける凹凸部としては、直線状に延在し、その断面が非線対称である凹凸部が好ましく、ノコギリ形状のような非線対称で直線状に延在する凹凸部を採用すると、流体中に含まれる粒子が効率的に一方向へ移動できる点でさらに好ましい。なお凹凸を設ける位置に特に限定はなく、流体の導入方向に対し、平行方向に設けてもよいし、交差する方向、例えば垂直方向に設けてもよいが、前記加減圧手段が前記流路における前記流体の導入方向に対し交差する方向に往復する流動を発生させる手段である場合は、前記流路における流体の導入方向に対して平行方向に設けると好ましく、前記加減圧手段が前記流路における前記流体の導入方向に対し平行方向に往復する流動を発生させる手段である場合は、前記流路における流体の導入方向に対して交差する方向に設けると好ましい。 The particle manipulation device of the present invention according to the second aspect is characterized in that one or a plurality of uneven portions are provided in the flow path of the fluid containing the particles. In the present invention, the uneven portion may be composed of only the convex portion, may be composed of only the concave portion, or may be composed of a combination of the concave portion and the convex portion. The shape of the uneven portion is not particularly limited, and examples thereof include a conical shape, a cylindrical shape, a pyramid shape, and a prismatic shape. Further, the uneven portion may extend linearly or curvedly in one direction. When the uneven portion extends, the cross section may have any shape, for example, a point-symmetrical shape, a non-point-symmetrical shape, a line-symmetrical shape, or a non-line-symmetrical shape. Among them, as the uneven portion provided in the flow path of the fluid containing particles, the uneven portion extending linearly and having a non-axisymmetric cross section is preferable, and the uneven portion extending linearly with non-axisymmetry such as a sawtooth shape. It is more preferable to adopt the concavo-convex portion, in that the particles contained in the fluid can efficiently move in one direction. The position where the unevenness is provided is not particularly limited, and may be provided in a direction parallel to the introduction direction of the fluid, or may be provided in a crossing direction, for example, a vertical direction, but the pressurizing / depressurizing means is provided in the flow path. When it is a means for generating a flow reciprocating in a direction intersecting the introduction direction of the fluid, it is preferable to provide the means in a direction parallel to the introduction direction of the fluid in the flow path, and the pressurizing / depressurizing means is provided in the flow path. When it is a means for generating a flow reciprocating in a direction parallel to the introduction direction of the fluid, it is preferable to provide the means in a direction intersecting the introduction direction of the fluid in the flow path.

以下、図面を用いて第二の観点の本発明の粒子操作装置を詳細に説明する。
本発明の粒子操作装置の一例を図16に示す。図16に示す粒子操作装置2100は、粒子を含む液体を導入する流路構造体210と、振動流発生装置(加減圧手段)220と、流路構造体210に導入した粒子の移動を観察するための粒子観測装置230とを備えている。
流路構造体210は、下から下部基板部材211、側面部材213、上部基板部材212の順に重ね合わせることで形成した(図16)。下部基板部材211は厚み0.9mm10cm角のPC(ポリカーボネート)基板であり、そのうち50mm×90mmの領域に、幅200μm、高さ5μmのノコギリ波状の断面を有する直線状に延在する凹凸部11aを複数設けた(図17)。上部基板部材212は厚み1mm10cm角のガラス基板であり、当該基板上の中央線上かつ端面から1cmの部位に導入口、排出口としてφ1cmの貫通穴212aを2つ(導入口212aa・排出口212ab)形成させた(図18)。なお貫通穴212aには、PTFEチューブとの接続のため、金属製の電気ハトメを接着剤で固定している。前記電気ハトメおよび前記PTFEチューブとシリンジポンプとを連結させることで粒子を含む液体の導入および排出を行なう。粒子の移動状況の観察時には排出口212abは1つで十分であるが、粒子を含む液体の導入方向から垂直方向に移動した粒子の採取を行なう場合は排出口212abを追加した方が好ましい(図26)。側面部材13は、厚み1.5mm、10cm角のシリコンゴムシートであり、そのうち50mm×90mmの領域(直線状に延在する凹凸部211aを設けた領域と一致)をくり抜き、開口部213aを設けることで、面状の流路を形成させた(図19)。なお直線状に延在する凹凸部211aは、粒子を含む液体の流路における前記液体の導入方向(すなわち、導入口212aaから排出口212abへの方向)に対して平行方向に形成されている。また前述した流路構造体210は数十μmから数百μmの粒子を分級するのに好ましい構造体である。
Hereinafter, the particle manipulation apparatus of the present invention according to the second aspect will be described in detail with reference to the drawings.
An example of the particle manipulation device of the present invention is shown in FIG. The particle manipulation device 2100 shown in FIG. 16 observes the movement of the flow path structure 210 for introducing the liquid containing the particles, the vibration flow generator (accumulation / depressurization means) 220, and the particles introduced into the flow path structure 210. It is equipped with a particle observation device 230 for the purpose.
The flow path structure 210 was formed by stacking the lower substrate member 211, the side surface member 213, and the upper substrate member 212 in this order from the bottom (FIG. 16). The lower substrate member 211 is a PC (polycarbonate) substrate having a thickness of 0.9 mm and a square of 10 cm, and a concavo-convex portion 11a having a sawtooth-like cross section of 200 μm in width and 5 μm in height extends linearly in a region of 50 mm × 90 mm. A plurality of them were provided (FIG. 17). The upper substrate member 212 is a glass substrate having a thickness of 1 mm and 10 cm square, and has two introduction ports and two φ1 cm through holes 212a (introduction port 212aa and discharge port 212ab) on the center line of the substrate and 1 cm from the end face. It was formed (Fig. 18). A metal electric eyelet is fixed to the through hole 212a with an adhesive for connection with the PTFE tube. By connecting the electric eyelet and the PTFE tube to a syringe pump, a liquid containing particles is introduced and discharged. One discharge port 212ab is sufficient when observing the movement of particles, but it is preferable to add the discharge port 212ab when collecting particles that have moved vertically from the introduction direction of the liquid containing the particles (Fig.). 26). The side surface member 13 is a silicon rubber sheet having a thickness of 1.5 mm and a square of 10 cm, and a region of 50 mm × 90 mm (corresponding to the region provided with the uneven portion 211a extending linearly) is hollowed out to provide an opening 213a. As a result, a planar flow path was formed (FIG. 19). The uneven portion 211a extending linearly is formed in a direction parallel to the introduction direction of the liquid (that is, the direction from the introduction port 212aa to the discharge port 212ab) in the flow path of the liquid containing particles. Further, the above-mentioned flow path structure 210 is a preferable structure for classifying particles having a size of several tens of μm to several hundreds of μm.

