JP6754535B2 - Method for manufacturing polymer for lithium battery, lithium battery electrolyte and lithium battery - Google Patents

Method for manufacturing polymer for lithium battery, lithium battery electrolyte and lithium battery Download PDF

Info

Publication number
JP6754535B2
JP6754535B2 JP2018158200A JP2018158200A JP6754535B2 JP 6754535 B2 JP6754535 B2 JP 6754535B2 JP 2018158200 A JP2018158200 A JP 2018158200A JP 2018158200 A JP2018158200 A JP 2018158200A JP 6754535 B2 JP6754535 B2 JP 6754535B2
Authority
JP
Japan
Prior art keywords
lithium battery
polymer
lithium
electrolyte
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018158200A
Other languages
Japanese (ja)
Other versions
JP2019149363A (en
Inventor
銘振 沈
銘振 沈
チー−チャン フン
チー−チャン フン
博明 陳
博明 陳
Original Assignee
臺灣塑膠工業股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臺灣塑膠工業股▲ふん▼有限公司 filed Critical 臺灣塑膠工業股▲ふん▼有限公司
Publication of JP2019149363A publication Critical patent/JP2019149363A/en
Application granted granted Critical
Publication of JP6754535B2 publication Critical patent/JP6754535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、リチウム電池用重合物の製造方法、リチウム電池電解液及びリチウム電池に関し、特に、特定の構造のリチウム電池用重合物をリチウム電池電解液に溶解させることで、リチウム電池が充放電中で電極の表面に重合物膜を形成することのできる技術に関する。 The present invention relates to a method for producing a polymer for a lithium battery, a lithium battery electrolyte, and a lithium battery. In particular, the lithium battery is being charged and discharged by dissolving a polymer for a lithium battery having a specific structure in the lithium battery electrolyte. The present invention relates to a technique capable of forming a polymer film on the surface of an electrode.

近年、環境の変わりにより、全世界的に炭素排出量の減少、電気自動車の急速な開発の促進に注力するようになり、電池の電気特性に対する要求もより厳しくなっている。消費電子及びパワー電池のエネルギー密度に対する要求により、リチウム電池は、正極材料が高静電容量、高電圧材料へ進み、負極材料も高エネルギーのシリコン材料、リチウム金属又は石墨材料等の方向へ進んでいる。 In recent years, due to changes in the environment, the global focus has been on reducing carbon emissions and promoting the rapid development of electric vehicles, and the demand for the electrical characteristics of batteries has become more stringent. Due to the demand for energy density of electronic consumption and power batteries, in lithium batteries, the positive electrode material is moving toward high capacitance and high voltage materials, and the negative electrode material is also moving toward high energy silicon materials, lithium metal or stone ink materials. There is.

リチウム電池は、リチウム遷移金属酸化物を正極とし、石墨電極を負極とする。充放電中で、リチウム電池の電解液によって正極及び負極の表面に固体電解質界面膜(solid electrolyte interface;SEI)を形成する。 The lithium battery has a lithium transition metal oxide as a positive electrode and a graphite electrode as a negative electrode. During charging and discharging, a solid electrolyte interface (SEI) is formed on the surfaces of the positive electrode and the negative electrode by the electrolytic solution of the lithium battery.

現在、使用される電解液における炭酸エステル類の有機溶剤により形成されたアルコキシ炭酸リチウムSEI膜は、安定性が悪く、充放電のサイクルの際に溶解、破裂等の状況が発生するので、SEI膜を再度再生する必要がある。従って、リチウムイオンが使用時間(又は充放電サイクル回数)の増加につれて持続的に損耗し、リチウム電池の静電容量が低下する。それと同時に、SEI膜の増加により、リチウム電池の内部抵抗も増え、リチウム電池の性能の衰退に拍車がかかる。なお、不完全なSEI膜であれば、電極に対して良好な保護効果を提供できず、正極材料の金属が析出し、材料構造が破裂し、リチウム電池のサイクル寿命が衰退する。 Alkoxy lithium carbonate SEI membranes formed by organic solvents of carbonic acid esters in the electrolytic solution currently used are not stable and may be dissolved or burst during the charge / discharge cycle. Therefore, the SEI membranes are used. Need to be played again. Therefore, the lithium ions are continuously worn as the usage time (or the number of charge / discharge cycles) increases, and the capacitance of the lithium battery decreases. At the same time, the increase in the SEI film also increases the internal resistance of the lithium battery, which accelerates the decline in the performance of the lithium battery. If the SEI film is incomplete, a good protective effect cannot be provided to the electrode, the metal of the positive electrode material is precipitated, the material structure is burst, and the cycle life of the lithium battery is deteriorated.

上記アルコキシ炭酸リチウムSEI膜の欠点に対して、現在、電解液に添加剤を加え、この添加剤によってリチウム電池の充放電中で電極の表面に異なる材質の保護膜を形成することが提案されている。 In response to the above-mentioned drawbacks of the lithium alkoxycarbonate SEI film, it is currently proposed to add an additive to the electrolytic solution and use this additive to form a protective film of a different material on the surface of the electrode during charging and discharging of the lithium battery. There is.

その中の1つの添加剤は、ケイ素含有のマレイミド及び/又はケイ素含有ビスマレイミドの単量体分子である。上記添加剤によって、リチウム電池の電気化学窓を5Vより大きく広くして、サイクル寿命を改善し、及び静電容量を向上させることができる。しかしながら、上記添加剤により、リチウムイオンの伝導性が悪くなり、サイクル寿命及び静電容量も僅かに向上される。 One of the additives is a silicon-containing maleimide and / or a silicon-containing bismaleimide monomer molecule. With the above additives, the electrochemical window of the lithium battery can be made wider than 5V to improve the cycle life and the capacitance. However, with the above additives, the conductivity of lithium ions is deteriorated, and the cycle life and capacitance are also slightly improved.

別の添加剤は、マレイミド及び/又はビスマレイミド単量体とジアミン化合物とがN-メチルピロリドンの中で重合して形成された重合物である。しかしながら、このような添加剤の製造方法に使用されるマレイミドは、含有量が多すぎ、且つ重合反応温度が高いので、製造された添加剤の成膜性が不良である。このような添加剤が添加されたリチウム電池は、静電容量が不良である。 Another additive is a polymer formed by polymerizing maleimide and / or bismaleimide monomer and diamine compound in N-methylpyrrolidone. However, the maleimide used in the method for producing such an additive has an excessively large content and a high polymerization reaction temperature, so that the produced additive has a poor film-forming property. A lithium battery to which such an additive is added has a poor capacitance.

従って、現在、リチウム電池の高温静電容量を効果的に向上させ、高温高電圧時のリチウム電池のサイクル寿命を改善させるために、リチウム電池用重合物の製造方法、上記リチウム電池用重合物を使用したリチウム電池電解液及びリチウム電池を提供することが望まれている。 Therefore, at present, in order to effectively improve the high temperature capacitance of a lithium battery and improve the cycle life of the lithium battery at high temperature and high voltage, a method for producing a polymer for a lithium battery, the above-mentioned polymer for a lithium battery, is used. It is desired to provide the used lithium battery electrolyte and the lithium battery.

従って、本発明の一態様は、特定の構造のマレイミド化合物及びジアミン化合物で反応して得られるリチウム電池用重合物の製造方法を提供する。 Therefore, one aspect of the present invention provides a method for producing a polymer for a lithium battery obtained by reacting with a maleimide compound and a diamine compound having a specific structure.