振動流発生装置220は、流路構造体210を保持する基板ホルダー(不図示)と、流路構造体10の厚さ方向に変位可能な圧電素子221(翔栄システム製)と、圧電素子221を変異させて振動流(往復する流動)を発生させるためのピエゾドライバー222(翔栄システム製、SSL−140−1CH)および駆動信号発生器223(NF回路ブロック製WF1646B)とを設けている。圧電素子221は、流路構造体210に設けた直線状の凹凸部211aに対して上方かつ流路構造体210基板端より1cmの位置240に接触する形で2箇所設けており、流路構造体210の厚さ方向に100μm変位可能である。具体的には、圧電素子221aとピエゾドライバー222aの出力とを、圧電素子221bとピエゾドライバー222bの出力とを、それぞれ接続し、ピエゾドライバー222a・222bの入力と駆動信号発生器223の出力とを接続することで流路構造体210に収容した液体に対し振動流を形成させる。振動流の形成は、駆動信号発生器223のピエゾドライバー222aへの出力波形の位相とピエゾドライバー222bの出力波形の位相とを180度ずらして、または前記信号を反転させて、圧電素子221の伸張、収縮を交互に駆動させることで、粒子を含む液体の流路における前記液体の導入方向(すなわち、導入口212aaから排出口212abへの方向)に対して垂直方向に振動流を形成した(図20)。駆動信号発生器223のピエゾドライバー222への出力波形は任意に生成でき、その一例として正弦波、三角波、方形波、ノコギリ波がある。 The vibration flow generator 220 includes a substrate holder (not shown) for holding the flow path structure 210, a piezoelectric element 221 (manufactured by Shoei System) that can be displaced in the thickness direction of the flow path structure 10, and a piezoelectric element 221. A piezo driver 222 (manufactured by Shoei System, SSL-140-1CH) and a drive signal generator 223 (manufactured by NF circuit block, WF1646B) are provided to generate an oscillating flow (reciprocating flow) by mutating. The piezoelectric element 221 is provided at two locations above the linear uneven portion 211a provided on the flow path structure 210 and in contact with the position 240 1 cm from the substrate end of the flow path structure 210, and has a flow path structure. It can be displaced by 100 μm in the thickness direction of the body 210. Specifically, the piezoelectric element 221a and the output of the piezo driver 222a are connected, the piezoelectric element 221b and the output of the piezo driver 222b are connected, respectively, and the input of the piezo drivers 222a and 222b and the output of the drive signal generator 223 are connected. By connecting, a vibration flow is formed in the liquid contained in the flow path structure 210. To form the vibration flow, the phase of the output waveform of the drive signal generator 223 to the piezo driver 222a and the phase of the output waveform of the piezo driver 222b are shifted by 180 degrees or the signal is inverted to extend the piezoelectric element 221. By alternately driving the contraction, a vibration flow was formed in a direction perpendicular to the introduction direction of the liquid (that is, the direction from the introduction port 212aa to the discharge port 212ab) in the flow path of the liquid containing particles (FIG. 20). The output waveform of the drive signal generator 223 to the piezo driver 222 can be arbitrarily generated, and examples thereof include a sine wave, a triangular wave, a square wave, and a sawtooth wave.

粒子観測装置230は、流路構造体210のうち少なくとも直線状に延在する凹凸部211aを設けた領域を観察可能なズームレンズ231(モリテックス製)およびカメラ232(SONY製CCDカメラXCD−V50、または朋栄製高速カメラVFC−1000)を、流路構造体210の基板中央部に、微動機構(不図示)を付与して備えている。なおカメラ232は、状況に応じて、粒子の振動まで観察する場合は高速カメラに、低速で観測する場合はCCDカメラに、それぞれ切り換えて使用すると好ましい。なおカメラ232(高速カメラ)での観察ビデオの1フレームの画像それぞれに対し2値化処理を施すことで、流路構造体210へ導入した粒子を検出後、当該検出した粒子の重心における位置を計測し、当該位置情報を時間的な変化としてデータ化することで、粒子の移動軌跡を計測できる。 The particle observation device 230 includes a zoom lens 231 (manufactured by Moritex) and a camera 232 (manufactured by Sony CCD camera XCD-V50) capable of observing a region of the flow path structure 210 provided with at least a linearly extending uneven portion 211a. Alternatively, a Tomoei high-speed camera VFC-1000) is provided at the center of the substrate of the flow path structure 210 with a fine movement mechanism (not shown). It is preferable that the camera 232 is switched between a high-speed camera when observing the vibration of particles and a CCD camera when observing at low speed, depending on the situation. By performing binarization processing on each image of one frame of the observation video by the camera 232 (high-speed camera), after detecting the particles introduced into the flow path structure 210, the position of the detected particles in the center of gravity is determined. The movement locus of particles can be measured by measuring and converting the position information into data as a change over time.

以下、実施例および比較例を用いて本発明をさらに詳細に説明するが、本発明はこれら例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these examples.

1.流路構造体の製造
上面基板部材として10cm×10cm、厚さ1.1mmの青板ガラスに粒子導入口/排出口22/23として直径1mmの貫通孔を2つ加工した。その位置は、図4Bの側面部材の上面図において符号22/23で表した位置である。また、下面基板部材としては、貫通孔がない点を除き上面基板部材と同じものを使用した。10cm×10cm、厚さ1mmのシリコーンゴムシートを図4Bに示すように、直径32mmの円形部と、幅5mm長さ42mmの流路を形成するように切り抜き、これを上面基板部材と下面基板部材との間に配置して側面部材とした。上面基板部材及び下面基板部材とシリコーンゴムシートは、シリコーンゴムシートの粘着力で接合して液漏れが最小限となるように構成した。上面基板部材上において、シリコーンゴムシートの円形くり抜き部の中心の位置を、振動部材9L及び9Rの配置位置とした。試料導入/排出ポートは液体を導入・排出できるように可撓性チューブを接続できるように上蓋基板部材の貫通孔にハトメを接着剤で固定しチューブを接続できるようにして、流路構造体を製造した。
1. 1. Manufacture of flow path structure As a top substrate member, two through holes with a diameter of 1 mm were machined as a particle introduction port / discharge port 22/23 on a blue plate glass having a thickness of 1.1 mm and a thickness of 10 cm. The position is the position represented by reference numeral 22/23 in the top view of the side member of FIG. 4B. Further, as the lower surface substrate member, the same member as the upper surface substrate member was used except that there was no through hole. As shown in FIG. 4B, a 10 cm × 10 cm, 1 mm thick silicone rubber sheet is cut out so as to form a circular portion having a diameter of 32 mm and a flow path having a width of 5 mm and a length of 42 mm, which are cut out to form a top substrate member and a bottom substrate member. It was arranged between and used as a side member. The upper surface substrate member and the lower surface substrate member and the silicone rubber sheet are joined by the adhesive force of the silicone rubber sheet so as to minimize liquid leakage. The position of the center of the circular hollow portion of the silicone rubber sheet on the upper surface substrate member was set as the arrangement position of the vibrating members 9L and 9R. The sample introduction / discharge port has an eyelet fixed to the through hole of the upper lid substrate member with an adhesive so that a flexible tube can be connected so that the liquid can be introduced and discharged, so that the tube can be connected to the flow path structure. Manufactured.

2.往復液流発生装置
前記流路構造体2を保持する機構を備えた基板ホルダー11及び前記流路構造体2の振動部材配置位置に対して、基板端より1cmの位置に基板厚み方向に100μm変位可能な圧電素子(翔栄システム製)を、振動部材9L,9Rとして配置した。2つの圧電素子に対し、振動流形成させるため振動部材駆動電源としてピエゾドライバーSSL−140−1CH(翔栄システム製)を2台設置した。また波形信号生成器15としてWF1646B(NF回路ブロック製)を接続した(図1)。
2. 2. Reciprocating liquid flow generator 100 μm displacement in the substrate thickness direction at a position 1 cm from the edge of the substrate with respect to the position of the substrate holder 11 having a mechanism for holding the flow path structure 2 and the vibrating member arrangement position of the flow path structure 2. Possible piezoelectric elements (manufactured by Shoei System) were arranged as vibrating members 9L and 9R. Two piezodrivers SSL-140-1CH (manufactured by Shoei System) were installed as a vibration member drive power source to form a vibration flow for the two piezoelectric elements. Further, WF1646B (manufactured by NF circuit block) was connected as the waveform signal generator 15 (FIG. 1).

3.粒子観測装置
前記微小流路構造体中央部を観測可能なズームレンズ(モリテックス製)、CCDカメラ(SONY製 XCD−V50)または高速カメラ(朋栄製 VFC−1000)を基板中央部に微動機構を付与して設置した(図1)。
3. 3. Particle observation device A zoom lens (manufactured by Moritex), a CCD camera (XCD-V50 manufactured by SONY) or a high-speed camera (VFC-1000 manufactured by Tomoei) capable of observing the central part of the microchannel structure is provided with a fine movement mechanism in the central part of the substrate. And installed (Fig. 1).

実施例1:エタノール中での粒径200μmの粒子の移動
上記の粒子観測装置を備えた往復液流発生装置に対し、流路構造体をセットし、流路構造体中に粒子を含む液体を導入した。導入した粒子は、粒径約200μmの東ソー製トヨパールゲルであり、99.5%エタノール(密度:0.7892g/cm3)に置換・分散させて用いた。また、粒子を導入した後に試料導入/排出ポートはポートに接着剤で固定化したハトメを封止して試料を密閉してバッチ処理に供した。
Example 1: Movement of particles having a particle size of 200 μm in ethanol A flow path structure is set in a reciprocating liquid flow generator provided with the above particle observation device, and a liquid containing particles is placed in the flow path structure. Introduced. The introduced particles were Tosoh Toyopearl gel having a particle size of about 200 μm, and were used by substituting and dispersing with 99.5% ethanol (density: 0.7892 g / cm 3 ). In addition, after the particles were introduced, the sample introduction / discharge port was subjected to batch processing by sealing the eyelets fixed with an adhesive in the port and sealing the sample.

2つの圧電素子の駆動波形としては図3Bのように9Lと9Rの伸縮が反転するように駆動波形を設定した。この時の円形部分の圧縮/伸長による流動の変化を考えやすいように図3Cに示す。ここでは波形の一周期を360°と表現し、図3C上で線対称な振動として三角波の頂点を0°と表現する。この状態から三角波の頂点を最大±180°変化させ粒子の移動を観測した。また、この時の駆動波形の周波数は5Hz、圧電素子の最大駆動電圧を2V(5Vmaxで100μm変動)圧電素子の伸長40μmに設定した。圧電素子の振動による粒子の移動軌跡は図6に示すように画像解析による粒子位置の自動計測により測定した。 As the drive waveforms of the two piezoelectric elements, the drive waveforms were set so that the expansion and contraction of 9L and 9R were reversed as shown in FIG. 3B. The change in flow due to compression / expansion of the circular portion at this time is shown in FIG. 3C for easy consideration. Here, one period of the waveform is expressed as 360 °, and the apex of the triangular wave is expressed as 0 ° as a line-symmetrical vibration on FIG. 3C. From this state, the apex of the triangular wave was changed by a maximum of ± 180 °, and the movement of particles was observed. The frequency of the drive waveform at this time was set to 5 Hz, and the maximum drive voltage of the piezoelectric element was set to 2 V (variable by 100 μm at 5 Vmax) and the extension of the piezoelectric element was set to 40 μm. The movement locus of the particles due to the vibration of the piezoelectric element was measured by automatic measurement of the particle position by image analysis as shown in FIG.

このような状態にて図3Cに示すように圧電素子を駆動させたところ、往復信号波形が時間軸に対し線対称、つまり三角波の頂点が0°(つまり図3Cの0°の三角波)の場合は、200μm粒子は振動するが一方向への移動は観測できなかった。その一方で、時間軸に対し線対称(つまり三角波の頂点が0°)以外の場合、すなわち60°〜150°の非線対称波形の場合、往復する流体の変位量も、非線対称波形となる。このときの粒子の位置を測定したところ、図7Aに示すように右方向に移動することを確認した。 When the piezoelectric element is driven as shown in FIG. 3C in such a state, the reciprocating signal waveform is axisymmetric with respect to the time axis, that is, the apex of the triangular wave is 0 ° (that is, the 0 ° triangular wave in FIG. 3C). Although the 200 μm particle oscillated, no movement in one direction could be observed. On the other hand, in the case of a non-axisymmetric waveform other than line symmetry with respect to the time axis (that is, the apex of the triangular wave is 0 °), that is, in the case of a non-axisymmetric waveform of 60 ° to 150 °, the displacement amount of the reciprocating fluid is also the non-axisymmetric waveform. Become. When the positions of the particles at this time were measured, it was confirmed that the particles moved to the right as shown in FIG. 7A.

また、−60°〜−150°とすると図7Bに示すように粒子の移動が左側に移動することを確認し、それぞれの三角波からの頂点のずれが大きい程、粒子の移動量が大きいことも確認した。また、三角波の頂点が±180°とすることで移動方向が逆転し、且つ移動量が飛躍的に向上することが確認された(図8)。 Further, it was confirmed that the movement of the particles moved to the left as shown in FIG. 7B when the temperature was set to -60 ° to -150 °, and the larger the deviation of the apex from each triangular wave, the larger the amount of movement of the particles. confirmed. In addition, it was confirmed that the movement direction was reversed and the movement amount was dramatically improved by setting the apex of the triangular wave to ± 180 ° (FIG. 8).

実施例2:フィコール中での粒径200μmの粒子の移動
粒子を分散する溶媒として、フィコール(密度1.077g/cm3)を用いた点と駆動波形を変更した点を除き、実施例1と同様に実験を行なった。圧電素子の駆動波形として三角波の頂点から+150°、−150°変化させた波形を用いた。この時の駆動波形の周波数は5Hz、圧電素子の最大駆動電圧を2V(5Vmaxで100μm変動)圧電素子の伸長40μmに設定し、圧電素子の振動による粒子の移動軌跡は図6に示すように画像解析による粒子位置の自動計測により測定した。
Example 2: Except that Ficoll (density 1.077 g / cm 3 ) was used as a solvent for dispersing the moving particles of particles having a particle size of 200 μm in Ficoll and the driving waveform was changed, the same as in Example 1. The experiment was conducted in the same manner. As the drive waveform of the piezoelectric element, a waveform changed by + 150 ° and −150 ° from the apex of the triangular wave was used. The frequency of the drive waveform at this time is set to 5 Hz, the maximum drive voltage of the piezoelectric element is set to 2 V (fluctuation of 100 μm at 5 Vmax), the extension of the piezoelectric element is set to 40 μm, and the movement trajectory of the particles due to the vibration of the piezoelectric element is an image as shown in FIG. It was measured by automatic measurement of the particle position by analysis.