本発明の別の態様は、上記リチウム電池用重合物を含むリチウム電池電解液を提供する。 Another aspect of the present invention provides a lithium battery electrolytic solution containing the above polymer for a lithium battery.

本発明のまた別の態様は、上記リチウム電池電解液を使用して、電解液におけるリチウム電池用重合物によりリチウム電池の電極に重合物膜を形成するリチウム電池を提供する。 Another aspect of the present invention provides a lithium battery in which the above-mentioned lithium battery electrolytic solution is used to form a polymer film on the electrodes of the lithium battery by the polymer for the lithium battery in the electrolytic solution.

本発明の上記態様によると、リチウム電池用重合物の製造方法を提供する。ある実施例において、上記製造方法は、有機酸の存在下で、マレイミド化合物と少なくとも1種のジアミン化合物との混合物を96時間〜144時間重合反応させて、前記リチウム電池用重合物を製造することを含む。上記マレイミド化合物の構造は、少なくとも2つのマレイミド単位を含み、且つ前記混合物におけるマレイミド化合物と少なくとも1種のジアミン化合物とのモル比は、1:1〜3:1である。 According to the above aspect of the present invention, there is provided a method for producing a polymer for a lithium battery. In a certain embodiment, the production method comprises polymerizing a mixture of a maleimide compound and at least one diamine compound for 96 hours to 144 hours in the presence of an organic acid to produce the polymer for a lithium battery. including. The structure of the maleimide compound contains at least two maleimide units, and the molar ratio of the maleimide compound to at least one diamine compound in the mixture is 1: 1-3: 1.

本発明の一実施例によると、上記重合反応の反応温度は、100℃〜130℃であり、且つ上記有機酸は酢酸を含む。 According to one embodiment of the present invention, the reaction temperature of the polymerization reaction is 100 ° C. to 130 ° C., and the organic acid contains acetic acid.

本発明の一実施例によると、上記リチウム電池用重合物の重量平均分子量は、20,000〜1,000,000である。 According to one embodiment of the present invention, the weight average molecular weight of the polymer for lithium batteries is 20,000 to 1,000,000.

本発明の一実施例によると、上記マレイミド化合物は、下記式(I-1)又は式(I-2)に示す構造を有し、
式(I-1)において、Rは-RCHR-、-C(O)CH-、-CHOCH-、-C(O)-、-O-、-O-O-、-S-、-S-S-、-S(O)-、-CHS(O)CH-、-(O)S(O)-、-C-、-CH(C)CH-、-CH(C)O-、ビフェニレン、置換のフェニレン又は置換のビフェニレンであり、Rは炭素数1〜6のアルキレン基であり、
式(I-2)において、Rは-RCH-、-C(O)-、-C(CH-、-O-、-O-O-、-S-、-S-S-、-(O)S(O)-、又は-S(O)-、
を表し、nは1〜3の整数である。
According to one embodiment of the present invention, the maleimide compound has a structure represented by the following formula (I-1) or formula (I-2).
In formula (I-1), R 1 is -RCH 2 R-, -C (O) CH 2- , -CH 2 OCH 2- , -C (O)-, -O-, -O-O-, -S -, - S-S - , - S (O) -, - CH 2 S (O) CH 2 -, - (O) S (O) -, - C 6 H 4 -, - CH 2 (C 6 H 4 ) CH 2- , -CH 2 (C 6 H 4 ) O-, biphenylene, substituted phenylene or substituted biphenylene, R is an alkylene group having 1 to 6 carbon atoms.
In formula (I-2), R 2 is -RCH 2- , -C (O)-, -C (CH 3 ) 2- , -O-, -O-O-, -S-, -SS. -,-(O) S (O)-or-S (O)-,
Represents, and n is an integer of 1 to 3.

本発明の一実施例によると、少なくとも1種のジアミン化合物は、下記式(II)に示す構造を含み、
式(II)において、前記Rは-CH-、-O-、-S-又は-SO-を表す。
According to one embodiment of the present invention, at least one diamine compound contains a structure represented by the following formula (II).
In formula (II), the R 3 represents -CH 2- , -O-, -S- or -SO 2- .

本発明の上記態様によると、リチウム電池電解液を提供する。ある実施例において、前記リチウム電池電解液は、電解質と、前記製造方法により製造されたリチウム電池用重合物と、溶剤と、を含む。リチウム電池電解液の使用量を100重量部として、前記リチウム電池用重合物の使用量は、0.2重量部〜2重量部である。 According to the above aspect of the present invention, a lithium battery electrolytic solution is provided. In one embodiment, the lithium battery electrolyte contains an electrolyte, a polymer for a lithium battery produced by the production method, and a solvent. Assuming that the amount of the lithium battery electrolytic solution used is 100 parts by weight, the amount of the polymer for lithium battery used is 0.2 parts by weight to 2 parts by weight.

本発明の一実施例によると、リチウム電池電解液の使用量を100重量部として、前記電解質の使用量は10重量部〜20重量部であり、且つ前記電解質はアルカリ金属塩類の電解質を含む。 According to one embodiment of the present invention, the amount of the lithium battery electrolyte used is 100 parts by weight, the amount of the electrolyte used is 10 to 20 parts by weight, and the electrolyte contains an electrolyte of alkali metal salts.

本発明の一実施例によると、前記溶剤は、炭素数3〜5の炭酸ヒドロカルビルエステルを含む。 According to one embodiment of the present invention, the solvent contains a hydrocarbyl ester carbonate having 3 to 5 carbon atoms.

本発明の一実施例によると、前記リチウム電池用重合物は、前記溶剤に溶かされる。 According to one embodiment of the present invention, the lithium battery polymer is dissolved in the solvent.

本発明の上記態様によると、リチウム電池を提供する。ある実施例において、前記リチウム電池は、リチウム遷移金属酸化物電極と、石墨電極と、セパレータと、重合物膜と、上記リチウム電池電解液と、を含む。セパレータは、リチウム遷移金属酸化物電極と石墨電極との間に設けられる。前記重合物膜は、リチウム遷移金属酸化物電極及び石墨電極の表面を被覆する。前記重合物膜は、リチウム電池電解液におけるリチウム電池用重合物によりリチウム電池の充放電中で形成される。 According to the above aspect of the present invention, a lithium battery is provided. In one embodiment, the lithium battery comprises a lithium transition metal oxide electrode, a graphite electrode, a separator, a polymer film, and the lithium battery electrolyte. The separator is provided between the lithium transition metal oxide electrode and the graphite electrode. The polymer film covers the surfaces of the lithium transition metal oxide electrode and the graphite electrode. The polymer film is formed during charging / discharging of a lithium battery by a polymer for a lithium battery in a lithium battery electrolytic solution.

本発明のリチウム電池用重合物の製造方法は、特定の構造や使用比例のマレイミド化合物及び少なくとも1種のジアミン化合物を使用して、触媒(例えば、有機酸)の存在下で、重合物を製造する。製造された重合物は、添加剤としてリチウム電池電解液に適用することができる。上記リチウム電池電解液を使用したリチウム電池であれば、充放電中で正負電極の表面に重合物膜を形成して、正負電極の活性物質を保護し、後で電解液の電極の表面での反応による活性物質の劣化を防止することができる。 In the method for producing a polymer for a lithium battery of the present invention, a polymer is produced in the presence of a catalyst (for example, an organic acid) using a maleimide compound having a specific structure and proportion to use and at least one diamine compound. To do. The produced polymer can be applied to a lithium battery electrolytic solution as an additive. In the case of a lithium battery using the above lithium battery electrolytic solution, a polymer film is formed on the surface of the positive and negative electrodes during charging and discharging to protect the active substance of the positive and negative electrodes, and later on the surface of the electrode of the electrolytic solution. Deterioration of the active substance due to the reaction can be prevented.