その結果、図8に示すように移動方向の正負は変化しないがエタノールでの移動速度に比べ大幅に減少した。また、溶液中に気泡(0.0012g/cm3)を混入したところ200μm粒子とは真逆に移動することを確認した。As a result, as shown in FIG. 8, the positive and negative movement directions did not change, but the movement speed was significantly reduced as compared with the movement speed with ethanol. Further, it was confirmed that when air bubbles (0.0012 g / cm 3 ) were mixed in the solution, the particles moved in the exact opposite direction to the 200 μm particles.

実施例3:連続フロー系でのポリスチレンビーズ20μmの粒子の移動
上で使用した流路構造体において、幅10mmの直線状の流路部分に、1の粒子導入口と、その反対側に5の粒子取得口とを形成するように、シリコーンゴムシートを切り抜き、さらに上面基板に貫通孔を開けた(図5)。貫通孔にハトメを接着剤で固定しチューブを接続できるようにした。あらかじめ、流路内を水で満たし、排出口の1,3,5に取り付けたシリコーンチューブの反対側の出口を採取容器に設置し、排出口2,4に取り付けたシリコーンチューブの先端は閉止した。粒子導入口から粒子を含む液を導入しながら、写真の2つの圧電素子の駆動波形としては2つの圧電素子の伸縮が反転するように駆動波形を設定した。圧電素子の駆動波形形状としては図3C180°の場合のようにこぎり波状の波形を与えた。この時の駆動波形の周波数は5Hz、圧電素子の最大駆動電圧を2V(5Vmaxで100μm変動)圧電素子の伸長40μmに設定した。
Example 3: In the flow path structure used for moving 20 μm particles of polystyrene beads in a continuous flow system , one particle introduction port is provided in a linear flow path portion having a width of 10 mm, and five particles are located on the opposite side. A silicone rubber sheet was cut out so as to form a particle acquisition port, and a through hole was further formed in the upper surface substrate (FIG. 5). Eyelets were fixed to the through holes with an adhesive so that the tubes could be connected. The flow path was filled with water in advance, the outlet on the opposite side of the silicone tubes attached to the discharge ports 1, 3 and 5 was installed in the sampling container, and the tips of the silicone tubes attached to the discharge ports 2 and 4 were closed. .. While introducing the liquid containing the particles from the particle introduction port, the drive waveforms of the two piezoelectric elements in the photograph were set so that the expansion and contraction of the two piezoelectric elements were reversed. As the drive waveform shape of the piezoelectric element, a sawtooth waveform was given as in the case of FIG. 3C 180 °. The frequency of the drive waveform at this time was set to 5 Hz, and the maximum drive voltage of the piezoelectric element was set to 2 V (variable by 100 μm at 5 Vmax) and the extension of the piezoelectric element was set to 40 μm.

粒子試料としては粒径20μmのポリマー標準粒子(Duke Standards CatNo.4220A)、及び、粒径1.0μmの蛍光粒子(Fluoro−Max(TM) Cat No.G0100)の2種を純水に分散させ、2つの円形部分を連通させる流路に連通する導入ポートにシリンジポンプから100μL/minで導入した。 Two types of particle samples, polymer standard particles with a particle size of 20 μm (Duke Standards Cat No. 4220A) and fluorescent particles with a particle size of 1.0 μm (Fluoro-Max (TM) Cat No. G0100), are dispersed in pure water. It was introduced from a syringe pump at 100 μL / min into an introduction port communicating with a flow path communicating the two circular portions.

このような状態を安定して動作させている最中に、排出口1,3,5から排出した液を一定時間分取した。分取したポート1,3,5からの液量はそれぞれ、0.65g、0.74g、0.60gであった。その後、採取した液を、均一に撹拌しながら50μL分取して顕微鏡で観察した。20μm粒子の含有数を数えたところ、ポート1,3,5からそれぞれ、9個、57個、43個となりポート3、5から多く分取することができた。また、1μmの粒子はどのポートからも多数検出された。このように、分離したい粒子を複数形成した排出ポートから効率的に分取することが可能であることを確認した。 During stable operation of such a state, the liquid discharged from the discharge ports 1, 3 and 5 was taken for a certain period of time. The liquid volumes from the sorted ports 1, 3 and 5 were 0.65 g, 0.74 g, and 0.60 g, respectively. Then, 50 μL of the collected liquid was collected with uniform stirring and observed under a microscope. When the content of 20 μm particles was counted, the number of particles was 9, 57, and 43 from ports 1, 3 and 5, respectively, and a large amount could be separated from ports 3 and 5, respectively. In addition, a large number of 1 μm particles were detected from any port. In this way, it was confirmed that it is possible to efficiently separate the particles to be separated from the discharge ports in which a plurality of particles are formed.

実施例4:癌細胞と血球の分離
使用した流路は図10に示すように上面基板部材として10cm角、厚さ1.1mmの青板ガラスに試料導入/排出ポートとして直径1mm貫通孔を2つ加工した。また、下面基板部材としては貫通孔がないものを使用し、これら上面基板部材と下面基板部材の中間に厚さ1mmのシリコンゴムシートを図2のように直径32mmφの圧電素子で圧迫されて液流を発生する2つの円形部分を作成した。この円形部分は前記上基板の貫通孔と連通するように切り抜いてある。また、2つの円形部分を連通させるように幅5mmの直線状の流路を形成した。このように作成した上面基板部材基板とシリコンゴムシート、下面基板部材には櫛模様のパターニングを施し、シリコンゴムシートの粘着力で接合して液漏れが最小限となる構造体とした。試料導入/排出ポートは液体を導入・排出できるように可撓性チューブを接続できるように上面基板部材基板の貫通孔にハトメを接着剤で固定しチューブを接続できるようにした。注射針で圧電素子圧迫部の円形部分と円形部分を連通する流路の中央に粒子導入口29を作成し、血球と癌細胞の希釈液を導入した。
Example 4: Separation of cancer cells and blood cells As shown in FIG. 10, the flow path used is 10 cm square as a top substrate member and 1.1 mm thick blue plate glass with two 1 mm diameter through holes as sample introduction / discharge ports. processed. Further, as the lower surface substrate member, a member having no through hole is used, and a silicon rubber sheet having a thickness of 1 mm is pressed between the upper surface substrate member and the lower surface substrate member by a piezoelectric element having a diameter of 32 mmφ as shown in FIG. Two circular parts that generate the flow were created. This circular portion is cut out so as to communicate with the through hole of the upper substrate. Further, a linear flow path having a width of 5 mm was formed so as to communicate the two circular portions. The upper surface substrate member substrate, the silicon rubber sheet, and the lower surface substrate member thus prepared were patterned in a comb pattern and joined by the adhesive force of the silicon rubber sheet to form a structure that minimizes liquid leakage. The sample introduction / discharge port has eyelets fixed with adhesive to the through holes of the upper surface substrate member substrate so that flexible tubes can be connected so that liquid can be introduced and discharged so that the tubes can be connected. A particle introduction port 29 was created in the center of the flow path communicating the circular portion and the circular portion of the piezoelectric element compression portion with an injection needle, and a diluted solution of blood cells and cancer cells was introduced.

あらかじめマンニトール液を導入/排出口22/23から充填後、マンニトールで1%に希釈した全血に癌細胞(SKBR)を加えた溶液を粒子導入口29から導入し、全ての導入/排出口22/23を接着テープで密閉した。上記の構造体を図1に示すように圧電素子2L、2Rの伸縮部分3の中心が図10の圧電素子接触点(円形の中心付近)に合せた。図1の2つの圧電素子の駆動波形としては図3Bのように2Lと2Rの伸縮が反転するように駆動波形を設定した。この時の円形部分の圧縮/伸長による流動の変化を考えやすいように図3Cに示す。ここでは波形の一周期を360度と表現し図3C上で対称な振動として三角波頂点を0°と表現する。この状態から三角波頂点を+180°とし血球及びがん細胞の移動状況を観測した。また、この時の駆動波形の周波数は1Hz、圧電素子の最大駆動電圧を3V(5Vmaxで100μm変動)圧電素子の伸長60μmに設定した。粒子の移動については高速カメラでの観察が困難であったため、120秒駆動した後静止させそれぞれの粒子の移動状況を観測した。その結果、図11に示すように直線状流路中央より左側に全体粒子は移動し、特に癌細胞(SKBR)が最も左側に移動することがわかった。 After filling the mannitol solution from the introduction / discharge port 22/23 in advance, a solution obtained by adding cancer cells (SKBR) to whole blood diluted to 1% with mannitol is introduced from the particle introduction port 29, and all the introduction / discharge ports 22 / 23 was sealed with adhesive tape. As shown in FIG. 1, the center of the expansion / contraction portion 3 of the piezoelectric elements 2L and 2R was aligned with the piezoelectric element contact point (near the circular center) of FIG. As the drive waveforms of the two piezoelectric elements in FIG. 1, the drive waveforms were set so that the expansion and contraction of 2L and 2R were reversed as shown in FIG. 3B. The change in flow due to compression / expansion of the circular portion at this time is shown in FIG. 3C for easy consideration. Here, one period of the waveform is expressed as 360 degrees, and the apex of the triangular wave is expressed as 0 ° as a symmetrical vibration on FIG. 3C. From this state, the apex of the triangular wave was set to + 180 °, and the migration status of blood cells and cancer cells was observed. The frequency of the drive waveform at this time was set to 1 Hz, and the maximum drive voltage of the piezoelectric element was set to 3 V (variable by 100 μm at 5 Vmax) and the extension of the piezoelectric element was set to 60 μm. Since it was difficult to observe the movement of particles with a high-speed camera, the particles were driven for 120 seconds and then stopped to observe the movement status of each particle. As a result, as shown in FIG. 11, it was found that the whole particles moved to the left side from the center of the linear flow path, and in particular, the cancer cells (SKBR) moved to the leftmost side.

実施例5:バッチ単位で粒子を操作する装置
バッチ単位で粒子の分級/測定が可能な本発明の粒子操作装置の一態様を図14(原理図)及び15(構成の一態様)に示す。導入口32と排出口34を連通する粒子分離流路35において、サンプル導入口33から一定量の流体(サンプル)を導入した後に閉止すると同時に、振動流形成装置38により、導入口32から排出口34への流れ方向(主流方向)と平行に振動流36を形成することで、サンプル導入口33から導入したサンプルに含まれる粒子は、排出口34に向かって粒子径に基づき分離される。この際、排出口34側にUV検出器等の光学検出装置44を接続すると、分離ピーク45の検出が可能となり、クロマトグラフィーと同様な粒径分布の測定が可能となる。なお光学検出装置44として光散乱検出器を用いると、粒径測定も可能となる。
Example 5: Device for Manipulating Particles in Batch Units One aspect of the particle manipulation device of the present invention capable of classifying / measuring particles in batch units is shown in FIGS. 14 (principle) and 15 (one aspect of configuration). In the particle separation flow path 35 that communicates the introduction port 32 and the discharge port 34, a certain amount of fluid (sample) is introduced from the sample introduction port 33 and then closed, and at the same time, the vibration flow forming device 38 causes the discharge port to be discharged from the introduction port 32. By forming the oscillating flow 36 parallel to the flow direction (mainstream direction) to 34, the particles contained in the sample introduced from the sample introduction port 33 are separated toward the discharge port 34 based on the particle size. At this time, if an optical detection device 44 such as a UV detector is connected to the discharge port 34 side, the separation peak 45 can be detected, and the particle size distribution can be measured in the same manner as in chromatography. If a light scattering detector is used as the optical detection device 44, the particle size can be measured.

実施例6
(1)以下に示す、本発明の粒子操作装置2100を作製した。
(1−1)下部基板部材211
厚み0.9mm10cm角のPC(ポリカーボネート)基板であり、そのうち50mm×90mmの領域に幅200μm、高さ20μmのノコギリ波状の断面を有し直線状に延在する凹凸部211aを設けた(図17)。
(1−2)上部基板部材212
図16に示す本発明の粒子操作装置2100と同じである。
(1−3)側面部材213
厚み1.5mm、10cm角のシリコンゴムシートであり、そのうち70mm×90mmの六角形領域をくり抜き、開口部213aを設けることで、面状の流路を形成させた(図21)。
(1−4)振動流発生装置220
駆動信号発生器223のピエゾドライバー222aへの出力信号とピエゾドライバー222bへの出力信号とを反転させ、圧電素子221の伸張/収縮を交互に駆動させることで、粒子を含む液体の流路における前記液体の導入方向(すなわち、導入口212aaから排出口212abへの方向)に対して垂直方向に振動流を発生させた他は、図16に示す本発明の粒子操作装置2100と同じである。
(1−5)粒子観測装置230
図16に示す本発明の粒子操作装置2100と同じである。
(2)(1)で作製した本発明の粒子操作装置2100の導入口212aaから、φ200μmのトヨパール(東ソー製)粒子を含む99.5%エタノール溶液を、PTFEチューブを介して、シリンジを用いて開口部213aに溶液が満たされるまで導入した。
(3)駆動信号発生器223から、図22のパターン(a)およびパターン(b)に示すノコギリ波を出力し、トヨパール粒子を移動させた。
結果、パターン(a)のノコギリ波を出力したときは粒子は左方向に、パターン(b)のノコギリ波を出力したときは粒子は右方向に、それぞれ移動した。
Example 6
(1) The particle manipulation device 2100 of the present invention shown below was produced.
(1-1) Lower substrate member 211
It is a PC (polycarbonate) substrate having a thickness of 0.9 mm and a square of 10 cm, and a concavo-convex portion 211a having a sawtooth wavy cross section with a width of 200 μm and a height of 20 μm and extending linearly is provided in a region of 50 mm × 90 mm (FIG. 17). ).
(1-2) Upper substrate member 212
It is the same as the particle manipulation device 2100 of the present invention shown in FIG.
(1-3) Side member 213
A silicon rubber sheet having a thickness of 1.5 mm and a square of 10 cm, of which a hexagonal region of 70 mm × 90 mm was hollowed out and an opening 213a was provided to form a planar flow path (FIG. 21).
(1-4) Vibration flow generator 220
By inverting the output signal to the piezo driver 222a of the drive signal generator 223 and the output signal to the piezo driver 222b and alternately driving the expansion / contraction of the piezoelectric element 221, the above-mentioned in the flow path of the liquid containing particles. It is the same as the particle manipulation device 2100 of the present invention shown in FIG. 16, except that the vibration flow is generated in the direction perpendicular to the liquid introduction direction (that is, the direction from the introduction port 212aa to the discharge port 212ab).
(1-5) Particle observation device 230
It is the same as the particle manipulation device 2100 of the present invention shown in FIG.
(2) From the introduction port 212aa of the particle manipulation device 2100 of the present invention produced in (1), a 99.5% ethanol solution containing Toyopearl (manufactured by Tosoh) particles having a diameter of 200 μm is injected through a PTFE tube using a syringe. It was introduced until the opening 213a was filled with the solution.
(3) The sawtooth wave shown in the patterns (a) and (b) of FIG. 22 was output from the drive signal generator 223 to move the Toyopearl particles.
As a result, when the sawtooth wave of the pattern (a) was output, the particles moved to the left, and when the sawtooth wave of the pattern (b) was output, the particles moved to the right.