また、上記重合物膜を適用すれば、リチウム電池の高温静電容量、及びリチウム電池の高温高電圧でのサイクル寿命を効果的に向上させることができる。 Further, by applying the polymer film, the high-temperature capacitance of the lithium battery and the cycle life of the lithium battery at a high temperature and high voltage can be effectively improved.

下記添付図面に対する詳しい説明は、本発明の上記及び他の目的、特徴、メリット及び実施例を分かりやすくするためのものである。
本発明の実施例1、実施例2、比較例1及び比較例2のリチウム電池の室温でサイクルテストが行われた結果を示す。 本発明の実施例1〜実施例4及び比較例1の高温高電圧でサイクルテストが行われた結果を示す。
The detailed description of the following accompanying drawings is for facilitating the above and other purposes, features, merits and embodiments of the present invention.
The results of the cycle test of the lithium batteries of Example 1, Example 2, Comparative Example 1 and Comparative Example 2 of the present invention at room temperature are shown. The results of the cycle test performed at high temperature and high voltage of Examples 1 to 4 and Comparative Example 1 of the present invention are shown.

本発明の目的は、現在既知のリチウム電池用の固体電解質界面膜の性能を改善することにある。この固体電解質界面膜は、電池の充放電中で、電極における活性物質を保護するように、電解液における物質により電極の表面に形成される。本発明は、上記固体電解質界面膜(後で重合物膜という)を形成するためのリチウム電池用重合物の製造方法、このリチウム電池用重合物を適用したリチウム電池電解液及びリチウム電池を提供する。 An object of the present invention is to improve the performance of currently known solid electrolyte interface membranes for lithium batteries. This solid electrolyte interface film is formed on the surface of the electrode by the substance in the electrolytic solution so as to protect the active substance in the electrode during charging and discharging of the battery. The present invention provides a method for producing a polymer for a lithium battery for forming the solid electrolyte interface film (later referred to as a polymer film), a lithium battery electrolytic solution to which the polymer for a lithium battery is applied, and a lithium battery. ..

本発明のリチウム電池用重合物の製造方法は、特定の構造及び特定の使用比例のマレイミド化合物及び少なくとも1種のジアミン化合物を選用して反応させることで得られる。このようなリチウム電池用重合物は、リチウム電池電解液の溶剤に溶解して、リチウムイオンの伝導性を向上させることができる。なお、上記電解液によってリチウム電池電極の重合物膜を形成すれば、リチウム電池の電極を保護すると共に、リチウム電池の高温静電容量及び高温高電圧でのサイクル寿命を改善することができる。以下、本発明のリチウム電池用重合物の製造方法、リチウム電池電解液及びリチウム電池をそれぞれ説明する。
リチウム電池用重合物の製造方法
The method for producing a polymer for a lithium battery of the present invention can be obtained by selecting and reacting a maleimide compound having a specific structure and a specific proportion of use and at least one diamine compound. Such a polymer for a lithium battery can be dissolved in a solvent of a lithium battery electrolytic solution to improve the conductivity of lithium ions. If the polymer film of the lithium battery electrode is formed by the electrolytic solution, the electrode of the lithium battery can be protected, and the high temperature capacitance of the lithium battery and the cycle life at high temperature and high voltage can be improved. Hereinafter, a method for producing a polymer for a lithium battery, a lithium battery electrolytic solution, and a lithium battery of the present invention will be described.
Method for manufacturing polymer for lithium battery

上記製造方法は、有機酸の存在下で、マレイミド化合物と少なくとも1種のジアミン化合物との混合物を96時間〜144時間重合反応させて、前記リチウム電池用重合物を製造することを含む。 The production method includes producing the lithium battery polymer by polymerizing a mixture of a maleimide compound and at least one diamine compound for 96 hours to 144 hours in the presence of an organic acid.

上記マレイミド化合物の構造は、少なくとも2つのマレイミド単位を含む。具体的には、マレイミド化合物の分子構造に2つ以上のマレイミド単位を含むと、リチウム電池用重合物の形成に寄与する。従って、本発明は、単一のマレイミド単位のみを含むマレイミドによる重合反応を排除する。 The structure of the maleimide compound contains at least two maleimide units. Specifically, when the molecular structure of the maleimide compound contains two or more maleimide units, it contributes to the formation of a polymer for a lithium battery. Therefore, the present invention eliminates polymerization reactions with maleimides containing only a single maleimide unit.

上記混合物におけるマレイミド化合物と少なくとも1種のジアミン化合物とのモル比は、1:1〜3:1である。混合物におけるマレイミド化合物が少なすぎれば、リチウム電池用重合物の構造が不完全になり、後でリチウム電池電解液に適用される場合、リチウム電池の電極を効果的に保護できない。一方、混合物におけるジアミン化合物が少なすぎれば、製造された重合物膜のリチウムイオンの伝導性が悪く、リチウム電池の性能が劣化し、また、多すぎるマレイミドによりリチウム電池用重合物の成膜性も不良になり、下記の重合物膜の形成に不利であり、リチウム電池の性質に影響を与えてしまう。 The molar ratio of the maleimide compound to at least one diamine compound in the above mixture is 1: 1-3: 1. Too little maleimide compound in the mixture results in an incomplete structure of the lithium battery polymer and cannot effectively protect the lithium battery electrodes when later applied to the lithium battery electrolyte. On the other hand, if the amount of the diamine compound in the mixture is too small, the conductivity of lithium ions in the produced polymer film is poor, the performance of the lithium battery deteriorates, and the film forming property of the polymer for the lithium battery is also deteriorated due to the excessive amount of maleimide. It becomes defective, is disadvantageous in forming the following polymer film, and affects the properties of the lithium battery.

上記反応時間は、重合されたリチウム電池用重合物の分子量を制御するので、時間が不足すると、適切な構造を有するリチウム電池用重合物を製造できない。時間が長すぎると、重合反応は、飽和になるので、続けて行われない。ある実施例において、前記リチウム電池用重合物の重量平均分子量は、20,000〜1,000,000である。好ましくは、前記リチウム電池用重合物の重量平均分子量は、45,000〜740,000である。 Since the reaction time controls the molecular weight of the polymerized polymer for lithium batteries, if the time is insufficient, a polymer for lithium batteries having an appropriate structure cannot be produced. If the time is too long, the polymerization reaction will be saturated and will not continue. In one embodiment, the weight average molecular weight of the lithium battery polymer is 20,000 to 1,000,000. Preferably, the weight average molecular weight of the lithium battery polymer is 45,000 to 740,000.

ある実施例において、前記重合反応の反応温度は、100℃〜130℃である。具体的には、本発明の製造方法は、マレイミド化合物及びジアミン化合物の種類、比例、反応時間及び反応温度を制御することで、成膜性の好適であるリチウム電池用重合物を取得することができ、電極への重合物膜の形成に有利である。 In certain examples, the reaction temperature of the polymerization reaction is 100 ° C. to 130 ° C. Specifically, the production method of the present invention can obtain a polymer for a lithium battery having a suitable film-forming property by controlling the type, proportion, reaction time and reaction temperature of the maleimide compound and the diamine compound. It can be formed, which is advantageous for forming a polymer film on an electrode.