実施例7
(1)下部基板部材211に設けるノコギリ波状の直線状に延在する凹凸部211aを幅200μm、高さ5μmとした他は、実施例6(1)で作製した粒子操作装置2100と同様の装置を作製した。
(2)粒子を含む溶液として、φ200μmおよびφ80μmのトヨパール(東ソー製)粒子を含む99.5%エタノール溶液を用いた他は、実施例6(2)から(3)の記載と同様な方法でトヨパール粒子を移動させた。
(3)粒子観測装置230(カメラ232は朋栄製高速カメラVFC−1000使用)で得られた観察ビデオの1フレームの画像それぞれに対し2値化処理を施すことで、流路構造体210へ導入した粒子を検出後、当該検出した粒子の重心における位置を計測し、当該位置情報を時間的な変化としてデータ化することでトヨパール粒子の移動軌跡を計測した。
結果を図23に示す。相対的に、粒子径が大きいφ200μmのトヨパール粒子の移動速度が速く、粒子径が小さいφ80μmのトヨパール粒子の移動速度が遅いことがわかる。また粒子振動幅が、ノコギリ波状に延在する凹凸部211aの間隔(200μm)を超えると、粒子の移動速度が飛躍的に速くなることがわかる。
Example 7
(1) A device similar to the particle manipulation device 2100 manufactured in Example 6 (1), except that the concavo-convex portion 211a provided on the lower substrate member 211 has a sawtooth-like linearly extending uneven portion 211a having a width of 200 μm and a height of 5 μm. Was produced.
(2) The same method as described in Examples 6 (2) to (3) was used except that a 99.5% ethanol solution containing φ200 μm and φ80 μm Toyopearl (manufactured by Tosoh) particles was used as the solution containing the particles. The Toyopearl particles were moved.
(3) Introduced into the flow path structure 210 by subjecting each frame of the observation video obtained by the particle observation device 230 (camera 232 is a high-speed camera VFC-1000 manufactured by Toei) to a binarization process. After detecting the particles, the position of the detected particles in the center of gravity was measured, and the movement locus of the Toyopearl particles was measured by converting the position information into data as a temporal change.
The results are shown in FIG. It can be seen that the moving speed of the toyopearl particles having a large particle size of φ200 μm is relatively high, and the moving speed of the toyopearl particles having a small particle size of φ80 μm is relatively slow. Further, it can be seen that when the particle vibration width exceeds the interval (200 μm) of the uneven portions 211a extending in a sawtooth shape, the moving speed of the particles becomes dramatically faster.

実施例8
(1)下部基板部材211に設けるノコギリ波状の直線状に延在する凹凸部211aを幅50μm、高さ1μmとした他は、実施例7で作製した粒子操作装置2100と同様の装置を作製した。
(2)粒子を含む溶液として、φ200μm、φ80μmおよびφ40μmのトヨパール(東ソー製)粒子を含む99.5%エタノール溶液を用いた他は、実施例7(2)及び(3)に記載と同様な方法でトヨパール粒子を移動させた。
(3)実施例7(3)の記載と同様な方法でトヨパール粒子の移動軌跡を計測した。
結果を図24に示す。相対的に、粒子径が大きい順(φ200μm>φ80μm>φ40μm)にトヨパール粒子の移動速度が速いことがわかる。また粒子振動幅が、ノコギリ波状の直線状に延在する211aの間隔(50μm)を超えると、粒子の移動速度が飛躍的に速くなることがわかる。
図23よび図24に示す結果から、第二の観点の本発明の粒子操作装置では、粒子を含む液体の導入方向(すなわち、導入口212aaから排出口212abへの方向)に対して垂直方向に粒子排出口を設けることで粒子の大きさ(径)による分級が可能であることが示唆される。
Example 8
(1) A device similar to the particle manipulation device 2100 manufactured in Example 7 was manufactured except that the uneven portion 211a provided on the lower substrate member 211 having a sawtooth-like linearly extending uneven portion 211a had a width of 50 μm and a height of 1 μm. ..
(2) The same as in Examples 7 (2) and (3) except that a 99.5% ethanol solution containing φ200 μm, φ80 μm and φ40 μm Toyopearl (manufactured by Tosoh) particles was used as the solution containing the particles. The Toyopearl particles were moved by the method.
(3) The movement locus of the Toyopearl particles was measured by the same method as described in Example 7 (3).
The results are shown in FIG. It can be seen that the moving speed of the Toyopearl particles is relatively faster in descending order of particle size (φ200 μm> φ80 μm> φ40 μm). Further, it can be seen that when the particle vibration width exceeds the interval (50 μm) of 211a extending in a straight line like a sawtooth, the moving speed of the particles becomes dramatically faster.
From the results shown in FIGS. 23 and 24, in the particle manipulation device of the present invention of the second aspect, the direction perpendicular to the introduction direction of the liquid containing the particles (that is, the direction from the introduction port 212aa to the discharge port 212ab). It is suggested that classification by particle size (diameter) is possible by providing a particle discharge port.

比較例1
(1)実施例6で作製した粒子操作装置2100を用いて、実施例7(2)と同様な方法で、粒子を含む溶液を開口部213aが当該溶液で満たされるまで導入した。
(2)駆動信号発生器223から、図25のパターン(a)およびパターン(b)に示す正弦波を出力し、トヨパール粒子を移動させた。
結果、いずれのパターンの正弦波を出力したときも、トヨパール粒子は振動するのみで、物理的な移動は確認できなかった。また正弦波を、三角波または矩形波に変更しても同じ結果となった。この結果から、本発明の粒子操作装置において、振動流における液体の変位量を示す波形を点対称波形のみまたは線対称波形のみとすると、粒子が移動しないことがわかる。
Comparative Example 1
(1) Using the particle manipulation device 2100 produced in Example 6, a solution containing particles was introduced in the same manner as in Example 7 (2) until the opening 213a was filled with the solution.
(2) From the drive signal generator 223, the sine waves shown in the patterns (a) and (b) of FIG. 25 were output, and the Toyopearl particles were moved.
As a result, when a sine wave of any pattern was output, the Toyopearl particles only vibrated, and no physical movement could be confirmed. The same result was obtained when the sine wave was changed to a triangular wave or a square wave. From this result, it can be seen that in the particle manipulation device of the present invention, if the waveform indicating the amount of displacement of the liquid in the vibration flow is only a point-symmetrical waveform or only a line-symmetrical waveform, the particles do not move.