ある実施例において、前記マレイミド化合物は、下記式(I-1)又は式(I-2)に示す構造を有してよい。
式(I-1)において、Rは-RCHR-、-C(O)CH-、-CHOCH-、-C(O)-、-O-、-O-O-、-S-、-S-S-、-S(O)-、-CHS(O)CH-、-(O)S(O)-、-C-、-CH(C)CH-、-CH(C)O-、ビフェニレン、置換のフェニレン又は置換のビフェニレンであり、Rは炭素数1〜6のアルキレン基であり、
式(I-2)において、Rは-RCH-、-C(O)-、-C(CH-、-O-、-O-O-、-S-、-S-S-、-(O)S(O)-、又は-S(O)-、
を表し、nは1〜3の整数である。
In certain examples, the maleimide compound may have a structure represented by the following formula (I-1) or formula (I-2).
In formula (I-1), R 1 is -RCH 2 R-, -C (O) CH 2- , -CH 2 OCH 2- , -C (O)-, -O-, -O-O-, -S -, - S-S - , - S (O) -, - CH 2 S (O) CH 2 -, - (O) S (O) -, - C 6 H 4 -, - CH 2 (C 6 H 4 ) CH 2- , -CH 2 (C 6 H 4 ) O-, biphenylene, substituted phenylene or substituted biphenylene, R is an alkylene group having 1 to 6 carbon atoms.
In formula (I-2), R 2 is -RCH 2- , -C (O)-, -C (CH 3 ) 2- , -O-, -O-O-, -S-, -SS. -,-(O) S (O)-or-S (O)-,
Represents, and n is an integer of 1 to 3.

具体的には、前記マレイミド化合物は、N,N’-ビスマレイミド-4,4’-ジフェニルメタン(N,N’-bismaleimide-4,4’-diphenylmethane;式(I-3))、1,1’-(メチレンジ-4,1-フェニレン)ビスマレイミド[1,1’-(methylenedi-4,1-phenylene)bismaleimide]、N,N’-(1,1’-ビフェニル-4,4’-ジメチレン)ビスマレイミド[N,N’-(1,1’-biphenyl-4,4’-diyl)bismaleimide]、N,N’-(4-メチル-1,3-フェニレン)ビスマレイミド[N,N’-(4-methyl-1,3-phenylene)bismaleimide]、1,1’-(3,3’-ジメチル-1,1’-ビフェニル-4,4’-ジメチレン)ビスマレイミド[1,1’-(3,3’dimethyl-1,1’-biphenyl-4,4’-diyl)bismaleimide]、N,N’-エチレンジマレイミド(N,N’-ethylenedimaleimide)、N,N’-(1,2-フェニレン)ジマレイミド[N,N’-(1,2-phenylene)dimaleimide]、N,N’-(1,3-フェニレン)ジマレイミド[N,N’-(1,3- phenylene)dimaleimide]、N,N’-チオジマレイミド(N,N’-thiodimaleimid)、N,N’-ジチオジマレイミド(N,N’-dithiodimaleimid)、N,N’-ケトンジマレイミド(N,N’-ketonedimaleimid)、N,N’-メチレンビスマレイミド(N,N’-methylene-bis-maleinimid)、ビスマレイミドメチル-エーテル(bis-maleinimidomethyl-ether)、1,2-ビスマレイミド-1,2-エタンジオール[1,2-bis-(maleimido)-1,2-ethandiol]、N,N’-4,4’-ジフェニルエーテル-ビスマレイミド(N,N’-4,4’-diphenylether-bis-maleimid)、及び4, 4’-ビスマレイミド-ジフェニルスルホン[4, 4’-bis(maleimido)-diphenylsulfone]、フェニルメタンマレイミドのオリゴマー(式(I-4))、ビスフェノールAジフェニルエーテルビスマレイミド(Bisphenol A diphenyl ether bismaleimide;式(I-5))又は式(I-6)に示す化合物等を含んでよく、式(I-6)の化合物は台湾特許公告番号I335917を参照して合成される。
Specifically, the maleimide compound is N, N'-bismaleimide-4,4'-diphenylmethane (N, N'-bismaleimide-4,4'-diphenylmethane; formula (I-3)) 1,1 '-(Methylenedi-4,1-phenylene) Bismaleimide [1,1'-(methylenedi-4,1-phenylene) bismaleimide], N, N'-(1,1'-biphenyl-4,4'-dimethylene ) Bismaleimide [N, N'-(1,1'-biphenyl-4,4'-diyl) bismaleimide], N, N'-(4-methyl-1,3-phenylene) Bismaleimide [N, N' -(4-methyl-1,3-phenylene) bismaleimide], 1,1'-(3,3'-dimethyl-1,1'-biphenyl-4,4'-dimethylene) bismaleimide [1,1'- (3,3'dimethyl-1,1'-biphenyl-4,4'-diyl) bismaleimide], N, N'-ethylenedimaleimide (N, N'-ethyllenedimaleimide), N, N'-(1,2) -Phenylene) dimaleimide [N, N'-(1,2-phenylene) dimaleimide], N, N'-(1,3-phenylene) dimaleimide [N, N'-(1,3-phenylene) dimaleimide], N , N'-thiodimaleimide (N, N'-thiodimaleimide), N, N'-dithiodimaleimide, N, N'-ketonedimaleimide, N, N'-ketonedimaleimide, N, N'-methylenebismaleimide (N, N'-methylene-bis-maleinimid), bis-maleimidemethyl-ether, 1,2-bismaleimide-1,2-ethanediol [1, 2-bis- (maleimide) -1,2-ethandil], N, N'-4,4'-diphenylether-bismaleimide (N, N'-4,4'-diphenylether-bis-maleimide), and 4, 4'-bismaleimide-diphenylsulfone [4,4'-bis (maleimide) -diphenylsulfone], phenylmethanemaleimide oligomer (formula (I-4)), bi Sphenol A diphenyl ether bismaleimide (Bisphenol A diphenyl ether bismaleimide; formula (I-5)) or a compound represented by the formula (I-6) may be included, and the compound of the formula (I-6) may contain Taiwan Patent Publication No. I335917. Is synthesized with reference to.

一つの好適な例において、本発明のマレイミド化合物として、式(I-3)〜式(I-6)に示す化合物を選用してよい。 In one preferred example, the compounds represented by the formulas (I-3) to (I-6) may be selected as the maleimide compound of the present invention.

ある実施例において、少なくとも1種のジアミン化合物は、下記式(II)に示す構造を含み、
式(II)において、Rは-CH-、-O-、-S-、又は-SO-を表す。
In certain examples, at least one diamine compound comprises the structure represented by the following formula (II).
In formula (II), R 3 represents -CH 2- , -O-, -S-, or -SO 2- .

好ましくは、ジアミン化合物として、ビス(4-アミノフェニル)スルホン(Bis(4-aminophenyl)Sulfone;DDS)又は4,4’-メチレンジアニリン(4,4'-Methylenedianiline;MDA)を選用してよい。 Preferably, as the diamine compound, Bis (4-aminophenyl) Sulfone; DDS) or 4,4'-methylenedianiline (4,4'-Methylenedianiline; MDA) may be selected. ..

好ましくは、リチウム電池用重合物は、スルホン基(例えば、スルホン基を含有するマレイミド化合物及び/又はジアミン化合物によって合成する)を含有する。上記リチウム電池用重合物が重合物膜の形成に適用される場合、リチウムイオンに対する伝導性が好適であるので、リチウム電池の性能を向上させることができる。 Preferably, the lithium battery polymer contains a sulfone group (eg, synthesized with a maleimide compound and / or a diamine compound containing a sulfone group). When the above-mentioned polymer for a lithium battery is applied to the formation of a polymer film, the conductivity with respect to lithium ions is suitable, so that the performance of the lithium battery can be improved.

ある実施例において、マレイミド化合物とジアミン化合物とは、溶剤に溶かした後で、互いに混合して前記重合反応を行う。前記溶剤は、例えば、メタクレゾール(m-cresol)であってよい。 In a certain embodiment, the maleimide compound and the diamine compound are dissolved in a solvent and then mixed with each other to carry out the polymerization reaction. The solvent may be, for example, metacresol (m-cresol).

特に説明すべきなのは、シリコンを含む重合物がリチウムイオンの伝導性が悪いという欠点を有するので、本発明のリチウム電池用重合物にシリコンが含まれない(或いは、重合にシリコン含有のマレイミド化合物を使用しない)。
リチウム電池電解液
Of particular note is that the silicon-containing polymer has the drawback of poor lithium ion conductivity, so the lithium battery polymer of the present invention does not contain silicon (or a silicon-containing maleimide compound for polymerization. do not use).
Lithium battery electrolyte

本発明のリチウム電池電解液には、電解質、上記リチウム電池用重合物及び溶剤が含まれる。リチウム電池電解液の使用量を100重量部として、前記リチウム電池用重合物の使用量は、0.2重量部〜2重量部である。一実施例において、この重合物は、リチウム電池電解液の溶剤に溶かされる。リチウム電池用重合物の使用量が少なすぎれば、形成された重合物膜のリチウム電池電極に対する保護効果が不良であるので、リチウム電池電極は、充放電中で損害を受ける。一方、リチウム電池電解液に多すぎるリチウム電池用重合物が含有されると、この重合物の溶解度が低下し、リチウム電池の電気化学反応に不利である。 The lithium battery electrolyte of the present invention contains an electrolyte, the above-mentioned polymer for a lithium battery, and a solvent. Assuming that the amount of the lithium battery electrolytic solution used is 100 parts by weight, the amount of the polymer for lithium battery used is 0.2 parts by weight to 2 parts by weight. In one embodiment, the polymer is dissolved in the solvent of the lithium battery electrolyte. If the amount of the polymer for a lithium battery used is too small, the protective effect of the formed polymer film on the lithium battery electrode is poor, and the lithium battery electrode is damaged during charging and discharging. On the other hand, if the lithium battery electrolytic solution contains an excessive amount of a polymer for a lithium battery, the solubility of this polymer decreases, which is disadvantageous to the electrochemical reaction of the lithium battery.

ここで、本発明の電解質としては、リチウム電池によく適用されるアルカリ金属塩類の電解質を含んでよく、特に制限されない。例としては、前記アルカリ金属塩類の電解質としては、LiPF、LiBF、LiAsF、LiSbF、LiClO、LiAlCl、LiGaCl、LiNO、LiC(SOCF、LiN(SOCF、LiSCN、LiOSCFCF、LiCSO、LiOCCF、LiSOF、Li(C又はLiCFSOを含んでよい。一実施例において、リチウム電池電解液の使用量を100重量部として、電解質の使用量は10重量部〜20重量部である。 Here, the electrolyte of the present invention may include an alkali metal salt electrolyte that is often applied to lithium batteries, and is not particularly limited. Examples, as the electrolyte of the alkali metal salts, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiClO 4, LiAlCl 4, LiGaCl 4, LiNO 3, LiC (SO 2 CF 3) 3, LiN (SO 2 CF 3 ) 2 , LiSCN, LiO 3 SCF 2 CF 3 , LiC 6 F 5 SO 3 , LiO 2 CCF 3 , LiSO 3 F, Li (C 6 H 5 ) 4 or LiCF 3 SO 3 may be included. In one embodiment, the amount of the lithium battery electrolyte used is 100 parts by weight, and the amount of the electrolyte used is 10 to 20 parts by weight.

ここで、本発明の溶剤は、炭素数3〜5の炭酸ヒドロカルビルエステルを含んでよい。具体的には、溶剤は、炭酸エチレン(Ethylene carbonate;EC)、炭酸プロピレン(Propylene carbonate;PC)、炭酸ブチレン(Butylene carbonate)、炭酸ジメチル(Dimethyl carbonate;DMC)、炭酸ジエチル(Diethyl carbonate;DEC)、炭酸エチルメチル(Ethyl methyl carbonate;EMC)、又は上記の任意の組み合わせを含んでよいが、それらに限定されない。 Here, the solvent of the present invention may contain a hydrocarbyl ester carbonate having 3 to 5 carbon atoms. Specifically, the solvent is ethylene carbonate (Ethylene carbonate; EC), propylene carbonate (Propylene carbonate; PC), butylene carbonate (Butylene carbonate), dimethyl carbonate (DIMyl carbonate; DMC), diethyl carbonate (Diethyl carbonate; , Ethyl methyl carbonate (EMC), or any combination of the above, but is not limited thereto.

ある実施例において、リチウム電池電解液の溶剤の使用量は、電解液の合計量から電解質及びリチウム電池用重合物を引き去ったものである。
リチウム電池
In one embodiment, the amount of solvent used in the lithium battery electrolyte is the total amount of electrolyte minus the electrolyte and the lithium battery polymer.
Lithium battery

本発明のリチウム電池は、リチウム遷移金属酸化物電極、石墨電極、セパレータ、重合物膜及び上記のリチウム電池電解液を含む。セパレータは、リチウム遷移金属酸化物電極と石墨電極との間に設けられる。前記重合物膜は、リチウム遷移金属酸化物電極及び石墨電極の表面を被覆する。前記重合物膜は、リチウム電池電解液におけるリチウム電池用重合物によりリチウム電池の充放電中で形成される。 The lithium battery of the present invention includes a lithium transition metal oxide electrode, a graphite electrode, a separator, a polymer film, and the above-mentioned lithium battery electrolytic solution. The separator is provided between the lithium transition metal oxide electrode and the graphite electrode. The polymer film covers the surfaces of the lithium transition metal oxide electrode and the graphite electrode. The polymer film is formed during charging / discharging of a lithium battery by a polymer for a lithium battery in a lithium battery electrolytic solution.

ある実施例において、リチウム遷移金属酸化物電極は、リチウム及び1種類又は複数種類の遷移金属元素の複合酸化物により形成される。前記遷移金属元素は、コバルト、アルミニウム、マンガン、クロム、鉄、バナジウム、チタニウム、ジルコニウム、ニオビウム、モリブデン、タングステン、銅、亜鉛、インジウム、ランタン、セリウム等を含んでよいが、それらに限定されない。 In one embodiment, the lithium transition metal oxide electrode is formed of lithium and a composite oxide of one or more transition metal elements. The transition metal element may include, but is not limited to, cobalt, aluminum, manganese, chromium, iron, vanadium, titanium, zirconium, niobium, molybdenum, tungsten, copper, zinc, indium, lanthanum, cerium and the like.

一実施例において、前記セパレータは、高分子膜であってよい。一般的に、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンによって前記セパレータを形成してよい。本発明は、ここに特に制限されない。 In one embodiment, the separator may be a polymeric membrane. In general, the separator may be formed of, for example, a polyolefin such as polyethylene or polypropylene. The present invention is not particularly limited here.