1 往復液流発生装置
2 流路構造体
3 送液ポンプ
4 タンク
5 送液チューブ
6 排液/流体取得チューブ
7 カメラ
8 ズームレンズ
9L 振動部材
9R 振動部材
10 振動部材保持部
11 基板ホルダー
12L 振動部材駆動電源
12R 振動部材駆動電源
13L 振動部材駆動信号出力
13R 振動部材駆動信号出力
14L 振動部材駆動元信号入力
14R 振動部材駆動元信号入力
15 波形信号生成器
16L 12L用波形出力
16R 12R用波形出力
17 100μm伸縮可能な圧電素子の伸縮部分の拡大図
18 上面基板
19 側面部材
20 下面基板
21 振動部材接着点
22 流体導入口
23 流体排出口
24 流路
25 粒子取得口
26 右方向への液流
27 左方向への液流
28 粒子
29 粒子導入口
30 ダイヤフラム流路
31 粒子分離流路
32 液体導入口
33 サンプル導入口(サンプルインジェクター)
34 溶液排出口
35 粒子分離流路
36 振動流
37 分離バンドイメージ
38 振動流形成装置
39 溶液レザーバー
40 送液ポンプ
41 振動流形成装置
42 サンプルインジェクター
43 分離流路
44 光学検出器
45 分離ピーク
46 排出口
47 ダイヤフラム導入/排出口
48 粒子分離流路導入/排出口
2100 粒子操作装置
210 流路構造体
211 下部基板部材
211a 直線状に延在する凹凸部
211ab 排出口
212 上部基板部材
212aa 導入口
212ab 排出口
213 側面部材
213a 開口部
220 振動流発生装置(加減圧手段)
221 圧電素子
222 ピエゾドライバー
223 駆動信号発生器
230 粒子観測装置
231 ズームレンズ
232 カメラ
240 流路構造体における圧電素子の接点
2200 振動流(往復する流動)
1 Reciprocating liquid flow generator 2 Flow path structure 3 Liquid feed pump 4 Tank 5 Liquid feed tube 6 Drainage / fluid acquisition tube 7 Camera 8 Zoom lens 9L Vibration member 9R Vibration member 10 Vibration member holder 11 Board holder 12L Vibration member Drive power supply 12R Vibration member drive power supply 13L Vibration member drive signal output 13R Vibration member drive signal output 14L Vibration member drive source signal input 14R Vibration member drive source signal input 15 Wave signal generator 16L 12L waveform output 16R 12R waveform output 17 100 μm Enlarged view of the stretchable part of the expandable piezoelectric element 18 Top substrate 19 Side member 20 Bottom substrate 21 Vibration member adhesion point 22 Fluid inlet 23 Fluid discharge port 24 Flow path 25 Particle acquisition port 26 Liquid flow to the right 27 Left direction Liquid flow to 28 Particles 29 Particle introduction port 30 Diaphragm flow path 31 Particle separation flow path 32 Liquid introduction port 33 Sample introduction port (sample injector)
34 Solution Discharge Port 35 Particle Separation Channel 36 Vibration Flow 37 Separation Band Image 38 Vibration Flow Forming Device 39 Solution Leather Bar 40 Liquid Feed Pump 41 Vibration Flow Forming Device 42 Sample Injector 43 Separation Flow Path 44 Optical Detector 45 Separation Peak 46 Discharge Port 47 Diaphragm introduction / discharge port 48 Particle separation flow path introduction / discharge port 2100 Particle manipulation device 210 Flow path structure 211 Lower board member 211a Concavo-convex portion extending linearly 211ab Discharge port 212 Upper board member 212aa Introduction port 212ab Discharge port 213 Side member 213a Opening 220 Vibration flow generator (accumulation / depressurization means)
221 Piezoelectric element 222 Piezodriver 223 Drive signal generator 230 Particle observation device 231 Zoom lens 232 Camera 240 Piezoelectric element contact point in flow path structure 2200 Vibration flow (reciprocating flow)

Claims (15)