以下、複数の製造例、実施例及び比較例によって本発明のリチウム電池用重合物の製造方法、及びリチウム電池用重合物のリチウム電池電解液(リチウム電池に使用される)への適用の効果を説明する。
製造例1:リチウム電池用重合物の製造
Hereinafter, the effects of the method for producing a polymer for a lithium battery of the present invention and the application of the polymer for a lithium battery to a lithium battery electrolyte (used for a lithium battery) will be described by a plurality of production examples, examples and comparative examples. explain.
Production Example 1: Production of polymer for lithium battery

1.861g(0.0075モル)のビス(4-アミノフェニル)スルホン(DDS)及び0.496g(0.0025モル)の4,4’-メチレンジアニリン(MDA)を13gのメタクレゾールに溶かした。次に、5.375g(0.015モル)の上記式(I-4)のマレイミド(nは1である)を20gのメタクレゾールに溶かして、上記ジアミン化合物の溶液と混合し、触媒量の氷酢酸を加えた。103℃で96時間反応させた。アルコールにより沈殿、洗浄及び乾燥した後、製造例1のリチウム電池用重合物を得た。
製造例2〜製造例8
1.861 g (0.0075 mol) of bis (4-aminophenyl) sulfone (DDS) and 0.496 g (0.0025 mol) of 4,4'-methylenedianiline (MDA) dissolved in 13 g of metacresol. It was. Next, 5.375 g (0.015 mol) of maleimide (n is 1) of the above formula (I-4) is dissolved in 20 g of metacresol and mixed with a solution of the above diamine compound to obtain a catalytic amount. Glacial acetic acid was added. The reaction was carried out at 103 ° C. for 96 hours. After precipitation, washing and drying with alcohol, a polymer for a lithium battery of Production Example 1 was obtained.
Production Example 2 to Production Example 8

製造例2〜製造例8では、使用されるマレイミド化合物及び/又はジアミン化合物の種類、モル比、反応温度及び/又は反応時間を変える以外、製造例1と同じ方法で行った。製造例2〜製造例8の具体的な条件については、表1に示すので、ここで詳しく説明しない。 In Production Examples 2 to 8, the same method as in Production Example 1 was carried out except that the type, molar ratio, reaction temperature and / or reaction time of the maleimide compound and / or diamine compound used were changed. The specific conditions of Production Examples 2 to 8 are shown in Table 1, and will not be described in detail here.

実施例1:リチウム電池 Example 1: Lithium battery

実施例1のリチウム電池は、NMC(111)電極を正極、石墨電極を負極として、リチウム電池に電解液を加える。電解液の組成としては、約12.5重量部のLiPF電解質、約0.5重量部の製造例1のリチウム電池用重合物及び87重量部の溶剤を含む。溶剤は、炭酸エチレン(EC)、炭酸エチルメチル(EMC)及び炭酸ジメチル(DMC)が1:1:1の体積比で組成する混合溶液である。
(1)室温サイクルテスト
In the lithium battery of Example 1, an electrolytic solution is added to the lithium battery with the NMC (111) electrode as the positive electrode and the graphite electrode as the negative electrode. The composition of the electrolytic solution contains about 12.5 parts by weight of LiPF 6 electrolyte, about 0.5 parts by weight of the polymer for lithium battery of Production Example 1, and 87 parts by weight of a solvent. The solvent is a mixed solution composed of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) in a volume ratio of 1: 1: 1.
(1) Room temperature cycle test

実施例1のリチウム電池を室温(25℃)で、3.0V〜4.2Vの電圧でサイクルテストを行って、室温サイクル回数が増加する場合の実施例1のリチウム電池の静電容量の変化を検出した。室温サイクルテストの結果については、図1に示す。一般的に、サイクル回数が多いほど、静電容量の変化が小さくなることは好適である。
(2)高温高電圧サイクルテスト
When the lithium battery of Example 1 is cycle-tested at room temperature (25 ° C.) at a voltage of 3.0 V to 4.2 V and the number of room temperature cycles increases, the change in capacitance of the lithium battery of Example 1 Was detected. The results of the room temperature cycle test are shown in FIG. In general, it is preferable that the larger the number of cycles, the smaller the change in capacitance.
(2) High temperature and high voltage cycle test

実施例1のリチウム電池を60℃で、3.0V〜4.3Vでサイクルテストを行って、高温高電圧サイクル回数が増加する場合の実施例1のリチウム電池の静電容量の変化を検出した。高温高電圧サイクルテストの結果については、図2に示す。一般的に、サイクル回数が多いほど、静電容量の変化が小さくなることは好適である。
実施例2〜実施例8
The lithium battery of Example 1 was subjected to a cycle test at 60 ° C. and 3.0 V to 4.3 V to detect a change in the capacitance of the lithium battery of Example 1 when the number of high-temperature and high-voltage cycles increased. .. The results of the high temperature and high voltage cycle test are shown in FIG. In general, it is preferable that the larger the number of cycles, the smaller the change in capacitance.
Example 2 to Example 8

実施例2〜実施例8では、使用されるリチウム電池用重合物を変えること以外、実施例1と同じ方法で行った。実施例2〜実施例8のリチウム電池用重合物については、順次に製造例2〜実施例8を参照するが、ここで別途説明しない。実施例1〜実施例4の評価結果については、図1及び/又は図2に示す。本発明では、実施例5〜実施例8の評価結果が示されていないが、テストしたところ、実施例5〜実施例8の評価結果が実施例1〜実施例4と類似であった。
比較例1
In Examples 2 to 8, the same method as in Example 1 was carried out except that the polymer for lithium batteries used was changed. Regarding the polymers for lithium batteries of Examples 2 to 8, Production Examples 2 to 8 will be referred to in sequence, but will not be described separately here. The evaluation results of Examples 1 to 4 are shown in FIGS. 1 and / or FIG. In the present invention, the evaluation results of Examples 5 to 8 are not shown, but when tested, the evaluation results of Examples 5 to 8 were similar to those of Examples 1 to 4.
Comparative Example 1

比較例1は、その電解液にリチウム電池用重合物が添加されていない以外、実施例1と同じ方法で行った。比較例1の評価結果については、図1及び図2に示す。
比較例2
Comparative Example 1 was carried out in the same manner as in Example 1 except that the polymer for a lithium battery was not added to the electrolytic solution. The evaluation results of Comparative Example 1 are shown in FIGS. 1 and 2.
Comparative Example 2

比較例2は、実施例1におけるリチウム電池用重合物の代わりにビスマレイミド単量体を使用すること以外、実施例1と同じ方法で行った。比較例1の評価結果については、図1に示す。 Comparative Example 2 was carried out in the same manner as in Example 1 except that a bismaleimide monomer was used instead of the polymer for a lithium battery in Example 1. The evaluation results of Comparative Example 1 are shown in FIG.

まず、本発明の実施例1(線分110)、実施例2(線分120)、比較例1(線分130)及び比較例2(線分140)のリチウム電池の室温でサイクルテストが行われた結果を示す図1を参照されたい。図1の線分110及び線分120の実施例1及び実施例2に示すように、本発明のリチウム電池用重合物の製造方法により合成されたリチウム電池用重合物を使用した場合、リチウム電池は、室温での静電容量が約475mAh〜約480mAhであり、且つ50回の充放電サイクルにおいて、静電容量は実質的に衰退しない。一方、図1の線分130の比較例1に示すように、本発明のリチウム電池用重合物が添加されていないリチウム電池は、静電容量が本発明の実施例と相当であるが、後の高温高電圧テストで表現が不良である(図2に示す)。また、本発明のリチウム電池用重合物の代わりにビスマレイミド単量体を使用した比較例2(線分140)では、静電容量が低く(470mAhより低い)、且つ充放電サイクルを5〜10回行った場合、静電容量が大幅に低下した。 First, a cycle test was performed at room temperature of the lithium batteries of Example 1 (line segment 110), Example 2 (line segment 120), Comparative Example 1 (line segment 130) and Comparative Example 2 (line segment 140) of the present invention. See FIG. 1, which shows the results obtained. As shown in Example 1 and Example 2 of the line segment 110 and the line segment 120 of FIG. 1, when the lithium battery polymer synthesized by the method for producing the lithium battery polymer of the present invention is used, the lithium battery The capacitance at room temperature is about 475 mAh to about 480 mAh, and the capacitance does not substantially decline in 50 charge / discharge cycles. On the other hand, as shown in Comparative Example 1 of the line segment 130 of FIG. 1, the lithium battery to which the polymer for the lithium battery of the present invention is not added has a capacitance equivalent to that of the embodiment of the present invention, but later. The expression is bad in the high temperature and high voltage test of (Fig. 2). Further, in Comparative Example 2 (line segment 140) in which a bismaleimide monomer was used instead of the polymer for a lithium battery of the present invention, the capacitance was low (lower than 470 mAh) and the charge / discharge cycle was 5 to 10. When repeated, the capacitance decreased significantly.

次に、本発明の実施例1〜実施例4(それぞれ線分110、線分120、線分150及び線分160である)及び比較例1(線分130)の高温高電圧でサイクルテストが行われた結果を示す図2を参照されたい。図2の線分110、線分120、線分150及び線分160に示すように、本発明のリチウム電池用重合物を使用したリチウム電池は、高温高電圧で約75〜90回サイクルした場合、静電容量が緩慢にわずかに約10%低下した。しかしながら、図2の線分130に示すように、リチウム電池用重合物が添加されていない比較例1では、約55回のサイクルテストした後、静電容量が既に急速に10%低下したので、比較例1のリチウム電池は、高温高電圧での性質が不良である。 Next, a cycle test was performed at high temperatures and high voltages of Examples 1 to 4 of the present invention (line segment 110, line segment 120, line segment 150 and line segment 160, respectively) and Comparative Example 1 (line segment 130). See FIG. 2, showing the results performed. As shown in line segment 110, line segment 120, line segment 150, and line segment 160 in FIG. 2, a lithium battery using the polymer for a lithium battery of the present invention is cycled at a high temperature and a high voltage about 75 to 90 times. , Capacitance slowly decreased by only about 10%. However, as shown by line segment 130 in FIG. 2, in Comparative Example 1 in which the polymer for lithium batteries was not added, the capacitance had already rapidly decreased by 10% after about 55 cycle tests. The lithium battery of Comparative Example 1 has poor properties at high temperature and high voltage.

本発明のリチウム電池用重合物の製造方法によって製造されたリチウム電池用重合物は、電解液の溶剤に溶かして、リチウム電池の電極に良好な重合物膜を形成することができる。このリチウム電池用重合物は、良好な成膜性を有するだけではなく、リチウムイオンの伝導性を向上させ、リチウム電池の静電容量(特に高温時)及び高温高電圧時のサイクル寿命を改善することができる。 The polymer for lithium batteries produced by the method for producing a polymer for lithium batteries of the present invention can be dissolved in a solvent of an electrolytic solution to form a good polymer film on an electrode of a lithium battery. This polymer for lithium batteries not only has good film-forming properties, but also improves the conductivity of lithium ions, improving the capacitance of lithium batteries (especially at high temperatures) and the cycle life at high temperatures and high voltages. be able to.

複数の実施例で本発明を前述の通りに明らかにしたが、これは、本発明を限定するためのものではなく、当業者は、本発明の精神と範囲から逸脱しない限り、様々の変更や修飾を加えることができ、従って、本発明の保護範囲は、下記添付の特許請求の範囲で特定した内容を基準とするものである。 Although the present invention has been clarified in a plurality of examples as described above, this is not intended to limit the present invention, and those skilled in the art can make various changes and make various modifications as long as the spirit and scope of the present invention are not deviated. Modifications can be made, and therefore the scope of protection of the present invention is based on what is specified in the appended claims below.

110、120、130、140、150、160:線分 110, 120, 130, 140, 150, 160: Line segment

Claims (9)

有機酸の存在下で、マレイミド化合物と少なくとも1種のジアミン化合物との混合物を100℃〜130℃で96時間〜144時間重合反応させて、リチウム電池用重合物を製造することを含み、
前記リチウム電池用重合物は、リチウム電池の電解液中に溶解されるものであり、
前記マレイミド化合物の構造は、少なくとも2つのマレイミド単位を含み、前記混合物における前記マレイミド化合物と前記少なくとも1種のジアミン化合物とのモル比は、1:1〜3:1であり、且つ前記少なくとも1種のジアミン化合物はビス(4-アミノフェニル)スルホンを含むリチウム電池用重合物の製造方法。
In the presence of an organic acid, a mixture of a maleimide compound and at least one diamine compound is polymerized at 100 ° C. to 130 ° C. for 96 hours to 144 hours to produce a polymer for a lithium battery.
The polymer for a lithium battery is dissolved in an electrolytic solution of a lithium battery.
The structure of the maleimide compound contains at least two maleimide units, and the molar ratio of the maleimide compound to the at least one diamine compound in the mixture is 1: 1-3: 1, and at least one of the above. Is a method for producing a polymer for a lithium battery containing a bis (4-aminophenyl) sulfone.
前記リチウム電池用重合物の重量平均分子量は、20,000〜1,000,000である請求項1に記載のリチウム電池用重合物の製造方法。 The method for producing a polymer for a lithium battery according to claim 1, wherein the weight average molecular weight of the polymer for a lithium battery is 20,000 to 1,000,000. 前記マレイミド化合物は、下記式(I-1)又は式(I-2)に示す構造を有し、
式(I-1)において、Rは-RCHR-、-C(O)CH-、-CHOCH-、-C(O)-、-O-、-O-O-、-S-、-S-S-、-S(O)-、-CHS(O)CH-、-(O)S(O)-、-C-、-CH(C)CH-、-CH(C)O-、ビフェニレン、置換のフェニレン又は置換のビフェニレンであり、Rは炭素数1〜6のアルキレン基であり、
式(I-2)において、Rは-RCH-、-C(O)-、-C(CH-、-O-、-O-O-、-S-、-S-S-、-(O)S(O)-、又は-S(O)-、
を表し、nは1〜3の整数である請求項1に記載のリチウム電池用重合物の製造方法。
The maleimide compound has a structure represented by the following formula (I-1) or formula (I-2).
In formula (I-1), R 1 is -RCH 2 R-, -C (O) CH 2- , -CH 2 OCH 2- , -C (O)-, -O-, -O-O-, -S -, - S-S - , - S (O) -, - CH 2 S (O) CH 2 -, - (O) S (O) -, - C 6 H 4 -, - CH 2 (C 6 H 4 ) CH 2- , -CH 2 (C 6 H 4 ) O-, biphenylene, substituted phenylene or substituted biphenylene, R is an alkylene group having 1 to 6 carbon atoms.
In formula (I-2), R 2 is -RCH 2- , -C (O)-, -C (CH 3 ) 2- , -O-, -O-O-, -S-, -SS. -,-(O) S (O)-or-S (O)-,
The method for producing a polymer for a lithium battery according to claim 1, wherein n is an integer of 1 to 3.
前記少なくとも1種のジアミン化合物は、下記式(II)に示す構造を含み、
式(II)において、Rは-CH-、-O-又は-S-を表す請求項1に記載のリチウム電池用重合物の製造方法。
The at least one diamine compound contains a structure represented by the following formula (II).
The method for producing a polymer for a lithium battery according to claim 1, wherein R 3 represents -CH 2- , -O- or -S- in the formula (II).
電解質と、
マレイミド化合物と少なくとも1種のジアミン化合物との混合物から得るリチウム電池用重合物と、
溶剤と、
を含むリチウム電池電解液であって、
前記少なくとも1種のジアミン化合物はビス(4-アミノフェニル)スルホンを含み、且つ前記リチウム電池電解液の使用量を100重量部として、前記リチウム電池用重合物の使用量は、0.2重量部〜2重量部であるリチウム電池電解液。
With electrolytes
A polymer for a lithium battery obtained from a mixture of a maleimide compound and at least one diamine compound,
With solvent
Lithium battery electrolyte containing
The at least one diamine compound contains bis (4-aminophenyl) sulfone, and the amount of the lithium battery electrolytic solution used is 100 parts by weight, and the amount of the lithium battery polymer used is 0.2 parts by weight. ~ 2 parts by weight lithium battery electrolyte.
前記リチウム電池電解液の使用量を100重量部として、前記電解質の使用量は10重量部〜20重量部であり、且つ前記電解質はアルカリ金属塩類の電解質を含む請求項5に記載のリチウム電池電解液。 The lithium battery electrolyte according to claim 5, wherein the amount of the lithium battery electrolyte used is 100 parts by weight, the amount of the electrolyte used is 10 to 20 parts by weight, and the electrolyte contains an electrolyte of alkali metal salts. liquid. 前記溶剤は、炭素数3〜5の炭酸ヒドロカルビルエステルを含む請求項5に記載のリチウム電池電解液。 The lithium battery electrolytic solution according to claim 5, wherein the solvent contains a hydrocarbyl ester carbonate having 3 to 5 carbon atoms. 前記リチウム電池用重合物は、前記溶剤に溶かされる請求項5に記載のリチウム電池電解液。 The lithium battery electrolytic solution according to claim 5, wherein the polymer for a lithium battery is dissolved in the solvent. リチウム遷移金属酸化物電極と、
石墨電極と、
前記リチウム遷移金属酸化物電極と前記石墨電極との間に設けられるセパレータと、
前記リチウム遷移金属酸化物電極及び前記石墨電極の表面を被覆する重合物膜と、
請求項5〜8の何れか1項に記載のリチウム電池電解液と、
を含み、
前記重合物膜は、前記リチウム電池電解液におけるリチウム電池用重合物によりリチウム電池の充放電中で形成されるリチウム電池。
Lithium transition metal oxide electrode and
Graphite electrode and
A separator provided between the lithium transition metal oxide electrode and the graphite electrode,
A polymer film that covers the surfaces of the lithium transition metal oxide electrode and the graphite electrode,
The lithium battery electrolytic solution according to any one of claims 5 to 8.
Including
The polymer film is a lithium battery formed during charging / discharging of a lithium battery by a polymer for a lithium battery in the lithium battery electrolytic solution.
JP2018158200A 2018-02-26 2018-08-27 Method for manufacturing polymer for lithium battery, lithium battery electrolyte and lithium battery Active JP6754535B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW107106412A TWI658068B (en) 2018-02-26 2018-02-26 Method of forming polymer for lithium battery, electrolyte and lithium battery
TW107106412 2018-02-26