1又は複数の流体導入口と、1又は複数の流体排出口とを備える粒子を含む流体の流路、及び
連続的に送液されている主流に対しわる方向に周期的に往復する流動を発生させる1又は複数の加減圧手段、及び
前記流体排出口に繋がれた粒子の通過を検出可能な検出装置
を含む粒子分離検出装置であって、前記往復する流動における流体の変位量を示す波形が非線対称波形を有する、前記粒子分離検出装置。
And one or more fluid inlets, one or fluid flow path comprising particles and a plurality of fluid outlets, and periodically reciprocating flow to the main flow which is continuously fed to intertwine direction A particle separation detection device including one or more heating / depressurizing means to be generated and a detection device capable of detecting the passage of particles connected to the fluid discharge port, and a waveform showing the displacement amount of the fluid in the reciprocating flow. The particle separation detection device having a non-linear symmetric waveform.
前記流路が、上面基板部材と、下面基板部材と、側面部材との間に形成される、請求項1に記載の粒子分離検出装置。 The particle separation detection device according to claim 1, wherein the flow path is formed between the upper surface substrate member, the lower surface substrate member, and the side surface member. 前記上面基板部材、前記下面基板部材、及び前記側面部材からなる群から選ばれる1又は複数の部材に対し、前記加減圧手段が配置される、請求項2に記載の粒子分離検出装置。 The particle separation detection device according to claim 2, wherein the pressurizing / depressurizing means is arranged on one or a plurality of members selected from the group consisting of the upper surface substrate member, the lower surface substrate member, and the side surface member. 粒子を含む流体の流路と、往復する流動を発生させる1または複数の加減圧手段とを備えた、粒子操作装置であって、
前記加減圧手段が、前記流路における前記流体の導入方向に対し平行又は交わる方向に往復する流動を発生させる手段であり、
前記往復する流動における流体の変位量を示す波形が非線対称波形を有し、
かつ前記流路に1又は複数の凹凸部を設けた、前記粒子操作装置。
A particle manipulation device comprising a flow path of a fluid containing particles and one or more pressurizing / depressurizing means for generating reciprocating flow.
The pressurizing / depressurizing means is a means for generating a reciprocating flow in a direction parallel to or intersecting the introduction direction of the fluid in the flow path.
The waveform indicating the displacement amount of the fluid in the reciprocating flow has a non-axisymmetric waveform.
The particle manipulation device, which is provided with one or more uneven portions in the flow path.
前記流路が、上部基板部材と、下部基板部材と、側面部材との間に形成された、請求項4に記載の粒子操作装置。 The particle manipulation device according to claim 4, wherein the flow path is formed between the upper substrate member, the lower substrate member, and the side surface member. 前記凹凸部は、上部基板部材及び下部基板部材のいずれか一方又は両方に配置され、前記流路における流体の導入方向に対して平行方向に延在する、請求項5に記載の粒子操作装置。 The particle manipulation device according to claim 5, wherein the uneven portion is arranged on either one or both of the upper substrate member and the lower substrate member, and extends in a direction parallel to the introduction direction of the fluid in the flow path. 流路に設ける凹凸部が直線状に延在する、請求項6に記載の粒子操作装置。 The particle manipulation device according to claim 6, wherein the uneven portion provided in the flow path extends linearly. 直線状に延在する凹凸部の断面が非線対称形状を有する、請求項7に記載の粒子操作装置。 The particle manipulation device according to claim 7, wherein the cross section of the uneven portion extending in a straight line has a non-axisymmetric shape. 加減圧手段が、前記流路における前記流体の導入方向に対し垂直方向に往復する流動を発生させる手段である、請求項4から8のいずれか一項に記載の粒子操作装置。 The particle manipulation device according to any one of claims 4 to 8, wherein the pressurizing / depressurizing means is a means for generating a flow reciprocating in a direction perpendicular to the introduction direction of the fluid in the flow path. 粒子を含む流体の流路に粒子排出口を複数設け、かつ粒子を含む流体の導入方向に対し前記粒子排出口を垂直方向に設けた、請求項4から9のいずれか一項に記載の粒子操作装置。 The particle according to any one of claims 4 to 9, wherein a plurality of particle discharge ports are provided in the flow path of the fluid containing the particles, and the particle discharge port is provided in the direction perpendicular to the introduction direction of the fluid containing the particles. Operating device. 各粒子排出口から径の異なる粒子が排出される、請求項10に記載の粒子操作装置。 The particle manipulation device according to claim 10, wherein particles having different diameters are discharged from each particle discharge port. 請求項4から11のいずれか一項に記載の粒子操作装置を用いた、流体中に含まれる粒子を分級する方法。 A method for classifying particles contained in a fluid using the particle manipulation device according to any one of claims 4 to 11. 粒子を含む流体の流路と、往復する流動を発生させる1または複数の加減圧手段とを備えた、粒子操作装置であって、
前記加減圧手段が、前記流路における前記流体の導入方向に対し平行方向に往復する流動を発生させる手段であり、
前記往復する流動における流体の変位量を示す波形が非線対称波形を有し、
かつ前記流路に1又は複数の凹凸部を設けた、前記粒子操作装置。
A particle manipulation device comprising a flow path of a fluid containing particles and one or more pressurizing / depressurizing means for generating reciprocating flow.
The pressurizing / depressurizing means is a means for generating a flow reciprocating in a direction parallel to the introduction direction of the fluid in the flow path.
The waveform indicating the displacement amount of the fluid in the reciprocating flow has a non-axisymmetric waveform.
The particle manipulation device, which is provided with one or more uneven portions in the flow path.
前記流路が、上部基板部材と、下部基板部材と、側面部材との間に形成された、請求項13に記載の粒子操作装置。 The particle manipulation device according to claim 13, wherein the flow path is formed between the upper substrate member, the lower substrate member, and the side surface member. 前記凹凸部は、上部基板部材及び下部基板部材のいずれか一方又は両方に配置され、前記流路における流体の導入方向に対して交わる方向に延在する、請求項14に記載の粒子操作装置。 The particle manipulation device according to claim 14, wherein the uneven portion is arranged on either one or both of the upper substrate member and the lower substrate member, and extends in a direction intersecting the introduction direction of the fluid in the flow path.
JP2016532960A 2014-07-08 2015-07-08 Particle manipulation device and particle classification method using the device Active JP6755178B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014140590 2014-07-08
JP2014140590 2014-07-08
JP2015118471 2015-06-11
JP2015118471 2015-06-11
PCT/JP2015/069705 WO2016006642A1 (en) 2014-07-08 2015-07-08 Particle manipulation device and method for classifying particles using said device

Publications (2)

Publication Number Publication Date
JPWO2016006642A1 JPWO2016006642A1 (en) 2017-04-27
JP6755178B2 true JP6755178B2 (en) 2020-09-16

Family

ID=55064271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016532960A Active JP6755178B2 (en) 2014-07-08 2015-07-08 Particle manipulation device and particle classification method using the device

Country Status (2)

Country Link
JP (1) JP6755178B2 (en)
WO (1) WO2016006642A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6450337B2 (en) 2016-03-17 2019-01-09 国立大学法人名古屋大学 Cell sorting device and cell sorting method
JP2017177083A (en) * 2016-03-31 2017-10-05 東ソー株式会社 Particle separating device
JP2018189389A (en) * 2017-04-28 2018-11-29 東ソー株式会社 Particle separation method and device thereof combining capillary with flow generating means

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2720152B2 (en) * 1987-03-02 1998-02-25 株式会社 アドバンス Particle handling device
JP2687123B2 (en) * 1987-03-02 1997-12-08 株式会社 アドバンス Particle handling device
JPH1082723A (en) * 1996-09-06 1998-03-31 Hitachi Ltd Microparticle processor
JP4770251B2 (en) * 2005-04-25 2011-09-14 パナソニック株式会社 Component separation device and component separation method using the same
EP2300166A2 (en) * 2008-05-30 2011-03-30 Eppendorf Ag Apparatus and method for moving particles in a fluid
US8162149B1 (en) * 2009-01-21 2012-04-24 Sandia Corporation Particle sorter comprising a fluid displacer in a closed-loop fluid circuit

Also Published As

Publication number Publication date
WO2016006642A1 (en) 2016-01-14
JPWO2016006642A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP7354368B2 (en) Method and apparatus for bulk sorting of microparticles using microfluidic channels
Chen et al. A simplified microfluidic device for particle separation with two consecutive steps: Induced charge electro-osmotic prefocusing and dielectrophoretic separation
EP2879778B1 (en) High efficiency separation and sorting of particles and cells
Yan et al. Continuous microfluidic 3D focusing enabling microflow cytometry for single-cell analysis
Yun et al. Cell manipulation in microfluidics
Lee et al. Separation and sorting of cells in microsystems using physical principles
JP5018879B2 (en) Component separation device
Cha et al. Multiphysics microfluidics for cell manipulation and separation: a review
Huang et al. Inertial microfluidics: Recent advances
US10807029B2 (en) High throughput acoustic particle separation methods and devices
WO2006058245A2 (en) Dielectrophoretic particle sorter
JP6755178B2 (en) Particle manipulation device and particle classification method using the device
WO2017116214A1 (en) Device for separating or aligning fine particles, and method for separating or aligning fine particles using same
JP2020515854A (en) Systems, articles and methods for flowing particles,
Mirakhorli et al. Microfluidic platforms for cell sorting
Ratier et al. Acoustic programming in step-split-flow lateral-transport thin fractionation
Shiri et al. Passive and active microfluidic separation methods
KR101617278B1 (en) Device for separating single cells and fixing and maintaining position of single cells
Pandey et al. Single-Cell Separation
KR102374476B1 (en) Versatile Acoustic Flotation Capture
Ozcelik et al. Acoustic tweezers for single-cell manipulation
Bayareh Active cell capturing for organ-on-a-chip systems: a review
Shen et al. Flow-field-assisted dielectrophoretic microchips for high-efficiency sheathless particle/cell separation with dual mode
JP2021506263A (en) Inertial cell focusing and sorting
JP6801453B2 (en) Control device, control system, analysis device, particle sorting device, control method and laminar flow control program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200825

R150 Certificate of patent or registration of utility model

Ref document number: 6755178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250