Publications (2)

Publication Number Publication Date
JP2019149363A JP2019149363A (en) 2019-09-05
JP6754535B2 true JP6754535B2 (en) 2020-09-16

Family

ID=64445823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018158200A Active JP6754535B2 (en) 2018-02-26 2018-08-27 Method for manufacturing polymer for lithium battery, lithium battery electrolyte and lithium battery

Country Status (3)

Country Link
JP (1) JP6754535B2 (en)
CN (1) CN108929437B (en)
TW (1) TWI658068B (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2584634B2 (en) * 1987-08-06 1997-02-26 日本化薬株式会社 Manufacturing method of high molecular weight polyimide
JP5149917B2 (en) * 2009-03-27 2013-02-20 日立化成工業株式会社 Thermosetting resin composition, and prepreg, laminate and multilayer printed wiring board using the same
JP2011043805A (en) * 2009-07-22 2011-03-03 Chisso Corp New composition and method for producing the same
JP5879757B2 (en) * 2011-06-07 2016-03-08 住友ベークライト株式会社 Resin composition, prepreg and method for producing prepreg
CN105244539B (en) * 2014-07-09 2018-02-02 江苏华东锂电技术研究院有限公司 additive, electrolyte solution and lithium ion battery
CN105576245B (en) * 2014-10-17 2018-10-26 江苏华东锂电技术研究院有限公司 Lithium ion battery
CN105762336B (en) * 2014-12-19 2019-06-25 江苏华东锂电技术研究院有限公司 Anode material and preparation method thereof and lithium ion battery
JP6899636B2 (en) * 2016-08-31 2021-07-07 三井化学株式会社 Low-dielectric resin composition, cured product, dry film, film, prepreg, metal-clad laminate, printed wiring board and electronic equipment

Also Published As

Publication number Publication date
CN108929437B (en) 2021-08-17
CN108929437A (en) 2018-12-04
TWI658068B (en) 2019-05-01
JP2019149363A (en) 2019-09-05
TW201936712A (en) 2019-09-16

Similar Documents

Publication Publication Date Title
US10056614B2 (en) Polyimide binder for power storage device, electrode sheet using same, and power storage device
US9337511B2 (en) Nonaqueous secondary battery
JP5559117B2 (en) Non-aqueous electrolyte and lithium secondary battery containing non-aqueous electrolyte
US8455143B2 (en) Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery having the same
US8124282B2 (en) Nonaqueous electrolyte having maleimide additives and secondary cells employing the same
US9988495B2 (en) Oligomer additive and lithium battery
CN105580186A (en) Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte composition
EP3352281B1 (en) Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery
US10388989B2 (en) Non-aqueous electrolyte, and non-aqueous electrolyte secondary cell
US20170162870A1 (en) Cathode composite material, lithium ion battery using the same and method for making the same
US20170288261A1 (en) Anode composite material, method for making the same, and lithium ion battery
US20190379046A1 (en) Oligomer-polymer and lithium battery
JP6754535B2 (en) Method for manufacturing polymer for lithium battery, lithium battery electrolyte and lithium battery
CN105336982B (en) Lithium ion battery safe additive, electrolyte and lithium ion battery
JP7047181B1 (en) Non-aqueous electrolyte and lithium ion secondary battery
CN112358465A (en) Compound, electrolyte composed of compound and lithium ion battery
US20190248958A1 (en) Preparation method of oligomer additive, oligomer additive, and lithium battery
KR100566915B1 (en) Positive electrode for lithium secondary battery with enhanced electrode?s adhesion using lithium manganese oxide
JP7387416B2 (en) Solid electrolytes, solid electrolyte membranes, electrodes and alkali metal batteries
EP4243150A1 (en) Novel additive for non-aqueous electrolyte solution and lithium secondary battery comprising same
CN117203817A (en) Novel additive for nonaqueous electrolyte and lithium secondary battery including the same
KR20240058536A (en) Binder comprising polyamide polymer, cathode for secondary battery comprising the same and secondary battery comprising the cathode
JP2020126716A (en) Binder for nonaqueous electrolyte secondary battery, electrode slurry arranged by use thereof, electrode and battery
CN105336954A (en) Composite cathode material, preparation method thereof and lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200820

R150 Certificate of patent or registration of utility model

Ref document number: 6754535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250